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achieve that, three NNs, namely the Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN)
and the Psi Sigma Network (PSN), are applied to the task of forecasting the daily returns of three
Exchange Traded Funds (ETFs). The statistical and trading performance of the NNs is benchmarked
with the traditional Autoregressive Moving Average (ARMA) models. Next, a novel dynamic
asymmetric copula model (NNC) is introduced in order to capture the dependence structure across ETF
returns. Based on the above, weekly re-balanced portfolios are obtained and compared by using the
traditional mean-variance and the mean-CVaR portfolio optimization approach. In terms of the results,
PSN outperforms all models in statistical and trading terms. Additionally, the asymmetric skewed t
copula statistically outperforms symmetric copulas when it comes to modelling ETF returns dependence.
The proposed NNC model leads to significant improvements in the portfolio optimization process, while
forecasting covariance accounting for asymmetric dependence between the ETFs also improves the

performance of obtained portfolios.

Keywords: Copulas; Neural networks; Portfolio optimization; ETF

JEL Classification: G11, G17

Corresponding author. Email: Charalampos.Stasinakis@glasgow.ac.uk

1



1. Introduction

The basic premise of the modern portfolio theory is that portfolio diversification benefits originate from
investing in financial assets that are not highly correlated. In other words, financial returns’ dependence
is explained by the linear correlation coefficient, while efficient portfolio frontiers are approximated by
the mean-variance optimization (Markowitz, 1952). The baseline assumption of the theory is that
financial returns follow a joint normal distribution. Once researchers relax or depart from this
assumption of normality, they usually examine the skewness and the kurtosis of the financial returns’
distribution. The logic behind this is that negative skewness implies that negative financial returns are
more probable, while excess kurtosis suggests extreme observations are more likely to appear than it
would be expected in normality conditions. There are other observed properties in financial return series
that go against the Markowitz theory, such as time-varying skewness and kurtosis (Harvey and Siddique
1999; Jondeau and Rockinger 2003) or the long-term persistence of their mean and variance (Saqdique
and Silvapulle 2001). For that reason, portfolio optimization methods that extend the traditional mean
variance approach must be explored in order to achieve maximum risk reduction for a given level of

expected return.

The early literature shows that the diversification benefits mainly depend on accurate predictions
of the asset return moments. Nonetheless, there are two streams of research. One stream focuses on asset
allocation and provides solid evidence that the forecasts of asset returns are important inputs for the
mean-variance optimization. Best and Grauer (1991) show that the weights, mean, and variance of the
mean-variance efficient portfolio are extremely sensitive to changes in asset means. Chopra et al. (1993)
find that adjusted-input portfolios can achieve higher expected return, less variance and greater terminal
wealth than unadjusted-input portfolios. Chopra and Ziemba (1993) also demonstrate that using
inaccurate forecasts of asset returns can substantially degrade the performance of mean-variance
optimization. Another strand of studies investigates the importance of forecasting the second moments
(i.e. covariance structure) of asset returns on portfolio optimization. For instance, Chan et al. (1999)
evaluate the out-of-sample performance of optimized portfolio based on the different models of
covariances. They provide evidence that predictions of variance and covariance of asset returns are key
inputs for the practitioner. Menchero et al. (2012) find that the risk of optimized portfolios tends to be
underestimated by sample covariance and they show that the adjusted covariance can effectively reduce

the out-of-sample volatilities of optimized portfolios.

Portfolio practitioners focusing more on obtaining accurate forecasts of financial returns face the
difficult task of screening optimal models from the voluminous financial forecasting literature. The
models available are characterized by linear or non-linear estimations and constant or time-varying
parameterization processes. Neural networks (NNs) is a popular class of non-linear computation models

when it comes to forecasting financial market variables, because of their data-adaptive learning and
2



clustering abilities (McNeilis 2005). Over the past decade, NNs have provided extensive empirical
evidence for their high financial forecasting performance. For example, Wang (2009) show that using
NNs to forecasting volatility increases the predictability of option-pricing models. Ebrahimpour et al.
(2011) apply successfully a mixture of Multi-Layer Perceptron (MLP) experts in trend prediction of time
series on the Tehran stock exchange. Dunis et al. (2011) apply Psi Sigma Networks (PSNs) to the task
of forecasting the EUR/USD exchange rate. Their results indicate the superiority of PSN over traditional
MLPs and Recurrent Neural Networks (RNNs) models. Finally, Guresen et al. (2011) provides an
extensive survey of the successful applications of NNs in stock market index predictions, including
applications of MLP, RNN and Higher Order Neural Networks (HONNS).

When it comes to predicting the covariance matrix among financial assets, three models are
normally considered in the literature, namely the Dynamic Conditional Correlation (DCC) model (Engle,
2002), the Asymmetric Dynamic Conditional Correlation (ADCC) model (Cappiello et al. 2006) and the
Generalized Autoregressive Score (GAS) model (Creal et al. 2013). The DCC is probably the most
widely used econometric technique to estimate and predict the covariance of asset returns (see Andersen
et al. 2006, Jondeau and Rockinger 2006b, Christoffersen et al. 2012, etc.). The ADCC model is a
generalized version of the DCC model, which permits conditional asymmetries in correlations (see
Syriopoulos and Roumpis 2009, Fei et al. 2010, etc.). Finally, the GAS model is a more recent technique
that can be used to model the dynamic dependence of asset returns. The GAS framework uses the score
of the conditional density function to drive the dynamics of the time-varying parameters (see Lucas et
al. 2014, Creal et al. 2014, Salvatierra and Patton 2015, etc.).

It is a stylized fact that equity returns are more correlated during market downturns than market
upturns (see Longin and Solnik 2001, Ang and Chen 2002, Hong et al. 2007, amongst others). This
characteristic, known as asymmetric dependence, violates the assumption of modern portfolio theory
that the financial returns follow joint normal distribution and their dependence can be fully described by
the linear correlation coefficient as suggested by Markowitz (1952). Several empirical studies show that
the asymmetric dependence can be well captured by copulas and taking into account this characteristic
can produce economic gains for the investors with no short selling constraints (Patton 2004, Garcia and
Tsafack 2011, Chu 2011).

The classical mean-variance optimization uses variance as a risk proxy, however earlier literature
criticizes that assumptions. In other words, variance is not a perfect measure because it is symmetric and
treats downside risk and upside risk in the same way (Ang et al. 2006). Several downside risk measures
have been introduced in portfolio optimization practice, such as semi-variance (Markowitz 1959),
Value-at-Risk (VaR) (Gaivoronski and Pflug 2005) and Conditional Value-at-Risk (CVaR) (Rockafellar

and Uryasev 2000, Rockafellar and Uryasev 2002). The criticism against VaR originates from its lack
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of subadditivity and convexity (Artzner et al. 1999). In addition, VaR is not easy to optimize when
calculated using scenarios (Rockafellar and Uryasev 2000). For these reasons, CVaR, can be thought as
a coherent risk measure, which has been widely applied in optimization practice (see amongst others
Rockafellar and Uryasev (2002), Quaranta and Zaffaroni (2008) and He and Gong (2009).

Following Boubaker and Sghaier (2013) and Low et al. (2013), this study proposes a novel Neural
Network Copula (NNC) portfolio optimization approach. It is assumed that the investor has a one-period
horizon and aims to construct a dynamically rebalanced portfolio based on three Exchange Traded Funds
(ETFs). The time-varying weights of this portfolio require one-step-ahead forecasts of the expected
return and the conditional variance—covariance matrix. The expected asset returns are predicted by the
superior PSN model in a forecasting exercise over the period of 2011-2015. The forecasting performance
of the PSN is benchmarked against the traditional Autoregressive Moving Average (ARMA) model and
two NN structures, namely the MLP and RNN. The NNC process is able to extract the time-varying
variance-covariance matrix based on a copula-based GAS model that captures the asymmetric
dependence between the respective ETFs along with using the CVaR as a measure of risk. In terms of
the results, the proposed asymmetric copula model statistically outperforms symmetric copulas in
dependence modelling. The study provides evidence that the NNC process leads to significant
improvements in portfolio optimization. Traditional ARMA-based portfolios perform worse than
portfolios based on NN models, while the PSN portfolios deliver higher out-of-sample risk- adjusted
returns. Finally, it is shown that forecasting covariance taking into account asymmetric dependence can
improve the performance of optimization, however the magnitude of this improvement is relatively small.
This finding is in line with the relevant strand of the literature suggesting the forecasts of asset returns

are the most important inputs for the mean-variance optimization.

The rest of the paper is organized as follows. Section 2 provides a detailed description of the ETFs’
dataset used in this paper. All forecasting models are described in section 3, while their performance is
evaluated in section 4. The proposed NNC portfolio optimization process is explained in detail in section
5. The final portfolio optimization results are summarized in section 6, while some concluding remarks
are given in Section 7. Finally, the appendix and online supplementary appendix provide technical and

mathematical details essential for the understanding of this study.
2. Dataset

The advantages of ETFs over traditional trading are well documented (Avellaneda and Lee 2010, Dolvin
2010, Marshall et al. 2013). The main one is that they offer investors the opportunity to trade stock

market indices at very low transaction costs with high level of diversification”. In this study, we examine

* The transaction costs for the three ETFs tracking their respective benchmarks do not exceed 0.5% per annum for medium
size investors (see, for instance, www.interactive-brokers.com). Before the expansion of ETFs, traders had to pay a separate
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three ETFs over the period of 2011-2015, namely the SPDR S&P 500 ETF Trust (SPY), SPDR Dow
Jones Industrial Average ETF Trust (DIA) and PowerShares QQQ Trust (QQQ). These are designed to
replicate major stock indices from US, while they are characterised by high liquidity and high volume
of assets. It should be noted here that methods performing well on these highly scrutinized and arbitraged
ETFs are expected to perform even better on other that are less liquid and less covered. Therefore, using
these ETFs can also be considered as a tough to beat benchmark. Their details are presented in table 1

below.

Table 1: The ETFs under study

ETF TRACKING INDEX TICKER
SPDR S&P 500 ETF Trust S&P 500 SPY
SPDR Dow Jones Industrial Average ETF Trust ~ Dow Jones Industrial Average DIA
PowerShares QQQ Trust NASDAQ-100 QQQ

All models in this study are applied in the task of forecasting the one day ahead arithmetic returns
of the three ETFs. The descriptive statistics and correlation matrix of the return series are shown in the

following table:

Table 2: Descriptive statistics and correlation matrix

Panel A: Descriptive Statistics

Ticker SPY DIA QQQ
Mean 0.00052 0.00045 0.00069
Standard deviation 0.00963 0.00885 0.01051
Skewness -0.43942 -0.42037 -0.30708
Kurtosis 7.64749 7.01179 5.98211
Jarque-Bera (p value)  0.0000*** 0.0000***  0.0000***
ADF (p value) 0.0000*** 0.0000*** 0.0000***
Panel B: Correlation Matrix
Ticker SPY DIA QQQ
SPY 1
DIA 0.829 [0.798] 1
QQQ 0.958 [0.946] 0.906 [0.887] 1

Note: Panel B reports the linear correlation and Spearman's rank correlation (bracket).

The three returns series exhibit slight negative skewness and positive kurtosis. The Jarque-Bera
statistic confirms that the return series under study are non-normal at the 99% confidence level. The
Augmented Dickey-Fuller (ADF) reports that the null hypothesis of a unit root is rejected at the 99%

confidence level for all ETFs. The period under study and the relevant datasets are presented in table 3.

Table 3: The total dataset

Datasets Trading Days Start Date End Date

Total Dataset 1075 03/01/2011 13/04/2015
Training Dataset 502 03/01/2011 31/12/2012
Test Dataset 252 02/01/2013 31/12/2013
Out-of-sample Dataset 321 02/01/2014 13/04/2015

Note: The in-sample period is the sum of the training and test datasets.

commission for each individual stock of an industry-specific portfolio. Now there are sector-specific ETFs, which allow
traders to pay only one commission to buy or sell short an entire group of stocks.
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All models are trained in the in-sample and their forecasts are evaluated in the out-of-sample. Figure

1 presents the performance of the three ETFs during the period of 3 January 2011 to 13" April 2015.

Figure 1: The ETFs under study’
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3. Forecasting models

This section summarizes the models applied to the task of forecasting the one-day head return of the
SPY, DIA and QQQ series under study. We implement in total four forecasting models, namely a

baseline Autoregressive Moving Average Model (ARMA) and three traditional NN techniques.
3.1 Autoregressive moving average model (ARMA)

ARMA models are traditionally used in similar applications, as they are based on the assumption that
the current value of a time-series can be approximated with a linear combination of its previous values
plus a combination of current and previous values of the residuals (Brooks, 2008). Generally, an ARMA

is be specified as below:

Yt = (50 + (51 t- ¢2Yt—2 +ot @th—ﬁ + g‘t - ngt—l - Wzgt—z T qu}—a (1)
where:
e Y: is the dependent variable at time t
o Yt_l,Yt_z,---,Yt_ﬁ are the lagged dependent variables

. g?)o,gﬁl,...,gi)ﬁ are the regression coefficients

e & isthe residual term

' From the figure it is obvious that in- and out-of-sample period mainly cover a bull market. Nonetheless, bear markets are
also covered in a way, since the 2011 drop is included in the in-sample.
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®  E 6 gmby g are the previous values of the residual terms

o W, W,..,W, are the residual weights
Based on the in-sample correlogram (training and test subsets), the restricted ARMA (8,8),

ARMA(10,10) and ARMA(7,7) model are chosen for the out-of-sample estimation of SPY, DIA and
QQ respectively.

3.2 Neural Networks

In our study, we apply three traditional NN architectures as forecasting techniques. The first model is
the most popular NN architecture, namely the Multi-Layer Perceptron (MLP). A standard MLP has at
least three layers. The first layer is called the input layer (the number of its nodes corresponds to the
number of explanatory variables). The last layer is called the output layer (the number of its nodes
corresponds to the number of response variables). An intermediary layer of nodes, the hidden layer,
separates the input from the output layer. Its number of nodes defines the amount of complexity the
model is capable of fitting. In addition, the input and hidden layer contain an extra node called the bias
node. This node has a fixed value of one and has the same function as the intercept in traditional
regression models. Normally, each node of one layer has connections to all the other nodes of the next

layer.

The network processes information as follows: the input nodes contain the value of the explanatory
variables. Since each node connection represents a weight factor, the information reaches a single hidden
layer node as the weighted sum of its inputs. Each node of the hidden layer passes the information
through a non-linear activation function and passes it on to the output layer if the calculated value is
above a threshold. The training of the network (which is the adjustment of its weights in the way that
the network maps the input value of the training data to the corresponding output value) starts with
randomly chosen weights and proceeds by applying a learning algorithm called back-propagation of
errors (Shapiro 2000). The maximum number of the allowed back-propagation iterations is optimized
by maximizing a fitness function in the test dataset (see table 3) through a trial and error procedure.
More specifically, the learning algorithm tries to find those weights which minimize an error function
(normally the sum of all squared differences between target and actual values). Since networks with
sufficient hidden nodes are able to learn the training data (as well as their outliers and their noise) by
heart, it is crucial to stop the training procedure at the right time to prevent overfitting (this is called
‘early stopping’). This is achieved by dividing the dataset into 3 subsets respectively called the training
and test sets used for simulating the data currently available to fit and tune the model and the validation
set used for simulating future values. The network parameters are then estimated by fitting the training

data using the backpropagation of errors. The iteration length is optimized by maximizing the forecasting



accuracy for the test dataset. Then, the predictive value of the model is evaluated applying it to the

validation dataset (out-of-sample dataset).

In addition to the classical MLP network, the Recurrent Neural Network (RNN) is also applied. A
simple RNN has an activation feedback which embodies short-term memory. In other words, the RNN
architecture can provide more accurate outputs because the inputs are (potentially) taken from all
previous values. Although RNN require substantially more computational time (Tenti 1996), they can
yield better results in comparison with simple MLPs due to the additional memory inputs. The third NN
model included in the feature space is Psi Sigma Network (PSN). PSNs are considered as a class of feed-
forward fully connected Higher Order Neural Network (HONN). First introduced by Ghosh and Shin
(1991), the PSN structure is motivated by the need to create a network combining the fast learning
property of single layer networks with the powerful mapping capability of HONNSs, while avoiding the
combinatorial increase in the required number of weights. The order of the network in the context of
PSN is represented by the number of hidden nodes. In a PSN the weights from the hidden to the output
layer are fixed to 1 and only the weights from the input to the hidden layer are adjusted, something that
greatly reduces the training time. The description of each NN and their technical characteristics (input
selection and parametrization) are presented in Online Appendix A.

4. Forecasting models’ statistical and trading performance

In order to evaluate statistically the forecasts, the RMSE, the MAE, the MAPE and the Theil-U statistics
are computed. For all four of the error statistics retained the lower the output, the better the forecasting
accuracy of the model concerned. Their mathematical formulas are presented in Online Appendix B.

The following table presents out-of-sample statistical performance of the models.

Table 4: Out-of-sample statistical performance

ETF  Statistic  ARMA  MLP RNN PSN
MAE 00056 00058  0.0057  0.0055
SPY MAPE  167.44%  16452%  151.86%  141.21%
RMSE 00078 00076 00075  0.0071
THEIL-U 09025 08286  0.8049  0.7598
MAE 00057 00055  0.0053  0.0051
MAPE  162.07% 161.88%  130.99%  128.81%
RMSE 00075 00073 00071  0.0068
THEIL-U 09256 07635 07348  0.7086
MAE 00085 00068  0.0067  0.0062
QQQ  MAPE  14855%  128.74%  123.04%  119.22%
RMSE 00088 00082 00081  0.0075
THEIL-U 09077 08322  0.8279  0.7980

DIA

The above results show that the models’ statistical ranking is consistent across all ETFs series. In
general, the baseline ARMAs are found to have the worst statistical results compared to all models. The
PSN appears to be consistently the superior model in statistical terms against all NNs and ARMA:s.
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Finally, RNN is the second best model. This statistical ranking is consistent with other similar studies
on NNs (Sermpinis et al. 2014, Stasinakis et al. 2016).

In order to further validate the above findings, we perform two additional tests, namely the Pesaran-
Timmermann (PT) (1992) and the Diebold Mariano (DM) (1995) test. The PT test is used to examine
whether the directional movements of the real and forecast values are in step with one another. The PT
test’s null hypothesis is that the model under study has no power on forecasting the relevant ETF return
series. The DM statistic tests the null hypothesis of equal predictive accuracy between two forecasts. In
this case, the DM test is applied to couples of out-of-sample forecasts (best model vs. other model) using
the MSE loss function. In our case, a negative realization of the DM value would indicate that the PSN
forecast is more accurate than the competing forecast. The results of the two tests are provided in table
5.

Table 5: PT and DM statistics.

Test ETF  ARMA MLP RNN PSN
SPY  (6.58)***  (7.25)%%* (8.69)%%*  (9.12)***
DIA  (7.56)**  (8.95)%** (9.05)*** (9.87)%**
QQQ  (6.84)***  (7.63)*** (8.15%**  (8.93)***
SPY  (-8.12)%**  (=6.93)%** (=6.06)%**
DIA  (FO.5L)***  (—8.42)%** (—7.15)%**

QQQ  (~10.66)***  (—9.14)*** (—7.38)***

Note: The values in the parentheses are the calculated PT and DM
statistics. *** denotes that the null hypothesis is rejected at 1%
significance level.

PT

DM

From the above table, the PT statistics indicate that all models are capable of capturing the
directional movements of the three ETF return series in the out-of-sample®. Additionally, the null
hypothesis of equal predictive accuracy is rejected for all comparisons at 1% significance level.
Moreover, the statistical superiority of the PSN forecasts is further validated, as all the DM statistic
realizations are negative. Additionally, RNN is found to have the closest forecasts to the superior PSN.
All the statistical findings indicate that PSN provides the most accurate forecasts. It would be interesting

to see if this superiority is translated also into higher trading performance.

Therefore, the competing forecasting models are compared also in terms of trading efficiency. In
this application, the trading performance of the models is evaluated with a simple trading strategy. The
position is ‘long’ and ‘short’, when the forecast return is positive and negative respectively. A ‘long’ or
‘short” position means that we buy or sell respectively the ETF under study at the current price. As
mentioned before, the low transaction costs make ETF very attractive to traders. This is the case

especially in daily trading applications (as of this study), where high transaction costs can vastly decrease

* Similar results are obtained also in the in-sample period. In-sample results are not provided within text for the sake of space
and are available upon request.
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profitability (Wyart et al. 2008). The trading performance measures are presented in Online Appendix
B. Table 6 summarizes the out-of-sample trading results for the respective model and ETF series after

transaction costs.

Table 6: Out-of-sample trading performance after transaction costs

ETF Measure ARMA MLP RNN PSN
Annualised Return 5.94% 7.44% 11.59% 17.17%

spy Sharpe Ratio 0.50 0.63 1.33 1.47
Maximum Drawdown -6.76% -10.78% -8.92% -8.23%
Annualised Return 3.80% 12.81% 14.87% 18.37%

DIA Sharpe Ratio 0.33 1.63 1.94 2.24
Maximum Drawdown -12.48% -9.54% -8.28% -8.14%
Annualised Return 4.12% 8.75% 10.45% 16.52%

Sharpe Ratio 0.69 1.32 1.71 2.37

QQQ

Maximum Drawdown -8.75% -8.11% S5.77% -5.89%

From the table above we note that the trading efficiency ranking coincides with the statistical one
(as per table 4). The PSN delivers the best trading performance for all series under study. On average,
PSN achieves 17.35% annualized returns and 2.08 Sharpe ratio after transaction costs in the out-of-
sample period. The second best model in terms of the same trading performance measures is RNN. It
projects on average profits and Sharpe ratio after transaction costs at the level of 12.30% and 1.66
respectively. The MLP remains the worse performing NN. Another interesting finding is that NNs

present consistently lower maximum drawdown figures, which is a relative proxy for their trading risk.

Overall, the results indicate that PSN is the best performing model in the three forecasting exercises.
The above evidence is interesting from a forecasting and model competing point of view, but they do
not necessarily convince traders or practitioners with different backgrounds and preferences to drop
simpler techniques such as ARMA models.$ These traditional models, although not superior to the NNs,
still project profits while being well established and easy to implement. Therefore, it is even more
exciting to evaluate weather adopting superior ETF forecasts from the best NN can lead to further
improved portfolio management decisions, that are worth the ‘technical and computational trouble’.

This issue is explored with the analysis of the following section.

5. Neural network-based portfolio optimization

§ In order to consider a nonlinear benchmark, we also experiment with a Smooth Transition Autoregressive (STAR) model
which is a nonlinear extension of autoregressive models. Nonetheless, the out-of-sample statistical and trading performance
was found inferior to the ARMA specifications. As such, it is logical to retain for the portfolio optimization the less complex
and better performing linear ARMA. Nonetheless, the STAR results are not included for the sake of space and are available
upon request.

10



This section provides the summary of the portfolio optimization procedures applied in this study.
Initially, the traditional Mean-Variance (M-V) approach is described. Then, the proposed copula-based

mean-CVaR optimization method is explained in detail.
5.1 Traditional mean-variance portfolio optimization with NN models

Modern portfolio theory suggests that there are two important inputs for the M-V portfolio optimization:
expected returns and forecasts of covariance. The results of section 4 indicate that the NN forecasts are
the more accurate approximations for the daily expected returns across all ETF series. As a next step,
we want to investigate whether we can achieve significantly better performance in the M-V optimization

by using their forecasts instead of the traditional ARMA.

Following Markowitz (1952), we assume that investors wish to find portfolios that have the best
expected return-risk trade-off. The optimal portfolio weights can be obtained by minimizing the variance
of the portfolio for a given level of expected return™. Therefore, the optimization problem in our study

can be expressed as:
: 2 T . T Tq _
minog, (w,)=w; X, W, subjectto r,, =wr, and W, 1=1 )

where ag,t denotes portfolio variance at time ¢, r,, . denotes the expected return of the portfolio, w,
denotes the vector of portfolio weights, and X; denotes the covariance matrix of ETF returns at time t.

In this study, the weekly algorithmic returns are calculated as:
it zln(Pi,t)'In(Pi,t—l) 3)

where P;, and r; . denote the price and logarithm return of ETF i at week t.X; is predicted by three

different models, namely the DCC-GARCH, the ADCC-GARCH and the GAS model.

5.2 Neural network copula-based mean-CVaR portfolio optimization (NNC)

Although variance is straightforward to calculate and widely used in financial practice, it is not a
satisfactory risk measure from the risk measurement perspective. As a symmetric risk measure, variance
penalizes profits and losses in an equal way. Thus, this study considers the CVaR as an alternative risk
measure, it is easily interpretable and it satisfies several attractive mathematical properties. Minimization

of portfolio CVaR is closely related to the minimization of portfolio VaR, while CVaR minimization

* Equivalently, the optimal portfolio can be obtained by maximizing portfolio expected return for a given level of risk as
measured by portfolio variance.
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can be easily solved by a linear programming (Rockafellar and Uryasev 2002). Based on this rational,

we adopt the Neural Network Copula-based Mean-CVaR (NNC) portfolio optimization.

The starting point of the process is to model the marginal distributions of ETF returns. The details
of this analysis are explained in detail in Appendix A. It is also very crucial to select the appropriate
copula for the datasets at hand. Although the Gaussian copula and t copula are the most widely used
copulas in finance as they are convenient to use, neither of them are able to capture multivariate
asymmetry. Some Archimedean copulas, such as the Clayton, the Gumbel and the Joe-Clayton
specifications, allow asymmetry in the bivariate distribution, however, they are not easily generalized to
high-dimensional applications. Following Christoffersen et al. (2012) and Christoffersen and Langlois
(2013), we use the skewed t copula implied by the skewed t distribution discussed in Demarta and
McNeil (2005) to overcome these problems. To further verify this selection, we compare the
performance of the skewed t copula with nine alternatives and we find that it is indeed the best
performing copula. The details of this analysis are provided in Appendix B. The superiority of the
skewed t copula is intuitively reasonable since it can capture the upper and lower tail dependence along
with the multivariate asymmetry. In other words, it is safe to assume that this copula can describe the
‘true’ dependence structure among the ETF index returns. The skewed t copula-based GAS model can
now be used to obtain the dynamics of correlation (covariance) and apply the estimated copula to
implement a Monte Carlo simulation to obtain portfolio CVaR for the optimizations. The CVaR
optimization strategy allows the minimization of the downside tail risk of the portfolio (portfolio
CVaR™) for a given level of return. This strategy is suitable for investors who have a utility function
characterized by the minimization of downside tail risk and are indifferent to (or might even prefer)

upside variance.

Specifically, the proposed NNC approach can be separated into two stages. In the first stage, we
calculate the expected weekly returns of the three ETF indices using the daily forecasts of ARMA and
three NN models. In order to incorporate asymmetric dependence in our model, we use the skewed t
copula to describe the dependence structure between asset returns. The time-varying correlation matrix
for the skewed t copula model is predicting using the DCC, ADCC and GAS model. All the forecasts
are obtained by using a “rolling window” approach. Then, we re-estimate the skewed t copula at each
week t using a 1-year rolling window*. Given the estimated skewness parameter and degrees of
freedom, as well as the correlation matrix predicted by the DCC, ADCC and GAS, a Monte Carlo
simulation based on the skewed t copula is done to predict the VaR and CVaR for the ETF portfolio.

Based on the above, given a series of target returns, it is possible to obtain an efficient frontier of optimal

T CVaR is the abbreviation of the Conditional Value-at-Risk, which is also known as the Expected Shortfall.

# We use a rolling window instead of the full sample period and set a window size at 250 (one trading year) for all the data
sets. We conduct rolling forecast by moving forward a day at a time and end with the forecast for 13/04/2015.
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risk-return portfolios at each week t. Despite of being able to calculate the whole efficient frontier of
every ETF portfolio at each time t, our decision to rebalance the portfolios is based on the optimal
weights of the tangency portfolio, meaning the one with the highest Sharpe ratio or Return/CVaR

ratio.

Following Rockafellar and Uryasev (2000, 2002), 5-VaR and p-CVaR of the portfolio at time t in

integral form are given by:
aﬁ(wt):min{aeD :‘P(Wt,a)Z,B} (4)

and

g (w)=(1-p)"],

)f(Wt,rt)p(rt)drt (5)

Wil )sz/j(wt

where W is the cumulative distribution for the loss associated with w,, the probability that r; occurs is

p(r;) and the loss function is presented by f(w;, r;) as:
Wi, t I: ltrlt+ +Wnt nt:l_ —W, r (6)

Rockafellar and Uryasev (2000) show that p-CVaR of portfolio in integral form can be well
approximated using a Monte Carlo simulation. Therefore, the following equation is a suitable
approximation that can be used to minimize CVaR for a given level of portfolio return:

min F, (w,,8)=a+ Z[ w,'r,  —a | subject to u(w)=-w'r,<-Rand w;1=1  (7)

(W) 1 IB)

where g denotes the number of samples generated by the skewed t copula-based Monte Carlo simulation,
a denotes VaR at 3 level and 1 is a vector of ones and r,, , is the m™ vector of simulated returns. The
vector of portfolio weights, w,, can be obtained from the optimization procedure to generate the portfolio
that minimizes CVaR for a given portfolio return R. A pseudo-algorithm of the NNC process is presented

in Appendix D.

6. Final portfolio optimization results

In this study, we follow Jondeau and Rockinger (2006a) to construct weekly rebalanced portfolios. The
reason that our portfolios are not rebalanced in a daily basis is that the benefits generated from portfolio
optimization may be significantly offset by the sharp increase of transaction costs. The calculation of
the portfolio weights for the M-V optimization depends on the predictions of the ETF returns from the
NN models and the covariance matrix predicated by the DCC, ADCC and GAS model. Similarly, the
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calculation of the portfolio weights for the mean-CVaR optimization also depends on the forecasts from
the NN models and the CVaR from simulation. Specifically, for the estimation of portfolio CVaR, we
re-estimate our model each week and use a Monte Carlo simulation to generate 10000 observations. The
covariance matrix between assets is predicted by the same models as the M-V optimization. The
portfolio performances are evaluated based on the achieved realized returns, Sharpe and Sortino® ratios

and maximum drawdowns. Table 7 presents the results obtained by the traditional M-V approach.

Table 7: Performances of different trading strategies (Traditional M-V)

Panel A: ETF indices and 1/N portfolio
Realized Return  Sharpe Ratio  Sortino Ratio Max Drawdown

SPY 10.233% 0.9155 1.3519 7.590%
DIA 6.773% 0.6053 0.8995 7.041%
QQQ 16.477% 1.2681 2.2277 8.822%
1N 11.161% 0.9850 1.4937 7.415%

Panel B: Mean-Variance optimization without short-selling

Realized Return  Sharpe Ratio  Sortino Ratio Max Drawdown

ARMA-DCC 11.404% 0.9660 1.5222 6.650%
ARMA-ADCC 11.760% 0.9973 1.6006 6.650%
ARMA-GAS 12.128% 1.0261 1.6485 6.650%
RNN-DCC 26.108% 2.1904 3.7299 7.197%
RNN-ADCC 26.791% 2.1982 3.4489 8.368%
RNN-GAS 27.122% 2.2697 3.7321 7.357T%
PSN-DCC 26.829% 2.2420 3.6209 7.185%
PSN-ADCC 26.849% 2.2429 3.6235 7.185%
PSN-GAS 27.362% 2.2767 3.6979 7.185%

Panel C: Mean-Variance optimization with short-selling

Realized Return  Sharpe Ratio  Sortino Ratio Max Drawdown

ARMA-DCC-S 11.889% 0.9183 1.4545 7.958%
ARMA-ADCC-S 11.837% 0.9127 1.4718 7.958%
ARMA-GAS-S 12.135% 0.9313 1.5012 7.785%
RNN-DCC-S 39.538% 3.0225 5.2083 8.232%
RNN-ADCC-S 40.112% 3.0113 5.4423 8.268%
RNN-GAS-S 40.359% 3.1502 5.2116 7.785%
PSN-DCC-S 40.200% 3.1219 5.0452 7.785%
PSN-ADCC-S 40.388% 3.1157 5.2154 7.785%
PSN-GAS-S 40.555% 3.1860 5.0328 7.785%

Note: The table presents the out-of-sample performances over the period January 2014 to
March 2015 (68 weekly observations). Panel A reports performances of the three ETF
indices and the 1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports
performances of different M-V portfolios without short-selling. All the portfolios are weekly
rebalanced tangency portfolios obtained by the M-V optimization based on various model
combinations. For example, ARMA-DCC refers to the performance of the tangency
portfolio of the efficient frontier of the three ETF assets, where the expected returns are
obtained through ARMA forecasts, while the variance-covariance matrix is predicted by

8 The Sortino ratio is a modification of the Sharpe ratio, but it only penalizes those returns falling below a user-specified
target or required rate of return, while the Sharpe ratio penalizes both upside and downside volatility equally. Both ratios
measure the risk-adjusted returns, but they frequently lead to differing conclusions as to the true nature of the investment's
return.
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DCC. Panel C reports performances of different M-V portfolios with short-selling. “-S’
denotes optimizations allowing short-selling.

The above table provides interesting findings. The QQQ ETF yields the highest annualized return (16.48%),
Sharpe ratio (1.268) and Sortino ratio (2.228). Nevertheless, it also suffers the largest maximum drawdown
(8.82%). It is also shown that the optimized portfolio from the ARMA model does not achieve significantly higher
risk adjusted returns than the equally weighted portfolio (1/N). In contrast, portfolios from NN models clearly
outperform both ETFs and the 1/N portfolio™. The average Sharpe ratio and Sortino ratio (2.669 and 4.417,
respectively) of portfolios from NN models are significantly higher than the average of portfolios from the ARMA
model (0.997 and 1.590, respectively). In general, we find that the optimized portfolios from the ARMA models
do not outperform equally weighted portfolio, whereas the portfolios from NN models achieve clearly superior
performance. Thus, it can be inferred that the gain from optimal diversification of ARMA portfolios can more
than offset by the out-off-sample estimation error from the ARMA model. The benefits of the optimized portfolio

from NN models mainly originate from the accurate return predictions generated by the NN models.

Additionally, this is further investigated by allowing for short-selling. From panel C, we find that portfolios
from the ARMA vyield similar results as in Panel B, which indicates that allowing short-selling does not
significantly improve the performance of ARMA portfolios. This can be attributed to the fact that large estimation
errors are generated from the ARMA model. Meanwhile, the Sharpe and Sortino ratios of the NN portfolios are
significantly improved, when there is no short-selling constraint. The average Sharpe ratio and Sortino ratio
increase around 38.66% and 42.57%. This remarkable improvement implies that more accurate forecasts can lead
to higher economic profits through portfolio optimization, especially where short-selling is allowed. Interesting
empirical evidence are collected also when asymmetric dependence is taken into account. Panel B and C show
that when asymmetric dependence properties are considered, portfolios consistently provide better performance
in terms of annualized returns and Sharpe/Sortino ratios. As we discussed earlier, both the ADCC and the skewed
t copula-based GAS model can capture asymmetric dependence between asset returns. This is important as the

equity returns are normally more correlated when market goes down.

Finally, table 7 can differentiate the results from the best two NN model. It should be noted that the optimized
portfolios from the PSN outperform portfolios from the RNN in terms of Sharpe ratio. Specifically, the average
annualized return (Sharpe ratio) of PSN portfolios is 33.70% (2.696), which is around 1% (2.16%) higher than
the average of RNN portfolios. The maximum drawdown of PSN portfolios is also around 5% lower than RNN
portfolios. This is intuitively reasonable since the PSN model outperforms the RNN model in the predictions of
single ETF. The results of these performance measures indicate that more accurate predictions of asset returns
can lead to higher benefit of M-V optimization. The average Sortino ratio of PSN portfolios appears 2% lower
than the average of RNN portfolios. This is not surprising since the M-V optimization uses the variance as a risk

proxy, which treats downside risk and upside risk in the same way. Here we should note that as main results we

*kk

For the sake of space, we present results of portfolios based on ARMA forecasts (benchmark) and PSN and RNN forecasts
(best and second best NN model respectively). MLP results are similar and are not presented for the sake of space
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consider those obtained from equally weighted three-asset portfolios, as these are generally though as more
realistic applications than the two-asset ones. Similar trend in the results is obtained, when the two-asset cases are

analysed (see Online Appendix C).

Therefore, it would be more interesting to investigate if NN models can provide significant improvement in
the mean-CVaR optimization, which minimizes the tail risk instead of the variance. Table 8 below provides the
equivalent results for the proposed NNC optimization method. Because of the nature of the NNC approach, the

Sharpe ratio is replaced with the ratio of return over CVaR. The other performance measures remain the same.

Table 8: Performance of different trading strategies (Mean-95% CVaR)

Panel A: ETF indices and 1/N portfolio
Realized Return  Return/CVaR Sortino Max Drawdown

SPY 10.233% 2.9636 1.3519 7.590%
DIA 6.773% 1.8335 0.8995 7.041%
QQQ 16.477% 4.2314 2.2277 8.822%
1N 11.161% 3.4367 1.4937 7.415%

Panel B: Mean-CVaR optimization without short selling

Realized Return  Return/CVaR  Sortino  Max Drawdown

ARMA-DCC- SKT 13.114% 4.0400 1.774 6.650%
ARMA-ADCC- SKT 12.869% 3.9714 1.735 6.650%
ARMA-GAS- SKT 13.116% 4.0721 1.786 6.650%
RNN-DCC- SKT 28.757% 9.3672 3.988 6.975%
RNN-ADCC- SKT 28.884% 9.4085 4.005 6.975%
RNN-GAS- SKT 28.940% 9.5513 4.013 7.015%
PSN-DCC- SKT 30.491% 9.8103 4.136 8.312%
PSN-ADCC- SKT 30.608% 9.8482 4.152 8.317%
PSN-GAS- SKT 30.726% 9.8860 4.168 8.404%

Panel C: Mean-CVaR optimization with short selling

Realized Return  Return/CVaR Sortino Max Drawdown

ARMA-DCC-SKT-S 13.873% 3.9422 1.692 7.958%
ARMA-ADCC-SKT-S 14.190% 4.0384 1.731 7.958%
ARMA-GAS-SKT-S 15.022% 4.2556 1.828 7.958%
RNN-DCC-SKT-S 42.609% 13.5624 5.544 7.835%
RNN-ADCC-SKT-S 43.151% 13.6425 5.507 8.931%
RNN-GAS-SKT-S 42.991% 13.9732 5.598 7.785%
PSN-DCC-SKT-S 43.081% 13.6203 5.503 8.890%
PSN-ADCC-SKT-S 43.307% 13.7847 5.639 7.785%
PSN-GAS-SKT-S 44.294% 14.0037 5.662 9.033%

Note: The table presents the out-of-sample performances over the period January 2014 to
March 2015 (68 weekly observations). Panel A reports performances of the three ETF indices
and the 1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances
of different mean-CVaR portfolios without short-selling. All the portfolios are weekly
rebalanced tangency portfolios obtained by the different mean-CVaR optimization based on
various model combinations. For example, ARMA-DCC refers to the performance of the
tangency portfolio of the efficient frontier of the three ETF assets, where the expected returns
are obtained through ARMA forecasts, while the variance-covariance matrix is predicted by
DCC. Panel C reports performances of different different mean-CVaR portfolios with short-
selling. ‘SKT’ represents that the 95% CVaR is predicted using a Monte-Carlo simulation with
the skewed t copulas to allow for asymmetric tail dependence ‘-S’ denotes optimizations
allowing short-selling.
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From the table above, QQQ continues to yield the higher Return/CVaR and Sortino ratios along with the
highest maximum drawdown. Similar to the results of the M-V optimization, table 8 shows that NN portfolios
clearly outperform the ARMA ones. During the NNC process, the target is to minimize the CVaR of the respective
portfolio. Therefore, the tangency portfolio is the one with the largest Return/CVaR ratio. The average
Return/CVaR ratio and Sortino ratio (11.762 and 4.843 respectively) of portfolios from NN models are remarkably
higher than the average of portfolios from the ARMA model (4.053 and 1.758 respectively). As in the M-V case,
the gains from NN portfolios should be attributed to the more accurate return predictions generated by the NN
models. Meanwhile, portfolios based on PSN forecasts continue to achieve around 2% higher average
Return/CVaR ratio and Sortino ratio than the average of the RNN ones. This further confirms that NN portfolios
and PSN ones, in particular, provide significant benefits to the investor, when the portfolio optimization is based
on a tail risk measure, rather than a symmetric one. Additionally, the short-selling results are improved with the
NNC process. The capital gains are not strong in the case of ARMA-based portfolios, but are maximized when it
comes to PSN portfolios (above 3% average annualized returns).

Comparing the results between tables 7 and 8, we find that the average Sortino ratio (3.803) of the mean-
CVaR portfolio at 95% confidence level is 10% higher than the Sortino ratio of the M-V portfolio (3.456). This
result is consistent with our expectation, since the Sortino ratio is a measure of downside risk and fits well with
the objective of the CVaR optimization (minimizing the tail risk of portfolio). Additionally, taking into account
the asymmetric dependence yields slightly higher benefits than the asymmetric models that treat dependence
structure symmetrically. It turns out that the average Return/CVaR ratio and Sortino ratio (11.854 and 4.860
respectively) of portfolios from the skewed t copula models are higher than the average of portfolios from the
DCC model (11.590 and 4.793 respectively). The performance of the mean-CVaR portfolios at 99%
confidence level is also investigated as an extra robustness test. These results are summarized in table 9
below.

Table 9: Performance of different trading strategies (Mean-99% CVaR)

Panel A: ETF indices and 1/N portfolio
Realized Return  Return/CVaR  Sortino Ratio Max Drawdown

SPY 10.233% 2.9636 1.3519 7.590%
DIA 6.773% 1.8335 0.8995 7.041%
QQQ 16.477% 4.2314 2.2277 8.822%
Naive 11.161% 3.4367 1.4937 7.415%

Panel B: Mean-CVaR optimization without short-selling

Realized Return  Return/CVaR  Sortino Ratio Max Drawdown

ARMA-DCC-SKT 13.516% 3.6590 1.817 6.650%
ARMA-ADCC-SKT 13.751% 3.7224 1.853 6.650%
ARMA-GAS-SKT 13.533% 3.6636 1.823 6.650%
RNN-DCC-SKT 28.327% 7.2744 3.928 6.857%
RNN-ADCC-SKT 29.469% 7.5679 3.997 6.988%
RNN-GAS-SKT 29.495% 7.5746 4.001 6.971%
PSN-DCC-SKT 29.527% 7.5827 4.005 7.037%
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PSN-ADCC-SKT 29.548% 7.5880 4.008 6.988%
PSN-GAS-SKT 29.608% 7.6035 4.016 6.971%

Panel C: Mean-CVaR optimization with short-selling

Realized Return  Return/CVaR Sortino Ratio Max Drawdown

ARMA-DCC-SKT-S 13.992% 3.2978 1.704 7.958%
ARMA-ADCC-SKT-S 14.336% 3.3789 1.754 7.958%
ARMA-GAS-SKT-S 14.877% 3.5062 1.806 7.958%
RNN-DCC-SKT-S 42.095% 9.3658 5.464 7.690%
RNN-ADCC-SKT-S 41.706% 9.2794 5.319 7.785%
RNN-GAS-SKT-S 42.097% 9.3663 5.363 7.633%
PSN-DCC-SKT-S 42.101% 9.3673 5.380 7.593%
PSN-ADCC-SKT-S 42.558% 9.4689 5.516 7.741%
PSN-GAS-SKT-S 42.731% 9.4510 5.550 7.785%

Note: The table presents the out-of-sample performances over the period January 2014 to March
2015 (68 weekly observations). Panel A reports performances of the three ETF indices and the
1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances of different
mean-CVaR portfolios without short-selling. All the portfolios are weekly rebalanced tangency
portfolios obtained by the different mean-CVaR optimization based on various model
combinations. For example, ARMA-DCC refers to the performance of the tangency portfolio of
the efficient frontier of the three ETF assets, where the expected returns are obtained through
ARMA forecasts, while the variance-covariance matrix is predicted by DCC. Panel C reports
performances of different different mean-CVaR portfolios with short-selling. *‘SKT’ represents that
the 99% CVaR is predicted using a Monte-Carlo simulation with the skewed t copulas to allow for
asymmetric tail dependence *-S’ denotes optimizations allowing short-selling.

In general, the results at 99% CVaR are consistent with the ones at 95% CVaR. Table 9 shows
additionally that when the objective is to minimize CVaR at 99% confidence level, maximum drawdown
decreases significantly compared to the 95% case (on average around 6.23%). As mentioned before, the
above results are similar also for two-asset portfolios for the respective ETFs and can be found in Online
Appendix C.

6. Conclusions

The motivation of this paper is to investigate whether using more accurate ETF forecasts from
superior NN models can lead to statistical and economically significant benefits in portfolio management
decisions. Firstly, we apply three NN models, namely the MLP, RNN and PSN to the task of forecasting
the daily returns of three ETFs. The statistical and trading performance of the NNs is benchmarked with
the traditional ARMA. Secondly, a novel dynamic asymmetric copula model (NNC) is introduced in
order to capture some of the well-documented features of the dependence structure across ETF returns.
Thirdly, weekly re-balanced portfolios are obtained and compared by using the traditional M-V approach

and mean-CVaR optimization.

This study provides several interesting findings related to the NN and portfolio optimization
literature. In terms of the forecasting and trading performance of the individual models, the results
suggest that PSN outperforms MLP and RNN models, while all NN structures provide more accurate

forecasts and higher profitability over the ARMA models. The results related to model selection and
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goodness of fit tests indicate that the asymmetric skewed t copula statistically outperforms symmetric
copulas when it comes to modelling ETF returns dependence. Our empirical study also shows solid
evidence that when the most accurate forecasts are exploited, the NNC model leads to significant
improvements in the portfolio optimization process. Compared with portfolios from the classical ARMA
model, portfolios from NN models can deliver significantly higher out-of-sample risk adjusted returns,
when evaluate through the Sharpe and Sortino ratio or the novel Return/CVaR ratio. The results further
confirm that NN portfolios and PSN ones, in particular, provide significant benefits to the investor, when
the portfolio optimization is based on a tail risk measure (CVaR), rather than on a symmetric one

(variance).

In addition, we find that forecasting covariance taking into account asymmetric dependence
improves the performance of optimization, however the magnitude of this improvement is relatively
small. In that sense, it is implied that the portfolio optimization benefits are driven mainly from the
accurate ETF predictions, particularly the PSN ones, rather than the variance-covariance matrix
estimates. This findings is in line with the relevant strand of the literature suggesting the forecasts of
asset returns are the most important inputs for the mean-variance optimization. Overall, this study
provides insight in the ETF market and sheds light to the difficult quest of optimal portfolio optimization

procedures.
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Appendix

A. Statistical and trading performance measures.
The statistical and trading performance measures of the forecasting models are calculated as shown in

table B.1 and B.2 respectively.

Table B.1: Statistical performance measures

Statistical performance measures Description
t+n
Mean absolute error MAE = (H)Tzl;l Y Y ‘ with Y _ being the actual value and
the forecasted value
1 t+n Y _YA
Mean absolute percentage error MAPE =— Z L
n r=t+1 Yz—
t+n
Root mean squared error RMSE = Z (Y -Y.)?
r t+1
t+n
( > (-
Theil-U Theil -U = =
t+n t+n
r=t+1 r t+1
Table B.2: Trading performance measures
Trading performance measures Description
N
Annualised return after transaction = 252*&*(2 R) —TCA where RT the daily return and TCA the annualized transaction cost
N T
costs =
1 N =\
Annualised volatility ot =+252* N-1 _1*Z(R—R)
t=1
A f
Sharpe ratio SR = q
o

Maximum drawdown

Maximum negative value of > (R,) over the period \ip~  Min (iR_]
N ]

i<l tt=l N| S
j=i

B. Modelling marginal density

The Ljung-Box test and the Engle’s LM test show that the ETF return series exhibit some degree of
autocorrelation and heteroscedasticity. In order to compensate for autocorrelation, the conditional mean

is modelled with a simple ARMA model:
p q
i = C+Z§0jri,t—j +29k8i,t—k T &y (C.1)
j=1 k=1

where ;. = 0;,.2;,. To capture the heteroscedasticity and asymmetric volatility clustering of ETF

returns, we model the conditional variance using the GJR-GARCH dynamics:
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p q q
2 2 2 2
o= a)+2ajgiyt_j + E Bk +Zykgi]t_kl [5Lt_k < 0] (C.2)
=1 k=1 k=1

The indicator function I[Si,t_k < O] equals 1 if &, < 0, and O otherwise. Applying this, allows us to
capture the “leverage effect”, which implies lower returns than expected are followed with higher levels

of volatility. Using these models, we construct the estimated standardized residuals as:

p q
fi;—C _Z(Djri,t—j _Zekgi,t—k
j=1 k=1

Z, = | (C.3)

Oiy

Descriptive statistics of ETF indices returns show that all the indices exhibit significant skewness and
the hypothesis of normality is rejected by the Jarque—Bera test. In order to compensate for the skewness,

we use the univariate skewed t distribution of Hansen (1994) to model the standardized residuals of each

ETF index. Assuming z;, [ Fy (7,4 ), then

U, = Fskt(zi,t;ni’/ll)’ 77 E(Z’OO)’ 4 E[_l’l] (C4)

where u; ; is the probability integral transform of z; ., 4; is the skewness parameter and ; is the degrees

of freedom.

C. Copula modelling: multivariate non-normality and asymmetry

As mentioned in section 5, this study applies the skewed t copula proposed by Demarta and McNeil

(2005). The cumulative distribution function of this skewed t copula is given by:

Co (U rUp 3 X0 4,0) = Fy (R (U)o B (Un) (D.1)

where A is the parameter of skewness, v is the parameter of degree of freedom, Fsk: is the cumulative
distribution function of the multivariate skewed t density with correlation matrix X, and F; ! is the

inverse cumulative distribution function of the univariate skewed t distribution.

From Patton (2006), if the joint distribution function Fsk is n-times differentiable, the following

equation is obtained by taking the n" cross-partial derivative:
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o
fskt (ul,t""’un,t)ZWFSM(ZL’["”’ZH,I)

lj fi(z,) a—nCskt(l:l(zl,t),...,Fn(zm)) (D.2)

O, X,
fi (Zi,t)'cskt(Fl(zl,t)""’ Fn(zn,t))

i=1
The equation suggests that the joint density f;; is equal to the product of the marginal densities and the

=

skewed t copula density cg;. Thus, the joint log-likelihood is equal to the sum of univariate log-

likelihood and the skewed t copula log-likelihood:

|Og fskt (Zl,t""’ Zn,t ) = ii |Og fi,t (Zi,t)+i |0g Cskt (Fl (Zl,t)""’ I:n (Zn,t)) (D3)

=1 i=1

—

More details on the implementation of the skewed t copula can be found in Christoffersen et al., (2012).
Our choice to use the skewed t copula is supported by the literature as mentioned in section 5.
Nonetheless, we also perform a comparative analysis between ten common copula alternatives to verify
this selection. The analysis is based on three information criteria, the value of log-likelihood (LL), the
Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The results of this

analysis are presented in the table below.

Table D.1: Estimations for Different Copulas

Panel A: SPY - DIA

P1 P2 P3 LL AIC BIC
Gaussian 0.933 123.38 -244.76 -242.54
Clayton 5.838 129.15 -256.31 -254.09
Survival Clayton 3.364 79.20 -156.40 -154.18
Plackett 68.852 121.69 -241.37 -239.15
Frank 9.000 103.85 -205.70 -203.48
Gumbel 3.798 106.81 -211.62 -209.40
Survival Gumbel 4.663 125.07 -248.14 -245.92
Symmetrized Joe-Clayton ~ 0.861  0.664 128.48 -252.97 -248.53
Student's t 0.900 2.158 125.80 -247.60 -243.17
Skewed Student's t 0929 2261 -0.063 131.53 -257.06 -250.40

Panel B: SPY - QQQ

P1 P2 P3 LL AIC BIC
Gaussian 0.864 8296 -163.91 -161.69
Clayton 2.936 7360 -14521 -142.99
Survival Clayton 2.375 60.60 -119.19 -116.97
Plackett 29.252 78.64 -155.28 -153.06
Frank 9.000 7490 -147.81 -145.59
Gumbel 2.789 75.79 -149.58 -147.36
Survival Gumbel 2.972 83.39 -164.77 -162.55
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Symmetrized Joe-Clayton ~ 0.759  0.653 83.58 -163.17 -158.73

Student's t 0.873  8.796 84.02 -164.04 -159.60
Skewed Student's t 0.850 9.389 -0.040 88,50 -171.00 -164.34
Panel C: DIA - QQQ

P1 P2 P3 LL AIC BIC
Gaussian 0.738 4768 -93.35 -91.13
Clayton 2.024 50.65 -99.30 -97.08
Survival Clayton 1.194 27.07 -52.14  -49.92
Plackett 12.186 4414  -86.28 -84.06
Frank 6.346 4415 -86.31  -84.09
Gumbel 1.929 3733 -7265 -70.43
Survival Gumbel 2.190 51.98 -101.96 -99.74
Symmetrized Joe-Clayton ~ 0.699  0.261 5151  -99.03 -94.59
Student's t 0.753 44.970 57.74 -111.47 -107.03
Skewed Student's t 0.750 38.889 -0.050 59.82 -113.64 -106.98

Note: Columns P1 to P3 report the estimated parameters. Columns LL, AIC and BIC
report the values of log-likelihood, the Akaike information criterion and the Bayesian
information criterion, respectively. For each column of information criterion, the best
three models are in bold.

From the table above, it is obvious that the skewed t copula consistently provides maximum LL

and minimum AIC and BIC values. This implies that for the respective set of data the skewed t copula

is always preferred.

D. The NNC portfolio optimization pseudo-algorithm

The following steps summarize the proposed NNC process:
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Step 1: Using different NN models and a benchmark model (i.e. ARMA model) to forecast one-
step-ahead asset returns. Since the PSN and RNN models provide the best and second best out-
of-sample statistical and trading performance respectively, we use them to calculate the weekly
expected returns for each ETF index in the optimization part.

Step 2: Consider an investor who has a one-period horizon and constructs a dynamically
rebalanced portfolio. The time-varying weights of this portfolio requires one-step-ahead
forecasts of the expected return and the conditional variance—covariance matrix. We use the
conditional mean predicted by the ARMA, RNN and PSN models and the conditional variance—
covariance matrix predicted by DCC, ADCC and GAS models to perform weekly rebalance
portfolio optimization.

Step 3: Copula modelling using in-sample data. Initially, we need to characterize individually
the distribution of returns of each asset. Specifically, we use ARMA and GJR-GARCH to
estimate the conditional mean and conditional volatility, respectively, and apply the skewed t
distribution of Hansen (1994) to get the probability integral transforms of the standardized

residuals.
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Step 4: Using the probability integral transforms estimated from the last step, the GAS model
for the skewed t copula is estimated in order to obtain the time-varying correlation matrix. The
time-varying correlation matrix is also obtained for comparison purposes by the DCC or ADCC
GARCH.

Step 5: Given the time-varying correlation matrix, the jointly-dependent uniform variates can be
simulated by the skewed t copula random number generator.

Step 6: Following Rockafellar and Uryasev (2000, 2002), a linear programming technique is
applied to find optimal weights of ETFs that calculate a minimum CVaR for a certain level of
return at time t

Step 7: Repeat Step 1 to Step 6 using rolling window for weekly rebalance.



