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This paper attempts to investigate if adopting accurate forecasts from Neural Network (NN) models can 

lead to statistical and economically significant benefits in portfolio management decisions. In order to 

achieve that, three NNs, namely the Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN) 

and the Psi Sigma Network (PSN), are applied to the task of forecasting the daily returns of three 

Exchange Traded Funds (ETFs). The statistical and trading performance of the NNs is benchmarked 

with the traditional Autoregressive Moving Average (ARMA) models. Next, a novel dynamic 

asymmetric copula model (NNC) is introduced in order to capture the dependence structure across ETF 

returns. Based on the above, weekly re-balanced portfolios are obtained and compared by using the 

traditional mean-variance and the mean-CVaR portfolio optimization approach. In terms of the results, 

PSN outperforms all models in statistical and trading terms. Additionally, the asymmetric skewed t 

copula statistically outperforms symmetric copulas when it comes to modelling ETF returns dependence. 

The proposed NNC model leads to significant improvements in the portfolio optimization process, while 

forecasting covariance accounting for asymmetric dependence between the ETFs also improves the 

performance of obtained portfolios. 
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1. Introduction  

The basic premise of the modern portfolio theory is that portfolio diversification benefits originate from 

investing in financial assets that are not highly correlated.  In other words, financial returns’ dependence 

is explained by the linear correlation coefficient, while efficient portfolio frontiers are approximated by 

the mean-variance optimization (Markowitz, 1952). The baseline assumption of the theory is that 

financial returns follow a joint normal distribution. Once researchers relax or depart from this 

assumption of normality, they usually examine the skewness and the kurtosis of the financial returns’ 

distribution.  The logic behind this is that negative skewness implies that negative financial returns are 

more probable, while excess kurtosis suggests extreme observations are more likely to appear than it 

would be expected in normality conditions. There are other observed properties in financial return series 

that go against the Markowitz theory, such as time-varying skewness and kurtosis (Harvey and Siddique 

1999; Jondeau and Rockinger 2003) or the long-term persistence of their mean and variance (Saqdique 

and Silvapulle 2001). For that reason, portfolio optimization methods that extend the traditional mean 

variance approach must be explored in order to achieve maximum risk reduction for a given level of 

expected return.  

The early literature shows that the diversification benefits mainly depend on accurate predictions 

of the asset return moments. Nonetheless, there are two streams of research. One stream focuses on asset 

allocation and provides solid evidence that the forecasts of asset returns are important inputs for the 

mean-variance optimization. Best and Grauer (1991) show that the weights, mean, and variance of the 

mean-variance efficient portfolio are extremely sensitive to changes in asset means. Chopra et al. (1993) 

find that adjusted-input portfolios can achieve higher expected return, less variance and greater terminal 

wealth than unadjusted-input portfolios. Chopra and Ziemba (1993) also demonstrate that using 

inaccurate forecasts of asset returns can substantially degrade the performance of mean-variance 

optimization. Another strand of studies investigates the importance of forecasting the second moments 

(i.e. covariance structure) of asset returns on portfolio optimization.  For instance, Chan et al. (1999) 

evaluate the out-of-sample performance of optimized portfolio based on the different models of 

covariances. They provide evidence that predictions of variance and covariance of asset returns are key 

inputs for the practitioner. Menchero et al. (2012) find that the risk of optimized portfolios tends to be 

underestimated by sample covariance and they show that the adjusted covariance can effectively reduce 

the out-of-sample volatilities of optimized portfolios. 

Portfolio practitioners focusing more on obtaining accurate forecasts of financial returns face the 

difficult task of screening optimal models from the voluminous financial forecasting literature. The 

models available are characterized by linear or non-linear estimations and constant or time-varying 

parameterization processes. Neural networks (NNs) is a popular class of non-linear computation models 

when it comes to forecasting financial market variables, because of their data-adaptive learning and 
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clustering abilities (McNeilis 2005). Over the past decade, NNs have provided extensive empirical 

evidence for their high financial forecasting performance. For example, Wang (2009) show that using 

NNs to forecasting volatility increases the predictability of option-pricing models. Ebrahimpour et al. 

(2011) apply successfully a mixture of Multi-Layer Perceptron (MLP) experts in trend prediction of time 

series on the Tehran stock exchange. Dunis et al. (2011) apply Psi Sigma Networks (PSNs) to the task 

of forecasting the EUR/USD exchange rate. Their results indicate the superiority of PSN over traditional 

MLPs and Recurrent Neural Networks (RNNs) models. Finally, Guresen et al. (2011) provides an 

extensive survey of the successful applications of NNs in stock market index predictions, including 

applications of MLP, RNN and Higher Order Neural Networks (HONNs).  

When it comes to predicting the covariance matrix among financial assets, three models are 

normally considered in the literature, namely the Dynamic Conditional Correlation (DCC) model (Engle, 

2002), the Asymmetric Dynamic Conditional Correlation (ADCC) model (Cappiello et al. 2006) and the 

Generalized Autoregressive Score (GAS) model (Creal et al. 2013). The DCC is probably the most 

widely used econometric technique to estimate and predict the covariance of asset returns (see Andersen 

et al. 2006, Jondeau and Rockinger 2006b, Christoffersen et al. 2012, etc.). The ADCC model is a 

generalized version of the DCC model, which permits conditional asymmetries in correlations (see 

Syriopoulos and Roumpis 2009, Fei et al. 2010, etc.). Finally, the GAS model is a more recent technique 

that can be used to model the dynamic dependence of asset returns. The GAS framework uses the score 

of the conditional density function to drive the dynamics of the time-varying parameters (see Lucas et 

al. 2014, Creal et al. 2014, Salvatierra and Patton 2015, etc.).  

It is a stylized fact that equity returns are more correlated during market downturns than market 

upturns (see Longin and Solnik 2001, Ang and Chen 2002, Hong et al. 2007, amongst others). This 

characteristic, known as asymmetric dependence, violates the assumption of modern portfolio theory 

that the financial returns follow joint normal distribution and their dependence can be fully described by 

the linear correlation coefficient as suggested by Markowitz (1952). Several empirical studies show that 

the asymmetric dependence can be well captured by copulas and taking into account this characteristic 

can produce economic gains for the investors with no short selling constraints (Patton 2004, Garcia and 

Tsafack 2011, Chu 2011).  

The classical mean-variance optimization uses variance as a risk proxy, however earlier literature 

criticizes that assumptions. In other words, variance is not a perfect measure because it is symmetric and 

treats downside risk and upside risk in the same way (Ang et al. 2006). Several downside risk measures 

have been introduced in portfolio optimization practice, such as semi-variance (Markowitz 1959), 

Value-at-Risk (VaR) (Gaivoronski and Pflug 2005) and Conditional Value-at-Risk (CVaR) (Rockafellar 

and Uryasev 2000, Rockafellar and Uryasev 2002). The criticism against VaR originates from its lack 
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of subadditivity and convexity (Artzner et al. 1999). In addition, VaR is not easy to optimize when 

calculated using scenarios (Rockafellar and Uryasev 2000). For these reasons, CVaR, can be thought as 

a coherent risk measure, which has been widely applied in optimization practice (see amongst others 

Rockafellar and Uryasev (2002), Quaranta and Zaffaroni (2008) and He and Gong (2009).  

Following Boubaker and Sghaier (2013) and Low et al. (2013), this study proposes a novel Neural 

Network Copula (NNC) portfolio optimization approach. It is assumed that the investor has a one-period 

horizon and aims to construct a dynamically rebalanced portfolio based on three Exchange Traded Funds 

(ETFs). The time-varying weights of this portfolio require one-step-ahead forecasts of the expected 

return and the conditional variance–covariance matrix. The expected asset returns are predicted by the 

superior PSN model in a forecasting exercise over the period of 2011-2015. The forecasting performance 

of the PSN is benchmarked against the traditional Autoregressive Moving Average (ARMA) model and 

two NN structures, namely the MLP and RNN. The NNC process is able to extract the time-varying 

variance-covariance matrix based on a copula-based GAS model that captures the asymmetric 

dependence between the respective ETFs along with using the CVaR as a measure of risk. In terms of 

the results, the proposed asymmetric copula model statistically outperforms symmetric copulas in 

dependence modelling. The study provides evidence that the NNC process leads to significant 

improvements in portfolio optimization. Traditional ARMA-based portfolios perform worse than 

portfolios based on NN models, while the PSN portfolios deliver higher out-of-sample risk- adjusted 

returns. Finally, it is shown that forecasting covariance taking into account asymmetric dependence can 

improve the performance of optimization, however the magnitude of this improvement is relatively small. 

This finding is in line with the relevant strand of the literature suggesting the forecasts of asset returns 

are the most important inputs for the mean-variance optimization. 

The rest of the paper is organized as follows. Section 2 provides a detailed description of the ETFs’ 

dataset used in this paper. All forecasting models are described in section 3, while their performance is 

evaluated in section 4. The proposed NNC portfolio optimization process is explained in detail in section 

5. The final portfolio optimization results are summarized in section 6, while some concluding remarks 

are given in Section 7. Finally, the appendix and online supplementary appendix provide technical and 

mathematical details essential for the understanding of this study.  

2. Dataset 

The advantages of ETFs over traditional trading are well documented (Avellaneda and Lee 2010, Dolvin 

2010, Marshall et al. 2013). The main one is that they offer investors the opportunity to trade stock 

market indices at very low transaction costs with high level of diversification*. In this study, we examine 

                                                           
* The transaction costs for the three ETFs tracking their respective benchmarks do not exceed 0.5% per annum for medium 
size investors (see, for instance, www.interactive-brokers.com). Before the expansion of ETFs, traders had to pay a separate 
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three ETFs over the period of 2011-2015, namely the SPDR S&P 500 ETF Trust (SPY), SPDR Dow 

Jones Industrial Average ETF Trust (DIA) and PowerShares QQQ Trust (QQQ). These are designed to 

replicate major stock indices from US, while they are characterised by high liquidity and high volume 

of assets. It should be noted here that methods performing well on these highly scrutinized and arbitraged 

ETFs are expected to perform even better on other that are less liquid and less covered. Therefore, using 

these ETFs can also be considered as a tough to beat benchmark. Their details are presented in table 1 

below. 

Table 1: The ETFs under study 

ETF TRACKING INDEX TICKER 
SPDR S&P 500 ETF Trust S&P 500 SPY 

SPDR Dow Jones Industrial Average ETF Trust Dow Jones Industrial Average DIA 
PowerShares QQQ Trust NASDAQ-100 QQQ 

All models in this study are applied in the task of forecasting the one day ahead arithmetic returns 

of the three ETFs. The descriptive statistics and correlation matrix of the return series are shown in the 

following table: 

Table 2: Descriptive statistics and correlation matrix 

Panel A: Descriptive Statistics 
Ticker SPY DIA QQQ 
Mean 0.00052 0.00045 0.00069 

Standard deviation 0.00963 0.00885 0.01051 
Skewness -0.43942 -0.42037 -0.30708 
Kurtosis 7.64749 7.01179 5.98211 

Jarque-Bera (p value) 0.0000*** 0.0000*** 0.0000*** 
ADF (p value) 0.0000*** 0.0000*** 0.0000*** 

Panel B: Correlation Matrix 
Ticker SPY DIA QQQ 

SPY 1   
DIA 0.829 [0.798] 1  
QQQ 0.958 [0.946] 0.906 [0.887] 1 

Note: Panel B reports the linear correlation and Spearman's rank correlation (bracket). 

The three returns series exhibit slight negative skewness and positive kurtosis. The Jarque-Bera 

statistic confirms that the return series under study are non-normal at the 99% confidence level. The 

Augmented Dickey-Fuller (ADF) reports that the null hypothesis of a unit root is rejected at the 99% 

confidence level for all ETFs. The period under study and the relevant datasets are presented in table 3. 

Table 3: The total dataset 
 

 

Note: The in-sample period is the sum of the training and test datasets. 

                                                           
commission for each individual stock of an industry-specific portfolio. Now there are sector-specific ETFs, which allow 
traders to pay only one commission to buy or sell short an entire group of stocks. 

Datasets Trading Days Start Date End Date 
Total Dataset 1075 03/01/2011 13/04/2015 

Training Dataset  502 03/01/2011 31/12/2012 
Test Dataset 252 02/01/2013 31/12/2013 

Out-of-sample Dataset 321 02/01/2014  13/04/2015 



6 
 

All models are trained in the in-sample and their forecasts are evaluated in the out-of-sample. Figure 

1 presents the performance of the three ETFs during the period of 3rd January 2011 to 13th April 2015.  

Figure 1: The ETFs under study† 

 

 

3. Forecasting models  

This section summarizes the models applied to the task of forecasting the one-day head return of the 

SPY, DIA and QQQ series under study. We implement in total four forecasting models, namely a 

baseline Autoregressive Moving Average Model (ARMA) and three traditional NN techniques. 

3.1 Autoregressive moving average model (ARMA) 

ARMA models are traditionally used in similar applications, as they are based on the assumption that 

the current value of a time-series can be approximated with a linear combination of its previous values 

plus a combination of current and previous values of the residuals (Brooks, 2008). Generally, an ARMA 

is be specified as below: 

        0 1 1 2 2 1 1 2 2... ...t t t p t p t t t q t qY Y Y Y w w wϕ ϕ ϕ ϕ ε ε ε ε− − − − − −= + + + + + − − − −   
                    (1)                        

where: 
• Yt  is the dependent variable at time t 
• 1 2, ,...,t t t pY Y Y− − −    are the lagged dependent variables  

• 0 1, ,..., pϕ ϕ ϕ 
  

   are the regression coefficients 

• tε


 is the residual term 

                                                           
† From the figure it is obvious that in- and out-of-sample period mainly cover a bull market. Nonetheless, bear markets are 
also covered in a way, since the 2011 drop is included in the in-sample. 
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• 1 2, ,..,t t t qε ε ε− − − 
  

 are the previous values of the residual terms 

• 1 2, ,..., qw w w
 

 are the residual weights 
Based on the in-sample correlogram (training and test subsets), the restricted ARMA (8,8), 

ARMA(10,10) and ARMA(7,7) model are chosen for the out-of-sample estimation of SPY, DIA and 

QQ respectively. 

3.2 Neural Networks 

In our study, we apply three traditional NN architectures as forecasting techniques. The first model is 

the most popular NN architecture, namely the Multi-Layer Perceptron (MLP). A standard MLP has at 

least three layers. The first layer is called the input layer (the number of its nodes corresponds to the 

number of explanatory variables). The last layer is called the output layer (the number of its nodes 

corresponds to the number of response variables). An intermediary layer of nodes, the hidden layer, 

separates the input from the output layer. Its number of nodes defines the amount of complexity the 

model is capable of fitting. In addition, the input and hidden layer contain an extra node called the bias 

node. This node has a fixed value of one and has the same function as the intercept in traditional 

regression models. Normally, each node of one layer has connections to all the other nodes of the next 

layer.   

The network processes information as follows: the input nodes contain the value of the explanatory 

variables. Since each node connection represents a weight factor, the information reaches a single hidden 

layer node as the weighted sum of its inputs. Each node of the hidden layer passes the information 

through a non-linear activation function and passes it on to the output layer if the calculated value is 

above a threshold. The training of the network (which is the adjustment of its weights in the way that 

the network maps the input value of the training data to the corresponding output value) starts with 

randomly chosen weights and proceeds by applying a learning algorithm called back-propagation of 

errors (Shapiro 2000). The maximum number of the allowed back-propagation iterations is optimized 

by maximizing a fitness function in the test dataset (see table 3) through a trial and error procedure. 

More specifically, the learning algorithm tries to find those weights which minimize an error function 

(normally the sum of all squared differences between target and actual values). Since networks with 

sufficient hidden nodes are able to learn the training data (as well as their outliers and their noise) by 

heart, it is crucial to stop the training procedure at the right time to prevent overfitting (this is called 

‘early stopping’). This is achieved by dividing the dataset into 3 subsets respectively called the training 

and test sets used for simulating the data currently available to fit and tune the model and the validation 

set used for simulating future values. The network parameters are then estimated by fitting the training 

data using the backpropagation of errors. The iteration length is optimized by maximizing the forecasting 
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accuracy for the test dataset. Then, the predictive value of the model is evaluated applying it to the 

validation dataset (out-of-sample dataset).  

In addition to the classical MLP network, the Recurrent Neural Network (RNN) is also applied. A 

simple RNN has an activation feedback which embodies short-term memory. In other words, the RNN 

architecture can provide more accurate outputs because the inputs are (potentially) taken from all 

previous values. Although RNN require substantially more computational time (Tenti 1996), they can 

yield better results in comparison with simple MLPs due to the additional memory inputs. The third NN 

model included in the feature space is Psi Sigma Network (PSN). PSNs are considered as a class of feed-

forward fully connected Higher Order Neural Network (HONN). First introduced by Ghosh and Shin 

(1991), the PSN structure is motivated by the need to create a network combining the fast learning 

property of single layer networks with the powerful mapping capability of HONNs, while avoiding the 

combinatorial increase in the required number of weights. The order of the network in the context of 

PSN is represented by the number of hidden nodes. In a PSN the weights from the hidden to the output 

layer are fixed to 1 and only the weights from the input to the hidden layer are adjusted, something that 

greatly reduces the training time. The description of each NN and their technical characteristics (input 

selection and parametrization) are presented in Online Appendix A. 

4. Forecasting models’ statistical and trading performance 

In order to evaluate statistically the forecasts, the RMSE, the MAE, the MAPE and the Theil-U statistics 

are computed. For all four of the error statistics retained the lower the output, the better the forecasting 

accuracy of the model concerned. Their mathematical formulas are presented in Online Appendix B. 

The following table presents out-of-sample statistical performance of the models. 

Table 4: Out-of-sample statistical performance 

 

 

 

 

 

 

The above results show that the models’ statistical ranking is consistent across all ETFs series. In 

general, the baseline ARMAs are found to have the worst statistical results compared to all models. The 

PSN appears to be consistently the superior model in statistical terms against all NNs and ARMAs. 

ETF Statistic ARMA MLP RNN PSN 
 

SPY 
MAE 0.0056 0.0058 0.0057 0.0055 

MAPE 167.44% 164.52% 151.86% 141.21% 
RMSE 0.0078 0.0076 0.0075 0.0071 

THEIL-U 0.9025 0.8286 0.8049 0.7598 
 

DIA 
MAE 0.0057 0.0055 0.0053 0.0051 

MAPE 162.07% 161.88% 130.99% 128.81% 
RMSE 0.0075 0.0073 0.0071 0.0068 

THEIL-U 0.9256 0.7635 0.7348 0.7086 
 

QQQ 
MAE 0.0085 0.0068 0.0067 0.0062 

MAPE 148.55% 128.74% 123.04% 119.22% 
RMSE 0.0088 0.0082 0.0081 0.0075 

THEIL-U 0.9077 0.8322 0.8279 0.7980 
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Finally, RNN is the second best model. This statistical ranking is consistent with other similar studies 

on NNs (Sermpinis et al. 2014, Stasinakis et al. 2016).  

In order to further validate the above findings, we perform two additional tests, namely the Pesaran-

Timmermann (PT) (1992) and the Diebold Mariano (DM) (1995) test. The PT test is used to examine 

whether the directional movements of the real and forecast values are in step with one another. The PT 

test’s null hypothesis is that the model under study has no power on forecasting the relevant ETF return 

series. The DM statistic tests the null hypothesis of equal predictive accuracy between two forecasts. In 

this case, the DM test is applied to couples of out-of-sample forecasts (best model vs. other model) using 

the MSE loss function. In our case, a negative realization of the DM value would indicate that the PSN 

forecast is more accurate than the competing forecast. The results of the two tests are provided in table 

5. 

Table 5: PT and DM statistics. 

Test ETF ARMA MLP RNN PSN 

 
PT 

SPY (6.58)*** (7.25)*** (8.69)*** (9.12)*** 

DIA (7.56)*** (8.95)*** (9.05)*** (9.87)*** 

QQQ (6.84)*** (7.63)*** (8.15*** (8.93)*** 

 
DM 

SPY (−8.12)*** (−6.93)*** (−6.06)*** - 

DIA (−9.51)*** (−8.42)*** (−7.15)*** - 

QQQ (−10.66)*** (−9.14)*** (−7.38)*** - 
Note: The values in the parentheses are the calculated PT and DM 
statistics. *** denotes that the null hypothesis is rejected at 1% 
significance level. 

From the above table, the PT statistics indicate that all models are capable of capturing the 

directional movements of the three ETF return series in the out-of-sample‡. Additionally, the null 

hypothesis of equal predictive accuracy is rejected for all comparisons at 1% significance level. 

Moreover, the statistical superiority of the PSN forecasts is further validated, as all the DM statistic 

realizations are negative. Additionally, RNN is found to have the closest forecasts to the superior PSN. 

All the statistical findings indicate that PSN provides the most accurate forecasts. It would be interesting 

to see if this superiority is translated also into higher trading performance.  

Therefore, the competing forecasting models are compared also in terms of trading efficiency. In 

this application, the trading performance of the models is evaluated with a simple trading strategy. The 

position is ‘long’ and ‘short’, when the forecast return is positive and negative respectively. A ‘long’ or 

‘short’ position means that we buy or sell respectively the ETF under study at the current price. As 

mentioned before, the low transaction costs make ETF very attractive to traders. This is the case 

especially in daily trading applications (as of this study), where high transaction costs can vastly decrease 

                                                           
‡ Similar results are obtained also in the in-sample period. In-sample results are not provided within text for the sake of space 
and are available upon request. 
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profitability (Wyart et al. 2008). The trading performance measures are presented in Online Appendix 

B. Table 6 summarizes the out-of-sample trading results for the respective model and ETF series after 

transaction costs. 

Table 6: Out-of-sample trading performance after transaction costs 

 

 

 

 

 

From the table above we note that the trading efficiency ranking coincides with the statistical one 

(as per table 4). The PSN delivers the best trading performance for all series under study. On average, 

PSN achieves 17.35% annualized returns and 2.08 Sharpe ratio after transaction costs in the out-of-

sample period. The second best model in terms of the same trading performance measures is RNN. It 

projects on average profits and Sharpe ratio after transaction costs at the level of 12.30% and 1.66 

respectively. The MLP remains the worse performing NN. Another interesting finding is that NNs 

present consistently lower maximum drawdown figures, which is a relative proxy for their trading risk.  

Overall, the results indicate that PSN is the best performing model in the three forecasting exercises. 

The above evidence is interesting from a forecasting and model competing point of view, but they do 

not necessarily convince traders or practitioners with different backgrounds and preferences to drop 

simpler techniques such as ARMA models.§ These traditional models, although not superior to the NNs, 

still project profits while being well established and easy to implement. Therefore, it is even more 

exciting to evaluate weather adopting superior ETF forecasts from the best NN can lead to further 

improved portfolio management decisions, that are worth the ‘technical and computational trouble’. 

This issue is explored with the analysis of the following section. 

5. Neural network-based portfolio optimization 

                                                           
§ In order to consider a nonlinear benchmark, we also experiment with a Smooth Transition Autoregressive (STAR) model 
which is a nonlinear extension of autoregressive models. Nonetheless, the out-of-sample statistical and trading performance 
was found inferior to the ARMA specifications. As such, it is logical to retain for the portfolio optimization the less complex 
and better performing linear ARMA. Nonetheless, the STAR results are not included for the sake of space and are available 
upon request. 

ETF Measure ARMA MLP RNN PSN 
 
 

SPY 

Annualised Return 5.94% 7.44% 11.59% 17.17% 
Sharpe Ratio 0.50 0.63 1.33 1.47 

Maximum Drawdown -6.76% -10.78% -8.92% -8.23% 
 
 

DIA 

Annualised Return 3.80% 12.81% 14.87% 18.37% 
Sharpe Ratio 0.33 1.63 1.94 2.24 

Maximum Drawdown -12.48% -9.54% -8.28% -8.14% 
 
 

QQQ 

Annualised Return 4.12% 8.75% 10.45% 16.52% 
Sharpe Ratio 0.69 1.32 1.71 2.37 

Maximum Drawdown -8.75% -8.11% -5.77% -5.89% 
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This section provides the summary of the portfolio optimization procedures applied in this study. 

Initially, the traditional Mean-Variance (M-V) approach is described. Then, the proposed copula-based 

mean-CVaR optimization method is explained in detail. 

5.1 Traditional mean-variance portfolio optimization with NN models 

Modern portfolio theory suggests that there are two important inputs for the M-V portfolio optimization: 

expected returns and forecasts of covariance. The results of section 4 indicate that the NN forecasts are 

the more accurate approximations for the daily expected returns across all ETF series. As a next step, 

we want to investigate whether we can achieve significantly better performance in the M-V optimization 

by using their forecasts instead of the traditional ARMA.  

Following Markowitz (1952), we assume that investors wish to find portfolios that have the best 

expected return-risk trade-off. The optimal portfolio weights can be obtained by minimizing the variance 

of the portfolio for a given level of expected return**. Therefore, the optimization problem in our study 

can be expressed as: 

                                   ( )2
,minσ = ∑

t

T
p t t t t tw

w w w  subject to , ,= wT
p t t i tr r  and 1=T

tw 1                  (2) 

where 𝜎𝜎𝑝𝑝,𝑡𝑡
2  denotes portfolio variance at time 𝑡𝑡, 𝑟𝑟𝑝𝑝,𝑡𝑡  denotes the expected return of the portfolio, 𝐰𝐰𝑡𝑡 

denotes the vector of portfolio weights, and 𝛴𝛴𝑡𝑡 denotes the covariance matrix of ETF returns at time t. 

In this study, the weekly algorithmic returns are calculated as: 

( ) ( ), , , 1ln - ln −=i t i t i tr P P            (3) 

where 𝑃𝑃𝑖𝑖,𝑡𝑡  and 𝑟𝑟𝑖𝑖,𝑡𝑡  denote the price and logarithm return of ETF 𝑖𝑖 at week 𝑡𝑡.𝛴𝛴𝑡𝑡  is predicted by three 

different models, namely the DCC-GARCH, the ADCC-GARCH and the GAS model. 

 

5.2 Neural network copula-based mean-CVaR portfolio optimization (NNC) 

Although variance is straightforward to calculate and widely used in financial practice, it is not a 

satisfactory risk measure from the risk measurement perspective. As a symmetric risk measure, variance 

penalizes profits and losses in an equal way. Thus, this study considers the CVaR as an alternative risk 

measure, it is easily interpretable and it satisfies several attractive mathematical properties. Minimization 

of portfolio CVaR is closely related to the minimization of portfolio VaR, while CVaR minimization 

                                                           
** Equivalently, the optimal portfolio can be obtained by maximizing portfolio expected return for a given level of risk as 
measured by portfolio variance. 
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can be easily solved by a linear programming (Rockafellar and Uryasev 2002). Based on this rational, 

we adopt the Neural Network Copula-based Mean-CVaR (NNC) portfolio optimization.  

The starting point of the process is to model the marginal distributions of ETF returns. The details 

of this analysis are explained in detail in Appendix A. It is also very crucial to select the appropriate 

copula for the datasets at hand. Although the Gaussian copula and t copula are the most widely used 

copulas in finance as they are convenient to use, neither of them are able to capture multivariate 

asymmetry. Some Archimedean copulas, such as the Clayton, the Gumbel and the Joe-Clayton 

specifications, allow asymmetry in the bivariate distribution, however, they are not easily generalized to 

high-dimensional applications. Following Christoffersen et al. (2012) and Christoffersen and Langlois 

(2013), we use the skewed t copula implied by the skewed t distribution discussed in Demarta and 

McNeil (2005) to overcome these problems. To further verify this selection, we compare the 

performance of the skewed t copula with nine alternatives and we find that it is indeed the best 

performing copula. The details of this analysis are provided in Appendix B. The superiority of the 

skewed t copula is intuitively reasonable since it can capture the upper and lower tail dependence along 

with the multivariate asymmetry. In other words, it is safe to assume that this copula can describe the 

‘true’ dependence structure among the ETF index returns. The skewed t copula-based GAS model can 

now be used to obtain the dynamics of correlation (covariance) and apply the estimated copula to 

implement a Monte Carlo simulation to obtain portfolio CVaR for the optimizations. The CVaR 

optimization strategy allows the minimization of the downside tail risk of the portfolio (portfolio 

CVaR††) for a given level of return. This strategy is suitable for investors who have a utility function 

characterized by the minimization of downside tail risk and are indifferent to (or might even prefer) 

upside variance.  

Specifically, the proposed NNC approach can be separated into two stages. In the first stage, we 

calculate the expected weekly returns of the three ETF indices using the daily forecasts of ARMA and 

three NN models. In order to incorporate asymmetric dependence in our model, we use the skewed t 

copula to describe the dependence structure between asset returns. The time-varying correlation matrix 

for the skewed t copula model is predicting using the DCC, ADCC and GAS model. All the forecasts 

are obtained by using a “rolling window” approach. Then, we re-estimate the skewed t copula at each 

week t using a 1-year rolling window ‡‡. Given the estimated skewness parameter and degrees of 

freedom, as well as the correlation matrix predicted by the DCC, ADCC and GAS, a Monte Carlo 

simulation based on the skewed t copula is done to predict the VaR and CVaR for the ETF portfolio. 

Based on the above, given a series of target returns, it is possible to obtain an efficient frontier of optimal 

                                                           
†† CVaR is the abbreviation of the Conditional Value-at-Risk, which is also known as the Expected Shortfall. 
‡‡ We use a rolling window instead of the full sample period and set a window size at 250 (one trading year) for all the data 
sets. We conduct rolling forecast by moving forward a day at a time and end with the forecast for 13/04/2015. 
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risk-return portfolios at each week t. Despite of being able to calculate the whole efficient frontier of 

every ETF portfolio at each time t, our decision to rebalance the portfolios is based on the optimal 

weights of the tangency portfolio, meaning the one with the highest Sharpe ratio or Return/CVaR 

ratio. 

Following Rockafellar and Uryasev (2000, 2002), β-VaR and β-CVaR of the portfolio at time 𝑡𝑡 in 

integral form are given by: 

                      ( ) ( ){ }min : ,βα α α β= ∈ Ψ ≥w wt t       (4) 

and 

                     ( ) ( ) ( ) ( )
( ) ( )

11 ,
β

β α
φ β −

≥
= − ∫ w ,r w

w w r r r
t t t

t t t t tf
f p d     (5) 

where Ѱ is the cumulative distribution for the loss associated with 𝐰𝐰𝑡𝑡, the probability that 𝐫𝐫𝑡𝑡 occurs is 

𝑝𝑝(𝐫𝐫𝑡𝑡) and the loss function is presented by 𝑓𝑓(𝐰𝐰𝑡𝑡, 𝐫𝐫𝑡𝑡) as: 

                                                  ( ) 1, 1, , ,,  = − + + = −  T
t t t t n t n t t tf w r w rw r w r                                  (6) 

Rockafellar and Uryasev (2000) show that β-CVaR of portfolio in integral form can be well 

approximated using a Monte Carlo simulation. Therefore, the following equation is a suitable 

approximation that can be used to minimize CVaR for a given level of portfolio return: 

( )
( ) ( ) ,, 1
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β α α
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w w r subject to ( ) -µ = − ≤w w rT
t t t R  and 1T

t =w 1    (7) 

where 𝑞𝑞 denotes the number of samples generated by the skewed t copula-based Monte Carlo simulation, 

𝛼𝛼 denotes VaR at 𝛽𝛽 level and 1 is a vector of ones and 𝐫𝐫𝑚𝑚,𝑡𝑡 is the mth vector of simulated returns. The 

vector of portfolio weights, 𝐰𝐰𝑡𝑡, can be obtained from the optimization procedure to generate the portfolio 

that minimizes CVaR for a given portfolio return 𝑅𝑅. A pseudo-algorithm of the NNC process is presented 

in Appendix D. 

 

6. Final portfolio optimization results 

In this study, we follow Jondeau and Rockinger (2006a) to construct weekly rebalanced portfolios. The 

reason that our portfolios are not rebalanced in a daily basis is that the benefits generated from portfolio 

optimization may be significantly offset by the sharp increase of transaction costs. The calculation of 

the portfolio weights for the M-V optimization depends on the predictions of the ETF returns from the 

NN models and the covariance matrix predicated by the DCC, ADCC and GAS model. Similarly, the 
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calculation of the portfolio weights for the mean-CVaR optimization also depends on the forecasts from 

the NN models and the CVaR from simulation. Specifically, for the estimation of portfolio CVaR, we 

re-estimate our model each week and use a Monte Carlo simulation to generate 10000 observations. The 

covariance matrix between assets is predicted by the same models as the M-V optimization. The 

portfolio performances are evaluated based on the achieved realized returns, Sharpe and Sortino§§ ratios 

and maximum drawdowns. Table 7 presents the results obtained by the traditional M-V approach. 

 Table 7: Performances of different trading strategies (Traditional M-V) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The table presents the out-of-sample performances over the period January 2014 to 
March 2015 (68 weekly observations). Panel A reports performances of the three ETF 
indices and the 1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports 
performances of different M-V portfolios without short-selling. All the portfolios are weekly 
rebalanced tangency portfolios obtained by the M-V optimization based on various model 
combinations. For example, ARMA-DCC refers to the performance of the tangency 
portfolio of the efficient frontier of the three ETF assets, where the expected returns are 
obtained through ARMA forecasts, while the variance-covariance matrix is predicted by 

                                                           
§§ The Sortino ratio is a modification of the Sharpe ratio, but it only penalizes those returns falling below a user-specified 
target or required rate of return, while the Sharpe ratio penalizes both upside and downside volatility equally. Both ratios 
measure the risk-adjusted returns, but they frequently lead to differing conclusions as to the true nature of the investment's 
return. 

Panel A: ETF indices and 1/N portfolio 

  Realized Return Sharpe Ratio Sortino Ratio Max Drawdown 

SPY 10.233% 0.9155 1.3519 7.590% 

DIA 6.773% 0.6053 0.8995 7.041% 

QQQ 16.477% 1.2681 2.2277 8.822% 

1/N 11.161% 0.9850 1.4937 7.415% 

Panel B: Mean-Variance optimization without short-selling 

  Realized Return Sharpe Ratio Sortino Ratio Max Drawdown 

ARMA-DCC 11.404% 0.9660 1.5222 6.650% 

ARMA-ADCC 11.760% 0.9973 1.6006 6.650% 

ARMA-GAS 12.128% 1.0261 1.6485 6.650% 

RNN-DCC 26.108% 2.1904 3.7299 7.197% 

RNN-ADCC 26.791% 2.1982 3.4489 8.368% 

RNN-GAS 27.122% 2.2697 3.7321 7.357% 

PSN-DCC 26.829% 2.2420 3.6209 7.185% 

PSN-ADCC 26.849% 2.2429 3.6235 7.185% 

PSN-GAS 27.362% 2.2767 3.6979 7.185% 

Panel C: Mean-Variance optimization with short-selling 

  Realized Return Sharpe Ratio Sortino Ratio Max Drawdown 

ARMA-DCC-S 11.889% 0.9183 1.4545 7.958% 

ARMA-ADCC-S 11.837% 0.9127 1.4718 7.958% 

ARMA-GAS-S 12.135% 0.9313 1.5012 7.785% 

RNN-DCC-S 39.538% 3.0225 5.2083 8.232% 

RNN-ADCC-S 40.112% 3.0113 5.4423 8.268% 

RNN-GAS-S 40.359% 3.1502 5.2116 7.785% 

PSN-DCC-S 40.200% 3.1219 5.0452 7.785% 

PSN-ADCC-S 40.388% 3.1157 5.2154 7.785% 

PSN-GAS-S 40.555% 3.1860 5.0328 7.785% 
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DCC. Panel C reports performances of different M-V portfolios with short-selling. ‘-S’ 
denotes optimizations allowing short-selling.  

 

The above table provides interesting findings. The QQQ ETF yields the highest annualized return (16.48%), 

Sharpe ratio (1.268) and Sortino ratio (2.228). Nevertheless, it also suffers the largest maximum drawdown 

(8.82%). It is also shown that the optimized portfolio from the ARMA model does not achieve significantly higher 

risk adjusted returns than the equally weighted portfolio (1/N). In contrast, portfolios from NN models clearly 

outperform both ETFs and the 1/N portfolio***. The average Sharpe ratio and Sortino ratio (2.669 and 4.417, 

respectively) of portfolios from NN models are significantly higher than the average of portfolios from the ARMA 

model (0.997 and 1.590, respectively). In general, we find that the optimized portfolios from the ARMA models 

do not outperform equally weighted portfolio, whereas the portfolios from NN models achieve clearly superior 

performance. Thus, it can be inferred that the gain from optimal diversification of ARMA portfolios can more 

than offset by the out-off-sample estimation error from the ARMA model. The benefits of the optimized portfolio 

from NN models mainly originate from the accurate return predictions generated by the NN models. 

Additionally, this is further investigated by allowing for short-selling. From panel C, we find that portfolios 

from the ARMA yield similar results as in Panel B, which indicates that allowing short-selling does not 

significantly improve the performance of ARMA portfolios. This can be attributed to the fact that large estimation 

errors are generated from the ARMA model. Meanwhile, the Sharpe and Sortino ratios of the NN portfolios are 

significantly improved, when there is no short-selling constraint. The average Sharpe ratio and Sortino ratio 

increase around 38.66% and 42.57%. This remarkable improvement implies that more accurate forecasts can lead 

to higher economic profits through portfolio optimization, especially where short-selling is allowed. Interesting 

empirical evidence are collected also when asymmetric dependence is taken into account. Panel B and C show 

that when asymmetric dependence properties are considered, portfolios consistently provide better performance 

in terms of annualized returns and Sharpe/Sortino ratios. As we discussed earlier, both the ADCC and the skewed 

t copula-based GAS model can capture asymmetric dependence between asset returns. This is important as the 

equity returns are normally more correlated when market goes down.  

Finally, table 7 can differentiate the results from the best two NN model. It should be noted that the optimized 

portfolios from the PSN outperform portfolios from the RNN in terms of Sharpe ratio. Specifically, the average 

annualized return (Sharpe ratio) of PSN portfolios is 33.70% (2.696), which is around 1% (2.16%) higher than 

the average of RNN portfolios. The maximum drawdown of PSN portfolios is also around 5% lower than RNN 

portfolios. This is intuitively reasonable since the PSN model outperforms the RNN model in the predictions of 

single ETF. The results of these performance measures indicate that more accurate predictions of asset returns 

can lead to higher benefit of M-V optimization. The average Sortino ratio of PSN portfolios appears 2% lower 

than the average of RNN portfolios. This is not surprising since the M-V optimization uses the variance as a risk 

proxy, which treats downside risk and upside risk in the same way. Here we should note that as main results we 

                                                           
*** For the sake of space, we present results of portfolios based on ARMA forecasts (benchmark) and PSN and RNN forecasts 
(best and second best NN model respectively). MLP results are similar and are not presented for the sake of space 
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consider those obtained from equally weighted three-asset portfolios, as these are generally though as more 

realistic applications than the two-asset ones. Similar trend in the results is obtained, when the two-asset cases are 

analysed (see Online Appendix C). 

Therefore, it would be more interesting to investigate if NN models can provide significant improvement in 

the mean-CVaR optimization, which minimizes the tail risk instead of the variance. Table 8 below provides the 

equivalent results for the proposed NNC optimization method. Because of the nature of the NNC approach, the 

Sharpe ratio is replaced with the ratio of return over CVaR. The other performance measures remain the same.  

Table 8: Performance of different trading strategies (Mean-95% CVaR) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: The table presents the out-of-sample performances over the period January 2014 to 
March 2015 (68 weekly observations). Panel A reports performances of the three ETF indices 
and the 1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances 
of different mean-CVaR portfolios without short-selling. All the portfolios are weekly 
rebalanced tangency portfolios obtained by the different mean-CVaR optimization based on 
various model combinations. For example, ARMA-DCC refers to the performance of the 
tangency portfolio of the efficient frontier of the three ETF assets, where the expected returns 
are obtained through ARMA forecasts, while the variance-covariance matrix is predicted by 
DCC. Panel C reports performances of different different mean-CVaR portfolios with short-
selling. ‘SKT’ represents that the 95% CVaR is predicted using a Monte-Carlo simulation with 
the skewed t copulas to allow for asymmetric tail dependence ‘-S’ denotes optimizations 
allowing short-selling.  

Panel A: ETF indices and 1/N portfolio 

  Realized Return Return/CVaR Sortino Max Drawdown 

SPY 10.233% 2.9636 1.3519 7.590% 

DIA 6.773% 1.8335 0.8995 7.041% 

QQQ 16.477% 4.2314 2.2277 8.822% 

1/N 11.161% 3.4367 1.4937 7.415% 

Panel B: Mean-CVaR optimization without short selling 

  Realized Return Return/CVaR Sortino Max Drawdown 

ARMA-DCC- SKT 13.114% 4.0400 1.774 6.650% 

ARMA-ADCC- SKT 12.869% 3.9714 1.735 6.650% 

ARMA-GAS- SKT 13.116% 4.0721 1.786 6.650% 

RNN-DCC- SKT 28.757% 9.3672 3.988 6.975% 

RNN-ADCC- SKT 28.884% 9.4085 4.005 6.975% 

RNN-GAS- SKT 28.940% 9.5513 4.013 7.015% 

PSN-DCC- SKT 30.491% 9.8103 4.136 8.312% 

PSN-ADCC- SKT 30.608% 9.8482 4.152 8.317% 

PSN-GAS- SKT 30.726% 9.8860 4.168 8.404% 

Panel C: Mean-CVaR optimization with short selling 

  Realized Return Return/CVaR Sortino Max Drawdown 

ARMA-DCC-SKT-S 13.873% 3.9422 1.692 7.958% 

ARMA-ADCC-SKT-S 14.190% 4.0384 1.731 7.958% 

ARMA-GAS-SKT-S 15.022% 4.2556 1.828 7.958% 

RNN-DCC-SKT-S 42.609% 13.5624 5.544 7.835% 

RNN-ADCC-SKT-S 43.151% 13.6425 5.507 8.931% 

RNN-GAS-SKT-S 42.991% 13.9732 5.598 7.785% 

PSN-DCC-SKT-S 43.081% 13.6203 5.503 8.890% 

PSN-ADCC-SKT-S 43.307% 13.7847 5.639 7.785% 

PSN-GAS-SKT-S 44.294% 14.0037 5.662 9.033% 
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From the table above, QQQ continues to yield the higher Return/CVaR and Sortino ratios along with the 

highest maximum drawdown. Similar to the results of the M-V optimization, table 8 shows that NN portfolios 

clearly outperform the ARMA ones. During the NNC process, the target is to minimize the CVaR of the respective 

portfolio. Therefore, the tangency portfolio is the one with the largest Return/CVaR ratio. The average 

Return/CVaR ratio and Sortino ratio (11.762 and 4.843 respectively) of portfolios from NN models are remarkably 

higher than the average of portfolios from the ARMA model (4.053 and 1.758 respectively). As in the M-V case, 

the gains from NN portfolios should be attributed to the more accurate return predictions generated by the NN 

models. Meanwhile, portfolios based on PSN forecasts continue to achieve around 2% higher average 

Return/CVaR ratio and Sortino ratio than the average of the RNN ones. This further confirms that NN portfolios 

and PSN ones, in particular, provide significant benefits to the investor, when the portfolio optimization is based 

on a tail risk measure, rather than a symmetric one. Additionally, the short-selling results are improved with the 

NNC process. The capital gains are not strong in the case of ARMA-based portfolios, but are maximized when it 

comes to PSN portfolios (above 3% average annualized returns).  

Comparing the results between tables 7 and 8, we find that the average Sortino ratio (3.803) of the mean-

CVaR portfolio at 95% confidence level is 10% higher than the Sortino ratio of the M-V portfolio (3.456). This 

result is consistent with our expectation, since the Sortino ratio is a measure of downside risk and fits well with 

the objective of the CVaR optimization (minimizing the tail risk of portfolio).  Additionally, taking into account 

the asymmetric dependence yields slightly higher benefits than the asymmetric models that treat dependence 

structure symmetrically. It turns out that the average Return/CVaR ratio and Sortino ratio (11.854 and 4.860 

respectively) of portfolios from the skewed t copula models are higher than the average of portfolios from the 

DCC model (11.590 and 4.793 respectively). The performance of the mean-CVaR portfolios at 99% 

confidence level is also investigated as an extra robustness test. These results are summarized in table 9 

below. 

Table 9: Performance of different trading strategies (Mean-99% CVaR) 

Panel A: ETF indices and 1/N portfolio 

  Realized Return Return/CVaR Sortino Ratio Max Drawdown 

SPY 10.233% 2.9636 1.3519 7.590% 

DIA 6.773% 1.8335 0.8995 7.041% 

QQQ 16.477% 4.2314 2.2277 8.822% 

Naïve 11.161% 3.4367 1.4937 7.415% 

Panel B: Mean-CVaR optimization without short-selling 

  Realized Return Return/CVaR Sortino Ratio Max Drawdown 

ARMA-DCC-SKT 13.516% 3.6590 1.817 6.650% 

ARMA-ADCC-SKT 13.751% 3.7224 1.853 6.650% 

ARMA-GAS-SKT 13.533% 3.6636 1.823 6.650% 

RNN-DCC-SKT 28.327% 7.2744 3.928 6.857% 

RNN-ADCC-SKT 29.469% 7.5679 3.997 6.988% 

RNN-GAS-SKT 29.495% 7.5746 4.001 6.971% 

PSN-DCC-SKT 29.527% 7.5827 4.005 7.037% 
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PSN-ADCC-SKT 29.548% 7.5880 4.008 6.988% 

PSN-GAS-SKT 29.608% 7.6035 4.016 6.971% 

Panel C: Mean-CVaR optimization with short-selling 

  Realized Return Return/CVaR Sortino Ratio Max Drawdown 

ARMA-DCC-SKT-S 13.992% 3.2978 1.704 7.958% 

ARMA-ADCC-SKT-S 14.336% 3.3789 1.754 7.958% 

ARMA-GAS-SKT-S 14.877% 3.5062 1.806 7.958% 

RNN-DCC-SKT-S 42.095% 9.3658 5.464 7.690% 

RNN-ADCC-SKT-S 41.706% 9.2794 5.319 7.785% 

RNN-GAS-SKT-S 42.097% 9.3663 5.363 7.633% 

PSN-DCC-SKT-S 42.101% 9.3673 5.380 7.593% 

PSN-ADCC-SKT-S 42.558% 9.4689 5.516 7.741% 

PSN-GAS-SKT-S 42.731% 9.4510 5.550 7.785% 
Note: The table presents the out-of-sample performances over the period January 2014 to March 
2015 (68 weekly observations). Panel A reports performances of the three ETF indices and the 
1/N portfolio (equally weighted buy-and-hold portfolio). Panel B reports performances of different 
mean-CVaR portfolios without short-selling. All the portfolios are weekly rebalanced tangency 
portfolios obtained by the different mean-CVaR optimization based on various model 
combinations. For example, ARMA-DCC refers to the performance of the tangency portfolio of 
the efficient frontier of the three ETF assets, where the expected returns are obtained through 
ARMA forecasts, while the variance-covariance matrix is predicted by DCC. Panel C reports 
performances of different different mean-CVaR portfolios with short-selling. ‘SKT’ represents that 
the 99% CVaR is predicted using a Monte-Carlo simulation with the skewed t copulas to allow for 
asymmetric tail dependence ‘-S’ denotes optimizations allowing short-selling.  

In general, the results at 99% CVaR are consistent with the ones at 95% CVaR. Table 9 shows 

additionally that when the objective is to minimize CVaR at 99% confidence level, maximum drawdown 

decreases significantly compared to the 95% case (on average around 6.23%). As mentioned before, the 

above results are similar also for two-asset portfolios for the respective ETFs and can be found in Online 

Appendix C. 

6. Conclusions 

The motivation of this paper is to investigate whether using more accurate ETF forecasts from 

superior NN models can lead to statistical and economically significant benefits in portfolio management 

decisions. Firstly, we apply three NN models, namely the MLP, RNN and PSN to the task of forecasting 

the daily returns of three ETFs. The statistical and trading performance of the NNs is benchmarked with 

the traditional ARMA. Secondly, a novel dynamic asymmetric copula model (NNC) is introduced in 

order to capture some of the well-documented features of the dependence structure across ETF returns. 

Thirdly, weekly re-balanced portfolios are obtained and compared by using the traditional M-V approach 

and mean-CVaR optimization.  

This study provides several interesting findings related to the NN and portfolio optimization 

literature. In terms of the forecasting and trading performance of the individual models, the results 

suggest that PSN outperforms MLP and RNN models, while all NN structures provide more accurate 

forecasts and higher profitability over the ARMA models. The results related to model selection and 
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goodness of fit tests indicate that the asymmetric skewed t copula statistically outperforms symmetric 

copulas when it comes to modelling ETF returns dependence. Our empirical study also shows solid 

evidence that when the most accurate forecasts are exploited, the NNC model leads to significant 

improvements in the portfolio optimization process. Compared with portfolios from the classical ARMA 

model, portfolios from NN models can deliver significantly higher out-of-sample risk adjusted returns, 

when evaluate through the Sharpe and Sortino ratio or the novel Return/CVaR ratio. The results further 

confirm that NN portfolios and PSN ones, in particular, provide significant benefits to the investor, when 

the portfolio optimization is based on a tail risk measure (CVaR), rather than on a symmetric one 

(variance).  

In addition, we find that forecasting covariance taking into account asymmetric dependence 

improves the performance of optimization, however the magnitude of this improvement is relatively 

small. In that sense, it is implied that the portfolio optimization benefits are driven mainly from the 

accurate ETF predictions, particularly the PSN ones, rather than the variance-covariance matrix 

estimates. This findings is in line with the relevant strand of the literature suggesting the forecasts of 

asset returns are the most important inputs for the mean-variance optimization. Overall, this study 

provides insight in the ETF market and sheds light to the difficult quest of optimal portfolio optimization 

procedures. 
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Appendix  

A. Statistical and trading performance measures. 

The statistical and trading performance measures of the forecasting models are calculated as shown in 

table B.1 and B.2 respectively. 
Table B.1: Statistical performance measures 

 
Table B.2: Trading performance measures 
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B. Modelling marginal density 

The Ljung-Box test and the Engle’s LM test show that the ETF return series exhibit some degree of 

autocorrelation and heteroscedasticity. In order to compensate for autocorrelation, the conditional mean 

is modelled with a simple ARMA model: 

                                                           , , , ,
1 1
ϕ θ ε ε− −

= =

= + + +∑ ∑
p q

i t j i t j k i t k i t
j k

r c r                    (C.1) 

where 𝜀𝜀𝑖𝑖,𝑡𝑡 = 𝜎𝜎𝑖𝑖,𝑡𝑡𝑧𝑧𝑖𝑖,𝑡𝑡 . To capture the heteroscedasticity and asymmetric volatility clustering of ETF 

returns, we model the conditional variance using the GJR-GARCH dynamics: 
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The indicator function 𝐼𝐼�𝜀𝜀𝑖𝑖,𝑡𝑡−𝑘𝑘 < 0� equals 1 if 𝜀𝜀𝑖𝑖,𝑡𝑡−𝑘𝑘 < 0, and 0 otherwise. Applying this, allows us to 

capture the “leverage effect”, which implies lower returns than expected are followed with higher levels 

of volatility. Using these models, we construct the estimated standardized residuals as: 
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Descriptive statistics of ETF indices returns show that all the indices exhibit significant skewness and 

the hypothesis of normality is rejected by the Jarque–Bera test. In order to compensate for the skewness, 

we use the univariate skewed t distribution of Hansen (1994) to model the standardized residuals of each 

ETF index. Assuming ( ),z ,η λi t skt i iF , then 

                                      ( ) ( ) [ ], , ; , ,  2, ,  1,1η λ η λ= ∈ ∞ ∈ −i t skt i t i i i iu F z             (C.4) 

where 𝑢𝑢𝑖𝑖,𝑡𝑡 is the probability integral transform of 𝑧𝑧𝑖𝑖,𝑡𝑡, 𝜆𝜆𝑖𝑖 is the skewness parameter and 𝜂𝜂𝑖𝑖 is the degrees 

of freedom. 

 

C. Copula modelling: multivariate non-normality and asymmetry 

As mentioned in section 5, this study applies the skewed t copula proposed by Demarta and McNeil 

(2005). The cumulative distribution function of this skewed t copula is given by: 

        ( ) ( ) ( )( )1 1
1, , 1 1, ,, , ; , , , ,λ υ − −∑ = skt t n t skt t n n tu u F u F uC F      (D.1) 

where λ is the parameter of skewness, υ is the parameter of degree of freedom, Fskt is the cumulative 

distribution function of the multivariate skewed t density with correlation matrix Σ, and 𝐹𝐹𝑖𝑖−1  is the 

inverse cumulative distribution function of the univariate skewed t distribution.  

From Patton (2006), if the joint distribution function Fskt is n-times differentiable, the following 

equation is obtained by taking the nth cross-partial derivative: 
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The equation suggests that the joint density 𝐟𝐟𝑠𝑠𝑠𝑠𝑠𝑠 is equal to the product of the marginal densities and the 

skewed t copula density 𝐜𝐜𝑠𝑠𝑠𝑠𝑠𝑠 . Thus, the joint log-likelihood is equal to the sum of univariate log-

likelihood and the skewed t copula log-likelihood: 

( ) ( ) ( ) ( )( )1, , , , 1 1, ,
1 1 1

log , , log log , ,
= = =

= +∑∑ ∑ f c
T n T

skt t n t i t i t skt t n n t
t i t

z z f z F z F z                            (D.3)

  

More details on the implementation of the skewed t copula can be found in Christoffersen et al., (2012). 

Our choice to use the skewed t copula is supported by the literature as mentioned in section 5. 

Nonetheless, we also perform a comparative analysis between ten common copula alternatives to verify 

this selection. The analysis is based on three information criteria, the value of log-likelihood (LL), the 

Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). The results of this 

analysis are presented in the table below. 

Table D.1: Estimations for Different Copulas 

Panel A: SPY - DIA 

  P1 P2 P3 LL AIC BIC 

Gaussian 0.933   123.38 -244.76 -242.54 

Clayton 5.838   129.15 -256.31 -254.09 
Survival Clayton 3.364   79.20 -156.40 -154.18 

Plackett 68.852   121.69 -241.37 -239.15 

Frank 9.000   103.85 -205.70 -203.48 

Gumbel 3.798   106.81 -211.62 -209.40 

Survival Gumbel 4.663   125.07 -248.14 -245.92 

Symmetrized Joe–Clayton 0.861 0.664  128.48 -252.97 -248.53 
Student's t 0.900 2.158  125.80 -247.60 -243.17 

Skewed Student's t 0.929 2.261 -0.063 131.53 -257.06 -250.40 

Panel B: SPY - QQQ 

  P1 P2 P3 LL AIC BIC 

Gaussian 0.864   82.96 -163.91 -161.69 
Clayton 2.936   73.60 -145.21 -142.99 

Survival Clayton 2.375   60.60 -119.19 -116.97 

Plackett 29.252   78.64 -155.28 -153.06 

Frank 9.000   74.90 -147.81 -145.59 

Gumbel 2.789   75.79 -149.58 -147.36 

Survival Gumbel 2.972   83.39 -164.77 -162.55 
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Symmetrized Joe–Clayton 0.759 0.653  83.58 -163.17 -158.73 

Student's t 0.873 8.796  84.02 -164.04 -159.60 

Skewed Student's t 0.850 9.389 -0.040 88.50 -171.00 -164.34 

Panel C: DIA - QQQ 

  P1 P2 P3 LL AIC BIC 

Gaussian 0.738   47.68 -93.35 -91.13 

Clayton 2.024   50.65 -99.30 -97.08 

Survival Clayton 1.194   27.07 -52.14 -49.92 

Plackett 12.186   44.14 -86.28 -84.06 

Frank 6.346   44.15 -86.31 -84.09 

Gumbel 1.929   37.33 -72.65 -70.43 

Survival Gumbel 2.190   51.98 -101.96 -99.74 
Symmetrized Joe–Clayton 0.699 0.261  51.51 -99.03 -94.59 

Student's t 0.753 44.970  57.74 -111.47 -107.03 
Skewed Student's t 0.750 38.889 -0.050 59.82 -113.64 -106.98 
Note: Columns P1 to P3 report the estimated parameters. Columns LL, AIC and BIC 
report the values of log-likelihood, the Akaike information criterion and the Bayesian 
information criterion, respectively. For each column of information criterion, the best 
three models are in bold.  

From the table above, it is obvious that the skewed t copula consistently provides maximum LL 

and minimum AIC and BIC values. This implies that for the respective set of data the skewed t copula 

is always preferred.  

 

D. The NNC portfolio optimization pseudo-algorithm 

The following steps summarize the proposed NNC process: 

• Step 1: Using different NN models and a benchmark model (i.e. ARMA model) to forecast one-

step-ahead asset returns. Since the PSN and RNN models provide the best and second best out-

of-sample statistical and trading performance respectively, we use them to calculate the weekly 

expected returns for each ETF index in the optimization part. 

• Step 2: Consider an investor who has a one-period horizon and constructs a dynamically 

rebalanced portfolio. The time-varying weights of this portfolio requires one-step-ahead 

forecasts of the expected return and the conditional variance–covariance matrix. We use the 

conditional mean predicted by the ARMA, RNN and PSN models and the conditional variance–

covariance matrix predicted by DCC, ADCC and GAS models to perform weekly rebalance 

portfolio optimization. 

• Step 3: Copula modelling using in-sample data. Initially, we need to characterize individually 

the distribution of returns of each asset. Specifically, we use ARMA and GJR-GARCH to 

estimate the conditional mean and conditional volatility, respectively, and apply the skewed t 

distribution of Hansen (1994) to get the probability integral transforms of the standardized 

residuals. 
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• Step 4: Using the probability integral transforms estimated from the last step, the GAS model 

for the skewed t copula is estimated in order to obtain the time-varying correlation matrix. The 

time-varying correlation matrix is also obtained for comparison purposes by the DCC or ADCC 

GARCH. 

• Step 5: Given the time-varying correlation matrix, the jointly-dependent uniform variates can be 

simulated by the skewed t copula random number generator. 

• Step 6: Following Rockafellar and Uryasev (2000, 2002), a linear programming technique is 

applied to find optimal weights of ETFs that calculate a minimum CVaR for a certain level of 

return at time t  

• Step 7: Repeat Step 1 to Step 6 using rolling window for weekly rebalance. 


