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Abstract: Multi-population based nature-inspired optimization algorithms have attracted
wide research interests in the last decade, and become one of the frequently used methods
to handle real-world optimization problems. Considering the importance and value of
multi-population methods and its applications, we believe it is the right time to provide a
comprehensive survey of the published work, and also to discuss several aspects for the
future research. The purpose of this paper is to summarize the published techniques related
to the multi-population methods in nature-inspired optimization algorithms. Beginning with
the concept of multi-population optimization, we review basic and important issues in the
multi-population methods and discuss their applications in science and engineering. Finally,
this paper presents several interesting open problems with future research directions for
multi-population optimization methods.
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1. Introduction

Nature-inspired optimization algorithms, including evolutionary algorithms (EAs) and swarm
intelligence (SI), are part of the computer intelligence discipline that has become
increasingly popular over the past few decades [1-4]. EAs and S| are inspired by natural
phenomena, evolution processes, and the collective behaviors of swarms of ants and bees,
and flocks of birds when they search for food or a better environment. The popularity of
nature-inspired optimization algorithms is due to the fact that they can be used to solve
complex problems in different domains. EAs begin with a set of random candidate solutions,
iteratively generate offspring solutions, and render the fittest until an acceptable solution is
found. Popular algorithms in this category are genetic algorithms (GAs) [5], evolution
strategy (ES) [6], evolutionary programming (EP) [7], genetic programming (GP) [8],
estimation of distribution algorithms (EDAs) [9], differential evolution (DE) [10-11],
biogeography-based optimization (BBO) [12-13] and fireworks algorithm (FWA) [14]. SI
algorithms start with a set of candidate solutions, and in each iteration, a new set of
candidate solutions is created based on historical and other related information. Some
examples include ant colony algorithms (ACO) [15], particle swarm optimization (PSO) [16],
artificial bee colony (ABC) algorithm [17], firefly algorithm (FA) [18], krill herd (KH) algorithm
[19], and others [20-23].

In the last decade, multi-population based methods were often discussed and used to
improve the optimization performance of nature-inspired optimization algorithms.
Researchers tend to divide the original population into multiple small subpopulations for

some specific purposes, for example, solving large-scale optimization and dynamic



optimization problems. Then, some evolution operations, for example, selection, crossover
and mutation for GAs, are executed to implement individual evolution. Finally, these
subpopulations interact with each other via merging, communication and re-division process
to avoid premature convergence and maintain population diversity when people tackle
various optimization problems.

Existing studies on multi-population optimization demonstrate that it is easily integrated
within various nature-inspired optimization algorithms, and it often performs better than
single-population optimization algorithms, including global benchmark functions and
real-world applications. Why a multi-population approach is popular and effective [47, 77,
118]: (1) it divides the whole population into multiple subpopulations, in which the
population diversity can be maintained because different subpopulations can be located in
different search spaces; (2) it is able to search different areas simultaneously, allowing it to
find promising optimal solutions efficiently, and (3) various nature-inspired optimization
algorithms can be rapidly and easily embedded into multi-population methods. The main
objective of this survey is to provide an exhaustive summary of the work published on
multi-population methods in nature-inspired optimization algorithms, whilst presenting
remaining challenges and research objectives. This survey includes two main areas: basic
research issues and applications.

Other reviews and surveys on multi-population methods have also been published in the
past few years [24-26], in which the concepts of multi-population is described using other
terms such as ‘parallel’, ‘cooperative’, ‘co-evolution’, ‘islands’, and so on. Our survey
introduces the research progress made in the last few years with comprehensive discussion

on remaining problems and possible research directions. In addition, we discuss hardware



implementations of multi-population including traditional CPU, parallel GPU, and AMD
Accelerated Processing Unit (APU) with multi-core architectures. Their features of
multi-thread and parallel processing significantly speed up implementation time.
Implementation details can be found in the literature [27-29].

This survey is prepared using the database of Web of Science. Figure 1 shows the
chronological distribution of the papers published in the last 10-year related to
nature-inspired optimization algorithms with “multi-population (multipopulation)” or
“multi-swarm (multiswarm)” in their titles. Note that the concept of multi-population is
often used in EAs whilst the concept of multi-swarm is often used in Sl related papers. Table
1 shows the top 10 countries with the largest number of the research papers, and Table 2
shows the top 5 journals with the largest number of papers on multi-population methods in
nature-inspired optimization algorithms. These figure and tables clearly show the breadth,

depth, and growth of interest in multi-population methods.
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Figure 1 Publication number of multi-population methods in nature-inspired algorithms by years.



Table 1 The top 10 countries with the largest number of the papers on multi-population methods.

Rank Country Number of papers | Rank Country Number of papers
China 196 6 India 16
2 USA 45 7 Spain 14
3 UK 23 8 Japan 13
4 Canada 22 9 Australia 13
5 Brazil 17 10 Italy 13

Table 2 The top 5 journals with the largest number of the papers on multi-population methods.

Rank Journal Number of papers
Applied Soft Computing 15
2 Information Sciences 10
3 Soft Computing
4 Expert Systems with Applications
IEEE Transactions on Evolutionary Computation
Advances in Engineering Software
s Applied Mathematics and Computation 4
Applied Mechanics and Materials
Computers Operations Research
Plos One

To further analyze the development of multi-population methods, we use CiteSpace
software [30], which generates the co-occurrence networks of authors, keywords, and
institutions; and co-citation networks of the cited authors, references, and journals, to
generate a journal co-citation analysis network. The top 5 multi-population methods related
co-cited journals are shown in Table 3. Based on the analysis of the publications and
co-citation counts, IEEE Transactions on Evolutionary Computation is identified as the major
journal for publishing multi-population methods. We also use the CiteSpace to generate

keyword co-occurrence, which is a useful approach to explore knowledge structures and hot

topics, and the top 5 multi-population methods related keywords are shown in Table 4.




Table 3 The top 5 co-cited journals related with multi-population methods, where “Count” denotes the

number of times each journal is co-cited by other journals.

Rank Journal Count
1 IEEE Transactions on Evolutionary Computation 315
2 Applied Soft Computing 104
3 Information Sciences 75
4 European Journal of Operational Research 72
5 Applied Mathematics and Computation 69

Table 4 The top 5 keywords related with multi-population methods, where “Count” denotes the number

of times each keyword is found in the term of keywords in the published papers.

Rank Keywords Count
1 Optimization 112
2 Genetic algorithm 80
3 Particle swarm optimization 76
4 Multi-population 61
5 Multi-swarm 46

The organization of this paper is as follows. The basic issues of multi-population methods
and their integration with nature-inspired optimization algorithms are provided in Section 2,
and the literature review of multi-population methods in relation to the classes of
optimization and areas of applications are given in Section 3. Finally, further development of

multi-population methods is outlined in Section 4.

2. Multi-population methods

This section presents basic and important issues of multi-population methods, as well as

how they are integrated with nature-inspired optimization algorithms.

2.1 Basic issues of multi-population methods
Existing work on multi-population methods demonstrate that using multi-population is one
of the most effective methods to maintain population diversity. In nature-inspired

optimization algorithms, diversity is indicated as the difference between candidate solutions,



and evolution progress lies fundamentally on the existence of population variations.
Population diversity may greatly influence the convergence and optimization of solutions.
The main purpose of multi-population methods is to maintain population diversity by
spreading candidate solutions over the entire search space. This feature helps
nature-inspired optimization algorithms efficiently find global optimal solutions.

To make multi-population methods more efficient, several basic and important issues of
the algorithm design are discussed, which are shown in Figure 2. These issues include the
number of subpopulations, the communication between subpopulations, the search area of
subpopulations, and the search strategy of subpopulations. In the following subsections,

these issues are discussed in detail.
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Figure 2 Diagram of basic and important issues of multi-population methods

2.1.1. The number of subpopulations

The first issue is how to determine the number of subpopulations. If too many
subpopulations exist in the optimization process, they may waste the limited computation
resources. However, if there are a small number of subpopulations, the effect of

multi-population is not significant for one to render optimal solutions. According to the



number of subpopulations, this issue is addressed in two ways. The first way is to use a fixed
number of subpopulations. Most of the existing multi-population methods belong to this
group. In [31], a three-population architecture of EAs was applied to solve non-stationary
optimization tasks, where one population supplied the historic estimates while the others
were used in the searching process. Experimental results showed that the proposed
algorithm had good performance in non-stationary environments. Niu et al. [32] proposed a
multi-population cooperative PSO, in which the population consists of one master swarm
and a fixed number of slave swarms, and the former executed PSO independently to
maintain the diversity of particles, while the latter enhanced their particles based on their
own knowledge and the knowledge of the particles in the other slave swarms. Simulation
results demonstrated the effectiveness of the proposed algorithm. In [33], Togelius et al.
used multi-population competitive co-evolution for car racing controllers, where
nine-subpopulation co-evolution was compared with single-population co-evolution and
standard evolution strategies. Experimental results showed that the proposed strategy had
better performance. Li et al. [34] proposed new GAs based on multi-population competitive
co-evolution, where the method comprised three simultaneously coevolving populations
including learner population, evaluator population and fame hall, and the competitive
exclusion principle in the ecological theory was applied in populations to maintain
chromosome diversity. Experimental results showed that the proposed algorithm was more
likely to avoid the occurrence of premature convergence, and outperformed the
counter-parts. In [35], a multi-population cooperative cultural algorithm was proposed by
integrating the cooperative GA into the population space of a culture algorithm, where the

population was divided into several subpopulations and GA was adopted in each



subpopulation. Simulations indicated that the proposed algorithm effectively sped up the
convergence and improved the optimization performance. A new hybrid multi-population
GA with the fixed number of subpopulations was proposed in [36] to solve the multi-level
capacitated lot-sizing problem with backlogging. The proposed algorithm was tested on a set
of multi-item lot-sizing with a backlogging library, and the results showed that it had better
performance for most of the testing problems. In [37], a multi-population cultural algorithm
with two subpopulations was proposed for artifact selection, in which agents in one
subpopulation consistently outperformed the other agents due to the prior knowledge
about certain artifacts. The study showed that the evolving agents significantly improved
artifact selection knowledge. Yu [38] proposed a multi-population ABC algorithm for
numerical optimization, which employed a new multi-population strategy with the fixed
subpopulation numbers to enhance the population diversity. The results showed that the
proposed algorithm achieved better performance than the standard ABC algorithm. In [39],
Aimi and Suyama proposed a multi-swarm PSO for the IIR filter design, and the experimental
results showed that the effectiveness of the proposed method through several design
examples. Chatterjee and Zhou [40] presented a DE algorithm within a multi-population
strategy, which divided an initial set of solutions into several subsets, and each subset
evolved independently and finally connected with each other. The experimental results
revealed the relationship between the number of subpopulations and the performance of
DE. The advantage of using fixed subpopulation numbers is that it can be implemented
simply, and we only need to create a fixed number of subpopulations for the problem.
However, the number of subpopulations is only determined by researchers’ experience, and

it is hard to obtain unified and effective rules to determine the numbers of subpopulations



for different practical problems.

The second way is to use a varying number of subpopulations. To maintain population
diversity, the subpopulation numbers may be different at different phases during the
evolution process. For example, in the early phase, a method needs a large number of
subpopulations because the candidate solutions can scatter over the entire search space,
which leads to high population diversity. But in the later phase, a small number of
subpopulations help reducing diversity and the solution can quickly converge to a global
minimum or maximum. So it is wise to dynamically increase or decrease the subpopulation
numbers during the optimization. In many cases, a method often divides a main population
into sub-groups or vice versa. In [41], Bongard proposed to use co-evolutionary dynamics of
a multi-population GP system, in which the proposed method used a master/slave
architecture, and the number of the client populations dynamically evolved to promote
continuous search. The experimental results showed that the proposed method led to the
discovery of better solutions in some numerical cases. In [42-43], Liang and Suganthan
proposed a dynamic multi-swarm PSO by local searching, in which the whole population was
divided into many small swarms, whose number could be determined using regrouping
schedules. The simulation results showed the proposed method had better performance
than the other standard algorithms. A clustering PSO was proposed by Yang and Li [44] for
locating and tracking multiple optima in a dynamic environment. The proposed algorithm
used a hierarchical clustering method to dynamically adjust the subpopulation numbers to
track multiple peaks. The experimental study was conducted to test the performance of the
proposed algorithm, and the results showed its effectiveness for tracking multiple dynamic

optima. In [45], Zhao and Suganthan proposed a dynamic multi-swarm particle optimizer



with sub-regional harmony search, where the whole population was divided into a large
number of sub-swarms that were regrouped using various regrouping schedules. The
simulation results showed that the proposed system achieved good performance for most of
the numerical benchmarks. In [46], a fuzzy C-means (FCM) multi-swarm competitive PSO
was proposed for optimization control of an ethylene cracking furnace, in which FCM
clustering was used to categorize swarms adaptively into different clusters. This method was
evaluated by benchmark functions and optimization control of the cracking depths of an
ethylene cracking furnace. Nseef et al. [47] proposed an adaptive multi-population ABC
algorithm for dynamic optimization problems, where the number of subpopulations
changed over time for the algorithm to adapt to a dynamic environment. The simulations
showed that the proposed algorithm was superior to the standard algorithm on all the test
datasets. In [48], cooperative co-evolutionary algorithms were proposed to solve
high-dimension problems, in which a dynamic multi-population framework was incorporated
into the proposed algorithms to enhance the global optimization ability. The simulation

results verified the effectiveness of the proposed algorithm.

2.1.2. Communication between subpopulations

The second issue is how to handle the communication between subpopulations. Many
studies show that the communication between subpopulations can help exchange
information and, hence, will accelerate the search process and find the promising solutions.
The communication between subpopulations is controlled by the following four parameters:
(i) a communication rate that defines the number of the solutions in a subpopulation to be

shared with other subpopulations; (ii) a communication policy that determines which



solutions are to be replaced by those of other subpopulations; (iii) a communication interval
that sets up the frequency for executing communication; (iv) a connection topology that
defines how to connect subpopulations. The literature [49] firstly focused on the
communication issues in designing cooperative multi-thread parallel search techniques, and
attempted to identify the key issues to be addressed in the design of an algorithm in this
class. In [50], the topologies and migration rates of multi-population parallel GAs were
discussed in detail. The study revealed the explicit relation between the probability of
reaching a desired solution with a specific population size, the migration rate and the degree
of the connectivity graph. Middendorf et al. [51] discussed information exchange in multi
colony ant algorithms, and the results showed that the exchange of only a small amount of
solutions helped efficient and effective search. In [52], EI-Abd and Kamel discussed the
factors governing the behavior of multiple cooperating swarms, and these factors included
the communication strategy used, and the number of the cooperative swarms. The
experimental results showed that a circular topology communication strategy produced
better performance than those of sharing the global best of all the swarms. In [53], Chen and
Chang applied a real-coded multi-population GA to multi-reservoir operation, in which a
hyper-cubic topology was used to connect various subpopulations to exchange information.
The results showed that the proposed algorithm provided much better performance than
the conventional GA in terms of minimizing the water deficit of a reservoir system. A
different topology multi-swarm PSO was proposed in [54] to deal with problems in a
dynamic environment. The proposed algorithm integrated two different topological
sub-swarms, and they exchanged their best particles at the checkpoints. The experiments

demonstrated that the proposed algorithm was effective and stable in a dynamic



environment. Li and Zeng [55] presented a multi-population agent based co-genetic
algorithm with a chain-like agent structure for parallel global numerical optimization, where
a close chain-like agent connection structure, a cycle chain-like agent connection structure,
and a dynamic neighborhood were adopted to realize the parallel optimization. The results
showed that the proposed algorithm had better optimization precision and efficiency than
the GA. A novel multi-swarm PSO was presented in [56], where the proposed method
extended a single population model to an interacting multi-swarm model by constructing a
hierarchical interaction topology. The simulation results proved that the proposed method
had significantly better performance than four variants of the standard PSO. In [57], an
adaptive migration revisiting schemes was proposed for multi-population GAs, where
fitness- and diversity-based migration schemes were used for preventing premature
convergence. The experimental results on 0/1 knapsack problems showed that both of the
new approaches were better than the standard methods. Biswas et al. [58] presented a
multi-swarm ABC with forager migration, which maintained multiple swarm populations that
applied different perturbation strategies and gradual migration of the population. The
simulation results on 25 benchmark problems showed the superiority of the proposed
method. In [59], Campos et al. evaluated the impact of several topologies on asynchronous
multi-swarm particle optimization, and the experimental results provided the ranking of
different topologies. Turky and Abdullah [60] proposed a multi-population electromagnetic
algorithm with different migration mechanisms including a random immigrant scheme and a
memory-based immigrant scheme. The purpose of these schemes is to determine which
solutions are migrated to maintain population diversity. The simulation results showed the

proposed algorithm was very effective on moving peak benchmarking problems. Michalak



[61] proposed an evolutionary algorithm based on problem similarity, which was called
Sim-EA. The proposed method utilized the concept of multi-population optimization, and
each subpopulation was assigned to solve one of the instances which were similar to each
other. Furthermore, the same author [62] used the same technology to propose a
multi-population estimation of distribution algorithm (EDA), called Sim-EDA, where each
subpopulation was assigned to a different instance and a migration mechanism was used for
transferring information between the subpopulations. The experimental results confirmed
that the performance of the proposed algorithm was better than the others when
information was transferred between subpopulations assigned to similar instances of the
problem. In [63], an ABC optimizer with bee-to-bee communication and multi-population
co-evolution was proposed for multilevel threshold image segmentation, where individuals
could share information from the elites through the bee-to-bee communication model. The
experimental results on a set of benchmark datasets demonstrated the performance of the
proposed algorithm. Kommenda et al. [64] studied the effects of multi-population GPs for
symbolic regression problems, where several subpopulations were parallelly evolved
according to unidirectional ring migration to maintain genetic diversity. The effects of
multiple populations with a data migration strategy were compared to the standard genetic
programming algorithms on several symbolic regression benchmark problems. In [65], Xu et
al. proposed a dynamic multi-swarm PSO with cooperative learning strategy. In the proposed
strategy, for each sub-swarm, each dimension of the two poor particles learns from the
better particle of two randomly selected sub-swarms using a tournament selection strategy
so that particles can have more excellent examples to learn and can find the global optimum

more easily. The simulation results showed that the proposed algorithm had superior



performance in comparison with several popular PSO variants. In [66], Upadhyayula and
Kobti studied population migration using the dominance in multi-population cultural
algorithms, in which multiple subpopulations utilized the evolutionary dominance to
improve system performance. The preliminary results showed that the proposed algorithm
outperformed the traditional methods. In [67], a multi-swarm bat algorithm was proposed
for global optimization, where an immigration operator was used to exchange information
between different swarms with necessary parameter settings, and the best individual of
swarms was used as the elite swarm through the selection operator. The experimental
results showed that the proposed method was able to search satisfactory function values on
most of the benchmark datasets. Niu et al. [68] proposed a symbiosis-based alternative
learning multi-swarm PSO algorithm, where the communication policy used a learning
method to select one example out of the center position, the local best position, and the
historical best position including the experience of the internal and external multiple swarms,
to keep the diversity of the population. The experimental results exhibited better
performance in terms of the convergence speed and optimality. An orthogonal multi-swarm
cooperative PSO algorithm with a particle trajectory knowledge based method was proposed
in [69], where the proposed algorithm used a matrix recording the information of the
particle trajectory, and a new adaptive cooperation mechanism to implement the
information interaction between swarms and particles, to greatly decrease the
computational cost. The simulation results showed that the proposed algorithm had better
performance compared with the traditional algorithms. Apparently, communication
between subpopulations is very useful for optimization since information exchanging is able

to improve the search ability of algorithms.



2.1.3. Search area of subpopulations

The third issue is how to determine the search area of each subpopulation. If the search area

of a subpopulation is too small, there is a potential problem that the small isolated

subpopulation often converges to a local optimal solution. On the contrast, if the search area

of a subpopulation is too large, it is almost equal to the search area of the original

population. Another case is that the search area may be overlapped, that is, two

subpopulations search in the same sub-area, which may waste computational resources. To

handle this problem, in [70], Li and Yang proposed a general multi-population method with

clustering, where different subpopulations were distributed in different sub-areas in the

fitness landscape, and then it applied the random immigrant method without change

detection based on a mechanism that could automatically reduce redundant individuals in

the search space. The simulation results on the benchmark functions showed that the

proposed algorithm provided much better performance than the other algorithms.

Pourvaziri and Naderi [71] presented a hybrid multi-population GA for the dynamic facility

layout problem. In this study, the proposed algorithm separated the potential solution space

into different parts by using a heuristic procedure and each subpopulation represented a

separate part to assure population diversity. The results showed that the proposed algorithm

performed better than the other methods. Kobti [72] proposed a heterogeneous

multi-population cultural algorithm, which firstly incorporated a decomposition technique to

divide the given problem into a number of sub-problems, and then it assigned the

sub-problems to different subpopulations to be optimized separately in parallel in order to

evaluate the proposed architecture. The simulation results showed that the proposed



algorithm outperformed the other state-of-the-art methods presented in the literature. In

[73], Raeesi et al. proposed a heterogeneous multi-population cultural algorithm with a

dynamic dimension decomposition strategy, where two dynamic dimension decomposition

techniques including the top-down and bottom-up approaches were used to decompose the

dimensions of a given problem as different subsets, and each subpopulation was designed to

optimize these subsets. The comparison results revealed that the proposed method was

effective and outperformed the other standard approaches in terms of efficiency. In [74],

Ufnalski and Grzesiak proposed a multi-swarm plug-in direct PSO algorithm for the

sine-wave constant-amplitude and constant-frequency voltage-source inverter, where a

dynamic optimization problem was divided into multiple lower dimensional swarms and

each swarm was optimized independently by PSO. Ei Dor et al. [75] presented a multi-swarm

PSO algorithm using charged particles in a partitioned search space for continuous

optimization, in which the auxiliary swarms were initialized in different areas, and then an

electrostatic repulsion heuristic method was applied in each area to increase its diversity. In

[76], Bolufe and Chen studied the effects of sub-swarms in multi-swarm systems, and used a

separate search mechanism to identify different regions of the solution space for each

swarm with different goals and features. The comprehensive study provided a new set of

general guidelines for the configuration of sub-swarms in multi-swarm systems. The

common ground of these methods is that they use empirical experience to determine the

search area of each subpopulation. Therefore, it is required to identify a proper search area

for each subpopulation for different optimization problems.

2.1.4. Search strategy of subpopulations



The fourth issue is how to determine the search strategy of each subpopulation. Search
strategies can significantly affect the performance of multi-population methods on different
optimization problems. Different search strategies with different advantages can
complement one another when a multi-population method is applied to an optimization
problem. If each subpopulation is used to support a search strategy, and is responsible for
either exploring or exploiting the search space, it is a promising way to enhance the
optimization performance. In [77], Wu et al. proposed a DE algorithm with multi-population
based ensemble of mutation strategies for global optimization, in which each subpopulation
employed different mutation strategies, including “current-to-pbest/1”, “current-to-rand/1”
and “rand/1”, during the evolution. After a certain number of iterations, the current best
performing mutation strategy would be found according to the ratios between the
guantitative performance improvements and function evaluations. As a result, better
mutation strategies may require more computational resources. The simulation results
showed that the proposed algorithm performed better than the other variants of DE on the
benchmark functions. Another version that adopted a multi-population based ensemble
mutation method for solving a single objective bi-level optimization problem was proposed
by Li et al. [78]. Wang and Tang [79] proposed an adaptive multi-population DE algorithm for
continuous multi-objective optimization, where each of subpopulation evolved according to
the assigned different crossover operators borrowed from various GAs to generate
perturbed vectors. Computational results on benchmark datasets showed that the proposed
algorithm was superior to some previous algorithms in the literature. In [80], Godio
presented a multi-population GA for estimating snow properties from the GPR data. In this

study, each subpopulation was associated with an independent variant of GA to explore



different promising regions of the search space. The experimental results showed that the
proposed algorithm successfully estimated layer thickness and the porosity, saturation and
structural exponents of snow. A multi-swarm cooperative PSO was proposed by Niu et al. in
[81], where a population consists of one master swarm and several slave swarms. The slave
swarms executed the variants of PSO independently to maintain the diversity of particles,
and the master swarm evolved based on its own knowledge and also the knowledge of the
slave swarms. The simulation results showed that the proposed algorithm had better
performance compared with the standard PSO. Zhao et al. [82] proposed a multi-swarm
cooperative multistage perturbation guiding PSO, where the three-stage perturbation
guiding idea was used to separate the execution process of algorithm into three stages, and
each stage used a DE mechanism with different perturbation to balance the exploration and
the exploitation. The simulation results showed that the proposed strategy was a promising
algorithm compared with the other particle swarm optimizers and state-of-the-art
algorithms. In [83], Ali and Suganthan proposed an adaptive multi-population DE with
dynamic population reduction, in which the population was clustered in multiple tribes and
used an ensemble of different mutation and crossover strategies. That is, a different
adaptive scheme was used in each tribe to define the scaling factor and the crossover rate,
and to guarantee that successful tribes with the best adaptive scheme were the one that
guided the search toward the optimal solution. The simulation results justified the
robustness of the proposed approach compared to the other state-of-the-art algorithms. In
[84], Biswas and Das proposed a multi-swarm based ABC algorithm for global search, in
which the proposed algorithm deployed a multiple swarm population characterized by

unique perturbation strategies, that is, each subpopulation used the different evolving



operators in the landscapes. The experimental results had indicated the statistical superiority
of the proposed approach. Cheng and lJin [85] presented a multi-swarm evolutionary
framework based on a feedback mechanism, where the framework consisted of several
operators similar to those in PSO and a mutation strategy, applied in different sub-swarms,
on the top of the feedback mechanism. The simulation results showed that the proposed
method enhanced the algorithm’s global search ability. In [86], a multi-swarm bare bones
PSO with distribution adaption was proposed, where four methods were developed using
Gaussian or multivariate Gaussian distributions, and then the cellular learning automata
model was incorporated with the proposed bare bones PSO, which was able to adaptively
learn suitable updating strategies for the swarms. The experimental results indicated the
superiority of the proposed approach in terms of accuracy and speed in finding appropriate
solutions. The advantage of these methods is that different search strategies are used with
different subpopulations, which is better than a single search strategy throughout the

evolution.

2.2 Integration with nature-inspired algorithms

Now we present how to integrate the multi-population methods with nature-inspired
optimization algorithm. Simply speaking, it starts by setting parameters for different
conditions, randomly creates a population of solutions and then evaluates them. Next, the
population is divided into multiple subpopulations. Each subpopulation performs certain
evolutionary operation to generate its own offspring. Based on the requirements of the
algorithm design, the communication between subpopulations is used to help the evolution.

Finally, the process stops if the stopping criteria is met. In this way, multi-population



methods can flexibly manage the subpopulations, leading to better performance than

single-population algorithms. The flowchart of multi-population methods integrating with

nature-inspired optimization is shown in Figure 3.
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Figure 3 Flowchart of multi-population methods integrating with nature-inspired optimization algorithms.

The main steps are further described below:

Step 1: Set parameters, and initialize the population of solutions. The key parameters of
multi-population methods integrating with nature-inspired optimization include the

parameters of EA or S| paradigms, the maximum number of iterations, the size of



population, the number of subpopulations, and the communication parameters between
subpopulations.

Step 2: Evaluate the population, and the fitness of the generated solutions is calculated using
the objective function. Divide the entire population into multipe subpopulations, and each
subpopulation may have different sizes of populations. Each subpopulation can be randomly
or orderly assigned from the solutions.

Step 3: Create offspring subpopulations, which is the most important part for
multi-population methods integrating with nature-inspired optimization. In this step, we can
use a fix or variable number of subpopulations, and we also can use a complex
communication mechamism between subpopulations. Different subpopulations can be
executed independently or dependently by EA or SI paradigms to generate their own
offspring subpopulations. For these EA or S| paradigms, we can use the same strategy for all
the subpopulations, or use different strategies for each subpopulation. In addition, for
different optimization problems, we can allow all the subpopulations to search in the entire
solution space.

Step 4: Evaluate offspring subpopulations and check the stopping condition. If the
termination criterion is not met, go to Step 3; otherwise, terminate and output the

evaluation results.

3. Applications of multi-population methods

The literature reports numerous applications of multi-population methods to benchmark
datasets and real-world problems. This section first provides a summary of optimization

problem categories: multi-modal optimization, dynamic optimization, multi-objective



optimization, large-scale optimization, combinatorial optimization, constrained optimization,

and noisy optimization. Then we review the applications of multi-population methods to in

different practices.

3.1 Classes of optimization

3.1.1 Multi-modal optimization

Many multi-population methods were used to solve multi-modal benchmark functions [68,

78]. Siarry et al. [87] presented a multi-population GA for multi-modal optimization, which

created subpopulations within the niches defined by the multiple optima to warrant good

diversity. The empirical results showed the reliability of the proposed algorithm. In [88-89], a

multi-population cultural algorithm using fuzzy clustering was proposed for multi-modal

function optimization, where fuzzy clustering was used to partition the single population

into several communicating subpopulations which evolved in parallel whilst cultural

exchange ensured population diversity. The simulation results on several multi-modal test

functions showed that the proposed method had good performance. A bi-objective

multi-population GA was proposed in [90-91] for multi-modal function optimization, in

which two separate but complementary fitness objectives were designed to enhance the

diversity of the overall populations and exploration of the search space. The experimental

results on five multi-modal functions showed that the proposed algorithm outperformed

four multi-modal GAs. Zhang and Ding [92] proposed a multi-swarm self-adaptive and

cooperative PSO for complex multi-modal functions, in which particles in each sub-swarms

shared the best optimum to enhance the cooperative capability. The simulation results

showed that the proposed algorithm had better performance than the other algorithms. In



[93], Kwasnicka and Przewozniczek proposed a multi-population pattern searching algorithm,
which is a new evolutionary method based on the standard messy genetic algorithm for
solving optimization problems. In this study, the authors used some of the messy GA ideas
like coding and operators in different subpopulations to solve the bottleneck of effectiveness
dropdown. The simulations on a set of test functions including multi-modal benchmarks
showed that their method had highly competitive performance. In [94], Bolufe and Chen
proposed a multi-swarm hybrid algorithm for multi-modal optimization, where some ideas
from DE algorithms and EDAs were used to address the new design in multi-swarm systems.
The experimental results showed that the proposed hybrid system could perform better
than each of the individual components. In [95], Fieldsend presented a new multi-modal
evolutionary optimizer, the niching migratory multi-swarm optimizer (NMMSO), which
dynamically managed many particle swarms. In the proposed method, sub-swarms were
concerned with optimizing separate local modes, and employed measures to allow swarm
elements to migrate away from their parent swarm and to merge swarms together under
some conditions. The simulation results on multi-modal test problems showed that the
proposed method obtained competitive performance. In [96], a pseudo multi-population
differential evolution (p-MPDE) was proposed for multi-modal functions, in which the
proposed p-MPDE employed a small exemplar population to conduct standard DE operation,
and each other individual used the differential of two randomly chosen members in the
exemplar population to mutate themselves and evolve. The simulation results showed that
the proposed p-MPDE outperformed other state-of-the-art multi-modal algorithms. Xiao et
al. [97] presented a novel multi-population co-evolution immune optimization algorithm for

most of the existing multi-modal benchmarks, where co-evolution of three subpopulations



was promoted through a self-adjusted clone operator to enhance exploration and
exploitation. The authors proved that their method outperformed three known immune
algorithms and several EAs. A general-purpose asynchronous adaptive multi-population
model for a distributed differential evolution (AsSAMP-dDE) algorithm was proposed in [98],
where the asynchronous migration mechanism and the adaptive procedure allowed
reducing the number of the control parameters to be set in the distributed multi-population
models. The experimental results showed that this algorithm achieved good performance for

the investigated benchmarks including the most of multi-modal functions.

3.1.2 Dynamic optimization

Multi-population methods have also been used to solve dynamic optimization problems [44,
47, 54, 60, 70, 71]. Branke et al. [99] presented a multi-population approach to dynamic
optimization problems, where the proposed algorithm used concepts from a
multi-population evolutionary algorithm, which is to find multiple peaks in a multi-modal
landscape, to enhance solution search in a dynamic landscape. The experimental results
showed that this approach was indeed suitable for moving peak benchmarks. In [100],
authors presented new variants of PSO which worked well in dynamic environments, where
the main idea was to extend the single population PSO by constructing interacting
multi-swarms. The results showed that the proposed multi-swarm optimizer significantly
outperformed the single population PSO on the moving peaks benchmarks. In [101], authors
proposed a mixed multi-swarm optimization approach applied to dynamic environments,
where a set of particles was divided into multiple sub-swarms, and every sub-swarm

consisted of two types of particles: classic and quantum ones. Both of them were based on



stable symmetric distributions. The experimental results showed that the proposed method
had achieved satisfactory efficiency. Another version adopting a multi-swarm PSO based on
the concept of quantum for dynamic optimization was proposed in [102]. Yazdani et al. [103]
presented a novel multi-swarm PSO algorithm for benchmark functions in dynamic
environments. In this study, several mechanisms based on the changes of velocity vectors
and particle positions were used to increase the diversity of swarms. The simulation results
conducted on moving peak benchmarks showed the superiority of the proposed method.
Multi-swarm optimization with chaotic mapping was proposed in [104] for dynamic
optimization problems, in which the proposed algorithm adopted an improved multi-swarm
approach and employed PSO as a global and local search method. Furthermore, a modified
chaotic mapping mechanism was presented to overcome the challenge of diversity loss. The
simulation results showed that the proposed algorithm outperformed the others on most of
the test cases. Other studies about multi-population methods combining with PSO were
presented in the literature [105-110]. Furthermore, a multi-population based geometric
collaborative evolutionary algorithm was presented in [111] to solve complex dynamics
problems. The numerical results demonstrated that the proposed algorithm was effective.
Wu et al. [112-113] designed a multi-population and diffusion univariate marginal
distribution algorithm, and the results showed that the proposed algorithm was effective for
the function with a moving optimum and could adapt to the dynamic environments. In [114],
a simple but effective self-adaptive strategy to control the behaviors of a DE based
multi-population algorithm was proposed for dynamic environments. Specifically, the
proposed scheme was aimed to control the creation of random individuals by the

self-adaptation of the involved parameters. The simulation results showed that the proposed



algorithm was as competitive as other efficient methods. Kundu et al. [115] published a
similar study which used a multi-population based DE with speciation-based response to
dynamic environments. The introduction of external archiving into a multi-population
harmony search algorithm to solve dynamic optimization problems was presented by Turky
and Abdullah [116]. The results on moving peak benchmarks showed that their modified
version was better than the original harmony search algorithms. In [117], Li et al. proposed
an adaptive multi-swarm optimizer for dynamic optimization problems, which addressed
how to adapt the number of populations to change and how to adaptively maintain the
population diversity in a situation where changes were hard to detect or predict. The
performance of the proposed algorithm was compared with a set of the standard algorithms
based on multi-population methods. Li et al. [118] presented some great challenges for
multi-population methods in unconstrained dynamic environments, and analyzed them
through experimental studies from the algorithm design point of view. The simulation results
showed that the multi-population performance was significantly affected by several crucial
issues, including how to adapt the number of subpopulations to dynamic environments, how
to determine the search area of each subpopulation, and so on. Li et al. [119] used an
adaptive multi-population optimization framework for locating and tracking multiple optima,
which was taken as a dynamic optimization problem. In this study, PSO and DE were
implemented into the multi-population framework, and the authors discovered that the
proposed framework was quite good for dynamic optimization problems. Another version
about multi-population optimization framework for dynamic environments was proposed by
Uludag et al. [120]. Ozsoydan and Baykasoglu [121] employed a multi-population firefly

algorithm to tackle dynamic optimization problems. The experiments on moving peak



benchmarks showed that the proposed algorithm significantly improved system
performance. A multi-swarm artificial bee colony (MABC) algorithm was proposed in [122]
for dynamic optimization problems, where the proposed MABC had a similar framework to
the original ABC but used an environment detection technique to track the moving of the
optimal solutions of dynamic problems. The experimental results showed that the proposed

MABC performed better in terms of offline errors, convergence speeds, and robustness.

3.1.3 Multi-objective optimization

Multi-population methods have sometimes been used to solve multi-objective optimization
problems [79]. Leong et al. [123] extended multi-population methods to PSO-based
multi-objective optimization in order to create multi-population multi-objective PSO, which
made use of a dynamic population size and adaptive local archives to improve the diversity
within each subpopulation. The computational experiments showed that their method
worked better than the other standard methods. Zhang et al. [124] handled multi-objective
optimization problems using a multi-swarm cooperative PSO, where each sub-swarm was
designed to optimize one specific objective function of the multi-objective problem. The
simulation results indicated that the proposed algorithm was highly competitive in solving
multi-objective problems. In [125], Yu et al. used a multi-swarm comprehensive learning PSO
algorithm to solve the multi-objective sustainable operation problem of the Three Gorges
cascaded hydropower system. The experimental results demonstrated that the proposed
method had satisfactory convergence and diversity for the cases studied. Liu et al. [126]
proposed a co-evolutionary technique based on a multi-swarm PSO for the dynamic

multi-objective problem. The simulation results indicated that the proposed algorithm was



promising for tackling dynamic multi-objective problems. Other studies using multi-swarm
PSO for multi-objective optimization problems were reported in [127-132]. In addition,
Kersting and Zabel [133] proposed a new multi-population multi-objective evolutionary
algorithm for optimizing NC-tool paths for simultaneous five-axis milling. Their results
showed the effectiveness of this multi-population algorithm for optimizing the previously
available solutions. Xiao [134] formulated an improved multi-objective evolutionary
memetic algorithm by using a multi-population approach. The airport ground services were
optimized by the authors to test the performance of their method, and it showed that their
method was better than the existing ones in terms of solution quality and Pareto dominance.
Shang et al. [135] developed a multi-population cooperative co-evolutionary algorithm for
the multi-objective capacitated arc routing problem, where the divide-and-conquer method
was applied to decompose the whole population into multiple subpopulations according to
different direction vectors, and then each subpopulation was used to search different
objective sub-regions simultaneously. The results showed the effectiveness of this
multi-population multi-objective algorithm for optimizing the capacitated arc routing
problem. In [136], Shi et al. introduced a multi-objective immune algorithm based on a
multi-population co-evolutionary strategy, where subpopulations evolved independently,
and the unique characteristics of each subpopulation could be effectively maintained. The
diversity of the entire population was effectively increased. The results showed that the
proposed algorithm achieved satisfactory results in terms of convergence, diversity metrics,
and running time on most of the problems. In [137], the author proposed a multi-population
Sim-EA algorithm with operator auto-adaptation for the multi-objective firefighter problem,

where a new migration mechanism was used to improve the effectiveness of the algorithm.



The simulation results showed that the proposed multi-population Sim-EA algorithm
produced better results than a decomposition-based algorithm. Castro et al. [138] presented
a competent multi-swarm approach for more than three objectives known as
many-objective optimization problems (MaOPs). On each sub-swarm, an EDA was used to
ensure proper convergence. The empirical results fully demonstrated the superiority of the

proposed method on almost all test instances.

3.1.4 Large-scale optimization

Multi-population methods have also been used to solve large-scale optimization problems
[45]. Fan and Chang [139] presented a dynamic multi-swarm PSO based on parallel PC
cluster systems for optimizing large-scale functions, in which multiple swarms worked in
parallel, and used a message passing interface for information interchange among swarms.
The simulation results showed that the proposed algorithm was promising in solving
large-scale problems. Another version adopting a dynamic multi-swarm PSO with local
search for large-scale global optimization was presented in [140]. Moeini et al. [141]
introduced a colonial multi-swarm method with modular characteristics to the
administration of PSO in large-scale problems, which ensured a decent degree of exploration
by administrating a number of parallel swarms. The simulation results on 28 large-scale
benchmark problems exhibited significant improvement as the problem dimensionality
arose. A novel parallel multi-swarm algorithm based on comprehensive learning PSO was
proposed in [142] for large-scale benchmark functions. In this study, multiple swarms had a
master-slave relationship and worked cooperatively and concurrently to reach proper

convergence. The simulation results showed that the proposed algorithm had good



performance over the other variants of PSO. An enhanced version was implemented to
handle another set of 20 large-scale optimization functions by Ge et al. [143]. In the
meantime, Guo et al. [144] presented a novel multi-population cultural algorithm adopting
knowledge migration, where implicit knowledge extracted from each subpopulation directly
reflected the information of the dominant search space in order to enhance diversity. The
authors proved that their method had better performance than the other methods for
large-scale optimization functions. In [145], a new multi-swarm multi-objective optimization
method was proposed for dealing with large-scale structural problems. In this method, a
multi-objective optimization method combining with clustering and particle regeneration
procedure was presented to deal with large scale optimization problems. The experimental
results showed that the proposed method outperformed several state-of-the-art approaches.
Ali et al. [146] proposed multi-population DE with balanced ensemble of mutation strategies
for large-scale global optimization, where the population was divided into independent
subpopulations, each with different mutation and updating strategies. The performance of
the proposed algorithm was investigated using 19 large-scale optimization functions and the
results showed that it had competitive performance. A large-scale optimization application
of multi-population differential ABC algorithm was presented by Zhou and Yao [147] for
service composition in cloud manufacturing. In their study, the proposed algorithm adopted
multiple parallel subpopulations, each of which evolved according to different mutation
strategies from differential evolution to generate perturbed sources for foraging bees, and
the mutation parameters were adapted independently. The authors found that the proposed

algorithm outperformed other hybrid and single population algorithms in the literature.



3.1.5 Combinatorial optimization

Sometimes, multi-population methods have been used to solve combinational optimization
problems [57, 62]. A study on multi-population GAs for 0/1 knapsack problem was proposed
by Lin et al. [148], and the experimental results showed that the proposed approach was
comparable to single-population GAs. Another similar study on multi-population GA for
multiple-choice multidimensional knapsack problems was proposed by Zhou and Luo [149].
A case on the dynamic vehicle routing problem, which was one of dynamic combinatorial
problems, was handled by multi-swarm PSO [150]. In their study, the population of particles
was split into a set of interacting swarms. The effectiveness of the approach was tested on a
set of benchmarks, and the results showed that the proposed approach significantly
outperformed the other meta-heuristics. Xiong and Wei [151] presented a multi-population
binary ACO algorithm based on the distribution of food quantity, in which subpopulations
learned from each other by the means of ant pheromones. The simulations on the 0/1
multi-knapsack problem demonstrated that their method could obtain satisfactory
optimization performance. In [152], the authors discussed adaptive tuning of all the
parameters used in a multi-swarm PSO algorithm, and applied the method to the
probabilistic traveling salesman problem. The experimental results on a number of
benchmark instances showed that the proposed algorithm had better performance than a

number of algorithms reported in the literature.

3.1.6 Constrained optimization

Multi-population methods have also been used to solve constrained optimization problems.

In [153], a multi-population EA was proposed for solving constrained optimization problems,



where the proposed method adopted three populations with different multi-parent
crossover operators. During the optimizing process, three populations exchange the best
solution in each generation to adjust its search direction to possible optimum solution. The
numerical results showed that the proposed method was highly competitive against the
other algorithms. Liang and Suganthan [154] presented a dynamic multi-swarm PSO with a
novel constraint-handling mechanism. The simulation results on CEC 2006 benchmark
functions showed that the modified algorithm had better performance. Another version
using a hybrid multi-swarm PSO for solving constrained optimization problems was proposed
by Wang and Cai [155]. Applications of a parallel multi-population GA were presented by
Gongalves and Resende [156] for two-dimensional orthogonal packing problems with
constraints. The effectiveness of the proposed algorithm was verified on a set of instances,
and the results of the study showed that their method outperformed a standard GA. In [157],
a scalable multi-swarm based algorithm with Lagrangian relaxation was proposed for the
constrained problems, in which the proposed method used a set of techniques in parallel to
find near optimal solutions for these problems. The effectiveness of this approach was
demonstrated in a rail scheduling problem. In [158], a novel quantum-behavior multi-swarm
algorithm based on a parallel architecture was applied to the constrained engineering design.
In this study, the method was focused at generating a solution which included better quality
of search and higher speed of convergence by using evolutionary strategies. The results
showed that the proposed method could obtain better performance. In [159], Srivastava and
Singh proposed a hybrid multi-swarm PSO for solving a reactive power dispatch, which was a
non-linear and multi-objective constrained optimization problem. The experimental results

verified that the effectiveness of the proposed algorithm. In [160], Aimi and Suyama



designed IIR filters with constraints using multi-swarm PSO, where the design problem was
formulated as the non-linear optimization problem. The effectiveness of the proposed

method was verified through several examples.

3.1.7 Noisy optimization

Some real-world problems are of noisy measurements. In [161], the noisy environment of
GA was described, and the effect of noise on GA was analyzed. Then cluster based
multi-population GA was proposed for handling the noisy environment. The numerical
experiment showed that the performance of the proposed algorithm was better than the
traditional GAs. Szeto and Guo [162] applied a multi-population GA for locating multi-optima
in a noisy environment. The noise interfered with precision and covering degrees, and
affected the optimization performance. In their work, the authors incorporated a
multi-population method with adaptive migration to control the information exchange
between different subpopulations. The experimental results showed that the proposed
algorithm performed better than the other algorithms for handling benchmark functions

with noise.

3.2 Areas of applications

3.2.1 Applications to scheduling problems
Various paradigms of multi-population methods have been applied to scheduling problems,
which comprise some of the most important advances [163-170]. In [171], Qi et al. applied

parallel multi-population GA to dynamic job-shop scheduling, where a modified genetic



technique was adopted using a specially formulated genetic operator to conduct efficient

search. The simulation results indicated that the proposed GA successfully improved the

solution obtained from the conventional approaches, particularly in coping with the

job-shop scheduling problem. Cochran et al. [172] applied a multi-population GA algorithm

to handle parallel machine scheduling problems. The authors concluded that their approach

was promising for practical scheduling problems. Zandieh and Karimi [173] studied the

performance of an adaptive multi-population GA technique for the multi-objective group

scheduling problem in hybrid flexible flowshop with sequence-dependent setup. The

computational results showed that the proposed algorithm performed better than the

standard GAs. In [174], a multi-population GA was proposed for multi-objective scheduling

simulation of flexible job-shop. This study took into account the shortest processing time

and the balanced usage of machines, and put forward the multi-population GA solution

based on the multi-objective scheduling of flexible job-shop. The experimental results

showed that the total machine load and the machine load’s variance were gradually

decreased by the proposed algorithm. Other studies that adopted the multi-population GA

approach for scheduling problems were presented by Chakraborti and Kumar [175], Zegordi

and Nia [176], Toledo et al. [177], and Huang et al. [178]. In [179], an improved

multi-population hybrid PSO was proposed for the flexible job-shop scheduling problem, in

which searching efficiency was improved and the best processing sequence was found for

flexible job-shop scheduling via simultaneous evolution of multiple populations. The

proposed method was proved to be valid for flexible job-shop scheduling problems. Liang et

al. [180] used a dynamic multi-swarm PSO method for solving the blocking flow shop

scheduling problem, in which small multi-swarms and a regrouping schedule were used to



minimize makespan. The computational results and comparisons indicated that the
proposed algorithm had better performance than the other established algorithms in the
literature. In [181], the authors applied a multi-swarm PSO-based optimization approach to
handle multi-reservoir operation rules, which was one of the real-world applications of
scheduling problems. In their study, the proposed method incorporated multi-swarm into
PSO to improve the performance of the standard algorithm. The experimental results on the
real-time operation of the Three Reservoir System showed that the proposed approach
significantly outperformed the standard stochastic optimization approaches. Other studies
that adopted the multi-population PSO for scheduling problems were presented by Liu et al.
[182], Li and He [183], and Liu et al. [184]. Moreover, Digalakis and Margaritis [185]
proposed a multi-population cultural algorithm for the electrical generator scheduling
problem. In the proposed model a variety of selection mechanisms, operators,
communication methods, and local search procedures were applied to each subpopulation.
The experimental results showed that the proposed framework was useful. A
multi-population interactive co-evolutionary algorithm for the flexible job shop scheduling
problem was discussed in [186], where the quality of population was improved effectively by
the interaction, competition and sharing mechanism among subpopulations. The simulation
results showed that the proposed algorithm was an effective method for the flexible job
shop scheduling problem. In [187], the authors employed a hybrid multi-population
evolutionary algorithm to solve glass container production scheduling, in which a
multi-population hierarchically structured GA scheme combined with a simulated annealing
and cavity heuristic algorithm to improve system performance. The simulation results

demonstrated that their algorithm was more effective than a state-of-the-art commercial



solver and a non-hybridized multi-population GA. Recently, Gao and Pan [188] proposed a

shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained

flexible job-shop scheduling problem, in which a random shuffle process applied to the

entire population was invoked periodically to propagate the good information that was

found in some of the micro-swarms, and an adaptive search operator based on a

problem-specific crossover and two-vector crossover helped to balance exploitation and

exploration. The experimental results showed that the proposed method performed

significantly better than the existing algorithms.

3.2.2 Applications to path planning

Multi-population methods are important optimization tools for path planning. Cheng et al.

[189-190] presented an immigrants-enhanced multi-population GA for dynamic shortest

path routing problems in mobile ad hoc networks, which were taken as a dynamic

optimization problem. The experimental results showed that the proposed algorithm could

quickly adapt to environmental changes and produce high-quality solutions after each

change. Other studies that used a multi-population memetic algorithm and a multi-memory

multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc

networks were presented by Turky et al. [191] and Sabar et al. [192] respectively. In [193],

multi-swarm sharing PSO was applied to UAV path planning problem, in which the proposed

method was employed to explore a better solution and the variable-length crossover

concept was used to share information among different dimension swarms. The simulation

result showed that the proposed method had the ability to determine suitable

characteristics for flight path. Arantes et al. [194] used a hybrid multi-population GA for



unmanned aerial vehicle (UAV) path panning, where the environment was non-convex by
the presence of no-fly zones such as mountains, cities and airports. Experimental results
demonstrated the effectiveness of the algorithm relative to other methods. In other
research, Liang et al. [195-196] solved path planning based on a dynamic multi-swarm PSO
with crossover and different constraint handling methods. Experimental results
demonstrated the effectiveness of the proposed algorithms. Kuczkowski and Smierzchalski
[197] compared single and multi-population evolutionary algorithms for path planning in the
navigation situation. The results showed that the multi-population method was better than
the single-population method for the studied path planning. Similar problems were solved
based on the modified multi-population DE and multi-population GA in [198-199]. PSO with
adaptive multi-swarm strategy was proposed in [200] for the capacitated vehicle routing
problem with pickups and deliveries, which included goods delivery/pickup optimization,
vehicle number optimization, routing path optimization and transportation cost
minimization. In this study, the proposed method employed multiple PSO algorithms and an
adaptive algorithm with the punishment mechanism to search an optimal solution. The
simulation results proved that the method could solve the capacitated vehicle routing
problem with the least number of vehicles and less transportation cost simultaneously.
Osaba and Diaz [201] designed and implemented a multi-population meta-heuristic for
solving the vehicle routing problem, in which the proposed algorithm combined
multi-population DE with an elite pool scheme to keep population diversity and avoid
prematurely trapping into local optima. The computational results indicated that the method
outperformed other algorithms relative to the given criteria. Similar vehicle routing

problems with time windows and stochastic travel and service times were solved based on



multi-population memetic algorithm in [202].

3.2.3 Applications to data analysis

Data analysis is another important application area for multi-population methods [203-215].
A layered multi-population GP for designing a classifier was presented in [216], where the
layer architectures were used to arrange multiple subpopulations to construct a new training
set. The authors compared their method to the other algorithms and found that it was an
effective approach to the classification problem. Another version was performed on
clustering temporal data using a co-operative multi-population approach in [217]. Clustering
applications of large probabilistic graphs using a multi-population evolutionary algorithm
was presented by Halim et al. [218], in which each subpopulation represented a
deterministic version of the same probabilistic graph. The computational experiments
showed that the proposed algorithm gave better performance than the baseline methods
and the state-of-the-art algorithms. In [219], a multi-population parallel GA for the
direct-space crystal structure solution from the powder diffraction data, in which the
multi-population GA was based on the independent evolution of different subpopulations,
with occasional interaction allowed to occur between different subpopulations. The
experimental result showed that the proposed method could create the opportunity for
structure determination of molecular crystals of increasing complexity. Other studies that
used niche GA and multi-population competition for feature extraction of nonparametric
curves was presented by Wei et al. [220]. Yao et al. [221] proposed a multi-population GA for
robust and fast ellipse detection from an image, where a number of subpopulations were

evolved, and each was clustered around an actual ellipse in the target image. Simulation



results indicated that the proposed algorithm significantly outperformed the other

algorithms. Li et al. [222] developed a multi-population agent GA which realized parallel

search for feature selection. The computational results indicated that the proposed method

outperformed the other algorithms relative to the given criteria. Garcia-Nieto and Alba [223]

proposed parallel multi-swarm optimizer for gene selection in DNA microarrays datasets. In

this work, the proposed method consisted of running a set of independent PSOs following an

island model, where a migration policy exchanges solutions with a certain frequency. The

experimental results on four well-known cancer datasets showed that the proposed method

was able to identify specific genes as significant ones for an accurate classification. In [224],

Xiao and Cheng used a multi-swarm PSO method for DNA encoding. In [225], a

multi-population GA was used based on the extended finite state machine, which was a

popular algorithm used to describe states and actions of software system. The authors

proved that their method had better performance comparable to other methods.

Podgorelec et al. [226] studied evolving balanced decision trees using a multi-population GA,

and the simulation results showed that the proposed method outperformed the other

methods. On the other hand, a multi-population multi-strategy DE algorithm for structural

optimization of metal nanoclusters was presented in [227], where the product design and

downstream life cycle descriptions were modeled by a multi-level graph data structure.

Industrial case studies had been implemented to show the effectiveness of the proposed

algorithm. Mausa and Grbac [228] proposed a co-evolutionary multi-population GP which

combined colonization and migration with three ensemble selection strategies for

classification in software defect prediction. Computational results demonstrated the

efficiency of the proposed method.



3.2.4 Applications to network

Quintero and Pierre [229] presented sequential and multi-population memetic algorithms
for assigning cells to switch in mobile networks. The proposed algorithms were tested on
moderate- and large-sized cellular mobile networks. A similar strategy was implemented for
the same problem by Niu et al. [230]. In [231], Liang et al. improved the performance of
fiber Bragg grating (FBG) sensor networks using a novel dynamic multi-swarm PSO.
Experimental results showed that the proposed algorithm achieved higher accuracy with less
computational cost compared to the other conventional methods. A multi-swarm PSO
algorithm for energy-effective clustering in wireless sensor networks was presented in [232].
Simulation results revealed that the suggested method outperformed the other methods. In
[233], the authors used a multi-swarm PSO for RFID network planning, which was an
optimization model for planning the positions of readers in the RFID network. Simulation
results showed that the proposed algorithm proved to be more effective for planning RFID
networks than the canonical PSO, and GA with elitism and self-adaptive ES. Xu and Liu [234]
proposed a multi-population firefly algorithm for correlated data routing in underwater
wireless sensor networks. The simulation results showed that the proposed method
achieved better performance than the existing methods in the metrics of packet delivery
ratio, energy consumption and network throughput. Another version adopted an improved
dynamic deployment method based on multi-swarm PSO for wireless sensor network was
presented by Ni et al. [235]. Fontes and Goncalves [236] proposed a multi-population hybrid
biased random key GA for hop-constrained trees in nonlinear cost flow networks. The results

proved the efficiency and effectiveness of the proposed method. A multi-population GA was



used for internet of things [237], where web service composition was modeled as a

multi-criteria goal programming problem. Simulation results showed that the proposed

algorithm was capable to solve the large-scale service composition problem in terms of

efficiency and scalability. A multi-population cultural algorithm was proposed in [238] for

community detection in social network, which was viewed as a reflection of the real world to

study to gain insight into the real life societies and events. The comparison results between

the proposed algorithm and other well-known algorithms showed that it was able to fast

and more accurately find the true communities. In [239], a multi-population cooperative bat

algorithm was used for an artificial neural network model, which mainly depended on the

connection weights and network structure. Experimental results showed that there was a

significant improvement by applying the proposed algorithm to all the test cases. An active

multi-population pattern searching algorithm for flow optimization in computer networks

and routing spectrum allocation was studied by Przewozniczek [240-241]. In their study, a

novel co-evolution schema was combined with linkage learning to tackle high-dimensional

and hard optimization problems. The experimental results showed that the proposed

algorithm was an effective method for the studied problems. In [242], the authors discussed

the possibility of generating complex networks using multi-swarm PSO, and advised

employed advanced complex network analysis to improve the performance of multi-swarm

PSO. Lin et al. [243] used a multi-population harmony search algorithm for extending the

lifetime of dynamic underwater acoustic sensor networks, which was a dynamic

optimization problem due to the underwater environment changes. The simulation results

showed that the proposed method outperformed the other algorithms.



3.2.5 Applications to parameter estimation and control

Parameter estimation and control is also another important application area for
multi-population methods [244-253]. In [254], a multi-population GA based on the dynamic
exploration of local optima was proposed to estimate the parameters of a micro-population
model of risk-group dynamics. Simulation results showed that the proposed algorithm
performed better than the other algorithms. Su and Hou [255] employed a multi-population
intelligent GA to find the Pareto-optimal parameters for a nano-particle milling process.
Simulation results indicated that the proposed algorithm provided better performance than
regular GAs. In [256], an active contour model was solved by multi-population PSO, where
the objective was to enhance the concavity searching capability for the control points of the
active contour model. Their method was tested on the proposed problem and was compared
to other algorithms. A multi-population GA was modified by Angelova and Pencheva [257]
for parameter identification of yeast fed-batch cultivation. The experimental results showed
that the modified multi-population GA outperformed the standard ones. In [258], Toledo et
al. presented a multi-population GA for PID controller auto-tuning. Computational results
showed the superior performance of the proposed algorithm. Mukhopadhyay and Banerjee
[259] proposed a chaotic multi-swarm PSO for global optimization of an optical chaotic
system, where the control and estimation of unknown parameters of chaotic systems were a
daunting task. The numerical results showed that for the given system parameters, the
proposed algorithm could identify the optimized parameters effectively. A multi-population
GA was presented in [260] for optimizing multi-size micro-perforated panel absorbers. In this
study, the proposed problem depended on four structure parameters, and the aim was to

find an appropriate combination to provide good performance. The results demonstrated



the effectiveness of their method on multi-size micro-perforated panel absorbers. Mao and

Li [261] used a multi-population GA for dust particle size distribution inversion, which is to

characterize aerosol optimal properties and physical properties. The simulation results

showed that the proposed method was an important tool for the studied problem. Folly et al.

[262] used multi-population PBIL for a design of a power system controller, and simulation

results showed that the multi-population PBIL approach performed better than the standard

PBIL. Furthermore, the same authors [263] also compared multi-population PBIL and

adaptive learning rate PBIL in designing a power system controller, and simulation results

showed that multi-population PBIL was as effective as adaptive learning rate PBIL. In

[264-265], authors proposed multi-swarm fruit fly optimization algorithm for structural

damage identification, which was transformed into an optimization problem. Numerical

results showed that the proposed algorithm had a better capacity for structural damage

identification than the other methods.

3.2.6 Electrical engineering problems

Challenges in electrical engineering problems were often solved by multi-population

methods [266-268]. In [269], the authors applied node-depth encoding and multi-objective

EA to large-scale distribution system reconfiguration, which was a nonlinear and

multi-objective problem. In this study, a multi-objective EA based on subpopulation tables

adequately modeled several objectives and constraints, enabling a better exploration of the

search space. Tests with networks ranging from 632 to 5166 switches indicated that the

proposed method could find network configurations corresponding to power loss reduction

of 27.64% for very large networks requiring relatively low running time. In [270], a



multi-objective EA was employed for single and multiple fault service restoration in
large-scale distribution systems. In this study, two multi-objective EAs used node-depth
encoding to efficiently generate adequate service restoration plans for the large distribution
systems. Experimental results showed that the number of switching operations required
implementing the service restoration plans generated by the proposed method increased in
a moderate way with the number of faults. Alves and De Sousa [271] proposed a
multi-population GA to solve the multi-objective remote switches allocation problem in
distribution systems. In this study, the proposed method obtained the optimal solution
considering a priori articulation of preferences established by the decision maker in terms of
an aggregating function which combined individual objective values in a single utility value.
Simulation results on a 282-bus test system confirmed the efficiency of the proposed
method. Furthermore, Alves [272] proposed a multi-population hybrid algorithm to solve the
similar problem in distribution systems. The simulation results confirmed the efficiency of
the proposed method. In [273], the authors obtained optimal VAR control for real power loss
minimization and voltage stability improvement using hybrid multi-swarm PSO. In this study,
PSO was implemented as the search engine for each sub-swarm, and DE was applied to
improve the personal best of each particle. Effectiveness of the proposed algorithm was
proved on the IEEE 30-bus system. In [274], the authors presented a multi-swarm
optimization based adaptive fuzzy multi-agent system for micro-grid multi-objective energy
management. In the proposed architecture each agent presented a different micro-grids unit.
Fuzzy logic was used by each agent to estimate the amount of energy to be generated in
order to cover the uncertainty and imprecision related to renewable energy sources and

micro-grid constraints, and multi-population PSO was used by a coordinator agent to find



the best compromised solution to satisfy economical/environmental objectives based on
agent proposals. Simulation results showed the importance of the proposed method
compared to the basic PSO. Jena and Chauhan [275] used multi-swarm cooperative PSO to
solve distribution feeder reconfiguration and concurrent DG installation problems for power
loss minimization, and the effectiveness of the proposed approach was tested with IEEE
33-bus and 69-bus test systems with encouraging results. In [276], authors employed hybrid
particle multi-swarm optimization to solve convex and non-convex static and dynamic
economic dispatch problems. In their study, the proposed method conducted deep search
with fast response, and convex and non-convex cost functions along with equality and
inequality constraints had been used to evaluate the performance of the proposed approach.
Comparison against the previous techniques showed that the proposed algorithm had better

performance.

3.2.7 Applications to mathematical equation problems

In other research, Mera et al. [277] employed a multi-population GA for tackling ill-posed
problems, and the authors proved that their method was able to obtain highly accurate
solutions. Another version that adopted entropy-based multi-population GA for nonlinear
programming problems was proposed by Li et al. [278]. Simulation results demonstrated the
accuracy and efficiency of the proposed algorithm. In [279], authors used multi-population
DE for searching nonlinear systems, and one of these nonlinear problems was the boundary
value problem. Simulation results showed that the proposed method got better solutions
together with a simple convergence analysis. A multi-population parallel imperialist

competitive algorithm was presented in [280] for solving systems of nonlinear equations,



which were taken as NP-hard problems. In their study, the optimal solutions were obtained
by the proposed algorithm, and experimental results demonstrated that the proposed
algorithm had good performance. Yeh et al. [281] presented layered multi-population
genetic programming for learning ranking functions, which was a complex optimization
problem in information retrieval. Experimental results were compared with other

approaches and indicated the superiority of the proposed algorithm.

3.2.8 Applications to other problems

A penalty-guided multi-population GA was presented in [282] for reservoir system
optimization. Several real-world applications were used to show the competitiveness of their
approach. Li et al. [283] presented an improved multi-population GA for fast flexible docking
program. Numerical results demonstrated that their method was able to obtain competitive
performance. A similar study that adopted a parallel multi-population biased random-key GA
for a container loading problem was proposed by Goncalves and Resende [284]. In another
similar study, Zheng et al. [285] developed a multi-objective multi-population biased
random-key GA to solve a 3-D container loading problem. Comparisons with other
algorithms on hard and weak heterogeneous cases showed that the proposed algorithm had
better performance. Xu et al. [286] employed a multi-population cultural algorithm with
adaptive diversity preservation to optimize ammonia synthesis process. Results showed that
the optimized model improved the prediction accuracy of ammonia synthesis system. The
performance of a novel multi-population GA was investigated for a complex system which
combined cooling, heating and power system with ground source heat pump system in [287].

A multi-population optimization algorithm for the optimization of wind turbine layout was



discussed in [288]. Lastly, multi-population optimization algorithms had been applied to

injection molding optimization [289], truss structure optimization [290], ultra-short-term

load forecasting [291], fashion design [292], speed synthesis [293], inverse problem in

hydrogeology [294], landscape mapping [295], virtual enterprise [296], highway alignment

optimization model [297], community detection [298], space manipulators [299], and

optimal mass customisation production [300].

4 Discussions and conclusions

Tables 5-7 summarize the literature review of the multi-population methods for

nature-inspired optimization. In-depth analyses and findings are achieved based on

discussed literature, which provide a deep insight into how to design efficient

multi-population methods for solving optimization problems. Note that another two

techniques related to multi-population methods, including “cooperative coevolution”

[301-302] and “species” [303-306], are not carefully considered in this paper. Cooperative

coevolution is an explicit means of problem decomposition in multi-population evolutionary

algorithms. For cooperative coevolution, each subpopulation is responsible for optimizing a

subset of variables (i. e., a subcomponent), and different subpopulations are likely to have

different contributions to the improvement of the best overall solution to the problem. For

the species technique, a species is a subpopulation, defined as a group of individuals in a

population that have similar characteristics and are dominated by the best individual, and

different species are able to optimize toward different optima simultaneously. The

publications in the tables are organized according to issues and applications of

multi-population methods, as discussed above.



Table 5 Basic issues of multi-population methods

Basic issues References and methods Analysis and findings
Trojanowski and Wierzchon [31]: Multi-population
heuristic method
Niu et al. [32]: Multi-population cooperative PSO
Togelius et al. [33]: Multi-population competitive
coevolution algorithm
Li et al. [34]: Multi-population competitive
coevolution GA
Guo et al. [35]: Multi-population cooperative
cultural algorithm
The number of
Toledo et al. [36]: Hybrid multi-population GA ]
subpopulations to be
Mokom and Kobti [37]: Multi-population cultural |
increased or decreased may
algorithm
Number of be related to the phases

subpopulations

Yu [38]: Multi-population ABC

Aimi and Suyama [39]: Multi-swarm PSO based on
particle reallocation strategy

Chatterjee and Zhou [40]: Multi-population DE
Bongard [41]: Multi-population GP

Liang and Suganthan [42, 43]: Dynamic multi-swarm
PSO

Yang and Li [44]: Clustering PSO

Zhao et al. [45]: Dynamic multi-swarm PSO

Xia et al. [46]: Multi-swarm competitive PSO

Nseef et al. [47]: Adaptive multi-population ABC
Peng and Shi [48]: Multi-population cooperative

coevolutionary algorithm

during the evolution process,
and the historical changes of
the number of the survived

subpopulations.

Communication
between

subpopulations

Toulouse et al. [49]: Cooperative multi-thread
heuristics method

Cantu-Paz [50]: Multi-population parallel GA
Middendorf et al. [51]: Multi-colony ant algorithms
El-Abd and Kamel [52]: Multi-swarm cooperative
PSO

Chen and Chang [53]: Real-coded multi-population
GA

Zheng and Liu [54]: Multi-swarm PSO

Li and Zeng [55]: Multi-population co-genetic
algorithm

Chen et al. [56]: Multi-swarm coevolution PSO

Lin et al. [57]: Multi-population GA

Biswas et al. [58]: Multi-population ABC

Campos et al. [59]: Asynchronous multi-swarm PSO
Abdullah  [60]:
electromagnetic algorithm

Michalak [61, 62]: Multi-population EA based on

Turky and Multi-population

Communication between
subpopulations always s
helpful for most of the

multi-population methods. It
is able to significantly

improve the search ability

when communication
parameters including
communication rate,
communication policy,

communication interval, and
connection topology, are

reasonably set.




problem similarity

Li et al. [63]: Multi-population ABC

Kommenda et al. [64]: Multi-population GP

Xu et al. [65]: Multi-swarm PSO with cooperative
learning strategy

Upadhyayula and Kobti [66]: Multi-population
cultural algorithm

Wang et al. [67]: Multi-population bat algorithm

Niu et al. [68]: Symbiosis-based alternative learning
multi-swarm PSO

Yany et al. [69]: Orthogonal multi-swarm

cooperative PSO

Li and Yang [70]: Multi-population GA, PSO and DE
Pourvaziri and Naderi [71]: Hybrid multi-population
GA

Search area of each | Kobti [72] and Raeesi et al. [73]: Heterogeneous
subpopulation multi-population cultural algorithm

Ufnalske and Grzesiak [74]: multi-swarm PSO

El Dor et al. [75]: Multi-swarm PSO

Bolufe and Chen [76]: Multi-swarm PSO

Decomposition based
strategy is considered as one
of the most helpful
approaches to determine the
search area of each
subpopulation, which is able
to effectively enhance the

optimization performance.

Wu et al. [77]: Multi-population DE

Li et al. [78]: Multi-population based ensemble
mutation method

Wang and Tang [79]: Adaptive multi-population DE
Godio [80]: Multi-population GA

Niu et al. [81]: Multi-swarm cooperative PSO

Search strategy of ] ] )
Zhao et al. [82]: Multi-swarm cooperative multistage
each subpopulation ] o
perturbation guiding PSO

Ali et al. [83]: Adaptive multi-population DE

Biswas et al. [84]: Multi-swarm ABC

Cheng et al. [85]: Multi-swarm PSO

Vafashoar and Meybodi [86]: Multi-swarm bare

bones PSO

Each subpopulation using
different search strategies is
better than a single search
strategy  throughout the

evolution.

Table 6 Applications of multi-population methods

Problems References and methods

Analysis and findings

Niu et al. [68]: Symbiosis-based
alternative learning multi-swarm PSO

Li et al. [78]: Multi-population based
Classes of | Multi-modal ensemble mutation method
optimization | optimization Siarry et al. [87]: Multi-population GA
Alami and El Imrani [88, 89]:
Multi-population culture algorithm

Yao et al. [90, 91]: Bi-objective

Reference [68] demonstrates
that symbiosis-based  alternative
learning multi-swarm
PSO outperforms other
multi-swarm versions of PSO for
solving multi-modal optimization.

Reference [78] shows that

ensemble-based method is one of




multi-population GA
[92]: Multi-swarm

self-adaptive and cooperative PSO

Zhang and Ding

Kwasnicka and Przewoznickek [93]:

Multi-population  pattern  searching
algorithm

Bolufe and Chen [94]: Multi-population
hybrid DE and EDA
Fieldsend [95]:

multi-swarm PSO

Niching  migratory

Li et al. [96]: Pseudo multi-population
DE

Xiao et al. [97]: Multi-population
coevolution immune optimization
algorithm

De Falco et al. [98]: Asynchronous

adaptive multi-population DE

the best alternative

multi-population methods.

Dynamic

optimization

Yang and Li [44]: Clustering PSO
Nseef et al. [47]: Multi-population ABC

Zheng and Liu [54]: Topology
multi-swarm PSO
Turky and Abdullah [60]:

Multi-population electromagnetic
algorithm

Li and Yang [70]: Multi-population GA,
PSO and DE
Pourvaziri and Naderi [71]: Hybrid
multi-population GA

Branke et al. [99]: Multi-population EA

Blackwell and Branke [100]:
Multi-swarm PSO
Trojanowski [101, 102]: Quantum
multi-swarm PSO
Yazdani and Nasiri [103, 104]:
Multi-swarm PSO
Wang et al. [105]: Cooperative

multi-swarm PSO

Hu et al. [106]: Multi-swarm PSO with
Cauchy mutation

Del Amo et al
Multi-population PSO
Nabizadeh et al. [109]:
cellular PSO

Liu et al. [110]: Multi-swarm PSO with

[107, 108]:

Multi-swarm

orthogonal learning

Gog et al. [111]: Multi-population

Reference [119] demonstrates that
heuristic clustering-based adaptive
multi-population PSO and DE
outperforms other multi-swarm
versions of PSO and other
multi-population EAs for solving

dynamic optimization.




geometric collaborative EA

Wu et al. [112, 113]: Multi-population
univariate marginal distribution
algorithm (UMDA)
Novoa-Hernandez et al. [114]:
Self-adaptive multi-population DE

Kundu et al. [115]: Multi-population DE

with speciation-based response

Turky and Abdullah [116]:
Multi-population harmony search
algorithm

Li and Yang et al. [117]: Adaptive

multi-population PSO

Li and Nguyen et al. [118, 119]: Adaptive
multi-population PSO and DE

Uludag et al. [120]: Multi-population

based incremental learning
algorithms (PBIL)
Ozsoydan and Baykasoglu  [121]:

Multi-population firefly algorithm (FA)
Jia et al. [122]: Multi-swarm ABC

Multi-objective

optimization

Wang and Tang [79]: Adaptive

multi-population DE
Leong and Yen[123]: Multi-swarm PSO
with dynamic and

population size

adaptive local archives

Zhang et al. [124]: Multi-swarm
cooperative PSO

Yu et al [125]: Multi-swarm
comprehensive learning PSO

Liu et al. [126]: Multi-swarm

coevolutionary PSO

Wang and Yang [127]: Interactive
multi-swarm PSO
Sun et al. [128]: Multi-swarm

multi-objective PSO

Liang et al. [129]: Dynamic multi-swarm
PSO

Britto et al. [130, 131]: Iterated
multi-swarm PSO and Reference-point

based multi-swarm PSO

Yao et al. [132]: Cooperative
multi-swarm PSO
Kersting and Zabel [133]:

Multi-population multi-objective EAs

Xiao [134]: Multi-population

References [126] and

that

[138]
multi-swarm
PSOs

demonstrate

and
PSOs
outperform the other multi-swarm
of PSOs

multi-objective optimization.

coevolutionary

competent  multi-swarm

versions for solving




multi-objective evolutionary memetic
algorithm

Shang et al. [135]:
cooperative coevolutionary algorithm
Shi et al. [136]:

coevolutionary multi-objective immune

Multi-population

Multi-population

algorithm
Michalak [137]: Sim-EA algorithm with
operator auto-adaptation
[138]:

Castro et al Competent

multi-swarm PSO

Large-scale

optimization

Zhao et al. [45]: Multi-swarm PSO with
sub-regional harmony search

Fan and Chang [139]: Dynamic
multi-swarm PSO

Zhao et al. [140]: Dynamic multi-swarm

PSO with local search

Moeini et al [141]:  Colonial
multi-swarm PSO
Gulcu and Kodaz [142]: Parallel

multi-swarm PSO

Ge et al. [143]: Diversity-based
multi-population DE

Guo et al. [144]: Multi-population
cultural algorithm with knowledge
migration

Kaveh and Laknefadi [145]:

Multi-population multi-objective PSO

Ali et al. [146]: Multi-population DE with
balanced ensemble of mutation
strategies

Zhou and Yao [147]: Multi-population

parallel self-adaptive differential ABC

Reference [147] demonstrates that

multi-population parallel
self-adaptive  differential  ABC
outperforms the other

multi-population algorithms for

large-scale optimization.

Combinatorial

optimization

Lin et al. [57]: Multi-population GA
Michalak [62]:
estimation of distribution algorithm
(EDA)

Lin et al. [148]: Multi-population GA
Zhou and Luo [149]: Multi-population
GA

Khouadjia et al. [150]: Multi-swarm PSO
Xiong and Wei [151]: Multi-population
binary ACO

Marinakis et al. [152]: Multi-swarm PSO

Multi-population

Reference [62] demonstrates that
the multi-population estimation of
distribution algorithm is one of the
best multi-population algorithms

for combinatorial optimization.

Constrained

optimization

Chen and Kang [153]: Multi-population
EAs

Reference [159] demonstrates that

a multi-population PSO hybridizing




Liang and Suganthan [154]: Dynamic
multi-swarm PSO

Wang and Cai [155]: Hybrid multi-swarm
PSO

Goncalves and Resende [156]: Parallel

multi-population GA

Gomez-lglesias et al. [157]: Scalable
multi-swarm PSO with Lagrangian
relaxation

Souza et al. [158]: Quantum-behavior
evolutionary multi-swarm PSO
Srivastava and Singh[159]: Hybrid
multi-swarm PSO

Aimi and Suyama [160]: Multi-swarm

PSO

DE outperforms the other versions
of PSO for

optimization.

constrained

Li et al. [161]: Cluster based | There are only a few references
Noisy multi-population GA discussing multi-population
optimization Szeto and Guo [162]: Multi-population | algorithms for noisy optimization.

GA

Kapanoglu and Koc [163]:

Multi-population parallel GA

Wang and Li [164]: Multi-population GA

Morady and Dal [165]: Multi-population

parallel GA

Sun et al. [166]: Multi-population and

self-adaptive GA

Wang et al [167]: Adaptive

multi-population GA Reference [188] demonstrates that

Yu et al. [168]: Cooperative multi-swarm | the multi-population methods

PSO combining with new nature

Li et al. [170]: Multi-swarm PSO inspired optimization algorithms

Qi et al. [171]: Parallel multi-population | are a hot research trend in recent

Area of | Scheduling
GA years, and shuffled multi-swarm
applications problems
Cochran et al. [172]: Multi-population | micro-migrating birds optimizer
GA outperforms the other

Zandieh and Karimi [173]: Adaptive
multi-population GA

Zhang et al. [174]: Multi-population GA
Chakraborti et al. [175]:
Multi-population GA and DE

Zegordi and Nia [176]: Multi-population
GA

Toledo et al. [177]: Multi-population GA
Huang et al. [178]: Multi-population GA
Chen et al. [179]:

hybrid PSO

Multi-population

multi-population algorithms for

solving scheduling problems.




Liang et al. [180]: Dynamic multi-swarm
PSO

Ostadrahimi et al. [181]: Multi-swarm
PSO

Liu et al. [182]: Multi-swarm PSO

Li  and He [183]: Cooperative
multi-swarm PSO

Liu and Ma [184]: Multi-population PSO
based memetic algorithm

Digalakis and Margaritis [185]:
Multi-population cultural algorithm
[186]:
interactive coevolutionary algorithm

[187]: Hybrid

Xing et al. Multi-population
Toledo et al.
multi-population EAs
Shuffled

birds

Gao and Pan [188]:

multi-swarm  micro-migrating

optimizer

Path planning

Cheng et al. [189, 190]: Multi-population

GA with immigrants scheme

Turky et al. [191]: Multi-population
memetic algorithm
Sabar et al. [192]: Multi-memory

multi-population memetic algorithm
Huo et al. [193]: Multi-swarm sharing
PSO

Arantes et al. [194]: Hybrid
multi-population GA
Liang et al. [195, 196]: Dynamic

multi-swarm PSO with crossover
Kuczkowski et al. [197]: Multi-population
EAs

Li et al. [198]: Multi-population DE

Da Silva Arantes et al. [199]:
Multi-population GA

Chen et al. [200]: PSO with adaptive
multi-swarm strategy

Osaba and Diaz [201]: Multi-population
meta-heuristic algorithm

Gutierrez et al. [202]: Multi-population

memetic algorithm

Reference [191] demonstrates that
multi-population memetic
algorithm outperforms the other
multi-population algorithms for

solving path planning problems.

Data analysis

Keyhanipour et al. [203]: Layered
multi-population GP

Mao et al. [204]: Multi-population GA
[205, 206]:

cooperative bat

Heraguemi et al.

Multi-population

Reference [228] demonstrates that

coevolutionary  multi-population

genetic programming method

outperforms the other

multi-population algorithms for




algorithm

Podgorelec et al. [207]: Multi-population
GA

Cao [208]: Multi-population elitists
shared GA

Zhu et al. [209]: Multi-population GA
Chen and Zhong [210]: Multi-population
GA

Li and Zeng [211]: Multi-population
agent GA

Lin et al. [212]: Layered multi-population
GP

Keyhanipour and Moshiri [213]: Layered
multi-population GP

Liu and Liu [214]: Multi-population
collaborative optimization

Aimi and Suyama [215]: Multi-swarm
PSO

Lin et al. [216]: Layered multi-population
GP

Georgieva and Engelbrecht [217]:
Cooperative multi-population PSO

Halim et al. [218]: Multi-population EAs
Habershon et al. [219]: Multi-population
parallel GA

Wei et al. [220]: Niche GAs and
multi-population competition

Yao et al. [221]: Multi-population GA

Li et al. [222]: Multi-population agent
GA

Garcia-Nieto and Alba [223]: Parallel
multi-swarm PSO

Cheng et al. [224]:
Multi-swarm PSO

Zhou et al. [225]: Multi-population GA

Xiao and

Podgorelec et al. [226]: Multi-population
GA

Fan et al. [227]: Multi-population
multi-strategy DE

Mausa and Grbac [228]: Coevolutionary

multi-population GP

solving data analysis problems.

Network

Quintero and Pierre [229]: Sequential
and multi-population memetic algorithm
Niu et al. [230]: Multi-population
cooperative PSO

Liang et al. [231]: Dynamic multi-swarm

Reference [241] demonstrates that
the  multi-population  pattern
searching algorithm is a new
optimization algorithm, and

outperforms the other




PSO
Suganthi
Multi-swarm PSO

Chen et al. [233]: Multi-swarm PSO

Xu and Liu [234]: Multi-population firefly

and Rajagopalan [232]:

algorithm

Ni et al. [235]: Multi-population PSO
[236]:
Multi-population hybrid biased random
key GA

Li et al. [237]: Multi-population GA
Zadeh and Kobti [238]: Multi-population

Fontes and Goncalves

cultural algorithm

Jaddi et al. [239]: Multi-population
cooperative bat algorithm

Przewozniczek [240, 241]:
Multi-population  pattern  searching
algorithm

Pluhacek et al. [242]: Multi-swarm PSO
Lin et al. [243]: Multi-population

harmony search algorithm

multi-population algorithms for

solving  network  optimization

problems.

Parameter
estimation and

control

Roeva [244]: Multi-population GA
Gao et al. [245]: Multi-population PSO
Chen et al. [246]: Multi-population GA
Li et al. [247]: Multi-population PSO
Chang and Wang [248]:
Multi-population parallel EDAs

Li and Chiang [249]: Multi-population
PSO

Lu et al. [250]: Multi-population GA
[251]:
multi-swarm cooperative PSO

Lin et al. [252]: Multi-population GA

Saini et al. Hierarchical

Yuan et al. [253]: Multi-swarm fruit fly
optimization algorithm

Elketroussi and Fan [254]:
Multi-population GA
Su and Hou [255]:
intelligent GA

Tseng et al. [256]: Multi-population PSO

[257]: Modified

Multi-population

Angelova et al.
multi-population GA
Toledo et al. [258]: Multi-population GA
Mukhopadhyay and Banerjee [259]:
Chaotic multi-swarm PSO

Qian et al. [260]: Multi-population GA

Reference [265] demonstrates that
the multi-swarm fruit  fly
optimization algorithm
outperforms the other popular
multi-population GAs and PSO
algorithms for solving parameter

estimation and control problems.




Mao and Li [261]: Multi-population GA
Folly et al. [262, 263]: Multi-population
PBIL

Li and Lu [264, 265]: Multi-swarm fruit

fly optimization algorithm

Electrical
Engineering

problems

Li and Li et al. [266]: Multi-population
GA
Li and Zhang et al. [267]: Dynamic

multi-population PSO

Zhou et al. [268]: Multi-objective
multi-population ACO
Santos et al. [269]: Node-depth

encoding and multi-objective EA
Sanches et al. [270]: multi-objective EA
Alves et al. [271, 272]: Multi-population
GA
Singh
multi-population PSO

Serraji et al. [274]: Multi-swarm PSO
Jena and Chauhan [275]: Multi-swarm

and Srivastava [273]: Hybrid

co-operative PSO
Nawaz et al. [276]:

multi-swarm optimization

Hybrid particle

Reference [276] demonstrates that
the hybrid particle multi-swarm
optimization outperforms other
PSO for

electrical engineering problems.

versions of solving

Mathematical

Mera et al. [277]: Multi-population GA
Li et al. [278]:
multi-population GA

Liu et al. [279]: Multi-population DE

Entropy-based

Reference [281] demonstrates that
the layered multi-population GP

outperforms the other

equation Majd et al. [280]: Multi-population | state-of-the-art methods  for
problems parallel imperialist competitive | solving mathematical equation
algorithm problems.
Yeh and Lin [281]: Layered
multi-population GP
Ndiritu [282]: Multi-population GA
Li et al. [283]: Improve multi-population | Reference [298] demonstrates that
GA Multi-population methods
Goncalves and Resende [284]: Parallel | combining with new nature
multi-population biased random-key GA | inspired optimization algorithms
Zheng et al. [285]: Multi-objective | can result in good optimization
Other multi-population biased random-key GA | performance. Meanwhile,
problems Xu et al. [286]: Multi-population cultural | reference [300] demonstrates that

algorithm  with  adaptive diversity
preservation

Zeng et al. [287]: Multi-population GA
Gao et al. [288]: Multi-population GA
Wu et al [289]: Distributed

multi-population GA

effective multi-population
techniques combined with
classical optimization algorithms
can also  obtain satisfying
performance.




Wu and Tseng [290]: Adaptive
multi-population DE

Liang et al. [291]: Dynamic multi-swarm
PSO

Gong et al. [292]: Interactive GA with
multi-population adaptive hierarchy
Brito and Rodriguez [293]:
Multi-population GA

Karpouzos et al. [294]: Multi-population
GA

LGuo and Szeto [295]: Multi-population
GA

Lu et al. [296]: Multi-swarm PSO

Chen et al. [297]: Adaptive GA based on
multi-population parallel EA

Liu et al. [298]: Multi-population fruit fly
optimization algorithm

Zhang et al. [299]: Multi-population PSO
Yu et al. [300]: Multi-population

coevolutionary GP

Suggestions for Future Research

The development of multi-population methods is diverse and rapidly expanding, but there
are still many open research areas. The first and important area for future research is to
appropriately handle four fundamental issues of multi-population methods in
nature-inspired optimization algorithms, including the number of subpopulations, the
communication between subpopulations, the search area of subpopulations, and the search
strategy of subpopulations. Currently, most existing multi-population methods just use
pre-defined parameters, which are based on empirical experience, to determine the
parameter setting of subpopulations. Some of the other studies assume that some prior
information of optimization problems has been known. In this case, problem information

can be used to guide the configuration of multi-population parameters. However, for the




most of cases, we need to deeply explore these issues to develop good multi-population
methods to more effectively solve a variety of problems. It should also be possible to design
automatic schemes so that multi-population methods can adaptively self-tune. One may
need to adaptively adjust the number of subpopulations for different phases during the
evolution process, or adaptively determine the search area and search strategy for each
subpopulation according to the historical information. One may need to develop learning
based approaches to explore communication strategy between subpopulations, to avoid
premature convergence of multi-population algorithms.

Another area for the future research is additional mathematical tools for the theoretical
analysis of multi-population methods. There are few publications about the theoretical
aspects of multi-population methods to help investigate the impact of multi-population for
optimization problems [307-308], which greatly limits the further generalizations,
improvements and applications of multi-population methods. Therefore, it is challenging to
obtain quantitative results for optimization problems using theoretical analysis. Quantitative
results such as theoretical comparisons with other optimization methods could be of great
interest to the multi-population optimization research community. Furthermore, theoretical
analysis could provide insights as to what types of multi-population methods are hard or
easy for what types of optimization problems.

Another area for the future research is new algorithmic frameworks. The current popular
frameworks of multi-population methods are parallel cooperation and serial cooperation.
But there are still other new frameworks that have not yet been experimented, or
combinations of these frameworks have not yet been explored in any depth. These

frameworks will also raise other new researches and opportunities.



Additional research is additional applications of multi-population methods. As we have
seen from this review, the multi-population applications are very diverse. The applications of
multi-population methods to complex optimization problems, including many-objective
optimization, large-scale optimization, and their combinations, would be of great interest.
Many more applications of multi-population methods integrating with nature-inspired
optimization algorithms can emerge with wide applications.

Many of these open research questions are common across different fields of computer
intelligence. The open questions in the research of multi-population methods are similar to
those in the other areas of computer intelligence. Research which is first driven by practical
problems, and which is then generalized to broad results and conclusions, has the greatest
likelihood to make a strong impact on the field, and so this is the research approach that is

recommended for future work in the area of multi-population methods.

Summary

This review has summarized the development of multi-population methods during the last
10 years. The review has shown some basic issues of multi-population methods, but these
basic issues are always challenging and important for the development of multi-population
methods. The review has also shown that multi-population methods can be practically
applied to any optimization problem domain. Multi-population methods have been applied
to multi-modal optimization, dynamic optimization, large-scale optimization, multi-objective
optimization, combinatorial optimization, constrained optimization, and noisy optimization.
Multi-population methods are simple, versatile, and flexible, and have proven to be efficient
for solving a wide variety of real-world problems. The applications of multi-population

methods include scheduling problems, path planning, network, parameter estimation and



control, electrical engineering problems, mathematical equation problems and many others.
Multi-population methods have proven to be useful to the optimization and engineering

community, as well as to researchers who are currently working or will work in these areas.
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