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Abstract: Multi-population based nature-inspired optimization algorithms have attracted 

wide research interests in the last decade, and become one of the frequently used methods 

to handle real-world optimization problems. Considering the importance and value of 

multi-population methods and its applications, we believe it is the right time to provide a 

comprehensive survey of the published work, and also to discuss several aspects for the 

future research. The purpose of this paper is to summarize the published techniques related 

to the multi-population methods in nature-inspired optimization algorithms. Beginning with 

the concept of multi-population optimization, we review basic and important issues in the 

multi-population methods and discuss their applications in science and engineering. Finally, 

this paper presents several interesting open problems with future research directions for 

multi-population optimization methods. 

Keywords: Multi-population, Nature-inspired algorithm, Optimization, Evolutionary 

algorithm, Swarm Intelligence 



 

1. Introduction 

Nature-inspired optimization algorithms, including evolutionary algorithms (EAs) and swarm 

intelligence (SI), are part of the computer intelligence discipline that has become 

increasingly popular over the past few decades [1-4]. EAs and SI are inspired by natural 

phenomena, evolution processes, and the collective behaviors of swarms of ants and bees, 

and flocks of birds when they search for food or a better environment. The popularity of 

nature-inspired optimization algorithms is due to the fact that they can be used to solve 

complex problems in different domains. EAs begin with a set of random candidate solutions, 

iteratively generate offspring solutions, and render the fittest until an acceptable solution is 

found. Popular algorithms in this category are genetic algorithms (GAs) [5], evolution 

strategy (ES) [6], evolutionary programming (EP) [7], genetic programming (GP) [8], 

estimation of distribution algorithms (EDAs) [9], differential evolution (DE) [10-11], 

biogeography-based optimization (BBO) [12-13] and fireworks algorithm (FWA) [14]. SI 

algorithms start with a set of candidate solutions, and in each iteration, a new set of 

candidate solutions is created based on historical and other related information. Some 

examples include ant colony algorithms (ACO) [15], particle swarm optimization (PSO) [16], 

artificial bee colony (ABC) algorithm [17], firefly algorithm (FA) [18], krill herd (KH) algorithm 

[19], and others [20-23]. 

In the last decade, multi-population based methods were often discussed and used to 

improve the optimization performance of nature-inspired optimization algorithms. 

Researchers tend to divide the original population into multiple small subpopulations for 

some specific purposes, for example, solving large-scale optimization and dynamic 



optimization problems. Then, some evolution operations, for example, selection, crossover 

and mutation for GAs, are executed to implement individual evolution. Finally, these 

subpopulations interact with each other via merging, communication and re-division process 

to avoid premature convergence and maintain population diversity when people tackle 

various optimization problems. 

Existing studies on multi-population optimization demonstrate that it is easily integrated 

within various nature-inspired optimization algorithms, and it often performs better than 

single-population optimization algorithms, including global benchmark functions and 

real-world applications. Why a multi-population approach is popular and effective [47, 77, 

118]: (1) it divides the whole population into multiple subpopulations, in which the 

population diversity can be maintained because different subpopulations can be located in 

different search spaces; (2) it is able to search different areas simultaneously, allowing it to 

find promising optimal solutions efficiently, and (3) various nature-inspired optimization 

algorithms can be rapidly and easily embedded into multi-population methods. The main 

objective of this survey is to provide an exhaustive summary of the work published on 

multi-population methods in nature-inspired optimization algorithms, whilst presenting 

remaining challenges and research objectives. This survey includes two main areas: basic 

research issues and applications.  

Other reviews and surveys on multi-population methods have also been published in the 

past few years [24-26], in which the concepts of multi-population is described using other 

terms such as ‘parallel’, ‘cooperative’, ‘co-evolution’, ‘islands’, and so on. Our survey 

introduces the research progress made in the last few years with comprehensive discussion 

on remaining problems and possible research directions. In addition, we discuss hardware 



implementations of multi-population including traditional CPU, parallel GPU, and AMD 

Accelerated Processing Unit (APU) with multi-core architectures. Their features of 

multi-thread and parallel processing significantly speed up implementation time. 

Implementation details can be found in the literature [27-29]. 

This survey is prepared using the database of Web of Science. Figure 1 shows the 

chronological distribution of the papers published in the last 10-year related to 

nature-inspired optimization algorithms with “multi-population (multipopulation)” or 

“multi-swarm (multiswarm)” in their titles. Note that the concept of multi-population is 

often used in EAs whilst the concept of multi-swarm is often used in SI related papers. Table 

1 shows the top 10 countries with the largest number of the research papers, and Table 2 

shows the top 5 journals with the largest number of papers on multi-population methods in 

nature-inspired optimization algorithms. These figure and tables clearly show the breadth, 

depth, and growth of interest in multi-population methods.  
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Figure 1 Publication number of multi-population methods in nature-inspired algorithms by years. 

 

 
 



Table 1 The top 10 countries with the largest number of the papers on multi-population methods. 
Rank Country Number of papers Rank Country Number of papers 

1 China 196 6 India 16 
2 USA 45 7 Spain 14 
3 UK 23 8 Japan 13 
4 Canada 22 9 Australia 13 
5 Brazil 17 10 Italy 13 

 
 

Table 2 The top 5 journals with the largest number of the papers on multi-population methods. 
Rank Journal Number of papers 

1 Applied Soft Computing 15 
2 Information Sciences 10 
3 Soft Computing 7 
4 Expert Systems with Applications 6 

5 

IEEE Transactions on Evolutionary Computation 
Advances in Engineering Software 

Applied Mathematics and Computation 
Applied Mechanics and Materials 
Computers Operations Research 

Plos One 

4 

 

To further analyze the development of multi-population methods, we use CiteSpace 

software [30], which generates the co-occurrence networks of authors, keywords, and 

institutions; and co-citation networks of the cited authors, references, and journals, to 

generate a journal co-citation analysis network. The top 5 multi-population methods related 

co-cited journals are shown in Table 3. Based on the analysis of the publications and 

co-citation counts, IEEE Transactions on Evolutionary Computation is identified as the major 

journal for publishing multi-population methods. We also use the CiteSpace to generate 

keyword co-occurrence, which is a useful approach to explore knowledge structures and hot 

topics, and the top 5 multi-population methods related keywords are shown in Table 4. 

 
 
 
 
 



Table 3 The top 5 co-cited journals related with multi-population methods, where “Count” denotes the 
number of times each journal is co-cited by other journals. 

Rank Journal Count 
1 IEEE Transactions on Evolutionary Computation 315 
2 Applied Soft Computing 104 
3 Information Sciences 75 
4 European Journal of Operational Research 72 
5 Applied Mathematics and Computation 69 

 
 
Table 4 The top 5 keywords related with multi-population methods, where “Count” denotes the number 

of times each keyword is found in the term of keywords in the published papers. 
Rank Keywords Count 

1 Optimization 112 
2 Genetic algorithm 80 
3 Particle swarm optimization 76 
4 Multi-population 61 
5 Multi-swarm 46 

  

The organization of this paper is as follows. The basic issues of multi-population methods 

and their integration with nature-inspired optimization algorithms are provided in Section 2, 

and the literature review of multi-population methods in relation to the classes of 

optimization and areas of applications are given in Section 3. Finally, further development of 

multi-population methods is outlined in Section 4. 

 

2. Multi-population methods 

This section presents basic and important issues of multi-population methods, as well as 

how they are integrated with nature-inspired optimization algorithms. 

 

2.1 Basic issues of multi-population methods 

Existing work on multi-population methods demonstrate that using multi-population is one 

of the most effective methods to maintain population diversity. In nature-inspired 

optimization algorithms, diversity is indicated as the difference between candidate solutions, 



and evolution progress lies fundamentally on the existence of population variations. 

Population diversity may greatly influence the convergence and optimization of solutions. 

The main purpose of multi-population methods is to maintain population diversity by 

spreading candidate solutions over the entire search space. This feature helps 

nature-inspired optimization algorithms efficiently find global optimal solutions.  

To make multi-population methods more efficient, several basic and important issues of 

the algorithm design are discussed, which are shown in Figure 2. These issues include the 

number of subpopulations, the communication between subpopulations, the search area of 

subpopulations, and the search strategy of subpopulations. In the following subsections, 

these issues are discussed in detail. 
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Figure 2  Diagram of basic and important issues of multi-population methods 

 

2.1.1. The number of subpopulations 

The first issue is how to determine the number of subpopulations. If too many 

subpopulations exist in the optimization process, they may waste the limited computation 

resources. However, if there are a small number of subpopulations, the effect of 

multi-population is not significant for one to render optimal solutions. According to the 



number of subpopulations, this issue is addressed in two ways. The first way is to use a fixed 

number of subpopulations. Most of the existing multi-population methods belong to this 

group. In [31], a three-population architecture of EAs was applied to solve non-stationary 

optimization tasks, where one population supplied the historic estimates while the others 

were used in the searching process. Experimental results showed that the proposed 

algorithm had good performance in non-stationary environments. Niu et al. [32] proposed a 

multi-population cooperative PSO, in which the population consists of one master swarm 

and a fixed number of slave swarms, and the former executed PSO independently to 

maintain the diversity of particles, while the latter enhanced their particles based on their 

own knowledge and the knowledge of the particles in the other slave swarms. Simulation 

results demonstrated the effectiveness of the proposed algorithm. In [33], Togelius et al. 

used multi-population competitive co-evolution for car racing controllers, where 

nine-subpopulation co-evolution was compared with single-population co-evolution and 

standard evolution strategies. Experimental results showed that the proposed strategy had 

better performance. Li et al. [34] proposed new GAs based on multi-population competitive 

co-evolution, where the method comprised three simultaneously coevolving populations 

including learner population, evaluator population and fame hall, and the competitive 

exclusion principle in the ecological theory was applied in populations to maintain 

chromosome diversity. Experimental results showed that the proposed algorithm was more 

likely to avoid the occurrence of premature convergence, and outperformed the 

counter-parts. In [35], a multi-population cooperative cultural algorithm was proposed by 

integrating the cooperative GA into the population space of a culture algorithm, where the 

population was divided into several subpopulations and GA was adopted in each 



subpopulation. Simulations indicated that the proposed algorithm effectively sped up the 

convergence and improved the optimization performance. A new hybrid multi-population 

GA with the fixed number of subpopulations was proposed in [36] to solve the multi-level 

capacitated lot-sizing problem with backlogging. The proposed algorithm was tested on a set 

of multi-item lot-sizing with a backlogging library, and the results showed that it had better 

performance for most of the testing problems. In [37], a multi-population cultural algorithm 

with two subpopulations was proposed for artifact selection, in which agents in one 

subpopulation consistently outperformed the other agents due to the prior knowledge 

about certain artifacts. The study showed that the evolving agents significantly improved 

artifact selection knowledge. Yu [38] proposed a multi-population ABC algorithm for 

numerical optimization, which employed a new multi-population strategy with the fixed 

subpopulation numbers to enhance the population diversity. The results showed that the 

proposed algorithm achieved better performance than the standard ABC algorithm. In [39], 

Aimi and Suyama proposed a multi-swarm PSO for the IIR filter design, and the experimental 

results showed that the effectiveness of the proposed method through several design 

examples. Chatterjee and Zhou [40] presented a DE algorithm within a multi-population 

strategy, which divided an initial set of solutions into several subsets, and each subset 

evolved independently and finally connected with each other. The experimental results 

revealed the relationship between the number of subpopulations and the performance of 

DE. The advantage of using fixed subpopulation numbers is that it can be implemented 

simply, and we only need to create a fixed number of subpopulations for the problem. 

However, the number of subpopulations is only determined by researchers’ experience, and 

it is hard to obtain unified and effective rules to determine the numbers of subpopulations 



for different practical problems.  

The second way is to use a varying number of subpopulations. To maintain population 

diversity, the subpopulation numbers may be different at different phases during the 

evolution process. For example, in the early phase, a method needs a large number of 

subpopulations because the candidate solutions can scatter over the entire search space, 

which leads to high population diversity. But in the later phase, a small number of 

subpopulations help reducing diversity and the solution can quickly converge to a global 

minimum or maximum. So it is wise to dynamically increase or decrease the subpopulation 

numbers during the optimization. In many cases, a method often divides a main population 

into sub-groups or vice versa. In [41], Bongard proposed to use co-evolutionary dynamics of 

a multi-population GP system, in which the proposed method used a master/slave 

architecture, and the number of the client populations dynamically evolved to promote 

continuous search. The experimental results showed that the proposed method led to the 

discovery of better solutions in some numerical cases. In [42-43], Liang and Suganthan 

proposed a dynamic multi-swarm PSO by local searching, in which the whole population was 

divided into many small swarms, whose number could be determined using regrouping 

schedules. The simulation results showed the proposed method had better performance 

than the other standard algorithms. A clustering PSO was proposed by Yang and Li [44] for 

locating and tracking multiple optima in a dynamic environment. The proposed algorithm 

used a hierarchical clustering method to dynamically adjust the subpopulation numbers to 

track multiple peaks. The experimental study was conducted to test the performance of the 

proposed algorithm, and the results showed its effectiveness for tracking multiple dynamic 

optima. In [45], Zhao and Suganthan proposed a dynamic multi-swarm particle optimizer 



with sub-regional harmony search, where the whole population was divided into a large 

number of sub-swarms that were regrouped using various regrouping schedules. The 

simulation results showed that the proposed system achieved good performance for most of 

the numerical benchmarks. In [46], a fuzzy C-means (FCM) multi-swarm competitive PSO 

was proposed for optimization control of an ethylene cracking furnace, in which FCM 

clustering was used to categorize swarms adaptively into different clusters. This method was 

evaluated by benchmark functions and optimization control of the cracking depths of an 

ethylene cracking furnace. Nseef et al. [47] proposed an adaptive multi-population ABC 

algorithm for dynamic optimization problems, where the number of subpopulations 

changed over time for the algorithm to adapt to a dynamic environment. The simulations 

showed that the proposed algorithm was superior to the standard algorithm on all the test 

datasets. In [48], cooperative co-evolutionary algorithms were proposed to solve 

high-dimension problems, in which a dynamic multi-population framework was incorporated 

into the proposed algorithms to enhance the global optimization ability. The simulation 

results verified the effectiveness of the proposed algorithm.  

 

2.1.2. Communication between subpopulations 

The second issue is how to handle the communication between subpopulations. Many 

studies show that the communication between subpopulations can help exchange 

information and, hence, will accelerate the search process and find the promising solutions. 

The communication between subpopulations is controlled by the following four parameters: 

(i) a communication rate that defines the number of the solutions in a subpopulation to be 

shared with other subpopulations; (ii) a communication policy that determines which 



solutions are to be replaced by those of other subpopulations; (iii) a communication interval 

that sets up the frequency for executing communication; (iv) a connection topology that 

defines how to connect subpopulations. The literature [49] firstly focused on the 

communication issues in designing cooperative multi-thread parallel search techniques, and 

attempted to identify the key issues to be addressed in the design of an algorithm in this 

class. In [50], the topologies and migration rates of multi-population parallel GAs were 

discussed in detail. The study revealed the explicit relation between the probability of 

reaching a desired solution with a specific population size, the migration rate and the degree 

of the connectivity graph. Middendorf et al. [51] discussed information exchange in multi 

colony ant algorithms, and the results showed that the exchange of only a small amount of 

solutions helped efficient and effective search. In [52], El-Abd and Kamel discussed the 

factors governing the behavior of multiple cooperating swarms, and these factors included 

the communication strategy used, and the number of the cooperative swarms. The 

experimental results showed that a circular topology communication strategy produced 

better performance than those of sharing the global best of all the swarms. In [53], Chen and 

Chang applied a real-coded multi-population GA to multi-reservoir operation, in which a 

hyper-cubic topology was used to connect various subpopulations to exchange information. 

The results showed that the proposed algorithm provided much better performance than 

the conventional GA in terms of minimizing the water deficit of a reservoir system. A 

different topology multi-swarm PSO was proposed in [54] to deal with problems in a 

dynamic environment. The proposed algorithm integrated two different topological 

sub-swarms, and they exchanged their best particles at the checkpoints. The experiments 

demonstrated that the proposed algorithm was effective and stable in a dynamic 



environment. Li and Zeng [55] presented a multi-population agent based co-genetic 

algorithm with a chain-like agent structure for parallel global numerical optimization, where 

a close chain-like agent connection structure, a cycle chain-like agent connection structure, 

and a dynamic neighborhood were adopted to realize the parallel optimization. The results 

showed that the proposed algorithm had better optimization precision and efficiency than 

the GA. A novel multi-swarm PSO was presented in [56], where the proposed method 

extended a single population model to an interacting multi-swarm model by constructing a 

hierarchical interaction topology. The simulation results proved that the proposed method 

had significantly better performance than four variants of the standard PSO. In [57], an 

adaptive migration revisiting schemes was proposed for multi-population GAs, where 

fitness- and diversity-based migration schemes were used for preventing premature 

convergence. The experimental results on 0/1 knapsack problems showed that both of the 

new approaches were better than the standard methods. Biswas et al. [58] presented a 

multi-swarm ABC with forager migration, which maintained multiple swarm populations that 

applied different perturbation strategies and gradual migration of the population. The 

simulation results on 25 benchmark problems showed the superiority of the proposed 

method. In [59], Campos et al. evaluated the impact of several topologies on asynchronous 

multi-swarm particle optimization, and the experimental results provided the ranking of 

different topologies. Turky and Abdullah [60] proposed a multi-population electromagnetic 

algorithm with different migration mechanisms including a random immigrant scheme and a 

memory-based immigrant scheme. The purpose of these schemes is to determine which 

solutions are migrated to maintain population diversity. The simulation results showed the 

proposed algorithm was very effective on moving peak benchmarking problems. Michalak 



[61] proposed an evolutionary algorithm based on problem similarity, which was called 

Sim-EA. The proposed method utilized the concept of multi-population optimization, and 

each subpopulation was assigned to solve one of the instances which were similar to each 

other. Furthermore, the same author [62] used the same technology to propose a 

multi-population estimation of distribution algorithm (EDA), called Sim-EDA, where each 

subpopulation was assigned to a different instance and a migration mechanism was used for 

transferring information between the subpopulations. The experimental results confirmed 

that the performance of the proposed algorithm was better than the others when 

information was transferred between subpopulations assigned to similar instances of the 

problem. In [63], an ABC optimizer with bee-to-bee communication and multi-population 

co-evolution was proposed for multilevel threshold image segmentation, where individuals 

could share information from the elites through the bee-to-bee communication model. The 

experimental results on a set of benchmark datasets demonstrated the performance of the 

proposed algorithm. Kommenda et al. [64] studied the effects of multi-population GPs for 

symbolic regression problems, where several subpopulations were parallelly evolved 

according to unidirectional ring migration to maintain genetic diversity. The effects of 

multiple populations with a data migration strategy were compared to the standard genetic 

programming algorithms on several symbolic regression benchmark problems. In [65], Xu et 

al. proposed a dynamic multi-swarm PSO with cooperative learning strategy. In the proposed 

strategy, for each sub-swarm, each dimension of the two poor particles learns from the 

better particle of two randomly selected sub-swarms using a tournament selection strategy 

so that particles can have more excellent examples to learn and can find the global optimum 

more easily. The simulation results showed that the proposed algorithm had superior 



performance in comparison with several popular PSO variants. In [66], Upadhyayula and 

Kobti studied population migration using the dominance in multi-population cultural 

algorithms, in which multiple subpopulations utilized the evolutionary dominance to 

improve system performance. The preliminary results showed that the proposed algorithm 

outperformed the traditional methods. In [67], a multi-swarm bat algorithm was proposed 

for global optimization, where an immigration operator was used to exchange information 

between different swarms with necessary parameter settings, and the best individual of 

swarms was used as the elite swarm through the selection operator. The experimental 

results showed that the proposed method was able to search satisfactory function values on 

most of the benchmark datasets. Niu et al. [68] proposed a symbiosis-based alternative 

learning multi-swarm PSO algorithm, where the communication policy used a learning 

method to select one example out of the center position, the local best position, and the 

historical best position including the experience of the internal and external multiple swarms, 

to keep the diversity of the population. The experimental results exhibited better 

performance in terms of the convergence speed and optimality. An orthogonal multi-swarm 

cooperative PSO algorithm with a particle trajectory knowledge based method was proposed 

in [69], where the proposed algorithm used a matrix recording the information of the 

particle trajectory, and a new adaptive cooperation mechanism to implement the 

information interaction between swarms and particles, to greatly decrease the 

computational cost. The simulation results showed that the proposed algorithm had better 

performance compared with the traditional algorithms. Apparently, communication 

between subpopulations is very useful for optimization since information exchanging is able 

to improve the search ability of algorithms. 



 

2.1.3. Search area of subpopulations 

The third issue is how to determine the search area of each subpopulation. If the search area 

of a subpopulation is too small, there is a potential problem that the small isolated 

subpopulation often converges to a local optimal solution. On the contrast, if the search area 

of a subpopulation is too large, it is almost equal to the search area of the original 

population. Another case is that the search area may be overlapped, that is, two 

subpopulations search in the same sub-area, which may waste computational resources. To 

handle this problem, in [70], Li and Yang proposed a general multi-population method with 

clustering, where different subpopulations were distributed in different sub-areas in the 

fitness landscape, and then it applied the random immigrant method without change 

detection based on a mechanism that could automatically reduce redundant individuals in 

the search space. The simulation results on the benchmark functions showed that the 

proposed algorithm provided much better performance than the other algorithms. 

Pourvaziri and Naderi [71] presented a hybrid multi-population GA for the dynamic facility 

layout problem. In this study, the proposed algorithm separated the potential solution space 

into different parts by using a heuristic procedure and each subpopulation represented a 

separate part to assure population diversity. The results showed that the proposed algorithm 

performed better than the other methods. Kobti [72] proposed a heterogeneous 

multi-population cultural algorithm, which firstly incorporated a decomposition technique to 

divide the given problem into a number of sub-problems, and then it assigned the 

sub-problems to different subpopulations to be optimized separately in parallel in order to 

evaluate the proposed architecture. The simulation results showed that the proposed 



algorithm outperformed the other state-of-the-art methods presented in the literature. In 

[73], Raeesi et al. proposed a heterogeneous multi-population cultural algorithm with a 

dynamic dimension decomposition strategy, where two dynamic dimension decomposition 

techniques including the top-down and bottom-up approaches were used to decompose the 

dimensions of a given problem as different subsets, and each subpopulation was designed to 

optimize these subsets. The comparison results revealed that the proposed method was 

effective and outperformed the other standard approaches in terms of efficiency. In [74], 

Ufnalski and Grzesiak proposed a multi-swarm plug-in direct PSO algorithm for the 

sine-wave constant-amplitude and constant-frequency voltage-source inverter, where a 

dynamic optimization problem was divided into multiple lower dimensional swarms and 

each swarm was optimized independently by PSO. Ei Dor et al. [75] presented a multi-swarm 

PSO algorithm using charged particles in a partitioned search space for continuous 

optimization, in which the auxiliary swarms were initialized in different areas, and then an 

electrostatic repulsion heuristic method was applied in each area to increase its diversity. In 

[76], Bolufe and Chen studied the effects of sub-swarms in multi-swarm systems, and used a 

separate search mechanism to identify different regions of the solution space for each 

swarm with different goals and features. The comprehensive study provided a new set of 

general guidelines for the configuration of sub-swarms in multi-swarm systems. The 

common ground of these methods is that they use empirical experience to determine the 

search area of each subpopulation. Therefore, it is required to identify a proper search area 

for each subpopulation for different optimization problems. 

 

2.1.4. Search strategy of subpopulations 



The fourth issue is how to determine the search strategy of each subpopulation. Search 

strategies can significantly affect the performance of multi-population methods on different 

optimization problems. Different search strategies with different advantages can 

complement one another when a multi-population method is applied to an optimization 

problem. If each subpopulation is used to support a search strategy, and is responsible for 

either exploring or exploiting the search space, it is a promising way to enhance the 

optimization performance. In [77], Wu et al. proposed a DE algorithm with multi-population 

based ensemble of mutation strategies for global optimization, in which each subpopulation 

employed different mutation strategies, including “current-to-pbest/1”, “current-to-rand/1” 

and “rand/1”, during the evolution. After a certain number of iterations, the current best 

performing mutation strategy would be found according to the ratios between the 

quantitative performance improvements and function evaluations. As a result, better 

mutation strategies may require more computational resources. The simulation results 

showed that the proposed algorithm performed better than the other variants of DE on the 

benchmark functions. Another version that adopted a multi-population based ensemble 

mutation method for solving a single objective bi-level optimization problem was proposed 

by Li et al. [78]. Wang and Tang [79] proposed an adaptive multi-population DE algorithm for 

continuous multi-objective optimization, where each of subpopulation evolved according to 

the assigned different crossover operators borrowed from various GAs to generate 

perturbed vectors. Computational results on benchmark datasets showed that the proposed 

algorithm was superior to some previous algorithms in the literature. In [80], Godio 

presented a multi-population GA for estimating snow properties from the GPR data. In this 

study, each subpopulation was associated with an independent variant of GA to explore 



different promising regions of the search space. The experimental results showed that the 

proposed algorithm successfully estimated layer thickness and the porosity, saturation and 

structural exponents of snow. A multi-swarm cooperative PSO was proposed by Niu et al. in 

[81], where a population consists of one master swarm and several slave swarms. The slave 

swarms executed the variants of PSO independently to maintain the diversity of particles, 

and the master swarm evolved based on its own knowledge and also the knowledge of the 

slave swarms. The simulation results showed that the proposed algorithm had better 

performance compared with the standard PSO. Zhao et al. [82] proposed a multi-swarm 

cooperative multistage perturbation guiding PSO, where the three-stage perturbation 

guiding idea was used to separate the execution process of algorithm into three stages, and 

each stage used a DE mechanism with different perturbation to balance the exploration and 

the exploitation. The simulation results showed that the proposed strategy was a promising 

algorithm compared with the other particle swarm optimizers and state-of-the-art 

algorithms. In [83], Ali and Suganthan proposed an adaptive multi-population DE with 

dynamic population reduction, in which the population was clustered in multiple tribes and 

used an ensemble of different mutation and crossover strategies. That is, a different 

adaptive scheme was used in each tribe to define the scaling factor and the crossover rate, 

and to guarantee that successful tribes with the best adaptive scheme were the one that 

guided the search toward the optimal solution. The simulation results justified the 

robustness of the proposed approach compared to the other state-of-the-art algorithms. In 

[84], Biswas and Das proposed a multi-swarm based ABC algorithm for global search, in 

which the proposed algorithm deployed a multiple swarm population characterized by 

unique perturbation strategies, that is, each subpopulation used the different evolving 



operators in the landscapes. The experimental results had indicated the statistical superiority 

of the proposed approach. Cheng and Jin [85] presented a multi-swarm evolutionary 

framework based on a feedback mechanism, where the framework consisted of several 

operators similar to those in PSO and a mutation strategy, applied in different sub-swarms, 

on the top of the feedback mechanism. The simulation results showed that the proposed 

method enhanced the algorithm’s global search ability. In [86], a multi-swarm bare bones 

PSO with distribution adaption was proposed, where four methods were developed using 

Gaussian or multivariate Gaussian distributions, and then the cellular learning automata 

model was incorporated with the proposed bare bones PSO, which was able to adaptively 

learn suitable updating strategies for the swarms. The experimental results indicated the 

superiority of the proposed approach in terms of accuracy and speed in finding appropriate 

solutions. The advantage of these methods is that different search strategies are used with 

different subpopulations, which is better than a single search strategy throughout the 

evolution. 

 

2.2 Integration with nature-inspired algorithms 

Now we present how to integrate the multi-population methods with nature-inspired 

optimization algorithm. Simply speaking, it starts by setting parameters for different 

conditions, randomly creates a population of solutions and then evaluates them. Next, the 

population is divided into multiple subpopulations. Each subpopulation performs certain 

evolutionary operation to generate its own offspring. Based on the requirements of the 

algorithm design, the communication between subpopulations is used to help the evolution. 

Finally, the process stops if the stopping criteria is met. In this way, multi-population 



methods can flexibly manage the subpopulations, leading to better performance than 

single-population algorithms. The flowchart of multi-population methods integrating with 

nature-inspired optimization is shown in Figure 3.  
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Figure 3  Flowchart of multi-population methods integrating with nature-inspired optimization algorithms. 

 
 

The main steps are further described below: 

Step 1: Set parameters, and initialize the population of solutions. The key parameters of 

multi-population methods integrating with nature-inspired optimization include the 

parameters of EA or SI paradigms, the maximum number of iterations, the size of 



population, the number of subpopulations, and the communication parameters between 

subpopulations. 

Step 2: Evaluate the population, and the fitness of the generated solutions is calculated using 

the objective function. Divide the entire population into multipe subpopulations, and each 

subpopulation may have different sizes of populations. Each subpopulation can be randomly 

or orderly assigned from the solutions.  

Step 3: Create offspring subpopulations, which is the most important part for 

multi-population methods integrating with nature-inspired optimization. In this step, we can 

use a fix or variable number of subpopulations, and we also can use a complex 

communication mechamism between subpopulations. Different subpopulations can be 

executed independently or dependently by EA or SI paradigms to generate their own 

offspring subpopulations. For these EA or SI paradigms, we can use the same strategy for all 

the subpopulations, or use different strategies for each subpopulation. In addition, for 

different optimization problems, we can allow all the subpopulations to search in the entire 

solution space.  

Step 4: Evaluate offspring subpopulations and check the stopping condition. If the 

termination criterion is not met, go to Step 3; otherwise, terminate and output the 

evaluation results.  

 

3. Applications of multi-population methods 

The literature reports numerous applications of multi-population methods to benchmark 

datasets and real-world problems. This section first provides a summary of optimization 

problem categories: multi-modal optimization, dynamic optimization, multi-objective 



optimization, large-scale optimization, combinatorial optimization, constrained optimization, 

and noisy optimization. Then we review the applications of multi-population methods to in 

different practices.  

 

3.1 Classes of optimization 

3.1.1 Multi-modal optimization 

Many multi-population methods were used to solve multi-modal benchmark functions [68, 

78]. Siarry et al. [87] presented a multi-population GA for multi-modal optimization, which 

created subpopulations within the niches defined by the multiple optima to warrant good 

diversity. The empirical results showed the reliability of the proposed algorithm. In [88-89], a 

multi-population cultural algorithm using fuzzy clustering was proposed for multi-modal 

function optimization, where fuzzy clustering was used to partition the single population 

into several communicating subpopulations which evolved in parallel whilst cultural 

exchange ensured population diversity. The simulation results on several multi-modal test 

functions showed that the proposed method had good performance. A bi-objective 

multi-population GA was proposed in [90-91] for multi-modal function optimization, in 

which two separate but complementary fitness objectives were designed to enhance the 

diversity of the overall populations and exploration of the search space. The experimental 

results on five multi-modal functions showed that the proposed algorithm outperformed 

four multi-modal GAs. Zhang and Ding [92] proposed a multi-swarm self-adaptive and 

cooperative PSO for complex multi-modal functions, in which particles in each sub-swarms 

shared the best optimum to enhance the cooperative capability. The simulation results 

showed that the proposed algorithm had better performance than the other algorithms. In 



[93], Kwasnicka and Przewozniczek proposed a multi-population pattern searching algorithm, 

which is a new evolutionary method based on the standard messy genetic algorithm for 

solving optimization problems. In this study, the authors used some of the messy GA ideas 

like coding and operators in different subpopulations to solve the bottleneck of effectiveness 

dropdown. The simulations on a set of test functions including multi-modal benchmarks 

showed that their method had highly competitive performance. In [94], Bolufe and Chen 

proposed a multi-swarm hybrid algorithm for multi-modal optimization, where some ideas 

from DE algorithms and EDAs were used to address the new design in multi-swarm systems. 

The experimental results showed that the proposed hybrid system could perform better 

than each of the individual components. In [95], Fieldsend presented a new multi-modal 

evolutionary optimizer, the niching migratory multi-swarm optimizer (NMMSO), which 

dynamically managed many particle swarms. In the proposed method, sub-swarms were 

concerned with optimizing separate local modes, and employed measures to allow swarm 

elements to migrate away from their parent swarm and to merge swarms together under 

some conditions. The simulation results on multi-modal test problems showed that the 

proposed method obtained competitive performance. In [96], a pseudo multi-population 

differential evolution (p-MPDE) was proposed for multi-modal functions, in which the 

proposed p-MPDE employed a small exemplar population to conduct standard DE operation, 

and each other individual used the differential of two randomly chosen members in the 

exemplar population to mutate themselves and evolve. The simulation results showed that 

the proposed p-MPDE outperformed other state-of-the-art multi-modal algorithms. Xiao et 

al. [97] presented a novel multi-population co-evolution immune optimization algorithm for 

most of the existing multi-modal benchmarks, where co-evolution of three subpopulations 



was promoted through a self-adjusted clone operator to enhance exploration and 

exploitation. The authors proved that their method outperformed three known immune 

algorithms and several EAs. A general-purpose asynchronous adaptive multi-population 

model for a distributed differential evolution (AsAMP-dDE) algorithm was proposed in [98], 

where the asynchronous migration mechanism and the adaptive procedure allowed 

reducing the number of the control parameters to be set in the distributed multi-population 

models. The experimental results showed that this algorithm achieved good performance for 

the investigated benchmarks including the most of multi-modal functions.  

 

3.1.2 Dynamic optimization  

Multi-population methods have also been used to solve dynamic optimization problems [44, 

47, 54, 60, 70, 71]. Branke et al. [99] presented a multi-population approach to dynamic 

optimization problems, where the proposed algorithm used concepts from a 

multi-population evolutionary algorithm, which is to find multiple peaks in a multi-modal 

landscape, to enhance solution search in a dynamic landscape. The experimental results 

showed that this approach was indeed suitable for moving peak benchmarks. In [100], 

authors presented new variants of PSO which worked well in dynamic environments, where 

the main idea was to extend the single population PSO by constructing interacting 

multi-swarms. The results showed that the proposed multi-swarm optimizer significantly 

outperformed the single population PSO on the moving peaks benchmarks. In [101], authors 

proposed a mixed multi-swarm optimization approach applied to dynamic environments, 

where a set of particles was divided into multiple sub-swarms, and every sub-swarm 

consisted of two types of particles: classic and quantum ones. Both of them were based on 



stable symmetric distributions. The experimental results showed that the proposed method 

had achieved satisfactory efficiency. Another version adopting a multi-swarm PSO based on 

the concept of quantum for dynamic optimization was proposed in [102]. Yazdani et al. [103] 

presented a novel multi-swarm PSO algorithm for benchmark functions in dynamic 

environments. In this study, several mechanisms based on the changes of velocity vectors 

and particle positions were used to increase the diversity of swarms. The simulation results 

conducted on moving peak benchmarks showed the superiority of the proposed method. 

Multi-swarm optimization with chaotic mapping was proposed in [104] for dynamic 

optimization problems, in which the proposed algorithm adopted an improved multi-swarm 

approach and employed PSO as a global and local search method. Furthermore, a modified 

chaotic mapping mechanism was presented to overcome the challenge of diversity loss. The 

simulation results showed that the proposed algorithm outperformed the others on most of 

the test cases. Other studies about multi-population methods combining with PSO were 

presented in the literature [105-110]. Furthermore, a multi-population based geometric 

collaborative evolutionary algorithm was presented in [111] to solve complex dynamics 

problems. The numerical results demonstrated that the proposed algorithm was effective. 

Wu et al. [112-113] designed a multi-population and diffusion univariate marginal 

distribution algorithm, and the results showed that the proposed algorithm was effective for 

the function with a moving optimum and could adapt to the dynamic environments. In [114], 

a simple but effective self-adaptive strategy to control the behaviors of a DE based 

multi-population algorithm was proposed for dynamic environments. Specifically, the 

proposed scheme was aimed to control the creation of random individuals by the 

self-adaptation of the involved parameters. The simulation results showed that the proposed 



algorithm was as competitive as other efficient methods. Kundu et al. [115] published a 

similar study which used a multi-population based DE with speciation-based response to 

dynamic environments. The introduction of external archiving into a multi-population 

harmony search algorithm to solve dynamic optimization problems was presented by Turky 

and Abdullah [116]. The results on moving peak benchmarks showed that their modified 

version was better than the original harmony search algorithms. In [117], Li et al. proposed 

an adaptive multi-swarm optimizer for dynamic optimization problems, which addressed 

how to adapt the number of populations to change and how to adaptively maintain the 

population diversity in a situation where changes were hard to detect or predict. The 

performance of the proposed algorithm was compared with a set of the standard algorithms 

based on multi-population methods. Li et al. [118] presented some great challenges for 

multi-population methods in unconstrained dynamic environments, and analyzed them 

through experimental studies from the algorithm design point of view. The simulation results 

showed that the multi-population performance was significantly affected by several crucial 

issues, including how to adapt the number of subpopulations to dynamic environments, how 

to determine the search area of each subpopulation, and so on. Li et al. [119] used an 

adaptive multi-population optimization framework for locating and tracking multiple optima, 

which was taken as a dynamic optimization problem. In this study, PSO and DE were 

implemented into the multi-population framework, and the authors discovered that the 

proposed framework was quite good for dynamic optimization problems. Another version 

about multi-population optimization framework for dynamic environments was proposed by 

Uludag et al. [120]. Ozsoydan and Baykasoglu [121] employed a multi-population firefly 

algorithm to tackle dynamic optimization problems. The experiments on moving peak 



benchmarks showed that the proposed algorithm significantly improved system 

performance. A multi-swarm artificial bee colony (MABC) algorithm was proposed in [122] 

for dynamic optimization problems, where the proposed MABC had a similar framework to 

the original ABC but used an environment detection technique to track the moving of the 

optimal solutions of dynamic problems. The experimental results showed that the proposed 

MABC performed better in terms of offline errors, convergence speeds, and robustness.  

 

3.1.3 Multi-objective optimization 

Multi-population methods have sometimes been used to solve multi-objective optimization 

problems [79]. Leong et al. [123] extended multi-population methods to PSO-based 

multi-objective optimization in order to create multi-population multi-objective PSO, which 

made use of a dynamic population size and adaptive local archives to improve the diversity 

within each subpopulation. The computational experiments showed that their method 

worked better than the other standard methods. Zhang et al. [124] handled multi-objective 

optimization problems using a multi-swarm cooperative PSO, where each sub-swarm was 

designed to optimize one specific objective function of the multi-objective problem. The 

simulation results indicated that the proposed algorithm was highly competitive in solving 

multi-objective problems. In [125], Yu et al. used a multi-swarm comprehensive learning PSO 

algorithm to solve the multi-objective sustainable operation problem of the Three Gorges 

cascaded hydropower system. The experimental results demonstrated that the proposed 

method had satisfactory convergence and diversity for the cases studied. Liu et al. [126] 

proposed a co-evolutionary technique based on a multi-swarm PSO for the dynamic 

multi-objective problem. The simulation results indicated that the proposed algorithm was 



promising for tackling dynamic multi-objective problems. Other studies using multi-swarm 

PSO for multi-objective optimization problems were reported in [127-132]. In addition, 

Kersting and Zabel [133] proposed a new multi-population multi-objective evolutionary 

algorithm for optimizing NC-tool paths for simultaneous five-axis milling. Their results 

showed the effectiveness of this multi-population algorithm for optimizing the previously 

available solutions. Xiao [134] formulated an improved multi-objective evolutionary 

memetic algorithm by using a multi-population approach. The airport ground services were 

optimized by the authors to test the performance of their method, and it showed that their 

method was better than the existing ones in terms of solution quality and Pareto dominance. 

Shang et al. [135] developed a multi-population cooperative co-evolutionary algorithm for 

the multi-objective capacitated arc routing problem, where the divide-and-conquer method 

was applied to decompose the whole population into multiple subpopulations according to 

different direction vectors, and then each subpopulation was used to search different 

objective sub-regions simultaneously. The results showed the effectiveness of this 

multi-population multi-objective algorithm for optimizing the capacitated arc routing 

problem. In [136], Shi et al. introduced a multi-objective immune algorithm based on a 

multi-population co-evolutionary strategy, where subpopulations evolved independently, 

and the unique characteristics of each subpopulation could be effectively maintained. The 

diversity of the entire population was effectively increased. The results showed that the 

proposed algorithm achieved satisfactory results in terms of convergence, diversity metrics, 

and running time on most of the problems. In [137], the author proposed a multi-population 

Sim-EA algorithm with operator auto-adaptation for the multi-objective firefighter problem, 

where a new migration mechanism was used to improve the effectiveness of the algorithm. 



The simulation results showed that the proposed multi-population Sim-EA algorithm 

produced better results than a decomposition-based algorithm. Castro et al. [138] presented 

a competent multi-swarm approach for more than three objectives known as 

many-objective optimization problems (MaOPs). On each sub-swarm, an EDA was used to 

ensure proper convergence. The empirical results fully demonstrated the superiority of the 

proposed method on almost all test instances.  

 

3.1.4 Large-scale optimization 

Multi-population methods have also been used to solve large-scale optimization problems 

[45]. Fan and Chang [139] presented a dynamic multi-swarm PSO based on parallel PC 

cluster systems for optimizing large-scale functions, in which multiple swarms worked in 

parallel, and used a message passing interface for information interchange among swarms. 

The simulation results showed that the proposed algorithm was promising in solving 

large-scale problems. Another version adopting a dynamic multi-swarm PSO with local 

search for large-scale global optimization was presented in [140]. Moeini et al. [141] 

introduced a colonial multi-swarm method with modular characteristics to the 

administration of PSO in large-scale problems, which ensured a decent degree of exploration 

by administrating a number of parallel swarms. The simulation results on 28 large-scale 

benchmark problems exhibited significant improvement as the problem dimensionality 

arose. A novel parallel multi-swarm algorithm based on comprehensive learning PSO was 

proposed in [142] for large-scale benchmark functions. In this study, multiple swarms had a 

master-slave relationship and worked cooperatively and concurrently to reach proper 

convergence. The simulation results showed that the proposed algorithm had good 



performance over the other variants of PSO. An enhanced version was implemented to 

handle another set of 20 large-scale optimization functions by Ge et al. [143]. In the 

meantime, Guo et al. [144] presented a novel multi-population cultural algorithm adopting 

knowledge migration, where implicit knowledge extracted from each subpopulation directly 

reflected the information of the dominant search space in order to enhance diversity. The 

authors proved that their method had better performance than the other methods for 

large-scale optimization functions. In [145], a new multi-swarm multi-objective optimization 

method was proposed for dealing with large-scale structural problems. In this method, a 

multi-objective optimization method combining with clustering and particle regeneration 

procedure was presented to deal with large scale optimization problems. The experimental 

results showed that the proposed method outperformed several state-of-the-art approaches. 

Ali et al. [146] proposed multi-population DE with balanced ensemble of mutation strategies 

for large-scale global optimization, where the population was divided into independent 

subpopulations, each with different mutation and updating strategies. The performance of 

the proposed algorithm was investigated using 19 large-scale optimization functions and the 

results showed that it had competitive performance. A large-scale optimization application 

of multi-population differential ABC algorithm was presented by Zhou and Yao [147] for 

service composition in cloud manufacturing. In their study, the proposed algorithm adopted 

multiple parallel subpopulations, each of which evolved according to different mutation 

strategies from differential evolution to generate perturbed sources for foraging bees, and 

the mutation parameters were adapted independently. The authors found that the proposed 

algorithm outperformed other hybrid and single population algorithms in the literature.  

 



3.1.5 Combinatorial optimization 

Sometimes, multi-population methods have been used to solve combinational optimization 

problems [57, 62]. A study on multi-population GAs for 0/1 knapsack problem was proposed 

by Lin et al. [148], and the experimental results showed that the proposed approach was 

comparable to single-population GAs. Another similar study on multi-population GA for 

multiple-choice multidimensional knapsack problems was proposed by Zhou and Luo [149]. 

A case on the dynamic vehicle routing problem, which was one of dynamic combinatorial 

problems, was handled by multi-swarm PSO [150]. In their study, the population of particles 

was split into a set of interacting swarms. The effectiveness of the approach was tested on a 

set of benchmarks, and the results showed that the proposed approach significantly 

outperformed the other meta-heuristics. Xiong and Wei [151] presented a multi-population 

binary ACO algorithm based on the distribution of food quantity, in which subpopulations 

learned from each other by the means of ant pheromones. The simulations on the 0/1 

multi-knapsack problem demonstrated that their method could obtain satisfactory 

optimization performance. In [152], the authors discussed adaptive tuning of all the 

parameters used in a multi-swarm PSO algorithm, and applied the method to the 

probabilistic traveling salesman problem. The experimental results on a number of 

benchmark instances showed that the proposed algorithm had better performance than a 

number of algorithms reported in the literature. 

 

3.1.6 Constrained optimization 

Multi-population methods have also been used to solve constrained optimization problems. 

In [153], a multi-population EA was proposed for solving constrained optimization problems, 



where the proposed method adopted three populations with different multi-parent 

crossover operators. During the optimizing process, three populations exchange the best 

solution in each generation to adjust its search direction to possible optimum solution. The 

numerical results showed that the proposed method was highly competitive against the 

other algorithms. Liang and Suganthan [154] presented a dynamic multi-swarm PSO with a 

novel constraint-handling mechanism. The simulation results on CEC 2006 benchmark 

functions showed that the modified algorithm had better performance. Another version 

using a hybrid multi-swarm PSO for solving constrained optimization problems was proposed 

by Wang and Cai [155]. Applications of a parallel multi-population GA were presented by 

Gonçalves and Resende [156] for two-dimensional orthogonal packing problems with 

constraints. The effectiveness of the proposed algorithm was verified on a set of instances, 

and the results of the study showed that their method outperformed a standard GA. In [157], 

a scalable multi-swarm based algorithm with Lagrangian relaxation was proposed for the 

constrained problems, in which the proposed method used a set of techniques in parallel to 

find near optimal solutions for these problems. The effectiveness of this approach was 

demonstrated in a rail scheduling problem. In [158], a novel quantum-behavior multi-swarm 

algorithm based on a parallel architecture was applied to the constrained engineering design. 

In this study, the method was focused at generating a solution which included better quality 

of search and higher speed of convergence by using evolutionary strategies. The results 

showed that the proposed method could obtain better performance. In [159], Srivastava and 

Singh proposed a hybrid multi-swarm PSO for solving a reactive power dispatch, which was a 

non-linear and multi-objective constrained optimization problem. The experimental results 

verified that the effectiveness of the proposed algorithm. In [160], Aimi and Suyama 



designed IIR filters with constraints using multi-swarm PSO, where the design problem was 

formulated as the non-linear optimization problem. The effectiveness of the proposed 

method was verified through several examples.  

 

3.1.7 Noisy optimization 

Some real-world problems are of noisy measurements. In [161], the noisy environment of 

GA was described, and the effect of noise on GA was analyzed. Then cluster based 

multi-population GA was proposed for handling the noisy environment. The numerical 

experiment showed that the performance of the proposed algorithm was better than the 

traditional GAs. Szeto and Guo [162] applied a multi-population GA for locating multi-optima 

in a noisy environment. The noise interfered with precision and covering degrees, and 

affected the optimization performance. In their work, the authors incorporated a 

multi-population method with adaptive migration to control the information exchange 

between different subpopulations. The experimental results showed that the proposed 

algorithm performed better than the other algorithms for handling benchmark functions 

with noise. 

 

3.2 Areas of applications  

3.2.1 Applications to scheduling problems 

Various paradigms of multi-population methods have been applied to scheduling problems, 

which comprise some of the most important advances [163-170]. In [171], Qi et al. applied 

parallel multi-population GA to dynamic job-shop scheduling, where a modified genetic 



technique was adopted using a specially formulated genetic operator to conduct efficient 

search. The simulation results indicated that the proposed GA successfully improved the 

solution obtained from the conventional approaches, particularly in coping with the 

job-shop scheduling problem. Cochran et al. [172] applied a multi-population GA algorithm 

to handle parallel machine scheduling problems. The authors concluded that their approach 

was promising for practical scheduling problems. Zandieh and Karimi [173] studied the 

performance of an adaptive multi-population GA technique for the multi-objective group 

scheduling problem in hybrid flexible flowshop with sequence-dependent setup. The 

computational results showed that the proposed algorithm performed better than the 

standard GAs. In [174], a multi-population GA was proposed for multi-objective scheduling 

simulation of flexible job-shop. This study took into account the shortest processing time 

and the balanced usage of machines, and put forward the multi-population GA solution 

based on the multi-objective scheduling of flexible job-shop. The experimental results 

showed that the total machine load and the machine load’s variance were gradually 

decreased by the proposed algorithm. Other studies that adopted the multi-population GA 

approach for scheduling problems were presented by Chakraborti and Kumar [175], Zegordi 

and Nia [176], Toledo et al. [177], and Huang et al. [178]. In [179], an improved 

multi-population hybrid PSO was proposed for the flexible job-shop scheduling problem, in 

which searching efficiency was improved and the best processing sequence was found for 

flexible job-shop scheduling via simultaneous evolution of multiple populations. The 

proposed method was proved to be valid for flexible job-shop scheduling problems. Liang et 

al. [180] used a dynamic multi-swarm PSO method for solving the blocking flow shop 

scheduling problem, in which small multi-swarms and a regrouping schedule were used to 



minimize makespan. The computational results and comparisons indicated that the 

proposed algorithm had better performance than the other established algorithms in the 

literature. In [181], the authors applied a multi-swarm PSO-based optimization approach to 

handle multi-reservoir operation rules, which was one of the real-world applications of 

scheduling problems. In their study, the proposed method incorporated multi-swarm into 

PSO to improve the performance of the standard algorithm. The experimental results on the 

real-time operation of the Three Reservoir System showed that the proposed approach 

significantly outperformed the standard stochastic optimization approaches. Other studies 

that adopted the multi-population PSO for scheduling problems were presented by Liu et al. 

[182], Li and He [183], and Liu et al. [184]. Moreover, Digalakis and Margaritis [185] 

proposed a multi-population cultural algorithm for the electrical generator scheduling 

problem. In the proposed model a variety of selection mechanisms, operators, 

communication methods, and local search procedures were applied to each subpopulation. 

The experimental results showed that the proposed framework was useful. A 

multi-population interactive co-evolutionary algorithm for the flexible job shop scheduling 

problem was discussed in [186], where the quality of population was improved effectively by 

the interaction, competition and sharing mechanism among subpopulations. The simulation 

results showed that the proposed algorithm was an effective method for the flexible job 

shop scheduling problem. In [187], the authors employed a hybrid multi-population 

evolutionary algorithm to solve glass container production scheduling, in which a 

multi-population hierarchically structured GA scheme combined with a simulated annealing 

and cavity heuristic algorithm to improve system performance. The simulation results 

demonstrated that their algorithm was more effective than a state-of-the-art commercial 



solver and a non-hybridized multi-population GA. Recently, Gao and Pan [188] proposed a 

shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained 

flexible job-shop scheduling problem, in which a random shuffle process applied to the 

entire population was invoked periodically to propagate the good information that was 

found in some of the micro-swarms, and an adaptive search operator based on a 

problem-specific crossover and two-vector crossover helped to balance exploitation and 

exploration. The experimental results showed that the proposed method performed 

significantly better than the existing algorithms.  

 

3.2.2 Applications to path planning  

Multi-population methods are important optimization tools for path planning. Cheng et al. 

[189-190] presented an immigrants-enhanced multi-population GA for dynamic shortest 

path routing problems in mobile ad hoc networks, which were taken as a dynamic 

optimization problem. The experimental results showed that the proposed algorithm could 

quickly adapt to environmental changes and produce high-quality solutions after each 

change. Other studies that used a multi-population memetic algorithm and a multi-memory 

multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc 

networks were presented by Turky et al. [191] and Sabar et al. [192] respectively. In [193], 

multi-swarm sharing PSO was applied to UAV path planning problem, in which the proposed 

method was employed to explore a better solution and the variable-length crossover 

concept was used to share information among different dimension swarms. The simulation 

result showed that the proposed method had the ability to determine suitable 

characteristics for flight path. Arantes et al. [194] used a hybrid multi-population GA for 



unmanned aerial vehicle (UAV) path panning, where the environment was non-convex by 

the presence of no-fly zones such as mountains, cities and airports. Experimental results 

demonstrated the effectiveness of the algorithm relative to other methods. In other 

research, Liang et al. [195-196] solved path planning based on a dynamic multi-swarm PSO 

with crossover and different constraint handling methods. Experimental results 

demonstrated the effectiveness of the proposed algorithms. Kuczkowski and Smierzchalski 

[197] compared single and multi-population evolutionary algorithms for path planning in the 

navigation situation. The results showed that the multi-population method was better than 

the single-population method for the studied path planning. Similar problems were solved 

based on the modified multi-population DE and multi-population GA in [198-199]. PSO with 

adaptive multi-swarm strategy was proposed in [200] for the capacitated vehicle routing 

problem with pickups and deliveries, which included goods delivery/pickup optimization, 

vehicle number optimization, routing path optimization and transportation cost 

minimization. In this study, the proposed method employed multiple PSO algorithms and an 

adaptive algorithm with the punishment mechanism to search an optimal solution. The 

simulation results proved that the method could solve the capacitated vehicle routing 

problem with the least number of vehicles and less transportation cost simultaneously. 

Osaba and Diaz [201] designed and implemented a multi-population meta-heuristic for 

solving the vehicle routing problem, in which the proposed algorithm combined 

multi-population DE with an elite pool scheme to keep population diversity and avoid 

prematurely trapping into local optima. The computational results indicated that the method 

outperformed other algorithms relative to the given criteria. Similar vehicle routing 

problems with time windows and stochastic travel and service times were solved based on 



multi-population memetic algorithm in [202]. 

 

3.2.3 Applications to data analysis 

Data analysis is another important application area for multi-population methods [203-215]. 

A layered multi-population GP for designing a classifier was presented in [216], where the 

layer architectures were used to arrange multiple subpopulations to construct a new training 

set. The authors compared their method to the other algorithms and found that it was an 

effective approach to the classification problem. Another version was performed on 

clustering temporal data using a co-operative multi-population approach in [217]. Clustering 

applications of large probabilistic graphs using a multi-population evolutionary algorithm 

was presented by Halim et al. [218], in which each subpopulation represented a 

deterministic version of the same probabilistic graph. The computational experiments 

showed that the proposed algorithm gave better performance than the baseline methods 

and the state-of-the-art algorithms. In [219], a multi-population parallel GA for the 

direct-space crystal structure solution from the powder diffraction data, in which the 

multi-population GA was based on the independent evolution of different subpopulations, 

with occasional interaction allowed to occur between different subpopulations. The 

experimental result showed that the proposed method could create the opportunity for 

structure determination of molecular crystals of increasing complexity. Other studies that 

used niche GA and multi-population competition for feature extraction of nonparametric 

curves was presented by Wei et al. [220]. Yao et al. [221] proposed a multi-population GA for 

robust and fast ellipse detection from an image, where a number of subpopulations were 

evolved, and each was clustered around an actual ellipse in the target image. Simulation 



results indicated that the proposed algorithm significantly outperformed the other 

algorithms. Li et al. [222] developed a multi-population agent GA which realized parallel 

search for feature selection. The computational results indicated that the proposed method 

outperformed the other algorithms relative to the given criteria. Garcia-Nieto and Alba [223] 

proposed parallel multi-swarm optimizer for gene selection in DNA microarrays datasets. In 

this work, the proposed method consisted of running a set of independent PSOs following an 

island model, where a migration policy exchanges solutions with a certain frequency. The 

experimental results on four well-known cancer datasets showed that the proposed method 

was able to identify specific genes as significant ones for an accurate classification. In [224], 

Xiao and Cheng used a multi-swarm PSO method for DNA encoding. In [225], a 

multi-population GA was used based on the extended finite state machine, which was a 

popular algorithm used to describe states and actions of software system. The authors 

proved that their method had better performance comparable to other methods. 

Podgorelec et al. [226] studied evolving balanced decision trees using a multi-population GA, 

and the simulation results showed that the proposed method outperformed the other 

methods. On the other hand, a multi-population multi-strategy DE algorithm for structural 

optimization of metal nanoclusters was presented in [227], where the product design and 

downstream life cycle descriptions were modeled by a multi-level graph data structure. 

Industrial case studies had been implemented to show the effectiveness of the proposed 

algorithm. Mausa and Grbac [228] proposed a co-evolutionary multi-population GP which 

combined colonization and migration with three ensemble selection strategies for 

classification in software defect prediction. Computational results demonstrated the 

efficiency of the proposed method. 



 

3.2.4 Applications to network  

Quintero and Pierre [229] presented sequential and multi-population memetic algorithms 

for assigning cells to switch in mobile networks. The proposed algorithms were tested on 

moderate- and large-sized cellular mobile networks. A similar strategy was implemented for 

the same problem by Niu et al. [230]. In [231], Liang et al. improved the performance of 

fiber Bragg grating (FBG) sensor networks using a novel dynamic multi-swarm PSO. 

Experimental results showed that the proposed algorithm achieved higher accuracy with less 

computational cost compared to the other conventional methods. A multi-swarm PSO 

algorithm for energy-effective clustering in wireless sensor networks was presented in [232]. 

Simulation results revealed that the suggested method outperformed the other methods. In 

[233], the authors used a multi-swarm PSO for RFID network planning, which was an 

optimization model for planning the positions of readers in the RFID network. Simulation 

results showed that the proposed algorithm proved to be more effective for planning RFID 

networks than the canonical PSO, and GA with elitism and self-adaptive ES. Xu and Liu [234] 

proposed a multi-population firefly algorithm for correlated data routing in underwater 

wireless sensor networks. The simulation results showed that the proposed method 

achieved better performance than the existing methods in the metrics of packet delivery 

ratio, energy consumption and network throughput. Another version adopted an improved 

dynamic deployment method based on multi-swarm PSO for wireless sensor network was 

presented by Ni et al. [235]. Fontes and Goncalves [236] proposed a multi-population hybrid 

biased random key GA for hop-constrained trees in nonlinear cost flow networks. The results 

proved the efficiency and effectiveness of the proposed method. A multi-population GA was 



used for internet of things [237], where web service composition was modeled as a 

multi-criteria goal programming problem. Simulation results showed that the proposed 

algorithm was capable to solve the large-scale service composition problem in terms of 

efficiency and scalability. A multi-population cultural algorithm was proposed in [238] for 

community detection in social network, which was viewed as a reflection of the real world to 

study to gain insight into the real life societies and events. The comparison results between 

the proposed algorithm and other well-known algorithms showed that it was able to fast 

and more accurately find the true communities. In [239], a multi-population cooperative bat 

algorithm was used for an artificial neural network model, which mainly depended on the 

connection weights and network structure. Experimental results showed that there was a 

significant improvement by applying the proposed algorithm to all the test cases. An active 

multi-population pattern searching algorithm for flow optimization in computer networks 

and routing spectrum allocation was studied by Przewozniczek [240-241]. In their study, a 

novel co-evolution schema was combined with linkage learning to tackle high-dimensional 

and hard optimization problems. The experimental results showed that the proposed 

algorithm was an effective method for the studied problems. In [242], the authors discussed 

the possibility of generating complex networks using multi-swarm PSO, and advised 

employed advanced complex network analysis to improve the performance of multi-swarm 

PSO. Lin et al. [243] used a multi-population harmony search algorithm for extending the 

lifetime of dynamic underwater acoustic sensor networks, which was a dynamic 

optimization problem due to the underwater environment changes. The simulation results 

showed that the proposed method outperformed the other algorithms.  

 



3.2.5 Applications to parameter estimation and control  

Parameter estimation and control is also another important application area for 

multi-population methods [244-253]. In [254], a multi-population GA based on the dynamic 

exploration of local optima was proposed to estimate the parameters of a micro-population 

model of risk-group dynamics. Simulation results showed that the proposed algorithm 

performed better than the other algorithms. Su and Hou [255] employed a multi-population 

intelligent GA to find the Pareto-optimal parameters for a nano-particle milling process. 

Simulation results indicated that the proposed algorithm provided better performance than 

regular GAs. In [256], an active contour model was solved by multi-population PSO, where 

the objective was to enhance the concavity searching capability for the control points of the 

active contour model. Their method was tested on the proposed problem and was compared 

to other algorithms. A multi-population GA was modified by Angelova and Pencheva [257] 

for parameter identification of yeast fed-batch cultivation. The experimental results showed 

that the modified multi-population GA outperformed the standard ones. In [258], Toledo et 

al. presented a multi-population GA for PID controller auto-tuning. Computational results 

showed the superior performance of the proposed algorithm. Mukhopadhyay and Banerjee 

[259] proposed a chaotic multi-swarm PSO for global optimization of an optical chaotic 

system, where the control and estimation of unknown parameters of chaotic systems were a 

daunting task. The numerical results showed that for the given system parameters, the 

proposed algorithm could identify the optimized parameters effectively. A multi-population 

GA was presented in [260] for optimizing multi-size micro-perforated panel absorbers. In this 

study, the proposed problem depended on four structure parameters, and the aim was to 

find an appropriate combination to provide good performance. The results demonstrated 



the effectiveness of their method on multi-size micro-perforated panel absorbers. Mao and 

Li [261] used a multi-population GA for dust particle size distribution inversion, which is to 

characterize aerosol optimal properties and physical properties. The simulation results 

showed that the proposed method was an important tool for the studied problem. Folly et al. 

[262] used multi-population PBIL for a design of a power system controller, and simulation 

results showed that the multi-population PBIL approach performed better than the standard 

PBIL. Furthermore, the same authors [263] also compared multi-population PBIL and 

adaptive learning rate PBIL in designing a power system controller, and simulation results 

showed that multi-population PBIL was as effective as adaptive learning rate PBIL. In 

[264-265], authors proposed multi-swarm fruit fly optimization algorithm for structural 

damage identification, which was transformed into an optimization problem. Numerical 

results showed that the proposed algorithm had a better capacity for structural damage 

identification than the other methods.  

 

3.2.6 Electrical engineering problems 

Challenges in electrical engineering problems were often solved by multi-population 

methods [266-268]. In [269], the authors applied node-depth encoding and multi-objective 

EA to large-scale distribution system reconfiguration, which was a nonlinear and 

multi-objective problem. In this study, a multi-objective EA based on subpopulation tables 

adequately modeled several objectives and constraints, enabling a better exploration of the 

search space. Tests with networks ranging from 632 to 5166 switches indicated that the 

proposed method could find network configurations corresponding to power loss reduction 

of 27.64% for very large networks requiring relatively low running time. In [270], a 



multi-objective EA was employed for single and multiple fault service restoration in 

large-scale distribution systems. In this study, two multi-objective EAs used node-depth 

encoding to efficiently generate adequate service restoration plans for the large distribution 

systems. Experimental results showed that the number of switching operations required 

implementing the service restoration plans generated by the proposed method increased in 

a moderate way with the number of faults. Alves and De Sousa [271] proposed a 

multi-population GA to solve the multi-objective remote switches allocation problem in 

distribution systems. In this study, the proposed method obtained the optimal solution 

considering a priori articulation of preferences established by the decision maker in terms of 

an aggregating function which combined individual objective values in a single utility value. 

Simulation results on a 282-bus test system confirmed the efficiency of the proposed 

method. Furthermore, Alves [272] proposed a multi-population hybrid algorithm to solve the 

similar problem in distribution systems. The simulation results confirmed the efficiency of 

the proposed method. In [273], the authors obtained optimal VAR control for real power loss 

minimization and voltage stability improvement using hybrid multi-swarm PSO. In this study, 

PSO was implemented as the search engine for each sub-swarm, and DE was applied to 

improve the personal best of each particle. Effectiveness of the proposed algorithm was 

proved on the IEEE 30-bus system. In [274], the authors presented a multi-swarm 

optimization based adaptive fuzzy multi-agent system for micro-grid multi-objective energy 

management. In the proposed architecture each agent presented a different micro-grids unit. 

Fuzzy logic was used by each agent to estimate the amount of energy to be generated in 

order to cover the uncertainty and imprecision related to renewable energy sources and 

micro-grid constraints, and multi-population PSO was used by a coordinator agent to find 



the best compromised solution to satisfy economical/environmental objectives based on 

agent proposals. Simulation results showed the importance of the proposed method 

compared to the basic PSO. Jena and Chauhan [275] used multi-swarm cooperative PSO to 

solve distribution feeder reconfiguration and concurrent DG installation problems for power 

loss minimization, and the effectiveness of the proposed approach was tested with IEEE 

33-bus and 69-bus test systems with encouraging results. In [276], authors employed hybrid 

particle multi-swarm optimization to solve convex and non-convex static and dynamic 

economic dispatch problems. In their study, the proposed method conducted deep search 

with fast response, and convex and non-convex cost functions along with equality and 

inequality constraints had been used to evaluate the performance of the proposed approach. 

Comparison against the previous techniques showed that the proposed algorithm had better 

performance.  

 

3.2.7 Applications to mathematical equation problems 

In other research, Mera et al. [277] employed a multi-population GA for tackling ill-posed 

problems, and the authors proved that their method was able to obtain highly accurate 

solutions. Another version that adopted entropy-based multi-population GA for nonlinear 

programming problems was proposed by Li et al. [278]. Simulation results demonstrated the 

accuracy and efficiency of the proposed algorithm. In [279], authors used multi-population 

DE for searching nonlinear systems, and one of these nonlinear problems was the boundary 

value problem. Simulation results showed that the proposed method got better solutions 

together with a simple convergence analysis. A multi-population parallel imperialist 

competitive algorithm was presented in [280] for solving systems of nonlinear equations, 



which were taken as NP-hard problems. In their study, the optimal solutions were obtained 

by the proposed algorithm, and experimental results demonstrated that the proposed 

algorithm had good performance. Yeh et al. [281] presented layered multi-population 

genetic programming for learning ranking functions, which was a complex optimization 

problem in information retrieval. Experimental results were compared with other 

approaches and indicated the superiority of the proposed algorithm.  

 

3.2.8 Applications to other problems 

A penalty-guided multi-population GA was presented in [282] for reservoir system 

optimization. Several real-world applications were used to show the competitiveness of their 

approach. Li et al. [283] presented an improved multi-population GA for fast flexible docking 

program. Numerical results demonstrated that their method was able to obtain competitive 

performance. A similar study that adopted a parallel multi-population biased random-key GA 

for a container loading problem was proposed by Goncalves and Resende [284]. In another 

similar study, Zheng et al. [285] developed a multi-objective multi-population biased 

random-key GA to solve a 3-D container loading problem. Comparisons with other 

algorithms on hard and weak heterogeneous cases showed that the proposed algorithm had 

better performance. Xu et al. [286] employed a multi-population cultural algorithm with 

adaptive diversity preservation to optimize ammonia synthesis process. Results showed that 

the optimized model improved the prediction accuracy of ammonia synthesis system. The 

performance of a novel multi-population GA was investigated for a complex system which 

combined cooling, heating and power system with ground source heat pump system in [287]. 

A multi-population optimization algorithm for the optimization of wind turbine layout was 



discussed in [288]. Lastly, multi-population optimization algorithms had been applied to 

injection molding optimization [289], truss structure optimization [290], ultra-short-term 

load forecasting [291], fashion design [292], speed synthesis [293], inverse problem in 

hydrogeology [294], landscape mapping [295], virtual enterprise [296], highway alignment 

optimization model [297], community detection [298], space manipulators [299], and 

optimal mass customisation production [300]. 

 
 

4 Discussions and conclusions 

Tables 5-7 summarize the literature review of the multi-population methods for 

nature-inspired optimization. In-depth analyses and findings are achieved based on 

discussed literature, which provide a deep insight into how to design efficient 

multi-population methods for solving optimization problems. Note that another two 

techniques related to multi-population methods, including “cooperative coevolution” 

[301-302] and “species” [303-306], are not carefully considered in this paper. Cooperative 

coevolution is an explicit means of problem decomposition in multi-population evolutionary 

algorithms. For cooperative coevolution, each subpopulation is responsible for optimizing a 

subset of variables (i. e., a subcomponent), and different subpopulations are likely to have 

different contributions to the improvement of the best overall solution to the problem. For 

the species technique, a species is a subpopulation, defined as a group of individuals in a 

population that have similar characteristics and are dominated by the best individual, and 

different species are able to optimize toward different optima simultaneously. The 

publications in the tables are organized according to issues and applications of 

multi-population methods, as discussed above.  



 
Table 5  Basic issues of multi-population methods 

Basic issues References and methods Analysis and findings 

Number of 
subpopulations 

Trojanowski and Wierzchon [31]: Multi-population 
heuristic method 
Niu et al. [32]: Multi-population cooperative PSO 
Togelius et al. [33]: Multi-population competitive 
coevolution algorithm 
Li et al. [34]: Multi-population competitive 
coevolution GA 
Guo et al. [35]: Multi-population cooperative 
cultural algorithm 
Toledo et al. [36]: Hybrid multi-population GA 
Mokom and Kobti [37]: Multi-population cultural 
algorithm 
Yu [38]: Multi-population ABC 
Aimi and Suyama [39]: Multi-swarm PSO based on 
particle reallocation strategy 
Chatterjee and Zhou [40]: Multi-population DE 
Bongard [41]: Multi-population GP 
Liang and Suganthan [42, 43]: Dynamic multi-swarm 
PSO 
Yang and Li [44]: Clustering PSO 
Zhao et al. [45]: Dynamic multi-swarm PSO 
Xia et al. [46]: Multi-swarm competitive PSO 
Nseef et al. [47]: Adaptive multi-population ABC 
Peng and Shi [48]: Multi-population cooperative 
coevolutionary algorithm 

The number of 
subpopulations to be 
increased or decreased may 
be related to the phases 
during the evolution process, 
and the historical changes of 
the number of the survived 
subpopulations. 

Communication 
between 
subpopulations 

Toulouse et al. [49]: Cooperative multi-thread 
heuristics method 
Cantú-Paz [50]: Multi-population parallel GA 
Middendorf et al. [51]: Multi-colony ant algorithms 
El-Abd and Kamel [52]: Multi-swarm cooperative 
PSO 
Chen and Chang [53]: Real-coded multi-population 
GA 
Zheng and Liu [54]: Multi-swarm PSO 
Li and Zeng [55]: Multi-population co-genetic 
algorithm 
Chen et al. [56]: Multi-swarm coevolution PSO 
Lin et al. [57]: Multi-population GA 
Biswas et al. [58]: Multi-population ABC 
Campos et al. [59]: Asynchronous multi-swarm PSO 
Turky and Abdullah [60]: Multi-population 
electromagnetic algorithm 
Michalak [61, 62]: Multi-population EA based on 

Communication between 
subpopulations always is 
helpful for most of the 
multi-population methods. It 
is able to significantly 
improve the search ability 
when communication 
parameters including 
communication rate, 
communication policy, 
communication interval, and 
connection topology, are 
reasonably set. 
 
 



problem similarity 
Li et al. [63]: Multi-population ABC 
Kommenda et al. [64]: Multi-population GP 
Xu et al. [65]: Multi-swarm PSO with cooperative 
learning strategy 
Upadhyayula and Kobti [66]: Multi-population 
cultural algorithm 
Wang et al. [67]: Multi-population bat algorithm 
Niu et al. [68]: Symbiosis-based alternative learning 
multi-swarm PSO 
Yany et al. [69]: Orthogonal multi-swarm 
cooperative PSO 

Search area of each 
subpopulation 

Li and Yang [70]: Multi-population GA, PSO and DE 
Pourvaziri and Naderi [71]: Hybrid multi-population 
GA 
Kobti [72] and Raeesi et al. [73]: Heterogeneous 
multi-population cultural algorithm 
Ufnalske and Grzesiak [74]: multi-swarm PSO 
El Dor et al. [75]: Multi-swarm PSO 
Bolufe and Chen [76]: Multi-swarm PSO 

Decomposition based 
strategy is considered as one 
of the most helpful 
approaches to determine the 
search area of each 
subpopulation, which is able 
to effectively enhance the 
optimization performance. 

Search strategy of 
each subpopulation 

Wu et al. [77]: Multi-population DE 
Li et al. [78]: Multi-population based ensemble 
mutation method 
Wang and Tang [79]: Adaptive multi-population DE 
Godio [80]: Multi-population GA 
Niu et al. [81]: Multi-swarm cooperative PSO 
Zhao et al. [82]: Multi-swarm cooperative multistage 
perturbation guiding PSO 
Ali et al. [83]: Adaptive multi-population DE 
Biswas et al. [84]: Multi-swarm ABC 
Cheng et al. [85]: Multi-swarm PSO 
Vafashoar and Meybodi [86]: Multi-swarm bare 
bones PSO 

Each subpopulation using 
different search strategies is 
better than a single search 
strategy throughout the 
evolution. 

 
 

 
Table 6  Applications of multi-population methods 

Problems References and methods Analysis and findings 

Classes of 
optimization 

Multi-modal 
optimization 

Niu et al. [68]: Symbiosis-based 
alternative learning multi-swarm PSO 
Li et al. [78]: Multi-population based 
ensemble mutation method 
Siarry et al. [87]: Multi-population GA 
Alami and El Imrani [88, 89]: 
Multi-population culture algorithm 
Yao et al. [90, 91]: Bi-objective 

Reference [68] demonstrates 
that symbiosis-based alternative 
learning multi-swarm 
PSO outperforms other 
multi-swarm versions of PSO for 
solving multi-modal optimization.  
Reference [78] shows that 
ensemble-based method is one of 



multi-population GA 
Zhang and Ding [92]: Multi-swarm 
self-adaptive and cooperative PSO 
Kwasnicka and Przewoznickek [93]: 
Multi-population pattern searching 
algorithm 
Bolufe and Chen [94]: Multi-population 
hybrid DE and EDA 
Fieldsend [95]: Niching migratory 
multi-swarm PSO 
Li et al. [96]: Pseudo multi-population 
DE 
Xiao et al. [97]: Multi-population 
coevolution immune optimization 
algorithm 
De Falco et al. [98]: Asynchronous 
adaptive multi-population DE 

the best alternative 
multi-population methods.  

Dynamic 
optimization 

Yang and Li [44]: Clustering PSO 
Nseef et al. [47]: Multi-population ABC 
Zheng and Liu [54]: Topology 
multi-swarm PSO 
Turky and Abdullah [60]: 
Multi-population electromagnetic 
algorithm 
Li and Yang [70]: Multi-population GA, 
PSO and DE 
Pourvaziri and Naderi [71]: Hybrid 
multi-population GA 
Branke et al. [99]: Multi-population EA 
Blackwell and Branke [100]: 
Multi-swarm PSO 
Trojanowski [101, 102]: Quantum 
multi-swarm PSO 
Yazdani and Nasiri [103, 104]: 
Multi-swarm PSO 
Wang et al. [105]: Cooperative 
multi-swarm PSO 
Hu et al. [106]: Multi-swarm PSO with 
Cauchy mutation  
Del Amo et al. [107, 108]: 
Multi-population PSO 
Nabizadeh et al. [109]: Multi-swarm 
cellular PSO 
Liu et al. [110]: Multi-swarm PSO with 
orthogonal learning  
Gog et al. [111]: Multi-population 

Reference [119] demonstrates that 
heuristic clustering-based adaptive 
multi-population PSO and DE 
outperforms other multi-swarm 
versions of PSO and other 
multi-population EAs for solving 
dynamic optimization. 



geometric collaborative EA 
Wu et al. [112, 113]: Multi-population 
univariate marginal distribution 
algorithm (UMDA) 
Novoa-Hernandez et al. [114]: 
Self-adaptive multi-population DE 
Kundu et al. [115]: Multi-population DE 
with speciation-based response 
Turky and Abdullah [116]: 
Multi-population harmony search 
algorithm 
Li and Yang et al. [117]: Adaptive 
multi-population PSO 
Li and Nguyen et al. [118, 119]: Adaptive 
multi-population PSO and DE 
Uludag et al. [120]: Multi-population 
based incremental learning 
algorithms (PBIL) 
Ozsoydan and Baykasoglu [121]: 
Multi-population firefly algorithm (FA) 
Jia et al. [122]: Multi-swarm ABC 

Multi-objective 
optimization 

Wang and Tang [79]: Adaptive 
multi-population DE 
Leong and Yen[123]: Multi-swarm PSO 
with dynamic population size and 
adaptive local archives 
Zhang et al. [124]: Multi-swarm 
cooperative PSO 
Yu et al. [125]: Multi-swarm 
comprehensive learning PSO 
Liu et al. [126]: Multi-swarm 
coevolutionary PSO 
Wang and Yang [127]: Interactive 
multi-swarm PSO 
Sun et al. [128]: Multi-swarm 
multi-objective PSO 
Liang et al. [129]: Dynamic multi-swarm 
PSO 
Britto et al. [130, 131]: Iterated 
multi-swarm PSO and Reference-point 
based multi-swarm PSO 
Yao et al. [132]: Cooperative 
multi-swarm PSO 
Kersting and Zabel [133]: 
Multi-population multi-objective EAs 
Xiao [134]: Multi-population 

References [126] and [138] 
demonstrate that multi-swarm 
coevolutionary PSOs and 
competent multi-swarm PSOs 
outperform the other multi-swarm 
versions of PSOs for solving 
multi-objective optimization. 



multi-objective evolutionary memetic 
algorithm 
Shang et al. [135]: Multi-population 
cooperative coevolutionary algorithm 
Shi et al. [136]: Multi-population 
coevolutionary multi-objective immune 
algorithm 
Michalak [137]: Sim-EA algorithm with 
operator auto-adaptation 
Castro et al. [138]: Competent 
multi-swarm PSO 

Large-scale 
optimization 

Zhao et al. [45]: Multi-swarm PSO with 
sub-regional harmony search 
Fan and Chang [139]: Dynamic 
multi-swarm PSO 
Zhao et al. [140]: Dynamic multi-swarm 
PSO with local search 
Moeini et al. [141]: Colonial 
multi-swarm PSO 
Gulcu and Kodaz [142]: Parallel 
multi-swarm PSO 
Ge et al. [143]: Diversity-based 
multi-population DE 
Guo et al. [144]: Multi-population 
cultural algorithm with knowledge 
migration  
Kaveh and Laknefadi [145]: 
Multi-population multi-objective PSO 
Ali et al. [146]: Multi-population DE with 
balanced ensemble of mutation 
strategies 
Zhou and Yao [147]: Multi-population 
parallel self-adaptive differential ABC 

Reference [147] demonstrates that 
multi-population parallel 
self-adaptive differential ABC 
outperforms the other 
multi-population algorithms for 
large-scale optimization.  
 

Combinatorial 
optimization 

Lin et al. [57]: Multi-population GA 
Michalak [62]: Multi-population 
estimation of distribution algorithm 
(EDA) 
Lin et al. [148]: Multi-population GA 
Zhou and Luo [149]: Multi-population 
GA 
Khouadjia et al. [150]: Multi-swarm PSO 
Xiong and Wei [151]: Multi-population 
binary ACO 
Marinakis et al. [152]: Multi-swarm PSO 

Reference [62] demonstrates that 
the multi-population estimation of 
distribution algorithm is one of the 
best multi-population algorithms 
for combinatorial optimization.  
 

Constrained 
optimization 

Chen and Kang [153]: Multi-population 
EAs 

Reference [159] demonstrates that 
a multi-population PSO hybridizing 



Liang and Suganthan [154]: Dynamic 
multi-swarm PSO 
Wang and Cai [155]: Hybrid multi-swarm 
PSO 
Goncalves and Resende [156]: Parallel 
multi-population GA 
Gomez-lglesias et al. [157]: Scalable 
multi-swarm PSO with Lagrangian 
relaxation 
Souza et al. [158]: Quantum-behavior 
evolutionary multi-swarm PSO 
Srivastava and Singh[159]: Hybrid 
multi-swarm PSO 
Aimi and Suyama [160]: Multi-swarm 
PSO 

DE outperforms the other versions 
of PSO for constrained 
optimization. 
 

Noisy 
optimization 

Li et al. [161]: Cluster based 
multi-population GA 
Szeto and Guo [162]: Multi-population 
GA 

There are only a few references 
discussing multi-population 
algorithms for noisy optimization. 

Area of 
applications 

Scheduling 
problems 

Kapanoglu and Koc [163]: 
Multi-population parallel GA 
Wang and Li [164]: Multi-population GA 
Morady and Dal [165]: Multi-population 
parallel GA 
Sun et al. [166]: Multi-population and 
self-adaptive GA 
Wang et al. [167]: Adaptive 
multi-population GA 
Yu et al. [168]: Cooperative multi-swarm 
PSO 
Li et al. [170]: Multi-swarm PSO 
Qi et al. [171]: Parallel multi-population 
GA 
Cochran et al. [172]: Multi-population 
GA 
Zandieh and Karimi [173]: Adaptive 
multi-population GA 
Zhang et al. [174]: Multi-population GA 
Chakraborti et al. [175]: 
Multi-population GA and DE 
Zegordi and Nia [176]: Multi-population 
GA 
Toledo et al. [177]: Multi-population GA 
Huang et al. [178]: Multi-population GA 
Chen et al. [179]: Multi-population 
hybrid PSO 

Reference [188] demonstrates that 
the multi-population methods 
combining with new nature 
inspired optimization algorithms 
are a hot research trend in recent 
years, and shuffled multi-swarm 
micro-migrating birds optimizer 
outperforms the other 
multi-population algorithms for 
solving scheduling problems. 
 



Liang et al. [180]: Dynamic multi-swarm 
PSO 
Ostadrahimi et al. [181]: Multi-swarm 
PSO 
Liu et al. [182]: Multi-swarm PSO 
Li and He [183]: Cooperative 
multi-swarm PSO 
Liu and Ma [184]: Multi-population PSO 
based memetic algorithm 
Digalakis and Margaritis [185]: 
Multi-population cultural algorithm 
Xing et al. [186]: Multi-population 
interactive coevolutionary algorithm 
Toledo et al. [187]: Hybrid 
multi-population EAs 
Gao and Pan [188]: Shuffled 
multi-swarm micro-migrating birds 
optimizer 

Path planning 

Cheng et al. [189, 190]: Multi-population 
GA with immigrants scheme 
Turky et al. [191]: Multi-population 
memetic algorithm 
Sabar et al. [192]: Multi-memory 
multi-population memetic algorithm 
Huo et al. [193]: Multi-swarm sharing 
PSO 
Arantes et al. [194]: Hybrid 
multi-population GA 
Liang et al. [195, 196]: Dynamic 
multi-swarm PSO with crossover 
Kuczkowski et al. [197]: Multi-population 
EAs 
Li et al. [198]: Multi-population DE 
Da Silva Arantes et al. [199]: 
Multi-population GA 
Chen et al. [200]: PSO with adaptive 
multi-swarm strategy 
Osaba and Diaz [201]: Multi-population 
meta-heuristic algorithm 
Gutierrez et al. [202]: Multi-population 
memetic algorithm 

Reference [191] demonstrates that 
multi-population memetic 
algorithm outperforms the other 
multi-population algorithms for 
solving path planning problems. 
 

Data analysis  

Keyhanipour et al. [203]: Layered 
multi-population GP 
Mao et al. [204]: Multi-population GA 
Heraguemi et al. [205, 206]: 
Multi-population cooperative bat 

Reference [228] demonstrates that 
coevolutionary multi-population 
genetic programming method 
outperforms the other 
multi-population algorithms for 



algorithm 
Podgorelec et al. [207]: Multi-population 
GA 
Cao [208]: Multi-population elitists 
shared GA 
Zhu et al. [209]: Multi-population GA 
Chen and Zhong [210]: Multi-population 
GA 
Li and Zeng [211]: Multi-population 
agent GA 
Lin et al. [212]: Layered multi-population 
GP 
Keyhanipour and Moshiri [213]: Layered 
multi-population GP 
Liu and Liu [214]: Multi-population 
collaborative optimization  
Aimi and Suyama [215]: Multi-swarm 
PSO 
Lin et al. [216]: Layered multi-population 
GP 
Georgieva and Engelbrecht [217]: 
Cooperative multi-population PSO 
Halim et al. [218]: Multi-population EAs 
Habershon et al. [219]: Multi-population 
parallel GA 
Wei et al. [220]: Niche GAs and 
multi-population competition 
Yao et al. [221]: Multi-population GA 
Li et al. [222]: Multi-population agent 
GA 
Garcia-Nieto and Alba [223]: Parallel 
multi-swarm PSO 
Xiao and Cheng et al. [224]: 
Multi-swarm PSO 
Zhou et al. [225]: Multi-population GA 
Podgorelec et al. [226]: Multi-population 
GA 
Fan et al. [227]: Multi-population 
multi-strategy DE 
Mausa and Grbac [228]: Coevolutionary 
multi-population GP 

solving data analysis problems. 
 

Network 

Quintero and Pierre [229]: Sequential 
and multi-population memetic algorithm 
Niu et al. [230]: Multi-population 
cooperative PSO 
Liang et al. [231]: Dynamic multi-swarm 

Reference [241] demonstrates that 
the multi-population pattern 
searching algorithm is a new 
optimization algorithm, and 
outperforms the other 



PSO 
Suganthi and Rajagopalan [232]: 
Multi-swarm PSO 
Chen et al. [233]: Multi-swarm PSO 
Xu and Liu [234]: Multi-population firefly 
algorithm 
Ni et al. [235]: Multi-population PSO 
Fontes and Goncalves [236]: 
Multi-population hybrid biased random 
key GA 
Li et al. [237]: Multi-population GA 
Zadeh and Kobti [238]: Multi-population 
cultural algorithm 
Jaddi et al. [239]: Multi-population 
cooperative bat algorithm 
Przewozniczek [240, 241]: 
Multi-population pattern searching 
algorithm 
Pluhacek et al. [242]: Multi-swarm PSO 
Lin et al. [243]: Multi-population 
harmony search algorithm 

multi-population algorithms for 
solving network optimization 
problems. 
 

Parameter 
estimation and 
control 

Roeva [244]: Multi-population GA 
Gao et al. [245]: Multi-population PSO 
Chen et al. [246]: Multi-population GA 
Li et al. [247]: Multi-population PSO 
Chang and Wang [248]: 
Multi-population parallel EDAs 
Li and Chiang [249]: Multi-population 
PSO 
Lu et al. [250]: Multi-population GA 
Saini et al. [251]: Hierarchical 
multi-swarm cooperative PSO 
Lin et al. [252]: Multi-population GA 
Yuan et al. [253]: Multi-swarm fruit fly 
optimization algorithm 
Elketroussi and Fan [254]: 
Multi-population GA 
Su and Hou [255]: Multi-population 
intelligent GA 
Tseng et al. [256]: Multi-population PSO 
Angelova et al. [257]: Modified 
multi-population GA 
Toledo et al. [258]: Multi-population GA 
Mukhopadhyay and Banerjee [259]: 
Chaotic multi-swarm PSO 
Qian et al. [260]: Multi-population GA 

Reference [265] demonstrates that 
the multi-swarm fruit fly 
optimization algorithm 
outperforms the other popular 
multi-population GAs and PSO 
algorithms for solving parameter 
estimation and control problems. 
 



Mao and Li [261]: Multi-population GA 
Folly et al. [262, 263]: Multi-population 
PBIL 
Li and Lu [264, 265]: Multi-swarm fruit 
fly optimization algorithm 

Electrical 
Engineering 
problems 

Li and Li et al. [266]: Multi-population 
GA 
Li and Zhang et al. [267]: Dynamic 
multi-population PSO 
Zhou et al. [268]: Multi-objective 
multi-population ACO 
Santos et al. [269]: Node-depth 
encoding and multi-objective EA 
Sanches et al. [270]: multi-objective EA 
Alves et al. [271, 272]: Multi-population 
GA 
Singh and Srivastava [273]: Hybrid 
multi-population PSO 
Serraji et al. [274]: Multi-swarm PSO 
Jena and Chauhan [275]: Multi-swarm 
co-operative PSO 
Nawaz et al. [276]: Hybrid particle 
multi-swarm optimization 

Reference [276] demonstrates that 
the hybrid particle multi-swarm 
optimization outperforms other 
versions of PSO for solving 
electrical engineering problems. 
 

Mathematical 
equation 
problems 

Mera et al. [277]: Multi-population GA 
Li et al. [278]: Entropy-based 
multi-population GA 
Liu et al. [279]: Multi-population DE 
Majd et al. [280]: Multi-population 
parallel imperialist competitive 
algorithm 
Yeh and Lin [281]: Layered 
multi-population GP 

Reference [281] demonstrates that 
the layered multi-population GP 
outperforms the other 
state-of-the-art methods for 
solving mathematical equation 
problems. 
 

Other 
problems 

Ndiritu [282]: Multi-population GA 
Li et al. [283]: Improve multi-population 
GA 
Goncalves and Resende [284]: Parallel 
multi-population biased random-key GA 
Zheng et al. [285]: Multi-objective 
multi-population biased random-key GA 
Xu et al. [286]: Multi-population cultural 
algorithm with adaptive diversity 
preservation 
Zeng et al. [287]: Multi-population GA 
Gao et al. [288]: Multi-population GA 
Wu et al. [289]: Distributed 
multi-population GA 

Reference [298] demonstrates that  
Multi-population methods 
combining with new nature 
inspired optimization algorithms 
can result in good optimization 
performance. Meanwhile, 
reference [300] demonstrates that 
effective multi-population 
techniques combined with 
classical optimization algorithms 
can also obtain satisfying 
performance. 



Wu and Tseng [290]: Adaptive 
multi-population DE 
Liang et al. [291]: Dynamic multi-swarm 
PSO 
Gong et al. [292]: Interactive GA with 
multi-population adaptive hierarchy 
Brito and Rodriguez [293]: 
Multi-population GA 
Karpouzos et al. [294]: Multi-population 
GA 
LGuo and Szeto [295]: Multi-population 
GA 
Lu et al. [296]: Multi-swarm PSO 
Chen et al. [297]: Adaptive GA based on 
multi-population parallel EA 
Liu et al. [298]: Multi-population fruit fly 
optimization algorithm 
Zhang et al. [299]: Multi-population PSO 
Yu et al. [300]: Multi-population 
coevolutionary GP 

 
 
 

Suggestions for Future Research 

The development of multi-population methods is diverse and rapidly expanding, but there 

are still many open research areas. The first and important area for future research is to 

appropriately handle four fundamental issues of multi-population methods in 

nature-inspired optimization algorithms, including the number of subpopulations, the 

communication between subpopulations, the search area of subpopulations, and the search 

strategy of subpopulations. Currently, most existing multi-population methods just use 

pre-defined parameters, which are based on empirical experience, to determine the 

parameter setting of subpopulations. Some of the other studies assume that some prior 

information of optimization problems has been known. In this case, problem information 

can be used to guide the configuration of multi-population parameters. However, for the 



most of cases, we need to deeply explore these issues to develop good multi-population 

methods to more effectively solve a variety of problems. It should also be possible to design 

automatic schemes so that multi-population methods can adaptively self-tune. One may 

need to adaptively adjust the number of subpopulations for different phases during the 

evolution process, or adaptively determine the search area and search strategy for each 

subpopulation according to the historical information. One may need to develop learning 

based approaches to explore communication strategy between subpopulations, to avoid 

premature convergence of multi-population algorithms. 

Another area for the future research is additional mathematical tools for the theoretical 

analysis of multi-population methods. There are few publications about the theoretical 

aspects of multi-population methods to help investigate the impact of multi-population for 

optimization problems [307-308], which greatly limits the further generalizations, 

improvements and applications of multi-population methods. Therefore, it is challenging to 

obtain quantitative results for optimization problems using theoretical analysis. Quantitative 

results such as theoretical comparisons with other optimization methods could be of great 

interest to the multi-population optimization research community. Furthermore, theoretical 

analysis could provide insights as to what types of multi-population methods are hard or 

easy for what types of optimization problems. 

Another area for the future research is new algorithmic frameworks. The current popular 

frameworks of multi-population methods are parallel cooperation and serial cooperation. 

But there are still other new frameworks that have not yet been experimented, or 

combinations of these frameworks have not yet been explored in any depth. These 

frameworks will also raise other new researches and opportunities. 



Additional research is additional applications of multi-population methods. As we have 

seen from this review, the multi-population applications are very diverse. The applications of 

multi-population methods to complex optimization problems, including many-objective 

optimization, large-scale optimization, and their combinations, would be of great interest. 

Many more applications of multi-population methods integrating with nature-inspired 

optimization algorithms can emerge with wide applications. 

Many of these open research questions are common across different fields of computer 

intelligence. The open questions in the research of multi-population methods are similar to 

those in the other areas of computer intelligence. Research which is first driven by practical 

problems, and which is then generalized to broad results and conclusions, has the greatest 

likelihood to make a strong impact on the field, and so this is the research approach that is 

recommended for future work in the area of multi-population methods. 

Summary 

This review has summarized the development of multi-population methods during the last 

10 years. The review has shown some basic issues of multi-population methods, but these 

basic issues are always challenging and important for the development of multi-population 

methods. The review has also shown that multi-population methods can be practically 

applied to any optimization problem domain. Multi-population methods have been applied 

to multi-modal optimization, dynamic optimization, large-scale optimization, multi-objective 

optimization, combinatorial optimization, constrained optimization, and noisy optimization. 

Multi-population methods are simple, versatile, and flexible, and have proven to be efficient 

for solving a wide variety of real-world problems. The applications of multi-population 

methods include scheduling problems, path planning, network, parameter estimation and 



control, electrical engineering problems, mathematical equation problems and many others. 

Multi-population methods have proven to be useful to the optimization and engineering 

community, as well as to researchers who are currently working or will work in these areas.  
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