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ABSTRACT 25 

Background: The incidence of neurological complications, including stroke and cognitive 26 

dysfunction is elevated in heart failure (HF) patients with reduced ejection fraction. We 27 

hypothesized that the cerebrovascular response to isometric handgrip (iHG) is altered in HF 28 

patients.  29 

Methods: Adults with HF and healthy volunteers were included. Cerebral blood velocity 30 

(CBV, transcranial Doppler, middle cerebral artery) and arterial blood pressure (BP, 31 

Finometer) were continuously recorded supine for 6 minutes, corresponding to one min 32 

baseline, three min of static HG exercise, at 30% maximum voluntary contraction, followed 33 

by two min of recovery. Resistance-area product (RAP) was calculated from the 34 

instantaneous BP-CBV relationship. Dynamic cerebral autoregulation (dCA) was assessed 35 

with the time-varying autoregulation index (ARIt) estimated from the CBV step response 36 

derived by an autoregressive moving-average time-domain model.  37 

Results: Forty HF patients and 23 BP-matched healthy volunteers were studied. Median 38 

[IQR] LVEF was 38.5 [0.075] % in HF group. Compared with controls, HF patients 39 

exhibited lower ARIt during HG indicating impaired dCA (p<0.025). During HG there were 40 

steep rises in CBV, BP, and heart rate in controls, but with different temporal patterns in HF 41 

which, together with the temporal evolution of RAP, confirmed the disturbance in dCA in 42 

HF.  43 

Conclusions: HF patients are more likely to have impaired dCA during HG in comparison 44 

with age-matched controls. Our results also suggest an impairment of myogenic, neurogenic 45 

and metabolic control mechanisms in HF.  The relationship between impaired dCA and 46 

neurological complications in HF patients during exercise deserves further investigation.   47 

New and Noteworthy 48 
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Our findings provide the first direct evidence that cerebral blood flow regulatory mechanisms 49 

can be affected in heart failure patients during isometric HG exercise. As a consequence, 50 

eventual BP modulations are buffered less efficiently and metabolic demands may not be met 51 

during common daily activities. These deficits in cerebral autoregulation are compounded by 52 

limitations of the systemic response to isometric exercise, suggesting that heart failure 53 

patients may be at greater risk for cerebral events during exercise. 54 

 55 

 56 

 57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 73 



4 
 

INTRODUCTION  74 

A complex interaction exists between the nervous and cardiovascular systems. Chronic heart 75 

failure (HF) is often associated with disturbances in cerebral hemodynamics that provoke 76 

neurological disorders, including stroke and cognitive dysfunction (4, 17, 57, 60).  77 

Preservation of appropriate blood flow to the brain and heart is a critical task of the 78 

cardiovascular system. Contemporary data have shown that cerebral blood flow (CBF) is 79 

jeopardized in chronic HF conditions, which may be associated with central nervous system-80 

related symptoms (18, 62). Disturbances in CBF regulation, caused by limitations in cardiac 81 

output or increased sympathetic stimulation, could contribute to neurological damage due to 82 

cerebral ischaemia or small vessel damage caused by hypo- or hyper-perfusion. Cerebral 83 

autoregulation (CA) represents the brain's ability to maintain a stable CBF despite changes in 84 

arterial blood pressure (BP). The classical view that CBF remains constant in the BP range 85 

from 60 to 150 mmHg (33) has been challenged by more recent studies (55, 61). Static CA 86 

refers to the steady-state relationship between BP and CBF.  Dynamic cerebral autoregulation 87 

(dCA) reflects the transient response of CBF, often recorded as cerebral blood flow velocity 88 

(CBV) with transcranial Doppler ultrasound (TCD), to rapid changes in BP (53). Multiple 89 

studies have shown an association between impaired CA and cerebrovascular disorders (2, 90 

14, 36, 47).  91 

The isométrico handgrip manoeuvre (iHG) is a static exercise consisting of contraction of 92 

forearm muscles. In healthy subjects, (iHG can lead to rapid and robust elevations in BP,  93 

heart rate (HR) and cardiac output (5, 33). It has been shown that isometric exercise induces 94 

variations in CBF, possibly due to bilateral activation of cortical brain areas implicated in 95 

muscle contraction and autonomic regulation (23). Isometric exercise presents a challenge to 96 

CA, not only due to elevations in BP, but also due to increases in sympathetic nerve activity 97 

(12). However, it is not known how HF influences the regulation of CBF during exercise. 98 
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This is important considering that the brain is closely related to the heart, and thus may play a 99 

role in the progression of HF (4). Sympathetic activation and regulation of fluid homeostasis 100 

through the brain is one of the most important causes of left ventricular remodelling and 101 

symptom aggravation in HF (49). This complex syndrome is worsened by autonomic nervous 102 

system dysfunction due to excess sympatho-excitation and/or vagal nerve withdrawal (22, 103 

54).  104 

Exercise in HF patients has been reported in several studies (19, 26).  A recent review has 105 

highlighted the need to improve our understanding of the role of the brain in exercise 106 

intolerance in HF (4). Whilst we have recently reported that HF patients have depressed dCA 107 

at rest when compared with healthy subjects (6), cerebrovascular responses to HG  (iHG have 108 

not been described for HF patients. Studying the effects of (iHG in these patients could lead 109 

to better insights into the role of the autonomic nervous system in CBF control, as well as a 110 

more sensitive test of patients at higher risk of neurological complications. For this reason, 111 

we tested the hypothesis that dCA is impaired during sub-maximal (iHG) manoeuvre in HF 112 

patients with reduced ejection fraction. This information could have considerable value for 113 

tailoring treatment and/or monitoring of HF patients in response to rehabilitation and 114 

activities of daily living involving isometric exercise. 115 

 116 
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MATERIALS AND METHODS 124 

Research participants 125 

This was an observational, single-centre study, performed at the Heart Institute of the 126 

University of São Paulo from May 2014 to July 2015. Patients were considered eligible to 127 

participate in the study if they fulfilled the following criteria (i) left ventricular ejection 128 

fraction (LVEF) ≤ 40% on transthoracic echocardiography; (ii) clinically diagnosed 129 

ischaemic chronic HF with any functional class of the New York Heart Association (NYHA) 130 

classification (3); (iii) written informed consent. Age-, and BP-matched healthy controls were 131 

studied, free of neurological, cardiac disease, diabetes and carotid artery disease. Control 132 

subjects with treated mild hypertension were included as representatives of the matched older 133 

age group. The study was approved by the local research ethics committee and all 134 

participants provided written informed consent. 135 

 136 

Procedure 137 

Measurements and data analysis 138 

The study was performed with participants lying in a supine position, with the head at 30°. 139 

Simultaneous TCD evaluation of both middle cerebral arteries (MCAs) was carried out using 140 

bilateral 2 MHz pulsed, range-gated probes (DWL, Dopplerbox, Germany), held in place 141 

with a head frame. Subjects with unilateral temporal acoustic window were excluded. 142 

Insonation depths varied from 50 to 55 mm, with slight anterior angulation (15– 30°) of the 143 

probe through the temporal window. BP was continuously measured non-invasively using 144 

finger arterial volume clamping (Finometer PRO; Finapres Medical Systems, Amsterdam, 145 

Netherlands) with the servo-adjust switched off after an acclimatization period of at least 5 146 

min, when a stable waveform was achieved with the servo-adjust on. End-tidal CO2 (EtCO2) 147 

was continuously measured with an infrared capnograph (Dixtal, dx 1265 ETCO2 Capnogard, 148 
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Manaus, Brazil) via a closely fitting mask and recorded at 1 min intervals. EtCO2 was not 149 

monitored in controls. LVEF was derived by transthoracic echocardiography.  150 

The HG (iHG) maneuver was performed with a dynamometer. For each subject, maximum 151 

contraction force was calculated as the average of three rounds of maximum effort values 152 

with at least ten seconds of recovery between each task. In the main experiment, subjects 153 

were instructed to perform (iHG)  maneuver with the dominant arm at 30% of maximum 154 

contraction force for 3 minutes, and not to move any muscles other than those involved in the 155 

test. All the participants were informed when the 30% target was achieved and visual 156 

feedback was provided by the dynamometer scale to help participants to maintain the target 157 

contraction force. 158 

After resting for at least five min, a continuous 6 min recording was obtained corresponding 159 

to one min of baseline, three min of (iHG) , followed by two min of recovery. 160 

Signals were sampled at a rate of 100 Hz and stored on a dedicated personal computer for 161 

offline analysis. All recordings were visually inspected and the BP signal was calibrated 162 

using the systolic and diastolic values of radial sphygmomanometry. Narrow spikes (<100 163 

ms) and artefacts were removed by linear interpolation. Subsequently, all signals were 164 

filtered in the forward and reverse direction using an eighth-order Butterworth low-pass filter 165 

with a cut-off frequency of 20 Hz. The beginning and the end of each cardiac cycle were 166 

detected in the BP signal, and mean values of BP, CBV and heart rate were obtained for each 167 

heart beat. Critical closing pressure (CrCP) and resistance area-product (RAP) were obtained 168 

using the first harmonic method for each cardiac cycle (35). Beat-to-beat parameters were 169 

interpolated with a third-order polynomial and resampled at 5 Hz to generate signals with a 170 

uniform time base. 171 

To assess dCA during the (iHG) maneuver, the ARI index was estimated as a function 172 

of time (ARIt) using an autoregressive moving-average (ARMA) time-domain model, as 173 
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described previously (10, 38). The ARMA model was applied to a 60s window of data that 174 

was slided along the entire recording at 0.6s intervals. For this reason, the first and last 30 s 175 

of the recording cannot be used to generate values of ARIt.  At each 0.6s interval, the CBV 176 

step response was calculated from the ARMA model coefficients (10) and was compared 177 

with 10 template curves proposed by Tiecks et al. (53). The best fit curve then corresponds to 178 

ARIt at that instant of time (41). Values of ARI = 0 indicate absence of CA, whilst ARI = 9 179 

corresponds to the most efficient CA that can be observed (53).  The ARIt and all other 180 

cerebral haemodynamic parameters were averaged for time intervals of 30 s corresponding to 181 

T1: baseline before the maneuver, T2: beginning of (iHG), T3: last 30 s of the maneuver, and 182 

T4: last 30 s of the recovery period (48).  183 

 184 

Statistical analysis 185 

Following assessment of normality with the Shapiro-Wilk one-sample test, parametric 186 

(Student’s t) or non-parametric (Mann–Whitney U) tests were used as appropriate.  Fisher’s 187 

exact text was used with categorical variables. Results are expressed as mean ± SD or median 188 

with interquartile ranges [IQRs]. Inter-hemispherical differences in parameters were tested 189 

with the paired Student’s t-test or Wilcoxon non-parametric test. In the absence of 190 

differences, values for the right and left MCAs were averaged. Changes in ARI and other 191 

parameters at T1, T2, T3 and T4 were assessed with repeated measures ANOVA or Friedman 192 

and Wilcoxon tests in the case of non-gaussian parameters. In the event of significant effects 193 

(either group or manoeuvre), inter-group differences were assessed with mixed-effects 194 

ANOVA or Mann–Whitney U test. Statistical analyses were performed using SPSS version 195 

24.0 (SPSS Inc., Chicago, IL). A p-value < 0.05 was considered statistically significant. 196 

 197 

 198 



9 
 

RESULTS 199 

Participants  200 

Fifty-two patients were recruited; 12 excluded due to technical problems (5), absent temporal 201 

acoustic window bilaterally (5), or poor quality recording (2). Twenty-five healthy subjects 202 

were recruited; one excluded due to poor quality recordings and one due to absence of 203 

temporal acoustic windows bilaterally. The total number of recordings analysed was thus 40 204 

HF patients and 23 healthy volunteers. 205 

All subjects in HF group had clinically diagnosed ischaemic chronic heart failure, with 206 

median LVEF 38.5 [0.075] % on transthoracic echocardiography. Demographic and clinical 207 

characteristics of the population are described in Table 1. None of the bilateral cerebral 208 

haemodynamic parameters showed significant differences between the right and left MCAs, 209 

therefore values were averaged in further analyses (Table 1).  210 

Baseline conditions 211 

Compared to controls, HR and ARI were significantly lower, and CrCP significantly higher 212 

in HF patients (Table 1). Otherwise no significant differences were seen between groups in 213 

peripheral or cerebral haemodynamic parameters (Table 1). EtCO2 was 34.7 ± 3.8 mmHg in 214 

HF group. 215 

Handgrip maneuver 216 

With the exception of CrCP, all other parameters analysed showed significant changes in 217 

response to the HG (iHG) manoeuvre (Table 2). In control subjects, the onset of the HG 218 

(iHG) induced increases in BP, HR and CBV (Figs 1.A, B & C). RAP also showed a 219 

continuous rise, which tended to counteract the BP increase, whilst CrCP tended to remain 220 

constant (Figs 1.D & E).  Different temporal patterns were observed in HF. BP rose much 221 

less steeply (p=0.04, Table 2, Fig. 1.A) and HR did not show a return to baseline at recovery 222 
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(Fig. 1.B). The rise in CBV was also considerably delayed in HF, again, not showing the 223 

same return to baseline as observed in controls (Fig. 1.C). Moreover, RAP had a dip at the 224 

beginning of (iHG) and did not increase as quickly nor returned to baseline during recovery, 225 

in contrast to controls (Fig. 1.D). Similarly, ARIt showed a different pattern in HF patients 226 

compared to control subjects, with a significant drop over the first 30s in controls only. 227 

However, HF patients showed a continuous rise in ARIt to reach values similar to control 228 

subjects by recovery (Fig. 1.F, Fig. 2). EtCO2 did not show temporal changes during the 229 

manoeuvre in HF group (p= 0.38).  230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 
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 245 
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DISCUSSION 246 

Main findings  247 

To our knowledge, this is the first study to report on alterations in cerebral haemodynamics in 248 

HF patients, including dCA, in response to isometric exercise. The major findings are 249 

twofold. First, patients with HF exhibited lower dCA during the (iHG) manoeuvre compared 250 

with age-matched healthy controls. Moreover, the temporal pattern of changes in dynamic 251 

dCA and other cerebrovascular parameters in HF patients was also different from controls. 252 

Secondly, in HF patients, most of the variables considered, including HR, CBV and BP, did 253 

not return to their baseline values after the manoeuvre. Taken together, these findings 254 

demonstrate that the alterations in dCA, previously shown in HF patients at rest, also affect 255 

their response to isometric exercise (6, 11).  256 

Cerebrovascular response to handgrip 257 

Human studies investigating the effects of HF on cerebral haemodynamics are limited. The 258 

heterogeneity in study design and methodology are major limitations to allow comparisons of 259 

our results with the wider literature, such as the use of patients with cardiac transplantation 260 

(16, 27, 51, 52), small sample sizes (16), and the use of drugs such as captopril or beta-261 

blockers that can have a direct effect on CBF regulation (43). These studies reported CBV in 262 

HF patients, but did not include simultaneous BP measurements to allow assessment of dCA 263 

and other cerebral haemodynamic parameters, including CrCP and RAP.  264 

Previous studies of the cerebrovascular response to (iHG)  in healthy subjects have shown 265 

increases in CBV in the MCA, accompanying similar rises in BP and HR (20, 24, 30, 31). 266 

Whilst these temporal patterns were present in both control and HF groups in our study, there 267 

were significant differences. In HF, the rise in BP was much less pronounced (Fig. 1A), 268 

which may be explained by the well known limitations in cardiac output and baroreceptor 269 
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sensitivity in these patients, exacerbated by the use of beta-blockers in approximately 80% of 270 

the subjects (15, 28, 43).  Despite the limited rise in BP, CBV in HF rose to similar values, 271 

around 50 s into the manoeuvre (Fig. 1.C), partly due to cerebral vasodilation as expressed by 272 

lower RAP values (Fig. 1.F). Noteworthy, CBV and RAP did not return to baseline in HF, in 273 

contrast to controls (Fig. 1.A/B/C/F). Since this pattern was also observed in BP and HR, it is 274 

likely to be caused by systemic alterations, rather than a disturbance in cerebral 275 

haemodynamics. The delayed recovery of BP to baseline levels in HF could be attributed to 276 

an exacerbated central command and mechanoreceptor reflex or an increased adrenaline 277 

‘shunt’ (29, 50).  278 

  279 

Dynamic cerebral autoregulation  280 

Our estimates of ARIt during the (iHG) manoeuvre are in good agreement with previous 281 

studies of dCA during exercise, showing that dCA parameters were similar during resting, 282 

exercise, and recovery conditions in healthy subjects (5, 13, 33). The results of Ogoh et al. 283 

indicate that the CBF response to exercise involves complex mechanisms, depending on 284 

exercise intensity (32). By contrast, a previous study of the cerebrovascular response to HG 285 

(iHG), based on a different population of healthy subjects, had a different temporal pattern of 286 

ARIt, as will be discussed later (30).   287 

Studies of cerebral haemodynamics have often calculated indices of cerebrovascular 288 

resistance (CVRi) or conductance (CVCi) to assess vasomotor activity, independently of 289 

separate changes in BP or CBV. The limitation of this approach though, is that detailed study 290 

of BP-CBV instantaneous relationships show that a two-parameter model (CrCP+RAP) is 291 

more accurate and responsive to reflect changes in arterial tone and the waterfall mechanism 292 

resulting from the influences of intracranial pressure and vasomotor tone (35, 39). In this 293 

study, CrCP did not show changes as the result of the maneuver, or between HF and CG. On 294 
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the other hand, RAP was valuable to explain and complement the ARIt index. For dCA to be 295 

considered ‘active’, it is important that RAP changes in response to preceding changes in BP 296 

as indicated by Fig. 1F (40). 297 

Given the variability, and poor inter-method agreement, of CA metrics (56), quantification of 298 

CA should be based on multiple measures. In our case, this recommendation was met by 299 

observing that in the HF group, disturbances of CBF regulatory mechanisms were indicated 300 

by separate findings, namely: i) ARIt dropped significantly at the beginning of (iHG), albeit 301 

gradually increasing towards the end of (iHG)  and during recovery (Fig. 1.D); ii) the rise in 302 

RAP was interrupted and actually dropped half-way through the maneuver (Fig. 1.F); iii) 303 

despite the lower rate of BP rise CBV reached similar values as in controls (Fig. 1.C), 304 

indicating less efficient CA. CBF is known to be controlled by myogenic, metabolic and 305 

neurogenic mechanisms (1, 37). Our findings suggest that all three different mechanisms are 306 

likely to be impaired in HF. In our previous investigation (6), we found dCA to be depressed 307 

at rest, where the myogenic mechanism is thought to dominate the CBF response to 308 

fluctuations in BP (39). With sensorimotor stimulation, as is the case of (iHG), neurovascular 309 

coupling is activated, adding complexity to the CBF response (47). Moreover, the muscle 310 

metaboreflex also induces cerebral autonomic nervous system changes that have been 311 

suggested to be depressed in HF (45), although in our study PaCO2 was not clamped. Finally, 312 

deficiencies in the metabolic, neurovascular coupling, component of the response in HF are 313 

suggested by the delayed increase in CBV (Fig. 1.C) The temporal pattern of the CBV 314 

response to (iHG)  in HF (Fig. 1C) is markedly different from controls, as it suggests 315 

impairment of both the myogenic and metabolic mechanisms contributing to dCA. 316 

Considering the slow BP rise induced by (iHG)  in HF (Fig. 1A), if one removes the velocity 317 

‘surge’, starting at approximately 75 s (Fig. 1C), the underlying CBV rise follows that of BP, 318 

thus indicating absence of a myogenic response. On the other hand, when focusing on the 319 
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‘surge’, which would be ascribed to the increased metabolic demand induced by (iHG), there 320 

is a clear delay compared to controls, thus suggesting that the metabolic component, which 321 

could also be regarded as the neurovascular coupling contribution, is also impaired. 322 

The relevance of these new findings, as compared to previous reports of a depressed dynamic 323 

dCA in HF at rest (5, 10), is that impairment of CBF regulation is not limited to the myogenic 324 

response to BP changes, but also applies to the metabolic and neurogenic control mechanisms 325 

as well, which may explain the increased risk of cognitive impairment in HF. 326 

 327 

 328 

Clinical implications 329 

The fact that CBF regulation is impaired in patients with HF during isometric exercise, has 330 

direct implications for the care and follow-up of these patients. Given the number of common 331 

daily activities that require an isometric muscle contraction (e.g. carrying foodstuffs, lifting 332 

light weights), our findings suggest that BP surges are buffered less efficiently, with more 333 

passive transmission of BP to the cerebral vasculature (36), whilst metabolic demands may 334 

not be met by the neurovascular coupling mechanism, thus leading to temporary ischaemia. 335 

Recent systematics reviews and meta-analyses (9, 19) reported that exercise training in HF 336 

does yield improvements in cardiorespiratory fitness, diastolic function, quality of life, and 337 

general health, but some studies only included patients with preserved ejection fraction (9) 338 

while  others called attention to benefits dependence on the type of training performed (19). 339 

More work is needed to understand the role of exercise training in patients with low ejection 340 

fraction, as included in our study, ideally taking into account their cerebrovascular response 341 

to exercise. Of particular relevance, would be longitudinal assessments to test the hypothesis 342 

that exercise training might improve CBF regulatory mechanisms, thus reducing the risk of 343 

neurological complications. In the move towards more individualised medicine, it is 344 
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important to take into consideration the cerebrovascular response to exercise in HF patients. 345 

For this reason, incorporating techniques for assessment of CBF regulatory mechanisms 346 

during exercise into clinical practice should be seen as a priority (44). Moreover, further 347 

research into the role of phenotype in the response of HF patients, and other forms of 348 

exercise, will also contribute to better risk stratification of these patients. 349 

 350 

Limitations of the study 351 

TCD cannot provide absolute measurements of CBF, the use of CBV as a surrogate relies on 352 

the assumption that the MCA diameter remains approximately constant. This is likely to be 353 

the case during baseline measurements obtained at rest, but the effects of isometric exercise 354 

on MCA diameter have not been investigated. During rhythmic iHG, Verbree et al (58) 355 

assessed changes in MCA cross-sectional area (CSA) using MRI, detecting a 2% reduction in 356 

CSA, when young volunteers performed rhythmic handgrip at 60% maximum voluntary 357 

contraction. The small CSA changes they observed, resulting from much more intense 358 

exercise, would suggest nearly negligible MCA diameter changes in our case.  Nevertheless, 359 

if MCA diameter was reduced during (iHG), CBV would overestimate corresponding 360 

changes in CBF, but estimates of ARIt would not be affected as they only depend on the 361 

temporal pattern of the CBV step response. Differences in insonation angle, the chance of 362 

arteries other than the MCA being insonated, and inter-subject anatomical differences, 363 

including the acoustic permeability of temporal windows, are also factors that need to be 364 

considered as potential limitations. 365 

Lack of information about the prevalence of carotid artery disease (CAD) in the HF group is 366 

also a limitation of the study. Several studies have shown that both the ARI and transfer 367 

function phase are depressed in patients with significant carotid artery stenosis (34). None of 368 
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the patients studied had symptoms of advanced CAD, but we cannot exclude the possibility 369 

that values of ARIt could have been biased by the presence of asymptomatic CAD. 370 

For logistic reasons we have not been able to perform measurements of EtCO2 in controls, 371 

but several studies have shown that EtCO2 is not significantly altered during HG (iHG)  (25, 372 

30, 31, 59). This was confirmed in the patient group in the present study, although the values 373 

we found suggest these patients were mildly hypocapnic, given their mean EtCO2 of 34.7 374 

mmHg. If that was the case, then the differences in dCA that we found would be an 375 

underestimate given the expectation that dCA would be improved by hypocapnia (1). The 376 

higher values of CrCP observed in HF, compared to controls (Table 1, Fig. 1.E) also support 377 

the speculation that PaCO2 was markedly reduced in HF in comparison with controls (35).  378 

In a previous study, Nogueira et al. (30) reported temporal changes in ARIt during (iHG) in 379 

control subjects, differently from the relatively constant values observed in the present study 380 

(Fig. 1.D). The reasons for this difference are not clear, but these results might have been 381 

influenced by the relatively small sample size and it could be related to the wider age 382 

distribution of the former study which included subjects that were, on average, 23 years 383 

younger than in our CG. Another possibility is the occurrence of an alert reaction to the 384 

beginning of the maneuver in that study, which we tried to avoid in our protocol, by gradual 385 

warning of the moment to initiate hand contraction. The lack of matching for sex is also a 386 

limitation of the study, although its role in cerebral hemodynamics is still fairly controversial, 387 

with the majority of studies not detecting any effects (7, 21, 42). In older subjects (>70 years 388 

old), Deegan et al (8) reported better regulation in women compared to men. In our case 389 

though, there was one woman above 70 years of age in each group and for this reason it is 390 

unlikely that the lack of matching for sex would have influenced our results. 391 

Finally, we only investigated the cerebrovascular response to HG (iHG) that is a form of 392 

isometric exercise and this was limited to the MCA. Other forms of exercise, or other intra-393 
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cerebral arteries, like the PCA or ACA, could lead to different results with pertinent 394 

implications for optimising rehabilitation programs for HF patients (3). 395 

 396 

CONCLUSION 397 

Dynamic dCA was impaired in response to HG (iHG) in HF patients with reduced LVEF. In 398 

contrast to healthy controls, BP, HR, CBV and RAP failed to return to their baseline levels 399 

with HG (iHG) cessation. Collectively, our results suggest that the cerebral vasculature of HF 400 

patients is at a greater risk to BP fluctuations, especially during activities encompassing 401 

isometric contractions, including rehabilitation. These findings are of particular importance 402 

given the number of common daily activities that require isometric muscle contraction. In 403 

addition, it could explain the higher rates of neurological complications such as stroke and 404 

cognitive dysfunction in HF patients. Further research is needed on the cerebrovascular 405 

response of HF patients to other forms of exercise, to allow a more comprehensive 406 

assessment and risk stratification in these patients. 407 

 408 

 409 

 410 

 411 

 412 

 413 

 414 

 415 

 416 

 417 

 418 
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TABLES 655 
Table 1 Baseline characteristics including haemodynamic parameters in control subjects and 656 
heart failure patients 657 

VARIABLES CONTROL 
(n=23) 

HEART FAILURE 
(n=40) 

P 

Male n (%) 5 (22%) 31 (78%) < 0.001 
Age (years) 62.8 ± 8.6 62.9 ± 8.7 0.96 
LVEF % - 40 [30 - 40]  
NYHA    
   I - 11 (27.5%)  
   II - 20 (50%)  
   III - 8 (20%)  
   IV - 1 (2.5%)  
Risk Factors    
   Previous cardiac surgery n (%) - -  
   Previous myocardial infarction n (%) - 27 (68%)  
   Hypertension n (%) 2 (8.6%) 34 (85%) < 0.001 
   Peripheral vascular disease n (%) - 5 (13%)  
   COPD n (%) - 2 (5.0%)  
   Smoking n (%) - 15 (37.5%)  
   Previous smoking n (%) 4 (17.4%) 14 (35.0%) 0.06 
   Diabetes n (%) - 17 (42.5%)  
   Atrial fibrillation n (%) - 4 (10%)  
   Previous stroke n (%) - 3 (7.5%)  
   Obesity (BMI >30 kg/m2) n (%) - 7 (17.5%)  
Medication    
   Acetylsalicylic acid n (%) - 33 (82.5%)  
   Vitamin K-antagonist n (%) - 2 (5.0%)  
   ACE inhibitor/ ARB n (%) 2 (8.7%) 32 (80.0%) < 0.001 
   Beta blocker n (%) 1 (4.3%) 32 (80.0%) < 0.001 
  HR (bpm) 72.1 ± 10.9 65.4 ± 13.3 0.004 
  MAP (mmHg) 94.6 ± 13.4 93.5 ± 11.9 0.745 
  CBV (cm/s) 60.7 ± 12.3 59.7 ± 13.5 0.848 
  CrCP (mmHg) 5.8 ± 8.1 14.8 ± 9.7 0.001 
  RAP (mmHg.s/cm) 1.53 ± 0.36 1.4 ± 0.37 0.154 
    

Values are population mean ± SD, median (interquartile range), or n (%). LVEF, left 658 
ventricular ejection fraction; BMI, body mass index; COPD, chronic obstructive pulmonary 659 
disease; ACE, Angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker. 660 
MAP, mean arterial pressure; HR, Heart rate; CBV, cerebral blood velocity; CrCP, critical 661 
closing pressure; RAP, resistance area-product; ARI, autoregulation index. 662 
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Table 2. Peripheral and cerebral hemodynamic parameters during the handgrip manoeuvre 
  CONTROLS    HEART 

FAILURE 
  p-value 

iHG 
Effect 

p-value 
Group 
Effect 

VARIABLES T1 T2 T3 T4 T1 T2 T3 T4   

MAP (mmHg) 97.2 ± 12.1 99.8 ±12.4* 112.7 ± 13.5*# 98.9 ± 11.4 91.5 ± 11.3 92.5 ± 11.8 99.2 ± 15.2*# 102.8 ± 15.2* 0.001 0.04 

HR (bpm) 71.1 ± 10.9# 72.0 ± 9.8# 75.4 ± 9.3*# 73.0 ± 8.3 63.5 ± 13.7# 64.0 ± 14.4# 67.5 ± 14.4*# 69.5 ± 14.6* 0.001 0.001 

CBV (cm.s-1) 61.5 ± 12.6 64.3 ± 13.5* 66.3 ± 14.5* 61.5 ± 13.4 59.1 ± 14.8 59.2 ± 15.7* 62.3 ± 15.8* 63.9 ± 16.0* 0.001   0.197 

CrCP (mmHg) 10.0 ± 8.6 8.5 ± 7.5 9.9 ± 9.4 10.8 ± 9.8 14.1 ± 11.8 14.4 ± 12.1 14.1 ± 12.6 12.9 ± 12.1 0.757 0.231 

RAP 
(mmHg.s/cm) 

1.50 ± 0.44 1.53 ± 0.47 1.67 ± 0.57* 1.53 ± 0.48 1.52 ± 0.60 1.40 ± 0.44* 1.45 ± 0.45* 1.48 ± 0.44* 0.001 0.202 

ARI 5.8 ± 1.5 5.9 ± 1.1 6.2 ± 1.0 5.9 ± 1.2 5.1 ± 2.8 4.3 ± 2.5$& 5.1 ± 2.7 5.6 ± 2.7* 0.025 0.021 

 
Values are population mean ± SD. 
 MAP, mean arterial pressure; HR, heart rate; CBV, cerebral blood velocity; CrCP, critical closing pressure; RAP, resistance area-product; ARI: autoregulation 
index. 
T1, baseline 0-50 s; T2, 50-100 s, T3, 180-230 s, T4, 250-300s.   
#P <0.05 vs. controls; *P < 0.05 vs. time (repeated measures ANOVA). 
$P <0.05 vs. controls; &P < 0.05 vs. time (Friedman repeated measures test). 
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FIGURE LEGENDS 

Figure 1. Population averages of (A) mean arterial blood pressure, (B) heart rate, (C) cerebral 

blood velocity, (D) autoregulation index, (E) critical closing pressure, and (F) resistance area 

product for healthy control subjects (dashed line) and heart failure patients (continuous line). 

Gray bar represents duration of handgrip maneuver. Error bars correspond to the largest ± 1 

SE at the point of occurrence. 

Figure 2. Mean +1 SE of cerebral autoregulation index (ARI) at baseline (T1), beginning 

(T2), last 30 s (T3) and recovery (T4) from handgrip in healthy controls (black bar) and heart 

failure patients (white bar). *p <0.05 vs. controls; #p < 0.05 vs. time. 
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