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Finite size effects in the averaged eigenvalue density of Wigner random-sign real symmetric matrices
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Nowadays, strict finite size effects must be taken into account in condensed matter problems when treated
through models based on lattices or graphs. On the other hand, the cases of directed bonds or links are known to
be highly relevant in topics ranging from ferroelectrics to quotation networks. Combining these two points leads
us to examine finite size random matrices. To obtain basic materials properties, the Green’s function associated
with the matrix has to be calculated. To obtain the first finite size correction, a perturbative scheme is hereby
developed within the framework of the replica method. The averaged eigenvalue spectrum and the corresponding
Green’s function of Wigner random sign real symmetric N×N matrices to order 1/N are finally obtained
analytically. Related simulation results are also presented. The agreement is excellent between the analytical
formulas and finite size matrix numerical diagonalization results, confirming the correctness of the first-order
finite size expression.
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I. INTRODUCTION

Random matrix studies can be traced back a long time
but are an intense research subject nowadays [1]. They were
an essential part of discoveries in nuclear physics [2,3].
Thereafter, the emergence of amorphous and/or disordered
alloys as interesting materials led to the consideration of the
distribution of eigenvalues λ for the Green’s function (itself
a random matrix) associated with the Hamiltonian describing
the system [4]; see Eq. (10) below.

In brief, it is well known that the density of states is the
imaginary (Im) part of this Green’s function, the energy states
being the eigenvalues [5,6]. Thus, the eigenvalue spectrum has
to be well known, in particular, to determine the presence of
(optical or conduction) spectral gaps and state localization,
such as in the context of the Anderson model [7,8] and
spin glass models [9]. Moreover, the largest (necessarily
real according to the Perron–Frobenius theorem) and the
next-to-largest eigenvalues (not necessarily real in the case
of asymmetric matrices) are, for the former, indications of
the ground state of the system, through an approximation of
the free energy and of the diffusion (or relaxation) coefficient
for the latter. From a “more general” point of view, let us
simply say that the averaged eigenvalue density (AED) and
its properties have to be calculated, or must receive some
theoretical estimate with enough precision taking into account
the system finite size—the best being when searching for
universal features.

There is a large body of mathematical work on the spectra
of random matrices, ranging from modern versions of Perron–
Frobenius theorem for non-negative matrices [10,11], up to
recent results reviewed in Refs. [12–17]. In fact, a paper
on “finite size corrections to disordered Ising models,” on
random regular graphs [18] recently appeared [19], indicating
the up-to-date interest of considering binary distributions
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in the context of random matrices and graphs. When this
paper was in its final stage, a review [20] appeared on the
“random-matrix theory of Majorana fermions and topological
superconductors,” indicating the up-to-date interest in the
matter.

One of the most studied ensembles of random matrices is the
Gaussian orthogonal ensemble (GOE) of N×N real symmetric
matrices, which is invariant under orthogonal transformations
[21–24]. Much attention has focused on calculating its AED.
It was shown by Wigner [25] that the AED for the GOE in the
limiting case of N going to infinity is a semicircle. This, among
many other early results in the field of random matrices, can
be found in the early texts by Porter [26] and by Mehta [27].
Most of the investigation methods rely either on elaborate
moment and cumulant expansions or on the properties of
orthogonal polynomials [28–30]. A radically different method
was presented by Edwards and Jones [31] for calculating the
AED. The Edwards and Jones (EJ) method relied on the so
called “replica trick” first employed by Edwards [32] in the
study of polymer physics, reviewed by Advani et al. [33], for
example, which led to the renormalization group technique
later on.

By no means has all the published work on random matrices
been directed at the GOE. Wigner [34] addressed the problem
of calculating the AED of an ensemble of large symmetric
random matrices that were either bordered, i.e., having integers
along the diagonal and random numbers equal to plus or
minus some constant J on the super- and sub-diagonals,
or had zeros on the diagonal and entries that (subject to
the symmetry requirement) were either +J or −J in the
off-diagonal elements. For example, let us have in mind an
Ising spin system in which two neighbors are pointing in
different or in similar directions, thus resulting in a −J or
+J bonding energy; dipoles in ferroelectric materials can
also be considered as being at different energy levels anti-
symmetrically placed with respect to the zero level. Another
case is the fully connected network where links can take two
different weights—here they should be equal in magnitude
but with opposite signs. The latter of these two ensembles
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is best called the random sign symmetric matrix ensemble
(RSSME).

In a short article, Wigner [25] conjectured that a semi-
circular distribution of eigenvalues would be the limiting
distribution obtained as N → ∞ for an ensemble of symmetric
matrices in which the probability density function (pdf) of any
off-diagonal element is reasonably well behaved and for which
the second moment of all such off-diagonal elements should
have the same constant value. It is worth pointing out that
this is akin to the AED of a d-regular random graph with N

vertices for N → ∞ and d → ∞. This is due to the tree-like
structures that emerge when calculating the AED of these sets
of random matrices. Hence, the AED becomes a semicircle
as in the GOE of matrices, in the limit of size N → ∞, and
diverging mean d → ∞, i.e., when the Kesten–Mckay law
converges to a semicircular law [35–40]

However, no real system has an infinite size. The more so
in “real world” and “subsequent” applications. The finite size
constraint must be nowadays taken at its full value, even though
it was previously often taken as an irrelevant nonuniversal
effect in many condensed matter investigations. Very often,
the surface energy and surface entropy terms were disregarded
in free energy calculations.

Jones and Dhesi [41] (hereafter referred to as JD) applied
the replica method to the case of the RSSME and showed,
in the limit of N → ∞, how easily the replica formalism
produces a semicircular AED. (By using the same formalism,
they were able to verify the Wigner conjecture.) This leads
to the interesting problem of calculating the AED when N

is finite. In such a case (N finite), the AED distribution
departs from the semicircle and becomes ensemble specific.
For the GOE, there has been a number of papers that have
addressed the problem of calculating the corrections to the
Wigner semicircle which are of order 1/N [42–44]. Dhesi
and Jones [45] (thereafter referred to as DJ) have provided a
comprehensive set of results: DJ calculated the AED for the
GOE to order 1/N2, and also the AED for finite N based on
a self-consistency argument, when each element of the matrix
is drawn randomly from a normal distribution. Note that these
four papers rely on different methods; furthermore, the 1/N

correction of Takano and Takano [42] differs from the others.
Recently, Metz et al. [46] reconsidered finite size correc-

tions to the spectrum of regular random graphs obtaining an
analytical solution, given by a sum over loops comprising all
length scales, each loop contributing with a term proportional
to the difference of its effective resolvent with respect to the
resolvent of an infinite closed chain. In this context, let us also
point to Kanzieper and Akemann [47] who looked “through
the prism of probabilities” on how to find exactly a given
number of real eigenvalues in the spectrum of an N×N real
asymmetric Gaussian random matrix (see some elaboration
in the conclusion). Finally, to obtain an overview of relevant
applications and subsequent approaches to complex systems,
as those of concern here, see Ref. [48].

The present paper is still devoted to the calculation of
the AED for the RSSME, with vanishing diagonal elements,
although it will be shown that this constraint is rather irrelevant,
to order 1/N , but on an apparently more relevant set of cases,
like fully connected random graphs, with a given distribution
of different types of links; see below. Nevertheless, to provide

FIG. 1. Comparison of the N = 2 “numerical simulation” AED
(vertical lines), leading to two delta functions, with the theoretical
first-order O(1/N ) approximation (red) dotted line, resulting from
Eqs. (50) and (51).

a flavor of the problem generality, let us compare the AED for
the GOE and the RSSME in both extreme cases, i.e., for N = 2
or N → ∞. When N → ∞, the AEDs for both the GOE and
the RSSME obey the semicircular distribution. However, when
N = 2, the AED for the GOE has the following form [49]:

ρN=2(λ) = 1√
2π

e−λ2[
e−λ2 + √

πλerf(λ)
]
, (1)

where erf is the error function [50].
For our ensemble, when the diagonal elements are zero, the

AED for the N = 2 RSSME is merely given by two symmetric
delta functions, as per Eq. (11), see below in fact; see Fig. 1 for
illustration. Whence it can be noted that the departure from a
semicircle, when N is small, is much more acute in the case of
the RSSME. Therefore, the analytic result for the AED and the
RSSME should describe the broadening and the overlapping
of the peaked functions, thereby approaching the semicircular
function as N becomes large.

As can be rather easily appreciated, this RSSME, i.e., when
an element is drawn randomly with equal probability of being
positive or negative (head or tail), is a more difficult exercise
than when calculating the case of the GOE, i.e., when a normal
type distribution [described by Eq. (1) as treated in DJ [45]]
converges to the semicircle as N becomes large. We show
that additional terms appear when the finite size is taken into
account.

Therefore, the plan of this paper is the following: In
Sec. II, we recall the basic replica technique for calculating
the AED, and its corresponding Green’s function, but geared
toward the case of random sign symmetric matrix ensembles.
Section III is devoted to casting the AED to order 1/N of
the RSSME as a zero-dimensional path integral. In Sec. IV,
we set up a perturbation theory by using the Hubbard–
Stratonovich transformation (auxiliary field identity) and
Feynman diagrams, which allows us to calculate the correction
to order 1/N , in Sec. V with the steepest descent method.
The correction is found to be nonvanishing and convergent
only inside the Wigner semicircle and away from the band
edges. Analytic and simulation works are presented. The
comparison between the analytical formulas and finite size
matrix numerical diagonalization results exhibits an excellent
agreement, confirming the correctness of the first-order finite
size expression. A few comments are made in Sec. VI.
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Numerical simulations are found in Sec. VII; their average
is graphically compared to the theoretical expressions.

Finally, in Sec. VIII, we summarize the results and suggest
some direction for further work, in view of possibly obtaining
related results for more complicated cases and applications.

II. REPLICA TECHNIQUE

The theoretical development is based on the replica
technique [32], which is briefly recalled for completeness
within the present framework. Consider a real symmetric
N×N matrix J with eigenvalues Ji . The density v(λ) of such
eigenvalues is given by

v(λ) = 1

N

∑
i

δ(λ − Ji), (2)

where v(λ) has been chosen to be normalized to unity. For a
real symmetric matrix, it can be recalled that

det(� − J ) =
∏

i

(λ − Ji), (3)

where � is the diagonal matrix with element λ. In the complex
plane, giving an infinitesimal imaginary part to λ → λ − iε,
one has

v(λ) = 1

Nπ
Im

∂

∂λ
ln det(� − J ). (4)

The replica trick, further developed by Edwards and Jones [31]
in the context of random graphs, uses

ln(x) = lim
n→0

[
xn − 1

n

]
, (5)

so that Eq. (4) reads

v(λ) = −2

Nπ
Im

∂

∂λ
lim
n→0

1

n
[det−1/2(� − J )n − 1]. (6)

The determinant (det) can be parametrized as a multiple
Fresnel integral [50,51]

det−1/2(� − J ) =
(

eiπ/4

π1/2

)N ∫ ∞

−∞

∏
i

dxie
−i
∑

i,j xi (�−J )i,j xj .

(7)
Substituting Eq. (7) into Eq. (6), and assuming that this latter
result holds for integer n values and can be continued for
n = 0, one obtains the fundamental result

v(λ) = −2

Nπ
Im

∂

∂λ
lim
n→0

1

n

{(
eiπ/4

π1/2

)Nn ∫ ∞

−∞

∏
i;α

dxi;α

× { exp
[−i
i,j ;αxα

i (� − J )i,j x
α
j

]− 1
}}

. (8)

The integration is now over the Nn variables xα
i with

i ∈ (1,N ) and α ∈ (1,n), respectively; the limn→0 being taken
at the end of the calculation. Therefore, the AED ρ(λ) of
an ensemble of real symmetric matrices that has a given pdf
p(Ji,j ) is

ρ(λ) ≡ 〈v(λ)〉 =
∫

v
(
λ; Ji,j

)∏
i,j

p(Ji,j )dJi,j , (9)

where the brackets 〈〉 imply ensemble averaging.

Recall at this stage that the eigenvalue density is related to
the Green’s function G(λ) ≡ (� − J )−1 through

v(λ) = 1

π
Im

1

N
TrG(λ − iε), (10)

where Tr stands for the trace and ε is supposed to be
taken as small and positive; let us call G(λ) the average
Green’s function. Whence the AED 〈v(λ)〉 ≡ (1/π )Im G(λ)
is immediately obtained from Eq. (10) through ensemble
averaging.

III. RANDOM SIGN SYMMETRIC MATRIX ENSEMBLE

Consider the specific case in which a real symmetric matrix
(thus imposing Ji,j = Jj,i) has zero on its diagonal (Ji,i = 0),
but the off-diagonal elements Ji,j randomly take the value
+J/

√
N or −J/

√
N with equal probability 0.5. Practically,

the sign can indicate whether a bond or link is directed or
not and pertains to a ferromagnetic or antiferromagnetic set of
spins, or has a given color; for example, the equal probability
constraint and the matrix symmetry will be suggested, in
Sec. VIII, to be removed in further work. Let J be of the
order of unity. The ensemble pdf is described by

p(Ji,j ) = 1
2 {δ(Ji,j − J

√
N ) + δ(Ji,j + J/

√
N )}. (11)

Substituting Eq. (11) into Eqs. (8) and (9), the integral over
Ji,j is next performed:

ρ(λ) = − 2

Nπ
Im

∂

∂λ
lim
n→0

1

n

⎧⎨
⎩
(

eiπ/4

π1/2

)Nn ∫ ∞

−∞

∏
i;α

dxi;α exp

×
[
−iλ

∑
i;α

(
xα

i

)2]∏
i<j

[
cos

(
2J√
N

∑
α

xα
i xα

j

)
−1

]⎫⎬
⎭.

(12)

Of course,∏
i<j

cos

(
2J√
N

∑
α

xα
i xα

j

)

≡ exp

⎧⎨
⎩1

2

∑
i,j

ln

[
cos

(
2J√
N

∑
α

xα
i xα

j

)]⎫⎬
⎭. (13)

It should be pointed out, thanks to a comment by a reviewer,
that the diagonal elements of the right-hand side in this
transformation should be more thoroughly discussed; see the
Appendix. Thereafter the argument of the exponential can be
expanded in powers of 1/N to read

∏
i<j

cos

(
2J√
N

∑
α

xα
i xα

j

)

	 exp

⎧⎨
⎩
∑
i,j

⎡
⎣−J 2

N

(∑
α

xα
i xα

j

)2
⎤
⎦

×
⎡
⎣1 + 2J 2

3N

(∑
α

xα
i xα

j

)2
⎤
⎦+ O(N−3)

⎫⎬
⎭. (14)
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Observe the term in brackets in Eq. (14). It will lead to the
relevant term in Eq. (19) distinguishing a difference between
matrices with Gaussian distributed matrix elements and those
with the binary distribution considered here, and subsequently
to Eqs. (34) and (38) for the 1/N correction to ρ(λ).

Keeping only the first term of the exponential and following
the JD analysis, the AED is easily obtained in the limit N →
∞, i.e., a semicircle. To obtain the finite-size-N case, the next
leading term must be conserved:

−J 2

N

∑
i,j

(∑
α

xα
i xα

j

)2

= −J 2

N

∑
α

[∑
i

(
xα

i

)2]2

+−J 2

N

∑
i,j

⎛
⎝∑

α 
=β

xα
i xα

j x
β

i x
β

j

⎞
⎠.

(15)

As in Edwards and Warner [52] and Dhesi and Jones [45],
it can be shown that the first term is an order of magnitude
higher than the second when N → ∞. Indeed, even though
each α 
= β terms tend to contribute to the AED, the sum over
roman indices i and j reduces their input.

Nevertheless, when calculating the next contribution to
the AED, the α 
= β terms must be conserved. However, the
second term can be decomposed into α, β, γ, δ contributions.
Again, the α = β = γ = δ terms will contribute to an order
of magnitude larger value than those with nonequal indices.
The full formal expression is not written for conciseness; see
below for its practical evaluation [Eq. (18)].

IV. PERTURBATION METHOD

In this section, the starting idea is to use a Hubbard–
Stratonovich transformation (or the so-called auxiliary field
identity) to express the second and third term in the exponential

exp

⎧⎨
⎩−J 2

N

[∑
i

(
xα

i

)2]2
⎫⎬
⎭ = N1/2

(2π )1/2

1

(2J 2)1/2
λ

∫ ∞

−∞
dsα exp

[
− λ2

4J 2
N (sα)2 − iλsα

∑
i

(
xα

i

)2]
, (16)

and similarly for

exp

⎧⎨
⎩−2J 4

3N2

[∑
i

(
xα

i

)4]2
⎫⎬
⎭ =

√
3

8π

∫ ∞

−∞
dpα exp

[
−3

8
(pα)2 − i

J 2

N
pα
∑

i

(
xα

i

)4]
. (17)

Gathering all the relevant terms, the AED reads

ρ(λ) = − −2

Nπ

∂

∂λ
lim
n→0

1

n

{(
eiπ/4

π1/2

)Nn ∫ ∏
α

dsα

N1/2

(2π )1/2

1

(2J 2)1/2
λ exp

[
− λ2

4J 2
N
∑

α

(sα)2

]

×
∫ ∏

α

dpα

√
3

8π
exp

[
−3

8

∑
α

(pα)2

]
L(s; p) − 1

}
, (18)

where

L(s; p) =
∫ ∏

i;α

dxi;α exp

⎧⎨
⎩−iλ

∑
i;α

(
xα

i

)2 − iλsα
∑
i;α

(
xα

i

)2 − i
J 2

N
pα
∑
i;α

(
xα

i

)4 − J 2

N

⎛
⎝ ∑

i,j ;α 
=β

xα
i xα

j x
β

i x
β

j

⎞
⎠
⎫⎬
⎭. (19)

From a close examination of Eq. (19), it can be noticed that the third and fourth terms in the exponential do not contribute to
the AED in the lim N → ∞. Thus a “perturbation expansion” can be constructed in order to represent L(s; p) as

L(s; p) =
∫ ∏

i;α

dxα
i

{
exp

[
−iλ(1 + sα)

∑
i;α

(
xα

i

)2]}
(1 + A)(1 + B). (20)

with

A = −i
J 2

N
pα
∑
i;α

(
xα

i

)4+ 1

2!

(
− i

J 2

N
pα

)2
(∑

i;α

(
xα

i

)4)2

+ · · · , (21)

B = −J 2

N

⎛
⎝ ∑

i,j ;α 
=β

xα
i xα

j x
β

i x
β

j

⎞
⎠+ 1

2!

(−J 2

N

)2
⎛
⎝ ∑

i,j ;α 
=β

xα
i xα

j x
β

i x
β

j

⎞
⎠

2

+ · · · . (22)

Next, consider the part of L involving the AB term, denoting it by LAB , i.e.,

LAB =
∫ ∏

i,α

dxα
i exp

[
−iλ(1 + sα)

∑
i;α

xα2

i

]
AB ≡

∑
c,d

LABcd, (23)
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where LABcd is the contribution to LAB from the c-th and d-th
terms of A and B (where c and d are positive integers). We
employ a diagrammatic technique [53] to evaluate LAB by
representing

∑

k;γ

kγ kγ

kγ kγ

(xγ
k)4 → (24)

and

∑

i,j;α�=β

xα
i xα

j xβ
i

βi

αi αj

βj

x .β
j → (25)

Thus, taking the first term from both A and B we can
represent LAB11 symbolically as

−i
J4

N2
pγ ,kγ kγ

kγ kγ

βi

αi αj

βj

(26)

where the brackets {} denote the average against the Gaussian
weight in Eq. (23).

Following the usual diagrammatic technique plus bearing
in mind that α 
= β we evaluate the integral defining LAB by
contracting the legs. In so doing, we produce either connected
or disconnects diagrams

A. Disconnected diagram

The disconnected diagram reads

kγ
kγ

kγ
kγ

iα
jβ

iα
jβ

. (27)

This diagram gives a contribution whose n-dependence is
of the O(n(n2 − n)). Remembering that we have to take the
limit n → 0, in evaluating the AED, it becomes clear (also see
DJ [45]) that to produce a non zero contribution to the AED,
we need to retain terms that are linear in n. Therefore the above
diagram contributes nothing to the AED. It can be seen that a
necessary condition for a diagram to be linear in Nn is that it
be connected. This result is general and holds to all orders in
perturbation theory [54].

B. Connected diagram

Bearing in mind that α 
= β, the connected diagram that
contributes of O(1/N ) to LAB;11 is

.

kγ

kγ

kγ

kγ

iβ iα

jβ jα

(28)

Since α 
= β, then i = j = k. This in turn provides a
contribution to AED of O(1/N2) Furthermore, it is realized
that any general term of LABcd will give rise to connected
diagrams that are linear in n will be to a maximum to O(N−1).

Subsequently LAB contributes to the AED to a maximum
of O(N−2). As we are to evaluate the AED to O(N−1), this
LAB part of L can thus be disregarded.

Whence Eq. (19) can be rewritten as

L = I (1 + M + K), (29)
where

I =
∫ ∏

i;α

dxi;α exp

[
−iλ(1 + sα)

∑
i;α

(
xα

i

)2]
, (30)

M =
∫ ∏

i;α

dxi;α exp

[
−i

J 2

N
pα
∑
i;α

(
xα

i

)4]
, (31)

K =
∫ ∏

i;α

dxi;α exp

⎡
⎣−i

J 2

N
pα

∑
i,j ;α 
=β

xα
i xα

j x
β

i x
β

j

⎤
⎦. (32)

Thus, Eq. (19) can be further rewritten to have the form

ρ(λ) = ρ(I )(λ) + ρ(M)(λ) + ρ(K)(λ), (33)

in terms of the and I , M , and K functions defined here above.
Further progress can be made in evaluating I , M , and K to

order unity such that ρ(M)(λ), ρ(K)(λ), and ρ(I )(λ) be known
to O(1/N ), as follows:

i. evaluating M [Eq. (31)], one finds to O(1)

M = exp

{
nN

[
ln

(
π

iλ(1 + sα)

)]1/2

+ ln

[
1 − i

J 2

N
pα 3

[2iλ(1 + sα)]2

]}
. (34)

When substituting the O(1) term into Eq. (31), by assuming
replica symmetry and using the identity Eq. (5) to reconstruct
the logarithm, we obtain

ρ(M)(λ) = −2

Nπ
Im

∂

∂λ
ln

{(
eiπ/4

π1/2

)N(
N

2π

)1/2
λ

(2J 2)1/2

×
∫

ds exp

[
− λ2

4J 2
Ns2 + N ln

(
π

iλ(1 + s)

)1/2]

×
∫

dp

(
3

8π

)1/2

exp

×
[−3

8
p2 − iJ 2p

3

(2iλ(1 + s))2

]}
. (35)
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The p integral in Eq. (35) contains only an exponential
and can be easily evaluated. Thus, ρ(M)(λ) takes the concise
form

ρ(M)(λ) = −2

Nπ
Im

∂

∂λ
ln

{
λ exp

(−N

2
ln λ

)

×
∫

ds exp[−Ng(s) + h(s)]

}
, (36)

where

g(s) = λ2s2

4J 2
+ 1

2
ln [i(1 + s)], (37)

h(s) = −3

8
J 4 1

[iλ(1 + s)]4 . (38)

ii. A similar procedure goes for evaluating K [Eq. (32)]
(see also DJ [45]). Notice that there is no p variable in K ,
whence the p integral = 1. Thus,

ρ(K)(λ) = −2

Nπ
Im

∂

∂λ
ln

{
λ exp

(−N

2
ln λ

)

×
∫

ds exp[−Ng(s) + f (s)]

}
, (39)

where

f (s) = 1

4
ln

[
1 − J 2

λ2(1 + s)2

]
. (40)

iii. Evaluating I [Eq. (30)] is more straightforward; there-
after, one obtains

ρ(I )(λ) = −2

Nπ
Im

∂

∂λ
ln

{
λ exp

(−N

2
ln λ

)

×
∫

ds exp[−Ng(s)]

}
. (41)

The above results can be easily collected to rewrite ρ(λ)
[Eq. (33)] exactly to O(1/N).

V. AVERAGED EIGENVALUE DENSITY AND GREEN’S
FUNCTION TO O(1/N)

The method of steepest descent allows us to obtain the AED
to O(1/N ). The interesting saddle point s0 associated with g(s)

is found from

∂g

∂s

∣∣∣∣
s=s0

= 0. (42)

Thus,

ρ(M)(λ) = −2

Nπ
Im

∂

∂λ

{
− N

2
ln λ − Ng(s0) + ln λ

−1

2
ln g′′(s0) + h(s0)

}
. (43)

Similar expressions are obtained for ρ(N) and ρ(I ), when
replacing h(s0) by f (s0) and 1, respectively, in Eq. (43).

In other words, to O(1/N ), one has

ρ(λ) = ρ0(λ) + ρ1/N (λ) (44)
with

ρ0(λ) = −2

Nπ
Im

∂

∂λ
ln

{
− N

2
ln λ − Ng(s0)

}
, (45)

ρ1/N (λ) = −2

Nπ
Im

∂

∂λ
ln

{
λ − 1

2
ln g′′(s0) + h(s0) + f (s0)

}
.

(46)

From the definition Eq. (38), it is easy to see that g(s; λ)
has two complex conjugate saddle points at

1
2 {−1 ∓ i[1 − (4J 2/λ2)]}1/2.

It has been argued in Edwards and Jones [31] that the contour
chosen for the saddle point approximation may only be
deformed to pass through one of these saddle points, and that
the lower saddle point leads to a physically reasonable positive
AED. Thus, following Edward and Jones [31], we choose the
−i sign saddle point in the above expression to go on.

We now explicitly evaluate ρ(λ). The contribution ρ0(λ),
obtained from Eq. (45) and taking into account Eq. (37), is

ρ0(λ) = 1

π
Im

{
1

2J 2
[λ + i(4J 2 − λ2)1/2]

}
, (47)

yielding the corresponding Green’s function

G0(λ) = 1

2J 2
[λ + i(4J 2 − λ2)1/2], (48)

thereby proving that

ρ0(λ) =
{(

1
2πJ 2

)
[4J 2 − λ2]1/2 for |λ| < 2J

0 for |λ| > 2J.
(49)

The first-order correction ρ1/N (λ) is obtained after some
simple algebra, taking into account Eqs. (38) and (40), and
reads

ρ1/N (λ) =
{

1
4N

[δ(λ + 2J ) + δ(λ − 2J )] − 1
2Nπ

1
[4J 2−λ2]1/2 + 3

Nπ

[4J 2−λ2]1/2

8J 4 {[3λ2 − 2J 2] − 2λ2(λ2−2J 2)
[4J 2−λ2] } for |λ| < 2J

0 for |λ| > 2J.
(50)

Thereafter, the first-order Green’s function correction
G1(λ) is immediately obtained from ρ1/N (λ). Moreover, the

former and the latter functions can be expressed in terms of
the zeroth-order Green’s function or AED, respectively. After
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some lengthy but simple algebra, it is found that

G(λ) = G0

{
1 + 1

N

[
J 2G2

0(
1 − J 2G2

0

)2 − 3
(JG0)4

1 − J 2G2
0

]}
, (51)

where the variable (λ) has not be written on the right-hand
side, and G0 is defined in Eq. (48).

Equations (49)–(51) are the new intended results, whence
presenting the extra terms not found in previously treated
cases, e.g., Ref. [45], arising from the symmetry and sign
of the element constraint imposed on the Wigner matrix.

VI. COMMENTS

For a short discussion, let us decompose ρ1/N (λ) such that

ρ1/N (λ) = ρ
(Q)
1/N (λ) + ρ

(R)
1/N (λ), (52)

thus, where

ρ
(Q)
1/N (λ) = 1

4N
[δ(λ + 2J ) + δ(λ − 2J )]

−
{

1

2Nπ

1

[4J 2 − λ2]1/2

}
, (53)

which is identical to Eq. (4.14) of DJ [45] and

ρ
(R)
1/N (λ) = 3

Nπ

[4J 2−λ2]1/2

8J 4

{
[3λ2−2J 2]−2λ2(λ2 − 2J 2)

[4J 2 − λ2]

}
.

(54)

Equation (54) is the extra term coming from the Feynman
diagrams presented here above, which added to the Eq. (52)
corresponding to the O(1/N ) correction to the Gaussian
Orthogonal Ensemble distribution, is one key point of our
present work. Here, it becomes clear that the first correction
for the RSSME arises from ρ1/N (λ), which in turn is based on
the function h(s) defined by Eq. (38).

On Figs. 2–5, we display ρ0(λ) and ρ(λ) for N = 2, 10,
20, and 200 respectively. For convenience J is taken to be
=1. We notice that there is a significant departure of ρ(λ)
from the semicircle ρ0(λ) even for values of N as large as
20. For the GOE, the departure from the semicircle becomes
noticeable only for N <6 [41,43]. By comparison with the
figures supplied in DJ [45], it can be seen that the significant
departure is due to ρ

(R)
1/N (λ) rather than ρ

(Q)
1/N (λ). From this we

deduce that it is this new correction ρ
(R)
1/N (λ) together with

ρ0(λ) which mimics the broadening of the two mirror imaged
Poisson type distributions as N becomes large. In the limit of

FIG. 2. Plot of ρ0(λ) and ρ(λ) for N = 2.

FIG. 3. Plot of ρ0(λ) and ρ(λ) for N = 10.

large N (∼200), this broadening and overlapping tend to the
semicircle. One should not expect ρ(λ) to mimic correctly the
AED of the RSSME when N < 6. Corrections to O(1/N2)
will be required for these low values of 1/N . They will also be
required when mimicking the fine structure of the spectrum.

The displayed figures also bring to the fore that ρ1/N (λ)
possesses divergences near the band edges |λ| = 2J of the
semicircle. This is not surprising for reasons mentioned earlier.
Thus, result ρ0(λ), combining Eq. (49) and Eq. (50), should
only be considered as best away and inside the band edges.

Briefly, we finally comment on the result in Eq. (51).
Similarly we decompose G1(λ), as done for ρ1/N (λ), into

G1(λ) = G
(Q)
1 (λ) + G

(R)
1 (λ), (55)

whence with

G
(Q)
1 (λ) = 1

N

[
(JG0)G0(JG0)

[1 − (JG0)2]2

]
, (56)

and

G
(R)
1 (λ) = − 3

N

[
(JG0)2G0(JG0)2

[1 − (JG0)2]

]
. (57)

It can be noticed that G
(Q)
1 (λ) is the first-order correction

of the GOE, while G
(R)
1 (λ) is the newly found first-order

correction to the RSSME.

VII. NUMERICAL SIMULATIONS

Numerical simulations proceeded as follows: first, the
matrix size N is decided upon, and zeros are put on the
diagonal. Next, one picks at random an element ai,j of the
matrix, with 1 � i � N and 1 � j � N ; one attributes either

FIG. 4. Plot of ρ0(λ) and ρ(λ) for N = 20.
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FIG. 5. Plot of ρ0(λ) and ρ(λ) for N = 200. The curves are hardly
distinguishable.

the value +J/
√

N or −J/
√

N with equal probability to ai,j

and to aj,i (one can take J = 1 without loss of generality). Do
such an attribution for another ai,j element; in fact successively
for all N (N − 1) elements of the matrix. Calculate the N

eigenvalues and store them. Repeat the matrix construction a
large number of times. In the present case, all N -size matrices
were invented a million of times, except for N = 200, which
was invented only 50 000 times.

The histogram of eigenvalues for the set of N -given finite
size matrices is thus obtained. Practically, the histogram is
normalized according to the number of simulations, to obtain
the “averaged spectrum.”

The display of such an AED is shown in Fig. 1 and Figs. 6–8.
On such figures, the theoretically obtained first-order finite size
correction ρ(λ) is also given for comparison.

Noticed that each numerical spectrum seems to have some
nice band tails.

VIII. CONCLUSIONS

By using the replica method, we searched for the first finite
size O(1/N ) correction to the averaged eigenvalue density
and to the corresponding Green’s function of a random sign
symmetric matrix ensemble. It is well known that the AED of a
d-regular random graph with N vertices, in the limit N → ∞
and d → ∞, obeys the Kesten–McKay law [35,36]. However,
fully random systems are only theoretical cases of interest.
Thus it seemed worthwhile to calculate correction terms to the
AED in view of handling more realistic systems. In our work,

FIG. 6. Comparison of the numerical simulation AED (vertical
lines, delta functions) with the theoretical first-order O(1/N ) approx-
imation (red) dotted line for N = 10.

FIG. 7. Comparison of the numerical simulation AED (vertical
lines, delta functions) with the theoretical first-order O(1/N ) approx-
imation (red) dotted line for N = 20.

the former correction term to O(1/N ) becomes written as in
Eq. (50), while the total Green’s function correction term reads
as in Eq. (51):

G1(λ) = G0
1

N

[
J 2G2

0(
1 − J 2G2

0

)2 − 3
(JG0)4

1 − J 2G2
0

]
. (58)

The interpretation of the extra terms seems rather clear: it
pertains to the reduced number of “degrees of freedom” of the
system, within the Hamiltonian and the corresponding matrix
of (a reduced number of) possible states; the “restriction”
being found in the equal probability condition for the binary
distribution of matrix elements, but in the “extension” in the
± sign of these matrix elements.

It can be usefully reinstated that the term in brackets
in Eq. (14) leads to the relevant term in Eq. (19), thereby
allowing us to distinguish the difference between matrices with
Gaussian distributed matrix elements and those with a binary
distribution considered in this paper. This term subsequently
sustains Eqs. (34) and (38) for the 1/N correction to ρ(λ),
whence going beyond the DJ analysis [45].

Beside analytic works, simulation results are presented. The
comparison between the analytical formulas and the numerical
diagonalization results for finite size matrices exhibits an
excellent agreement, confirming the correctness of the first-
order finite size expression.

It has been emphasized that the 1/N corrections of the
AED diverge at the band edges of the semicircle. This

FIG. 8. Comparison of the numerical simulation AED (blue)
vertical lines, delta functions, with the theoretical first-order O(1/N )
approximation (red) dotted line for N = 200.
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“problem” should be considered in further work. Some self-
consistency condition imposed on the diagrammatic formalism
should produce a finite AED throughout the whole spectrum.
However, this is obviously outside the present aim.

More recently, studies of the properties of random matrices
have found a new revitalization due to the mapping of networks
and graphs through their adjacency matrix. In these cases, an
additional input stems from the possible directionality of the
link or bond. Let us have in mind, for argument, the case
of a citation or any type of cooperation and/or competition
network. Due to the intrinsically time-dependent hierarchical
process, the adjacency matrix representing the network is
usually asymmetric, beside being a non-negative matrix.
This asymmetry, leading to complex eigenvalues, significantly
widens the realm of investigations [55,56]. The asymmetry
case is not treated in the present paper but is mentioned in
this conclusion section, for any reader guideline interested in
pursuing the present work.

Thus, further work, if we may suggest so, should be
programed to apply the approach in view of obtaining results
on disordered systems characterized, e.g., (i) by symmetric
matrices having more complicated structures, as in financial
or socio-economic matters [55–57], or (ii) when more than one
type of disorder appears, as is the case very often in materials
[58–60], and (iii) by nonsymmetric matrices: see the cases
of citation or co-authorship networks implying link ordering
[61–63], that of bipartite graphs [64], that of physiology [65],
or that of financial markets [66–70], among recent relevant
cases.
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APPENDIX: ON “NEGLECTING” DIAGONAL TERMS
IN THE RIGHT-HAND SIDE OF EQ. (13)

Recall Eq. (13) transforming a product of cosines into a
product of exponentials, apparently including diagonal (i = j )
terms on the right-hand side, but not including them on the
right-hand side. Although this should be much incorrect indeed
on rigorous grounds, let it be recalled that

ln

[
cos

A√
(N )

]
	 ln

[
1 − A2

2N
+ · · ·

]
	 − A2

2N
+O

(
1

N2

)
,

(A1)

to leading order in N . Therefore,

ρ(λ) = − 2

Nπ
Im

∂

∂λ
lim
n→0

1

n

⎧⎨
⎩
(

eiπ/4

π1/2

)Nn ∫ ∞

−∞

∏
i;α

dxi;α

×
[

exp

(
−iλ

∑
i;α

(
xα

i

)2)]

×
∏
i<j

[
cos

(
2J√
N

∑
α

xα
i xα

j

)
− 1

]⎫⎬
⎭ (A2)

can be rewritten as in Eq. (14)

∏
i<j

cos

(
2J√
N

∑
α

xα
i xα

j

)

	 exp

⎧⎨
⎩
∑
i,j

⎡
⎣−J 2

N

(∑
α

xα
i xα

j

)2
⎤
⎦

×
⎡
⎣1 + 2J 2

3N

(∑
α

xα
i xα

j

)2
⎤
⎦+ O(N−3)

⎫⎬
⎭, (A3)

when neglecting the contribution of the diagonal terms. These
read

∑
i,j

⎡
⎣−J 2

N

(∑
α

(
xα

i

)2)2
⎤
⎦
⎡
⎣1 + 2J 2

3N

(∑
α

(
xα

i

)2)2
⎤
⎦. (A4)

The first term

	
∑

i

⎡
⎣(∑

α

(
xα

i

)2)2
⎤
⎦ (A5)

and the second term (coming for the consideration of finite
size effects)

	
∑

i

⎡
⎣(∑

α

(
xα

i

)2)4
⎤
⎦ (A6)

give a contribution O(n2) and O(n4), respectively, in the
limit n → 0. Thus the diagonal elements in Eq. (14), after
the transformation resulting from the expansion (13), can be
neglected in the limit n → 0.

Notice that, if we had started with the ensemble described
by Wigner, i.e., the diagonal elements equal to zero, we should
have arrived at Eq. (61) for ρ(λ) as well. In this sense, it is even
irrelevant whether the diagonal elements are equal to zero.
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[68] J. Kwapień, S. Drożdż, A. Z. Gorski, and P. Oswiecimka,

Acta Phys. Pol. B 37, 3039 (2006).
[69] G. Livan and L. Rebecchi, Eur. Phys. J. B 85, 213 (2012).
[70] See in particular Fig. 1(g) in C. Biely and S. Thurner, Quantum

Finance 8, 705 (2008).

062115-10

http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1103/PhysRevB.47.11487
http://dx.doi.org/10.1088/0305-4470/26/15/026
http://dx.doi.org/10.1088/0305-4470/26/15/026
http://dx.doi.org/10.1088/0305-4470/26/15/026
http://dx.doi.org/10.1088/0305-4470/26/15/026
http://dx.doi.org/10.1007/BF01449896
http://dx.doi.org/10.1007/BF01449896
http://dx.doi.org/10.1007/BF01449896
http://dx.doi.org/10.1007/BF01449896
http://www.cs.yale.edu/spielman/PAPERS/SGTChapter.pdf
http://dx.doi.org/10.1103/PhysRevE.90.012146
http://dx.doi.org/10.1103/PhysRevE.90.012146
http://dx.doi.org/10.1103/PhysRevE.90.012146
http://dx.doi.org/10.1103/PhysRevE.90.012146
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1103/RevModPhys.87.1037
http://dx.doi.org/10.1088/1751-8113/40/7/009
http://dx.doi.org/10.1088/1751-8113/40/7/009
http://dx.doi.org/10.1088/1751-8113/40/7/009
http://dx.doi.org/10.1088/1751-8113/40/7/009
http://dx.doi.org/10.1103/PhysRevE.62.1526
http://dx.doi.org/10.1103/PhysRevE.62.1526
http://dx.doi.org/10.1103/PhysRevE.62.1526
http://dx.doi.org/10.1103/PhysRevE.62.1526
http://dx.doi.org/10.1088/1751-8113/42/3/035001
http://dx.doi.org/10.1088/1751-8113/42/3/035001
http://dx.doi.org/10.1088/1751-8113/42/3/035001
http://dx.doi.org/10.1088/1751-8113/42/3/035001
http://dx.doi.org/10.1088/1751-8113/46/30/305203
http://dx.doi.org/10.1088/1751-8113/46/30/305203
http://dx.doi.org/10.1088/1751-8113/46/30/305203
http://dx.doi.org/10.1088/1751-8113/46/30/305203
http://dx.doi.org/10.1214/154957805100000177
http://dx.doi.org/10.1214/154957805100000177
http://dx.doi.org/10.1214/154957805100000177
http://dx.doi.org/10.1214/154957805100000177
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/0305-4470/9/10/011
http://dx.doi.org/10.1088/1742-5468/2013/03/P03014
http://dx.doi.org/10.1088/1742-5468/2013/03/P03014
http://dx.doi.org/10.1088/1742-5468/2013/03/P03014
http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.2307/1970079
http://dx.doi.org/10.1090/S0002-9947-1959-0109367-6
http://dx.doi.org/10.1090/S0002-9947-1959-0109367-6
http://dx.doi.org/10.1090/S0002-9947-1959-0109367-6
http://dx.doi.org/10.1090/S0002-9947-1959-0109367-6
http://dx.doi.org/10.1016/0024-3795(81)90150-6
http://dx.doi.org/10.1016/0024-3795(81)90150-6
http://dx.doi.org/10.1016/0024-3795(81)90150-6
http://dx.doi.org/10.1016/0024-3795(81)90150-6
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1103/PhysRevLett.109.030602
http://dx.doi.org/10.1002/rsa.20406
http://dx.doi.org/10.1002/rsa.20406
http://dx.doi.org/10.1002/rsa.20406
http://dx.doi.org/10.1002/rsa.20406
http://arxiv.org/abs/arXiv:1503.08702
http://dx.doi.org/10.1139/p90-187
http://dx.doi.org/10.1139/p90-187
http://dx.doi.org/10.1139/p90-187
http://dx.doi.org/10.1139/p90-187
http://dx.doi.org/10.1143/JPSJ.53.2943
http://dx.doi.org/10.1143/JPSJ.53.2943
http://dx.doi.org/10.1143/JPSJ.53.2943
http://dx.doi.org/10.1143/JPSJ.53.2943
http://dx.doi.org/10.1016/0003-4916(84)90240-9
http://dx.doi.org/10.1016/0003-4916(84)90240-9
http://dx.doi.org/10.1016/0003-4916(84)90240-9
http://dx.doi.org/10.1016/0003-4916(84)90240-9
http://dx.doi.org/10.1016/0003-4916(84)90023-X
http://dx.doi.org/10.1016/0003-4916(84)90023-X
http://dx.doi.org/10.1016/0003-4916(84)90023-X
http://dx.doi.org/10.1016/0003-4916(84)90023-X
http://dx.doi.org/10.1088/0305-4470/23/23/029
http://dx.doi.org/10.1088/0305-4470/23/23/029
http://dx.doi.org/10.1088/0305-4470/23/23/029
http://dx.doi.org/10.1088/0305-4470/23/23/029
http://dx.doi.org/10.1103/PhysRevE.90.052109
http://dx.doi.org/10.1103/PhysRevE.90.052109
http://dx.doi.org/10.1103/PhysRevE.90.052109
http://dx.doi.org/10.1103/PhysRevE.90.052109
http://dx.doi.org/10.1103/PhysRevLett.95.230201
http://dx.doi.org/10.1103/PhysRevLett.95.230201
http://dx.doi.org/10.1103/PhysRevLett.95.230201
http://dx.doi.org/10.1103/PhysRevLett.95.230201
http://dx.doi.org/10.1016/j.physrep.2012.01.007
http://dx.doi.org/10.1016/j.physrep.2012.01.007
http://dx.doi.org/10.1016/j.physrep.2012.01.007
http://dx.doi.org/10.1016/j.physrep.2012.01.007
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1103/PhysRevE.87.012803
http://dx.doi.org/10.1088/0305-4470/13/2/007
http://dx.doi.org/10.1088/0305-4470/13/2/007
http://dx.doi.org/10.1088/0305-4470/13/2/007
http://dx.doi.org/10.1088/0305-4470/13/2/007
http://dx.doi.org/10.1103/PhysRevE.90.010102
http://dx.doi.org/10.1103/PhysRevE.90.010102
http://dx.doi.org/10.1103/PhysRevE.90.010102
http://dx.doi.org/10.1103/PhysRevE.90.010102
http://dx.doi.org/10.1103/PhysRevB.13.1329
http://dx.doi.org/10.1103/PhysRevB.13.1329
http://dx.doi.org/10.1103/PhysRevB.13.1329
http://dx.doi.org/10.1103/PhysRevB.13.1329
http://dx.doi.org/10.1016/j.physa.2010.07.029
http://dx.doi.org/10.1016/j.physa.2010.07.029
http://dx.doi.org/10.1016/j.physa.2010.07.029
http://dx.doi.org/10.1016/j.physa.2010.07.029
http://dx.doi.org/10.1140/epjb/e2013-30985-6
http://dx.doi.org/10.1140/epjb/e2013-30985-6
http://dx.doi.org/10.1140/epjb/e2013-30985-6
http://dx.doi.org/10.1140/epjb/e2013-30985-6
http://dx.doi.org/10.12693/APhysPolA.114.491
http://dx.doi.org/10.12693/APhysPolA.114.491
http://dx.doi.org/10.12693/APhysPolA.114.491
http://dx.doi.org/10.12693/APhysPolA.114.491
http://dx.doi.org/10.1103/PhysRevB.4.3350
http://dx.doi.org/10.1103/PhysRevB.4.3350
http://dx.doi.org/10.1103/PhysRevB.4.3350
http://dx.doi.org/10.1103/PhysRevB.4.3350
http://dx.doi.org/10.1016/j.earscirev.2009.10.011
http://dx.doi.org/10.1016/j.earscirev.2009.10.011
http://dx.doi.org/10.1016/j.earscirev.2009.10.011
http://dx.doi.org/10.1016/j.earscirev.2009.10.011
http://dx.doi.org/10.1007/s11192-014-1253-3
http://dx.doi.org/10.1007/s11192-014-1253-3
http://dx.doi.org/10.1007/s11192-014-1253-3
http://dx.doi.org/10.1007/s11192-014-1253-3
http://dx.doi.org/10.1103/PhysRevE.91.012825
http://dx.doi.org/10.1103/PhysRevE.91.012825
http://dx.doi.org/10.1103/PhysRevE.91.012825
http://dx.doi.org/10.1103/PhysRevE.91.012825
http://dx.doi.org/10.1103/PhysRevE.80.046110
http://dx.doi.org/10.1103/PhysRevE.80.046110
http://dx.doi.org/10.1103/PhysRevE.80.046110
http://dx.doi.org/10.1103/PhysRevE.80.046110
http://dx.doi.org/10.1088/1742-5468/2007/08/P08026
http://dx.doi.org/10.1088/1742-5468/2007/08/P08026
http://dx.doi.org/10.1088/1742-5468/2007/08/P08026
http://dx.doi.org/10.1103/PhysRevE.62.5557
http://dx.doi.org/10.1103/PhysRevE.62.5557
http://dx.doi.org/10.1103/PhysRevE.62.5557
http://dx.doi.org/10.1103/PhysRevE.62.5557
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevE.70.026110
http://dx.doi.org/10.1103/PhysRevE.70.026110
http://dx.doi.org/10.1103/PhysRevE.70.026110
http://dx.doi.org/10.1103/PhysRevE.70.026110
http://dx.doi.org/10.1140/epjb/e2012-30085-3
http://dx.doi.org/10.1140/epjb/e2012-30085-3
http://dx.doi.org/10.1140/epjb/e2012-30085-3
http://dx.doi.org/10.1140/epjb/e2012-30085-3
http://dx.doi.org/10.1080/14697680701691477
http://dx.doi.org/10.1080/14697680701691477
http://dx.doi.org/10.1080/14697680701691477
http://dx.doi.org/10.1080/14697680701691477



