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Abstract

Background

Recent studies suggest that lung microbiome dysbiosis, the disease associated disruption of the
lung microbial community, might play a key role in chronic obstructive pulmonary disease
(COPD) exacerbations. However, characterizing temporal variability of the microbiome from

large longitudinal COPD cohorts is needed to better understand this phenomenon.

Methods
We performed a 16S ribosomal RNA survey of microbiome on 716 sputum samples collected
longitudinally at baseline and exacerbations from 281 COPD subjects at three UK clinical

centres as part of the COPDMAP consortium.

Results

The microbiome composition was similar among centres and between stable and exacerbations
except for a small significant decrease of Veillonella at exacerbations. The abundance of
Moraxella was negatively associated with bacterial alpha diversity. Microbiomes were distinct
between exacerbations associated with bacteria versus eosinophilic airway inflammation.
Dysbiosis at exacerbations, measured as significant within subject deviation of microbial
composition relative to baseline, was present in 41% of exacerbations. Dysbiosis was associated
with increased exacerbation severity indicated by a greater fall in FEV1, FVC and a greater
increase in CAT score, particularly in exacerbations with concurrent eosinophilic inflammation.
There was a significant difference of temporal variability of microbial alpha and beta diversity
among centres. The variation of beta diversity significantly decreased in those subjects with

frequent historical exacerbations.

Conclusions
Microbial dysbiosis is a feature of some exacerbations and its presence, especially in concert
with eosinophilic inflammation, is associated with more severe exacerbations indicated by a

greater fall in lung function.
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Key messages:
What is the key question?
How does the lung microbial community vary over time within COPD subjects and how is

microbial dysbiosis in exacerbations implicated in disease characteristics?

What is the bottom line?
Dysbiosis of the sputum microbiome in COPD exacerbations, particularly in concert with
eosinophilic inflammation, is associated with a greater decline in lung capacity during the

exacerbation event.

Why read on?
The presented study entails the largest COPD sputum microbiome cohort to date with multiple
study centres, aiming at in-depth examination of microbial temporal variability, dysbiosis, and

disease phenotypes.
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Introduction

Chronic obstructive pulmonary disease (COPD) is characterized by persistent symptoms and
impaired lung function as a consequence of small airway obliteration and alveolar destruction,
and is associated with chronic lung inflammation 3. Acute exacerbations of COPD are a sudden
onset of sustained worsening of these symptoms. Bacteria potentially play a key role in COPD
pathogenesis “°, with respiratory bacterial pathogens such as Haemophilus influenzae, Moraxella
catarrhalis and Streptococcus pneumoniae capable of driving host inflammatory responses .
Since bacteria frequently interact with each other and respond to altered environmental
conditions, the consortium of the lung microbial community, known as the lung microbiome,

could be important in the crosstalk between respiratory tract pathogens and host response '° 1.

Emerging studies collectively suggest that the lung microbiome differs between stable and
exacerbations in COPD (!5, for review see '°). For example, Molyneaux et al. found an
increased representation of pathogenic Proteobacteria in particular Haemophilus in
exacerbations following rhinovirus infection '2. Huang et al. observed an increase of
Proteobacteria during exacerbations with a predicted loss of function in maintenance of
microbial homeostasis '>. Recently, several of us published a longitudinal analysis of the sputum
microbiome from 87 subjects from BEAT-COPD cohort !'. Our analysis revealed an increased
Proteobacteria versus Firmicutes during exacerbations. In addition, we found distinct
microbiome composition between bacterial and eosinophilic exacerbations. In light of the
heterogeneous nature of COPD exacerbations, the lung microbiome has potential as a biomarker

to assist in the precision medicine treatments for specific COPD patient subpopulations.

Although insightful, results from these previous studies have limitations in terms of
understanding microbial dysbiosis during exacerbations, as most of these studies comparing the
microbiome at stable and exacerbations involved only one single sampling point of each state.
The lung microbiome is temporally dynamic and can vary even in stable state '°. Thus the
microbial changes during exacerbations are a mixture of both the disease associated disruption of
microbial community or dysbiosis, and the regular temporal perturbations of the lung microbial

composition. Therefore, examining the baseline variation of the lung microbiome is an important

4
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first step to more precisely assess the extent of microbial dysbiosis during exacerbations. On the
other hand, understanding temporal variability of the lung microbiome within individuals is also
important in disease understanding. Disorder of the temporal balance of microbial ecosystem in
the respiratory tract could trigger a dysregulated host immune response that results in negative
effects on host biology '°. Linking microbial temporal variation to disease characteristics and
host inflammatory profiles could potentially lead to monitoring and manipulating the stability of

airway microbial composition as a therapeutic strategy for COPD.

A finer-grained longitudinal sampling of microbiome at multiple stable and exacerbation visits is
necessary to quantitatively measure temporal variability of the microbiome and assess the
significance of microbial dysbiosis during exacerbations. Here we describe a longitudinal 16S
ribosomal RNA (rRNA) gene based microbiome survey on 716 sputum samples collected
sequentially at baseline and exacerbations over a period of up to two years duration from 281
COPD subjects at three UK centres as part of the COPDMAP consortium. This entails one of the
largest COPD sputum microbiome cohorts to date aiming at in-depth examination of temporal
variability of the microbiome. We provide new insights into temporal changes of the microbiome

and its potential implication in disease progression.
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Material and Methods

Subjects and samples

Full information on subject inclusion/exclusion criteria, sputum sample collection, microbiome
and statistical analyses are provided in the online supplementary appendix. Briefly, sputum
samples were collected at multiple longitudinal baseline and exacerbation visits from COPD
subjects at three clinical centres, Imperial College London, University of Leicester and
University Hospital of South Manchester (hereafter referred to as London, Leicester and

Manchester, respectively) as part of the COPDMAP consortium (www.copdmap.org). All

sputum samples were immediately stored at -80°C and shipped frozen in batches for analysis.
Exacerbations were treated with corticosteroids and antibiotics according to guidelines 7. The

protocol summary is available at https://clinicaltrials.gov/ (Identifier: NCT01620645).

Microbiome analysis

For quality control purposes, all DNA extractions, sequencing and data analyses were performed
in a single, centralized lab at the GSK R&D facility in Collegeville, Pennsylvania, USA.
Bacterial genomic DNA was extracted from frozen sputum samples using the Qiagen DNA Mini
kit (Qiagen, CA, USA) as per manufacture protocol. The V4 hypervariable region of the 16S
rRNA gene was PCR amplified and sequenced using multiplexed Illumina Miseq platform with
the proper controls against reagent contamination as described previously ''. Sequencing reads
were processed using QIIME pipeline version 1.9 '8, The default set of criteria was used to
remove low quality and chimeric reads. The remaining reads were subject to a close reference
OTU picking (97% identity cutoff). Sequence data are deposited at the National Centre for
Biotechnology Information Sequence Read Archive (SRP102480).

Statistical analysis

Exacerbation phenotypes were defined using microbiological and clinical criteria as established
previously [12]. Phenotypes of 146 exacerbations samples were undetermined due to missing
data. Partial Least Squares Discriminant Analysis (PLS-DA) was performed on exacerbation
phenotypes and microbiome and/or clinical data using SIMCA-P (Umetrics, Stockholm,

Sweden) °. Dysbiosis at exacerbations was measured as the deviation (Z-score) of the first
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Principal Coordinate (PC1) of the weighted UniFrac distance for exacerbation samples relative to
all baseline PC1s from the same subject. Temporal variability of microbial alpha and beta
diversity was measured using the metrics described by Flores et al. 2°. A general linear model
(GLM) was constructed between demographic and baseline clinical variables and temporal
variability of alpha and beta diversity among subjects. The model was optimized in a stepwise
algorithm using the “step” function in the R stats package ?'. The false discovery rate (FDR)

method was used to adjust P-values for multiple testing wherever applicable 2.
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Results

Overview of the COPDMAP sputum microbiome

Microbial composition was determined for 716 sputum samples collected at baseline and
exacerbations from 281 COPDMAP subjects at three centres. The number of samples varies
from one to nine per subject (Fig. S1). Demographic and baseline clinical data were recorded for
subjects at initiation of sample collection (Table 1, Table S1). A set of 16 clinical and
biochemical characteristics were further collected longitudinally (Table 2, Table S2). From DNA
sequences of the V4 hypervariable region of the 16S rRNA gene, a total of 3,784 operational

taxonomic units (OTUs) were identified using 97% identity cut-off after rarefaction.

Table 1. Major demographic and baseline clinical features of all subjects.

Demographic and baseline features All subjects (N=281) *
Gender Male: 187 (70.3%), Female: 79 (29.7%)
Agel 70 (8.1)
BMI 272 (5.4)

. 0, . 0, . 0 .
Baseline GOLD status 1:30 (11.4%), 2: 132 ((580&%//;), 3: 78 (29.7%), 4: 23
. (V]

Treatment * Antibiotics: 38 (15.3%), Steroids: 9 (3.6%), Both: 202

(81.1%)
Number of cigarette packs per year ! 47 (30)
Number of exacerbation per year ! 1.1(1.6)
Baseline FEV1 1.5 (0.6)
Baseline FEV1% 56.3 (18.9)
Baseline FEV1 predicted 2.6 (0.5)
Baseline FVC 2.9 (1.0)
Baseline FEV1/FVC ratio 0.5(0.1)
CAT score 18.7 (7.3)
CES-D score ! 10 (13)
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SGRQ total score

47.4(18.2)

T Categorical data present as number (proportion). ¥ Continuous data present as mean (SD) unless stated below.

! Median (interquartile range).

* 15 subjects were missing any demographic or clinical data.

# The numbers represent exacerbation events, thus include subjects with more than one exacerbation.

Table 2. Major longitudinal clinical features at baseline and exacerbations of all samples.

Longitudinal features All samples Visits P-value !
(N=716) Baseline Exacerbations
(N=446) (N=270)
FEVI f 1.4 (0.5) 1.5 (0.5) 1.2(0.5) <0.001
FVC 2.8(0.9) 3.0 (0.8) 2.5(0.9) <0.001
FEV1/FVC ratio 0.5(0.2) 0.5(0.2) 0.5(0.2) 0.26
CAT score 21.1 (7.4) 19.6 (7.1) 24.2 (7.0) <0.001
C-reactive protein (CRP) ! 5.0 (11.0) 3.0(5.0) 10.0 (27.0) <0.001 2
Blood neutrophil count (X10° cells/L) 5523) 4.9 (1.7) 6.2(2.7) <0.001
Blood lymphocyte count (X10° cells/L) 1.8 (0.7) 1.8 (0.6) 1.8 (0.7) 0.49
Blood monocyte count (X10° cells/L) 0.7 (0.3) 0.6 (0.2) 0.7 (0.3) <0.001
Blood eosinophil count (X10? cells/L) ! 0.2(0.2) 0.2(0.2) 0.2(0.2) 0.18 2
Blood basophil count (X10° cells/L) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.01
Sputum neutrophil count % ! 78.8 (33.8) 75.1 (34.0) 84.2 (28.5) <0.001 2
Sputum lymphocyte count % ! 0.0 (0.5) 0.0 (0.3) 0.2 (1.0) 0.028 2
Sputum eosinophil count % ! 0.8 (2.0) 0.8(2.2) 0.5 (2.0) 0.07 2
Sputum macrophage count % ! 13.0 (21.2) 14.5(23.2) 8.5(19.0) <0.001 2
Sputum epithelial count % ! 3.2(8.0) 4.0(9.8) 2.0(4.8) <0.001 2

T Data present as mean (SD) unless stated below.

! Median (interquartile range).

fP-value was calculated for baseline and exacerbations comparison using T-test unless stated below.

2 Mann-Whitney-Wilcoxon Test.
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Similar to other sputum or lung microbiome studies ''"!°23-26, the vast majority of OTUs
belonged to Proteobacteria (52.3%), Firmicutes (28.7%), Bacteroidetes (15.0%) and
Actinobacteria (1.9%) at the phylum level (Table S3, Fig. S2). At the genus level, Haemophilus
(25.8%) was most abundant across all samples, followed by Veillonella (15.8%) and Prevotella
(13.2%). Other common genera in the airway such as Streptococcus (4.4%) and Moraxella
(4.0%) were also among the most abundant genera identified. As a quality control for sample
processing and sequence analyses, an additional aliquot of sputum was collected as duplicates for
11 samples from the same subject at the same visit. Duplicates all had low UniFrac distance and

were highly similar in microbial composition (Fig. S3).

Overall, the microbiome composition was similar between baseline and exacerbation samples
with a small significant decrease of Veillonella at exacerbations (repeated measures ANOVA,
FDR-adjusted (adj.) P=0.042) (Fig. 1A). The microbiome composition was similar among
centres with a significantly higher alpha diversity in the London cohort (Fig. S4A). Within each
centre, there was a significant decrease of alpha diversity (Shannon, repeated measures ANOVA,
P=1.1e-4) and a non-significant increase of Moraxella (repeated measures ANOVA, adj. P=
0.092) at Leicester (Fig. S4B). A strong negative correlation was found between the abundance

of Moraxella and alpha diversity for all samples (Shannon, R=-0.445, adj. P<9.6¢e-14, Fig. 1B).

Similar to previously observed !!, distinct microbial populations were found in bacterial and
eosinophilic exacerbations, with a significantly decreased alpha diversity (Shannon, T-test
P=0.008) and significantly increased proportion of Proteobacteria (T-test, adj. P=0.001) versus
Bacteroidetes (T-test, adj. P=0.002) in bacterial exacerbations compared to eosinophilic
exacerbations (Fig. 1C-D, Fig. S5A). An improvement in predicting the two phenotypes was
observed according to PLS-DA by combining the clinical and microbiome datasets versus using
the clinical data only (Fig. S5B). Within individual centres, this trend was more pronounced for

Leicester samples than those of London or Manchester (Fig. S5C).

We performed multivariate analysis to identify clinical factors significantly associated with

microbial alpha and beta diversity. Among all clinical variables, C-reactive protein (CRP), a
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known inflammatory marker for COPD prognosis 7, was the most significant factor correlated
with both alpha diversity (Shannon, P<0.01, Fig. S6) and beta diversity at the phylum level
among all samples (Table S4). No factors significantly predicted variation at the genus and OTU
levels. CRP was also significantly associated with alpha and beta diversity of the predicted

functional profiles of the sputum microbiome using the software PICRUSt 2 (Table S5).

Increased disease severity in exacerbations with dysbiosis

To explore variation of the sputum microbiome over time, we plotted the first Principal
Coordinate (PC1) of the weighted UniFrac distance for all samples within each subject as a
proxy for their microbial compositions, as it explains 49.0% of the total beta diversity (Fig. 2A).
Only subjects with at least two baseline and one exacerbation samples were included. Visual
inspection of the plot revealed a deviation of PC1 for many exacerbation samples relative to
baseline samples from the same subject (Fig. 2A, Fig. S7A), indicating specific exacerbations
were particularly susceptible to alternation of microbial composition or dysbiosis. In comparison,
the sputum microbiome was much less variable among baseline samples. This is supported by a
significantly increased within subject standard deviation of PC1 (paired T-test, P=6.7¢-4)
combining baseline and exacerbation samples compared to baseline samples only, with the most

profound changes at the Leicester centre (Fig. S7B).

Having assessed temporal variability of the sputum microbiome at baseline, we measured the
dysbiosis of exacerbation as a Z-score that measures how much its PC1 deviated from all
baseline PC1s from the same individual. A total of 49 exacerbations (out of 119 exacerbations
with a Z-score, 41.2%) were identified as in significant dysbiosis state with an absolute Z-score
greater than 2 (P<0.05, Fig. 2A, Fig. S7C). In most of these exacerbations, the sputum
microbiome shifted from a balanced composition to a more biased one predominated by one or a
few taxa with a decreased alpha diversity (Fig. S8). Bacterial genera of Veillonella, Cronobacter
and Haemophilus were among the key taxa associated with the dysbiosis (Fig. S9). Across all
exacerbation subtypes, bacterial exacerbations had the highest number of dysbiosis events than
other subtypes (Fig. S7C), with the caveat that phenotype could not be defined for 21 of the 49

exacerbations due to missing data.
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For exacerbations with or without significant dysbiosis, we compared the exacerbation severity
determined by change in lung function and symptoms relative to the last baseline measurement.
We found a non-significantly greater decrease in FEV1 and FVC and a greater increase in CAT
score for exacerbations with dysbiosis compared to those without (Fig. 2B). Such trends were
overall consistent within each centre, except for a reversal trend of FVC in Manchester which
has a smaller sample size (Fig. S10A). Also, the exacerbation Z-score was positively correlated,
albeit non-significantly, with changes of FEV1 and FVC, and negatively correlated with change
of CAT score (Fig. S10B), suggesting that the more dysbiotic the exacerbation was, the more
severe the clinical outcome could possibly be. As eosinophil abundance is another important
factor for COPD exacerbations, we reclassified exacerbations according to both the dysbiosis
and blood eosinophil indices. Doing so revealed four subgroups of exacerbations where
dysbiosis and/or high blood eosinophil level (>3 x10® cells/L) are the predominant feature.
Exacerbations with both dysbiosis and high eosinophil level had the greatest changes of FEV1
(statistically significant, ANOVA P=0.02), FVC and CAT score, whereas exacerbations with
neither dysbiosis nor high eosinophils level were associated with the least of such changes (Fig.

2B).

Exacerbation frequency associated with temporal variability of the sputum microbiome
We next sought to quantify temporal variability of the sputum microbiome within subjects using
the metrics described by Flores et al. 2°. Only subjects with at least three samples were included.
The variability of microbial alpha diversity was denoted as the coefficient of variation of
Shannon for samples within each subject. The variability of beta diversity was calculated as the
median of pairwise UniFrac distances for samples within each subject. A wide range of temporal
variability of alpha and beta diversity was observed across subjects (Fig. 3A). We noted that
there was a significantly lower variation of alpha and beta diversity among London subjects than
Leicester or Manchester ones (T-test, P<0.001). As expected, both variations of alpha and beta
diversity were significantly higher in subjects with dysbiosis exacerbations than those without

(T-test, P<0.01).
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We constructed a generalized linear model (GLM) to look for clinical characteristics associated
with temporal variability of the sputum microbiome. A set of 14 demographic and baseline
clinical variables were included for each subject. Centre, FEV1/FVC ratio and number of
exacerbations per year (prior to the sampling visits) were significant factors for the variation of

alpha diversity across all subjects (Table 3). When reconstructing GLM for each centre, number

of exacerbations per year was significant for London and Leicester subjects. In addition, centre

and historical number of exacerbations per year were significantly associated with beta diversity

variation across all subjects (Table 2). A continuous decreasing trend of historical number of

exacerbations per year was observed toward subjects with greater variation of beta diversity (Fig.

3B). Likewise, a continuous decreasing trend of beta diversity variation was observed toward

subjects with higher historical number of exacerbations per year (ANOVA, P<0.05, Fig. 3C).

Similar trends were observed within each centre (Fig. S11) and for temporal variability of

baseline microbiomes only (Fig. S12), although the association of baseline microbiome

variability was not statistically significant (variability of beta diversity: P=0.088, variability of

alpha diversity: P=0.249).

Table 3. List of demographic and baseline clinical variables significantly associated with

temporal variability of microbial alpha and beta diversity among subjects. P-values are indicated

for variables in the model. Significant variables are highlighted in asterisks.

Temporal variability

Alpha diversity (Shannon)

Beta diversity (Weighted UniFrac distance)

All London  Leicester = Manchester All London Leicester Manchester
Historical number of 0.01* 0.01* 3E-4* 0.32 0.01* 0.03* 0.47 0.21
exacerbations per year

BMI 0.111% 0.73 0.01%* 0.53 0.51 0.70 0.04* 0.88
CES-D score 0.50 0.03 0.35 0.68 0.44 0.32 0.63 0.01%*
Packs of cigarette per year 0.40 0.67 0.31 0.38 0.07¢ 0.50 0.02* 0.58
FEV1 0.03 0.76 0.59 0.82 0.64 0.95 0.17% 0.41
FEV1/FVC ratio 0.65 0.88 0.01%* 0.40 0.87 0.36 0.77 0.98
Age 0.54 0.03* 0.38 0.23 0.70 0.37 0.99 0.26
SGRQ total score 0.61 0.92 0.80 0.38 0.33 0.44 0.40 0.03*
Centre 2.6E-12* NA NA NA 1.8E-10%* NA NA NA

t Variables not statistically significant but present in the model.
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Discussion

Culture-independent analyses have uncovered a previously unappreciated complexity of the lung
bacterial community that has reshaped our understanding of COPD aetiology ! 2*2¢_ Our study
reveals a diverse sputum microbiome among the COPDMAP subjects and further validates the
association of microbiome with specific exacerbation phenotypes. We also show in-depth
temporal variation of the sputum microbial community within subjects and identified potential

new relationships of the microbiome variation with patient disease progression.

One advantage of our study is the longitudinal sampling at multiple baseline and exacerbation
visits compared to most previous studies where a single snapshot of exacerbations was taken. It
is well appreciated that the lung microbiome is inherently variable shaped by the balance of
ecological factors like microbial immigration and elimination '°. During exacerbations, the
balance goes awry with dysregulated host immune response and inflammation leading to further
microbial changes or dysbiosis. Therefore, to explicitly determine the extent of disease
associated dysbiosis one would need to first distil the normal perturbations of microbial
composition. Our study underscores the importance of considering temporal variability of the

microbiome in understanding the significance of microbial dysbiosis in COPD exacerbations.

From assessing temporal variation of the sputum microbiome, we identified a subset of
exacerbation events in which significant dysbiosis is a feature. In these exacerbations, the
microbiome composition shifted from a highly diverse microbial community to a less diverse
one characterized by the predominance of only one or few genera. These dysbiosis exacerbations
appear to be the main source of microbial temporal variation and are associated with a greater
worsening of health status and decrease of lung capacity. To our knowledge, this is the first
evidence to suggest that respiratory dysbiosis is associated with increased exacerbation severity
in COPD, although the strength of this association is weak and needs to be further validated in
additional cohorts and by other measures of disease severity. Altered environmental conditions

2930 which in

in exacerbations could disturb the composition of the lung microbial community
turn elicit a dysregulated host immune response through bacterial metabolites and virulent

factors, resulting in a sustained damage cycle with an accelerated decline in lung function !,
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Whether dysbiosis is the cause or consequence of the increased exacerbation severity and how
this imbalance is implicated in host inflammatory pathways are new questions that will impact

on how we understand and treat COPD exacerbations.

It has been recently emphasized that not all COPD exacerbations are the same *2. Our results
suggest the existence of subgroups of exacerbations associated with or without significant
microbial dysbiosis or increased eosinophilia. Importantly, these subgroups likely reflect
fundamental differences in their immuno-pathogenesis driving the exacerbations, and therefore
might require alternative therapeutic approaches. Interestingly, the most severe exacerbations
were observed in the small subgroup that had evidence of bacterial dysbiosis in concert with
eosinophilic inflammation. It is possible that this group might require interventions such as
antibiotics and steroids (i.e. prednisolone) to target both bacteria and eosinophilic inflammation
whereas in contrast those without bacterial dysbiosis nor eosinophilic inflammation might not
require these therapies. Our results perhaps establish a new paradigm in stratifying COPD
exacerbations according to dysbiosis and eosinophil measurements, which could be informative
guiding future personalized therapies. Further efforts in identifying biomarkers for these
subgroups in larger populations could help refine exacerbation subtypes toward phenotype-

specific clinical management.

We found a significantly decreased historical exacerbation frequency in subjects with higher
temporal variation of the microbial beta diversity. In COPD there is a subset of frequent
exacerbators that are particularly susceptible to recurrent exacerbations independent of other risk
factors ¥ 34, Thus, low temporal variability of the sputum microbiome might come as a
predicative factor for the frequent exacerbator phenotypes. We observed that a rise in
exacerbation frequency was associated with a decline in the variation of microbiome beta
diversity. This trend was statistically significant in the analysis of all microbiome samples but
non-significant for that of a subset comprised of only baseline samples. Therefore, the
predictability of sputum microbiome variability for exacerbation frequency still warrants further

validation in larger longitudinal cohort studies.
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An important novelty of our study is that there were three unique study centres. All samples were
processed in a central lab, which minimizes microbiome variation due to differences in
experimental protocols. Interestingly, there was a significant difference in temporal variability of
the microbiome among subjects in the three centres, even though their overall microbiome
profiles were highly similar. Factors accounting for the among-centre variation could include
differences in the frequency of clinical visits and compliance with medications, although we lack
the comparative data across centres to suggest specific causes. Our study suggests that the impact
of demographics and clinical procedures on the lung microbial community needs to be broadly

considered in future studies.

Our study has several caveats. First, only a proportion of the bacterial 16S rRNA gene was
sequenced to characterize the microbial population both here and in previous lung microbiome
studies "', Thus the resolution is insufficient when it comes to species-level characterization of
the microbiome, whereas ecological and functional interaction of individual species or strains
could be important in the underlying disease aetiology. Second, despite a large cohort size,
longitudinal sampling remains relatively sparse for many subjects with variation in the timing of
their sampling visits. Further efforts on characterizing respiratory tract metagenomes in a more
regularly and intensively followed patient cohort together with host multi-omics profiling would
promise to bring in a more comprehensive picture of the intrinsic variability of the lung

microbiome and its implications in disease heterogeneity.

In summary, our study revealed a temporally dynamic sputum microbiome in COPD subjects in
which microbial dysbiosis in exacerbations, particularly in concert with eosinophilic
inflammation, was associated with increased exacerbation severity. Our findings underscore the
importance of considering temporal variability of the sputum microbiome in COPD

heterogeneity and its potential as a biomarker toward more precise treatment of COPD.
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Figure legends

Figure 1. Baseline and exacerbation microbiome profiles across centres. A) Alpha diversity
(Shannon) and compositions of major phyla and genera in samples at baseline and exacerbations.
B) Correlation between alpha diversity (Shannon) and relative abundance of Moraxella. Each dot
represents a sample coloured by baseline or exacerbations. C) Alpha diversity (Shannon) and
composition of major phyla and genera in exacerbation samples of different exacerbation
phenotypes. D) Principal Coordinate Analysis (PCoA) showing distinct clustering of samples
with bacterial and eosinophilic exacerbations. The number of samples is indicated in the
parenthesis under each subgroup in the bar chart. B: bacterial; V: viral; E: eosinophilic; BE:
bacterial and eosinophilic; BV: bacterial and viral; and Pauci: pauci-inflammatory. Error bars are
within 1.5 interquartile range of the upper and lower quartiles. *** adj. £<0.001; ** adj. P<0.01;
*adj. P<0.05.

Figure 2. Dysbiosis of the sputum microbiome. A) Scatter plot of the first Principal Coordinate
(PC1) of all samples within each subject at each centre. Only subjects with at least two baseline
and one exacerbation samples were included. Exacerbation samples are highlighted in red. Box-
whisker plots indicate the distribution of baseline PC1s within each subject. The confidence
bands indicate the 95% confidence interval for the mean baseline PC1s within each subject.
Exacerbations outside the confidence bands are the ones with significant dysbiosis (absolute Z-
score>2, P<0.05). B) Box-whisker plots showing changes of FEV1, FVC and CAT score
between dysbiosis and non-dysbiosis exacerbations, and among four subgroups of exacerbations
classified by dysbiosis and blood eosinophils level. Error bars are within 1.5 interquartile range

of the upper and lower quartiles.

Figure 3. Temporal variability of the sputum microbiome. A) Temporal variability of microbial
alpha (coefficient of variation of Shannon) and beta diversity (median of pairwise weighted
UniFrac distances) for each subject. Only subjects with at least three samples were included.
Subjects with dysbiosis exacerbations are highlighted in yellow. B) Box-whisker plots showing
exacerbation frequency of subjects within different quartile groups of temporal variability of

alpha and beta diversity, with the first quartile defined as ‘low’, the second and third quartiles as
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‘medium’ and the fourth quartile as ‘high’. C) Box-whisker plots showing temporal variability of
alpha and beta diversity in subjects with different classes of exacerbation frequency. The number
of samples is indicated in the parenthesis under each subgroup in the box-whisker plot. Error
bars are within 1.5 interquartile range of the upper and lower quartiles. ANOVA test for
temporal variability of alpha and beta diversity: *** adj. P<0.001; ** adj. P<0.01; * adj. P<0.05.
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