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Abstract 31 

Background 32 

Recent studies suggest that lung microbiome dysbiosis, the disease associated disruption of the 33 

lung microbial community, might play a key role in chronic obstructive pulmonary disease 34 

(COPD) exacerbations. However, characterizing temporal variability of the microbiome from 35 

large longitudinal COPD cohorts is needed to better understand this phenomenon.  36 

 37 

Methods 38 

We performed a 16S ribosomal RNA survey of microbiome on 716 sputum samples collected 39 

longitudinally at baseline and exacerbations from 281 COPD subjects at three UK clinical 40 

centres as part of the COPDMAP consortium. 41 

 42 

Results 43 

The microbiome composition was similar among centres and between stable and exacerbations 44 

except for a small significant decrease of Veillonella at exacerbations. The abundance of 45 

Moraxella was negatively associated with bacterial alpha diversity. Microbiomes were distinct 46 

between exacerbations associated with bacteria versus eosinophilic airway inflammation. 47 

Dysbiosis at exacerbations, measured as significant within subject deviation of microbial 48 

composition relative to baseline, was present in 41% of exacerbations. Dysbiosis was associated 49 

with increased exacerbation severity indicated by a greater fall in FEV1, FVC and a greater 50 

increase in CAT score, particularly in exacerbations with concurrent eosinophilic inflammation. 51 

There was a significant difference of temporal variability of microbial alpha and beta diversity 52 

among centres. The variation of beta diversity significantly decreased in those subjects with 53 

frequent historical exacerbations.  54 

 55 

Conclusions 56 

Microbial dysbiosis is a feature of some exacerbations and its presence, especially in concert 57 

with eosinophilic inflammation, is associated with more severe exacerbations indicated by a 58 

greater fall in lung function. 59 

  60 



3 
 
 

Key messages: 61 

What is the key question? 62 

How does the lung microbial community vary over time within COPD subjects and how is 63 

microbial dysbiosis in exacerbations implicated in disease characteristics? 64 

 65 

What is the bottom line? 66 

Dysbiosis of the sputum microbiome in COPD exacerbations, particularly in concert with 67 

eosinophilic inflammation, is associated with a greater decline in lung capacity during the 68 

exacerbation event. 69 

 70 

Why read on? 71 

The presented study entails the largest COPD sputum microbiome cohort to date with multiple 72 

study centres, aiming at in-depth examination of microbial temporal variability, dysbiosis, and 73 

disease phenotypes.   74 
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Introduction 75 

Chronic obstructive pulmonary disease (COPD) is characterized by persistent symptoms and 76 

impaired lung function as a consequence of small airway obliteration and alveolar destruction, 77 

and is associated with chronic lung inflammation 1-3. Acute exacerbations of COPD are a sudden 78 

onset of sustained worsening of these symptoms. Bacteria potentially play a key role in COPD 79 

pathogenesis 4 5, with respiratory bacterial pathogens such as Haemophilus influenzae, Moraxella 80 

catarrhalis and Streptococcus pneumoniae capable of driving host inflammatory responses 6-9. 81 

Since bacteria frequently interact with each other and respond to altered environmental 82 

conditions, the consortium of the lung microbial community, known as the lung microbiome, 83 

could be important in the crosstalk between respiratory tract pathogens and host response 10 11.  84 

 85 

Emerging studies collectively suggest that the lung microbiome differs between stable and 86 

exacerbations in COPD (11-15, for review see 16). For example, Molyneaux et al. found an 87 

increased representation of pathogenic Proteobacteria in particular Haemophilus in 88 

exacerbations following rhinovirus infection 12. Huang et al. observed an increase of 89 

Proteobacteria during exacerbations with a predicted loss of function in maintenance of 90 

microbial homeostasis 13. Recently, several of us published a longitudinal analysis of the sputum 91 

microbiome from 87 subjects from BEAT-COPD cohort 11. Our analysis revealed an increased 92 

Proteobacteria versus Firmicutes during exacerbations. In addition, we found distinct 93 

microbiome composition between bacterial and eosinophilic exacerbations. In light of the 94 

heterogeneous nature of COPD exacerbations, the lung microbiome has potential as a biomarker 95 

to assist in the precision medicine treatments for specific COPD patient subpopulations.  96 

 97 

Although insightful, results from these previous studies have limitations in terms of 98 

understanding microbial dysbiosis during exacerbations, as most of these studies comparing the 99 

microbiome at stable and exacerbations involved only one single sampling point of each state. 100 

The lung microbiome is temporally dynamic and can vary even in stable state 10.Thus the 101 

microbial changes during exacerbations are a mixture of both the disease associated disruption of 102 

microbial community or dysbiosis, and the regular temporal perturbations of the lung microbial 103 

composition. Therefore, examining the baseline variation of the lung microbiome is an important 104 
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first step to more precisely assess the extent of microbial dysbiosis during exacerbations. On the 105 

other hand, understanding temporal variability of the lung microbiome within individuals is also 106 

important in disease understanding. Disorder of the temporal balance of microbial ecosystem in 107 

the respiratory tract could trigger a dysregulated host immune response that results in negative 108 

effects on host biology 10. Linking microbial temporal variation to disease characteristics and 109 

host inflammatory profiles could potentially lead to monitoring and manipulating the stability of 110 

airway microbial composition as a therapeutic strategy for COPD.  111 

 112 

A finer-grained longitudinal sampling of microbiome at multiple stable and exacerbation visits is 113 

necessary to quantitatively measure temporal variability of the microbiome and assess the 114 

significance of microbial dysbiosis during exacerbations. Here we describe a longitudinal 16S 115 

ribosomal RNA (rRNA) gene based microbiome survey on 716 sputum samples collected 116 

sequentially at baseline and exacerbations over a period of up to two years duration from 281 117 

COPD subjects at three UK centres as part of the COPDMAP consortium. This entails one of the 118 

largest COPD sputum microbiome cohorts to date aiming at in-depth examination of temporal 119 

variability of the microbiome. We provide new insights into temporal changes of the microbiome 120 

and its potential implication in disease progression.  121 

  122 
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Material and Methods 123 

Subjects and samples 124 

Full information on subject inclusion/exclusion criteria, sputum sample collection, microbiome 125 

and statistical analyses are provided in the online supplementary appendix. Briefly, sputum 126 

samples were collected at multiple longitudinal baseline and exacerbation visits from COPD 127 

subjects at three clinical centres, Imperial College London, University of Leicester and 128 

University Hospital of South Manchester (hereafter referred to as London, Leicester and 129 

Manchester, respectively) as part of the COPDMAP consortium (www.copdmap.org). All 130 

sputum samples were immediately stored at -80oC and shipped frozen in batches for analysis. 131 

Exacerbations were treated with corticosteroids and antibiotics according to guidelines 17. The 132 

protocol summary is available at https://clinicaltrials.gov/ (Identifier: NCT01620645).  133 

 134 

Microbiome analysis 135 

For quality control purposes, all DNA extractions, sequencing and data analyses were performed 136 

in a single, centralized lab at the GSK R&D facility in Collegeville, Pennsylvania, USA. 137 

Bacterial genomic DNA was extracted from frozen sputum samples using the Qiagen DNA Mini 138 

kit (Qiagen, CA, USA) as per manufacture protocol. The V4 hypervariable region of the 16S 139 

rRNA gene was PCR amplified and sequenced using multiplexed Illumina Miseq platform with 140 

the proper controls against reagent contamination as described previously 11. Sequencing reads 141 

were processed using QIIME pipeline version 1.9 18. The default set of criteria was used to 142 

remove low quality and chimeric reads. The remaining reads were subject to a close reference 143 

OTU picking (97% identity cutoff). Sequence data are deposited at the National Centre for 144 

Biotechnology Information Sequence Read Archive (SRP102480). 145 

 146 

Statistical analysis 147 

Exacerbation phenotypes were defined using microbiological and clinical criteria as established 148 

previously [12]. Phenotypes of 146 exacerbations samples were undetermined due to missing 149 

data. Partial Least Squares Discriminant Analysis (PLS-DA) was performed on exacerbation 150 

phenotypes and microbiome and/or clinical data using SIMCA-P (Umetrics, Stockholm, 151 

Sweden) 19. Dysbiosis at exacerbations was measured as the deviation (Z-score) of the first 152 

http://www.copdmap.org/
https://clinicaltrials.gov/
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Principal Coordinate (PC1) of the weighted UniFrac distance for exacerbation samples relative to 153 

all baseline PC1s from the same subject. Temporal variability of microbial alpha and beta 154 

diversity was measured using the metrics described by Flores et al. 20. A general linear model 155 

(GLM) was constructed between demographic and baseline clinical variables and temporal 156 

variability of alpha and beta diversity among subjects. The model was optimized in a stepwise 157 

algorithm using the “step” function in the R stats package 21. The false discovery rate (FDR) 158 

method was used to adjust P-values for multiple testing wherever applicable 22. 159 

  160 



8 
 
 

Results 161 

Overview of the COPDMAP sputum microbiome 162 

Microbial composition was determined for 716 sputum samples collected at baseline and 163 

exacerbations from 281 COPDMAP subjects at three centres. The number of samples varies 164 

from one to nine per subject (Fig. S1). Demographic and baseline clinical data were recorded for 165 

subjects at initiation of sample collection (Table 1, Table S1). A set of 16 clinical and 166 

biochemical characteristics were further collected longitudinally (Table 2, Table S2). From DNA 167 

sequences of the V4 hypervariable region of the 16S rRNA gene, a total of 3,784 operational 168 

taxonomic units (OTUs) were identified using 97% identity cut-off after rarefaction.  169 

 170 

Table 1. Major demographic and baseline clinical features of all subjects. 171 

Demographic and baseline features All subjects (N=281) * 

Gender † Male: 187 (70.3%), Female: 79 (29.7%) 

Age ‡ 70 (8.1) 

BMI 27.2 (5.4) 

Baseline GOLD status 
1: 30 (11.4%), 2: 132 (50.2%), 3: 78 (29.7%), 4: 23 

(8.7%) 

Treatment # 
Antibiotics: 38 (15.3%), Steroids: 9 (3.6%), Both: 202 

(81.1%) 

Number of cigarette packs per year 1 47 (30) 

Number of exacerbation per year 1 1.1 (1.6) 

Baseline FEV1  1.5 (0.6) 

Baseline FEV1% 56.3 (18.9) 

Baseline FEV1 predicted 2.6 (0.5) 

Baseline FVC 2.9 (1.0) 

Baseline FEV1/FVC ratio 0.5 (0.1) 

CAT score 18.7 (7.3) 

CES-D score 1 10 (13) 
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SGRQ total score 47.4 (18.2) 
† Categorical data present as number (proportion). ‡ Continuous data present as mean (SD) unless stated below. 172 
1 Median (interquartile range). 173 
* 15 subjects were missing any demographic or clinical data. 174 
# The numbers represent exacerbation events, thus include subjects with more than one exacerbation. 175 

 176 

Table 2. Major longitudinal clinical features at baseline and exacerbations of all samples. 177 

Longitudinal features All samples 

(N=716) 

Visits P-value ‡ 

Baseline 

(N=446) 

Exacerbations 

(N=270) 

FEV1 † 1.4 (0.5) 1.5 (0.5) 1.2 (0.5) <0.001 

FVC 2.8 (0.9) 3.0 (0.8) 2.5 (0.9) <0.001 

FEV1/FVC ratio 0.5 (0.2) 0.5 (0.2) 0.5 (0.2) 0.26 

CAT score 21.1 (7.4) 19.6 (7.1) 24.2 (7.0) <0.001 

C-reactive protein (CRP) 1 5.0 (11.0) 3.0 (5.0) 10.0 (27.0) <0.001 2 

Blood neutrophil count (X109 cells/L) 5.5 (2.3) 4.9 (1.7) 6.2 (2.7) <0.001 

Blood lymphocyte count (X109 cells/L) 1.8 (0.7) 1.8 (0.6) 1.8 (0.7) 0.49 

Blood monocyte count (X109 cells/L) 0.7 (0.3) 0.6 (0.2) 0.7 (0.3) <0.001 

Blood eosinophil count (X109 cells/L)  1 0.2 (0.2) 0.2 (0.2) 0.2 (0.2) 0.18 2 

Blood basophil count (X109 cells/L) 0.0 (0.0) 0.1 (0.0) 0.0 (0.0) 0.01 

Sputum neutrophil count % 1 78.8 (33.8) 75.1 (34.0) 84.2 (28.5) <0.001 2 

Sputum lymphocyte count % 1 0.0 (0.5) 0.0 (0.3) 0.2 (1.0) 0.028 2 

Sputum eosinophil count % 1 0.8 (2.0) 0.8 (2.2) 0.5 (2.0) 0.07 2 

Sputum macrophage count % 1 13.0 (21.2) 14.5 (23.2) 8.5 (19.0) <0.001 2 

Sputum epithelial count % 1 3.2 (8.0) 4.0 (9.8) 2.0 (4.8) <0.001 2 

† Data present as mean (SD) unless stated below. 178 
1 Median (interquartile range). 179 
‡ P-value was calculated for baseline and exacerbations comparison using T-test unless stated below. 180 
2 Mann-Whitney-Wilcoxon Test. 181 

 182 
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Similar to other sputum or lung microbiome studies 11-15 23-26, the vast majority of OTUs 183 

belonged to Proteobacteria (52.3%), Firmicutes (28.7%), Bacteroidetes (15.0%) and 184 

Actinobacteria (1.9%) at the phylum level (Table S3, Fig. S2). At the genus level, Haemophilus 185 

(25.8%) was most abundant across all samples, followed by Veillonella (15.8%) and Prevotella 186 

(13.2%). Other common genera in the airway such as Streptococcus (4.4%) and Moraxella 187 

(4.0%) were also among the most abundant genera identified. As a quality control for sample 188 

processing and sequence analyses, an additional aliquot of sputum was collected as duplicates for 189 

11 samples from the same subject at the same visit. Duplicates all had low UniFrac distance and 190 

were highly similar in microbial composition (Fig. S3).  191 

 192 

Overall, the microbiome composition was similar between baseline and exacerbation samples 193 

with a small significant decrease of Veillonella at exacerbations (repeated measures ANOVA, 194 

FDR-adjusted (adj.) P= 0.042) (Fig. 1A). The microbiome composition was similar among 195 

centres with a significantly higher alpha diversity in the London cohort (Fig. S4A). Within each 196 

centre, there was a significant decrease of alpha diversity (Shannon, repeated measures ANOVA, 197 

P=1.1e-4) and a non-significant increase of Moraxella (repeated measures ANOVA, adj. P= 198 

0.092) at Leicester (Fig. S4B). A strong negative correlation was found between the abundance 199 

of Moraxella and alpha diversity for all samples (Shannon, R=-0.445, adj. P<9.6e-14, Fig. 1B).  200 

 201 

Similar to previously observed 11, distinct microbial populations were found in bacterial and 202 

eosinophilic exacerbations, with a significantly decreased alpha diversity (Shannon, T-test 203 

P=0.008) and significantly increased proportion of Proteobacteria (T-test, adj. P=0.001) versus 204 

Bacteroidetes (T-test, adj. P=0.002) in bacterial exacerbations compared to eosinophilic 205 

exacerbations (Fig. 1C-D, Fig. S5A). An improvement in predicting the two phenotypes was 206 

observed according to PLS-DA by combining the clinical and microbiome datasets versus using 207 

the clinical data only (Fig. S5B). Within individual centres, this trend was more pronounced for 208 

Leicester samples than those of London or Manchester (Fig. S5C). 209 

 210 

We performed multivariate analysis to identify clinical factors significantly associated with 211 

microbial alpha and beta diversity. Among all clinical variables, C-reactive protein (CRP), a 212 
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known inflammatory marker for COPD prognosis 27, was the most significant factor correlated 213 

with both alpha diversity (Shannon, P<0.01, Fig. S6) and beta diversity at the phylum level 214 

among all samples (Table S4). No factors significantly predicted variation at the genus and OTU 215 

levels. CRP was also significantly associated with alpha and beta diversity of the predicted 216 

functional profiles of the sputum microbiome using the software PICRUSt 28 (Table S5). 217 

 218 

Increased disease severity in exacerbations with dysbiosis 219 

To explore variation of the sputum microbiome over time, we plotted the first Principal 220 

Coordinate (PC1) of the weighted UniFrac distance for all samples within each subject as a 221 

proxy for their microbial compositions, as it explains 49.0% of the total beta diversity (Fig. 2A). 222 

Only subjects with at least two baseline and one exacerbation samples were included. Visual 223 

inspection of the plot revealed a deviation of PC1 for many exacerbation samples relative to 224 

baseline samples from the same subject (Fig. 2A, Fig. S7A), indicating specific exacerbations 225 

were particularly susceptible to alternation of microbial composition or dysbiosis. In comparison, 226 

the sputum microbiome was much less variable among baseline samples. This is supported by a 227 

significantly increased within subject standard deviation of PC1 (paired T-test, P=6.7e-4) 228 

combining baseline and exacerbation samples compared to baseline samples only, with the most 229 

profound changes at the Leicester centre (Fig. S7B). 230 

 231 

Having assessed temporal variability of the sputum microbiome at baseline, we measured the 232 

dysbiosis of exacerbation as a Z-score that measures how much its PC1 deviated from all 233 

baseline PC1s from the same individual. A total of 49 exacerbations (out of 119 exacerbations 234 

with a Z-score, 41.2%) were identified as in significant dysbiosis state with an absolute Z-score 235 

greater than 2 (P<0.05, Fig. 2A, Fig. S7C). In most of these exacerbations, the sputum 236 

microbiome shifted from a balanced composition to a more biased one predominated by one or a 237 

few taxa with a decreased alpha diversity (Fig. S8). Bacterial genera of Veillonella, Cronobacter 238 

and Haemophilus were among the key taxa associated with the dysbiosis (Fig. S9). Across all 239 

exacerbation subtypes, bacterial exacerbations had the highest number of dysbiosis events than 240 

other subtypes (Fig. S7C), with the caveat that phenotype could not be defined for 21 of the 49 241 

exacerbations due to missing data. 242 
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 243 

For exacerbations with or without significant dysbiosis, we compared the exacerbation severity 244 

determined by change in lung function and symptoms relative to the last baseline measurement. 245 

We found a non-significantly greater decrease in FEV1 and FVC and a greater increase in CAT 246 

score for exacerbations with dysbiosis compared to those without (Fig. 2B). Such trends were 247 

overall consistent within each centre, except for a reversal trend of FVC in Manchester which 248 

has a smaller sample size (Fig. S10A). Also, the exacerbation Z-score was positively correlated, 249 

albeit non-significantly, with changes of FEV1 and FVC, and negatively correlated with change 250 

of CAT score (Fig. S10B), suggesting that the more dysbiotic the exacerbation was, the more 251 

severe the clinical outcome could possibly be. As eosinophil abundance is another important 252 

factor for COPD exacerbations, we reclassified exacerbations according to both the dysbiosis 253 

and blood eosinophil indices. Doing so revealed four subgroups of exacerbations where 254 

dysbiosis and/or high blood eosinophil level (>3 x108 cells/L) are the predominant feature. 255 

Exacerbations with both dysbiosis and high eosinophil level had the greatest changes of FEV1 256 

(statistically significant, ANOVA P=0.02), FVC and CAT score, whereas exacerbations with 257 

neither dysbiosis nor high eosinophils level were associated with the least of such changes (Fig. 258 

2B).  259 

 260 

Exacerbation frequency associated with temporal variability of the sputum microbiome 261 

We next sought to quantify temporal variability of the sputum microbiome within subjects using 262 

the metrics described by Flores et al. 20. Only subjects with at least three samples were included. 263 

The variability of microbial alpha diversity was denoted as the coefficient of variation of 264 

Shannon for samples within each subject. The variability of beta diversity was calculated as the 265 

median of pairwise UniFrac distances for samples within each subject. A wide range of temporal 266 

variability of alpha and beta diversity was observed across subjects (Fig. 3A). We noted that 267 

there was a significantly lower variation of alpha and beta diversity among London subjects than 268 

Leicester or Manchester ones (T-test, P<0.001). As expected, both variations of alpha and beta 269 

diversity were significantly higher in subjects with dysbiosis exacerbations than those without 270 

(T-test, P<0.01).  271 

 272 
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We constructed a generalized linear model (GLM) to look for clinical characteristics associated 273 

with temporal variability of the sputum microbiome. A set of 14 demographic and baseline 274 

clinical variables were included for each subject. Centre, FEV1/FVC ratio and number of 275 

exacerbations per year (prior to the sampling visits) were significant factors for the variation of 276 

alpha diversity across all subjects (Table 3). When reconstructing GLM for each centre, number 277 

of exacerbations per year was significant for London and Leicester subjects. In addition, centre 278 

and historical number of exacerbations per year were significantly associated with beta diversity 279 

variation across all subjects (Table 2). A continuous decreasing trend of historical number of 280 

exacerbations per year was observed toward subjects with greater variation of beta diversity (Fig. 281 

3B). Likewise, a continuous decreasing trend of beta diversity variation was observed toward 282 

subjects with higher historical number of exacerbations per year (ANOVA, P<0.05, Fig. 3C). 283 

Similar trends were observed within each centre (Fig. S11) and for temporal variability of 284 

baseline microbiomes only (Fig. S12), although the association of baseline microbiome 285 

variability was not statistically significant (variability of beta diversity: P=0.088, variability of 286 

alpha diversity: P=0.249). 287 

 288 

Table 3. List of demographic and baseline clinical variables significantly associated with 289 

temporal variability of microbial alpha and beta diversity among subjects. P-values are indicated 290 

for variables in the model. Significant variables are highlighted in asterisks. 291 

Temporal variability Alpha diversity (Shannon) Beta diversity (Weighted UniFrac distance) 

All London Leicester Manchester All London Leicester Manchester 

Historical number of 

exacerbations per year 

0.01* 0.01* 3E-4* 0.32 0.01* 0.03* 0.47 0.21 

BMI 0.11 ‡ 0.73 0.01* 0.53 0.51 0.70 0.04* 0.88 

CES-D score 0.50 0.03 0.35 0.68 0.44 0.32 0.63 0.01* 

Packs of cigarette per year 0.40 0.67 0.31 0.38 0.07‡ 0.50 0.02* 0.58 

FEV1 0.03 0.76 0.59 0.82 0.64 0.95 0.17‡ 0.41 

FEV1/FVC ratio 0.65 0.88 0.01* 0.40 0.87 0.36 0.77 0.98 

Age 0.54 0.03* 0.38 0.23 0.70 0.37 0.99 0.26 

SGRQ total score 0.61 0.92 0.80 0.38 0.33 0.44 0.40 0.03* 

Centre 2.6E-12* NA NA NA 1.8E-10* NA NA NA 
‡ Variables not statistically significant but present in the model.  292 
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Discussion 293 

Culture-independent analyses have uncovered a previously unappreciated complexity of the lung 294 

bacterial community that has reshaped our understanding of COPD aetiology 11-15 23-26. Our study 295 

reveals a diverse sputum microbiome among the COPDMAP subjects and further validates the 296 

association of microbiome with specific exacerbation phenotypes. We also show in-depth 297 

temporal variation of the sputum microbial community within subjects and identified potential 298 

new relationships of the microbiome variation with patient disease progression.  299 

 300 

One advantage of our study is the longitudinal sampling at multiple baseline and exacerbation 301 

visits compared to most previous studies where a single snapshot of exacerbations was taken. It 302 

is well appreciated that the lung microbiome is inherently variable shaped by the balance of 303 

ecological factors like microbial immigration and elimination 10. During exacerbations, the 304 

balance goes awry with dysregulated host immune response and inflammation leading to further 305 

microbial changes or dysbiosis. Therefore, to explicitly determine the extent of disease 306 

associated dysbiosis one would need to first distil the normal perturbations of microbial 307 

composition. Our study underscores the importance of considering temporal variability of the 308 

microbiome in understanding the significance of microbial dysbiosis in COPD exacerbations. 309 

 310 

From assessing temporal variation of the sputum microbiome, we identified a subset of 311 

exacerbation events in which significant dysbiosis is a feature. In these exacerbations, the 312 

microbiome composition shifted from a highly diverse microbial community to a less diverse 313 

one characterized by the predominance of only one or few genera. These dysbiosis exacerbations 314 

appear to be the main source of microbial temporal variation and are associated with a greater 315 

worsening of health status and decrease of lung capacity. To our knowledge, this is the first 316 

evidence to suggest that respiratory dysbiosis is associated with increased exacerbation severity 317 

in COPD, although the strength of this association is weak and needs to be further validated in 318 

additional cohorts and by other measures of disease severity. Altered environmental conditions 319 

in exacerbations could disturb the composition of the lung microbial community 29 30, which in 320 

turn elicit a dysregulated host immune response through bacterial metabolites and virulent 321 

factors, resulting in a sustained damage cycle with an accelerated decline in lung function 31. 322 
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Whether dysbiosis is the cause or consequence of the increased exacerbation severity and how 323 

this imbalance is implicated in host inflammatory pathways are new questions that will impact 324 

on how we understand and treat COPD exacerbations. 325 

 326 

It has been recently emphasized that not all COPD exacerbations are the same 32. Our results 327 

suggest the existence of subgroups of exacerbations associated with or without significant 328 

microbial dysbiosis or increased eosinophilia. Importantly, these subgroups likely reflect 329 

fundamental differences in their immuno-pathogenesis driving the exacerbations, and therefore 330 

might require alternative therapeutic approaches. Interestingly, the most severe exacerbations 331 

were observed in the small subgroup that had evidence of bacterial dysbiosis in concert with 332 

eosinophilic inflammation. It is possible that this group might require interventions such as 333 

antibiotics and steroids (i.e. prednisolone) to target both bacteria and eosinophilic inflammation 334 

whereas in contrast those without bacterial dysbiosis nor eosinophilic inflammation might not 335 

require these therapies. Our results perhaps establish a new paradigm in stratifying COPD 336 

exacerbations according to dysbiosis and eosinophil measurements, which could be informative 337 

guiding future personalized therapies. Further efforts in identifying biomarkers for these 338 

subgroups in larger populations could help refine exacerbation subtypes toward phenotype-339 

specific clinical management. 340 

 341 

We found a significantly decreased historical exacerbation frequency in subjects with higher 342 

temporal variation of the microbial beta diversity. In COPD there is a subset of frequent 343 

exacerbators that are particularly susceptible to recurrent exacerbations independent of other risk 344 

factors 33 34. Thus, low temporal variability of the sputum microbiome might come as a 345 

predicative factor for the frequent exacerbator phenotypes. We observed that a rise in 346 

exacerbation frequency was associated with a decline in the variation of microbiome beta 347 

diversity. This trend was statistically significant in the analysis of all microbiome samples but 348 

non-significant for that of a subset comprised of only baseline samples. Therefore, the 349 

predictability of sputum microbiome variability for exacerbation frequency still warrants further 350 

validation in larger longitudinal cohort studies.  351 

 352 
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An important novelty of our study is that there were three unique study centres. All samples were 353 

processed in a central lab, which minimizes microbiome variation due to differences in 354 

experimental protocols. Interestingly, there was a significant difference in temporal variability of 355 

the microbiome among subjects in the three centres, even though their overall microbiome 356 

profiles were highly similar. Factors accounting for the among-centre variation could include 357 

differences in the frequency of clinical visits and compliance with medications, although we lack 358 

the comparative data across centres to suggest specific causes. Our study suggests that the impact 359 

of demographics and clinical procedures on the lung microbial community needs to be broadly 360 

considered in future studies.  361 

 362 

Our study has several caveats. First, only a proportion of the bacterial 16S rRNA gene was 363 

sequenced to characterize the microbial population both here and in previous lung microbiome 364 

studies 11-14. Thus the resolution is insufficient when it comes to species-level characterization of 365 

the microbiome, whereas ecological and functional interaction of individual species or strains 366 

could be important in the underlying disease aetiology. Second, despite a large cohort size, 367 

longitudinal sampling remains relatively sparse for many subjects with variation in the timing of 368 

their sampling visits. Further efforts on characterizing respiratory tract metagenomes in a more 369 

regularly and intensively followed patient cohort together with host multi-omics profiling would 370 

promise to bring in a more comprehensive picture of the intrinsic variability of the lung 371 

microbiome and its implications in disease heterogeneity. 372 

 373 

In summary, our study revealed a temporally dynamic sputum microbiome in COPD subjects in 374 

which microbial dysbiosis in exacerbations, particularly in concert with eosinophilic 375 

inflammation, was associated with increased exacerbation severity. Our findings underscore the 376 

importance of considering temporal variability of the sputum microbiome in COPD 377 

heterogeneity and its potential as a biomarker toward more precise treatment of COPD. 378 

 379 
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Figure legends 396 

Figure 1. Baseline and exacerbation microbiome profiles across centres. A) Alpha diversity 397 

(Shannon) and compositions of major phyla and genera in samples at baseline and exacerbations. 398 

B) Correlation between alpha diversity (Shannon) and relative abundance of Moraxella. Each dot 399 

represents a sample coloured by baseline or exacerbations. C) Alpha diversity (Shannon) and 400 

composition of major phyla and genera in exacerbation samples of different exacerbation 401 

phenotypes. D) Principal Coordinate Analysis (PCoA) showing distinct clustering of samples 402 

with bacterial and eosinophilic exacerbations. The number of samples is indicated in the 403 

parenthesis under each subgroup in the bar chart. B: bacterial; V: viral; E: eosinophilic; BE: 404 

bacterial and eosinophilic; BV: bacterial and viral; and Pauci: pauci-inflammatory. Error bars are 405 

within 1.5 interquartile range of the upper and lower quartiles. *** adj. P<0.001; ** adj. P<0.01; 406 

* adj. P<0.05. 407 

 408 

Figure 2. Dysbiosis of the sputum microbiome. A) Scatter plot of the first Principal Coordinate 409 

(PC1) of all samples within each subject at each centre. Only subjects with at least two baseline 410 

and one exacerbation samples were included. Exacerbation samples are highlighted in red. Box-411 

whisker plots indicate the distribution of baseline PC1s within each subject. The confidence 412 

bands indicate the 95% confidence interval for the mean baseline PC1s within each subject. 413 

Exacerbations outside the confidence bands are the ones with significant dysbiosis (absolute Z-414 

score>2, P<0.05). B) Box-whisker plots showing changes of FEV1, FVC and CAT score 415 

between dysbiosis and non-dysbiosis exacerbations, and among four subgroups of exacerbations 416 

classified by dysbiosis and blood eosinophils level. Error bars are within 1.5 interquartile range 417 

of the upper and lower quartiles.  418 

 419 

Figure 3. Temporal variability of the sputum microbiome. A) Temporal variability of microbial 420 

alpha (coefficient of variation of Shannon) and beta diversity (median of pairwise weighted 421 

UniFrac distances) for each subject. Only subjects with at least three samples were included. 422 

Subjects with dysbiosis exacerbations are highlighted in yellow. B) Box-whisker plots showing 423 

exacerbation frequency of subjects within different quartile groups of temporal variability of 424 

alpha and beta diversity, with the first quartile defined as ‘low’, the second and third quartiles as 425 
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‘medium’ and the fourth quartile as ‘high’. C) Box-whisker plots showing temporal variability of 426 

alpha and beta diversity in subjects with different classes of exacerbation frequency. The number 427 

of samples is indicated in the parenthesis under each subgroup in the box-whisker plot. Error 428 

bars are within 1.5 interquartile range of the upper and lower quartiles. ANOVA test for 429 

temporal variability of alpha and beta diversity: *** adj. P<0.001; ** adj. P<0.01; * adj. P<0.05. 430 

  431 
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