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Abstract

In contrast to recessive conditions with biallelic inheritance, identification of dominant
(monoallelic) mutations for Mendelian disorders is more difficult, because of the abundance of
benign heterozygous variants that act as massive background noise (typically, in a 400:1
excess ratio). To reduce this overflow of false positives in Next-Generation Sequencing (NGS)
screens, we developed DOMINO (https://wwwfbm.unil.ch/domino/), a tool assessing the
likelihood for a gene to harbor dominant changes. Unlike commonly-used predictors of
pathogenicity, DOMINO takes into consideration features that are the properties of genes,
rather than of variants. It uses a machine-learning approach to extract discriminant information
from a broad array of features (N=432), including: genomic data, intra- and interspecies
conservation, gene expression, protein-protein interactions, protein structure, etc. DOMINO’s
iterative architecture includes a training process on 985 genes with well-established
inheritance patterns for Mendelian conditions, and repeated cross-validation that optimizes its
discriminant power. When validated on 99 newly-discovered genes with pathogenic mutations,
the algorithm displays an excellent final performance, with an area under the curve (AUC) of
0.92. Furthermore, unsupervised analysis by DOMINO of real sets of NGS data from
individuals with intellectual disability or epilepsy correctly recognizes known genes and
predicts 9 new candidate genes, with very high confidence. In summary, DOMINO is a robust
and reliable tool that can predict dominance of candidate genes with high sensitivity and
specificity, making it a useful complement to any NGS pipeline dealing with the analysis of the

morbid human genome.



By allowing the simultaneous identification of thousands of DNA variants at once, Next-
Generation Sequencing (NGS) has revolutionized the way human genetic diseases are
investigated and diagnosed. Thanks to NGS and dedicated bioinformatics pipelines, both
research and molecular diagnosis can be performed in a truly unsupervised way, by assessing
thousands of DNA variants over entire genomes. However, this wealth of information is also
a confounding factor when single events determining monogenic conditions are sought.
Specifically, in Mendelian diseases only one or two pathogenic mutations must be precisely
identified among the myriad of innocuous variants that are naturally present in the human
genome, roughly reducing NGS-based analyses to the recognition of one true positive (the
actual mutation) from many false positives (benign DNA changes). The genome of a single
individual typically carries 20,000 exonic variants, including ~400 good-quality,
nonsynonymous, and rare DNA changes.!? In recessive conditions, two of such variants have
forcibly to be present in the same gene to cause disease, reducing the number of candidate
genes associated with the pathology to only 5-10, genome-wide.>3# In contrast, any gene
harboring one of these 400 variants in a heterozygous state represents potentially a gene
associated with a dominant disorder, making it difficult to identify the cause of this class of
genetic conditions (Figure 1A). As a consequence, NGS-based studies appear to be almost
10-fold more efficient in detecting novel genes linked to recessive disorders as compared to
dominant ones.® Prioritization of rare alleles as a function of their pathogenic potential at the
heterozygous state represents therefore a crucial problem in solving novel dominant cases.

Several in silico tools have been developed to predict the damaging effect of DNA
changes.®’ Yet, most of these methods focus on the deleteriousness of such variants on
protein structure and/or function, rather than on making a distinction between mutations that
are dominant or recessive. Other approaches predict haploinsufficiency of genes in the human
genome.®!! These methods provide a partial solution to this problem, since dominant variants
can produce a phenotype not only by haploinsufficiency, but also by gain-of-function or

dominant negative behavior.*?



Here we propose an alternative approach, based on the scoring of features that
distinguish genes associated with autosomal dominant (AD genes) vs. autosomal recessive
(AR genes) disorders, rather than on properties that are specific to a given DNA variant. To
this end, we developed a predictive tool, called DOMINO, based on Linear Discriminant
Analysis (LDA), trained on a set of genes with known inheritance mode and over a series of
specific features, and validated with an independent group of genes.

We first collected a list of genes from different sources: hOMIM, a manually curated
subset of OMIM?®2 (275 entries); RetNet, containing all genes involved in retinal degenerations
and characterized by a high degree of genetic heterogeneity (99 entries); the Nosology of
genetic skeletal diseases, listing genes linked to skeletal disorders (193 entries); and finally
the full list of newly-discovered genes associated with Mendelian disorders published from
2009 to 2015 in the American Journal of Human Genetics (418 entries). To ensure quality, we
manually curated these sources by discarding (i) all genes having both AD and AR inheritance,
(ii) genes directly linked to cancer, (iii) genes carrying mutations that were not reported in the
literature in more than one pedigree, and (iv) genes associated with non-clinical phenotypes
(Supplemental Methods and Table S1). We also removed all non-autosomal loci, as molecular
evolution acts differently on autosomal vs. X-linked genes.'® This process resulted in the
selection of 985 genes: 291 associated with AD phenotypes, and 694 with AR phenotypes,
which were used as the “training set”.

To provide the highest a priori discrimination power to our tool, we used a wide range
of features obtained from various databases and covering most of the attributes that genes
can have, including general genetic, evolutionary, interactional and functional information
(Supplemental Methods and Table S2). Of the 700 different gene-specific features that could
be extracted initially, 432 resulted to be available for protein-coding genes and allowed reliable
scoring. These features were then filtered based on their significant differences between AD
and AR genes of the training set (Supplemental Methods), producing in the end 308 usable

features.



An LDA-based algorithm was then chosen to allow machine-learning from the training
set of genes, not only because of its recognized performance as a statistical method, but also
to ensure the precise identification of the relevant features selected by the final model, allowing
potentially to gain information on their biological relevance in the context of AD vs. AR genes.
To build a robust scoring system and to prevent over-fitting the training data, we devised an
iterative process, able to identify the most discriminant features (Figure 1B, Supplemental
Methods). We first chose the one feature individually producing the highest area under the
curve (AUC) from the receiver operating characteristic (ROC) function. Then, we iteratively
tried to remove, replace or add features with specific criteria of acceptance (increase or
decrease of the AUC, Figure 1C). Each time a change was accepted, 10x 10-fold cross-
validation!® was applied to the training set, to generate a “testing set” (Figure 1C). We let the
algorithm run for 40 iterations and selected as best model the one for which there was an
optimal AUC for the training and testing sets (Figure 1D). In other words, we selected the least
complex model among those displaying similar AUC values. In our case, the best model was
the one tested at the 14™ iteration, composed of 8 features (Figure 1D) and displaying AUCs
of 0.912 and 0.908 for the training and testing sets, respectively (Figure 1E). Starting from the
15" iteration, we also observed a limited improvement of the testing set and a decreased
performance for the validation set, clearly indicating over-fitting of the model on the training
set, in support of this initial threshold selection. For each gene, in decreasing order of
importance, the selected features were: (1) the number of interactions with AD genes of the
training set from the combined score of STRING (a database regrouping functional protein
association networks from various sources), with a confidence >500 and a maximum of 8
interactions,’ (2) pRec (probability to be intolerant to homozygous but not heterozygous loss-
of-function variants) as extracted from ExAC,*® (3) the number of interactions with AD genes
of the training set from the experimental score of STRING, with a confidence >400 and a
maximum of 3 interactions,’” (4) the missense z-score from EXAC (intolerance to
missenses),*® (5) the average PhyloP score for mammals across the transcriptional start site
(TSS) (+/- 500 bp from the actual site),'® (6) the number of interactions with AD genes of the
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training set using the text-mining score of STRING, with a confidence >300 and a maximum
of 3 interactors,'’ (7) the ratio between the number of donor site variants and synonymous
variants present in EXAC,?° (8) a high mRNA half-life (>10h) in mouse embryonic stem cells?:
(Figure 1F, Figures S1).

At the end of this process, a score was computed for each gene, based on the LDA
model. To facilitate the interpretation of the results by the end user, we transformed this score
in a probability value, P(AD), measuring the probability for a gene to carry dominant mutations
(Figure 2A, and Supplemental Methods), and developed a web-based interface, enabling the
interactive query of candidate genes and the scoring of their AD potential. As expected from
the ROC curve (Figure 1E), most AD genes from the training set had a high P(AD), displaying
the opposite trend when compared to AR genes (Figures 2B and 2C). At the maximal
informedness point (LDA score = 0.225), computed by the Youden’s J equation (Jmax), the
model had a specificity of 84.7% and a sensitivity of 80.4%. Interestingly, genes known to
cause deleterious phenotypes by both dominant and recessive mechanisms, which we
recovered from the pool of discarded genes from the training set and tested as new
candidates, were scored either as AD or AR genes (Table S3). Specifically, out of 78 of such
loci, 43 (55.1%) had a LDA score>0.225, whereas the rest had P(AD)s comparable to those
of genes associated with recessive disorders (Figure S2A), indicating the absence of an
artefactual bias created by the model.

As a “validation set”, we used 99 genes with Mendelian mutations (26 AD genes and
73 AR genes) that we extracted from papers published from January 2016 to March 2017 in
The American Journal of Human Genetics and in Nature Genetics, to mimic the discovery of
newly-reported genes and confirm the absence of a potential bias towards well-studied and
annotated genes, composing the bulk of the training set (Table S4). For the validation set,
DOMINO predicted AD association with an AUC of 0.920 (Figures 1D and 1E) and specificity
and sensitivity of 88.5% and 78.1% at Jmax, respectively (Table S4, Figures 2D and 2E).
Specifically, 23 out of the 26 AD genes were correctly identified, confirming the reproducibility
of the data obtained with the training set. For the remaining three dominant genes that were
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not recognized as such, namely: OVOL2 [MIM: 616441], KLHL24 [MIM: 611295], and
SAMDIL [MIM: 611170], we noted unconventional mechanisms of pathogenicity. OVOL2
contains variants in the non-coding promoter region that results in a hyperactive promoter,??
while KLHL24 has a start-loss DNA change resulting in the use of a downstream alternative
initiation site.?®* The mechanisms of pathogenesis for SAMDOL are also rather unusual for a
Mendelian condition, and are characterized by particular chromosomal rearrangements.*

AD mutations can cause pathological phenotypes via different mechanisms, such as
gain-of-function or haploinsufficiency. To examine the effectiveness of DOMINO in these two
different cases, we evaluated AD genes from the training set as a function of the type of
causative mutations they harbor. We reasoned that genes carrying exclusively pathogenic
missenses (N=107) would mainly cause disease by gain-of-function mechanisms, whereas
those containing only truncating variants (N=40) would be compatible with a haploinsufficient
model of pathogenesis (genes carrying both types of variants were excluded, Table S5).
Scores for the two groups were not statistically different (Figures S2B and S2C), with average
P(AD) values of 0.66 and 0.74, respectively (p=0.42, by Wilcoxon rank sum test with continuity
correction). Therefore, in contrast to current tools, DOMINQO’s effectiveness is not affected by
the presence of specific mutations that a given gene may harbor, being a true predictor of AD
features regardless of their mode of pathogenesis.

The performance of our model was also assessed by scoring the probability of being
dominant for well-known false-positives for rare conditions in genome-wide screens,?® such
as genes encoding mucins, taste and olfactory receptors, etc. Out of 436 genes from this set,
only 4 had LDA scores higher than Jmax (Table S6, Figure 2F).

To assess the behavior of DOMINO on real sets of exome / genome data, we tested it
on genotypes from denovo-db, a database of de novo variants identified by NGS,2® from which
we extracted data from individuals with intellectual disability (ID) (N=1,010) or with epilepsy
(N=532). Following a stringent filtering on allelic frequency (never seen before in EXAC and
ESP),?° predicted effect on protein (nonsense, frameshift, missense) or on splicing (disruption

of splicing sites), we selected all genes with at least two variants in different individuals (N=82
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for intellectual disabilities and N=19 for epilepsy, Tables S7 and S8). By virtue of their
heterozygous de novo inheritance (i.e. dominant in following generations), their presence in
the same gene in more than one person, and of strict filtering procedures, all these DNA
changes likely represent pathogenic mutations, and therefore all genes harboring them
represent true AD genes detected by real NGS experiments. We then ranked all autosomal
genes from the human genome according to their P(AD) and retained those for which P(AD)
was 20.95, i.e. all genes that were predicted to be associated to dominant conditions with high
confidence. Subsequently, we assessed the enrichment of genes with P(AD)20.95 in these
two groups of diseases within all human autosomal genes with P(AD)=0.95, by a
hypergeometric test. We found that genes with at least two de novo variants from both the ID
and epilepsy cohorts were significantly enriched for high P(AD) genes, with associated p-
values of 1.8x10% (enrichment score=18.9) and 9.6x101* (enrichment score=43.1),
respectively (Figure 3).

Remarkably, for cases with epilepsy, all 15 genes with at least two variants in different
individuals and with high P(AD) were already known to be associated with dominant forms of
the disease (4 were present in the training set). For ID, 39 out of 51 bona fide genes with high
P(AD) were also already associated with AD forms of the diseases and allied conditions in
OMIM (11 were present in the training set). Among the 12 remaining genes, three were
previously predicted to be linked to this disorder by a in silico analyses,?” whereas the other 9
represent excellent intellectual disability candidate genes that we propose for validation by
forthcoming studies (Table 1). In more general terms, genes with high P(AD) genome-wide
represent therefore either genes that were already identified to be associated with dominant
conditions, or excellent new candidate genes for known or novel AD conditions. For instance,
among the top 20 genes with highest P(AD), 10 were previously found to carry mutations for
dominant disorders, while the remainder were not associated with any condition, and may be
considered in the future for disease association with very high confidence (Table 2).

Finally, we took advantage of the LDA approach, allowing a transparent assessment

of the features selected by the model, to gain possible insights on the general properties of
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AD vs. AR genes. Interestingly, the STRING components, accounting globally for the 47.5%
of the weight of the model, are strong determinants of dominance, implying that organization
in networks is seemingly rather important for AD genes/proteins. Moreover, among the many
parameters measuring evolutionary pressure and conservation across species, only the
PhyloP score at the TSS was retained (11.4% of the weight), while more classical scores,
such as for instance the dN/dS ratio,?® appeared to be less relevant and were not included in
the final model. Sequence-based features were nonetheless significant and have been
retained in DOMINO, accounting for 37.8% of the weight. Their significance seems to be
related to the global variation landscape in the human population, as identified in the EXAC
project.?’ Another intriguing result emerging from the selection of features is the fact that few
AD genes have a long mRNA half-life. This finding could possibly be related to the observation
that stable transcripts are enriched for mRNA encoding enzymes,? which are usually
associated with AR conditions. Also, our analysis of NGS data from individuals with intellectual
disability or epilepsy showed that DOMINO has relevant predictive power for identifying genes
that have not yet been studied or not yet found to carry pathogenic mutations.

In conclusion, DOMINO allows for an efficient prioritization of candidate genes for
autosomal dominant Mendelian conditions, independently from the mutational events that a
given gene may carry. Therefore, it can be used in combination with other predictors focusing
on deleteriousness of DNA variants to reduce the number of false positives in mutational
screens. In addition, the flexibility and modularity of the machine learning system enables the
incorporation, at every update, of new informative features as they may emerge from future
studies, making DOMINO a constantly evolving tool with progressively improving

performances.

SUPPLEMENTAL METHODS:
Supplemental methods, including details on data collection, gene features, and
properties of the algorithm are provided on the DOMINO main web site

(https:/wwwfbm.unil.ch/domino/).



Legends to figures

Figure 1. Rationale and general design of DOMINO

(A) A typical exome analysis identifies 20,000 variants, when compared to the human
reference genome. After filtering by rarity in the general population (minor allele frequency, or
MAF, <1%) and by functional impact of each variant, approximately 400 DNA changes remain.
These impact 300-400 genes, heterozygously (red dots), and 5-10 genes when they are
present as homozygous or compound heterozygous variants (blue dots).

(B) Workflow of DOMINO methodology, showing the different steps of gene selection,
annotation, and scoring.

(C) Details of the LDA algorithm. Relevant features are first preselected and then removed,
replaced or added iteratively to the model, with specific acceptance criteria. 10X 10-fold cross-
validation is performed at each step.

(D) Performance of the model as a function of the iterations performed. AUCs of the training,
testing and validation sets, as well as the number of features at each iteration are shown. The
cut-off value retained corresponded to the 14™ iteration and a set of 8 features. The model
converges starting from the 36™ iteration.

(E) ROC curves for the complete training, testing and validation sets, displaying AUC values
of 0.912, 0.908 and 0.920, respectively.

(F) Features composing the selected model. Average values for AD and AR genes of the
training set are shown, along with their relative weight. Units are as follows: for STRING
entries, number of interactions;'” for EXAC-pREC, probability of being intolerant to
homozygous but not heterozygous loss-of-function variants;'® for ExXAC-missense z-score,
value with respect to a distribution of expected number of missenses;'® PhyloP, average
PhyloP score with respect to a 1,000-bp window centered on the TSS;!® EXAC-don./syn.,
number of variants at the donor splicing site, normalized to the number of synonymous

variants in the coding sequence;?® mRNA half-life, 0 if < 10 hrs or 1 if > 10 hrs.?*
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Figure 2. Distributions of LDA scores and probabilities of being dominant, P(AD), for
genes in the training and validation sets.

(A) Density plots of LDA score for AD (red) and AR (blue) genes of the training set. Continuous
lines refer to raw values, whereas dashed lines to their normal approximations.

(B-F) Histograms of P(AD) for (B) AD genes of the training set, (C) AR genes of the training
set, (D) AD genes of the validation set, (E) AR genes of the validation set, (F) Genes known

to behave as false positives in NGS experiments, containing rare, non-pathogenic variants.

Figure 3. Distributions of P(AD) for genes with at least two de novo mutations in
different individuals with intellectual disability or epilepsy.

Histograms of P(AD) for (A) 82 genes carrying de novo mutations in 1,010 individuals with
intellectual disability or (B) 19 genes carrying de novo mutations in 532 individuals with

epilepsy, as extracted from denovo-db.
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Table 1. Candidate genes for intellectual disability, as predicted by DOMINO and

recurrent de novo mutations

Gene name Protein name P(AD) Function
AGO2 Argonaute 2 0.999989 Catalytic component of the RNA-induced
[MIM:606229] silencing complex (RISC)
CACNAIE Calcium Voltage- 0.995065 Calcium channels containing alpha-1E subunit. It
[MIM:601013] Gated Channel, could be involved in the modulation of firing
Subunit Alphal patterns of neurons
E
CHD3 Chromodomain  0.999901 Component of the histone deacetylase NuRD
[MIM:602120] Helicase DNA complex, participating in the remodelling of
Binding Protein chromatin
3
FBX0O11 F-Box Protein 11 0.973952 Part of a the SCF E3 ubiquitin-protein ligase
[MIM:607871] complex, mediating protein ubiquitination and
degradation
GRIA1 Glutamate 0.980767 Receptor for glutamate, mediating fast excitatory
[MIM:138248] lonotropic synaptic transmission in the central nervous
Receptor, AMPA system
Type, Subunit 1
KDM2B Lysine 0.989312 Histone demethylase that demethylates Lys-4
[MIM:609078] Demethylase 2B and Lys-36 of histone H3
LRP1 LDL Receptor 0.999963 Endocytic receptor involved in endocytosis and in
[MIM:107770] Related Protein phagocytosis of apoptotic cells
1
PPP2CA Protein 0.999621 Protein phosphatase 2A is one of the four major
[MIM:176915] Phosphatase 2, Ser/Thr phosphatases, implicated in the negative
Catalytic Subunit control of cell growth and division.
Alpha
TCF7L2 Transcription 0.999903 Participates in the Wnt signaling pathway and
[MIM:602228] Factor 7 Like 2 modulates MYC expression

12



Table 2. Top 20 AD genes, as predicted by DOMINO

Gene P(AD) In training set Main OMIM description

SF3B1 [MIM:605590] 0.999999 No Myelodysplastic syndrome,
somatic/dominant [MIM:614286]

CSNK2A1 [MIM:115440] 0.999998 No Okur-Chung syndrome, autosomal
dominant [MIM:617062]

LHX2 [MIM:603759] 0.999998 No Unassigned

DACH1 [MIM:603803] 0.999998 No Unassigned

PAX6 [MIM:607108] 0.999998 Yes, AD Aniridia, autosomal dominant
[MIM:106210]

PRPF8 [MIM:607300] 0.999996 No Retinitis pigmentosa, autosomal dominant
[MIM:600059]

ATP2B1 [MIM:108731] 0.999996 No Unassigned

DYNC1H1 0.999996 Yes, AD Charcot-Marie-Tooth disease, axonal,

[MIM:600112] autosomal dominant [MIM:614228]

PIK3CA [MIM:171834] 0.999995 Yes, AD Cowden syndrome 5, autosomal dominant
[MIM:615108]

PTEN [MIM:601728] 0.999995 No Bannayan-Riley-Ruvalcaba syndrome,
autosomal dominant [MIM:153480]

TBL1XR1 [MIM:608628] 0.999995 No Intellectual disability, autosomal dominant
[MIM:616944]

HNRNPR [MIM:607201] 0.999994 No Unassigned

TOP2B [MIM:126431] 0.999994 No Unassigned

GSK3B [MIM:605004] 0.999993 No Unassigned

CDK8 [MIM:603184] 0.999992 No Unassigned

XPO1 [MIM:602559] 0.999992 No Unassigned

SREBF1 [MIM:184756] 0.999992 No Unassigned

PIAS1 [MIM:603566] 0.999991 No Unassigned

NR2F2 [MIM:107773] 0.999991 Yes, AD Congenital heart defects, autosomal
dominant [MIM:615779]

BCL11B [MIM:606558] 0.999990 No Immunodeficiency 49, autosomal dominant

[MIM:617237]

13



Acknowledgements

This work was supported by the Swiss National Science Foundation (grant # 156260,

to CR) and by the PhD Fellowships in Life Science of the University of Lausanne (to MQ).

14



Web Resources

DOMINO (web interface and Supplemental Methods): https://wwwfbm.unil.ch/domino/
EXAC : http://fexac.broadinstitute.org/

Exome Variant Server (ESP) : https://evs.gs.washington.edu/EVS/

RetNet : https://sph.uth.edu/retnet/

STRING: https://string-db.orag/

Online Mendelian Inheritance in Man (OMIM): http://www.omim.org
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