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Abstract 

 

In contrast to recessive conditions with biallelic inheritance, identification of dominant 

(monoallelic) mutations for Mendelian disorders is more difficult, because of the abundance of 

benign heterozygous variants that act as massive background noise (typically, in a 400:1 

excess ratio). To reduce this overflow of false positives in Next-Generation Sequencing (NGS) 

screens, we developed DOMINO (https://wwwfbm.unil.ch/domino/), a tool assessing the 

likelihood for a gene to harbor dominant changes. Unlike commonly-used predictors of 

pathogenicity, DOMINO takes into consideration features that are the properties of genes, 

rather than of variants. It uses a machine-learning approach to extract discriminant information 

from a broad array of features (N=432), including: genomic data, intra- and interspecies 

conservation, gene expression, protein-protein interactions, protein structure, etc. DOMINO’s 

iterative architecture includes a training process on 985 genes with well-established 

inheritance patterns for Mendelian conditions, and repeated cross-validation that optimizes its 

discriminant power. When validated on 99 newly-discovered genes with pathogenic mutations, 

the algorithm displays an excellent final performance, with an area under the curve (AUC) of 

0.92. Furthermore, unsupervised analysis by DOMINO of real sets of NGS data from 

individuals with intellectual disability or epilepsy correctly recognizes known genes and 

predicts 9 new candidate genes, with very high confidence. In summary, DOMINO is a robust 

and reliable tool that can predict dominance of candidate genes with high sensitivity and 

specificity, making it a useful complement to any NGS pipeline dealing with the analysis of the 

morbid human genome. 
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By allowing the simultaneous identification of thousands of DNA variants at once, Next-

Generation Sequencing (NGS) has revolutionized the way human genetic diseases are 

investigated and diagnosed. Thanks to NGS and dedicated bioinformatics pipelines, both 

research and molecular diagnosis can be performed in a truly unsupervised way, by assessing 

thousands of DNA variants over entire genomes. However, this wealth of information is also 

a confounding factor when single events determining monogenic conditions are sought. 

Specifically, in Mendelian diseases only one or two pathogenic mutations must be precisely 

identified among the myriad of innocuous variants that are naturally present in the human 

genome, roughly reducing NGS-based analyses to the recognition of one true positive (the 

actual mutation) from many false positives (benign DNA changes). The genome of a single 

individual typically carries 20,000 exonic variants, including ~400 good-quality, 

nonsynonymous, and rare DNA changes.1,2 In recessive conditions, two of such variants have 

forcibly to be present in the same gene to cause disease, reducing the number of candidate 

genes associated with the pathology to only 5-10, genome-wide.1,3,4 In contrast, any gene 

harboring one of these 400 variants in a heterozygous state represents potentially a gene 

associated with a dominant disorder, making it difficult to identify the cause of this class of 

genetic conditions (Figure 1A). As a consequence, NGS-based studies appear to be almost 

10-fold more efficient in detecting novel genes linked to recessive disorders as compared to 

dominant ones.5 Prioritization of rare alleles as a function of their pathogenic potential at the 

heterozygous state represents therefore a crucial problem in solving novel dominant cases.  

Several in silico tools have been developed to predict the damaging effect of DNA 

changes.6,7 Yet, most of these methods focus on the deleteriousness of such variants on 

protein structure and/or function, rather than on making a distinction between mutations that 

are dominant or recessive. Other approaches predict haploinsufficiency of genes in the human 

genome.8-11 These methods provide a partial solution to this problem, since dominant variants 

can produce a phenotype not only by haploinsufficiency, but also by gain-of-function or 

dominant negative behavior.12 
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Here we propose an alternative approach, based on the scoring of features that 

distinguish genes associated with autosomal dominant (AD genes) vs. autosomal recessive 

(AR genes) disorders, rather than on properties that are specific to a given DNA variant. To 

this end, we developed a predictive tool, called DOMINO, based on Linear Discriminant 

Analysis (LDA), trained on a set of genes with known inheritance mode and over a series of 

specific features, and validated with an independent group of genes. 

We first collected a list of genes from different sources: hOMIM, a manually curated 

subset of OMIM13 (275 entries); RetNet, containing all genes involved in retinal degenerations 

and characterized by a high degree of genetic heterogeneity (99 entries); the Nosology of 

genetic skeletal diseases,14 listing genes linked to skeletal disorders (193 entries); and finally 

the full list of newly-discovered genes associated with Mendelian disorders published from 

2009 to 2015 in the American Journal of Human Genetics (418 entries). To ensure quality, we 

manually curated these sources by discarding (i) all genes having both AD and AR inheritance, 

(ii) genes directly linked to cancer, (iii) genes carrying mutations that were not reported in the 

literature in more than one pedigree, and (iv) genes associated with non-clinical phenotypes 

(Supplemental Methods and Table S1). We also removed all non-autosomal loci, as molecular 

evolution acts differently on autosomal vs. X-linked genes.15 This process resulted in the 

selection of 985 genes: 291 associated with AD phenotypes, and 694 with AR phenotypes, 

which were used as the “training set”. 

To provide the highest a priori discrimination power to our tool, we used a wide range 

of features obtained from various databases and covering most of the attributes that genes 

can have, including general genetic, evolutionary, interactional and functional information 

(Supplemental Methods and Table S2). Of the 700 different gene-specific features that could 

be extracted initially, 432 resulted to be available for protein-coding genes and allowed reliable 

scoring. These features were then filtered based on their significant differences between AD 

and AR genes of the training set (Supplemental Methods), producing in the end 308 usable 

features. 
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An LDA-based algorithm was then chosen to allow machine-learning from the training 

set of genes, not only because of its recognized performance as a statistical method, but also 

to ensure the precise identification of the relevant features selected by the final model, allowing 

potentially to gain information on their biological relevance in the context of AD vs. AR genes. 

To build a robust scoring system and to prevent over-fitting the training data, we devised an 

iterative process, able to identify the most discriminant features (Figure 1B, Supplemental 

Methods). We first chose the one feature individually producing the highest area under the 

curve (AUC) from the receiver operating characteristic (ROC) function. Then, we iteratively 

tried to remove, replace or add features with specific criteria of acceptance (increase or 

decrease of the AUC, Figure 1C). Each time a change was accepted, 10x 10-fold cross-

validation16 was applied to the training set, to generate a “testing set” (Figure 1C). We let the 

algorithm run for 40 iterations and selected as best model the one for which there was an 

optimal AUC for the training and testing sets (Figure 1D). In other words, we selected the least 

complex model among those displaying similar AUC values. In our case, the best model was 

the one tested at the 14th iteration, composed of 8 features (Figure 1D) and displaying AUCs 

of 0.912 and 0.908 for the training and testing sets, respectively (Figure 1E). Starting from the 

15th iteration, we also observed a limited improvement of the testing set and a decreased 

performance for the validation set, clearly indicating over-fitting of the model on the training 

set, in support of this initial threshold selection. For each gene, in decreasing order of 

importance, the selected features were: (1) the number of interactions with AD genes of the 

training set from the combined score of STRING (a database regrouping functional protein 

association networks from various sources), with a confidence >500 and a maximum of 8 

interactions,17 (2) pRec (probability to be intolerant to homozygous but not heterozygous loss-

of-function variants) as extracted from ExAC,18 (3) the number of interactions with AD genes 

of the training set from the experimental score of STRING, with a confidence >400 and a 

maximum of 3 interactions,17 (4) the missense z-score from ExAC (intolerance to 

missenses),18 (5) the average PhyloP score for mammals across the transcriptional start site 

(TSS) (+/- 500 bp from the actual site),19 (6) the number of interactions with AD genes of the 
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training set using the text-mining score of STRING, with a confidence >300 and a maximum 

of 3 interactors,17 (7) the ratio between the number of donor site variants and synonymous 

variants present in ExAC,20 (8) a high mRNA half-life (>10h) in mouse embryonic stem cells21 

(Figure 1F, Figures S1). 

At the end of this process, a score was computed for each gene, based on the LDA 

model. To facilitate the interpretation of the results by the end user, we transformed this score 

in a probability value, P(AD), measuring the probability for a gene to carry dominant mutations 

(Figure 2A, and Supplemental Methods), and developed a web-based interface, enabling the 

interactive query of candidate genes and the scoring of their AD potential. As expected from 

the ROC curve (Figure 1E), most AD genes from the training set had a high P(AD), displaying 

the opposite trend when compared to AR genes (Figures 2B and 2C). At the maximal 

informedness point (LDA score = 0.225), computed by the Youden’s J equation (Jmax), the 

model had a specificity of 84.7% and a sensitivity of 80.4%. Interestingly, genes known to 

cause deleterious phenotypes by both dominant and recessive mechanisms, which we 

recovered from the pool of discarded genes from the training set and tested as new 

candidates, were scored either as AD or AR genes (Table S3). Specifically, out of 78 of such 

loci, 43 (55.1%) had a LDA score>0.225, whereas the rest had P(AD)s comparable to those 

of genes associated with recessive disorders (Figure S2A), indicating the absence of an 

artefactual bias created by the model. 

As a “validation set”, we used 99 genes with Mendelian mutations (26 AD genes and 

73 AR genes) that we extracted from papers published from January 2016 to March 2017 in 

The American Journal of Human Genetics and in Nature Genetics, to mimic the discovery of 

newly-reported genes and confirm the absence of a potential bias towards well-studied and 

annotated genes, composing the bulk of the training set (Table S4). For the validation set, 

DOMINO predicted AD association with an AUC of 0.920 (Figures 1D and 1E) and specificity 

and sensitivity of 88.5% and 78.1% at Jmax, respectively (Table S4, Figures 2D and 2E). 

Specifically, 23 out of the 26 AD genes were correctly identified, confirming the reproducibility 

of the data obtained with the training set. For the remaining three dominant genes that were 
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not recognized as such, namely: OVOL2 [MIM: 616441], KLHL24 [MIM: 611295], and 

SAMD9L [MIM: 611170], we noted unconventional mechanisms of pathogenicity. OVOL2 

contains variants in the non-coding promoter region that results in a hyperactive promoter,22 

while KLHL24 has a start-loss DNA change resulting in the use of a downstream alternative 

initiation site.23 The mechanisms of pathogenesis for SAMD9L are also rather unusual for a 

Mendelian condition, and are characterized by particular chromosomal rearrangements.24 

AD mutations can cause pathological phenotypes via different mechanisms, such as 

gain-of-function or haploinsufficiency. To examine the effectiveness of DOMINO in these two 

different cases, we evaluated AD genes from the training set as a function of the type of 

causative mutations they harbor. We reasoned that genes carrying exclusively pathogenic 

missenses (N=107) would mainly cause disease by gain-of-function mechanisms, whereas 

those containing only truncating variants (N=40) would be compatible with a haploinsufficient 

model of pathogenesis (genes carrying both types of variants were excluded, Table S5). 

Scores for the two groups were not statistically different (Figures S2B and S2C), with average 

P(AD) values of 0.66 and 0.74, respectively (p=0.42, by Wilcoxon rank sum test with continuity 

correction). Therefore, in contrast to current tools, DOMINO’s effectiveness is not affected by 

the presence of specific mutations that a given gene may harbor, being a true predictor of AD 

features regardless of their mode of pathogenesis. 

The performance of our model was also assessed by scoring the probability of being 

dominant for well-known false-positives for rare conditions in genome-wide screens,25 such 

as genes encoding mucins, taste and olfactory receptors, etc. Out of 436 genes from this set, 

only 4 had LDA scores higher than Jmax (Table S6, Figure 2F). 

To assess the behavior of DOMINO on real sets of exome / genome data, we tested it 

on genotypes from denovo-db, a database of de novo variants identified by NGS,26 from which 

we extracted data from individuals with intellectual disability (ID) (N=1,010) or with epilepsy 

(N=532). Following a stringent filtering on allelic frequency (never seen before in ExAC and 

ESP),20 predicted effect on protein (nonsense, frameshift, missense) or on splicing (disruption 

of splicing sites), we selected all genes with at least two variants in different individuals (N=82 
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for intellectual disabilities and N=19 for epilepsy, Tables S7 and S8). By virtue of their 

heterozygous de novo inheritance (i.e. dominant in following generations), their presence in 

the same gene in more than one person, and of strict filtering procedures, all these DNA 

changes likely represent pathogenic mutations, and therefore all genes harboring them 

represent true AD genes detected by real NGS experiments. We then ranked all autosomal 

genes from the human genome according to their P(AD) and retained those for which P(AD) 

was ≥0.95, i.e. all genes that were predicted to be associated to dominant conditions with high 

confidence. Subsequently, we assessed the enrichment of genes with P(AD)≥0.95 in these 

two groups of diseases within all human autosomal genes with P(AD)≥0.95, by a 

hypergeometric test. We found that genes with at least two de novo variants from both the ID 

and epilepsy cohorts were significantly enriched for high P(AD) genes, with associated p-

values of 1.8x10-35 (enrichment score=18.9) and 9.6x10-14 (enrichment score=43.1), 

respectively (Figure 3). 

Remarkably, for cases with epilepsy, all 15 genes with at least two variants in different 

individuals and with high P(AD) were already known to be associated with dominant forms of 

the disease (4 were present in the training set). For ID, 39 out of 51 bona fide genes with high 

P(AD) were also already associated with AD forms of the diseases and allied conditions in 

OMIM (11 were present in the training set). Among the 12 remaining genes, three were 

previously predicted to be linked to this disorder by a in silico analyses,27 whereas the other 9 

represent excellent intellectual disability candidate genes that we propose for validation by 

forthcoming studies (Table 1). In more general terms, genes with high P(AD) genome-wide 

represent therefore either genes that were already identified to be associated with dominant 

conditions, or excellent new candidate genes for known or novel AD conditions. For instance, 

among the top 20 genes with highest P(AD), 10 were previously found to carry mutations for 

dominant disorders, while the remainder were not associated with any condition, and may be 

considered in the future for disease association with very high confidence (Table 2). 

Finally, we took advantage of the LDA approach, allowing a transparent assessment 

of the features selected by the model, to gain possible insights on the general properties of 
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AD vs. AR genes. Interestingly, the STRING components, accounting globally for the 47.5% 

of the weight of the model, are strong determinants of dominance, implying that organization 

in networks is seemingly rather important for AD genes/proteins. Moreover, among the many 

parameters measuring evolutionary pressure and conservation across species, only the 

PhyloP score at the TSS was retained (11.4% of the weight), while more classical scores, 

such as for instance the dN/dS ratio,28 appeared to be less relevant and were not included in 

the final model. Sequence-based features were nonetheless significant and have been 

retained in DOMINO, accounting for 37.8% of the weight. Their significance seems to be 

related to the global variation landscape in the human population, as identified in the ExAC 

project.20 Another intriguing result emerging from the selection of features is the fact that few 

AD genes have a long mRNA half-life. This finding could possibly be related to the observation 

that stable transcripts are enriched for mRNA encoding enzymes,21 which are usually 

associated with AR conditions. Also, our analysis of NGS data from individuals with intellectual 

disability or epilepsy showed that DOMINO has relevant predictive power for identifying genes 

that have not yet been studied or not yet found to carry pathogenic mutations. 

In conclusion, DOMINO allows for an efficient prioritization of candidate genes for 

autosomal dominant Mendelian conditions, independently from the mutational events that a 

given gene may carry. Therefore, it can be used in combination with other predictors focusing 

on deleteriousness of DNA variants to reduce the number of false positives in mutational 

screens. In addition, the flexibility and modularity of the machine learning system enables the 

incorporation, at every update, of new informative features as they may emerge from future 

studies, making DOMINO a constantly evolving tool with progressively improving 

performances. 

 

SUPPLEMENTAL METHODS: 

Supplemental methods, including details on data collection, gene features, and 

properties of the algorithm are provided on the DOMINO main web site 

(https://wwwfbm.unil.ch/domino/).  
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Legends to figures 

 

Figure 1. Rationale and general design of DOMINO 

(A) A typical exome analysis identifies 20,000 variants, when compared to the human 

reference genome. After filtering by rarity in the general population (minor allele frequency, or 

MAF, <1%) and by functional impact of each variant, approximately 400 DNA changes remain. 

These impact 300-400 genes, heterozygously (red dots), and 5-10 genes when they are 

present as homozygous or compound heterozygous variants (blue dots). 

(B) Workflow of DOMINO methodology, showing the different steps of gene selection, 

annotation, and scoring. 

(C) Details of the LDA algorithm. Relevant features are first preselected and then removed, 

replaced or added iteratively to the model, with specific acceptance criteria. 10X 10-fold cross-

validation is performed at each step. 

(D) Performance of the model as a function of the iterations performed. AUCs of the training, 

testing and validation sets, as well as the number of features at each iteration are shown. The 

cut-off value retained corresponded to the 14th iteration and a set of 8 features. The model 

converges starting from the 36th iteration. 

(E) ROC curves for the complete training, testing and validation sets, displaying AUC values 

of 0.912, 0.908 and 0.920, respectively. 

(F) Features composing the selected model. Average values for AD and AR genes of the 

training set are shown, along with their relative weight. Units are as follows: for STRING 

entries, number of interactions;17 for ExAC-pREC, probability of being intolerant to 

homozygous but not heterozygous loss-of-function variants;18 for ExAC-missense z-score, 

value with respect to a distribution of expected number of missenses;18 PhyloP, average 

PhyloP score with respect to a 1,000-bp window centered on the TSS;19 ExAC-don./syn., 

number of variants at the donor splicing site, normalized to the number of synonymous 

variants in the coding sequence;20 mRNA half-life, 0 if ≤ 10 hrs or 1 if > 10 hrs.21 
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Figure 2. Distributions of LDA scores and probabilities of being dominant, P(AD), for 

genes in the training and validation sets.  

(A) Density plots of LDA score for AD (red) and AR (blue) genes of the training set. Continuous 

lines refer to raw values, whereas dashed lines to their normal approximations. 

(B-F) Histograms of P(AD) for (B) AD genes of the training set, (C) AR genes of the training 

set, (D) AD genes of the validation set, (E) AR genes of the validation set, (F) Genes known 

to behave as false positives in NGS experiments, containing rare, non-pathogenic variants. 

 

Figure 3. Distributions of P(AD) for genes with at least two de novo mutations in 

different individuals with intellectual disability or epilepsy.  

Histograms of P(AD) for (A) 82 genes carrying de novo mutations in 1,010 individuals with 

intellectual disability or (B) 19 genes carrying de novo mutations in 532 individuals with 

epilepsy, as extracted from denovo-db. 
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Table 1. Candidate genes for intellectual disability, as predicted by DOMINO and 

recurrent de novo mutations 

 
 

    
Gene name Protein name P(AD) Function 
    

    

AGO2 
[MIM:606229] 

Argonaute 2 0.999989 Catalytic component of the RNA-induced 
silencing complex (RISC) 

CACNA1E 
[MIM:601013] 

Calcium Voltage-
Gated Channel, 
Subunit Alpha1 
E 

0.995065 Calcium channels containing alpha-1E subunit. It 
could be involved in the modulation of firing 
patterns of neurons 

CHD3 
[MIM:602120] 

Chromodomain 
Helicase DNA 
Binding Protein 
3 

0.999901 Component of the histone deacetylase NuRD 
complex, participating in the remodelling of 
chromatin 

FBXO11 
[MIM:607871] 

F-Box Protein 11 0.973952 Part of a the SCF E3 ubiquitin-protein ligase 
complex, mediating protein ubiquitination and 
degradation 

GRIA1 
[MIM:138248] 

Glutamate 
Ionotropic 
Receptor, AMPA 
Type, Subunit 1 

0.980767 Receptor for glutamate, mediating fast excitatory 
synaptic transmission in the central nervous 
system 

KDM2B 
[MIM:609078] 

Lysine 
Demethylase 2B 

0.989312 Histone demethylase that demethylates Lys-4 
and Lys-36 of histone H3 

LRP1 
[MIM:107770] 

LDL Receptor 
Related Protein 
1 

0.999963 Endocytic receptor involved in endocytosis and in 
phagocytosis of apoptotic cells 

PPP2CA 
[MIM:176915] 

Protein 
Phosphatase 2, 
Catalytic Subunit 
Alpha 

0.999621 Protein phosphatase 2A is one of the four major 
Ser/Thr phosphatases, implicated in the negative 
control of cell growth and division. 

TCF7L2 
[MIM:602228] 

Transcription 
Factor 7 Like 2 

0.999903 Participates in the Wnt signaling pathway and 
modulates MYC expression 
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Table 2. Top 20 AD genes, as predicted by DOMINO 
 
 

    
Gene P(AD) In training set Main OMIM description 
    

    

SF3B1 [MIM:605590] 0.999999 No Myelodysplastic syndrome, 
somatic/dominant [MIM:614286] 

CSNK2A1 [MIM:115440] 0.999998 No Okur-Chung syndrome, autosomal 
dominant [MIM:617062] 

LHX2 [MIM:603759] 0.999998 No Unassigned 

DACH1 [MIM:603803] 0.999998 No Unassigned 

PAX6 [MIM:607108] 0.999998 Yes, AD Aniridia, autosomal dominant 
[MIM:106210] 

PRPF8 [MIM:607300] 0.999996 No Retinitis pigmentosa, autosomal dominant 
[MIM:600059] 

ATP2B1 [MIM:108731] 0.999996 No Unassigned 

DYNC1H1 
[MIM:600112] 

0.999996 Yes, AD Charcot-Marie-Tooth disease, axonal, 
autosomal dominant [MIM:614228] 

PIK3CA [MIM:171834] 0.999995 Yes, AD Cowden syndrome 5, autosomal dominant 
[MIM:615108] 

PTEN [MIM:601728] 0.999995 No Bannayan-Riley-Ruvalcaba syndrome, 
autosomal dominant [MIM:153480] 

TBL1XR1 [MIM:608628] 0.999995 No Intellectual disability, autosomal dominant 
[MIM:616944] 

HNRNPR [MIM:607201] 0.999994 No Unassigned 

TOP2B [MIM:126431] 0.999994 No Unassigned 

GSK3B [MIM:605004] 0.999993 No Unassigned 

CDK8 [MIM:603184] 0.999992 No Unassigned 

XPO1 [MIM:602559] 0.999992 No Unassigned 

SREBF1 [MIM:184756] 0.999992 No Unassigned 

PIAS1 [MIM:603566] 0.999991 No Unassigned 

NR2F2 [MIM:107773] 0.999991 Yes, AD Congenital heart defects, autosomal 
dominant [MIM:615779] 

BCL11B [MIM:606558] 0.999990 No Immunodeficiency 49, autosomal dominant 
[MIM:617237] 
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Web Resources 

 

DOMINO (web interface and Supplemental Methods): https://wwwfbm.unil.ch/domino/ 

ExAC : http://exac.broadinstitute.org/ 

Exome Variant Server (ESP) : https://evs.gs.washington.edu/EVS/ 

RetNet : https://sph.uth.edu/retnet/ 

STRING: https://string-db.org/ 

Online Mendelian Inheritance in Man (OMIM): http://www.omim.org 

https://string-db.org/


16 

 

References 

 

1. Gilissen, C., Hoischen, A., Brunner, H.G., and Veltman, J.A. (2012). Disease gene 

identification strategies for exome sequencing. Eur. J. Hum. Genet. 20, 490-497. 

2. Tennessen, J.A., Bigham, A.W., O'Connor, T.D., Fu, W., Kenny, E.E., Gravel, S., McGee, 

S., Do, R., Liu, X., Jun, G., et al. (2012). Evolution and functional impact of rare coding 

variation from deep sequencing of human exomes. Science 337, 64-69. 

3. Kamphans, T., Sabri, P., Zhu, N., Heinrich, V., Mundlos, S., Robinson, P.N., Parkhomchuk, 

D., and Krawitz, P.M. (2013). Filtering for compound heterozygous sequence variants 

in non-consanguineous pedigrees. PLoS One 8, e70151. 

4. Warr, A., Robert, C., Hume, D., Archibald, A., Deeb, N., and Watson, M. (2015). Exome 

Sequencing: Current and Future Perspectives. G3 (Bethesda) 5, 1543-1550. 

5. Chong, J.X., Buckingham, K.J., Jhangiani, S.N., Boehm, C., Sobreira, N., Smith, J.D., 

Harrell, T.M., McMillin, M.J., Wiszniewski, W., Gambin, T., et al. (2015). The Genetic 

Basis of Mendelian Phenotypes: Discoveries, Challenges, and Opportunities. Am. J. 

Hum. Genet. 97, 199-215. 

6. Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., and Liu, X. (2015). 

Comparison and integration of deleteriousness prediction methods for 

nonsynonymous SNVs in whole exome sequencing studies. Hum. Mol. Genet. 24, 

2125-2137. 

7. Walters-Sen, L.C., Hashimoto, S., Thrush, D.L., Reshmi, S., Gastier-Foster, J.M., Astbury, 

C., and Pyatt, R.E. (2015). Variability in pathogenicity prediction programs: impact on 

clinical diagnostics. Mol Genet Genomic Med 3, 99-110. 



17 

 

8. Huang, N., Lee, I., Marcotte, E.M., and Hurles, M.E. (2010). Characterising and predicting 

haploinsufficiency in the human genome. PLoS Genet. 6, e1001154. 

9. MacArthur, D.G., Balasubramanian, S., Frankish, A., Huang, N., Morris, J., Walter, K., 

Jostins, L., Habegger, L., Pickrell, J.K., Montgomery, S.B., et al. (2012). A systematic 

survey of loss-of-function variants in human protein-coding genes. Science 335, 823-

828. 

10. Norris, M., Lovell, S., and Delneri, D. (2013). Characterization and prediction of 

haploinsufficiency using systems-level gene properties in yeast. G3 (Bethesda) 3, 

1965-1977. 

11. Steinberg, J., Honti, F., Meader, S., and Webber, C. (2015). Haploinsufficiency predictions 

without study bias. Nucleic Acids Res. 43, e101. 

12. Wilkie, A.O. (1994). The molecular basis of genetic dominance. J. Med. Genet. 31, 89-98. 

13. Blekhman, R., Man, O., Herrmann, L., Boyko, A.R., Indap, A., Kosiol, C., Bustamante, 

C.D., Teshima, K.M., and Przeworski, M. (2008). Natural selection on genes that 

underlie human disease susceptibility. Curr. Biol. 18, 883-889. 

14. Bonafe, L., Cormier-Daire, V., Hall, C., Lachman, R., Mortier, G., Mundlos, S., Nishimura, 

G., Sangiorgi, L., Savarirayan, R., Sillence, D., et al. (2015). Nosology and 

classification of genetic skeletal disorders: 2015 revision. Am. J. Med. Genet. A 167A, 

2869-2892. 

15. Wright, A.E., and Mank, J.E. (2013). The scope and strength of sex-specific selection in 

genome evolution. J. Evol. Biol. 26, 1841-1853. 

16. Hastie, T., Tibshirani, R., and Friedman, J.H. (2009). The elements of statistical learning : 

data mining, inference, and prediction.(New York, NY: Springer). 



18 

 

17. Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., 

Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., et al. (2015). STRING v10: protein-

protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43, 

D447-452. 

18. Samocha, K.E., Robinson, E.B., Sanders, S.J., Stevens, C., Sabo, A., McGrath, L.M., 

Kosmicki, J.A., Rehnstrom, K., Mallick, S., Kirby, A., et al. (2014). A framework for the 

interpretation of de novo mutation in human disease. Nat. Genet. 46, 944-950. 

19. Pollard, K.S., Hubisz, M.J., Rosenbloom, K.R., and Siepel, A. (2010). Detection of 

nonneutral substitution rates on mammalian phylogenies. Genome Res. 20, 110-121. 

20. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T., O'Donnell-

Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al. (2016). Analysis of protein-

coding genetic variation in 60,706 humans. Nature 536, 285-291. 

21. Sharova, L.V., Sharov, A.A., Nedorezov, T., Piao, Y., Shaik, N., and Ko, M.S. (2009). 

Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of 

pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16, 45-58. 

22. Davidson, A.E., Liskova, P., Evans, C.J., Dudakova, L., Noskova, L., Pontikos, N., 

Hartmannova, H., Hodanova, K., Stranecky, V., Kozmik, Z., et al. (2016). Autosomal-

Dominant Corneal Endothelial Dystrophies CHED1 and PPCD1 Are Allelic Disorders 

Caused by Non-coding Mutations in the Promoter of OVOL2. Am. J. Hum. Genet. 98, 

75-89. 

23. Lin, Z., Li, S., Feng, C., Yang, S., Wang, H., Ma, D., Zhang, J., Gou, M., Bu, D., Zhang, 

T., et al. (2016). Stabilizing mutations of KLHL24 ubiquitin ligase cause loss of keratin 

14 and human skin fragility. Nat. Genet. 48, 1508-1516. 



19 

 

24. Chen, D.H., Below, J.E., Shimamura, A., Keel, S.B., Matsushita, M., Wolff, J., Sul, Y., 

Bonkowski, E., Castella, M., Taniguchi, T., et al. (2016). Ataxia-Pancytopenia 

Syndrome Is Caused by Missense Mutations in SAMD9L. Am. J. Hum. Genet. 98, 

1146-1158. 

25. Shyr, C., Tarailo-Graovac, M., Gottlieb, M., Lee, J.J., van Karnebeek, C., and Wasserman, 

W.W. (2014). FLAGS, frequently mutated genes in public exomes. BMC Med. 

Genomics 7, 64. 

26. Turner, T.N., Yi, Q., Krumm, N., Huddleston, J., Hoekzema, K., HA, F.S., Doebley, A.L., 

Bernier, R.A., Nickerson, D.A., and Eichler, E.E. (2017). denovo-db: a compendium of 

human de novo variants. Nucleic Acids Res. 45, D804-D811. 

27. Lelieveld, S.H., Reijnders, M.R., Pfundt, R., Yntema, H.G., Kamsteeg, E.J., de Vries, P., 

de Vries, B.B., Willemsen, M.H., Kleefstra, T., Lohner, K., et al. (2016). Meta-analysis 

of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. 

Neurosci. 19, 1194-1196. 

28. Kimura, M. (1977). Preponderance of synonymous changes as evidence for the neutral 

theory of molecular evolution. Nature 267, 275-276. 

 



Features
preselection

INPUT
Genes

Inheritance
Features

Test removing of each selected
feature independently

Test replacing of each selected
feature with each non-selected one

Add best non-selected feature

AUC decreases
less than 0.0005

?

AUC increases
?

OUTPUT
LDA model

AUC training set
AUC test set

AUC validation set

No

No

Yes

Yes
Selected genesUnselected genes

All genes

Inheritance:
hOMIM - RetNet
Skeletal - AJHG

manual curation

Features:
ExAC - BioMart
STRING - MGI

mRNA half-life
NMD

LDA

LDA modelScore for all genes

Conversion
to

probability
Validations

LDA

~ 20,000
exonic variants

MAF < 0.01

~ 400
variants 300-400

genes

5-10
genes

hom.

co
mp. h

et.

het.

Number of LDA iterations

Ar
ea

 U
nd

er
 th

e 
Cu

rv
e 

(A
U

C)

N
um

be
r o

f f
ea

tu
re

s

1−Speci�city

Se
ns

it
iv

it
y

Features AD training AR training Weight

STRING - combined score

ExAC - pRec

STRING - experiments

ExAC - missense z-score

PhyloP - conservation at TSS

STRING - textmining

ExAC - don. /syn.

mRNA half-life >10hrs

5.04

0.297

2.10

0.504

1.38

2.63

0.082

0.0104

1.47

0.689

0.24

0.185

0.25

1.52

0.226

0.0269

0.236

0.192

0.129

0.114

0.165

0.074

0.033

0.057

10-fold cross validation (10x)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A B C

D

E
F

AUC training = 0.912
AUC testing = 0.908
AUC validation = 0.920

0 10 20 30 40

0.
75

0.
80

0.
85

0.
90

AUC Training set (985 genes)
AUC Testing set (cross-validation)
AUC Validation set (99 genes)
Number of features

0
5

10
15

20

Training set
Testing set
Validation set

Figure_1



LDA score

D
en

si
ty

P(AD)

Fr
eq

ue
nc

y

AD genes - training set

Fr
eq

ue
nc

y

AR genes - training set

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

AD genes - validation set

“False-positive” genes

Fr
eq

ue
nc

y

AR genes - validation set

A B

C

D

E

F

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

AD density
AD normal approximation
AR density
AR normal approximation

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

0.0 0.2 0.4 0.6 0.8 1.0

0
10

0
20
0

30
0

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

20
25

0.0 0.2 0.4 0.6 0.8 1.0

0
50

10
0

15
0

20
0

P(AD)

P(AD)

P(AD)

P(AD)

Figure_2



Genes with de novo mutations in 1,010 individuals with intellectual disability

P(AD)

Fr
eq

ue
nc

y

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

Genes with de novo mutations in 532 individuals with epilepsy

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

Fr
eq

ue
nc

y

P(AD)

A

B

Figure_3


