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Abstract

Growth hormone (GH), an endocrine hormone primarily secreted from the anterior pituitary,
stimulates growth, cell reproduction and regeneration and is a major regulator of postnatal
growth. Humans have two GH genes which encode two versions of GH proteins: a pituitary
version (GH-N/GHI), and a placental GH variant (GH-V/GH?2) which is expressed in the
syncytiotrophoblast and extravillous trophoblast cells of the placenta. During pregnancy,
placental GH replaces pituitary GH in the maternal circulation at mid-late gestation as the
major circulating form of GH. This remarkable change in spatial and temporal GH secretion
patterns is proposed to play a role in mediating maternal adaptations to pregnancy. Placental
GH is associated with fetal growth and its circulating concentrations have been investigated
across a range of pregnancy complications. However, progress in this area has been hindered
by a lack of readily accessible and reliable assays for measurement of placental GH. This
review will discuss the potential roles of placental GH in normal and pathological
pregnancies and will touch on the assays used to quantify this hormone.
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Introduction

Growth hormone (GH) is a classical endocrine hormone secreted primarily by the
somatotropic cells in the anterior pituitary which exerts widespread effects on multiple tissues
within the body, including increasing the mineralization of bone and muscle mass, promoting
lipolysis and gluconeogenesis in the liver, and stimulating glucose homeostasis and immune
system function. Somatic growth is regulated by GH stimulation of hepatic insulin-like
growth factor-1 (IGF-1), with IGF-1 acting as an endocrine factor to promote growth.
However, GH can also exert additional effects on growth that are independent of IGF-1 (1).
In addition to pituitary-derived GH production, GH is also secreted via a number of extra-
pituitary sites, including the brain, immune system, mammary gland, testis and placenta,
where it has localised autocrine/paracrine effects (2-5), adding further complexity to GH
functions.

During pregnancy there is a fundamental change in how the GH/IGF-1 axis functions.
Humans have two GH genes which produce two versions of GH, a pituitary protein (GH-N)
to which effects on postnatal growth can be ascribed, and a placental variant (GH-V). In
pregnancy, GH-V is expressed from the placenta and is the predominant form of this
hormone in the maternal circulation. Whether GH-V contributes to fetal growth has been the
subject of some debate. However, there is now reasonably clear evidence to suggest that GH-
V is associated with fetal growth and correlates with the increases in circulating IGF-1
observed during pregnancy. However, the physiology of GH-V remains far from understood.
This review will cover potential roles for GH-V in normal and pathological pregnancies and
will touch on the assays used to quantify this hormone.

The growth hormone locus

The human GH gene family includes five tandemly arranged and highly related genes in a
47-kb cluster on the long arm of chromosome 17 (q22-q24) (6-8). These include GHI (GH-
N), GH2 (GH-V), and three chorionic somatomammotropin (CS) genes (also known as
placental lactogens), CSHI (CS-A), CSH2 (CS-B) and CSHLI (CS-L) (Figure 1). Each gene
is composed of five exons (1 to 5) and four introns (A to D) occurring at identical positions
(9,10). The five genes share 90% to 95% sequence nucleotide identity in the coding regions,
and are thought to have arisen by gene duplication (11). The CSHI and CSH2 genes encode
identical mature chorionic somatomammotropin proteins. The GH2 gene was originally
thought to be a pseudogene until expression of GH2 mRNA was identified in the human
placenta in 1987 (12). The CSHLI gene undergoes complex alternative splicing leading to
multiple mRNA transcripts, the majority of which are non-functional (13).

A locus control region (LCR) located upstream of the GHI gene controls tissue specific
expression of the locus (14,15) (Figure 1). GHI is expressed primarily in pituitary
somatotroph cells and at certain extrapituitary sites (5), while the remaining four genes are
expressed in the placenta. GH-V 1is expressed in syncytiotrophoblastic layer and the
extravillous trophoblast cells of the placenta (16,17). Distinct patterns of chromatin
modification and complex chromosome looping are associated with differential activation of
the human GH genes in the pituitary and the placenta (18,19).

Growth hormone isoforms

Several transcript variants and isoforms of GH-N and GH-V exist (20). A 22 kDa GH-N
isoform is the most abundant and major bioactive form of GH, comprising 85-90% of
circulating GH-N, while a 20 kDa GH-N accounts for approximately 10% of the pituitary
GH-N transcripts. Similarly, 22 kDa GH-V is the main circulating form of GH-V, while the
expression of the 20 kDa GH-V seems to be variable in normal and pathological conditions.
20 kDa GH-V is generated from a 45-bp deletion produced by the use of an alternative splice
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acceptor site within exon 3 of the GH2 gene, similar to that in the GHI gene (21-23).
However, the transcript encoding 20 kDa GH-V is not detected in all placentas, which may
partly explain the previous unsuccessful attempts in detecting this transcript (24). In rats, 20
kDa GH-V has reduced lactogenic and diabetogenic activities compared with pituitary 22
kDa GH-N but retains growth-promoting and anti-lipogenic properties (25).

45

Although GH-N and GH-V stem from the same gene cluster and their proteins only differ by
13 amino acids, they are quite different in certain aspects (Table 1). GH-V is more basic and
contains an N-linked glycosylation site at asparagine 140, resulting in a 25 kDa isoform (26).
Although GH-N lacks consensus sequences for N-linked glycosylation, an O-glycosylation
has been reported for the 23-24 kDa GH-N (20,27-29). Other GH-N isoforms and fragments
have been reported, including some fragments which may inhibit aspects of GH function.
These may arise from alternative splicing and post translational modification such as
proteolysis, deamidation, phosphorylation, acetylation, and aggregation (20,27,30,31).
Whether GH-V undergoes this full range of modifications has not been investigated in detail.
As described below, GH-N and GH-V also have different affinities for the prolactin receptor.
Importantly, GH-N is secreted in the anterior pituitary by somatotropic cells in a pulsatile
manner. The secretion rate of GH-N changes rapidly, regulated by a series of positive and
negative stimuli (GH releasing hormone (GHRH) and somatostatin). However, GH-V is
specifically expressed in the syncytiotrophoblast and invasive extravillous trophoblast cells of
the human placenta (16,17), and secretion is continuous, which has important implications for
physiological adjustment to gestation. Similar to GH-N, GH-V secretion is inhibited by
hyperglycaemia (32). However, GH-V is not regulated by GHRH, ghrelin or somatostatin.
The secretion and the maternal level of GH-V is closely related to the formation of the
syncytiotrophoblast (33). GH-V concentrations are also affected by fetal gender (34). Two
early studies observed that maternal body mass index (BMI) is negatively correlated to
circulating GH-V concentrations during different stages of pregnancy (35,36).

The growth hormone receptor

GH mediates anabolic effects on the body by interacting with a specific GH receptor (GHR)
on the plasma membrane of target cells. The GHR is a member of the Type I cytokine
receptor family and has three domains characteristic of this family: an extracellular binding
domain, a transmembrane domain and a cytoplasmic domain (37,38). The GHR exists as a
constitutive dimer consisting of two identical GHR subunits (39). GH possesses two
asymmetric binding sites which interact with the GHR. Initial binding occurs at a high
affinity site (Site 1). This facilitates binding at the lower affinity site (Site 2), and leads to a
conformational change in the receptor and subsequent activation of signal transduction (40).
The GHR lacks intrinsic tyrosine kinase activity, and therefore relies on the recruitment of
additional non-receptor tyrosine kinases to mediate signal transduction such as janus kinase
(JAK) and cellular sarcoma kinase (c-SRC). Key signalling pathways activated include JAK-
STAT (signal transducer and activator of transcription), mitogen-activated protein kinase
(MAPK), and phosphoinositide 3-kinase (P13-K) pathways.

GH-N and GH-V bind the GHR with similar affinity and share similar physiological effects
on somatotrophic, lactogenic and lipolytic properties, as well as the effect on
immunoregulatory process (26,41,42). In humans, GH-N can also bind and activate the
prolactin receptor, but GH-V binds the prolactin receptor poorly and its lactogenic affects are
greatly reduced compared with GH-N (43).

Placental growth hormone assays
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Accurate detection and quantification of GH-V in clinical studies can be challenging due to
the high level of sequence similarity between GH locus genes and proteins. The mature GH-
N, GH-V and CS proteins share over 80-93% identity in amino acid sequence, and GH-N and
GH-V proteins differ by only 13 amino acids, thus development of sensitive and specific GH-
V assays can be problematic. Sensitive and specific assays have been established in many
labs. However, the lack of reliable commercial assays to measure this hormone has limited
the number of studies conducted.

Early studies used highly sensitive radioimmunoassays (RIAs) and modifications of these are
still in use. GH-V was first detected in maternal blood using two monoclonal antibodies (K24
and 5B4) (44,45). 5B4 reacts with an N-terminal epitope and recognizes both GH-N and GH-
V; K24 reacts with an internal epitope and exclusively recognizes GH-N. An indirect
estimate of GH-V concentration was derived by determining the difference between
measurements obtained from RIAs using these two antibodies (44,46). With use of purified
recombinant GH-V, two monoclonal antibodies (E8 and 7C12) were produced by Georges
Hennen’s group that were highly specific for GH-V (47,48). E8 does not react with GH-N,
chorionic somatomammotropin or prolactin, and GH-V concentrations measured with 5B4
and E8 have a high degree of correlation (r =0.93) (46). Antibody 7C12 exhibits some cross
reactivity with GH-N. E8 and 7C12 have been used to measure GH-V using a '*I-labeled
sandwich immunoassay (48). In addition, we developed an enzyme-linked immunosorbent
assay (ELISA) using these antibodies, following biotinylation of 7C12 (49). Wu et al. have
reported a immunofluorometric assay with a panel of high affinity monoclonal antibodies
specific for human GH-V developed in the lab (50). This has been used in several subsequent
studies. Other assays which assess circulating GH-V protein or mRNA have been reported
(51-54). Commercial ELISAs are available; however, we have had limited success with
these, and previously utilised kits which exhibited good specificity in our hands have been
discontinued over recent years (e.g. Diagnostic Systems Laboratories, Inc). We highly
recommend verifying any commercial assays prior to use using an independent source of
recombinant GH-N and GH-V with proven activity, to assess sensitivity and cross-reactivity.

Placental growth hormone in normal pregnancy

A vast range of substances are secreted from the placenta during human pregnancy. As
described above, GH-V is specifically expressed in the trophoblast cells of the human
placenta. Perhaps the most remarkable characteristic of GH-V secretion is the reciprocal
exchange of GH-N for GH-V in the maternal circulation as pregnancy progresses. In humans,
pulsatile pituitary-derived GH is the dominant form of GH in maternal circulation prior to 15
weeks of gestation (55). GH-V is detected from as early as 5 weeks gestation and levels
increase significantly to reach peak levels at approximately 36-37 weeks gestation (Figure 2)
(56-58). At approximately 17 weeks gestation, GH-V replaces GH-N completely, resulting
from the negative feedback by GH-V and IGF-1 (43,59). With the onset of labour, there is a
rapid fall of GH-V concentrations in the maternal circulation, which occurs within 1 h after
birth, contributed to by the 15 minute half-life of GH-V in blood and placental origin of the
hormone (57).

GH-V is thought to play a key role in maternal adaptations to pregnancy and fetal growth
(60). Firstly, it is thought that GH-V stimulates fetal growth and regulates maternal
circulating IGF-1 concentrations during pregnancy. Previous studies have demonstrated that
GH-V is positively associated with fetal growth (48,56,60-62). A positive correlation
between GH-V and IGF-1 was also observed in a number of longitudinal and cross-sectional
studies (56,60,63). Secondly, GH-V promotes the adaptation to pregnancy of blood vessels
supplying the placenta (16), and relaxes the arteries supplying the uterus (64); the effect of
these changes is an increase in blood flow to the fetus. In addition, it is postulated that GH-V
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induces maternal insulin resistance to ensure supply of nutrients is adequate for the growing
fetus. This is evidenced by studies in non-pregnant transgenic mice whereby GH-V over-
expression was shown to induce severe insulin resistance and altered body composition
including significant increase in bone density and reduced fat mass (65). Recently, we
examined the dose response relationship for GH-V administration in a mouse model of
normal pregnancy (66). Continuous GH-V treatment did not affect maternal or fetal growth,
but treatment at the higher dose range significantly increased maternal fasting plasma insulin
concentration with impaired insulin sensitivity, suggesting that GH-V is a likely mediator of
the insulin resistance observed in pregnancy (66).

Earlier work had suggested that GH-V was only secreted into the maternal circulation as GH-
V had yet to be detected in fetal blood. It was therefore thought that GH-V impacted on fetal
growth by regulating the maternal substrate supply via IGF-1 (63). However, conflicting data
exist on the relationship between maternal IGF-1 concentrations and fetal growth during
pregnancy (56,67). As circulating maternal IGF-1 is not closely related to fetal growth, GH-V
may influence fetal growth through alternative mechanisms. In support of this, the presence
of the GHR in the placenta and the stimulation of trophoblast proliferation and invasion by
GH-V have been observed in several studies (16,68-71). Thus, it is argued that GH-V may
play a role in placental function and the process of placentation, but the mechanism remains
to be fully defined.

Using a highly sensitive enzyme-linked immunosorbent chemiluminiscent assay, GH-V has
been detected in umbilical cord samples in a cross-sectional study (72). This was the first
evidence that GH-V exists in the fetal circulation, and is contrary to the popular belief that
GH-V is secreted by the placenta only into the maternal circulation. A further study by
Higgins et al. also observed the presence of GH-V in fetal circulation and at concentrations
similar to the previous report (73). It is thought that only substances under 1 kDa can cross
the placental barrier (74). Therefore, GH-V may be secreted directly from the
syncytiotrophoblast into the fetal circulation rather than cross the placental from maternal
circulation, or it may be actively transported across. However, fetal GH-V levels are much
lower than maternal levels, and do not appear to be related to fetal growth and placental size
(73). Given the above findings, the current understanding of GH-V function in the fetus needs
to be re-evaluated.

Regulation of placental growth hormone

The regulation of GH-V is still unclear. Several stimulators and inhibitors of pituitary GH
secretion, including GHRH, ghrelin and somatostatin, have been shown to have no effect on
circulating GH-V (75-77). Other studies have found GH-V secretion may be related to
maternal glucose levels. Glucose inhibits GH-V secretion in vitro and in placental explants
(32,78). In vivo, hypoglycaemia was induced in insulin-dependent diabetic pregnancies and a
marked increase in maternal circulating GH-V concentrations was observed (79).

Leptin is expressed in the placenta and fetal tissues (80) and is thought to have physiological
effects on the placenta and its function given the marked state of leptin resistance during
pregnancy (81,82). Some studies have reported that maternal leptin is negatively correlated
with GH-V (36), but the mechanisms are not well defined, and leptin does not stimulate GH-
V release in placental explants (78).

Placental growth hormone in pathological preghancies

GH-V has been associated with a number of pathological pregnancy conditions. Clear
associations are seen with abnormal fetal growth in mid-late pregnancy; however,
associations with other major pregnancy pathologies such as gestational diabetes mellitus
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(GDM) and pre-eclampsia (PE) have been inconsistent or absent (Table 2). More recently,
associations with gestational trophoblastic disease and Down syndrome have also been
observed. Limitations with some of these studies include lack of experimental power due to
small sample numbers, and variations in the time of sampling. As described above, a further
challenge has been the lack of commercially available and reliable detection assays.

1. Abnormal fetal growth

The placenta receives blood supply from both the maternal and the fetal systems, and thus has
two separate circulations: the uteroplacental circulation and the fetoplacental circulation. The
maternal blood flow is supplied by the uterine and ovarian arteries while the fetal blood flow
is derived from the umbilical arteries. Between these two circulatory systems, an exchange of
oxygen and nutrients takes place in the intervillous space in the placenta. Any impairment of
maternal and/or fetal blood flow and the placenta can lead to a reduced blood supply to the
fetus, resulting in fetal growth restriction (FGR). The aetiology of FGR is multifactorial and
involves maternal, fetal and placental factors. Of all the factors, “placental insufficiency” is
believed to be a dominant contributor (83). Placental insufficiency includes inappropriate
maternal/fetal blood flow, reduced nutrient transfer and morphological abnormalities of the
placenta (84).

The majority of studies conducted mid-late pregnancy have found a positive association
between maternal GH-V and fetal growth. Additionally, they demonstrate lower
concentrations of GH-V in pregnancies complicated by FGR (85). Mirlesse et al. found
reduced concentrations of GH-V in maternal plasma samples taken after 33-39 weeks
amenorrhea in 22 cases of FGR (86). In a study conducted by Mclntyre ef al., blood samples
were obtained from FGR pregnancies at 28-30 weeks gestation and 36-38 weeks gestation,
and lower concentrations of GH-V were observed at both time points compared to normal
pregnancies (48). One study found no differences in GH-N in maternal and cord serum and
amniotic fluid between average for gestation age, small for gestational age (SGA) or large for
gestational age (LGA) pregnancies at birth. However, only pituitary GH-N was measured and
it was not clear whether the assay also detected placental GH-V (87).

Studies conducted earlier in pregnancy show an association with LGA pregnancies, but not
SGA or FGR. We carried out a nested case-control study using samples from the Screening
for Pregnancy Endpoints (SCOPE) biobank and found that there was a significant increase in
maternal GH-V in LGA pregnancies at 20 weeks of gestation when compared to control
pregnancies (49), but there was no change in maternal serum GH-V in pregnancies associated
with SGA infants. In addition, maternal serum GH-V concentrations were positively
correlated to birth weight (49). Similarly, Sifakis et al. found no difference in serum GH-V
concentrations between SGA and non-SGA groups at 11-13 weeks gestation (88).

Several studies have investigated GH-V/GH2 mRNA expression (52,89,90). Mannik et al.
described the expression of GH2 in the placenta from SGA and LGA pregnancies (90).
Placental samples were collected from 72 pregnancies after caesarean section or vaginal
delivery. Compared with babies born of normal birth weight, the expression of GH2 was
approximately 1.1-fold lower in placentas from SGA pregnancies but there was no difference
in GH2 between LGA and controls (90). This is consistent with Barrio et al. who found GH?2
mRNA expression was decreased in placentas from SGA pregnancies (89). In contrast,
Whitehead et al. found that GH2 expression was increased in maternal peripheral blood and
term placenta from pregnancies complicated by SGA; the reason for this opposing trend is
not clear (52).

Schiessl et al. observed impaired uterine blood flow is correlated with low serum
concentrations of placental GH-V in FGR pregnancies and suggested that lower
concentrations of GH-V might contribute to the impaired uteroplacental circulation (64). This
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may be mediated through secondary regulation of IGF-1, as IGF-1 has been demonstrated to
directly alter human myometrial arterial tone as assessed via wire myography (91). However,
whether GH-V has similar impacts on the placental or myometrial arteries is not known.

The impact on GH-V on fetal growth can also be seen in conditions associated with GH
resistance. Laron syndrome is a rare condition which results from inactivating mutations in
the GHR. It is characterized by high levels of circulating GH and very low levels of IGF-1, as
well as a lack of response to GH stimulation (92-94). Birth lengths of individuals with Laron
Syndrome are well below average (95,96). In contrast, birthweights tend to be normal,
although some studies have noted decreased birthweight with Laron Syndrome (95,97,98). In
female Ghr knockout mice, litter size, fetal size and birth weight of pups are significantly
reduced (99,100). Igf-1 knockout animals exhibit more pronounced reproductive deficits
when compared to Ghr knockout animals (101). In the absence of GH stimulation, IGF-1,
produced locally may be one factor that compensates for GH (102), whereas quantitative
reproductive deficits in Ghr knockout animals reflect absence of GH-dependent IGF-1
production and other consequences of eliminating GH signalling.

While GH resistance models provide evidence of an impact of GH-V on fetal growth, a clear
picture is not seen with genomic alterations in the GH gene cluster, which lead to different
phenotypes. It has been reported that genetic deletion of the chorionic
somatomammotropin/placental lactogen genes and GH-V results in severe growth retardation
in one case (103), but has little impact on fetal growth in others (104,105). This may indicate
that neither hormone is required for normal fetal growth. However, it is likely that other GH
locus hormones not disrupted by the deletion compensate for the function of these genes (7).

The mechanisms by which GH-V may contribute to fetal growth are varied. As described
above, the aetiology of FGR is complex. The placenta acts an interface between the maternal
and fetal circulation, with the rates of placental blood flow dependent upon placental
vascularisation and angiogenesis. Although a number of factors have been implicated in
angiogenesis, vascular endothelial growth factor-A (VEGF-A), fibroblast growth factor 2
(FGF-2), and placental growth factor (PIGF) are key factors involved in placental
vascularisation (106,107). Failure of vascularisation and angiogenesis leads to increased
vascular resistance and reduced blood flow, and is associated with high-risk pregnancy
complications including FGR and PE (108,109).

GH-N is a proangiogenic factor which promotes endothelial cell proliferation, migration and
tube formation in vitro (110,111), upregulates VEGF-A expression (110), and enhances
angiogenesis and vascularisation in vivo (110,112). Further, in vivo and in vitro data suggest
that proteolytic fragments cleaved from GH are anti-angiogenic while the intact pituitary GH-
N and GH-V proteins are angiogenic (31,112). These N-terminal fragments inhibit the
activation and phosphorylation of MAPK, and reduce the pro-angiogenic effects of VEGF
and FGF-2 (31,112). It is likely that GH-V has similar functions but this has yet to be
demonstrated experimentally.

Placental vascularisation begins with the invasion of trophoblast into the uterus; impaired
trophoblast invasion of the myometrial spiral arteries is deemed a crucial factor in the
pathogenesis of FGR (113). The precise mechanisms that regulate trophoblast invasion are
largely unknown with several proteinases, cytokines, and growth factors involved. Lacroix et
al. determined that both GH-V and GH-N can stimulate trophoblast invasion, but GH-V was
more efficient in stimulating invasiveness (16). This result implicates an autocrine or
paracrine role for GH-V in the regulation of trophoblast invasion.

Placental nutrient transport capacity plays a key role in the development of FGR. All
substrates that pass between the maternal and fetal circulation must go through the placental

8
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exchange barrier which consists of a number of layers: syncytiotrophoblast, discontinuous
inner cytotrophoblast layer, basal lamina of the trophoblast, connective (mesenchymal) tissue
of the villus, basal lamina of the endothelium and endothelium of the fetal placental capillary
in the tertiary villus (114). The microvillous plasma membrane of the syncytiotrophoblast and
basal plasma membrane are thought to be the most important membranes of the placental
barrier as they represent the rate limiting steps in the transport process. Among the substrates
the fetus requires, amino acids appear to be important determinants of fetal growth. There are
several amino acid transporters in the microvillous plasma membrane of the placenta, but the
system A amino acid transporter, which transports non-essential neutral amino acids, has
drawn the most attention. In 1988, Dicke and Henderson first described a defect of system A
amino acid transport in FGR pregnancies (115). Later studies demonstrated that reduced
activity or expression of system A amino acid transporter was associated with FGR
(116,117), and also related to the severity of FGR (118).

Consistent with an effect on placental transport, maternal GH treatment increases placental
capacity for simple diffusion and stimulates fetal growth (119,120), and increases fetal body
weight and length in sheep FGR models after placental embolization (121). Another animal
study observed increased placental nutrient transporter expression following maternal GH
intervention, not accompanied by alterations of the placental structure (122). These finding
suggests that GH-V may influence placental nutrient transport, in addition to altering blood
flow and placental morphology.

One explanation for changes in circulating GH-V in pregnancies complicated by growth
restriction, which warrants attention, is that circulating GH-V concentrations may just reflect
placental mass, rather than changes in GH-V expression per se. This has particular relevance
for FGR where placental mass is often reduced. GH-V is predominantly secreted from the
placental syncytiotrophoblast layer. Placental defects would therefore lead to both comprised
fetal growth and reduced GH-V secretion. However, studies investigating GH2 placental
mRNA expression also argue for compromised regulation of GH expression in certain
pregnancy pathologies (89,90). For example the study by Mannik et al. found that placental
GH2 mRNA expression was altered in the majority of placentas from pregnancies resulting in
the birth of SGA new-borns (90). Thus it is plausible that both placental mass and regulation
of GH2 gene expression contribute to changes in systemic GH-V during pregnancy.

2. Gestational diabetes mellitus

GDM is a condition in which women without previously diagnosed diabetes exhibit glucose
intolerance during pregnancy (123). It is associated with multiple gestational and neonatal
complications, including macrosomia, dystocia, stillbirth, hypoglycaemia and respiratory
distress (124). Both the fetus and the mother have increased risk for developing diabetes in
later life (125). The aetiology of GDM is unclear. Normal pregnancy is accompanied by
insulin resistance that begins mid-pregnancy and progresses through the third trimester (126).
Pregnancy-associated insulin resistance appears to result from a combination of increased
maternal adiposity and the anti-insulin effects of hormones produced by the placenta (127).
Delivery of the baby and placenta leads to a rapid decline in this insulin resistant phenotype,
suggesting that the major contributors to this state of resistance are placental hormones.
Insulin resistance is a characteristic feature of GDM and it has been suggested that GH-V
may play a role in the development of the insulin resistance characteristic of GDM
pregnancies. Animal studies have demonstrated that GH-V induces insulin resistance by
increasing fasting and postprandial hyperinsulinemia (65). Previously we found that GH-V
reduced maternal insulin sensitivity in dose-dependent manner (66). However, limited studies
suggest GH-V secretion is regulated by glucose levels. Patel et al. observed a dose-dependent

9
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inhibition of GH-V secretion by glucose in human placental explants and in trophoblast
cultures (32). Conversely, Bjorklund et al. described an increase in GH-V during a
hyperinsulinemic hypoglycemic clamp in pregnant Type 1 diabetes patients (79).

Despite an interest in the involvement of GH-V in GDM, no studies to date have
demonstrated aberrant levels in pregnancies complicated by GDM (128). Recently, we also
found that there was no difference in circulating GH-V measurements in maternal serum
from GDM pregnancies at 20 weeks. However, GDM cases who delivered LGA babies had
significantly higher serum GH-V concentrations compared to non-diabetic control cases,
although the numbers of GDM cases with LGA babies were small (129). Verhaeghe et al.
observed no difference in plasma GH-V in women with a normal versus an abnormal glucose
tolerance test at 24-29 weeks gestation (35). Finally, Mannik et al. found that the placental
mRNA expression profile of GH2 was not different in GDM pregnancies, but also observed a
trend towards increased GH2 mRNA expression in GDM pregnancies associated with LGA
infants (130).

Other studies have investigated associations with Type 1 (T1D) and 2 (T2D) diabetes
mellitus. Mclntyre et al. found that maternal GH-V concentrations were positively correlated
with maternal glycaemia in women with established T1D or T2D, particularly in the post-
prandial state (48). There was no difference in total GH-V between women with normal
glucose tolerance and diabetic patients, but free GH-V (calculated as the ratio of GH binding
protein (GHBP) to GH-V) was decreased in maternal serum of T2D pregnancies and
increased in TID pregnancies (48). However, Higgins et al. (73) did not observe any
differences between GH-V concentrations in women with normal glucose tolerance and
diabetic patients. A study by Ringholm et al. found that GH-V concentrations were similar in
women with T1D delivering LGA infants when compared with T1D alone, except at 8 weeks
where GH-V concentrations were slightly lower in women with LGA infants (131). Fuglsang
et al. demonstrated that the increase in insulin requirements during pregnancy in T1D was not
related to GH-V concentrations (132,133).

3. Pre-eclampsia

PE is one of the leading causes of maternal, fetal, and neonatal mortality and morbidity,
affecting 3-5% of pregnancies worldwide. Clinically it is characterised by maternal
hypertension and proteinuria. Impaired trophoblast invasion and placental angiogenesis are
key pathogenic mechanisms involved in PE (113,134). As GH-V may influence the
placentation process it was hypothesised that aberrant GH-V expression might be associated
with PE. However, results from available studies are conflicting. Papadopoulou et al.
analysed samples in pairs of maternal serum and amniotic fluid from 25 PE pregnancies with
combined FGR at 16-22 weeks of gestation (54). They found that GH-V concentrations in
both serum and amniotic fluid were significantly higher in pregnancies complicated by FGR
associated with PE. In a cross-sectional study, Mittal et al. observed that maternal circulating
concentrations of GH-V at 20-42 weeks gestation were higher in women with PE than in
normal pregnant women, and women whose pregnancies were complicated with PE and SGA
had lower maternal serum concentrations of GH-V compared women whose pregnancies
were complicated by PE alone (72). Contrary to their findings, Sifakis et al. observed no
difference in maternal serum GH-V concentration at first trimester in a case control study
from 60 PE cases and 120 controls (135). We also observed that GH-V was not altered in
maternal serum from PE pregnancies at 20 weeks in a nested case-control study (136). At the
molecular level, Mannik et al. found that the placental mRNA expression profile of GH2 was
significantly decreased in PE pregnancies at term (130).
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Other conditions

Additional studies have demonstrated that maternal serum and amniotic concentrations of
GH-V are increased in the second trimester in pregnancies affected by chromosomal
anomalies, including Down syndrome, when compared with controls (137-141). Adding GH-
V measurements to the triple screening test for chromosome abnormalities, which measures
choriongonadotropin, a-foetoprotein and oestrogen, increases the detection rate of Down
Syndrome from 65.6 to 71.9% (140). However, these results are not consistent with two
studies that measured GH-V in the first trimester. Sifakis et al. observed that maternal serum
GH-V in the first trimester was significantly lower in trisomy 18 and 21 compared to euploid
pregnancies (142). In addition, Frendo et al. observed decreased GH2/GH-V mRNA
expression in placentas first trimester pregnancies (143).

In pregnancies affected by Down syndrome, some defects in placentation, especially the
formation of syncytiotrophoblast layer, have been demonstrated in vitro (143,144). As GH-V
is secreted in the syncytiotrophoblast layer, and expression is diminished (143), lower serum
GH-V concentrations would be expected in Down syndrome pregnancies. The explanation
for this discrepancy is not clear. However, other placental products have been demonstrated
to change between the first and second trimester in trisomy 21 relative to euploid pregnancies
(142).

GH-V has also been detected in gestational trophoblastic disease (GTD) and ectopic
pregnancies (145,146). However, it is unclear whether it is associated with these disorders.
GTD refers to a group of pregnancy-related tumours involving placental villous trophoblasts
which include choriocarcinoma, hydatidiform mole, invasive mole, placental-site
trophoblastic and epithelioid trophoblastic tumours. A recent study found that GH-V was
expressed in the majority of these; however, sample numbers were small (145). An
association with cancer is not surprising given the wealth of literature which links pituitary
GH-N with various cancers (147,148).

Summary

The GH/IGF-1 axis is closely associated with human reproduction and fetal growth. GH-V
may play an important role in the pathology of several pregnancy complications, in respect to
fetoplacental blood supply, placental nutrient transport and the process of placentation. Clear
associations are seen with both FGR and LGA fetuses in mid-late pregnancy, but associations
with other major pregnancy pathologies such as GDM and PE have been inconsistent or
lacking. GH is a classical endocrine hormone which also has autocrine and paracrine
functions, and it is possible that inconsistent associations between circulating GH-V and
GDM or PE is due to local actions not being reflected by systemic levels. Consequently,
autocrine and/or paracrine functions of GH-V in the placenta may play an important role in
the pathology of these complications, regardless of circulating levels. For now the exact
physical and pathological effect of GH-V in pregnancy remains largely unknown and further
investigation will be required to delineate associative versus functional effects relating to
pregnancy outcomes.
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Figure Legends

Figure 1. The human GH gene family is a cluster of five genes in 17q22-24 which includes
GHI (GH-N), CSHLI (CS-L), CSHI (CS-A), GH2 (GH-V) and CSH2 (CS-B). GHI is
expressed in the pituitary as well as other extra-pituitary sites. The remaining four genes are
expressed in the placenta.

Figure 2. Relative changes of placental GH-V, pituitary GH-N and IGF-1 in the maternal
circulation during pregnancy.

Table 1. Characteristic differences between placental GH-V and pituitary GH-N
Table 2. Summary of studies investigating the association of GH-V with different pregnancy
pathologies [SGA, small for gestational age; FGR, fetal growth restriction; LGA, large for

gestational age; GDM, gestational diabetes mellitus; T1D, Type 1 diabetes; T2D, Type 2
diabetes PB, peripheral blood; PE, Pre-eclampsia; DS, Down syndrome].
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Table 2. Summary of studies investigating the association of GH-V with different pregnancy

pathologies

Sample Timing Association Reference
Small for gestational age/fetal growth restriction

Maternal serum 11-13 wks Not associated Sifakis, 2012 (88)
Maternal serum, SGA 20 wks Not associated Liao, 2016 (49)

Maternal serum, FGR
Maternal plasma, FGR

Placental and peripheral
blood mMRNA

Maternal serum, FGR
Placental RNA
Placental RNA, SGA
Maternal serum, FGR
Large for gestational age
Maternal serum
Placental RNA
Gestational diabetes
mellitus

Maternal serum

Maternal serum (GDM
+LGA)

Maternal plasma

Placental RNA

Type 1 diabetes

Maternal serum, cord blood

Maternal serum (T1D +LGA)

Maternal serum (free GH-V)
Type 2 diabetes

Maternal serum (free GH-V)
Pre-eclampsia

Maternal serum

Maternal serum

Maternal serum and amniotic
fluid (PE + FGR)

28-30 & 36-38 wks
33 -39 wks amenorrhea

28 & 36 wks (PB); term (placenta)
Various
Term

Term

20 wks

Term

20 wks

20 wks

24-29 wks

Term

36 wks (MS); term (CB)

8,14, 21, 27 & 33 wks

28-30 & 36-38 wks

28-30 & 36-38 wks

11-13 wks

20 wks

16- 22 wks

Decreased
Decreased

Increased
Decreased
Decreased GH2,
transcript variant 1

Decreased

Decreased

Increased

Not associated

Not associated

Increased in GDM +
LGA group vs. GDM
alone

Not associated

Not associated

Not associated

Small decrease at 8
wks in T1D + LGA
group vs. T1D alone,
othewise not
associated
Increased

Decreased

Not associated
Not associated

Increased in PE +
FGR vs. normal

Mclintyre, 2000 (48)
Mirlesse, 1993 (86)

Whitehead, 2013 (52)
Caufriez 1993 (60)
Mannik, 2010 (90)
Barrio 2009 (89)

Schiess| 2007 (64)

Liao, 2016 (49)

Mannik, 2010 (90)

Liao, 2017 (129)

Liao, 2017 (129)

Verhaeghe, 2002 (35)

Mannik, 2012 (130)

Higgins, 2012 (73)

Ringholm, 2015 (131)

Mclintyre, 2000 (48)

Mclntyre, 2000 (48)

Sifakis, 2011 (135)
Liao, 2017 (136)

Papadopoulou, 2006
(54)
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963
964
965
966
967

Maternal serum

Placental RNA

Maternal serum
Gestational trophoblastic
disease

Tissue and sera samples
Ectopic pregnancy
Tissue and sera samples
Chromosome trisomies/

Down syndrome
Maternal serum, DS

Maternal serum, trisomy 18

& 21
Maternal serum, DS

Amniotic fluid, DS

Maternal serum, trisomy 18

& 21
Maternal serum, DS

Placental RNA, DS

20-42 wks

Term

n/a

n/a

8-14 weeks

11-13 wks

16-23 wks

16-23 wks

Second trimester

Second trimester

12—-35 wks

pregnancies

Increased in PE;
decreased in PE+
SGA babies vs. PE
alone

Decreased GH2,
transcript variant 1

Decreased

n/a

n/a

Decreased
Decreased
Increased
Increased
Increased
Increased

Decreased

Mittal, 2007 (72)

Mannik, 2012 (130)

Schiess| 2007 (64)

Hubener, 2017 (146)

Hibener, 2015 (145)

Christiansen, 2009 (141)
Sifakis, 2010 (142)
Papadopoulou, 2008
(138)

Sifakis, 2009 (139)
Moghadam, 1998 (137)

Baviera, 2004 (140)

Frendo, 2000 (143)
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