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Abstract 

Several methods have been proposed to estimate the variance in disease liability explained by large 

sets of genetic markers.  However, current methods do not scale up well to large sample sizes.  

Linear mixed models require solving high-dimensional matrix equations, while methods using 

polygenic scores are very computationally intensive.  Here we propose a fast analytic method using 

polygenic scores, based on the formula for the non-centrality parameter of the association test of 

the score.  We estimate model parameters from the results of multiple polygenic score tests based 

on markers with P-values in different intervals.  We estimate parameters by maximum likelihood and 

use profile likelihood to compute confidence intervals.  We compare various options for constructing 

polygenic scores, based on nested or disjoint intervals of P-values, weighted or unweighted effect 

sizes and different numbers of intervals, in estimating the variance explained by a set of markers, the 

proportion of markers with effects, and the genetic covariance between a pair of traits.  Our method 

provides nearly unbiased estimates and confidence intervals with good coverage, although 

estimation of the variance is less reliable when jointly estimated with the covariance.  We find that 

disjoint P-value intervals perform better than nested intervals, but the weighting did not affect our 

results.  A particular advantage of our method is that it can be applied to summary statistics from 

single markers, and so can be quickly applied to large consortium datasets.  Our methods are 

implemented in R software, AVENGEME (Additive Variance Explained and Number of Genetic Effects 

Method of Estimation). 
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Introduction 

Genome-wide association studies have been successful in identifying many variants linked to 

complex diseases. To date over 6000 have been found in over  500 quantitative traits and common 

diseases in humans 1 . However when considering the variance explained by the markers associated 

with any specific disease, there remains a large gap to match the heritability estimates obtained 

from family studies 2 . This observation has spurred the development of theories and investigations 

to explain the missing heritability, including for example copy number variation 3 , rare variants 4, 

epigenetics 5 and genetic interactions 6 . 

It has become increasingly clear that a large portion of the missing heritability is represented on 

current genotyping products, but the associated markers are not statistically significant.  Several 

approaches have been developed to estimate the heritability explained by a set of genetic markers 

that may not be individually associated.  In the linear mixed model approach, the genetic value of 

each individual is treated as a random effect whose sample covariance matrix is derived from the 

relatedness matrix, which is estimated from the genotype data 7.  Solving this model gives an 

estimate of the additive genetic variance explained by the available genotypes, often called the chip 

heritability.  Variations of this approach include multiple classes of variant with different effect size 

distributions 8; 9, regression of pair-wise phenotypic correlation on genetic  correlation 10, and 

multivariate models to estimate genetic correlation between traits 11. 

Another approach uses polygenic scores to estimate chip heritability.  Here, effect sizes for all 

markers are estimated in one sample of data, called the training sample.  These effects are then 

used to construct a score for each subject in a second sample, called the target sample, as the 

weighted sum of genotypes across a set of markers.  Originally, association of the score in the target 

sample was used to demonstrate the presence of missing heritability among an ensemble of markers 

12.  More recently, the strength of this association has been used to infer the chip heritability 13; 14. 
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A further approach uses empirical Bayes methods to estimate the chip heritability from the 

distribution of z-scores for individual markers 15.  This has the advantage of requiring only summary 

statistics from standard association analysis.  Finally, a very recent method of “LD-scoring”16 

estimates the chip heritability from the correlation between the marginal effect size of a marker and 

a measure of its linkage disequilibrium (LD) with other markers, also using only summary statistics. 

In general the methods using linear mixed models are computationally expensive and require 

individual-level data to calculate the genetic relatedness matrix.   Furthermore, many of these 

methods estimate only the chip heritability, but it is often of interest also to estimate the proportion 

of markers that affect a trait.  This bears on the design of association studies, since it indicates the 

number and effect sizes of the associated markers remaining to be found.  It is also relevant for the 

debate on the nature of evolution 17; 18, as if a large number of variants affect a trait, mechanisms of 

selection by polygenic adaptation are possible, acting on standing variation without requiring new 

mutations 19. Methods for the estimation of the number of genes affecting a trait have been 

proposed since the early 20th century, including complex segregation analysis comparing single and 

multi-locus models with or without polygenic background 20, but only with the recent availability of 

dense genome-wide data has it become possible to assess the polygenic background itself. 

Linear mixed models have been extended to allow for a proportion of variants with effects 8 but this 

remains computationally demanding.  Polygenic scoring has also been used to estimate this 

proportion, but again with a computationally demanding procedure using repeated genome-wide 

simulations within a Bayesian sampling scheme 13.  On the other hand an analytic method for 

polygenic scores 14 estimates only one parameter among several defined in its model; thus it can 

estimate the proportion of variants with effects if the chip heritability is assumed to be known, or 

vice versa.  Empirical Bayes methods are also available to estimate the proportion of markers with 

effects 21, but have not been adapted to jointly estimate this proportion with the chip heritability. 
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Here we extend the analytic approach of Dudbridge 14 to develop a fast analytic method based on 

polygenic scores for the joint estimation of chip heritability and the proportion of variants affecting 

the trait, and further estimate the genetic covariance between two related traits.  A particular 

advantage is that our method can be applied when only summary data is available for individual 

markers, and this allows our approach to be readily applied to the increasingly large datasets that 

are now being made available by study consortia. 

Methods 

Parameter estimation: AVENGEME 

We consider the model presented by Dudbridge 14  in which a pair of standardised traits Y=(Y1,Y2)’ is 

expressed as a linear combination of m genetic effects and an error term E=(E1,E2)’ 

𝒀𝒀 = 𝜷𝜷′𝑮𝑮+ 𝑬𝑬 = (∑ 𝛽𝛽𝑖𝑖1𝐺𝐺𝑖𝑖𝑚𝑚
𝑖𝑖=1 + 𝐸𝐸1, ∑ 𝛽𝛽𝑖𝑖2𝐺𝐺𝑖𝑖𝑚𝑚

𝑖𝑖=1 + 𝐸𝐸2)′  (equation 1) 

where G is an m-vector of coded genetic markers and 𝜷𝜷  an m×2 matrix of coefficients , with E 

independent of G. Assuming that in two independent samples the estimates of the genetic effects 

are given respectively by 1
ˆ

iβ   and 2
ˆ

iβ ,  i=1,...,m, either set of estimates can then be used to create 
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Y1 and Y2. Focusing without loss of generality on 𝑆̂𝑆2, the statistical properties of the test of 

association have been described 14.  In particular the coefficient of determination between 𝑆̂𝑆2 and Y2, 

i.e. the variance explained by the polygenic score in the regression of Y2 on 𝑆̂𝑆2, is given by   
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where the terms on the right-hand side are expressed analytically in terms of the following 

parameters: 
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Study design: sample sizes of the two samples, (n1, n2); number of variants in the marker panel, m, 

assumed to be uncorrelated; P-value thresholds for selecting a marker into the score from the 

training sample, (pL,pU); for binary traits, population prevalences (K1,K2) and case sampling fractions 

(P1,P2). 

Genetic model: additive genetic variance in the training sample, 2
1σ ; genetic covariance between 

training and testing samples, 12σ ; proportion of null markers with no effect on the trait in the 

training sample, 01π .  The variance and covariance are marginal over all markers, so include the null 

markers with 01 =iβ  or 02 =iβ . 

The asymptotic non-centrality parameter of the 2
)1(χ  test of association between Y2 and 𝑆̂𝑆2 is given 

by 2
,ˆ

2
,ˆ2

22

22

1 YS

YS

R

Rn

−
=λ ; equivalently the expectation of the z- (or t-) test is 2

,ˆ

2
,ˆ2

22

22

1 YS

YS

R

Rn

−
=µ   with the sign 

taken from the correlation between Y2 and 𝑆̂𝑆2. 

 

Binary traits are assumed to arise from a liability threshold model, in which each subject has an 

unobserved trait, called the liability, which is normally distributed in the population.  Subjects with 

liability greater than a fixed threshold have the trait.  The same theory then holds when either 1Y  or 

2Y  is binary as for when it is quantitative, assuming linear transformations between effects on the 

liability scale to effects on the observed (0/1) scale, and accounting for ascertainment in 

case/control studies. Specifically, each effect ijβ  on the liability scale corresponds to an effect 

)1(
)1(

)(
jj

jj
jij KK

PP
−

−
τφβ  on the observed binary scale14, where )1(1

jj K−Φ= −τ  with φ and Φ  the 

standard normal density and cumulative distribution functions. 
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We aim to estimate the genetic model parameters 2
1σ , 12σ , 01π  from the association test between 

𝑆̂𝑆2 and Y2.  Previously it was shown 14 that one parameter could be estimated by solving for the value 

at which λ  equals the observed 2χ  statistic.  To estimate multiple parameters, we now propose 

using association tests of Y2 with multiple polygenic scores constructed by selecting markers with 

different P-value thresholds in the training data.  We then fit parameters to the observed association 

tests using maximum likelihood. 

Specifically, let kdd ,,1   denote a set of k intervals within the unit interval, where k is equal to or 

greater than the number of parameters to be estimated.  For each ki ,,1=  we select markers 

with P-values falling in id , construct the corresponding polygenic score and obtain its (signed) z-

score iZ  for association with Y2.  The log-likelihood for 2
1σ , 12σ , 01π  is then 

));,,((log),,( 0112
2
1

1
0112

2
1 ii

k

i
dZ πσσµφπσσ −= ∑

=

  

where );,,( 0112
2
1 idπσσµ  is the expectation of the z-test as described above, expressed explicitly 

as a function of the model parameters given selection interval id .  Maximisation of this log-

likelihood yields estimates of the model parameters.  Note that any of 2
1σ , 12σ , 01π  could be held 

fixed while the other parameter(s) are estimated. 

An equivalent procedure estimates (using obvious notation) 2
2σ , 12σ , 02π  by reversing the roles of 

the training and target samples.  Furthermore, a bidirectional procedure can be used to 

simultaneously estimate up to five parameters 2
1σ , 2

2σ , 12σ , 01π , 02π  by fitting to the z-scores for 

association of both  𝑆̂𝑆2 with Y2 and  𝑆̂𝑆1 with Y1. 

The number of estimated parameters can be reduced by assuming that the genetic architectures are 

identical in the training and testing samples.  This would occur if two samples are drawn from the 
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same population with the same trait definitions, or if one sample is randomly split into training and 

target subsets.  Then we may assume 12
2
2

2
1 σσσ ==  and 0201 ππ = , estimating just two 

parameters in either unidirectional or bidirectional analysis. 

Ours is not a proper likelihood because the z-scores iZ  corresponding to the marker selection 

intervals are not independent.  The presence of a marker in one interval determines its presence or 

absence in all other intervals, creating dependence between the corresponding scores, but this is 

not reflected in our likelihood.  Furthermore the bidirectional likelihood does not account for 

dependence between the scores calculated in each direction.  We are therefore using a quasi-

likelihood and will later use simulations to investigate its sensitivity to the assumption of 

independent likelihood contributions. 

Maximisation of the log-likelihood is complicated by constraints on the range of 12σ .  Because the 

absolute correlation between 1iβ  and 2iβ  must be no greater than 1, 2112 σσσ ≤ .  In the 

unidirectional estimation, 2
2σ  is not identified and we need only respect that 12

2 ≤σ , giving the 

constraint 112 σσ ≤ .  In the bidirectional estimation we must also consider that the absolute 

correlation is no greater than 1 for the markers that have non-null effects in both training and 

testing samples.  Denoting this correlation as *ρ , the correlation over all markers as ρ  and the 

proportion of markers with non-null effects in both samples as ),max(1 0201 ππγ −≤ , we have 
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We maximise the likelihood numerically by nesting the maximisation for 12σ  within that for the 

other parameters: for each proposed value of 2
1σ , 2

2σ , 01π , 02π  we perform a univariate 

maximisation for 12σ  subject to the constraint imposed by the proposed values. 

To obtain analytic confidence intervals we use profile likelihood 22.  For a general scalar parameter θ

, its profile log-likelihood function is ))(ˆ,()( θϑθθ  =P  where )(ˆ θϑ  is the maximum likelihood 

estimate of the remaining parameters in the model given θ . Since for a regular model  

2
1)))(ˆ,())ˆ(ˆ,ˆ((2 χθϑθθϑθ →− D ,  for the estimated value  θ̂  we obtain a (1-α) confidence 

interval as the set { })1()ˆ()(: 2
12

1 αχθθθ −−≥ PP   where )1(2
1 αχ − is the 1-α quantile point 

of the 2
1χ  distribution.   This procedure is used to obtain confidence intervals for each of 2

1σ , 2
2σ ,

12σ , 01π , 02π . 

Often it is the genetic correlation rather than the covariance between two traits that is of interest.  

Because the unidirectional estimation does not identify 2
2σ , the correlation cannot be estimated 

unless a value is assumed for 2
2σ .  In the bidirectional estimation, the correlation and its confidence 

interval can be obtained using previously derived formulas 23. 

Association tests of polygenic scores can be calculated from summary data alone24.  The regression 

of Y2 on 𝑆̂𝑆2 has coefficient 
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where 2
2 js  is the sampling variance of j2β̂ , assuming markers are uncorrelated.  This is the inverse-

variance weighted mean of jj 12
ˆ/ˆ ββ  and hence has sampling variance 

∑ −2
2

2
1

ˆ
1

jj sβ
.  The Wald 

statistic 
∑

∑
−

−

2
2

2
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2
221

ˆ
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jjj

s

s

β

ββ
 (equation 2) 

is then calculated from summary effect sizes and standard errors for the individual markers.  These 

data are frequently available from research consortia even when access to individual-level data is 

impractical 25; 26. 

Our methods are implemented in R software, AVENGEME (Additive Variance Explained and Number 

of Genetic Effects Method of Estimation), which is available from the authors (see Web Resources). 

Method evaluation 

To study the statistical and operating characteristics of AVENGEME, we simulated genome-wide 

marker data under various genetic models.  We based our simulations on four complex diseases 

studied by Stahl et al 13, allowing direct comparisons with their ABPA method, which is conceptually 

similar to ours.  We also performed simulations based on three successively larger studies of 

schizophrenia  27 .  The study design parameters and the genetic models used for our simulations are 

given in Table 1. 

For each genetic model we simulated estimated effect sizes j1β̂ , j2β̂  independently for each 

marker, by drawing the true effects from the bivariate normal distribution in equation 1 and adding 

independent sampling error to each effect.  We then selected markers according to their P-values in 

the training sample and used the summary statistic formula in equation 2 to obtain tests of 

association for each polygenic score.  We verified this approach for sample sizes up to 10K by 

explicitly simulating genotypes in cases and controls as previously described 14.  Briefly, independent 

biallelic markers were defined with population minor allele frequencies uniformly distributed on 
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(0.01,0.5).  Their effect sizes were drawn from the bivariate normal distribution such that the desired 

variances and covariances were attained.  Allele frequencies in cases and controls were then derived 

for cases and controls and genotypes simulated in each.  Allelic odds ratios were then computed 

from the genotype counts.  The results from the genotype simulations were indistinguishable from 

those from summary statistics, so we adopted the summary statistic method, which is much faster 

and easily scales up to very large sample sizes.  Note that in our simulations, markers were assumed 

to be independent, ie in linkage equilibrium, as assumed by AVENGEME.  We will later consider the 

effect of LD on our method. 

For the models in table 1, we simulated 1000 sets of polygenic score results and estimated the 

genetic model parameters using the unidirectional AVENGEME.  This was done both when assuming 

12
2
1 σσ = (which reflects the assumption that the two samples have the same genetic model), in 

which case AVENGEME estimates the two free parameters 2
1σ  and 01π , and when allowing 

12
2
1 σσ ≠  in which case AVENGEME estimates three free parameters.   We evaluated the accuracy 

from the mean and standard deviation of the parameter estimates and the coverage of the 95% 

confidence intervals. 

We then considered different options for constructing polygenic scores, simulating under the design 

of the largest schizophrenia study (rightmost column of table 1) (hereafter termed SCZ simulation).  

We fixed ten thresholds (Table S1, right half) and compared the use of disjoint to nested P-value 

intervals using those thresholds, with the nested intervals each having a lower limit of 0.  We 

compared weighted scores to unweighted scores in which all markers were given an equal weight in 

the direction of disease risk.  We performed 1000 simulations and evaluated bias, precision and 

coverage as before. 

We considered the effect of increasing the number of selection intervals and the sample size.  Here 

we simulated different heritabilities in the two samples: 3.02
1 =σ , 45.02

2 =σ , 294.012 =σ  (giving 
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genetic correlation of 0.8), and different proportions of null markers: 95.001 =π , 94.002 =π  

(hereafter termed bivariate simulation).  We compared the use of 3, 5, 10, 20 and 40 selection 

intervals in sample sizes of 10K, 20K, 40K and 80K subjects with case sampling fractions 425.01 =P , 

515.02 =P  and disease prevalences 01.021 == KK .  This reflected the SCZ PGC2 study design, 

although as that was a meta-analysis of case/control studies the overall sampling fraction should be 

adjusted to reflect the different fractions in each study.  We did not do this here but have found that 

such adjustments have very little effect on the estimated model. 

We evaluated the bidirectional AVENGEME for the simultaneous estimation of all five parameters.  

We then returned to the SCZ simulation and applied bidirectional AVENGEME under the constraints 

12
2
2

2
1 σσσ == , 0201 ππ = , to compare the precision of the bidirectional and unidirectional 

AVENGEME when estimating only two free parameters. 

Finally we compared AVENGEME to the genomic restricted maximum likelihood (GREML) solution of 

the linear mixed model, as implemented in the popular GCTA program 28.  We performed the 

bivariate simulation with a total sample size of 10K.  GREML was applied on the entire sample, 

whereas for AVENGEME it was split into training and testing samples each of 5K subjects.  We also 

compared AVENGEME to the method of So et al 15, which also uses summary statistics for estimation 

of 2
1σ  only, under the SCZ simulation for a total sample size of 10K. 

Linkage disequilbrium 

The theory underlying AVENGEME assumes that markers are uncorrelated14.  This is approximately 

ensured in practice by pre-filtering markers using “LD-pruning” algorithms that select markers with 

limited pairwise correlation.  While this practice is common for many methods that estimate chip 

heritability, it may lead to under-estimation of the true chip heritability since the selected markers 

may not fully tag the causal variation.  Conversely, in our approach the residual LD among the 
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pruned markers may lead to over-estimation of the explained variance and under-estimation of the 

proportion of null markers, since marker effects will be biased by LD with other markers29. 

We therefore performed simulations on real genotype data to assess the effect of LD-pruning.  We 

combined genotype data from all seven case and both control samples in phase 1 of the Wellcome 

Trust Case-Control Consortium(WTCCC)30, giving genotypes for 384,845 markers on 15769 subjects 

after basic quality control (Table S2).  We allocated a chip heritability of 3.012
2
2

2
1 === σσσ  

among a random 5% of the markers ( 95.00201 == ππ ).  We simulated a normally distributed 

quantitative trait under this model, split the sample into equally sized training and target samples, 

and estimated the model using AVENGEME on a reduced marker set.  We considered both a 

“pruning” algorithm, which does not take association results into account (“indep-pairwise” option 

in PLINK31, window size 100, step 10) and a “clumping” algorithm which greedily retains the most 

associated markers in the reduced set (“clump” option in PLINK with index and clumped P-value 

thresholds of 1 and 100 marker radius).  Both algorithms were applied with r2 thresholds of 0.1 and 

0.2, giving reduced sets of approximately 77,000 and 102,000 markers respectively on average.  The 

simulation was repeated 1000 times. 

Results 

Bias and precision 

We simulated data based on the estimates for additive genetic variance and proportion of null 

markers obtained by Stahl et al 13 for four common diseases (Table 1).  We compared the 

performance of AVENGEME for these four models using the same P-value intervals as those authors 

(Table S1).  Results are shown in Table 2.  For the estimation of two parameters only, assuming the 

same genetic model in the training and target samples, our method yielded nearly unbiased results 

for both 
2
1σ  and 01π  with small variance, suggesting that it is expected to work very well  in practice.  

However, the coverage was lower than 95%, suggesting that the analytic confidence intervals are 
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too narrow.  This may result from our assumption that the selection intervals make independent 

contributions to the likelihood.  To confirm this, we directly simulated 2χ  statistics from the 

analytic non-central distributions, independently for each selection interval, and repeated the 

estimation.  The confidence intervals then indeed had appropriate coverage (Supplementary Table 

3),  confirming that the assumption of independent contributions from each selection interval leads 

to confidence intervals that are too narrow.  Nevertheless this effect appears to be fairly small. 

In the estimation of 3 parameters, the estimate of 
2
1σ  had some upward bias and much larger 

variance; 01π had greater variance compared to the 2 parameter estimation, but coverage close to 

95%.  Inspection of individual simulations revealed that the estimated 
2
1σ  is often close to 0 or to 1, 

pulling the mean estimate towards 0.5. Generally this suggests that the variability is too large to 

allow reliable estimation of 
2
1σ  when estimating 01π  and 12σ  as well, at least at these sample sizes. 

The estimates for 12σ  however showed nearly unbiased estimates and small variance, suggesting 

that our method is reliable for estimating the genetic covariance when it is not assumed to equal the 

variance.  Coverage was slightly less accurate in the estimation of 3 parameters, but generally close 

to the nominal level.   

We conclude that for the estimation of 
2
1σ and 01π  it is preferable for the training and target 

samples to be from the same trait population and to apply AVENGEME under the constraint 

12
2
1 σσ = , whereas if the interest lies in the estimation of the genetic covariance between traits 

then the unconstrained version of AVENGEME is more appropriate. 

 

Nested intervals and unweighted scores 
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We wondered whether the sample sizes could be a reason for the poorer performance of the 3 

parameter estimation; in addition we considered the effect of the score weighting versus an 

unweighted score, and whether the P-value selection intervals were disjoint or nested . We 

therefore simulated under a scenario with parameters derived from a large meta-analysis of 

schizophrenia 27  (Methods; Table 1 rightmost column). The results are shown in Table 3. For the 2 

parameter estimation, disjoint intervals had the least bias and most accurate coverage, although its 

variance was slightly greater than for nested intervals. The reduced coverage of the confidence 

intervals for nested intervals can be ascribed to the dependence between intervals, which is greater 

for nested intervals.  The bias is possibly due to the imbalance in the sample size between training 

and test set (reversing the direction of estimation led to a reduction in bias, for example for disjoint 

intervals, weighted score, mean 291.0ˆ 2
1 =σ  ).    Similar patterns were observed when estimating 

three parameters, with the disjoint intervals generally showing less bias and more accurate coverage 

than the nested intervals, but with slightly increased variance. The choice of weights seems to be 

generally neutral although a slight increase in variance was observed for unweighted scores. Taken 

together these results suggest that the weighted score with disjoint selection intervals is the most 

reliable and accurate approach for use with AVENGEME. 

 

Sample size and number of selection intervals 

We then performed bivariate simulations (see Methods) to consider the effect of varying the sample 

size and the number of selection intervals.  In Tables S4-S7 we show the performance of AVENGEME 

in each direction.  The results confirm the poor ability to estimate 
2
1σ  or 

2
2σ , with mean values 

mostly around 0.5 and high variance reflecting the frequent estimates of 0 or 1.  This applies across 

all numbers of selection intervals, but there is a reduction in variance as the number of intervals 

increases, and a substantial reduction in bias and variance as the sample size increases from 10K to 
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80K, while more bias persists for the lower genetic variance (mean 
2
1σ̂ =0.362 and 

2
2σ̂ =0.444 with 40 

intervals and 80K total sample size).   A similar pattern was observed for 01π  and 02π , although 

there was much less bias in general. 

For the covariance 12σ the estimation again worked well, being nearly unbiased and with low 

variance regardless of sample size and number of selection intervals.  We again observed a general 

trend of improved bias and precision with more selection intervals and greater sample size. 

 

Bidirectional estimation 

We applied the bidirectional method to the same bivariate simulation data for total sample size of 

80k. The results (Table S8) showed consistently lower variance for each parameter compared to the 

unidirectional estimators, but with a similar level of bias resulting in lower coverage of the 

confidence intervals.  The information gain from analysing the bidirectional data together is offset to 

some degree by the increased number of parameters in the model.  Furthermore, this analysis was 

considerably more time-consuming than the unidirectional analyses. 

Similarly, when applying the bidirectional estimation to data simulated under the SCZ model (Table 1 

rightmost column), and constraining 12
2
2

2
1 σσσ ==  and 0201 ππ =  in the estimation, we obtained 

lower  bias for 2
1σ   (mean 2

1σ̂ =0.286, 01π̂ =0.95), similar variance (SD ( 2
1σ̂ )=0.011, SD( 01π̂ )=0.004), 

and greater coverage for 2
1σ  and lower for 01π  (=0.498 for 2

1σ , =0.760 for 01π ) compared to the 

unidirectional analyses (first column of Table 3), although the differences were very small.   

We performed a sensitivity analysis to compare the performance of the bidirectional estimation with 

different initial parameter values for the numerical optimization and the results were virtually 

unchanged, with just a slight change in bias, variance and coverage. A similar analysis conducted for 
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the complex diseases in Table 1 also revealed that the estimate of covariance was robust to the 

choice of initial parameter values. 

 

Linkage disequilibrium 

We simulated a normally distributed trait on 15769 subjects in the WTCCC (see Methods).  Using 

reduced marker sets with pairwise r2 constrained to <0.1 and <0.2, we estimated 12
2
2

2
1 σσσ ==  

and 0201 ππ =  when a) the markers were pruned without regard to their association; b) the markers 

were clumped by greedily retaining the most strongly associated markers.  Table 4 shows that for 

r2<0.1, AVENGEME is unbiased in estimating 2
1σ when clumping is used, but has a small downward 

bias in 01π .  Pruning, however, incurs a strong downward bias in both 2
1σ  and 01π .  For r2<0.2, 

clumping over-estimates 2
1σ  and under-estimates 01π  owing to the residual LD.  Pruning reduces, 

but does not eliminate, these biases.  These results suggest in practice using a clumping algorithm 

with pairwise r2<0.1 as the least biased approach with AVENGEME. 

 

Comparison with related methods 

We analysed our bivariate simulations for total sample size 10K using the bivariate GREML 

implemented in GCTA 28.  The mean 12σ̂  was 0.265 with standard deviation 0.032, which compared 

to the results in Table S4 shows that in this case the GREML estimate has greater bias but less 

variance than AVENGEME. 

We also applied the method by So et al 15 to the SCZ simulation (Table 1 rightmost column).   

Although their method appeared unbiased in the simulation they performed in which 
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995.00201 == ππ , in our setting it yielded seriously biased results for 
2
1σ  with a mean estimate of 

0.189 compared to the true value of 0.3. 

Having established the good operating characteristics of AVENGEME, we applied our method to 

some published association results for polygenic scores.  For the four diseases from Stahl et al, our 

estimates were systematically lower than the ones obtained by their ABPA method (Table 5), and for 

2
1σ  our confidence intervals excluded their estimates.  These results were surprising since the two 

methods are conceptually similar, and our simulations had shown that under the models inferred by 

ABPA, AVENGEME achieved nearly unbiased estimation.  LD is unlikely to affect these results as the 

markers were clumped to r2<0.1.  We speculate that the differences may arise from ABPA’s use of 

prior distributions, and return to this point in the Discussion.  Compared to results from GREML, our 

estimates for 
2
1σ  were lower, with non-overlapping confidence intervals, for Rheumatoid Arthritis 

and Type-2 Diabetes, whereas the results were similar for Celiac Disease and Myocardial Infarction. 

We applied AVENGEME to three waves of SCZ meta-analyses (Table 5).  The genetic variance 
2
1σ  was 

similar in the ISC and PGC1 data, but decreased in the PGC2 data.  The proportion of null markers 

decreased in PGC1 and PGC2 compared to ISC.  This may reflect increased heterogeneity: as more 

studies contribute to the meta-analyses, increased genetic heterogeneity could decrease the 

proportion of null markers, whereas increased environmental heterogeneity could decrease the 

genetic variance, which on the liability scale is expressed relative to the total variance.  GREML has 

been applied to the ISC and PGC1 data 32; for the former the estimate is similar to ours, whereas it is 

significantly lower in the latter.  ABPA has been applied to an expanded PGC1 analysis 33, yielding a 

significantly higher estimate of 
2
1σ  than ours.  

We finally applied AVENGEME to estimate genetic covariance between psychiatric traits using 

published summary data 34.  These data included 5 pairs from four disorders:  schizophrenia, bipolar 
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disorder, major depressive disorder and autistic spectrum disorder (other combinations, for which 

only two selection intervals were reported, were excluded as our method requires at least three).  

The method of Dudbridge 14 has previously been shown to agree well with GREML for these data 35, 

but in estimating the genetic covariance it assumes that 2
1σ  and 01π  are known exactly.  Here we 

estimated all three parameters simultaneously.  The results are presented in Table 6 and show that 

the estimates from AVENGEME are of similar magnitude to those from GREML, but are consistently 

larger and have narrower confidence intervals.  This difference may arise from LD, as here the 

markers were clumped to r2<0.25, which according to table 5 may create an upward bias in 

AVENGEME. 

 

Discussion 

The method we have proposed allows simultaneous estimation of the additive variance explained by 

a set of genetic markers, the proportion of markers affecting the trait of interest and the genetic 

covariance between two traits.  It does so by solving analytic expressions to obtain maximum 

likelihood estimates and profile likelihood confidence intervals, and is consequently very fast.  

Furthermore the polygenic score tests required by our method can be rapidly calculated from 

summary statistics for individual markers, allowing application to very large data sets and results 

from published literature.  Our simulations show that our method enjoys good bias and coverage 

properties in spite of its assumption that the tests from different selection intervals are 

independent.  Although we presented results only for case/control designs here, they represent the 

most challenging scenarios for polygenic modelling and we have observed results of comparable or 

greater accuracy for quantitative traits (data not shown). 

AVENGEME has a number of advantages compared to currently available methods.  In comparison 

with GREML it can deal with very large sample sizes and obtain estimates much more rapidly, and it 
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additionally estimates the proportion of null markers.  Compared to ABPA, it does not require Monte 

Carlo sampling nor simulation of genome-wide data and is therefore much faster; AVENGEME also 

extends to estimate the covariance between related traits.  Compared to the method of So et al and 

other empirical Bayes methods, it appears to be less biased and can simultaneously estimate up to 

five model parameters.  Compared to the LD-scoring approach, it can estimate the proportion of null 

markers and does not require calculation of LD between pairs of markers. 

The limitations of our approach include the need for two independent datasets, which is often not 

the case when common controls are used, whereas GREML can estimate a bivariate model from a 

single sample and LD-scoring is robust to overlapping samples.  We assume that population 

structure has been entirely adjusted for in the target sample, and may over-estimate chip heritability 

if this is not the case, whereas GREML and LD-scoring adjust for structure explicitly in their 

calculations.  Our method also assumes that markers are uncorrelated.  In practice this is 

approximately ensured by a “LD-pruning” step that is also commonly conducted for other methods.   

We have shown that if the residual LD between pruned markers is not too high, say r2<0.1, then 

AVENGEME retains its unbiased properties if a “clumping” algorithm is used, but can otherwise 

overestimate the genetic variance.  In contrast, LD-scoring explicitly uses LD to estimate the variance 

explained.  The similarity of estimates obtained by that approach to those of ours and other current 

methods suggests that this problem is currently not too severe, but as marker densities increase 

towards whole genome coverage, it will become more important to include all markers and account 

for LD.  Our methods can be extended to allow correlation between markers, and this will be 

pursued in a subsequent paper. 

A limitation is that unless very large sample sizes are used, estimation of the chip heritability in the 

training sample is unstable if it is jointly estimated with the covariance with the testing sample.  

Therefore if the variance is of particular interest, we recommend analysing the same trait in both 

samples, either by splitting a single sample in two, or by drawing two samples from the same trait 
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population.  Then good performance in estimating the variance can be achieved by constraining it to 

equal the covariance. 

The unidirectional estimation provides good estimates in all situations we considered.  The 

bidirectional estimation can also be applied, providing a less variable estimate than the 

unidirectional estimators, with a similar degree of bias.    However, the bidirectional analysis is more 

time-consuming than the unidirectional, and as its reduction in variance is rather small we do not 

find a compelling reason to prefer it to the unidirectional. 

We recommend using disjoint selection intervals, whereas the influence of the weighting seemed 

limited in the situations we considered.   However the use of nested intervals still provides good 

estimates if the number of intervals is sufficiently large (say 10) and appears to work well for the 

covariance across sample sizes, number and type of intervals.  Nested intervals seem more appealing 

for obtaining significant tests of association between polygenic scores and a trait of interest, and to 

date have been reported more often than disjoint intervals.  However for the estimation of the 

underlying genetic model we suggest that results for disjoint intervals should also be made available.  

The current fashion for using around 10 intervals appears to be sufficient for obtaining accurate 

estimates; while precision increases as more intervals are used, the gains diminish rapidly beyond 

that number. 

Our method was generally found to produce under-coverage of confidence intervals.  This is due 

both to some bias in the estimation, though this was generally small, and the assumption of 

independent tests from each interval.  We have observed that our profile likelihood intervals closely 

match the empirical distribution of parameter estimates in our simulations.  The under-coverage is 

therefore more likely to arise from the slight bias in our estimator rather than from the calculation of 

its variance.  Our experience is that, in this application, an approximately valid confidence interval is 

generally sufficient for practitioners. 
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AVENGEME requires numerical optimisation to estimate parameters, and this can be sensitive to the 

algorithm used and the initial estimates provided.  We have used the default settings of the optim() 

function in R (Nelder-Mead non-linear optimization), and in the simulations provided the true 

parameter values as the initial estimates.  This was to obtain, as far as possible, the ideal results 

from truly maximising the likelihood.  We found that slight variations can result from different 

starting values (our default values are 0.5 for all parameters) but the conclusions remain the same.  

In practice we suggest using a range of plausible starting values to identify the solution with the 

maximum likelihood. 

AVENGEME is conceptually similar to ABPA 13, both methods seeking the genetic model that best fits 

the observed results of polygenic score tests using multiple selection intervals.  The main difference 

is that AVENGEME uses analytic formulae to construct an explicit likelihood, whereas ABPA uses 

approximate Bayesian computation with Monte Carlo sampling.  In the application to the complex 

diseases in Table 1, we obtained lower estimates for all parameters and the reason for this may be 

the effect of the prior distributions used by ABPA.  Their prior for 01π  is uniform on the log scale and 

therefore heavily favours values of 01π  close to 1.  On the other hand, their prior for 2
1σ  is beta 

distributed on a relative scale and does not have a natural correspondence to maximum likelihood.  

Furthermore if the true distribution of effects departs from the assumed model (for example, as a 

mixture of normal distributions 8; 9) then the two methods may diverge further.  Our approach may 

benefit from imposing prior distributions on the parameters and performing Bayesian estimation, 

particularly for improving the precision of estimating 2
1σ  jointly with 12σ .  This is a promising 

subject for future work.   

 

Our approach provides a fast and accurate method for estimating the genetic model parameters 

underlying large scale association studies.  It is particularly applicable to summary statistics for 
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individual markers, often made freely available on-line by research consortia.  Therefore it will 

greatly facilitate the estimation of genetic covariance, especially between traits which have been 

studied by different consortia and for which combined analysis of individual-level data is logistically 

challenging.  The rapid estimation of genetic models at arbitrarily large sample sizes suggests that 

our approach will prove useful as the sizes of consortium and biobank studies begin to approach 

millions of subjects. 
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 RA CD MI T2D SCZ  ISC SCZ PGC1 SCZ PGC2 

n1 16016 5309 6042 14919 5953 19548 77195 

n2 12078 6785 4861 4862 5120 5120 5120 

m 82390 91388 89808 75912 84882 93093 103125 

2
1σ   

.18  .44  .48  .49  - - .30 

01π  .973  .972  .980  .962  - - .95 

P1 0.248 0.394 0.491 0.416 0.423 0.477 0.425 

P2 0.126 0.273 0.396 0.396 0.515 0.515 0.515 

K1 0.01 0.01 0.06 0.08 0.01 0.01 0.01 

K2 0.01 0.01 0.06 0.08 0.01 0.01 0.01 

Table 1: Parameter values for studies of four diseases 13 and three studies of schizophrenia 27 .  RA, 

rheumatoid arthritis; CD, celiac disease; MI, myocardial infarction; T2D, type II diabetes; SCZ, 

schizophrenia.  ISC, International Schizophrenia Consortium; PGC, Psychiatric Genomics Consortium.  

Values of 
2
1σ  and 01π  for RA, CD, MI and T2D were estimated by Stahl et al 13 and subsequently 

used in our simulations.  Those for SCZ are an approximation based on estimates from several 

studies and methods (table 5). 
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Estimation of 2
1σ , 01π  Estimation of 2

1σ , 01π , 12σ  

RA CD MI T2D  RA CD MI T2D 

True 2
1σ  0.180 0.440 0.480 0.490 0.180 0.440 0.480 0.490 

Mean 2
1σ̂  0.180 0.438 0.486 0.483 0.270 0.467 0.522 0.581 

SD 2
1σ̂  0.019 0.035 0.050 0.034 0.312 0.325 0.335 0.332 

Coverage 0.95 0.89 0.91 0.93 0.97 0.95 0.99 0.99 

         

True 01π  0.973 0.972 0.980 0.962 0.958 0.972 0.979 0.961 

Mean 01π̂  0.972 0.972 0.979 0.961 0.968 0.972 0.979 0.957 

SD 01π̂  0.0054 0.0046 0.0040 0.0052 0.028 0.016 0.011 0.018 

Coverage 0.94 0.85 0.88 0.90 0.98 0.95 0.98 0.98 

         

True 12σ  - - - - 0.180 0.440 0.480 0.490 

Mean 12σ̂  - - - - 0.190 0.442 0.491 0.509 

SD 12σ̂  - - - - 0.034 0.048 0.061 0.072 

Coverage - - - - 0.98 0.93 0.94 0.993 

 

Table 2: Application of AVENGEME to simulated data for 4 genetic models shown in Table 1.  Mean 

and standard deviation of parameter estimates and coverage of 95% confidence interval are shown 

over 1000 simulations.  Monte Carlo error for the mean is SD/√1000 and for coverage of 0.95 is 

0.007.   
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Estimation of 2
1σ , 01π  Estimation of 2

1σ , 01π , 12σ  

Disjoint  Nested  Disjoint  Nested  

W U W U W U W U 

Mean 2
1σ̂  0.274 0.274 0.254 0.258 0.299 0.298 0.422 0.471 

SD 2
1σ̂  0.011 0.011 0.008 0.009 0.105 0.106 0.045 0.081 

Coverage 0.36 0.37 0 0 0.94 0.93 0.01 0.20 

Mean 01π̂  0.950 0.950 0.951 0.950 0.946 0.946 0.941 0.933 

SD 01π̂  0.004 0.004 0.003 0.003 0.016 0.017 0.006 0.008 

Coverage 0.93 0.93 0.80 0.78 0.95 0.94 0.37 0.14 

Mean 12σ̂  - - - - 0.281 0.280 0.289 0.309 

SD 12σ̂  - - - - 0.042 0.043 0.013 0.021 

Coverage - - - - 0.91 0.91 0.69 0.85 

Table 3: Comparison of AVENGEME performance when using weighted (W) or unweighted (U) 

score with nested or disjoint intervals.  The SCZ simulation model with 3.012
2
1 == σσ , 

95.001 =π  was used (see main text for full details).  Mean and standard deviation of parameter 

estimates and coverage of 95% confidence interval are shown over 1000 simulations.  Monte Carlo 

error for the mean is SD/√1000 and for coverage of 0.95 is 0.007.   
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 Pruned Clumped Independent 
2r  0.1 0.2  0.1 0.2 0.1 0.2 

Mean 2
1σ̂  0.173 0.281 0.297 0.389 0.297 0.300 

SD 2
1σ̂  0.041 0.053 0.042 0.05 0.039 0.046 

Mean 01π̂  0.559 0.579 0.900 0.879 0.949 0.931 

SD 01π̂  0.428 0.400 0.066 0.080 0.02 0.096 

  

Table 4.  Application of AVENGEME to normally distributed traits simulated on real genotypes.  

Pruned, markers are randomly retained in the reduced set.  Clumped, most strongly associated 

markers are greedily retained in the reduced set.  2r , threshold on residual pairwise LD within the 

reduced set.  Independent, results for simulated markers with no LD between any pair.  True 

3.02
1 =σ , 95.001 =π . 
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 RA CD MI T2D SCZ  ISC SCZ PGC1 SCZ PGC2 

AVENGEME 

2
1σ̂  

.13 (.09-

.17) 

.28 (.21-

.35) 

.34 (.24-

.45) 

.30 (.23-

.37) 

.31 (.28-.34) .31 (.29-.33) .24 (.24-.25) 

ABPA
2
1σ̂   

.18 (.11-

.25) 

.44 (.34-

.54) 

.48 (.32-

.64) 

.49 (.39-

.59) 

- .50 (.45-

.54)* 

- 

GREML 
2
1σ̂  

.32 (.25-

.39) 

.33 (.25-

.41) 

.41 (.28-

.54) 

.51 (.38-

.64) 

.33 (.27-.39) .23 (.21-.25) - 

AVENGEME 

01π̂  

.946  

(.887-

.975) 

.969 

(.950-

.982) 

.965 

(.933-

.982) 

.954 

(.929-

.971) 

.953(.940-

.963) 

.867 (.841-

.887) 

.852(.835-

.867) 

ABPA 01π̂  .973 

(.953-

.993) 

.972 

(.954-

.990) 

.980 

(.965-

.995) 

.962 

(.941-

.983) 

- .936 (.922-

.952)* 

- 

 

Table 5.  Genetic model parameters estimated by AVENGEME, ABPA13; 33, and GREML13; 32. * 

includes an additional Swedish case/control study. 95% confidence intervals given in parentheses, 

those for ABPA converted from the reported 50% credible intervals by assuming normally 

distributed posteriors and those for GREML from the reported standard error by assuming normally 

distributed estimators. 
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  AVENGEME 12σ̂  GREML 12σ̂  

BPD-SCZ 0.199 (0.186-0.209) 0.151 (0.131-0.171) 

MDD-BPD 0.134 (0.120-0.148) 0.102 (0.077-0.127) 

SCZ-MDD 0.165 (0.153-0.177) 0.087 (0.065-0.110) 

SCZ-ASD 0.050 (0.038-0.059) 0.03 (0.008-0.052) 

ASD-BPD 0.042 (0.030-0.055) 0.008 (-0.017-0.033) 

Table 6: Genetic covariance estimates for 5 pairs of 4 psychiatric traits.  BPD, Bipolar Disorder;  SCZ, 

Schizophrenia; MDD, Major Depressive Disorder; ASD, Autistic Spectrum Disorder.  AVENGEME 

estimates are from bidirectional analysis.  GREML confidence intervals derived from published 

standard errors 36 assuming normally distributed estimators. 


