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Abstract

Several methods have been proposed to estimate the variance in disease liability explained by large
sets of genetic markers. However, current methods do not scale up well to large sample sizes.
Linear mixed models require solving high-dimensional matrix equations, while methods using
polygenic scores are very computationally intensive. Here we propose a fast analytic method using
polygenic scores, based on the formula for the non-centrality parameter of the association test of
the score. We estimate model parameters from the results of multiple polygenic score tests based
on markers with P-values in different intervals. We estimate parameters by maximum likelihood and
use profile likelihood to compute confidence intervals. We compare various options for constructing
polygenic scores, based on nested or disjoint intervals of P-values, weighted or unweighted effect
sizes and different numbers of intervals, in estimating the variance explained by a set of markers, the
proportion of markers with effects, and the genetic covariance between a pair of traits. Our method
provides nearly unbiased estimates and confidence intervals with good coverage, although
estimation of the variance is less reliable when jointly estimated with the covariance. We find that
disjoint P-value intervals perform better than nested intervals, but the weighting did not affect our
results. A particular advantage of our method is that it can be applied to summary statistics from
single markers, and so can be quickly applied to large consortium datasets. Our methods are
implemented in R software, AVENGEME (Additive Variance Explained and Number of Genetic Effects

Method of Estimation).



Introduction

Genome-wide association studies have been successful in identifying many variants linked to
complex diseases. To date over 6000 have been found in over 500 quantitative traits and common
diseases in humans ! . However when considering the variance explained by the markers associated
with any specific disease, there remains a large gap to match the heritability estimates obtained
from family studies 2. This observation has spurred the development of theories and investigations
to explain the missing heritability, including for example copy number variation 3, rare variants 4,

epigenetics ®> and genetic interactions © .

It has become increasingly clear that a large portion of the missing heritability is represented on
current genotyping products, but the associated markers are not statistically significant. Several
approaches have been developed to estimate the heritability explained by a set of genetic markers
that may not be individually associated. In the linear mixed model approach, the genetic value of
each individual is treated as a random effect whose sample covariance matrix is derived from the
relatedness matrix, which is estimated from the genotype data ’. Solving this model gives an
estimate of the additive genetic variance explained by the available genotypes, often called the chip
heritability. Variations of this approach include multiple classes of variant with different effect size
distributions &9, regression of pair-wise phenotypic correlation on genetic correlation 1°, and

multivariate models to estimate genetic correlation between traits 2.

Another approach uses polygenic scores to estimate chip heritability. Here, effect sizes for all
markers are estimated in one sample of data, called the training sample. These effects are then
used to construct a score for each subject in a second sample, called the target sample, as the
weighted sum of genotypes across a set of markers. Originally, association of the score in the target
sample was used to demonstrate the presence of missing heritability among an ensemble of markers

12 More recently, the strength of this association has been used to infer the chip heritability %4,



A further approach uses empirical Bayes methods to estimate the chip heritability from the
distribution of z-scores for individual markers *°. This has the advantage of requiring only summary
statistics from standard association analysis. Finally, a very recent method of “LD-scoring”*®

estimates the chip heritability from the correlation between the marginal effect size of a marker and

a measure of its linkage disequilibrium (LD) with other markers, also using only summary statistics.

In general the methods using linear mixed models are computationally expensive and require
individual-level data to calculate the genetic relatedness matrix. Furthermore, many of these
methods estimate only the chip heritability, but it is often of interest also to estimate the proportion
of markers that affect a trait. This bears on the design of association studies, since it indicates the
number and effect sizes of the associated markers remaining to be found. It is also relevant for the
debate on the nature of evolution 178, as if a large number of variants affect a trait, mechanisms of
selection by polygenic adaptation are possible, acting on standing variation without requiring new
mutations °. Methods for the estimation of the number of genes affecting a trait have been
proposed since the early 20" century, including complex segregation analysis comparing single and
multi-locus models with or without polygenic background 2°, but only with the recent availability of

dense genome-wide data has it become possible to assess the polygenic background itself.

Linear mixed models have been extended to allow for a proportion of variants with effects & but this
remains computationally demanding. Polygenic scoring has also been used to estimate this
proportion, but again with a computationally demanding procedure using repeated genome-wide
simulations within a Bayesian sampling scheme 3. On the other hand an analytic method for
polygenic scores 1* estimates only one parameter among several defined in its model; thus it can
estimate the proportion of variants with effects if the chip heritability is assumed to be known, or
vice versa. Empirical Bayes methods are also available to estimate the proportion of markers with

effects 2%, but have not been adapted to jointly estimate this proportion with the chip heritability.



Here we extend the analytic approach of Dudbridge * to develop a fast analytic method based on
polygenic scores for the joint estimation of chip heritability and the proportion of variants affecting
the trait, and further estimate the genetic covariance between two related traits. A particular
advantage is that our method can be applied when only summary data is available for individual
markers, and this allows our approach to be readily applied to the increasingly large datasets that

are now being made available by study consortia.
Methods

Parameter estimation: AVENGEME

14

We consider the model presented by Dudbridge ** in which a pair of standardised traits Y=(Y3,Y3)’ is

expressed as a linear combination of m genetic effects and an error term E=(E1,E;)’
Y=p'G+E=QQpnGi +E1, X% Bi2Gi +E;)"  (equation )
where G is an m-vector of coded genetic markers and 8 an mx2 matrix of coefficients , with E

independent of G. Assuming that in two independent samples the estimates of the genetic effects

are given respectively by f, and f3,,, i=1,...,m, either set of estimates can then be used to create

A

m m
polygenic scores S, = ZﬂiZGi and S, = ) B.,G. to be tested for association respectively with
i=1 i=1

Y; and Y,. Focusing without loss of generality on S5, the statistical properties of the test of
association have been described *. In particular the coefficient of determination between Srand Yy,

i.e. the variance explained by the polygenic score in the regression of Y, on S5, is given by

R? = mcov(ﬂil’ﬁﬂ)z
=R var(,) var(Y,)

where the terms on the right-hand side are expressed analytically in terms of the following

parameters:



Study design: sample sizes of the two samples, (n;, nz); number of variants in the marker panel, m,
assumed to be uncorrelated; P-value thresholds for selecting a marker into the score from the
training sample, (p,pu); for binary traits, population prevalences (K3, K>) and case sampling fractions

(P31, P2).

Genetic model: additive genetic variance in the training sample, 0'12 ; genetic covariance between
training and testing samples, o, ; proportion of null markers with no effect on the trait in the
training sample, 7, . The variance and covariance are marginal over all markers, so include the null

markers with 8, =0 or S, =0

The asymptotic non-centrality parameter of the ;((21) test of association between Y, and S is given

2 2
nZRSZ*YZ . . . nZRAZVYZ . .
by A= ———— equivalently the expectation of the z- (or t-) testis f# = 5 with the sign
1-R? =R,
2512 2552

taken from the correlation between Y, and $>.

Binary traits are assumed to arise from a liability threshold model, in which each subject has an

unobserved trait, called the liability, which is normally distributed in the population. Subjects with

liability greater than a fixed threshold have the trait. The same theory then holds when either Y, or

Y, is binary as for when it is quantitative, assuming linear transformations between effects on the

liability scale to effects on the observed (0/1) scale, and accounting for ascertainment in

case/control studies. Specifically, each effect 'sz on the liability scale corresponds to an effect

on the observed binary scale'’, where 7, = O'(1- K ;) with gand @ the

standard normal density and cumulative distribution functions.



We aim to estimate the genetic model parameters &, &,,, 7, from the association test between

$,and Yz Previously it was shown * that one parameter could be estimated by solving for the value
at which A4 equals the observed ;(2 statistic. To estimate multiple parameters, we now propose

using association tests of Y, with multiple polygenic scores constructed by selecting markers with
different P-value thresholds in the training data. We then fit parameters to the observed association

tests using maximum likelihood.

Specifically, let d,,...,d, denote a set of k intervals within the unit interval, where k is equal to or
greater than the number of parameters to be estimated. Foreach i =1,...,k we select markers

with P-values falling in d;, construct the corresponding polygenic score and obtain its (signed) z-

score Z, for association with Y. The log-likelihood for &, 7,,, 7,, is then

k
6(51290-12/[01) = zlog¢(zi - /u(Ulzaalza”m;di )

i=1

where ,11(0,2 ,01,,7,,;d;) is the expectation of the z-test as described above, expressed explicitly
as a function of the model parameters given selection interval d,. Maximisation of this log-

likelihood yields estimates of the model parameters. Note that any of &, &,,, 7, could be held

fixed while the other parameter(s) are estimated.

An equivalent procedure estimates (using obvious notation) 022 , 01, Ty, by reversing the roles of
the training and target samples. Furthermore, a bidirectional procedure can be used to
simultaneously estimate up to five parameters o, 0., 0,,, 7y, 7, by fitting to the z-scores for

association of both S, with Y>and S: with Y;.

The number of estimated parameters can be reduced by assuming that the genetic architectures are

identical in the training and testing samples. This would occur if two samples are drawn from the



same population with the same trait definitions, or if one sample is randomly split into training and
target subsets. Then we may assume 0'12 = 0'22 = 0,, and 7, = 7,,, estimating just two

parameters in either unidirectional or bidirectional analysis.

Ours is not a proper likelihood because the z-scores Z; corresponding to the marker selection

intervals are not independent. The presence of a marker in one interval determines its presence or
absence in all other intervals, creating dependence between the corresponding scores, but this is
not reflected in our likelihood. Furthermore the bidirectional likelihood does not account for
dependence between the scores calculated in each direction. We are therefore using a quasi-
likelihood and will later use simulations to investigate its sensitivity to the assumption of

independent likelihood contributions.

Maximisation of the log-likelihood is complicated by constraints on the range of o,. Because the

absolute correlation between S, and 3, must be no greater than 1, 012‘ <0,0,. Inthe

unidirectional estimation, 022 is not identified and we need only respect that 0'22 <1, giving the
constraint ‘012‘ <0,. In the bidirectional estimation we must also consider that the absolute
correlation is no greater than 1 for the markers that have non-null effects in both training and

*
testing samples. Denoting this correlation as p , the correlation over all markers as p and the

proportion of markers with non-null effects in both samples as y <1-max(r,,,7,,), we have

. A _ =7y (1= 7y)
\/0-12(1_”01)710'22(1_”02)71 7
p*76162

O, = pP0O,0,

) \/(1_”01)(1_”02)
(1-max(z,,,7y,))o,0,

\/(1_”01)(1_”02)

o, <



We maximise the likelihood numerically by nesting the maximisation for o, within that for the
other parameters: for each proposed value of &, &, 7,,, 7,, we perform a univariate

maximisation for o, subject to the constraint imposed by the proposed values.

To obtain analytic confidence intervals we use profile likelihood %2. For a general scalar parameter @
, its profile log-likelihood function is ¢ ,(6) = /(6, 9((9)) where 9(6’) is the maximum likelihood
estimate of the remaining parameters in the model given &. Since for a regular model

2(((63, 19(63)) ACA 9(9)))—D—>;(12 , for the estimated value é we obtain a (1-a) confidence
interval as the set {19 Al ,(0)2 fp(é) —%;(12 (1- 0{)} where x> (1 — &) is the 1-a quantile point
of the )(12 distribution. This procedure is used to obtain confidence intervals for each of o}, &5,

Olar Zors X

Often it is the genetic correlation rather than the covariance between two traits that is of interest.
Because the unidirectional estimation does not identify 0'22 , the correlation cannot be estimated

unless a value is assumed for o . In the bidirectional estimation, the correlation and its confidence

interval can be obtained using previously derived formulas 2.

Association tests of polygenic scores can be calculated from summary data alone?*. The regression

of Y>on S, has coefficient

cov(t,.8,) _ 2eov(ty.5,G) Y BBy varG) Y B fs;
var(S,)  Yva(B,G) Y. BvarG) D Blsy




2 . . . N . . .
where s, is the sampling variance of ,82]., assuming markers are uncorrelated. This is the inverse-

- ~ 1
variance weighted mean of ,32/. /ﬂu and hence has sampling variance ————. The Wald
. . 42
122

statistic

A oH 2
Zﬁl_jﬂZjSZj
N2 -2

\/Z 1752

is then calculated from summary effect sizes and standard errors for the individual markers. These

(equation 2)

data are frequently available from research consortia even when access to individual-level data is

impractical 2> %,

Our methods are implemented in R software, AVENGEME (Additive Variance Explained and Number

of Genetic Effects Method of Estimation), which is available from the authors (see Web Resources).
Method evaluation

To study the statistical and operating characteristics of AVENGEME, we simulated genome-wide
marker data under various genetic models. We based our simulations on four complex diseases
studied by Stahl et al 13, allowing direct comparisons with their ABPA method, which is conceptually
similar to ours. We also performed simulations based on three successively larger studies of

27

schizophrenia */. The study design parameters and the genetic models used for our simulations are

given in Table 1.

For each genetic model we simulated estimated effect sizes ﬂl;’ , ,32]. independently for each

marker, by drawing the true effects from the bivariate normal distribution in equation 1 and adding
independent sampling error to each effect. We then selected markers according to their P-values in
the training sample and used the summary statistic formula in equation 2 to obtain tests of
association for each polygenic score. We verified this approach for sample sizes up to 10K by
explicitly simulating genotypes in cases and controls as previously described 4. Briefly, independent

biallelic markers were defined with population minor allele frequencies uniformly distributed on

10



(0.01,0.5). Their effect sizes were drawn from the bivariate normal distribution such that the desired
variances and covariances were attained. Allele frequencies in cases and controls were then derived
for cases and controls and genotypes simulated in each. Allelic odds ratios were then computed
from the genotype counts. The results from the genotype simulations were indistinguishable from
those from summary statistics, so we adopted the summary statistic method, which is much faster
and easily scales up to very large sample sizes. Note that in our simulations, markers were assumed
to be independent, je in linkage equilibrium, as assumed by AVENGEME. We will later consider the

effect of LD on our method.

For the models in table 1, we simulated 1000 sets of polygenic score results and estimated the

genetic model parameters using the unidirectional AVENGEME. This was done both when assuming

612 = 0, (which reflects the assumption that the two samples have the same genetic model), in
which case AVENGEME estimates the two free parameters o and 7,,, and when allowing

o] # o,, in which case AVENGEME estimates three free parameters. We evaluated the accuracy

from the mean and standard deviation of the parameter estimates and the coverage of the 95%

confidence intervals.

We then considered different options for constructing polygenic scores, simulating under the design
of the largest schizophrenia study (rightmost column of table 1) (hereafter termed SCZ simulation).
We fixed ten thresholds (Table S1, right half) and compared the use of disjoint to nested P-value
intervals using those thresholds, with the nested intervals each having a lower limit of 0. We
compared weighted scores to unweighted scores in which all markers were given an equal weight in
the direction of disease risk. We performed 1000 simulations and evaluated bias, precision and

coverage as before.

We considered the effect of increasing the number of selection intervals and the sample size. Here

we simulated different heritabilities in the two samples: o = 0.3, o3 =0.45, o, = 0.294 (giving

11



genetic correlation of 0.8), and different proportions of null markers: 7z,, =0.95, 7, = 0.94
(hereafter termed bivariate simulation). We compared the use of 3, 5, 10, 20 and 40 selection
intervals in sample sizes of 10K, 20K, 40K and 80K subjects with case sampling fractions P, = 0.425,
P, =0.515 and disease prevalences K, = K, =0.01. This reflected the SCZ PGC2 study design,

although as that was a meta-analysis of case/control studies the overall sampling fraction should be
adjusted to reflect the different fractions in each study. We did not do this here but have found that

such adjustments have very little effect on the estimated model.

We evaluated the bidirectional AVENGEME for the simultaneous estimation of all five parameters.

We then returned to the SCZ simulation and applied bidirectional AVENGEME under the constraints
ol =0 =0, %, ==, ,tocompare the precision of the bidirectional and unidirectional

AVENGEME when estimating only two free parameters.

Finally we compared AVENGEME to the genomic restricted maximum likelihood (GREML) solution of
the linear mixed model, as implemented in the popular GCTA program 8. We performed the
bivariate simulation with a total sample size of 10K. GREML was applied on the entire sample,
whereas for AVENGEME it was split into training and testing samples each of 5K subjects. We also

compared AVENGEME to the method of So et al **, which also uses summary statistics for estimation

of 012 only, under the SCZ simulation for a total sample size of 10K.
Linkage disequilbrium

The theory underlying AVENGEME assumes that markers are uncorrelated'®. This is approximately
ensured in practice by pre-filtering markers using “LD-pruning” algorithms that select markers with
limited pairwise correlation. While this practice is common for many methods that estimate chip

heritability, it may lead to under-estimation of the true chip heritability since the selected markers

may not fully tag the causal variation. Conversely, in our approach the residual LD among the

12



pruned markers may lead to over-estimation of the explained variance and under-estimation of the

proportion of null markers, since marker effects will be biased by LD with other markers®.

We therefore performed simulations on real genotype data to assess the effect of LD-pruning. We
combined genotype data from all seven case and both control samples in phase 1 of the Wellcome

Trust Case-Control Consortium(WTCCC)%*, giving genotypes for 384,845 markers on 15769 subjects
after basic quality control (Table S2). We allocated a chip heritability of 012 = 022 =0,=03
among a random 5% of the markers (7, = 7, = 0.95). We simulated a normally distributed

guantitative trait under this model, split the sample into equally sized training and target samples,
and estimated the model using AVENGEME on a reduced marker set. We considered both a
“pruning” algorithm, which does not take association results into account (“indep-pairwise” option
in PLINK3!, window size 100, step 10) and a “clumping” algorithm which greedily retains the most
associated markers in the reduced set (“clump” option in PLINK with index and clumped P-value
thresholds of 1 and 100 marker radius). Both algorithms were applied with r? thresholds of 0.1 and
0.2, giving reduced sets of approximately 77,000 and 102,000 markers respectively on average. The

simulation was repeated 1000 times.

Results

Bias and precision

We simulated data based on the estimates for additive genetic variance and proportion of null
markers obtained by Stahl et al 23 for four common diseases (Table 1). We compared the
performance of AVENGEME for these four models using the same P-value intervals as those authors
(Table S1). Results are shown in Table 2. For the estimation of two parameters only, assuming the

same genetic model in the training and target samples, our method yielded nearly unbiased results

2
for both 0, and 77,;; with small variance, suggesting that it is expected to work very well in practice.

However, the coverage was lower than 95%, suggesting that the analytic confidence intervals are

13



too narrow. This may result from our assumption that the selection intervals make independent
contributions to the likelihood. To confirm this, we directly simulated ;(2 statistics from the

analytic non-central distributions, independently for each selection interval, and repeated the
estimation. The confidence intervals then indeed had appropriate coverage (Supplementary Table
3), confirming that the assumption of independent contributions from each selection interval leads

to confidence intervals that are too narrow. Nevertheless this effect appears to be fairly small.

In the estimation of 3 parameters, the estimate of 012 had some upward bias and much larger
variance; 77, had greater variance compared to the 2 parameter estimation, but coverage close to
95%. Inspection of individual simulations revealed that the estimated 012 is often closeto O orto 1,
pulling the mean estimate towards 0.5. Generally this suggests that the variability is too large to
allow reliable estimation of (‘)’12 when estimating 77, and O, as well, at least at these sample sizes.

The estimates for 0, however showed nearly unbiased estimates and small variance, suggesting

that our method is reliable for estimating the genetic covariance when it is not assumed to equal the
variance. Coverage was slightly less accurate in the estimation of 3 parameters, but generally close

to the nominal level.

2
We conclude that for the estimation of 0, and 7, it is preferable for the training and target
samples to be from the same trait population and to apply AVENGEME under the constraint
0. = o,,, whereas if the interest lies in the estimation of the genetic covariance between traits

then the unconstrained version of AVENGEME is more appropriate.

Nested intervals and unweighted scores

14



We wondered whether the sample sizes could be a reason for the poorer performance of the 3
parameter estimation; in addition we considered the effect of the score weighting versus an
unweighted score, and whether the P-value selection intervals were disjoint or nested . We
therefore simulated under a scenario with parameters derived from a large meta-analysis of
schizophrenia 2’ (Methods; Table 1 rightmost column). The results are shown in Table 3. For the 2
parameter estimation, disjoint intervals had the least bias and most accurate coverage, although its
variance was slightly greater than for nested intervals. The reduced coverage of the confidence
intervals for nested intervals can be ascribed to the dependence between intervals, which is greater
for nested intervals. The bias is possibly due to the imbalance in the sample size between training

and test set (reversing the direction of estimation led to a reduction in bias, for example for disjoint
intervals, weighted score, mean 612 =0.291 ). Similar patterns were observed when estimating

three parameters, with the disjoint intervals generally showing less bias and more accurate coverage
than the nested intervals, but with slightly increased variance. The choice of weights seems to be
generally neutral although a slight increase in variance was observed for unweighted scores. Taken
together these results suggest that the weighted score with disjoint selection intervals is the most

reliable and accurate approach for use with AVENGEME.

Sample size and number of selection intervals

We then performed bivariate simulations (see Methods) to consider the effect of varying the sample

size and the number of selection intervals. In Tables S4-S7 we show the performance of AVENGEME

2 2
in each direction. The results confirm the poor ability to estimate 0| or 0, , with mean values

mostly around 0.5 and high variance reflecting the frequent estimates of 0 or 1. This applies across
all numbers of selection intervals, but there is a reduction in variance as the number of intervals

increases, and a substantial reduction in bias and variance as the sample size increases from 10K to

15



A) )
80K, while more bias persists for the lower genetic variance (mean 0, =0.362 and 0, =0.444 with 40

intervals and 80K total sample size). A similar pattern was observed for 7, and 7, , although

there was much less bias in general.

For the covariance O, the estimation again worked well, being nearly unbiased and with low

variance regardless of sample size and number of selection intervals. We again observed a general

trend of improved bias and precision with more selection intervals and greater sample size.

Bidirectional estimation

We applied the bidirectional method to the same bivariate simulation data for total sample size of
80k. The results (Table S8) showed consistently lower variance for each parameter compared to the
unidirectional estimators, but with a similar level of bias resulting in lower coverage of the
confidence intervals. The information gain from analysing the bidirectional data together is offset to
some degree by the increased number of parameters in the model. Furthermore, this analysis was

considerably more time-consuming than the unidirectional analyses.

Similarly, when applying the bidirectional estimation to data simulated under the SCZ model (Table 1
rightmost column), and constraining o = o = &, and 7, = 7, in the estimation, we obtained

lower bias for o (mean & =0.286, 7,,=0.95), similar variance (SD (& )=0.011, SD( %, )=0.004),

and greater coverage for o and lower for 7, (=0.498 for o, =0.760 for 7, ) compared to the

unidirectional analyses (first column of Table 3), although the differences were very small.

We performed a sensitivity analysis to compare the performance of the bidirectional estimation with
different initial parameter values for the numerical optimization and the results were virtually

unchanged, with just a slight change in bias, variance and coverage. A similar analysis conducted for

16



the complex diseases in Table 1 also revealed that the estimate of covariance was robust to the

choice of initial parameter values.

Linkage disequilibrium

We simulated a normally distributed trait on 15769 subjects in the WTCCC (see Methods). Using
reduced marker sets with pairwise r2 constrained to <0.1 and <0.2, we estimated o = o =0,
and 7, = 7, when a) the markers were pruned without regard to their association; b) the markers
were clumped by greedily retaining the most strongly associated markers. Table 4 shows that for
r’<0.1, AVENGEME is unbiased in estimating 0'12 when clumping is used, but has a small downward
bias in 7,,. Pruning, however, incurs a strong downward bias in both & and 7, . For r’<0.2,
clumping over-estimates 0'12 and under-estimates 7, owing to the residual LD. Pruning reduces,

but does not eliminate, these biases. These results suggest in practice using a clumping algorithm

with pairwise r’<0.1 as the least biased approach with AVENGEME.

Comparison with related methods

We analysed our bivariate simulations for total sample size 10K using the bivariate GREML

implemented in GCTA 8. The mean 5'12 was 0.265 with standard deviation 0.032, which compared

to the results in Table S4 shows that in this case the GREML estimate has greater bias but less

variance than AVENGEME.

We also applied the method by So et al ** to the SCZ simulation (Table 1 rightmost column).

Although their method appeared unbiased in the simulation they performed in which

17



2
o = Ty, = 0.995, in our setting it yielded seriously biased results for 0, with a mean estimate of

0.189 compared to the true value of 0.3.

Having established the good operating characteristics of AVENGEME, we applied our method to
some published association results for polygenic scores. For the four diseases from Stahl et al, our

estimates were systematically lower than the ones obtained by their ABPA method (Table 5), and for

0'12 our confidence intervals excluded their estimates. These results were surprising since the two
methods are conceptually similar, and our simulations had shown that under the models inferred by
ABPA, AVENGEME achieved nearly unbiased estimation. LD is unlikely to affect these results as the
markers were clumped to r’<0.1. We speculate that the differences may arise from ABPA’s use of

prior distributions, and return to this point in the Discussion. Compared to results from GREML, our

2
estimates for 0, were lower, with non-overlapping confidence intervals, for Rheumatoid Arthritis

and Type-2 Diabetes, whereas the results were similar for Celiac Disease and Myocardial Infarction.

2
We applied AVENGEME to three waves of SCZ meta-analyses (Table 5). The genetic variance 0, was

similar in the ISC and PGC1 data, but decreased in the PGC2 data. The proportion of null markers
decreased in PGC1 and PGC2 compared to ISC. This may reflect increased heterogeneity: as more
studies contribute to the meta-analyses, increased genetic heterogeneity could decrease the
proportion of null markers, whereas increased environmental heterogeneity could decrease the
genetic variance, which on the liability scale is expressed relative to the total variance. GREML has
been applied to the ISC and PGC1 data 3%; for the former the estimate is similar to ours, whereas it is

significantly lower in the latter. ABPA has been applied to an expanded PGC1 analysis 33, yielding a

2
significantly higher estimate of 0, than ours.

We finally applied AVENGEME to estimate genetic covariance between psychiatric traits using

published summary data 34. These data included 5 pairs from four disorders: schizophrenia, bipolar
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disorder, major depressive disorder and autistic spectrum disorder (other combinations, for which
only two selection intervals were reported, were excluded as our method requires at least three).

The method of Dudbridge * has previously been shown to agree well with GREML for these data *°,
but in estimating the genetic covariance it assumes that 612 and 7, are known exactly. Here we

estimated all three parameters simultaneously. The results are presented in Table 6 and show that
the estimates from AVENGEME are of similar magnitude to those from GREML, but are consistently
larger and have narrower confidence intervals. This difference may arise from LD, as here the
markers were clumped to r’<0.25, which according to table 5 may create an upward bias in

AVENGEME.

Discussion

The method we have proposed allows simultaneous estimation of the additive variance explained by
a set of genetic markers, the proportion of markers affecting the trait of interest and the genetic
covariance between two traits. It does so by solving analytic expressions to obtain maximum
likelihood estimates and profile likelihood confidence intervals, and is consequently very fast.
Furthermore the polygenic score tests required by our method can be rapidly calculated from
summary statistics for individual markers, allowing application to very large data sets and results
from published literature. Our simulations show that our method enjoys good bias and coverage
properties in spite of its assumption that the tests from different selection intervals are
independent. Although we presented results only for case/control designs here, they represent the
most challenging scenarios for polygenic modelling and we have observed results of comparable or

greater accuracy for quantitative traits (data not shown).

AVENGEME has a number of advantages compared to currently available methods. In comparison

with GREML it can deal with very large sample sizes and obtain estimates much more rapidly, and it
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additionally estimates the proportion of null markers. Compared to ABPA, it does not require Monte
Carlo sampling nor simulation of genome-wide data and is therefore much faster; AVENGEME also
extends to estimate the covariance between related traits. Compared to the method of So et al and
other empirical Bayes methods, it appears to be less biased and can simultaneously estimate up to
five model parameters. Compared to the LD-scoring approach, it can estimate the proportion of null

markers and does not require calculation of LD between pairs of markers.

The limitations of our approach include the need for two independent datasets, which is often not
the case when common controls are used, whereas GREML can estimate a bivariate model from a
single sample and LD-scoring is robust to overlapping samples. We assume that population
structure has been entirely adjusted for in the target sample, and may over-estimate chip heritability
if this is not the case, whereas GREML and LD-scoring adjust for structure explicitly in their
calculations. Our method also assumes that markers are uncorrelated. In practice this is
approximately ensured by a “LD-pruning” step that is also commonly conducted for other methods.
We have shown that if the residual LD between pruned markers is not too high, say r’<0.1, then
AVENGEME retains its unbiased properties if a “clumping” algorithm is used, but can otherwise
overestimate the genetic variance. In contrast, LD-scoring explicitly uses LD to estimate the variance
explained. The similarity of estimates obtained by that approach to those of ours and other current
methods suggests that this problem is currently not too severe, but as marker densities increase
towards whole genome coverage, it will become more important to include all markers and account
for LD. Our methods can be extended to allow correlation between markers, and this will be

pursued in a subsequent paper.

A limitation is that unless very large sample sizes are used, estimation of the chip heritability in the
training sample is unstable if it is jointly estimated with the covariance with the testing sample.
Therefore if the variance is of particular interest, we recommend analysing the same trait in both

samples, either by splitting a single sample in two, or by drawing two samples from the same trait
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population. Then good performance in estimating the variance can be achieved by constraining it to

equal the covariance.

The unidirectional estimation provides good estimates in all situations we considered. The
bidirectional estimation can also be applied, providing a less variable estimate than the
unidirectional estimators, with a similar degree of bias. However, the bidirectional analysis is more
time-consuming than the unidirectional, and as its reduction in variance is rather small we do not

find a compelling reason to prefer it to the unidirectional.

We recommend using disjoint selection intervals, whereas the influence of the weighting seemed
limited in the situations we considered. However the use of nested intervals still provides good
estimates if the number of intervals is sufficiently large (say 10) and appears to work well for the
covariance across sample sizes, number and type of intervals. Nested intervals seem more appealing
for obtaining significant tests of association between polygenic scores and a trait of interest, and to
date have been reported more often than disjoint intervals. However for the estimation of the
underlying genetic model we suggest that results for disjoint intervals should also be made available.
The current fashion for using around 10 intervals appears to be sufficient for obtaining accurate
estimates; while precision increases as more intervals are used, the gains diminish rapidly beyond

that number.

Our method was generally found to produce under-coverage of confidence intervals. This is due
both to some bias in the estimation, though this was generally small, and the assumption of
independent tests from each interval. We have observed that our profile likelihood intervals closely
match the empirical distribution of parameter estimates in our simulations. The under-coverage is
therefore more likely to arise from the slight bias in our estimator rather than from the calculation of
its variance. Our experience is that, in this application, an approximately valid confidence interval is

generally sufficient for practitioners.
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AVENGEME requires numerical optimisation to estimate parameters, and this can be sensitive to the
algorithm used and the initial estimates provided. We have used the default settings of the optim()
function in R (Nelder-Mead non-linear optimization), and in the simulations provided the true
parameter values as the initial estimates. This was to obtain, as far as possible, the ideal results
from truly maximising the likelihood. We found that slight variations can result from different
starting values (our default values are 0.5 for all parameters) but the conclusions remain the same.
In practice we suggest using a range of plausible starting values to identify the solution with the

maximum likelihood.

AVENGEME is conceptually similar to ABPA 3, both methods seeking the genetic model that best fits
the observed results of polygenic score tests using multiple selection intervals. The main difference
is that AVENGEME uses analytic formulae to construct an explicit likelihood, whereas ABPA uses
approximate Bayesian computation with Monte Carlo sampling. In the application to the complex

diseases in Table 1, we obtained lower estimates for all parameters and the reason for this may be

the effect of the prior distributions used by ABPA. Their prior for 7, is uniform on the log scale and

. I 2.
therefore heavily favours values of 7, close to 1. On the other hand, their prior for 07 is beta

distributed on a relative scale and does not have a natural correspondence to maximum likelihood.
Furthermore if the true distribution of effects departs from the assumed model (for example, as a
mixture of normal distributions &°) then the two methods may diverge further. Our approach may
benefit from imposing prior distributions on the parameters and performing Bayesian estimation,
particularly for improving the precision of estimating (712 jointly with G, . This is a promising

subject for future work.

Our approach provides a fast and accurate method for estimating the genetic model parameters

underlying large scale association studies. It is particularly applicable to summary statistics for
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individual markers, often made freely available on-line by research consortia. Therefore it will
greatly facilitate the estimation of genetic covariance, especially between traits which have been
studied by different consortia and for which combined analysis of individual-level data is logistically
challenging. The rapid estimation of genetic models at arbitrarily large sample sizes suggests that
our approach will prove useful as the sizes of consortium and biobank studies begin to approach

millions of subjects.
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RA Ccb Ml 12D SCZ 1SC SCZ PGC1 SCZ PGC2
ni 16016 5309 6042 14919 5953 19548 77195
nz 12078 6785 4861 4862 5120 5120 5120
m 82390 91388 89808 75912 84882 93093 103125
0_12 .18 A4 48 49 - - .30
Ty, .973 .972 .980 .962 - - .95
P: 0.248 0.394 0.491 0.416 0.423 0.477 0.425
P> 0.126 0.273 0.396 0.396 0.515 0.515 0.515
K1 0.01 0.01 0.06 0.08 0.01 0.01 0.01
K> 0.01 0.01 0.06 0.08 0.01 0.01 0.01

Table 1: Parameter values for studies of four diseases > and three studies of schizophrenia 2 . RA,

rheumatoid arthritis; CD, celiac disease; MI, myocardial infarction; T2D, type Il diabetes; SCZ,

schizophrenia. ISC, International Schizophrenia Consortium; PGC, Psychiatric Genomics Consortium.

2
Values of 0, and 7, for RA, CD, Ml and T2D were estimated by Stahl et a/ * and subsequently

used in our simulations. Those for SCZ are an approximation based on estimates from several

studies and methods (table 5).
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. . 2
Estimation of o, 7,

. 2
Estimation of o, 7,,, O,

RA CD MI T2D RA cD MI T2D

True o’ 0.180 0.440 0.480 | 0.490 | 0.180 0.440 0.480 0.490
Mean &2 | 0.180 0.438 0.486 | 0.483 | 0.270 0.467 0.522 0.581
D 67 0.019 0.035 0.050 | 0.034 | 0.312 0.325 0.335 0.332
Coverage 0.95 0.89 0.91 0.93 0.97 0.95 0.99 0.99
True 7, 0.973 0.972 0.980 | 0.962 | 0.958 0.972 0.979 0.961
Mean 7, | 0.972 0.972 0.979 | 0.961 | 0.968 0.972 0.979 0.957
SD 72, 0.0054 | 0.0046 | 0.0040 | 0.0052 | 0.028 0.016 0.011 0.018
Coverage 0.94 0.85 0.88 0.90 0.98 0.95 0.98 0.98
True oy, - - - - 0.180 0.440 0.480 0.490
Mean &, - - - - 0.190 0.442 0.491 0.509
SDa,, - - - - 0.034 0.048 0.061 0.072
Coverage - - - - 0.98 0.93 0.94 0.993

Table 2: Application of AVENGEME to simulated data for 4 genetic models shown in Table 1. Mean

and standard deviation of parameter estimates and coverage of 95% confidence interval are shown

over 1000 simulations. Monte Carlo error for the mean is SD/\/lOOO and for coverage of 0.95 is

0.007.
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Estimation of &, 7,,

. . 2
Estimation of o}, 7, Oy,

Disjoint Nested Disjoint Nested

w w u W u w u
Mean 512 0.274 0.274 0.254 | 0.258 | 0.299 | 0.298 | 0.422 | 0.471
SD 5]2 0.011 0.011 0.008 | 0.009 | 0.105 | 0.106 | 0.045 | 0.081
Coverage 0.36 0.37 0 0 0.94 | 093 | 0.01 | 0.20
Mean 7, 0.950 0.950 0.951 | 0.950 | 0.946 | 0.946 | 0.941 | 0.933
SD 7, 0.004 0.004 0.003 | 0.003 | 0.016 | 0.017 | 0.006 | 0.008
Coverage 0.93 0.93 0.80 0.78 | 0.95 | 094 | 0.37 | 0.14
Mean &, - - - |0.281]0.280 | 0.289 | 0.309
SD o, - - - | 0.042 | 0.043 | 0.013 | 0.021
Coverage - - - 091 | 091 | 0.69 | 0.85

Table 3: Comparison of AVENGEME performance when using weighted (W) or unweighted (U)
score with nested or disjoint intervals. The SCZ simulation model with & = 7,
7y =0.95 was used (see main text for full details). Mean and standard deviation of parameter

estimates and coverage of 95% confidence interval are shown over 1000 simulations. Monte Carlo

error for the mean is SD/\/lOOO and for coverage of 0.95 is 0.007.
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Pruned Clumped Independent
72 0.1 0.2 0.1 0.2 0.1 0.2
Mean 6‘12 0.173 0.281 0.297 0.389 0.297 0.300
SD &12 0.041 0.053 0.042 0.05 0.039 0.046
Mean 7, | 0.559 0.579 0.900 0.879 0.949 0.931
SD 7, 0.428 0.400 0.066 0.080 0.02 0.096

Table 4. Application of AVENGEME to normally distributed traits simulated on real genotypes.

Pruned, markers are randomly retained in the reduced set. Clumped, most strongly associated

markers are greedily retained in the reduced set. r*, threshold on residual pairwise LD within the

reduced set. Independent, results for simulated markers with no LD between any pair. True

ol =03, 7, =0.95.
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RA CD M T2D SCZ ISC SCZ PGC1 SCZ PGC2
AVENGEME 13(.09- | .28(.21- | .34(.24- | .30(.23- | .31(.28-.34) | .31(.29-.33) | .24 (.24-.25)
~2 17 .35 45 .37
6, ) ) ) )
A 18(.11- | .44(34- | .48(.32- | .49(39- |- .50 (.45- -
ABPACD, ( ( ( ( (
.25) .54) .64) .59) .54)"
) .32(.25- | .33(.25- | .41(.28- | .51(.38- | .33(.27-.39) |.23(.21-.25) | -
GREML O ( ( ( ( ( ) ( )
.39) A1) .54) .64)
AVENGEME .946 .969 .965 .954 .953(.940- .867 (.841- | .852(.835-
7%01 (.887- (.950- (.933- (.929- .963) .887) .867)
.975) .982) .982) .971)
ABPAﬁm .973 .972 .980 .962 - 936 (.922- | -
(.953- (.954- (.965- (.941- .952)"
.993) .990) .995) .983)

Table 5. Genetic model parameters estimated by AVENGEME, ABPA'* 33, and GREML'* 32, *

includes an additional Swedish case/control study. 95% confidence intervals given in parentheses,

those for ABPA converted from the reported 50% credible intervals by assuming normally

distributed posteriors and those for GREML from the reported standard error by assuming normally

distributed estimators.
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AVENGEME &,

GREML G,

BPD-SCZ

0.199 (0.186-0.209)

0.151 (0.131-0.171)

MDD-BPD

0.134 (0.120-0.148)

0.102 (0.077-0.127)

SCZ-MDD

0.165 (0.153-0.177)

0.087 (0.065-0.110)

SCZ-ASD

0.050 (0.038-0.059)

0.03 (0.008-0.052)

ASD-BPD

0.042 (0.030-0.055)

0.008 (-0.017-0.033)

Table 6: Genetic covariance estimates for 5 pairs of 4 psychiatric traits. BPD, Bipolar Disorder; SCZ,

Schizophrenia; MDD, Major Depressive Disorder; ASD, Autistic Spectrum Disorder. AVENGEME

estimates are from bidirectional analysis. GREML confidence intervals derived from published

standard errors 3¢ assuming normally distributed estimators.
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