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ODD Documentation for the General Model of FGM as a 

Social Norm of Coordination 

1. Purpose 

The ‘general model of FGM as a social norm of coordination’ is an agent-based model of the social 

processes through which the practice of FGM persists, increases or decreases in localised populations. 

Specifically, it addresses social processes related to social coordination, where actors face incentives 

to match the behaviours of others. It represents ‘everyday’ processes of coordination in the absence 

of outside intervention, as well as the specific potential effects of targeted interventions designed to 

discourage FGM. The model, which can be seen as an expansive extension of formal models already 

proposed in the FGM policy literature, is designed to address a number of problems. Chapter 5 of the 

associated thesis identified a number of areas of potential uncertainty in the design of formal models 

of FGM as a norm of coordination. However, these explorations of individual features did not allow 

an assessment of the full range of dynamics that can occur when different areas of potential uncertainty 

are combined together. Neither did it allow an assessment of which of these areas of uncertainty area 

was most important (i.e.  should be prioritised in calibration) when taking into account possible 

combinations of these features. The general model solves these problems by incorporating and 

parametrizing these different areas of uncertainty in a single model, for which previous models are 

special cases (i.e. particular parametrizations). By representing (and parametrizing) a global space of 

possible designs for coordination models of FGM, the corresponding space of possible predicted 

dynamics can be explored. This, in turn, makes it possible to characterise the relative importance of 

different areas of uncertainty in the model design, using techniques from global sensitivity analysis. 

Furthermore, the model can be applied directly within a possibilistic failure scenario context, to identify 

potential policy-failure scenarios – although these scenarios may have limited credibility in the absence 

of further empirical calibration. Empirical calibration of parts of the model has been carried out, and 

this is documented in the associated thesis (Chapter 7).  
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2. Entities, state variables and scales 

The entities in the model are agents which represent individual social actors in FGM-practicing 

localised populations (typically territorial communities). 

These entities are characterised by the following state-variables: the intrinsic value they place on FGM 

(which affects their willingness to participate or not participate in FGM-related activities - 𝐻𝑖), their 

authority (which affects the degree of pressure they exert on other actors to coordinate with them 𝑤𝑖), 

their autonomy (which affects the relation between social pressures experienced by the agent, and 

associated social costs, from their perspective: 𝛼𝑖), their status as a final decision-maker about girls in 

their household 𝑚𝑖, and their role as either tolerant of miscoordination by others (𝛽1𝑖 = 0, 𝛽2𝑖 = 0), 

or an enforcer of FGM practice (𝛽1𝑖 = 1) or an enforcer of FGM abandonment (𝛽2𝑖), both of which 

affect their contribution to norm-enforcement as a source of social influence. 

Actors are also characterised by an x (𝑥𝑖) and y (𝑦𝑖) coordinate position in network-space (see below). 

Actors are further characterised by their social, household and decision-maker reference groups 

({social-ref}𝑖 , {household}𝑖 , {decision-maker}i), which are sets of other actors to whom they refer 

when assessing coordination incentives. 

Actors’ behavioural states are characterised by two dummy variables, one representing participation 

in FGM-related activities last time this arose (𝑑𝑖, e.g. consenting to or helping plan/prepare cutting 

events, attending the event and/or aftermath, making a deal with circumcizors, paying circumcision 

fees, supporting the educational component of the ceremony, or declining to do these things, explicitly 

expressing intention not to support cutting, etc.) and another representing their final decision about 

whether a girl in their household should be cut (𝜃𝑖 , the last time this arose, and assuming that they are 

a final decision-maker). 

Actors are situated within a ‘network space’ which is a 2D coordinate space (the size is arbitrary – see 

section 8.3), that wraps on its horizontal axis. This space does not have a direct spatial analogue, but 

rather serves the instrumental function of constructing reference networks with a number of desirable 

properties- such as clustering, localization of social interaction, and homophily- which are controlled 

by global parameters of the environment. 
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The population of agents sits within a global environment, which is characterised by a large number 

of global parameters which represent different possibilities for the representation of FGM-related 

social coordination dynamics. In other words, the parameters in the global environment allow for a 

range of possible ‘models’ of dynamics and allow the modeller to explore a wide space of such 

possibilities. The space of global parameters can be seen as encompassing a certain amount of 

stochastic uncertainty (situations which may vary across different real-world communities) and 

epistemic uncertainty (possibilities whose adequacy as a model of the real situation is uncertain). 

Global parameters control the basic initialization of the model by controlling the number of actors in 

the population (between 200 and 2000, n-actors), and the proportion of those actors who begin the 

simulation practicing FGM. They further control the distribution of heterogeneous characteristics 

across the agent population through parameterizing characteristics of the distributions of: the intrinsic 

value of FGM, autonomy, authority. This is achieved by parametrizing the mean and variance of 

underlying beta-distributions in each case (𝜇𝐻, 𝜇𝑎𝑙𝑝ℎ𝑎, 𝜇𝑤, 𝜎𝐻
2 , 𝜎𝛼

2, 𝜎𝑤
2 ).  

The pairwise correlations between the intrinsic value of FGM, and actor’s autonomy, authority and y-

coordinate (each with intrinsic-value) are also parameterised (𝜌𝐻𝑤 , 𝜌𝐻𝛼 , 𝜌𝐻𝑦). Further parameters 

control the proportion of actors selected as enforcers of FGM practice (𝑠6) or FGM abandonment 

(𝑠7) (conditional on their participation in FGM, or not) and the rules used to select which actors take 

on this role in each case (𝑎1, 𝑎2, i.e. those with more authority, those with stronger beliefs about the 

intrinsic value or cost of FGM, etc.). Another parameter controls whether at initialization, 

participation in FGM is assigned at random, or whether actors who value FGM the most are selected 

first as initial participants (𝑎4). 

Other global parameters control the decision-functions of actors by affecting the maximum possible 

intrinsic value attributed to FGM across the population of agents (relative to the maximum possible 

intrinsic cost - 𝑠2), as well as: the maximum social miscoordination costs for abandoning the practice 

(relative to the maximum miscoordination costs for abandonment - 𝑠1), the (potentially non-linear) 

rate with which social costs accumulate with the degree of social pressure (for FGM practise and non-

practise: 𝑉, 𝛿1, 𝛿2), and the relative importance of influence from actors’ three reference groups: social, 

household and decision-maker (𝑠3, 𝑠4). A further parameter (𝑠5) controls whether social influence from 

the social and household reference groups is primarily implicit (depending on the weighted proportion 



4 
 

of actors engaged in FGM participation) or primarily explicit (depending on the weighted proportion 

of actors engaged in pro-FGM enforcement or anti-FGM enforcement). 

Other global parameters control the interaction structure of the population, by controlling: the average 

size of the actors' social reference groups (i.e. average degree in the social reference network, 𝜇𝑅𝑠𝑜𝑐𝑖𝑎𝑙), 

the average size of households 𝜇ℎ𝑠𝑖𝑧𝑒 (see below), the relative increase in the ‘network reach’ of the 

decision-maker reference groups relative to social reference groups (𝑠8), and the localization of 

household reference groups within the network space (which controls whether household 

membership tends to be homophilic and whether household networks span disparate parts of the 

social network by dividing the network space into 𝜂1 discrete partitions and randomly creating 

household network cliques within these partitions). 

Finally, the process flow of the model is controlled in terms of the number of coordination 

opportunities that occur per year (see time-scales below) and the order in which actors make decisions 

in each time step (e.g. random-sequential, simultaneous, high-authority actors first, etc.). 

Simulated interventions are controlled by environmental variables which determine: the proportion of 

the population who are targeted (𝑧1), the strength of the educational component of the intervention 

(𝑧2), the minimum probability that actors who oppose FGM following intervention education will 

‘respond’ positively (𝑧3) and be willing to form a coalition of non-practitioners with other actors, the 

number of other non-participating actors that responding-actors will try to recruit to the coalition (𝑧4), 

the proportion of those actors who were successfully recruited to the intervention that will join one-

another’s social reference group (𝑧5), the rules used to target actors for the intervention (𝑧6 - twelve 

options, including at random, high authority actors, actors within a localised part of the network, etc.) 

and the probability that intervention participants will become anti-FGM enforcers (𝑧7). 

The temporal scale in the model is understood relative to the scale of a single year. A proportion of 

actors in the population make a decision about the cutting status of a girl in their household in a single 

year. This can be estimated from: the expected number of girls per-household at a given moment, 

from the number of households in the community and from the expectation that a decision must be 

made about all girls before they reach the age of 15 (see section 8.5). Against this fixed (relative to the 

population and households) rate of FGM cutting decisions, the number of decisions actors must take 



5 
 

about FGM participation per year is controlled by a parameter (𝜂2), and can be between once and 

twelve times per year. 

3. Process Overview and Scheduling 

The initialization process involves the following sub-processes and is the first step in all uses of the 

model: 

Table 1: Initialization Sub-Processes 

SUB-PROCESS BRIEF DESCRIPTION 

Create base 

population 

Create a population of N actors 

Distribute 

population 

characteristics 

Distribute actors' characteristics, including: their perceived intrinsic value of FGM (𝐻𝑖), their 

authority (𝑤𝑖), their autonomy (𝛼𝑖) and their x and y-coordinates (𝑦𝑖 , 𝑥𝑖) according to the 

desired marginal (𝜇𝐻 , 𝜎𝐻
2, 𝜇𝑤 , 𝜎𝑤

2 , 𝜇𝛼 , 𝜎𝛼
2) and joints distributions of these characteristics 

(𝜌𝐻𝑤 , 𝜌𝐻𝛼 , 𝜌𝐻𝑦). 𝑥𝑖 and 𝑦𝑖  always have a uniform distribution.  

Set Spatial 

Location 

Actors are placed in a spatial location in the 2D ‘network space’ according to their 𝑥𝑖 and 𝑦𝑖  

coordination attributes.  

Form Reference 

Networks 

Actors construct social ({social-ref}𝑖), household ({household}𝑖), and decision-maker 

({decision-maker}𝑖) reference groups. A random 1 + Poisson(𝜇 = 1) actors in each 

household are assigned the role of ‘decision-maker’ (𝑚𝑖 → 1). 

Setup Initial 

Behaviors 

Actors initial behaviours (practicing FGM or not), as well as their status as enforcers of the 

practice of FGM (𝛽1, 𝛽2), are assigned according to the relevant assignment rules (𝑎1, 𝑎2), 

including whether actors are initialised as practicing at random, or in descending order of FGM 

preference (𝑎3). 
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Following the initialization of the model, where applicable, a simulated intervention is immediately 

run. In this scenario, all actors are initialised as practicing FGM (and cutting girls in their household, 

etc.), removing some sensitivity of the model to initialization conditions.  

The simulated intervention involves the following sub-processes: 

Table 2: Simulated Intervention Sub-processes 

SUB-PROCESS BRIEF DESCRIPTION 

Target actors for 

intervention 

(including educational 

effect) 

A proportion of actors (𝑧1) are targeted for intervention participation, according to a 

preferential targeting rule (𝑧6 e.g. ascending order of preference). 

‘Educational Effect’ 

These actors receive the educational component of the intervention; their new (decreased) 

belief about the intrinsic value of FGM is a function of their previous belief (degree of 

change controlled by 𝑧2). Agent’s perception of the value of FGM before the educational 

effect of the intervention is defined:  

𝐻𝑖 = −𝑀̂ + (𝑞 ⋅ [𝑀̂ + (𝑀̂ ⋅ 𝑠2)]) 

After the educational effect of the intervention, it is defined: 

𝐻𝑖 = −𝑀̂ + ([(1 − 𝑧2) ⋅ 𝑞] ⋅ [𝑀̂ + (𝑀̂ ⋅ 𝑠2)]) 

 

Implement 

Intervention 

(Including Organised 

Diffusion) 

With a probability that decreases with increased belief in the value of FGM (this probability 

is always zero if FGM is still perceived to be an intrinsic good and has a minimum value of 

𝑧3 otherwise) actors prepare to enter an initial coalition with other actors who are conditionally 

ready to abandon FGM.  

‘Organised Diffusion’ 

They also try to recruit zero-or-more (𝑧4) other actors in their household and social 

reference networks (at random) to join the initial coalition. If the recruiting actor’s perceived 

intrinsic value of FGM is less than that of the recruitee, then the recruitee adopts a new 

(random uniform) belief in the value of FGM in the interval between theirs and the 

recruiting agents’ belief. Recruitees respond (and prepare to join the initial coalition) 

according to the same probability rule as intervention participants. If they do respond, then 

they try to recruit zero-or-more (previously uninvolved) actors from their social and 

household reference groups to join the initial coalition. This continues until no more actors 

agree to join the initial coalition. 
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Update Enforcement 

Status 

Actors who have joined the initial coalition update their status, such that pro-FGM enforcers 

stop enforcing the practice, and any actors who aren’t anti-FGM enforcers become anti-

FGM enforcers with probability 𝑧7 ∈ [0,1]. 

Connect coalition 

members 

Each actor who is in the initial coalition adds a proportion (𝑧5) of actors in the coalition to 

their social reference group (at random).  

Establish a stable 

(final) coalition 

This is a recursive process: Actors in the initial coalition assess whether they would be willing 

to abandon FGM conditional on all other initial coalition members doing the same. Any 

actors for whom the answer is no, abandon the coalition. Remaining actors then repeat the 

same assessment. This continues until a final coalition stabilises, or the whole coalition 

collapses.  

After implementing the simulated intervention, and in all other cases, the model steps through a series 

of discrete time-steps for as long as required (by default 10-years' worth of time-steps). In each time-

step, actors in the population calculate an expected utility for practicing FGM and an expected utility 

for not doing so. These expected utilities depend on the intrinsic value that the actor attributes to 

FGM, and on social costs for practice or non-practice. Social costs are decomposed into: 

1. Costs arising from social reference groups (immediate social consequences of 

miscoordination) 

2. Costs arising from household reference groups (immediate social consequences of 

miscoordination) 

3. Costs arising from decision-maker reference groups (anticipated future consequences for 

uncut girls based on the current rate of cutting among decision-makers that the agent is 

responsive to) 

Immediate social consequences (derived from social and household reference groups) are further 

decomposed into those arising from: 

• Implicit social pressures – derived from the authority-weighted proportion of actors engaged in 

FGM practice (or conversely FGM abandonment for social costs of not abandoning). Explicit 

social pressures (or norm enforcement) – derived from the authority-weighted proportion of 

actors enforcing FGM practice (or non-practice), with enforcement further weighted to create 

equivalence of total influence with passive enforcement scenarios (see section 7.11.2).  
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The relative importance of these different sources of social influence is controlled by scale parameters: 

𝑠3, 𝑠4, 𝑠5 ∈ [0,1], such that social influence can be isolated in a particular type e.g. norm enforcement 

within the household, or spread across the different sources of influence. 

If the expected utility for practicing FGM is greater than, or equal to, the utility for non-practice, then 

actors participate in FGM practice. If they are final decision maker about girls in their household then 

(with a certain probability that controls the rate of decision-making about girls, see 7.6, 7.12 and 8.4) 

they update their status to reflect that they decide to cut a girl in their household. Actors who 

participate and have the role of practice-enforcer, are also counted as enforcing the practice of FGM. 

Conversely, the situation is reversed if the utility for non-practice is greater: actors don’t participate, 

may enforce non-practice (if applicable) and will update their cutting decision to non-cutting (if 

applicable and with a given probability). 

Mover order is either simultaneous or sequential. If it is simultaneous, then all actors calculate their 

expected utilities, and subsequently, all actors make the decision to practice FGM or not. If it is 

sequential, then actors calculate utilities and act one at a time. The sequential move-order can either 

be random in each time step, or it can be in descending order of some characteristic (depending on 

the parameter 𝑎4). Implemented possibilities are:  

1.     Random Sequential Move Order 

2. Descending Order of Authority 

3. Descending Order of Autonomy 

4. Descending Order of Perceived Intrinsic Value of FGM 

This process of utility calculation and decision-making is repeated once for every time-step until the 

simulation is stopped.  
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4. Design Concepts 

The following table lays out descriptions of the 11 design concepts recommended by the ODD 

protocol. 

Table 3: Design Concepts 

DESIGN 

CONCEPT 

DESCRIPTION 

Basic 

Principles 

The model is based on the framework provided by the social-norm of coordination account of 

FGM: that actors face social incentives to practice FGM if others do and will be willing to practice 

FGM if sufficient others do so. This conceptual framework has been shown to provide a superior 

account of the actor’s underlying decision process than accounts focusing on informational 

influence or marriage competition in the literature (Chapter 4). This model extends the formal 

coordination model popular among policymakers (Mackie, 1996; UNICEF, 2007) by introducing: 

greater individual heterogeneity, different kinds of social reference group, complex local interaction 

structures (i.e. networks), variant decision-functions, additional effects from ‘simulated 

interventions’ and alternative temporal processes (e.g. staggered decisions about cutting relative to 

participation, and different move orders). Each of these extensions has been shown to potentially 

disrupt the predictions of the original model (Chapter 5 of the Thesis). The general model permits a 

space of possible combinations of these elaborations to be explored. 

Emergence The key emergent properties of the model are the rates of FGM participation that model arrives at 

given different starting conditions and/or simulated interventions. These emerge from, and can be 

disrupted by, a wide range of factors in ways that are not immediately obvious or centrally imposed 

by the model: including the details of actors decision-functions, the distribution of actor 

characteristics, the interactions structure of the population and features of the simulated 

intervention such as the actor-targeting strategy. 

Adaptation Actors continually adapt to the practice of FGM in their social, household and decision-maker 

reference groups (according to the priority given to these by global parameters in the simulation), 

since these determine social incentives which, in turn, affect their decisions. 

Objectives Actors continually try to maximise their expected utility by making a decision to practice or not 

practice FGM depending on the expected utility of both options. 

Learning Actors preference are updated by intervention participation, or in some cases, by social interactions 

surrounding an intervention (see Process Overview above). However, beyond this, the actors’ 

preference and decision-functions are treated as stable and exogenous. 
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Prediction Actors make implicit predictions when they respond to the rate of FGM practice on girls, based on 

their decision-maker reference group. The rate of cutting in this group reflects potential costs in the 

future (e.g. to marriageability) that girls may face if they are in a minority of their age-group who are 

uncut. 

Sensing Actors directly observe whether actors in their social and household reference groups participate in, 

and enforce, the practice of FGM (or conversely the abandonment of FGM). Actors are aware of 

whether decision-making actors in their decision-maker reference group cut their daughter the last 

time the decision arose. Actors do not respond directly to actors outside of these personal reference 

groups (although these could include the entire population). 

Interaction Interaction occurs primarily through actors observing the FGM participation/non-participation and 

practice or non-practice enforcement of one another in their reference groups and responding to 

the changing social incentives that this creates. 

Stochasticity The distribution of actor characteristics- authority, the intrinsic value of FGM, x & y coordinate 

positions in network space, and autonomy- is modelled stochastically using directly parameterised 

underlying marginal and joint probability distributions (based on the flexible beta-distribution 

family). Responsiveness to the intervention is also modelled stochastically since this is expected to 

be a variable process which depends on actor’s attributes (i.e. their beliefs about FGM), but for 

which the explicit mechanism is not modelled. 

Collectives Households can be considered collectives. Households are small groups of actors whose household 

reference groups form a fully-connected network clique (all actors in the household are 

interconnected, but there are no external connections). One available intervention strategy is to 

target a proportion of households (rather than a proportion of actors) for intervention participation. 

Observation The primary data collected from the model are the modelling assumptions embedded in the global 

parameters (including related to intervention effects) and the corresponding resulting rate of FGM 

participation in the population after running the model (possibly after a simulated intervention) for 

a period of time. 

5. Initialisation 

[ See Process Overview and Scheduling] 

6. Input Data 

See details of calibration in Chapter 7 of the thesis to which this model is attached.  
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7. Sub-models 

7.1 Create Base Population 

This is a simple sub-model which creates a population of agents. It also initialises the agent-attribute: 

targeted? as a Boolean variable which indicates (later in the simulation) whether the actor has been 

targeted for participation in an intervention, either by the observer or by other actors who are 

‘recruiting’ after the initial intervention (i.e. organised diffusion, see 7.6). It also deals with some 

aesthetics of the output of the model. The following code implements this sub-model: 

to create-base-population 

 

  create-actors n-actors [ 

    [ code for aesthetics] 

    set targeted? FALSE 

  ] 

 

end  
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7.2 Distribute Population Characteristics 

7.2.1 Overall Implementation 

The overall implementation of this sub-model depends on the following procedures: 

1. create-marginal-distributions which creates lists of deviates from beta-distributions 

which act as approximations of the marginal distributions of the 𝛼𝑖, 𝑤𝑖 and 𝐻𝑖 characteristics of 

agents, with parameterised mean and variances. 

2. create-noisy-distributions creates noise-disturbed versions of the marginal distribution 

of 𝐻𝑖 which have parametrised correlations with the 𝐻𝑖 distribution and which are used in the 

subsequent procedure (see also 8.2). 

3. assign-agent-attributes assigns the 𝐻𝑖, 𝛼𝑖, 𝑤𝑖 and 𝑦𝑖 characteristics of agents in such a 

way that both the marginal distributions of these characteristics and their correlation with the 𝐻𝑖 

distribution is independently parameterised (see also 8.2). 

7.2.2 Create Marginal Distributions 

First, the procedure create-marginal-distributions creates the global list objects with 2000 

deviates from the desired marginal distributions of agent characteristics. These marginal distributions 

are created using a version of the beta distribution family, which is parameterised in terms of its mean 

and variance (see 8.1). 

Marginal distributions are created for the following agent-attributes 

1. The intrinsic value of FGM (𝐻𝑖) 

2. Authority of actors (𝑤𝑖) 

3. Autonomy of actors (𝛼𝑖) 

This is implemented by the following Netlogo Code: 

set marginal-distribution-H (n-values 2000 [x -> beta-draw mu_H sigma2_H] ) 

set marginal-distribution-authority sort (n-values 2000 [x -> beta-draw mu_w sigma2_w] ) 

set marginal-distribution-autonomy sort (n-values 2000  [x -> beta-draw mu_alpha sigma2_alpha] ) 
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Note that this relies on the function beta-draw which takes as input a mean and variance for the beta 

distribution, and returns a single random deviate from that distribution. For each marginal 

distribution, there is a global parameter controlling the mean (mu) and the variance sigma2.  

The beta-draw procedure is implemented by the following code: 

to-report beta-draw [E_z V_z] 

 

  ; Given a mean and variance value, this reporter acts as a random beta vari

able with corresponding mean and variance 

  let x1 random-gamma (-( (E_z * ( (E_z ^ 2) - E_z + V_z)) / V_z)) 1 

  let y1 random-gamma ( ((E_z - 1) * (V_z + (E_z ^ 2) - E_z))/(V_z) ) 1 

  let z1 (x1 / (x1 + y1)) 

  report z1 

 

end 

To see why this produces a beta-distribution deviate with the desired mean and variance, consult 

section 8.1. 

7.2.3 Create Noisy Distributions 

After dealing with the marginal distributions of heterogeneous characteristics 𝐻𝑖, 𝛼𝑖 and 𝑤𝑖, the model 

constructs objects necessary to manipulate the joint distribution of 𝛼𝑖, 𝑤𝑖 and 𝑦𝑖 (𝑦𝑖 is always uniformly 

distributed) with 𝐻𝑖. This section details with how this is implemented in the code, to see the 

mathematical reasoning which underlies this implementation, readers should consult section 8.2. 

Construction of joint distributions begins with the sub-procedure create-noisy-distributions. 

This procedure is designed to create noise-disturbed versions of the marginal distribution of 𝐻𝑖 (which 

was created by the create-marginal-distributions procedure). These distributions are 

disturbed by adding Gaussian noise (random normal distribution centred on zero) where that noise 

has a standard deviation determined analytically to produce a pre-specified Pearson product-moment 

correlation between the original distribution of H and the noise-disturbed distribution (see 8.2). As 

such, the procedure operates in two steps. First, the required standard deviation of the Gaussian noise 

is calculated for each of the joint distributions of interest (𝑝(𝐻, 𝛼), 𝑝(𝐻, 𝑤), and 𝑝(𝐻, 𝑦)). Second, a 
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noise-disturbed version of the 𝐻𝑖 marginal distribution is created for each of these joint distributions. 

This is implemented in the following Netlogo code: 

 set desired-noise-sd-authority (sqrt(sigma2_H - (rho_Hw * sigma2_H))) / (rho_Hw) 

 set desired-noise-sd-autonomy  (sqrt(sigma2_H - (rho_Halpha * sigma2_H))) / (rho_Halpha) 

 set desired-noise-sd-Y (sqrt(sigma2_H - (rho_Hy * sigma2_H))) / (rho_Hy) 

 

 set noisy-distribution-Q-for-authority map [x -> x + random-normal 0 desired-noise-sd-authority] marginal

-distribution-H 

 set noisy-distribution-Q-for-autonomy  map [x -> x + random-normal 0 desired-noise-sd-autonomy] marginal-

distribution-H 

 set noisy-distribution-Q-for-Y map [x -> x + random-normal 0 desired-noise-sd-Y] marginal-distribution-H 

Derivation of the formula used to calculate the required standard deviation of the noise term in each 

case is provided in section 8.2.2. 

7.2.4 Assign Agent Attributes 

Having created three noise-disturbed versions of the 𝐻𝑖 distribution in the model, one for each of the 

desired joint distributions: 𝑝(𝐻, 𝛼, 𝑝(𝐻, 𝑤), and 𝑝(𝐻, 𝑦), and each with a pre-specified Pearson 

produce moment correlation with the marginal distribution of 𝐻𝑖, we then assign the 𝑤𝑖, 𝛼𝑖 and 𝑦𝑖 

attributes of agents in such a way that that they have a pre-specified non-linear correlation with 𝐻𝑖 

while maintaining their original marginal distributions. This is undertaken by the procedure assign-

agent-attributes. To see the mathematical reasoning underlying this procedure, readers should 

consult section 8.2. 

ask actors [ 

 

    set q_i one-of marginal-distribution-H ; Actors take a deviation from the marginal distribution of H_i (note that q_i 

maps directly to a value of H_i later in the initialisation procedure) 

 

    ; Each attribute is the inverse cumulative density function of the marginal distribution of the attribute, composed o

n the cumulative distribution of the noise-disturbed H_i distribution for that attribute, with a noise-disturbed deviate 

from the H_i distribution as input... 

     

    set alpha_i Inverse-CDF 

                (CDF (q_i + random-normal 0 desired-noise-sd-autonomy) noisy-distribution-Q-for-autonomy) marginal-distri

bution-autonomy  

 

    set w_i Inverse-CDF 

                (CDF (q_i + random-normal 0 desired-noise-sd-authority) noisy-distribution-Q-for-authority) marginal-dist

ribution-authority 
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    set y_i CDF (q_i + random-normal 0 desired-noise-sd-y) noisy-distribution-Q-for-y ; The inverse CDF of a uniform dist

ribution is simply the CDF (y_i is always random-uniform) 

 

    set x_i random-float 1 

  ] 

This procedure relies on functions to approximate the cumulative and inverse cumulative density 

functions numerically (since these are not known analytically). The function CDF takes as input an 

empirical marginal distribution dist and a deviate from that distribution q. It returns the CDF of that 

distribution evaluated at q: 

to-report CDF [q dist] 

  report (length filter [i -> leq i q] dist) / 2000 

end 

 

to-report leq [i x] 

  report i <= x ; returns a value TRUE or FALSE 

end 

The function Inverse-CDF takes as input the output of a CDF function cdf_x and a marginal 

distribution dist. It returns (a numerical approximation of) of the inverse cumulative distribution 

function of dist evaluated at cdf_x: 

to-report Inverse-CDF [cdf_x dist] 

  report item (cdf_x * 1999) dist ; note that the constant 1999 is based on t

he size of the simulated marginal distributions (2000 deviates) 

end 

The key point that readers should understand is that these procedures (within distribute-

population-characteristic) effectively parameterised the marginal distributions of the 𝛼𝑖 

(autonomy: 𝜇𝛼, 𝜎𝛼
2) 𝑤𝑖 (authority: 𝜇𝑤, 𝜎𝑤

2 ) and 𝐻𝑖 (perceived intrinsic value of FGM: 𝜇𝐻, 𝜎𝐻
2) attributes 

of agents, as well as the strength of the correlation of the joint distributions of 𝐻𝑖 with attributes: 𝛼𝑖 

(intrinsic value and autonomy correlation: 𝜌𝐻𝛼), 𝑤𝑖 (intrinsic value and authority correlation: 𝜌𝐻𝑤), 

and 𝑦𝑖 (intrinsic value and y-coordination position correlation: 𝜌𝐻𝑦). 

The assign-agent-attributes procedure further assigns the x_i attribute of actors, which is a 

random uniform deviate in the interval [0,1]. 
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Readers should note that at this stage in the initialization of the model, the attributes: 𝛼𝑖, 𝑤𝑖, 𝑞𝑖 (which 

is the random deviate that determines 𝐻𝑖) and 𝑦𝑖 are all in the interval [0,1]. These attributes are scaled 

as required during the setup-initial-behaviour procedure later in the simulation. 
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7.3 Set Spatial Locations 

This is a simple sub-model which maps the 𝑦𝑖 and 𝑥𝑖 attributes of actors to their location in a 2D 

Cartesian coordinate space (called the network space) which wraps on its horizontal axis. Dimensions 

are arbitrary. This is implemented in the following Netlogo code: 

to set-spatial-location 

 

    ask actors [ 

    set xcor x_i * (world-width - 1) 

    set ycor y_i * (world-height - 1) 

  ] 

 

end 

It is important for readers to note that if 𝜌𝐻𝑦 has a positive value, such that 𝑦𝑖 and 𝐻𝑖 are correlated 

in the simulation, then actors' position in the vertical dimension will be correlated with their perceived 

intrinsic value of FGM. This, in turn, will affect the level of homophily within their social and 

household reference groups (see also: 7.4). 
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7.4 Form Reference Networks 

7.4.1 Overall Implementation 

This sub-model depends on three separate procedures, one for each of the reference groups of actors: 

1. create-household-reference-networks - This procedure connects actors in random 

network cliques within partitions of the network space. All actors within each clique form one-

another’s household reference group ({household}𝑖). Within these households, a small 

(random) number of actors are assigned the role of decision-maker about the FGM status of 

some of the girls in that household (𝑚𝑖 = 1). 

2. create-decisionmaker-reference-network - This procedure connects actors to all other 

actors who are decision-makers and are within a fixed radius of them in network space. These 

connections define actors’ decision-maker reference groups ({decision-maker}𝑖). 

3. create-social-reference-network - This procedure connects actors to all other actors that 

are not part of their household and are within a fixed radius of them in network space. These 

connections define the actors’ social reference groups ({social-ref}𝑖). 

7.4.2 Create Household Reference Networks 

This procedure creates households, which are small network cliques within the network space, where 

each actor in the household is in the other actor’s household reference group, and there are no external 

connections (of the household reference group type). The algorithm is flexible with respect to whether 

network cliques are formed randomly in the population (implying no relationship between social and 

household networks), or whether cliques are formed within localised partitions of the network space 

- implying that there is a close correspondence between social and household networks. It is worth 

noting that in the former case, where household cliques span the entire network space, these cliques 

effectively bridge disparate parts of the social reference network. In this case, there will be no 

homophily of preferences (or other characteristics) of householders. Conversely, when household 

cliques are localised within partitions of the network space, they only bridge relatively close parts of 

the social network, and homophily in the social network will translate into homophily of the household 

networks. The degree of localization of household cliques is controlled by the parameter 𝜂1, which 
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determines the number of (equally spaced) horizontal partitions of the network space in which cliques 

are randomly formed. Pseudo-code for the algorithm that forms the household cliques is as follows: 

 

for each of eta_1 equally spaced horizontal partitions of network space: 

    while there are agents without a household in that space: 

        ask up to random Poisson mu_hsize actors in the partition: 

            form a network clique and become one another's household reference group 

Where mu_hsize is the average number of actors in each household clique. 

After forming each of the households, a small number of actors in each household (typically 2) are 

assigned the role of decision-maker about (some) girls in that household (𝑚𝑖 = 1). This is a pseudo-

code representation of this process: 

for each household in the population: 

    ask 1 + random-Poisson 1 householders: 

        set decision-maker (m_i) 1 

7.4.3 Create Decision-Maker Reference Networks 

This procedure creates decision-maker reference groups for agents by connecting agents to decision-

maker agents within a fixed Euclidean distance of them in network space. This distance is 

parameterised to be a scaled version of the distance used for the social reference group (which follows 

a similar procedure), where the scaling factor: 𝑠8 ∈ [1,3] is always greater than or equal to 1. We will 

call the distance used in constructing the social reference network the social-reach of actors, and the 

distance used in constructing the decision-maker reference network the decision-maker-reach, noting that 

decision-maker-reach is equal to social-reach multiplied by 𝑠8. 

Therefore, to implement the decision-maker reference network, we need to first calculate the social-

reach. Rather than being parameterised directly, this distance is parameterised in terms of the desired 

average connectivity of agents in the social reference group. This is done to ensure that the 

connectivity of the social reference network is invariant to parameters controlling the size of the 

population. As such, the distance is determined by a parameter 𝜇𝑅𝑠𝑜𝑐𝑖𝑎𝑙
 representing the expected 

average size of actors' social reference group. The calculation is implemented in the Netlogo code as: 
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set social-reach-of-actors social-reach-formula n-actors mu_Rsocial 

 

to-report social-reach-formula [n c_i] 

 

  let A_t (world-width * world-height) 

  report sqrt ((A_t * c_i) / (pi * (n - 1))) 

 

end 

Note that the social-reach-formula function takes as input the number of actors in the 

population n-actors and the expected average size of actor’s social reference networks 𝜇𝑅𝑠𝑜𝑐𝑖𝑎𝑙
, and 

then returns the social-reach value that will produce this result (on average). To see the derivation of 

this formula, readers should consult section 8.3. 

Having calculated social-reach, we derive ‘decision-maker’-reach and ask actors to add all other decision-

maker actors within a distance of ‘decision-maker’-reach in network space to their decision-maker 

reference group: 

ask actors [ 

    set R_decision_maker other actors with [distance myself <= (social-reach-of-actors * s_8) and m_i? = 1

] 

    set R_decision_maker_N count R_decision_maker  

  ] 

7.4.4 Create Social Reference Networks 

The operation of this procedure is very similar to create-decisionmaker-reference-networks. 

Actors add all other actors within a fixed distance in network-space to their social reference group 

({social-ref}𝑖) provided that those actors are not already part of their household reference groups. 

This is implemented by the following Netlogo code: 

ask actors [ 

    let my-household R_household 

    set R_social other actors with [distance myself <= social-reach-of-actors 

and not member? self my-household] 

    set R_social_N count R_social 

  ] 
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7.5 Setup Initial Behaviours 

7.5.1 Overall Implementation 

This sub-model acts as a single procedure. However, it has a number of conceptually separate 

components: 

1. Scale Agent Attributes - Continuous attributes are scaled to an appropriate interval 

2. Assign Enforcement Roles - A certain proportion of agents' roles as enforcers of practice or non-

practice 

3. Initialise Behaviors - A certain proportion of agents are set to initially practice FGM 

7.5.2 Scale Agent Attributes 

In previous procedures (7.2), agents’ 𝑞𝑖 attributes were set, where this is a random deviate that 

determines their 𝐻𝑖 attribute (their perceived intrinsic value of FGM). In this procedure their 𝐻𝑖 

attribute is formally assigned. This can be seen as scaling their 𝑞𝑖 attribute to an interval [−𝑀̂, 𝑀̂ ⋅ 𝑠2], 

where 𝑠2 is a scaling parameter in [0,1] that determines the size of the maximum perceived value of 

FGM, relative to its minimum perceived value (i.e. maximum perceived cost). This is achieved through 

defining 𝐻𝑖 as follows: 

𝐻𝑖 = −𝑀̂ + 𝑞𝑖 ⋅ (𝑀̂ + [𝑀̂ ⋅ 𝑠2]) 

This is implemented using the following NetLogo code: 

ask actors [ 

    set H_i Q-to-H q_i 

    ] 

 

to-report Q-to-H [Q] 

  report (-1 * M_hat) + (Q * (M_hat + (M_hat * s_2))) 

end 

Readers should note the following properties of this scaling procedure: 

1. If 𝑠2 is 0, then no actors will view FGM as having intrinsic value 

2. IF 𝑠2 is 1 and the PDF of 𝑞𝑖 is symmetric, then perceived intrinsic value of FGM in the agent 

population (𝐻𝑖) will be symmetrically distributed around the value of 𝐻𝑖 = 0. 
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The other agent attribute which is scaled by this procedure is 𝛼𝑖 (actor’s autonomy). This is scaled 

from the [0,1] interval to an [−1,1] interval as follows: 

ask actors [ 

    set alpha_i (-1 + (2 * alpha_i)) 

  ] 

7.5.3 Assign Enforcement Roles 

In this procedure, a certain proportion of agents (𝑠6) who view FGM as an intrinsic good (𝐻 ≥ 0) are 

assigned the role of enforcer of the practice (𝛽1𝑖 = 1), which means that if they practice FGM, they 

will convey active social influence on others to do the same (see 7.11). Conversely, a certain proportion 

of agents (𝑠7) who view FGM as an intrinsic ill (𝐻 < 0) will be assigned the role of enforcers of 

abandonment of the practice (𝛽2𝑖 = 1, which means that if they do not practice FGM they will convey 

active social influence to others to abandon the practice (see 7.11). 

In each case (enforcing practice or non-practice) agents are assigned to these roles according to a rule 

for preferentially selection agents. Three possible rules are supported in the model: 

1. “random” - meaning that agents are selected uniformly at random 

2. “zealots” - agents that are most extreme in their beliefs about the intrinsic value of FGM (either 

positive or negative) are preferentially selected as enforcers or practice or non-practice 

(respectively). 

3. “high-authority” - agents with the highest authority in the population 𝑤𝑖 are preferentially 

selected as enforcing FGM 

These options are stored in parameters 𝑎1 and 𝑎2 respectively for FGM enforcement and 

abandonment enforcement. Assignment of these roles is implemented by the following Netlogo code: 

  if a_1 = "random" [if any? supporters [ask n-of (s_6 * (count supporters)) supporters [set beta_1i? 1] 
] ] 

  if a_1 = "zealots" [if any? supporters [ask max-n-of (s_6 * (count supporters)) supporters [H_i] [set be

ta_1i? 1] ] ] 

  if a_1 = "high-authority" [if any? supporters [ask max-n-of (s_6 * (count supporters)) supporters [w_i] 

[set beta_1i? 1] ] ] 

 

  if a_2 = "random" [if any? opponents [ask n-of (s_7 * (count opponents)) opponents [set beta_2i? 1] ] ] 

  if a_2 = "zealots" [if any? opponents [ask min-n-of (s_7 * (count opponents)) opponents [H_i] [set beta_
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2i? 1] ] ] 

  if a_2 = "high-authority" [if any? opponents [ask max-n-of (s_7 * (count opponents)) opponents [w_i] [se

t beta_2i? 1] ] ] 

Where supporters is a list of agents for whom 𝐻𝑖 is greater than or equal to zero, and opponents 

is a list of agents for whom 𝐻𝑖 is less than zero. Readers should note that if there are no agents who 

support FGM, the first section of code does nothing. 

7.5.4 Initialise Behaviours 

This function assigns a certain proportion of actors initial-participation-rate as practising 

FGM at the beginning of the simulation. There are two possible options for this assignment, 

controlled by the parameter 𝑎3. Either this assignment is random 𝑎3 = random, or actors are selected 

in descending order of 𝐻𝑖 (such that supporters of FGM are preferentially selected as practising FGM 

at the start of the simulation, 𝑎3 = intrinsic-value-first). In either case, selected actors set their FGM 

participation to 1 (𝑑𝑖 = 1) and if they are a decision-maker about the FGM status of (some) girls in 

their household (𝑚𝑖 = 1), they set their cutting decision to 1 (𝜃𝑖 = 1). 
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7.6 Setup Cutting Decision Process 

In the model, decision-makers decisions about whether to cut their daughters are determined by their 

decisions about whether to participate in FGM activities. There is no separate utility calculation from 

the perspective of the decision-makers (although the cutting decisions of decision-makers directly 

affect the utility calculations of agents for whom those decision-makers are part of a decision-maker 

reference group, see 7.11 and 7.4.3). 

However, participation (updating 𝑑𝑖) and cutting decisions (updating 𝜃𝑖) take place on different time 

scales. While all agents have the opportunity to participate in FGM in each time-step of the model, 

decision-makers only have the opportunity to update their cutting decisions with a fixed probability 

that is determined analytically to reflect the overall rate of cutting decisions taking place in the 

community per year. The derivation of this probability is given in section 8.5. Here we deal with the 

mechanics of calculation within the setup-cutting-decision-process procedure. 

In essence, this procedure calculates the number of girl children in the community, based on the 

number of households (and the number of children per household, see 8.5). It then calculates the 

number of decisions to be taken per-year, given that all girls must have a final decision made by age 

15. Then based on (a) the number of decisions to be taken each year, (b) the number of simulated 

time steps per year (controlled by the parameter 𝜂2 ∈ 1,2, . . . ,11,12) and (c) the number of decision-

makers among whom these decisions are distributed, the probability that decision-makers update their 

decision in each time step is determined analytically. This is implemented in the following Netlogo 

code: 

to setup-cutting-decision-process 

 

  set est-number-of-children (length family-list) * 0.84 * 2.25 ; This is based on the average 

proportion of houses with children, and the average number of children per house 

  set est-decisions-per-year (est-number-of-children / 15) ; Each year at least one-fifteenth 

of children must be cut to account for the rate of arriving children (implicit) 

  let number-dms count actors with [m_i? = 1] 

  set p-decide-per-step (est-decisions-per-year) / (eta_2 * number-dms) ; Ensures that on aver

age, 'est-decisions-per-year' are made regarding the cutting status of girls 

 

end 
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When the model steps through a time-step (see 7.12), actors who are decision-makers about (some) 

girls in their household, will update their cutting decision (𝜃𝑖) to reflect their last participation decision 

(𝑑𝑖) with probability p-decide-per-step. 
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7.7 Target Actors for Intervention 

This is the first procedure in the implementation of a simulated intervention. Simulated interventions 

happen before the model steps through time, and we assume that the model is initialised such that all 

actors are practicing FGM. 

This first procedure deals with which agents are initially targeted to participate in the intervention and 

the initial educational effects of the intervention on those agents. A wide range of options are 

supported by the model and the rule used is controlled by a categorical variable: 𝑧6. A proportion 𝑧1 

of agents can be targeted at random, or agents can be targeted as follows: 

• Support FGM (𝐻𝑖 descending order) 

• Oppose FGM (𝐻𝑖 ascending order) 

• Autonomy (𝛼𝑖 descending order) 

• Authority (𝑤𝑖 descending order) 

• Pro-FGM enforcement (𝛽1𝑖
= 1 selected) 

• Anti-FGM enforcement (𝛽2𝑖
= 1 selected) 

• Social connectivity ({social-ref}𝑖 size, descending order) 

• Household Size ({household}𝑖 size, descending order) 

• Decision-makers (𝑚1 = 1 selected first) 

• Localised (𝑥𝑖 descending order) 

• By Household (a proportion 𝑧1 of households are targeted, and all actors in those households 

participate in the intervention). 

After a proportion 𝑧1 of actors are targeted to participate in the intervention, these actors set their 

status targeted? to TRUE. These participating actors then set their belief about the value of FGM 

according to the following procedure (representing the educational component of the intervention): 

ask actors with [targeted? = TRUE] [set H_i intervention-H-change q_i] 

 

to-report intervention-H-change [q] 

 report Q-to-H ((1 - z_2) * q) 

end 
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to-report Q-to-H [Q] 

  report (-1 * M_hat) + (Q * (M_hat + (M_hat * s_2))) 

end 

This effectively scales down actors’ perception of the value of FGM by a factor of 1 − 𝑧2 where 𝑧2 is 

a global parameter indicating the strength of the educational component of the intervention. When 𝑧2 

is 1, all participating actors will set their belief in the intrinsic value of FGM to the lowest possible 

value: 𝐻𝑖 = −𝑀̂. When 𝑧2 is 0, participating actors’ 𝐻𝑖 preference will not change. The relevant 

formulas are: 

Agent’s perception of the value of FGM before the educational effect of the intervention is defined:  

𝐻𝑖 = −𝑀̂ + (𝑞 ⋅ [𝑀̂ + (𝑀̂ ⋅ 𝑠2)]) 

After the educational effect of the intervention, it is defined: 

𝐻𝑖 = −𝑀̂ + ([(1 − 𝑧2) ⋅ 𝑞] ⋅ [𝑀̂ + (𝑀̂ ⋅ 𝑠2)]) 
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7.8 Implement Intervention 

Actors who are targeted by the intervention all receive the educational component of the intervention. 

However, they then make a decision about whether to respond to the intervention by spreading the 

educational component (optional on parameter 𝑧4) to their reference groups, and trying to form a 

coalition of abandonment with other practitioners. The mechanism of this decision isn’t modelled 

directly. Instead, I assume: 

1. Actors who still believe that FGM is an intrinsic benefit will not try to arrange a coalition to 

abandon it (since this is not their preferred outcome) 

2. The likelihood of actors forming an initial coalition of others willing to abandon FGM is a 

function of the strength of their perception of the cost of FGM. 

Actors’ decision to respond to the intervention is then modelled using the following rule: 

if H_i < 0 and random-float 1 < (1 - (( -1 * ((1 - z_3) /  M_hat)) * H_i)) [ 

 

    respond to the intervention 

This essentially defines actors’ probability of responding to the intervention as 0 if they prefer FGM 

(𝐻 > 0) and an increasing linear function of their perception of the intrinsic cost of FGM otherwise: 

Pr(𝑗𝑜𝑖𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑜𝑎𝑙𝑖𝑡𝑖𝑜𝑛)𝑖 = {
− (

1 − 𝑧3

𝑀̂
⋅ 𝐻𝑖) + 𝑧3 𝑖𝑓 𝐻𝑖 <  0

0 𝑖𝑓 𝐻𝑖 ≥ 0
 

 

This linear function is controlled by a parameter 𝑧3. It is easiest to think of this as the minimum 

probability that actors who oppose FGM will respond to the intervention - since it represents the 

probability of response when 𝐻𝑖 approaches 0 from a negative direction. The probability of 

responding to the intervention is always 1 when actors attribute the maximum social cost to FGM: 

𝐻𝑖 = −𝑀̂. Also, if 𝑧3 is 1, then actors always respond to the intervention. 

Actors who respond to the intervention set their coalition-ready? status to TRUE to reflect that 

they are prepared to enter a coalition of actors abandoning FGM. They also try to influence and recruit 
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others to join the coalition. This represents the much-discussed intervention feature ‘organised 

diffusion’ (see Chapter 5 and UNICEF, 2007). 

Actors select 𝑧4 random other actors from their social and household reference groups (provided 

those actors were not part of the intervention and no one else has tried to recruit them) and ‘recruit’ 

them (if 𝑧4 is set to 0, then this procedure has no effect on the simulation). Then, if any of these 

recruitees has a higher 𝐻𝑖 attribute than the recruiting actor, the recruitee sets their own 𝐻𝑖 value to a 

random uniform location in the interval between the recruiting and recruitee actors’ 𝐻𝑖 attribute. This 

represents the recruiting actor influencing the beliefs of the recruitee (i.e. spreading the educational 

component of the intervention). 

Subsequently, recruitees decide whether they want to respond to the intervention by preparing to enter 

an abandonment coalition, and influencing others (etc.). Their decision follows the same probabilistic 

rule as the original intervention participants (see above). 

As such, the implement-intervention procedure continues recursively: with actors responding or 

not, and recruiting others who then respond or don’t, and so on until no more actors respond. This 

is implemented by the following Netlogo code: 

to implement-intervention 

 

  if H_i < 0 and random-float 1 < (1 - (( -1 * ((1 - z_3) /  M_hat)) * H_i)) [ 

   

    set coalition-ready? TRUE 

 

    let recruitment-agentset (turtle-set R_social R_household) 

 

    if count recruitment-agentset with [targeted? = FALSE] > 0 [ 

      let my-H_i H_i 

      ask up-to-n-of z_4 recruitment-agentset with [targeted? = FALSE] [ 

        if H_i > my-H_i [set H_i (my-H_i + random-float (H_i - my-H_i) ) ] 

        set targeted? TRUE 

        implement-intervention 

      ] 

    ] 

  ] 

 

end  
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7.8b Update Enforcement Status 

Actors in the initial coalition update their status with respect to the enforcement of FGM. Actors who 

are pro-FGM enforcers, drop this status 𝛽1𝑖
→ 0. Actors then become anti-FGM enforcers (𝛽2𝑖

→ 1) 

with probability 𝑧7. 

7.9 Connect Initial Coalition Members 

The model allows for the possibility that participation in the intervention changes the social reference 

network structure of the population. This is controlled by the parameter 𝑧5. If 𝑧5 is 0 then there is no 

effect on the simulation. Otherwise, actors add a proportion 𝑧5 of those who have responded to the 

intervention (i.e. are ready to join an abandonment coalition) and who are not part of their household 

reference group, to their social reference group: 

let coalition-group actors with [coalition-ready? = TRUE]  

   let coalition_N count coalition-group 

   ask coalition-group [ 

    let my-household household-label 

    set R_social (turtle-set R_social (up-to-n-of (z_5 * coalition_N) (other 

coalition-group with [household-label != my-household]) )) 

    set R_social_N count R_social 

    set R_social_weight sum [w_i] of R_social 

  ] 
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7.10 Establish Coalition 

This procedure deals with the formation of a stable final coalition among initial coalition members. 

The rule for stable coalition formation is a simple one: it is stable if all actors in the coalition prefer to 

abandon FGM, conditional on all others in the coalition doing so. This is modelled as a recursive 

process. Initial coalition group members assess whether they would prefer to abandon FGM, 

conditional on all others in the coalition doing the same. If not, they leave the initial coalition. 

Remaining members repeat the assessment (based on the remaining number of coalition members). 

This is repeated till a final coalition stabilises, or collapses entirely.  

To find a stable coalition (if it exists at all), the following algorithm is used (pseudo-code): 

 Let C be the set of actors initially willing to enter a coalition 

  1. Members of C visibly stop any FGM activity 

  2. Members calculate whether, under these conditions, they would prefer to   

abandon FGM 

 

  3. While there are some agents in the coalition who would prefer to keep pr

acticing FGM: 

     -> Agents who still prefer (bc. of social incentives) to practice FGM, r

evert to practicing 

     -> Agents who still prefer to practice FGM leave the coalition 

     -> Remaining members of the coalition calculate whether they still prefe

r to abandon FGM (given the reduced coalition size) 

 

   4. The remaining members of C represent a stable coalition of actors aband

oning FGM. 

This algorithm finds the stable abandonment coalition if it exists, and these actors visibly abandon 

FGM activities (𝑑𝑖 = 0 and 𝜃𝑖 = 0). 
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7.11 Calculate Expected Utilities 

7.11.1 The decision-functions of agents 

The decision-function of agents was implemented as follows: 

𝑈(𝑎𝑏𝑎𝑛𝑑𝑜𝑛)𝑖 = 𝑝𝑝𝑟𝑜𝑖

𝑉(−𝛿1+𝛼𝑖)
⋅ −𝑀̂ 

𝑈(𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒)𝑖 = 𝐻𝑖 − (𝑠1 ⋅ 𝑝𝑎𝑛𝑡𝑖𝑖

𝑉(−𝛿2+𝛼𝑖)
⋅ 𝑀̂) 

Where 𝐻𝑖 is defined as: 

𝐻𝑖 = −𝑀̂ + (𝑞 ⋅ [𝑀̂ + (𝑀̂ ⋅ 𝑠2)]) 

Note here that 𝐻𝑖 is defined as the intrinsic ‘value’ of FGM to the agent (rather than the intrinsic 

cost), which can be positive (FGM is viewed as intrinsically beneficial) or negative (FGM is viewed 

as intrinsically costly). Since 𝐻𝑖 can be positive or negative in the general model, I adopt the term 

‘FGM supporters’ to refer to actors who value FGM (𝐻𝑖 ≥ 0) and the term ‘FGM opposers’ to refer 

to actors who view FGM as costly (𝐻𝑖 < 0)1. 

These functions have the following properties: 

• 𝐻𝑖 can vary between −𝑀̂ and  𝑀̂ ⋅ 𝑠2. As such, the 𝑠2 ∈ [0,1] parameter controls the 

maximum perceived positive value of FGM in the population.  

• The maximum social cost actors pay to unilaterally practice FGM varies from 0 to 𝑀̂ and is 

controlled by the 𝑠1 parameter.  

• The relationship between social pressure (𝑝𝑎𝑛𝑡𝑖𝑖
/𝑝𝑝𝑟𝑜𝑖

) and social costs (𝑀̂) is controlled by 

parameters 𝑉 (≥ 1), 𝛿1 (or 𝛿2, both in the interval [−1,1]) and 𝛼𝑖 (∈ [−1,1], representing the 

autonomy of individual actor 𝑖). 𝑉 controls the overall nonlinearity of the relation between 

social pressure and social costs. 𝛿1 and 𝛿2 allow for global control of the relation between 

social pressures and social costs for abandoning or practicing FGM (respectively). As 𝛿1 

increases, for example, the costs to abandon FGM ‘scale’ faster with social pressure, making 

 

1 This replaces the use of the term ‘willing agents’ and ‘reluctant agents’ in Chapter 5. 
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it harder for actors to abandon the practice (and vice-versa for 𝛿2). 𝛿1 and 𝛿2 allow the model 

to accommodate the possibility that the relationship between social pressure and social costs 

varies overall for those practicing versus abandoning FGM. The effect of these parameters is 

eliminated if they are set to 0. The 𝛼𝑖 component allows variation in the social-pressure social-

cost relationship at the individual level, with costs scaling faster for less autonomous agents 

(lower 𝛼𝑖).  

The utility-functions of agents in the standard model are a special case of this more general 

formulation, in which 𝑉 = 1, 𝑠1 = 0, and 𝑠2 = 0. Other previously seen variations on the decision 

process can be achieved by appropriate manipulations of these parameters.  

In the above formulation, I don’t define 𝑝𝑎𝑛𝑡𝑖𝑖
 and 𝑝𝑝𝑟𝑜𝑖

, beyond the obvious: that they represent 

pro-FGM and anti-FGM activity by others. However, I assume that they are both bounded between 

0 and 1. We can turn now to their (general) definition in the model.  

7.11.2 Different Sources of Sources of Social Influence 

I assume that influence from cutting decision-makers and influence from households/social 

reference groups are broadly distinguishable. The latter is primarily a source of immediate normative 

social pressure, while the former is about the future state of the marriage-market/social situation of 

girls if they are not cut. I controlled the relative influence of each with a parameter 𝑠4 ∈ [0,1]. I then 

further distinguished between social influence from within households, versus the wider social 

reference group. I controlled the relative influence of each with parameter 𝑠3 ∈ [0,1]. A pseudo-

code representation of this would be: 

[total social influence]𝑖 = 𝑠4 ⋅ [decision-maker influence]𝑖 + (1 − 𝑠4) ⋅ [normative social influence]𝑖 

Where: 

[normative social influence]𝑖 = 𝑠3 ⋅ [household influence]𝑖 + (1 − 𝑠3) ⋅ [social reference group influence]𝑖 

Given the characterization of decision-maker influence (above), I defined pro-FGM influence from 

this source as the proportion of decision-makers who cut their daughters the last time the decision 

arose (see below), and anti-FGM influence from this source as the proportion who didn’t cut their 

daughters last time the decision-arose.  
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Other sources of social influence (i.e. normative social influence) incorporated heterogeneous 

weights, representing the authority of individual actors. These other sources of social influence were 

also divided into explicit social influence (i.e. FGM practice by pro-FGM norm enforcers or FGM 

abandonment by anti-FGM norm enforcers) and implicit social influence (i.e. FGM practice in 

general), controlled by parameter 𝑠5 ∈ [0,1], for example: 

[social reference group influence] = 𝑠5 ⋅ [explicit 'norm enforcement.' ] + (1 − 𝑠5) ⋅ [implicit social influence] 

In the case of explicit social influence, norm-enforcers were re-weighted such that the total explicit 

social influence from all pro/anti-FGM enforcers (whichever group was larger) was equal to the 

total implicit influence of all actors (see below).  

Formal definitions of all of the components of 𝑝𝑝𝑟𝑜𝑖
 (total pro-FGM social pressure facing actor 𝑖) 

were as follows2. 

Let 𝐴𝑖 be equal to the total implicit pro-FGM influence from the social reference group 

({social-ref}𝑖) of actor 𝑖: 

𝐴𝑖 =
∑ 𝑤𝑗 ⋅ 𝑑𝑗𝑗∈{social-ref}𝑖

∑ 𝑤𝑗𝑗∈{social-ref}𝑖

, 𝑖 ≠ 𝑗 

Where 𝑤𝑖 ∈ [0,1] is the authority weight of actor 𝑗 and 𝑑𝑗 is a decision-indicator which is 1 when 

practicing FGM and 0 otherwise.  

Let 𝐵𝑖 be equal to the total explicit pro-FGM influence from the social reference group of actor 𝑖: 

𝐵𝑖 =
∑ 𝑤𝑗 ⋅ 𝑑𝑗 ⋅ 𝛽1𝑗 ⋅ 𝑤2𝑗∈{social-ref}𝑖

∑ 𝑤𝑗𝑗∈{social-ref}𝑖

, 𝑖 ≠ 𝑗 

Where 𝛽1𝑗 is a dummy indicator that is 1 if actor 𝑗 is a pro-FGM norm enforcer and 0 otherwise. 𝑤2 

is a weighting coefficient chosen such that, the total influence ‘weight’ of all pro/anti-FGM 

 

2 Readers can substitute in (1 − 𝑑) for 𝑑, (1 − 𝜃) for 𝜃 and 𝛽2
 (indicating an anti-FGM norm enforcers) for 𝛽1

 for the full definition of 𝑝𝑎𝑛𝑡𝑖𝑖
.  
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enforcers in the community (whichever group is larger), is equal to the total influence ‘weight’ of all 

actors3 (see below). 

Let 𝐶𝑖 be the total implicit social influence from the household and let 𝐷𝑖 be the total explicit social 

influence from the household. These are defined in the same way as 𝐴𝑖 and 𝐵𝑖 (respectively), except 

that {𝑠𝑜𝑐𝑖𝑎𝑙 − 𝑟𝑒𝑓}𝑖 is replaced with {ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑}𝑖 which is the set of other actors in the 

household of actor 𝑖.  

Let 𝐸𝑖 be the total social influence from the set of decision-makers that actor 𝑖 is responsive to (see 

decision-maker reference group below): {decision-makers}𝑖. This is defined as: 

𝐸𝑖 =
∑ 𝜃𝑗𝑗∈{decision-makers}𝑖

∑ 1𝑗∈{decision-makers}𝑖

, 𝑖 ≠ 𝑗 

Where 𝜃𝑗  is a dummy variable indicating that decision-maker agent 𝑗 cut a girl in their household the 

last time the decision arose.  

We can then define 𝑝𝑝𝑟𝑜𝑖
 as follows: 

𝑝𝑝𝑟𝑜𝑖
= (𝑠4 ⋅ 𝐸𝑖) + (1 − 𝑠4) ⋅ ([1 − 𝑠3] ⋅ [𝑠5 ⋅ 𝐵𝑖 + (1 − 𝑠5) ⋅ 𝐴𝑖] + 𝑠3 ⋅ [𝑠5 ⋅ 𝐷𝑖 + (1 − 𝑠5) ⋅ 𝐶𝑖])  

As noted above, I also defined a weighting coefficient, such that the total weighted influence of the 

largest group of enforcers (pro or anti-FGM, whichever was larger) was equivalent, on average, to 

the total implicit influence of all actors. This maintains the conformist properties of the simulation, 

and ensures, on average, that social influence is not biased in favour of implicit or explicit social 

influence (instead, this is explicitly controlled by parameter 𝑠5. 

The weighting coefficient for norm enforcement (𝑤2) was defined as: 

𝑤2 =
𝑛

𝑛𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑟𝑠
 

 

3 In the event that, due to stochastic effects, the total norm enforcement influence exceeds 1 (e.g. because the actor is connected to an unusual 

number of enforcers in the network), the influence is capped at 1 by the simulation.  
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Where 𝑛 is the number of agents, and 𝑛𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑟𝑠 is the number of pro-FGM or anti-FGM enforcers 

(whichever is larger), called ‘the largest enforcement group’. Using 𝑤2 as a weighting coefficient 

ensures that, on average, the total influence of the largest enforcement group is equal to the total 

influence of all actors (under implicit enforcement).  

Under implicit enforcement, the average (i.e. the expected, note the 𝐸[⋅] operator) total influence of 

all actors is: 

𝐸 [∑ 𝑤𝑖

𝑛

𝑖=1

] = ∑ 𝑤𝑖

𝑛

𝑖=1

 

Where 𝑤𝑖 is the weight of actor 𝑖.  

Under explicit enforcement, the total influence of the largest enforcement group is: 

𝐸 [∑ 𝑤𝑖 ⋅ 𝑤2 ⋅ 𝑥

𝑛

𝑖=1

] 

Where 𝑥 is a random dummy variable (0 or 1) that indicates that actor 𝑖 is in the largest enforcement 

group. The expectation of 𝑥 is 
𝑛𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑟𝑠

𝑛
. Extracting 𝑤2 and 𝑥 from the summation we find: 

𝐸 [∑ 𝑤𝑖 ⋅ 𝑤2 ⋅ 𝑥

𝑛

𝑖=1

] = 𝐸 [𝑤2 ⋅ 𝑥 ⋅ ∑ 𝑤𝑖

𝑛

𝑖=1

] = 𝑤2 ⋅ 𝐸[𝑥] ⋅ 𝐸 [∑ 𝑤𝑖

𝑛

𝑖=1

] 

Substituting the definition of 𝑤2 and evaluating 𝐸[𝑥] we find: 

𝑤2 ⋅ 𝐸[𝑥] ⋅ 𝐸 [∑ 𝑤𝑖

𝑛

𝑖=1

] =  
𝑛

𝑛𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑟𝑠
⋅

𝑛𝑒𝑛𝑓𝑜𝑟𝑐𝑒𝑟𝑠

𝑛
⋅ 𝐸 [∑ 𝑤𝑖

𝑛

𝑖=1

] 

This then reduces to: 

1 ⋅ ∑ 𝑤𝑖

𝑛

𝑖=1
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7.12 Make Decision 

If 𝑈(𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒)𝑖 is greater than or equal to 𝑈(𝑎𝑏𝑎𝑛𝑑𝑜𝑛)𝑖 then agents will practice in FGM; 

otherwise, they will not. Actors assigned the role of ‘decision-maker’ (𝑚𝑖 = 1) will update their more 

recent decision about the cutting status of a girl in their household (𝜃𝑖) to reflect their practice decision, 

with probability: 
𝑙

𝑥⋅𝑚
 (see 8.4).  
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8. Model Discussion, Sub-Model Analysis & Theorems 

8.1 Generalizing Over Continuous Marginal Distributions using the 

Beta Family 

The model generalises over the marginal distributions of the continuous attributes of actors 

(𝐻𝑖, 𝛼𝑖, 𝑤𝑖) in the modelled population as follows. The beta distribution was used. It allows a wide 

variety of forms, including unimodal, bimodal, left-skewed and right-skewed. However, it presents 

further challenges in that it is difficult to generalise over the space of beta distributions because its 

standard parametrization is unbounded (i.e. parameters can be infinitely large).  

The following outlines the beta family of distributions and demonstrates how it can be re-

parameterised in terms of its mean and variance. These are bounded values which allow a full 

exploration of the space of distributions. Furthermore, I show how this distribution can be 

decomposed into gamma distributions which allowed implementation in the Netlogo programming 

environment used to implement the model. 

The beta distribution is a family of probability distributions for which all values outside of 0 and 1 

have a zero density. It has PDF: 

𝑓(𝑥) =
𝑥𝛼−1(1 − 𝑥)𝛽−1

𝐵(𝛼, 𝛽)
 

Where: 

𝐵(𝛼, 𝛽) =
𝛤(𝛼)𝛤(𝛽)

𝛤(𝛼 + 𝛽)
 

and 𝛤 represents the gamma function. 

The beta-distribution family spans a wide variety of qualitatively distinct shapes, so can be used to 

approximate a range of distributions of interest for any finite range of values. The beta distribution is 

determined by two parameters: 𝛼 and 𝛽. It also has some known dispersive properties in relation to 

these parameters. Specifically, if 𝑋 is a beta-distributed random variable, then: 
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𝐸[𝑋] =
𝛼

𝛼 + 𝛽
= 𝐸𝑋 

Furthermore: 

𝑉[𝑋] =
αβ

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
= 𝑉𝑋 

The main practical barrier to using the beta distribution in a simulation context was that the values of 

𝛼 and 𝛽 are unbounded; they can be any positive real number. As such, it was difficult to define a finite 

‘space’ of beta-distributions which can be explored in the simulation. The solution to this issue was to 

define the beta distribution in terms of 𝐸𝑋 and 𝑉𝑋 instead. These values have a more meaningful 

interpretation (centre and spread), and they are bounded (such that the whole space of distributions 

can be explored systematically). 

We know that 𝐸𝑋 is bounded in the interval [0,1], we also know from the Popoviciu inequality that the 

maximum variance of a bounded probability distribution is: 

1

4
(𝑀 − 𝑚)2 

Where 𝑀 is the upper bound and 𝑚 is the lower bound. Since these values are 1 and 0 for the beta 

distribution, this simplifies to a maximum variance of 
1

4
 for the beta distribution. 

To define the beta distribution in terms of its variance and mean, we simply apply methods for 

simultaneous equations: 

𝐸𝑋 =
𝛼

𝛼 + 𝛽
 

𝑉𝑋 =
αβ

(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1)
 

First, we define 𝛼 in terms of 𝛽 and 𝐸𝑥. Note that here we restrict the solution to the case in which 

𝐸𝑋 is not equal to 1 (although, of course, it can be arbitrarily close to 1). 𝛽 is always greater than zero. 

𝛼 = −
𝛽𝐸𝑋

(𝐸𝑥 − 1)
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Then we substitute the definition of 𝛼 into the variance equation, and solve for 𝛽: 

𝑉𝑋 =
−

𝛽𝐸𝑋

(𝐸𝑥 − 1)
𝛽

(−
𝛽𝐸𝑋

(𝐸𝑥 − 1)
+ 𝛽)2(−

𝛽𝐸𝑋

(𝐸𝑥 − 1)
+ 𝛽 + 1)

 

⇒ 𝛽 =
(𝐸𝑋 − 1)(𝐸𝑋

2 − 𝐸𝑋 + 𝑉𝑋)

𝑉𝑋
 

Substituting this definition of 𝛽 back into the definition of 𝛼, we are left with two definitions of these 

parameters purely in terms of the desired variance and mean of the distribution: 

𝛼 = −

(𝐸𝑋 − 1)(𝐸𝑋
2 − 𝐸𝑋 + 𝑉𝑋)
𝑉𝑋

𝐸𝑋

(𝐸𝑥 − 1)
= −

𝐸𝑋(𝐸𝑋
2 − 𝐸𝑋 + 𝑉𝑋)

𝑉𝑋
 

𝛽 =
(𝐸𝑋 − 1)(𝑉𝑋 + 𝐸𝑋

2 − 𝐸𝑋)

𝑉𝑋
 

We could then redefine the beta-distribution family in terms of these values, giving them a more 

intuitive specification. However, in the use-case of interest here, we are using built-in functionality 

from Netlogo to create a beta distribution. Specifically, we are interested in defining our beta 

distribution in terms of the Gamma distribution (which is supported directly in Netlogo). Here we rely 

on the following relation between the Gamma and Beta distributions: if 𝑋 and 𝑌 are independent 

random variables, where 𝑋 ∼ 𝛤(𝛼, 𝜃) and 𝑌 ∼ 𝛤(𝛽, 𝜃), and where 𝛼 and 𝛽 are the corresponding 

parameters of the beta distribution, then the random variable: 

𝑍 =
𝑋

𝑋 + 𝑌
⇒ 𝑍 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽) 

This holds irrespective of 𝜃. 

Based on the above, we can define the following random variable in terms of the desired mean and 

variance of the beta distribution and as a function of gamma-distributed random variables: 

𝑋 ∼ 𝛤(−
𝐸𝑍(𝐸𝑍

2 − 𝐸𝑍 + 𝑉𝑍)

𝑉𝑍
, 1) 
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𝑌 ∼ 𝛤(
(𝐸𝑍 − 1)(𝑉𝑍 + 𝐸𝑍

2 − 𝐸𝑍)

𝑉𝑍
, 1) 

𝑍 =
𝑋

𝑋 + 𝑌
∼ 𝐵𝑒𝑡𝑎(𝜇 = 𝐸𝑍, 𝜎2 = 𝑉𝑍) 

These formulas were used to implement the beta distribution in Netlogo and generalise over the 

distributions of continuous heterogeneous characteristics in the general model (𝐻𝑖 , 𝛼𝑖, 𝑤𝑖).  
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8.2 Generalising over the Joint Distribution of Agent Attributes 

8.2.1 Constructing variables with pre-specified marginal distributions and pre-

specified correlations 

The following provides the formal reasoning underlying the approach to creating correlation between 

continuous variables in the simulation.  

Let us say that we have two random-variables (i.e. random over the agent population): say, H and W. 

These have marginal probability density functions 𝑝𝐻() and 𝑝𝑊(), which are specified directly. They 

also have associated cumulative distribution functions 𝐹𝐻() and 𝐹𝑊(). 

We also have a random variable 𝐻𝑛𝑜𝑖𝑠𝑒 which has marginal distribution 𝑝𝐻𝑛𝑜𝑖𝑠𝑒
(), and cumulative 

distribution function 𝐹𝐻𝑛𝑜𝑖𝑠𝑒
() and whose Pearson correlation with H has been specified directly by 

defining 𝐻𝑛𝑜𝑖𝑠𝑒 as 𝐻 + 𝜖𝐻 where 𝜖𝐻 is a random Gaussian noise variable with a standard deviation 

specified to create the desired correlation between 𝐻𝑛𝑜𝑖𝑠𝑒 and 𝐻 (see 8.2.2). 

We want to specify W such that it maintains the marginal distribution 𝑝𝑊() but the joint distribution 

𝑝(𝐻, 𝑊) has a non-linear correlation equal to the Pearson correlation of 𝐻 and 𝐻𝑛𝑜𝑖𝑠𝑒. To achieve 

this, we define 𝑊 so that it retains its marginal distribution but has a perfect non-linear correlation 

with 𝐻𝑛𝑜𝑖𝑠𝑒. We define W as follows: 

𝑊 = 𝐹𝑊
−1([𝐹𝐻𝑛𝑜𝑖𝑠𝑒

(𝐻 + 𝜖𝐻)]) 

Where 𝐹−1 is the inverse CDF of 𝑊. 
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8.2.2 Arbitrary correlations using random noise with a pre-specified variance 

Theorem (Arbitrary correlations using random noise with a pre-specified variance) 

Given: 

𝑦 = 𝑥 + 𝜖 

Where 𝑥 and 𝜖 are random independent variables and 𝜖 has an expected value of 0. It will be the case: 

𝜌𝑥,𝑦 =
𝜎𝑥

√𝜎𝑥
2 + 𝜎𝜖

2
 

Where 𝜌𝑥,𝑦 is the Pearson product-moment correlation between 𝑥 and 𝑦, and 𝜎𝑥 is the standard 

deviation of 𝑥, etc. 

Proof (Arbitrary correlations using random noise with a pre-specified variance) 

To prove this, we rely on the following previously established theorems regarding the properties of 

the expected value operator (𝐸[⋅]), the definition of the variance of a random variable in terms of 

expected value, and the definition of the Pearson correlation. 

The person correlation can be defined: 

𝜌𝑥,𝑦 =
𝐸[(𝑥 − 𝐸[𝑥])(𝑦 − 𝐸[𝑦])]

𝜎𝑥 ⋅ 𝜎𝑦
 

Where 𝐸[⋅] is the expected value operator, which has the following established properties: 

3. 𝐸 is distributive with respect to addition: 𝐸(𝑥) + 𝐸(𝑦) = 𝐸(𝑥 + 𝑦) 

4. If 𝑥 and 𝑦 are independent, E is distributive with respect to multiplication: 𝑥 ⊥ 𝑦 → 𝐸(𝑥𝑦) =

𝐸(𝑥) ⋅ 𝐸(𝑦) 

5. The expected value operator applied to a non-random variable returns that variable, e.g., 𝐸(2) =

2, 𝐸(𝐸(𝑥)) = 𝐸(𝑥). 

6. Constants can be factored out of the expected value operator, such that 𝐸(𝑥 ⋅ 𝐸(𝑥)) = 𝐸(𝑥)2 

Finally, we rely on the following definition of the variance of a random variable: 



44 
 

𝜎𝑥
2 = 𝑉[𝑥] = 𝐸[𝑥2] − 𝐸[𝑥]2 

Proof of the theorem depends on simplification and substitution within the denominator and the 

numerator in the definition of the Pearson correlation, for the case in which 𝑦 = 𝑥 + 𝜖. 

𝐸[(𝑥 − 𝐸[𝑥])(𝑦 − 𝐸[𝑦])] 

= 𝐸[𝑥𝑦 − 𝑥𝐸[𝑦] − 𝑦𝐸[𝑥] + 𝐸[𝑥]𝐸[𝑦]] 

= 𝐸(𝑥𝑦) − 𝐸(𝑥𝐸[𝑦]) − 𝐸(𝑦𝐸[𝑥]) + 𝐸(𝐸[𝑥]𝐸[𝑦]) 

= 𝐸(𝑥𝑦) − 𝐸(𝑥)𝐸(𝑦) − 𝐸(𝑥)𝐸(𝑦) + 𝐸(𝑥)𝐸(𝑦) 

= 𝐸(𝑥𝑦) − 𝐸(𝑥)𝐸(𝑦) 

𝑠𝑢𝑏. 𝑦 = 𝑥 + 𝜖 ⟹. . . = 𝐸[𝑥(𝑥 + 𝜖)] − 𝐸[𝑥]𝐸[𝑥 + 𝜖] 

= 𝐸[𝑥2] + 𝐸(𝑥 ⋅ 𝜖) − 𝐸[𝑥](𝐸[𝑥] + 𝐸[𝜖]) 

= 𝐸[𝑥2] + 𝐸(𝑥 ⋅ 𝜖) − 𝐸[𝑥]2 − 𝐸[𝑥]𝐸[𝜖] 

𝑥 ⊥ 𝜖 ⟹. . . = 𝐸[𝑥2] + 𝐸[𝑥]𝐸[𝜖] − 𝐸[𝑥]2 − 𝐸[𝑥]𝐸[𝜖] 

= 𝐸[𝑥2] − 𝐸[𝑥]2 = 𝜎𝑥
2 

So, in the case where 𝑦 = 𝑥 + 𝜖, 𝐸(𝜖) = 0 and 𝑥 ⊥ 𝜖 (independence), the covariance of x and y will 

be equal to the variance of 𝑥. 

Therefore, we can re-state the Pearson correlation between x and y as: 

𝜌𝑥,𝑦 =
𝜎𝑥 ⋅ 𝜎𝑥

𝜎𝑥 ⋅ 𝜎𝑦
 

⟹ 𝜌𝑥,𝑦 =
𝜎𝑥

𝜎𝑦
 

We can assume that 𝜎𝑦 is unknown, whereas 𝜎𝑥 and 𝜎𝜖 are known. As such, it is helpful to re-write 

this as: 

⟹ 𝜌𝑥,𝑦 =
𝜎𝑥

𝜎𝑦
=

𝜎𝑥

√𝜎𝑥
2 + 𝜎𝜖

2
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This follows from the distributivity of the variance operator 𝑉(⋅) with respect to addition, under the 

independence of random variables: 

𝑥 ⊥ 𝜖 ⟹ 𝑉(𝑥 + 𝜖) = 𝑉(𝑥) + 𝑉(𝜖) 

This can be proved by substituting the definition of 𝑦 = 𝑥 + 𝜖 into the definition of the variance of 

𝑦 in terms of 𝐸[⋅], and then simplifying. The distributivity of the variance operator with respect to 

addition depends on the independence of 𝜖 and 𝑥, but doesn’t require that 𝐸(𝜖) or 𝐸(𝑥) be equal to 

0 (as other parts of the proof do). 

As such, we can note that: 

𝜎𝑦 = √𝑉(𝑦) ⟹ 𝜎𝑦 = √𝑉(𝑥) + 𝑉(𝜖) = √𝜎𝑥
2 + 𝜎𝜖

2 

 

Application (Arbitrary correlations using random noise with a pre-specified variance) 

The intended application of the theorem is the generation of random variables which have an arbitrary 

degree of correlation with some prior variable. Rearranging the theorem (assuming all values are 

positive and greater than 0) above shows that this can be achieved using the following formulation: 

𝑦 = 𝑥 + 𝜖 

Where: 

𝜎𝜖 =
√𝜎𝑥

2 − 𝜌𝑥,𝑦 ⋅ 𝜎𝑥
2

𝜌𝑥,𝑦
 

With the desired 𝜌𝑥,𝑦 chosen arbitrarily. 𝜖 can have any probability density as long as 𝐸(𝜖) = 0. 
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8.3 Parameterizing ‘Social Reach’ in the Hamill and Gilbert Social 

Circle Algorithm in terms of the Expected Connectivity of Actors 

To build the social reference and decision-maker reference networks, a simple version of Hamill and 

Gilbert’s (2009) spatial network algorithm was used. This algorithm implements the following steps: 

1. Construct a population of 𝑁 agents 

2. Distribute the agents randomly across a 2D space which wraps at its edges 

3. Connect all agents who are within a radius of 𝑟 of one-another 

The raw parametrization of the algorithm is in terms of 𝑟; however, this is largely an unintuitive 

parameter, and moreover, it is insensitive to the concentration of actors in the space - which will affect 

overall network density. Instead, we would like to re-parameterise the algorithm in terms of the 

expected density of the resulting network. In order to do this, we will need to express 𝑟 in terms of 

the expected number of connections of each agent in the network. 

First, note that actor 𝑖 connects to actor 𝑗 iff the location of actor 𝑗 is within 𝑟 of actor i. Since all 

positions for 𝑗 within the 2D space are equally likely, the probability that 𝑖 is within 𝑟 of 𝑗 is the 

proportion of points in space for which this will occur. This is simply the ratio of the area of the radius 

𝑟 and the area of the wrapped 2D space, which is: 

𝑃𝑖𝑗 =
𝜋𝑟2

𝐴𝑡
 

Where 𝐴𝑡 is the area of the 2D space and 𝑃𝑖𝑗 is the probability that actor 𝑖 will connect to actor 𝑗, for 

𝑗 ≠ 𝑖. 

Since this probability is independent for all other actors in the agent population, we can expect the 

number of actors connected to 𝑖 to be Binomial distributed, with 𝑁 − 1 independent trials, each with 

probability 
𝜋𝑟2

𝐴𝑡
 of success (connection). Here we are simply interested in the expected value for 𝑖, 

which will be (𝑁 − 1) ⋅
𝜋𝑟2

𝐴𝑡
. We will call this figure (the expected connectivity of each actor) 𝐸𝑐. 

We can then parameterise the social circle algorithm by defining 𝑟 in terms of 𝐸𝑐: 
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𝐸𝑐 = (𝑁 − 1) ⋅
𝜋𝑟2

𝐴𝑡
⟹ 𝑟 = √

𝐴𝑡 ⋅ 𝐸𝑐

𝜋 ⋅ (𝑁 − 1)
 

This formula is used in the model, with 𝐸𝑐 controlled by parameter 𝜇𝑅𝑠𝑜𝑐𝑖𝑎𝑙 (in the case of the social 

reference network), to determine the social-reach of actors, and construct a network with the desired 

connectivity.   
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8.4 Derivation of the Probability that ‘Decision-Maker’ Agents will 

Update their Cutting decisions in a Single Time-Step 

The calculation of the probability that, in a given time-step, a ‘decision-maker’ agent would need to 

make a ‘final decision’ about the cutting status of one of the girls in their household proceeded as 

follows. Relevant empirical figures for 𝑏 and 𝑐 were taken from an international survey of household 

characteristics (United Nations Department of Economics and Social Affairs, 2017: 16), assuming 

that, on average, 50% of children under 15 are girls.  

Let 𝑎 = the number of households in the community, where 𝑛 is the number of adults 

𝑎 =
𝑛

6
 

Let 𝑏 = the proportion of households with children 

𝑏 = 0.84 

Let 𝑐 = the average number of female children (aged under 15) per household 

𝑐 = 2.25 

Let 𝑑 = the average number of children in the community 

𝑑 = 𝑎 ⋅ 𝑏 ⋅ 𝑐 =
𝑛

6
⋅ 0.84 ⋅ 2.25 

Let 𝑙 = the number of decisions to be taken each year such that, on average, all girls are cut by age 15 if they are to be 

cut 4 

𝑙 =
𝑑

15
 

 

Let 𝑚 = the number of final decision-makers in the community, assuming one per-household 

 

4 Kandala and Shell-Duncan (2019: Table 1) report that less than 1% of girls are cut after the age of 15. 
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𝑚 = 𝑎 =
𝑛

6
 

Assuming 𝑥 is the number of ‘time-points’ (𝑡𝑘) related to FGM each year, let 𝑃𝑟(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑡𝑘 = 𝑘)𝑖 be the 

probability that decision-maker 𝑖 takes a decision about one-of their girls in a single time-point 

𝑃(𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛|𝑡𝑘 = 𝑘)𝑖 =
𝑙

𝑥 ⋅ 𝑚
 

 


