ODD Documentation for the General Model of FGM as a

Social Norm of Coordination

1. Purpose

The ‘general model of FGM as a social norm of coordination’ is an agent-based model of the social
processes through which the practice of FGM persists, increases or decreases in localised populations.
Specifically, it addresses social processes related to social coordination, where actors face incentives
to match the behaviours of others. It represents ‘everyday’ processes of coordination in the absence
of outside intervention, as well as the specific potential effects of targeted interventions designed to
discourage FGM. The model, which can be seen as an expansive extension of formal models already
proposed in the FGM policy literature, is designed to address a number of problems. Chapter 5 of the
associated thesis identified a number of areas of potential uncertainty in the design of formal models
of FGM as a norm of coordination. However, these explorations of individual features did not allow
an assessment of the full range of dynamics that can occur when different areas of potential uncertainty
are combined together. Neither did it allow an assessment of which of these areas of uncertainty area
was most important (i.e. should be prioritised in calibration) when taking into account possible
combinations of these features. The general model solves these problems by incorporating and
parametrizing these different areas of uncertainty in a single model, for which previous models are
special cases (i.e. particular parametrizations). By representing (and parametrizing) a global space of
possible designs for coordination models of FGM, the corresponding space of possible predicted
dynamics can be explored. This, in turn, makes it possible to characterise the relative importance of
different areas of uncertainty in the model design, using techniques from global sensitivity analysis.
Furthermore, the model can be applied directly within a possibilistic failure scenario context, to identify
potential policy-failure scenarios — although these scenarios may have limited credibility in the absence
of further empirical calibration. Empirical calibration of parts of the model has been carried out, and

this is documented in the associated thesis (Chapter 7).



2. Entities, state variables and scales

The entities in the model are agents which represent individual social actors in FGM-practicing

localised populations (typically territorial communities).

These entities are characterised by the following state-variables: the intrinsic value they place on FGM
(which affects their willingness to participate or not participate in FGM-related activities - H;), their
authority (which affects the degree of pressure they exert on other actors to coordinate with them w;),
their autonomy (which affects the relation between social pressures experienced by the agent, and
associated social costs, from their perspective: &;), their status as a final decision-maker about girls in
their household m;, and their role as either tolerant of miscoordination by others (B1; = 0, ; = 0),
or an enforcer of FGM practice (f1; = 1) or an enforcer of FGM abandonment (f,;), both of which

affect their contribution to norm-enforcement as a source of social influence.

Actors are also characterised by an x (x;) and y (y;) coordinate position in network-space (see below).
Actors are further characterised by their social, household and decision-maker reference groups
({social-ref};, {household};, {decision-maker};), which are sets of other actors to whom they refer

when assessing coordination incentives.

Actors’ behavioural states are characterised by two dummy variables, one representing participation
in FGM-related activities last time this arose (d;, e.g. consenting to or helping plan/prepate cutting
events, attending the event and/or aftermath, making a deal with circumcizors, paying circumcision
fees, supporting the educational component of the ceremony, or declining to do these things, explicitly
expressing intention not to support cutting, etc.) and another representing their final decision about
whether a girl in their household should be cut (6;, the last time this arose, and assuming that they are

a final decision-maker).

Actors are situated within a ‘network space’ which is a 2D coordinate space (the size is arbitrary — see
section 8.3), that wraps on its horizontal axis. This space does not have a direct spatial analogue, but
rather serves the instrumental function of constructing reference networks with a number of desirable
properties- such as clustering, localization of social interaction, and homophily- which are controlled

by global parameters of the environment.



The population of agents sits within a global environment, which is characterised by a large number
of global parameters which represent different possibilities for the representation of FGM-related
social coordination dynamics. In other words, the parameters in the global environment allow for a
range of possible ‘models’ of dynamics and allow the modeller to explore a wide space of such
possibilities. The space of global parameters can be seen as encompassing a certain amount of
stochastic uncertainty (situations which may vary across different real-world communities) and

epistemic uncertainty (possibilities whose adequacy as a model of the real situation is uncertain).

Global parameters control the basic initialization of the model by controlling the number of actors in
the population (between 200 and 2000, n-actors), and the proportion of those actors who begin the
simulation practicing FGM. They further control the distribution of heterogeneous characteristics
across the agent population through parameterizing characteristics of the distributions of: the intrinsic
value of FGM, autonomy, authority. This is achieved by parametrizing the mean and variance of

underlying beta-distributions in each case (g, Haiphar Hw» 04,0%,02).

The pairwise correlations between the intrinsic value of FGM, and actor’s autonomy, authority and y-
coordinate (each with intrinsic-value) are also parameterised (Oyw, PHa, Pry)- Further parameters
control the proportion of actors selected as enforcers of FGM practice (Sg) or FGM abandonment
(S7) (conditional on their participation in FGM, or not) and the rules used to select which actors take
on this role in each case (a4, a, i.e. those with more authority, those with stronger beliefs about the
intrinsic value or cost of FGM, etc.). Another parameter controls whether at initialization,
participation in FGM is assigned at random, or whether actors who value FGM the most are selected

first as initial participants (ay).

Other global parameters control the decision-functions of actors by affecting the maximum possible
intrinsic value attributed to FGM across the population of agents (relative to the maximum possible
intrinsic cosz - Sy), as well as: the maximum social miscoordination costs for abandoning the practice
(relative to the maximum miscoordination costs for abandonment - sy), the (potentially non-linear)
rate with which social costs accumulate with the degree of social pressure (for FGM practise and non-
practise: V, 81, 8,), and the relative importance of influence from actors’ three reference groups: social,
honsehold and decision-maker (S3, S4). A further parameter (Ss) controls whether social influence from

the social and household reference groups is primarily implicit (depending on the weighted proportion



of actors engaged in FGM participation) or primarily explicit (depending on the weighted proportion

of actors engaged in pro-FGM enforcement or anti-FGM enforcement).

Other global parameters control the interaction structure of the population, by controlling: the average
size of the actors' social reference groups (i.e. average degree in the social reference network, Ursocial)s
the average size of households Upgi,e (see below), the relative increase in the ‘network reach’ of the
decision-maker reference groups relative to social reference groups (Sg), and the localization of
household reference groups within the network space (which controls whether household
membership tends to be homophilic and whether household networks span disparate parts of the
social network by dividing the network space into 71y discrete partitions and randomly creating

household network cliques within these partitions).

Finally, the process flow of the model is controlled in terms of the number of coordination
opportunities that occur per year (see time-scales below) and the order in which actors make decisions

in each time step (e.g. random-sequential, simultaneous, high-authority actors first, etc.).

Simulated interventions are controlled by environmental variables which determine: the proportion of
the population who are targeted (Z;), the strength of the educational component of the intervention
(z3), the minimum probability that actors who oppose FGM following intervention education will
‘respond’ positively (z3) and be willing to form a coalition of non-practitioners with other actors, the
number of other non-participating actors that responding-actors will try to recruit to the coalition (Z,),
the proportion of those actors who were successfully recruited to the intervention that will join one-
another’s social reference group (Zs), the rules used to target actors for the intervention (Zg - twelve
options, including at random, high authority actors, actors within a localised part of the network, etc.)

and the probability that intervention participants will become anti-FGM enforcers (z7).

The temporal scale in the model is understood relative to the scale of a single year. A proportion of
actors in the population make a decision about the cutting status of a girl in their household in a single
year. This can be estimated from: the expected number of gitls per-household at a given moment,
from the number of households in the community and from the expectation that a decision must be
made about all gitls before they reach the age of 15 (see section 8.5). Against this fixed (relative to the

population and households) rate of FGM cutting decisions, the number of decisions actors must take



about FGM participation per year is controlled by a parameter (1;), and can be between once and

twelve times per year.

3. Process Overview and Scheduling

The initialization process involves the following sub-processes and is the first step in all uses of the

model:

Table 1: Initialization Sub-Processes

SUB-PROCESS

BRIEF DESCRIPTION

Create base
population
Distribute

population

characteristics

Set Spatial

Location

Form Reference

Networks

Setup Initial

Behaviors

Create a population of N actors

Distribute actors' characteristics, including: their perceived intrinsic value of FGM (H;), their
authority (W;), their autonomy (@;) and their x and y-coordinates (y;, X;) according to the
desired marginal (iy, 03, fhy, 0.2, ie, 02) and joints distributions of these characteristics

(OHw) PHar PHy)- Xi and Y; always have a uniform distribution.

Actors are placed in a spatial location in the 2D ‘network space’ according to their x; and y;
p p p g i i

coordination attributes.

Actors construct social ({social-ref};), household (fhousehold};), and decision-maker
({decision-maker};) reference groups. A random 1 + Poisson( = 1) actors in each

household are assigned the role of ‘decision-maker’ (m; — 1).

Actors initial behaviours (practicing FGM or not), as well as their status as enforcers of the
practice of FGM (B3, ), are assigned according to the relevant assignment rules (a4, a;),
including whether actors are initialised as practicing at random, or in descending order of FGM

preference (az).



Following the initialization of the model, where applicable, a simulated intervention is immediately
run. In this scenario, all actors are initialised as practicing FGM (and cutting girls in their household,

etc.), removing some sensitivity of the model to initialization conditions.
The simulated intervention involves the following sub-processes:

Table 2: Simulated Intervention Sub-processes

SUB-PROCESS BRIEF DESCRIPTION
Target actors for A proportion of actors (2;) are targeted for intervention participation, according to a
intervention preferential targeting rule (¢ e.g. ascending order of preference).

(including educational 5 . . r fect”

effect . . . . .
) These actors receive the educational component of the intervention; their new (decreased)

belief about the intrinsic value of FGM is a function of their previous belief (degree of
change controlled by z,). Agent’s perception of the value of FGM before the educational

effect of the intervention is defined:
Hi=—-M+(q-[M+(M-s,)])
After the educational effect of the intervention, it is defined:

Hi=-M+((1-2)q]-[M+(M-s,)])

Implement With a probability that decreases with increased belief in the value of FGM (this probability
Intervention is always zero if FGM is still perceived to be an intrinsic good and has a minimum value of
(Including Organised  z; otherwise) actors prepate to enter an initial coalition with other actors who ate conditionally
Diffusion) ready to abandon FGM.
‘Organised Diffusion’
They also try to recruit zero-or-more (Z4) other actors in their household and social
reference networks (at random) to join the initial coalition. If the recruiting actor’s perceived
intrinsic value of FGM is less than that of the recruitee, then the recruitee adopts a new
(random uniform) belief in the value of FGM in the interval between theirs and the
recruiting agents’ belief. Recruitees respond (and prepare to join the initial coalition)
according to the same probability rule as intervention participants. If they do respond, then
they try to recruit zero-or-more (previously uninvolved) actors from #heir social and
household reference groups to join the initial coalition. This continues until no more actors

agree to join the initial coalition.



Update Enforcement  Actors who have joined the initial coalition update their status, such that pro-FGM enforcers
Status stop enforcing the practice, and any actors who aren’t anti-FGM enforcers become anti-

FGM enforcers with probability z; € [0,1].

Connect coalition Each actor who is in the initial coalition adds a proportion (z5) of actors in the coalition to
members their social reference group (at random).

Establish a stable This is a recursive process: Actors in the initial coalition assess whether they would be willing
(final) coalition to abandon FGM conditional on all other initial coalition members doing the same. Any

actors for whom the answer is no, abandon the coalition. Remaining actors then repeat the
same assessment. This continues until a final coalition stabilises, or the whole coalition

collapses.

After implementing the simulated intervention, and in all other cases, the model steps through a series
of discrete time-steps for as long as required (by default 10-years' worth of time-steps). In each time-
step, actors in the population calculate an expected utility for practicing FGM and an expected utility
for not doing so. These expected utilities depend on the intrinsic value that the actor attributes to

FGM, and on social costs for practice or non-practice. Social costs are decomposed into:

1. Costs arising from social reference groups (immediate social consequences of

miscoordination)

2. Costs arising from household reference groups (immediate social consequences of
miscoordination)

3. Costs arising from decision-maker reference groups (anticipated future consequences for
uncut girls based on the current rate of cutting among decision-makers that the agent is

responsive to)

Immediate social consequences (derived from social and household reference groups) are further

decomposed into those arising from:

*  Implicit social pressures — derived from the authority-weighted proportion of actors engaged in
FGM practice (or conversely FGM abandonment for social costs of #of abandoning). Explicit
social pressures (or norm enforcement) — derived from the authority-weighted proportion of
actors enforcing FGM practice (or non-practice), with enforcement further weighted to create

equivalence of total influence with passive enforcement scenarios (see section 7.11.2).



The relative importance of these different sources of social influence is controlled by scale parameters:
53,54, S5 € [0,1], such that social influence can be isolated in a particular type e.g. norm enforcement

within the household, or spread across the different sources of influence.

If the expected utility for practicing FGM is greater than, or equal to, the utility for non-practice, then
actors participate in FGM practice. If they are final decision maker about girls in their household then
(with a certain probability that controls the rate of decision-making about gitls, see 7.6, 7.12 and 8.4)
they update their status to reflect that they decide to cut a girl in their household. Actors who
participate and have the role of practice-enforcer, are also counted as enforcing the practice of FGM.
Conversely, the situation is reversed if the utility for non-practice is greater: actors don’t participate,
may enforce non-practice (if applicable) and will update their cutting decision to non-cutting (if

applicable and with a given probability).

Mover order is either simultaneous or sequential. If it is simultaneous, then all actors calculate their
expected utilities, and subsequently, all actors make the decision to practice FGM or not. If it is
sequential, then actors calculate utilities and act one at a time. The sequential move-order can either
be random in each time step, or it can be in descending order of some characteristic (depending on

the parameter a,). Implemented possibilities are:
1. Random Sequential Move Otrder

2. Descending Order of Authority

3. Descending Order of Autonomy

4. Descending Order of Perceived Intrinsic Value of FGM

This process of utility calculation and decision-making is repeated once for every time-step until the

simulation is stopped.



4. Design Concepts

The following table lays out descriptions of the 11 design concepts recommended by the ODD

protocol.

Table 3: Design Concepts

DESIGN DESCRIPTION

CONCEPT

Basic The model is based on the framework provided by the social-norm of coordination account of
Principles FGM: that actors face social incentives to practice FGM if others do and will be willing to practice

FGM if sufficient others do so. This conceptual framework has been shown to provide a superior
account of the actor’s underlying decision process than accounts focusing on informational
influence or marriage competition in the literature (Chapter 4). This model extends the formal
coordination model popular among policymakers (Mackie, 1996; UNICEF, 2007) by introducing:
greater individual heterogeneity, different kinds of social reference group, complex local interaction
structutes (i.e. networks), variant decision-functions, additional effects from ‘simulated
interventions’ and alternative temporal processes (e.g. staggered decisions about cutting relative to
participation, and different move orders). Each of these extensions has been shown to potentially
distupt the predictions of the original model (Chapter 5 of the Thesis). The general model permits a

space of possible combinations of these elaborations to be explored.

Emergence The key emergent properties of the model are the rates of FGM participation that model arrives at
given different statting conditions and/or simulated interventions. These emerge from, and can be
disrupted by, a wide range of factors in ways that are not immediately obvious or centrally imposed
by the model: including the details of actors decision-functions, the distribution of actor
characteristics, the interactions structure of the population and features of the simulated

intervention such as the actor-targeting strategy.

Adaptation Actors continually adapt to the practice of FGM in their social, household and decision-maker
reference groups (according to the priority given to these by global parameters in the simulation),

since these determine social incentives which, in turn, affect their decisions.

Objectives Actors continually try to maximise their expected utility by making a decision to practice or not

practice FGM depending on the expected utility of both options.

Learning Actors preference are updated by intervention participation, or in some cases, by social interactions
surrounding an intervention (see Process Overview above). However, beyond this, the actors’

preference and decision-functions are treated as stable and exogenous.



Prediction

Sensing

Interaction

Stochasticity

Collectives

Observation

Actors make implicit predictions when they respond to the rate of FGM practice on girls, based on
their decision-maker reference group. The rate of cutting in this group reflects potential costs in the
future (e.g. to marriageability) that girls may face if they are in a minority of their age-group who are

uncut.

Actors directly observe whether actors in their social and household reference groups participate in,
and enforce, the practice of FGM (or conversely the abandonment of FGM). Actors are aware of
whether decision-making actors in their decision-maker reference group cut their daughter the last
time the decision arose. Actors do not respond directly to actors outside of these personal reference

groups (although these cou/d include the entire population).

Interaction occurs primarily through actors observing the FGM participation/non-patticipation and
practice or non-practice enforcement of one another in their reference groups and responding to

the changing social incentives that this creates.

The distribution of actor characteristics- authority, the intrinsic value of FGM, x & y coordinate
positions in network space, and autonomy- is modelled stochastically using directly parameterised
underlying marginal and joint probability distributions (based on the flexible beta-distribution
family). Responsiveness to the intervention is also modelled stochastically since this is expected to
be a variable process which depends on actor’s attributes (i.e. their beliefs about FGM), but for

which the explicit mechanism is not modelled.

Households can be considered collectives. Households are small groups of actors whose household
reference groups form a fully-connected network clique (all actors in the household are
interconnected, but there are no external connections). One available intervention strategy is to

target a proportion of households (rather than a proportion of actors) for intervention participation.

The primary data collected from the model are the modelling assumptions embedded in the global
parameters (including related to intervention effects) and the corresponding resulting rate of FGM
participation in the population after running the model (possibly after a simulated intervention) for

a period of time.

5. Initialisation

[ See Process Overview and Scheduling]

6. Input Data

See details of calibration in Chapter 7 of the thesis to which this model is attached.

10



7. Sub-models

7.1 Create Base Population

This is a simple sub-model which creates a population of agents. It also initialises the agent-attribute:
targeted? as a Boolean variable which indicates (later in the simulation) whether the actor has been
targeted for participation in an intervention, either by the observer or by other actors who are
‘recruiting’ after the initial intervention (i.e. organised diffusion, see 7.6). It also deals with some

aesthetics of the output of the model. The following code implements this sub-model:

to create-base-population

create-actors n-actors [
[ code for aesthetics]

set targeted? FALSE

end

11



7.2 Distribute Population Characteristics

7.2.1 Overall Implementation

The overall implementation of this sub-model depends on the following procedures:

1. create-marginal-distributions which creates lists of deviates from beta-distributions
which act as approximations of the marginal distributions of the a;, w; and H; characteristics of
agents, with parameterised mean and variances.

2. create-noisy-distributions creates noise-disturbed versions of the marginal distribution
of H; which have parametrised correlations with the H; distribution and which are used in the
subsequent procedure (see also 8.2).

3. assign-agent-attributes assigns the H;, a;, w; and y; characteristics of agents in such a
way that both the marginal distributions of these characteristics and their correlation with the H;

distribution is independently parameterised (see also 8.2).
7.2.2 Create Marginal Distributions

First, the procedure create-marginal-distributions creates the global list objects with 2000
deviates from the desired marginal distributions of agent characteristics. These marginal distributions
are created using a version of the beta distribution family, which is parameterised in terms of its mean

and variance (see 8.1).
Marginal distributions are created for the following agent-attributes

1. The intrinsic value of FGM (H;)
2. Authority of actors (W;)

3. Autonomy of actors (&;)

This is implemented by the following Netlogo Code:
set marginal-distribution-H (n-values 2000 [x -> beta-draw mu_H sigma2_H] )

set marginal-distribution-authority sort (n-values 2000 [x -> beta-draw mu_w sigma2_w] )

set marginal-distribution-autonomy sort (n-values 2000 [x -> beta-draw mu_alpha sigma2_alpha] )

12



Note that this relies on the function beta-draw which takes as input a mean and variance for the beta
distribution, and returns a single random deviate from that distribution. For each marginal

distribution, there is a global parameter controlling the mean (mu) and the variance sigmaz2.
The beta-draw procedure is implemented by the following code:

to-report beta-draw [E_z V_z]

; Given a mean and variance value, this reporter acts as a random beta vari
able with corresponding mean and variance

let x1 random-gamma (-( (E_z * ( (E.z ~2) - Ez+V_z)) /V.z))1

let y1 random-gamma ( ((E_z - 1) * (V_z + (E_z ~ 2) - E_z))/(V_z) ) 1

let z1 (x1 / (x1 + y1))

report zl

end

To see why this produces a beta-distribution deviate with the desired mean and variance, consult

section 8.1.
7.2.3 Create Noisy Distributions

After dealing with the marginal distributions of heterogeneous characteristics H;, @; and w;, the model
constructs objects necessary to manipulate the jozinz distribution of ;, w; and y; (y; 1s always uniformly
distributed) with H;. This section details with how this is implemented in the code, to see the

mathematical reasoning which underlies this implementation, readers should consult section 8.2.

Construction of joint distributions begins with the sub-procedure create-noisy-distributions.
This procedure is designed to create noise-disturbed versions of the marginal distribution of H; (which
was created by the create-marginal-distributions procedure). These distributions are
disturbed by adding Gaussian noise (random normal distribution centred on zero) where that noise
has a standard deviation determined analytically to produce a pre-specified Pearson product-moment
correlation between the original distribution of H and the noise-disturbed distribution (see 8.2). As
such, the procedure operates in two steps. First, the required standard deviation of the Gaussian noise

is calculated for each of the joint disttibutions of interest (p(H, @), p(H,w), and p(H, y)). Second, a

13



noise-disturbed version of the H; marginal distribution is created for each of these joint distributions.
This is implemented in the following Netlogo code:
set desired-noise-sd-authority (sqrt(sigma2_H - (rho_Hw * sigma2_H))) / (rho_Hw)

set desired-noise-sd-autonomy (sqrt(sigma2_H - (rho_Halpha * sigma2_H))) / (rho_Halpha)
set desired-noise-sd-Y (sqrt(sigma2_H - (rho_Hy * sigma2_H))) / (rho_Hy)

set noisy-distribution-Q-for-authority map [x -> x + random-normal © desired-noise-sd-authority] marginal
-distribution-H

set noisy-distribution-Q-for-autonomy map [x -> x + random-normal © desired-noise-sd-autonomy] marginal-
distribution-H

set noisy-distribution-Q-for-Y map [x -> x + random-normal © desired-noise-sd-Y] marginal-distribution-H

Derivation of the formula used to calculate the required standard deviation of the noise term in each

case is provided in section 8.2.2.
7.2.4 Assign Agent Attributes

Having created three noise-disturbed versions of the H; distribution in the model, one for each of the
desired joint distributions: p(H, a,p(H,w), and p(H,y), and each with a pre-specified Pearson
produce moment correlation with the marginal distribution of H;, we then assign the w;, @; and y;
attributes of agents in such a way that that they have a pre-specified non-linear correlation with H;
while maintaining their original marginal distributions. This is undertaken by the procedure assign-
agent-attributes. To see the mathematical reasoning underlying this procedure, readers should

consult section 8.2.
ask actors [

set q_i one-of marginal-distribution-H ; Actors take a deviation from the marginal distribution of H_i (note that q_i

maps directly to a value of H_i later in the initialisation procedure)

; Each attribute is the inverse cumulative density function of the marginal distribution of the attribute, composed o
n the cumulative distribution of the noise-disturbed H_i distribution for that attribute, with a noise-disturbed deviate

from the H_i distribution as input...

set alpha_i Inverse-CDF
(CDF (g_i + random-normal @ desired-noise-sd-autonomy) noisy-distribution-Q-for-autonomy) marginal-distri

bution-autonomy
set w_i Inverse-CDF

(CDF (g_i + random-normal @ desired-noise-sd-authority) noisy-distribution-Q-for-authority) marginal-dist

ribution-authority

14



set y_i CDF (g_i + random-normal © desired-noise-sd-y) noisy-distribution-Q-for-y ; The inverse CDF of a uniform dist

ribution is simply the CDF (y_i is always random-uniform)

set x_i random-float 1

]

This procedure relies on functions to approximate the cumulative and inverse cumulative density
functions numerically (since these are not known analytically). The function CDF takes as input an
empirical marginal distribution dist and a deviate from that distribution q. It returns the CDF of that

distribution evaluated at q:

to-report CDF [q dist]
report (length filter [i -> leq i q] dist) / 2000

end

to-report leq [1i x]
report i <= x ; returns a value TRUE or FALSE

end

The function Inverse-CDF takes as input the output of a CDF function cdf_x and a marginal
distribution dist. It returns (a numerical approximation of) of the inverse cumulative distribution

function of dist evaluated at cdf_x:

to-report Inverse-CDF [cdf_x dist]
report item (cdf_x * 1999) dist ; note that the constant 1999 is based on t
he size of the simulated marginal distributions (2000 deviates)

end

The key point that readers should understand is that these procedures (within distribute-
population-characteristic) effectively parameterised the marginal distributions of the «;
(autonomy: flg, 62) w; (authority: u,,, 0:2) and H; (perceived intrinsic value of FGM: iy, 0f) attributes
of agents, as well as the strength of the correlation of the joint distributions of H; with attributes: a;
(intrinsic value and autonomy correlation: py,), W; (intrinsic value and authority correlation: pyyy),

and y; (intrinsic value and y-coordination position correlation: pyy).

The assign-agent-attributes procedure further assigns the x_1i attribute of actors, which is a

random uniform deviate in the interval [0,1].

15



Readers should note that at this stage in the initialization of the model, the attributes: a;, w;, q; (which
is the random deviate that determines H;) and y; are all in the interval [0,1]. These attributes ate scaled

as required during the setup-initial-behaviour procedure later in the simulation.

16



7.3 Set Spatial Locations

This is a simple sub-model which maps the y; and x; attributes of actors to their location in a 2D
Cartesian coordinate space (called the nefwork space) which wraps on its horizontal axis. Dimensions

are arbitrary. This is implemented in the following Netlogo code:
to set-spatial-location
ask actors [

set xcor x_i * (world-width - 1)

set ycor y_i * (world-height - 1)

end

It is important for readers to note that if py, has a positive value, such that y; and H; are correlated
in the simulation, then actors' position in the vertical dimension will be correlated with their perceived
intrinsic value of FGM. This, in turn, will affect the level of homophily within their social and

household reference groups (see also: 7.4).
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7.4 Form Reference Networks

7.4.1 Overall Implementation

This sub-model depends on three separate procedures, one for each of the reference groups of actors:

1. create-household-reference-networks - This procedure connects actors in random
network cliques within partitions of the network space. All actors within each clique form one-
another’s household reference group ({thousehold};). Within these households, a small
(random) number of actors are assigned the role of decision-maker about the FGM status of

some of the girls in that household (m; = 1).

2. create-decisionmaker-reference-network - This procedure connects actors to all other
actors who are decision-makers and are within a fixed radius of them in network space. These
connections define actors’ decision-maker reference groups ({decision-maker};).

3. create-social-reference-network - This procedure connects actors to all other actors that
are not part of their household and are within a fixed radius of them in network space. These

connections define the actors’ social reference groups ({social-ref};).

7.4.2 Create Household Reference Networks

This procedure creates households, which are small network cliques within the network space, where
each actor in the household is in the other actor’s household reference group, and there are no external
connections (of the household reference group type). The algorithm is flexible with respect to whether
network cliques are formed randomly in the population (implying no relationship between social and
household networks), or whether cliques are formed within localised partitions of the network space
- implying that there is a close correspondence between social and household networks. It is worth
noting that in the former case, where household cliques span the entire network space, these cliques
effectively bridge disparate parts of the social reference network. In this case, there will be no
homophily of preferences (or other characteristics) of householders. Conversely, when household
cliques are localised within partitions of the network space, they only bridge relatively close parts of
the social network, and homophily in the social network will translate into homophily of the household

networks. The degree of localization of household cliques is controlled by the parameter 77, which
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determines the number of (equally spaced) horizontal partitions of the network space in which cliques

are randomly formed. Pseudo-code for the algorithm that forms the household cliques is as follows:

for each of eta_1 equally spaced horizontal partitions of network space:
while there are agents without a household in that space:
ask up to random Poisson mu_hsize actors in the partition:

form a network clique and become one another's household reference group
Where mu_hsize is the average number of actors in each household clique.

After forming each of the households, a small number of actors in each household (typically 2) are
assigned the role of decision-maker about (some) girls in that household (m; = 1). This is a pseudo-

code representation of this process:

for each household in the population:
ask 1 + random-Poisson 1 householders:

set decision-maker (m_i) 1
7.4.3 Create Decision-Maker Reference Networks

This procedure creates decision-maker reference groups for agents by connecting agents to decision-
maker agents within a fixed Euclidean distance of them in network space. This distance is
parameterised to be a scaled version of the distance used for the social reference group (which follows
a similar procedutre), where the scaling factor: sg € [1,3] is always greater than or equal to 1. We will
call the distance used in constructing the social reference network the social-reach of actors, and the
distance used in constructing the decision-maker reference network the decision-maker-reach, noting that

decision-maker-reach is equal to social-reach multiplied by Sg.

Therefore, to implement the decision-maker reference network, we need to first calculate the social-
reach. Rather than being parameterised directly, this distance is parameterised in terms of the desired
average connectivity of agents in the social reference group. This is done to ensure that the
connectivity of the social reference network is invariant to parameters controlling the size of the
population. As such, the distance is determined by a parameter Ug . = representing the expected

average size of actors' social reference group. The calculation is implemented in the Netlogo code as:
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set social-reach-of-actors social-reach-formula n-actors mu_Rsocial
to-report social-reach-formula [n c_i]

let A_t (world-width * world-height)
report sqrt ((A_t * c_i) / (pi * (n - 1)))

end

Note that the social-reach-formula function takes as input the number of actors in the
population n-actors and the expected average size of actor’s social reference networks ug_ . ., and
then returns the socal-reach value that will produce this result (on average). To see the derivation of

this formula, readers should consult section 8.3.

Having calculated social-reach, we detive ‘decision-maker’-reach and ask actors to add all other decision-
maker actors within a distance of ‘decision-maker-reach in network space to their decision-maker

reference group:

ask actors [

set R_decision_maker other actors with [distance myself <= (social-reach-of-actors * s_8) and m_i? =1

set R_decision_maker_N count R_decision_maker

7.4.4 Create Social Reference Networks

The operation of this procedure is very similar to create-decisionmaker-reference-networks
Actors add all other actors within a fixed distance in network-space to their social reference group
({social-ref};) provided that those actors are not already part of their household reference groups.

This is implemented by the following Netlogo code:

ask actors [

let my-household R_household

set R_social other actors with [distance myself <= social-reach-of-actors
and not member? self my-household]

set R_social N count R_social

20



7.5 Setup Initial Behaviours

7.5.1 Overall Implementation

This sub-model acts as a single procedure. However, it has a number of conceptually separate

COl’IlpOl’lCl’ltS:

1. Scale Agent Attributes - Continuous attributes are scaled to an appropriate interval
2. Assign Enforcement Roles - A certain proportion of agents' roles as enforcers of practice or non-
practice

3. Initialise Behaviors - A certain proportion of agents are set to initially practice FGM
7.5.2 Scale Agent Attributes

In previous procedures (7.2), agents’ q; attributes were set, where this is a random deviate that
determines their H; attribute (their perceived intrinsic value of FGM). In this procedure their H;
attribute is formally assigned. This can be seen as scaling their g; attribute to an interval [-M,M - s,],
where S, is a scaling parameter in [0,1] that determines the size of the maximum petceived value of
FGM, relative to its minimum perceived value (i.e. maximum perceived cost). This is achieved through

defining H; as follows:
Hi=-M+q;- (M +[M-s,])

This is implemented using the following NetLogo code:

ask actors [
set H_i Q-to-H g_i
]

to-report Q-to-H [Q]
report (-1 * M_hat) + (Q * (M_hat + (M_hat * s_2)))

end
Readers should note the following properties of this scaling procedure:

1. If s, is 0, then no actors will view FGM as having intrinsic value

2. IF s, is 1 and the PDF of q; is symmetric, then perceived intrinsic value of FGM in the agent

population (H;) will be symmetrically distributed around the value of H; = 0.
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The other agent attribute which is scaled by this procedure is @; (actor’s autonomy). This is scaled

from the [0,1] interval to an [—1,1] interval as follows:

ask actors [

set alpha i (-1 + (2 * alpha_i))

7.5.3 Assign Enforcement Roles

In this procedure, a certain proportion of agents (Sg) who view FGM as an intrinsic good (H = 0) are
assigned the role of enforcer of the practice (f1; = 1), which means that if they practice FGM, they
will convey active social influence on others to do the same (see 7.11). Conversely, a certain proportion
of agents (S7) who view FGM as an intrinsic ill (H < 0) will be assigned the role of enforcers of
abandonment of the practice (f; = 1, which means that if they do not practice FGM they will convey

active social influence to others to abandon the practice (see 7.11).

In each case (enforcing practice or non-practice) agents are assigned to these roles according to a rule

for preferentially selection agents. Three possible rules are supported in the model:

1. “random” - meaning that agents are selected uniformly at random

2. “zealots” - agents that are most extreme in their beliefs about the intrinsic value of FGM (either
positive or negative) are preferentially selected as enforcers or practice or non-practice
(respectively).

3. “high-authority” - agents with the highest authority in the population w; are preferentially

selected as enforcing FGM

These options are stored in parameters a; and a, respectively for FGM enforcement and

abandonment enforcement. Assignment of these roles is implemented by the following Netlogo code:

if a_1 = "random" [if any? supporters [ask n-of (s_6 * (count supporters)) supporters [set beta_1i? 1]

11

if a_1 = "zealots" [if any? supporters [ask max-n-of (s_6 * (count supporters)) supporters [H_i] [set be
ta_1i? 1] 1 ]

if a_1 = "high-authority" [if any? supporters [ask max-n-of (s_6 * (count supporters)) supporters [w_i]
[set beta_1i? 1] ] ]

if a_2 = "random" [if any? opponents [ask n-of (s_7 * (count opponents)) opponents [set beta_2i? 1] ] ]

if a_2 = "zealots" [if any? opponents [ask min-n-of (s_7 * (count opponents)) opponents [H_i] [set beta_
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2i? 1] 1]

if a_2 = "high-authority" [if any? opponents [ask max-n-of (s_7 * (count opponents)) opponents [w_i] [se
t beta 2i? 1] ] ]
Where supporters is a list of agents for whom Hj is greater than or equal to zero, and opponents
is a list of agents for whom H; is less than zero. Readers should note that if there are no agents who

support FGM, the first section of code does nothing.
7.5.4 Initialise Behaviours

This function assigns a certain proportion of actors initial-participation-rate as practising
FGM at the beginning of the simulation. There are two possible options for this assignment,
controlled by the parameter asz. Either this assignment is random az = random, or actors ate selected
in descending order of H; (such that supporters of FGM are preferentially selected as practising FGM
at the start of the simulation, az = intrinsic-value-first). In either case, selected actors set their FGM
patticipation to 1 (d; = 1) and if they are a decision-maker about the FGM status of (some) gitls in

their household (m; = 1), they set their cutting decision to 1 (8; = 1).
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7.6 Setup Cutting Decision Process

In the model, decision-makers decisions about whether to cut their daughters are determined by their
decisions about whether to participate in FGM activities. There is no separate utility calculation from
the perspective of the decision-makers (although the cutting decisions of decision-makers directly
affect the utility calculations of agents for whom those decision-makers are part of a decision-maker

reference group, see 7.11 and 7.4.3).

However, participation (updating d;) and cutting decisions (updating 8;) take place on different time
scales. While all agents have the opportunity to participate in FGM in each time-step of the model,
decision-makers only have the opportunity to update their cutting decisions with a fixed probability
that is determined analytically to reflect the overall rate of cutting decisions taking place in the
community per year. The derivation of this probability is given in section 8.5. Here we deal with the

mechanics of calculation within the setup-cutting-decision-process procedure.

In essence, this procedure calculates the number of girl children in the community, based on the
number of households (and the number of children per household, see 8.5). It then calculates the
number of decisions to be taken per-year, given that all girls must have a final decision made by age
15. Then based on (a) the number of decisions to be taken each year, (b) the number of simulated
time steps per year (controlled by the parameter 1, € 1,2,...,11,12) and (c) the number of decision-
makers among whom these decisions are distributed, the probability that decision-makers update their
decision in each time step is determined analytically. This is implemented in the following Netlogo

code:

to setup-cutting-decision-process

set est-number-of-children (length family-1list) * ©.84 * 2.25 ; This is based on the average
proportion of houses with children, and the average number of children per house

set est-decisions-per-year (est-number-of-children / 15) ; Each year at least one-fifteenth
of children must be cut to account for the rate of arriving children (implicit)

let number-dms count actors with [m_i? = 1]

set p-decide-per-step (est-decisions-per-year) / (eta_2 * number-dms) ; Ensures that on aver

age, 'est-decisions-per-year' are made regarding the cutting status of girls

end
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When the model steps through a time-step (see 7.12), actors who are decision-makers about (some)
gitls in their household, will update their cutting decision (6;) to reflect their last participation decision

(d;) with probability p-decide-per-step.
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7.7 Target Actors for Intervention

This is the first procedure in the implementation of a simulated intervention. Simulated interventions
happen before the model steps through time, and we assume that the model is initialised such that all

actors are practicing FGM.

This first procedure deals with which agents are initially targeted to participate in the intervention and
the initial educational effects of the intervention on those agents. A wide range of options are
supported by the model and the rule used is controlled by a categorical variable: Zg. A proportion z;

of agents can be targeted at random, or agents can be targeted as follows:

*  Support FGM (H; descending order)

*  Oppose FGM (H; ascending order)

e Autonomy (; descending order)

*  Authority (W; descending order)

*  Pro-FGM enforcement (B;; = 1 selected)

*  Anti-FGM enforcement (B7; = 1 selected)

*  Social connectivity ({social-ref}; size, descending order)
*  Household Size ({household}; size, descending order)

e Decision-makers (m; = 1 selected first)

*  Localised (x; descending order)

* By Household (a proportion z; of households are targeted, and all actors in those households

participate in the intervention).

After a proportion z; of actors are targeted to participate in the intervention, these actors set their
status targeted? to TRUE. These participating actors then set their belief about the value of FGM

according to the following procedure (representing the educational component of the intervention):

ask actors with [targeted? = TRUE] [set H_i intervention-H-change q_i]
to-report intervention-H-change [q]

report Q-to-H ((1 - z_2) * q)

end
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to-report Q-to-H [Q]
report (-1 * M_hat) + (Q * (M_hat + (M_hat * s_2)))

end

This effectively scales down actors’ perception of the value of FGM by a factor of 1 — z, where z; is
a global parameter indicating the strength of the educational component of the intervention. When z,
is 1, all participating actors will set their belief in the intrinsic value of FGM to the lowest possible
value: H; = —M. When z, is 0, participating actors’ H; preference will not change. The relevant

formulas are:

Agent’s perception of the value of FGM /before the educational effect of the intervention is defined:
H; =—M+(q-[1W+(M-52)])
After the educational effect of the intervention, it is defined:

Hi=-M+((1-2z) q]-[M+(M-s;)])
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7.8 Implement Intervention

Actors who are targeted by the intervention all receive the educational component of the intervention.
However, they then make a decision about whether to respond to the intervention by spreading the
educational component (optional on parameter Z,) to their reference groups, and trying to form a
coalition of abandonment with other practitioners. The mechanism of this decision isn’t modelled

directly. Instead, I assume:

1. Actors who still believe that FGM is an intrinsic benefit will not try to arrange a coalition to

abandon it (since this is not their preferred outcome)

2. The likelihood of actors forming an initial coalition of others willing to abandon FGM is a

function of the strength of their perception of the cost of FGM.
Actors’ decision to respond to the intervention is then modelled using the following rule:

if Hi < @ and random-float 1 < (1 - (( -1 * ((1 - z.3) / Mhat)) *H i)) [

respond to the intervention

This essentially defines actors’ probability of responding to the intervention as 0 if they prefer FGM

(H > 0) and an increasing linear function of their perception of the intrinsic cosz of FGM otherwise:

1—2; ]
M ‘Hl'>+Z3lle'<O

0if H; =0

Pr(join initial coalition); = _(

This linear function is controlled by a parameter Z3. It is easiest to think of this as the minimum
probability that actors who oppose FGM will respond to the intervention - since it represents the
probability of response when H; approaches 0 from a negative direction. The probability of
responding to the intervention is always 1 when actors attribute the maximum social cost to FGM:

H; = —M. Also, if Z3 is 1, then actors always respond to the intervention.

Actors who respond to the intervention set their coalition-ready? status to TRUE to reflect that

they are prepared to enter a coalition of actors abandoning FGM. They also try to influence and recruit
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others to join the coalition. This represents the much-discussed intervention feature ‘organised

diffusion’ (see Chapter 5 and UNICEF, 2007).

Actors select z, random other actors from their social and household reference groups (provided
those actors were not part of the intervention and no one else has tried to recruit them) and ‘recruit’
them (if z, is set to 0, then this procedure has no effect on the simulation). Then, if any of these
recruitees has a higher Hj attribute than the recruiting actor, the recruitee sets their own H; value to a
random uniform location in the interval between the recruiting and recruitee actors’ H; attribute. This
represents the recruiting actor influencing the beliefs of the recruitee (i.e. spreading the educational

component of the intervention).

Subsequently, recruitees decide whether they want to respond to the intervention by preparing to enter
an abandonment coalition, and influencing others (etc.). Their decision follows the same probabilistic

rule as the original intervention participants (see above).

As such, the implement-intervention procedure continues recursively: with actors responding or
not, and recruiting others who then respond or don’t, and so on until no more actors respond. This

is implemented by the following Netlogo code:

to implement-intervention
if H_i < @ and random-float 1 < (1 - (( -1 * ((1 - z_3) / M_hat)) * H_i)) [
set coalition-ready? TRUE
let recruitment-agentset (turtle-set R_social R_household)
if count recruitment-agentset with [targeted? = FALSE] > 0 [
let my-H_i H_i
ask up-to-n-of z_4 recruitment-agentset with [targeted? = FALSE] [
if H_i > my-H i [set H_i (my-H_i + random-float (H_i - my-H_i) ) ]

set targeted? TRUE

implement-intervention

end
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7.8b Update Enforcement Status

Actors in the initial coalition update their status with respect to the enforcement of FGM. Actors who

are pro-FGM enforcers, drop this status B, = 0. Actors then become anti-FGM enforcers (B, = 1)

with probability z;.
7.9 Connect Initial Coalition Members

The model allows for the possibility that participation in the intervention changes the social reference
network structure of the population. This is controlled by the parameter zs. If Zs is O then there is no
effect on the simulation. Otherwise, actors add a proportion zg of those who have responded to the
intervention (i.e. are ready to join an abandonment coalition) and who are not part of their household

reference group, to their social reference group:

let coalition-group actors with [coalition-ready? = TRUE]
let coalition_N count coalition-group
ask coalition-group [
let my-household household-1label
set R_social (turtle-set R_social (up-to-n-of (z_5 * coalition_N) (other
coalition-group with [household-label != my-household]) ))
set R_social N count R_social

set R_social weight sum [w_i] of R_social
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7.10 Establish Coalition

This procedure deals with the formation of a stable final coalition among initial coalition members.
The rule for stable coalition formation is a simple one: it is stable if all actors in the coalition prefer to
abandon FGM, conditional on all others in the coalition doing so. This is modelled as a recursive
process. Initial coalition group members assess whether they would prefer to abandon FGM,
conditional on all others in the coalition doing the same. If not, they leave the initial coalition.
Remaining members repeat the assessment (based on the remaining number of coalition members).

This is repeated till a final coalition stabilises, or collapses entirely.
To find a stable coalition (if it exists at all), the following algorithm is used (pseudo-code):

Let C be the set of actors initially willing to enter a coalition

1. Members of C visibly stop any FGM activity

2. Members calculate whether, under these conditions, they would prefer to
abandon FGM

3. While there are some agents in the coalition who would prefer to keep pr
acticing FGM:
-> Agents who still prefer (bc. of social incentives) to practice FGM, r
evert to practicing
-> Agents who still prefer to practice FGM leave the coalition
-> Remaining members of the coalition calculate whether they still prefe

r to abandon FGM (given the reduced coalition size)

4. The remaining members of C represent a stable coalition of actors aband

oning FGM.

This algorithm finds the stable abandonment coalition if it exists, and these actors visibly abandon

FGM activities (d; = 0 and 8; = 0).
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7.11 Calculate Expected Utilities

7.11.1 The decision-functions of agents

The decision-function of agents was implemented as follows:

U(abandon); = p,‘,fr(;flmi) =M
B (=62+ay) o~
U(practice); = H; — (S1 - Dgnei, - M)

Wherte Hj; is defined as:
H; =—M+(q-[1W+(M-52)])

Note here that H; is defined as the intrinsic ‘value’ of FGM to the agent (rather than the intrinsic
cost), which can be positive (FGM is viewed as intrinsically beneficial) or negative (FGM is viewed
as intrinsically costly). Since H; can be positive or negative in the general model, I adopt the term
‘FGM supporters’ to refer to actors who value FGM (H; = 0) and the term ‘FGM opposers’ to refer

to actors who view FGM as costly (H; < 0)".

These functions have the following properties:

e H; can vary between —M and M -s,. As such, the s, € [0,1] parameter controls the
maximum perceived positive value of FGM in the population.

e The maximum social cost actors pay to unilaterally practice FGM varies from 0 to M and is
controlled by the §; parameter.

® The relationship between social pressure (Panti;/Ppro;) and social costs (M) is controlled by
parameters V (= 1), §; (ot &,, both in the interval [—1,1]) and a; (€ [—1,1], representing the
autonomy of individual actor ). V' controls the overall nonlinearity of the relation between
social pressute and social costs. §; and &, allow for global control of the relation between
social pressures and social costs for abandoning or practicing FGM (respectively). As §;

increases, for example, the costs to abandon FGM ‘scale’ faster with social pressure, making

1 This replaces the use of the term ‘willing agents’ and ‘reluctant agents’ in Chapter 5.
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it harder for actors to abandon the practice (and vice-versa for ;). §; and &, allow the model
to accommodate the possibility that the relationship between social pressure and social costs
varies overall for those practicing versus abandoning FGM. The effect of these parameters is
eliminated if they are set to 0. The @; component allows variation in the social-pressure social-
cost relationship at the individual level, with costs scaling faster for less autonomous agents

(lower a;).

The utility-functions of agents in the standard model are a special case of this more general
formulation, in which V' = 1, s; = 0, and s, = 0. Other previously seen variations on the decision

process can be achieved by appropriate manipulations of these parameters.

In the above formulation, I don’t define pPgpy;; and Ppro;> beyond the obvious: that they represent

pro-FGM and anti-FGM activity by others. However, I assume that they are both bounded between

0 and 1. We can turn now to their (general) definition in the model.

7.11.2 Different Sources of Sources of Social Influence

I assume that influence from cutting decision-makers and influence from households/social
reference groups are broadly distinguishable. The latter is primarily a source of immediate normative
social pressure, while the former is about the future state of the martiage-market/social situation of
gitls if they are not cut. I controlled the relative influence of each with a parameter s, € [0,1]. I then
further distinguished between social influence from within households, versus the wider social
reference group. I controlled the relative influence of each with parameter s3 € [0,1]. A pseudo-

code representation of this would be:

[total social influence]; = s, - [decision-maker influence]; + (1 — s,) - [normative social influence];
Where:

[normative social influence]; = s5 - [household influence]; + (1 — s3) - [social reference group influence];

Given the characterization of decision-maker influence (above), I defined pro-FGM influence from
this source as the proportion of decision-makers who cut their daughters the last time the decision
arose (see below), and anti-FGM influence from this source as the proportion who didn’t cut their

daughters last time the decision-arose.
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Other sources of social influence (i.e. normative social influence) incorporated heterogeneous
weights, representing the authority of individual actors. These other sources of social influence were
also divided into explicit social influence (i.e. FGM practice by pro-FGM norm enforcers or FGM
abandonment by anti-FGM norm enforcers) and implicit social influence (i.e. FGM practice in

general), controlled by parameter s5 € [0,1], for example:
[social reference group influence] = ss - [explicit 'norm enforcement.' ] + (1 — ss) - [implicit social influence]

In the case of explicit social influence, norm-enforcers were re-weighted such that the total explicit
social influence from all pro/anti-FGM enforcers (whichever group was larger) was equal to the

total implicit influence of all actors (see below).

Formal definitions of all of the components of Ppro, (total pro-FGM social pressure facing actor i)

were as follows?.

Let A; be equal to the total implicit pro-FGM influence from the social reference group

({social-ref};) of actor i:

Zje{social-ref}i wj dj
Ai =

JIFE]
Zje{social-ref}i W;j

Where w; € [0,1] is the authority weight of actor j and d; is a decision-indicator which is 1 when

practicing FGM and 0 otherwise.

Let B; be equal to the total explicit pro-FGM influence from the social reference group of actor i:

_ Zje{social-ref}i wj - dj ’ ﬁlj "Wy

B; JF]

Zje{social-ref}i W;j

Where B is a dummy indicator that is 1 if actor j is a pro-FGM norm enforcer and 0 otherwise. W,

is a weighting coefficient chosen such that, the total influence ‘weight’ of all pro/anti-FGM

2 Readers can substitute in 1-d) for 4, 1-6) for g and B, (indicating an anti-FGM norm enforcers) for B for the full definition of P

anti;’
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enforcers in the community (whichever group is larger), is equal to the total influence ‘weight’ of all

actors’ (see below).

Let C; be the total smplicit social influence from the household and let D; be the total explicit social
influence from the household. These are defined in the same way as A; and B; (respectively), except
that {social — ref}; is replaced with {household}; which is the set of other actors in the

household of actor i.

Let E; be the total social influence from the set of decision-makers that actor i is responsive to (see

decision-maker reference group below): {decision-makers};. This is defined as:

_ Zje{decision—makers}i 9]

E; L+

Zje{decision—makers}i 1
Where 6; is a dummy variable indicating that decision-maker agent j cut a gil in their household the

last time the decision arose.
We can then define Py, as follows:
Ppro; = (Sa - E) + (1 —s54) - ([1 — s3] - [ss - By + (1 — s5) - Aj] + 53+ [s5 - Dy + (1 = s5) - G;])

As noted above, I also defined a weighting coefficient, such that the total weighted influence of the
largest group of enforcers (pro or anti-FGM, whichever was larger) was equivalent, on average, to
the total zzplicit influence of all actors. This maintains the conformist properties of the simulation,

and ensures, on average, that social influence is not biased in favour of implicit or explicit social

influence (instead, this is explicitly controlled by parameter Ss.

The weighting coefficient for norm enforcement (W,) was defined as:

n
Wy, =
Nen forcers

5 In the event that, due to stochastic effects, the total norm enforcement influence exceeds 1 (e.g. because the actor is connected to an unusual

number of enforcers in the network), the influence is capped at 1 by the simulation.
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Where n is the number of agents, and Neprorcers is the number of pro-FGM or anti-FGM enforcers

(whichever is larger), called ‘the largest enforcement group’. Using W, as a weighting coefficient
ensures that, on average, the total influence of the largest enforcement group is equal to the total

influence of all actors (under implicit enforcement).

Under implicit enforcement, the average (i.e. the expected, note the E[-] operator) total influence of

all actors is:

n n
E zwl] = Zwi
i=1 i=1

Where w; is the weight of actor i.

Under explicit enforcement, the total influence of the largest enforcement group is:

n
E Zwi-wz-x
i=1

Where x is a random dummy variable (0 or 1) that indicates that actor i is in the largest enforcement

Nenforcers

group. The expectation of x is . Extracting w, and x from the summation we find:

n n n
E ZWi-Wz-x =E WZ'X'ZWi =w, E[x]-E Zwi]
i=1 i=1 i=1

Substituting the definition of w, and evaluating E [x] we find:

n n
n Nenforcers
w, - E[x] - E ZWi = S -E Zwi
=1 nenforcers n =1

This then reduces to:

1'ZWL'

n
=1
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7.12 Make Decision

If U(practice); is greater than or equal to U(abandon); then agents will practice in FGM;
otherwise, they will not. Actors assigned the role of ‘decision-maker’ (m; = 1) will update their more

recent decision about the cutting status of a girl in their household (6;) to reflect their practice decision,

with probability: — (see 8.4).
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8. Model Discussion, Sub-Model Analysis & Theorems

8.1 Generalizing Over Continuous Marginal Distributions using the

Beta Family

The model generalises over the marginal distributions of the continuous attributes of actors
(H;, ay, w;) in the modelled population as follows. The beta distribution was used. It allows a wide
variety of forms, including unimodal, bimodal, left-skewed and right-skewed. However, it presents
further challenges in that it is difficult to generalise over the space of beta distributions because its

standard parametrization is unbounded (i.e. parameters can be infinitely large).

The following outlines the beta family of distributions and demonstrates how it can be re-
parameterised in terms of its mean and variance. These are bounded values which allow a full
exploration of the space of distributions. Furthermore, I show how this distribution can be
decomposed into gamma distributions which allowed implementation in the Netlogo programming

environment used to implement the model.

The beta distribution is a family of probability distributions for which all values outside of 0 and 1

have a zero density. It has PDF:

x*1(1 —x)B1
B(a,B)

f) =

Whetre:

r(@)rag)

RN CEY)

and I" represents the gamma function.

The beta-distribution family spans a wide variety of qualitatively distinct shapes, so can be used to
approximate a range of distributions of interest for any finite range of values. The beta distribution is
determined by two parameters: @ and f. It also has some known dispersive properties in relation to

these parameters. Specifically, if X is a beta-distributed random variable, then:
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Furthermore:

_ ap _
(@t Pa+p+1)

V[X] Vx

The main practical barrier to using the beta distribution in a simulation context was that the values of
a and [ are unbounded, they can be any positive real number. As such, it was difficult to define a finite
‘space’ of beta-distributions which can be explored in the simulation. The so/ution to this issue was to
define the beta distribution zz ferms of Ex and Vi instead. These values have a more meaningful
interpretation (centre and spread), and they are bounded (such that the whole space of distributions

can be explored systematically).

We know that Ey is bounded in the interval [0,1], we also know from the Popoviciu inequality that the

maximum variance of a bounded probability distribution is:
- M 2
—(M—m
7 ( )

Where M is the upper bound and m is the lower bound. Since these values are 1 and O for the beta

distribution, this simplifies to a maximum variance of 7 for the beta distribution.

To define the beta distribution in terms of its variance and mean, we simply apply methods for

simultaneous equations:

= @ @D

First, we define & in terms of § and E,. Note that here we restrict the solution to the case in which

Ey is not equal to 1 (although, of course, it can be arbitrarily close to 1). f is always greater than zero.

BEx
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Then we substitute the definition of & into the vatiance equation, and solve for f3:

BE
—ﬁﬁ

Vy =
2t B+ B+ D

(Ex — 1)(Eg — Ex + Vx)
Vx

= [ =

Substituting this definition of f back into the definition of a, we are left with two definitions of these
parameters purely in terms of the desired variance and mean of the distribution:

(Ex — D(Ef — Ex +Vx) E 5
Vx X _EX(EX_EX‘|'VX)

(Ex - 1) - VX

a=-

(Ex — D)(Vx + EZ — Ex)
Vx

B =

We could then redefine the beta-distribution family in terms of these values, giving them a more
intuitive specification. However, in the use-case of interest here, we are using built-in functionality
from Netlogo to create a beta distribution. Specifically, we are interested in defining our beta
distribution in terms of the Gamma distribution (which is supported directly in Netlogo). Here we rely
on the following relation between the Gamma and Beta distributions: if X and Y are independent
random variables, where X ~ I'(a,0) and Y ~ I'(f,0), and where a and f§ are the corresponding

parameters of the beta distribution, then the random variable:

X
I=—"—=7~B
X+Y=> eta(a,pB)

This holds irrespective of 6.

Based on the above, we can define the following random variable in terms of the desired mean and
variance of the beta distribution and as a function of gamma-distributed random variables:
2
Ez(E7 —Ez +V7)

X ~TI(- A 1)
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(E;— VDV +EZ —Ey) 1

Y ~ I'( B

)

X
Z=X_I_Y~Beta(/,t=EZ,02 =V;)

These formulas were used to implement the beta distribution in Netlogo and generalise over the

distributions of continuous heterogeneous characteristics in the general model (H;, a;, wy).
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8.2 Generalising over the Joint Distribution of Agent Attributes

8.2.1 Constructing variables with pre-specified marginal distributions and pre-

specified correlations

The following provides the formal reasoning underlying the approach to creating correlation between

continuous vatriables in the simulation.

Let us say that we have two random-variables (i.e. random over the agent population): say, H and W.
These have marginal probability density functions py () and py, (), which are specified directly. They

also have associated cumulative distribution functions Fy () and Fy, ().

We also have a random variable Hyyise Which has marginal distribution py_ . (), and cumulative
distribution function Fy . () and whose Pearson correlation with H has been specified directly by
defining Hy pise as H + €y where €y is a random Gaussian noise variable with a standard deviation

specified to create the desired correlation between Hy e and H (see 8.2.2).

We want to specify W such that it maintains the marginal distribution py, () but the joint distribution
p(H, W) has a non-linear correlation equal to the Pearson cortrelation of H and Hyise. To achieve
this, we define W so that it retains its marginal distribution but has a perfect non-linear correlation

with Hypise. We define W as follows:
W= FV_VI([FHnoise (H+ex)))

Where F~1 is the inverse CDF of W.
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8.2.2 Arbitrary correlations using random noise with a pre-specified variance

Theorem (Arbitrary correlations using random noise with a pre-specified variance)
Given:
y=x+¢e€
Where x and € are random independent variables and € has an expected value of 0. It will be the case:

Oy

px,y -
Oz + a?

Where py y is the Pearson product-moment correlation between X and Y, and gy is the standard

deviation of x, etc.
Proof (Arbitrary correlations using random noise with a pre-specified variance)

To prove this, we rely on the following previously established theorems regarding the properties of
the expected value operator (E[+]), the definition of the variance of a random variable in terms of

expected value, and the definition of the Pearson correlation.

The person correlation can be defined:

_E[(x-E[xDy —E[y]]
Pxy = Oy " Oy

Where E[-] is the expected value operator, which has the following established properties:

3. E is distributive with respect to addition: E(x) + E(y) = E(x + y)

4. If x and y atre independent, E is distributive with respect to multiplication: x L y = E(xy) =
E(x)-E(y)

5. The expected value operator applied to a non-random variable returns that variable, e.g., E(2) =
2,E(E(x)) = E(x).

6. Constants can be factored out of the expected value operator, such that E(x - E(x)) = E(x)?

Finally, we rely on the following definition of the variance of a random variable:
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Proof of the theorem depends on simplification and substitution within the denominator and the

numerator in the definition of the Pearson correlation, for the case in which y = x + €.
E[(x = E[xD(y — E[yD]
= E[xy — xE[y] = yE[x] + E[x]E[y]]
= E(xy) — E(xE[y]) — E(VE[x]) + E(E[x]E[y])
=E(xy) —E(EW) —E()EW) + E()E®Y)
= E(xy) —E()E®)
sub.y = x + € =...= E[x(x + €)] — E[x]E[x + €]
= E[x*] + E(x - €) — E[x](E[x] + E[€])
= E[x?] + E(x - €) — E[x]? — E[x]E[€]
x L e =...= E[x?] + E[x]E[€] — E[x]? — E[x]E[€]
= E[x?] — E[x]? = o}

So, in the case whete y = x + €, E(€) = 0 and x L € (independence), the covariance of x and y will

be equal to the variance of x.

Therefore, we can re-state the Pearson correlation between x and y as:

p = Oy * Oy
x,y_
Oy 0y
O-x
= Pxy = —
Yy
Oy

We can assume that gy, is unknown, whereas gy and g are known. As such, it is helpful to re-write

this as:



This follows from the distributivity of the vatiance operator V (+) with respect to addition, under the

independence of random variables:
xle=Vx+e)=V(x)+V(e)

This can be proved by substituting the definition of y = x + € into the definition of the variance of
¥ in terms of E[-], and then simplifying. The distributivity of the variance operator with respect to
addition depends on the independence of € and x, but doesn’t require that E(€) or E(x) be equal to

0 (as other parts of the proof do).

As such, we can note that:

o, = V) =0, =V(x)+V(e) = Jo2 + a2

Application (Arbitrary correlations using random noise with a pre-specified variance)

The intended application of the theorem is the generation of random variables which have an arbitrary
degree of correlation with some prior variable. Rearranging the theorem (assuming all values are

positive and greater than 0) above shows that this can be achieved using the following formulation:
y=x+e€

Whetre:

[52 — . 72
Oy px,y Oy

px,y

O =

With the desired py 5 chosen arbitrarily. € can have any probability density as long as E (€) = 0.
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8.3 Parameterizing ‘Social Reach’ in the Hamill and Gilbert Social

Circle Algorithm in terms of the Expected Connectivity of Actors

To build the social reference and decision-maker reference networks, a simple version of Hamill and

Gilbert’s (2009) spatial network algorithm was used. This algorithm implements the following steps:

1. Construct a population of N agents
2. Distribute the agents randomly across a 2D space which wraps at its edges

3. Connect all agents who are within a radius of 1 of one-another

The raw parametrization of the algorithm is in terms of r; however, this is largely an unintuitive
parameter, and moreover, it is insensitive to the concentration of actors in the space - which will affect
overall network density. Instead, we would like to re-parameterise the algorithm in terms of the
expected density of the resulting network. In order to do this, we will need to express 1 in terms of

the expected number of connections of each agent in the network.

First, note that actor i connects to actor j #ff the location of actor j is within 7 of actor i. Since all
positions for j within the 2D space are equally likely, the probability that i is within 7 of j is the
proportion of points in space for which this will occur. This is simply the ratio of the area of the radius

7 and the area of the wrapped 2D space, which is:

b r?
ij =
A

Where Ay is the area of the 2D space and P;j is the probability that actor i will connect to actor j, for
Jj# 1.
Since this probability is independent for all other actors in the agent population, we can expect the

number of actors connected to i to be Binomial distributed, with N — 1 independent trials, each with

2
.. nr . . . . .
probability e of success (connection). Here we are simply interested in the expected value for i,
t

2
which will be (N — 1) - %. We will call this figure (the expected connectivity of each actor) E.
t

We can then parameterise the social circle algorithm by defining 7 in terms of E_:
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nr
E.=(N-1)-

This formula is used in the model, with E controlled by parameter Uggociq; (inn the case of the social
reference network), to determine the social-reach of actors, and construct a network with the desired

connectivity.
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8.4 Derivation of the Probability that ‘Decision-Maker’ Agents will

Update their Cutting decisions in a Single Time-Step

The calculation of the probability that, in a given time-step, a ‘decision-maker’ agent would need to
make a ‘final decision’ about the cutting status of one of the gitls in their household proceeded as
follows. Relevant empirical figures for b and ¢ were taken from an international survey of household
characteristics (United Nations Department of Economics and Social Affairs, 2017: 16), assuming

that, on average, 50% of children under 15 are girls.

Let a = the number of households in the community, where 0 is the number of adults
n

a=—
6

Let b = the proportion of households with children

b =0.84

Let ¢ = the average number of female children (aged under 15) per household
c =225

Let d = the average number of children in the community
n
d=a-b~c=g-0.84~2.25

Let L = the number of decisions to be taken each year such that, on average, all girls are cut by age 15 if they are to be

cut®

Let m = the number of final decision-makers in the community, assuming one per-household

4 Kandala and Shell-Duncan (2019: Table 1) report that less than 1% of girls are cut affer the age of 15.
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n
m=a=-—
6

Assuming X is the number of ‘time-points’ (ty,) related to FGM each year, let Pr(decision|t, = k); be the

probability that decision-maker U takes a decision about one-of their girls in a single time-point

l
x-m

P(decision|t, = k); =
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