LIU et al.: DISTRIBUTED FUSION ESTIMATION FOR STOCHASTIC UNCERTAIN SYSTEMS 1

APPENDIX A
DESCRIPTION OF A TYPICAL SCENARIO.

This section gives the description of a typical scenario in
subsection 2.2.

Fig.2 shows a typical scenario to describe the network-
induced complexity (i.e. packet dropouts and packet disorders
generated from the random transmission delays).

For the i*" subsystem, it is assumed that the upper bound of
the transmission delays is not more than 5 sample periods (i.e.
N < 5, and the delay for each step satisfies Ny < k). 7 (¢x)
represents the transmission delay, and the sample period is
T, while ¢t € {kT, k € N} denotes the sampling time instant.
Depending on the role of the logic ZOH, the packet disorders
come from the signals before being transmitted, such as z%
and z%, 2% and 2%, as well as 2%,, 2%, and 2¢, and then 2z}, 2%
and 2!, are held at time instant k = 5, k = 9 and k = 12,
respectively.

APPENDIX B
AUGMENTED STATE-SPACE MODEL.
This section gives the definitions and derivations of the
augmented state-space model shown in subsection 3.1.
An augmented state-space model combining the systems
shown in Eqgs.(1) and (17)-(19) is represented as follows:
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Based on the augmented system from Eqgs.(B.1) and (B.2),
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we set the covariance matrices to be ¥} = E | U} (\I/@) and
Oi=F (fo;; (fo;’)T) under Egs.(B.1)-(B.3). Then, the Riccati-

like equations for the covariance matrices of the estimation
errors are derived as follows:
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APPENDIX C
PROOF OF THEOREM 1 AND DERIVATION OF THE CONVEX
OPTIMIZATION PROBLEM.

This section gives the proof of Theorem 1 shown in Section
3.2.

For the *" subsystem in Eq.(20) with vj, = 0, it is derived
from Lemma 1 that the requirements (i.e. Conditions 1 and 2)
are held, if and only if there exists a matrix X; > 0 such that
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Thus, the inequality (27) is obtained from Eq.(C.1) using
the Schur complement lemma [48]. On the other hand, when

the system following Eq.(20) is mean-square stable, the H;
performance J¢ can be expressed as follows [37]:
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where X is the solution of the following Lyapunov equation:
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Meanwhile, it is known from Eq.(27) that
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Then, it is concluded that X; < X;. In this case, the
upper bound of H, performance J* can be treated as
Tr (Rk (G§3)TX1G§3), where X is the solution to the matrix
inequality based on Eq.(27).

Complete the proof of Theorem 1.
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the inequality from Eq.(27) will hold. If there exists a matrix
W;, meanwhile, the following inequality

Based on Lemma 2, we define WiT £ and
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holds, and the form of the inequality is similar to Eq.(27).
Note that parameters are defined as follows:
T,s is defined in Eq.(27), and
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From Theorem 1, the Hy performance in Eq.(20) satis-
fies J¢ < Tr (Rk(Gig)TXiGg). Then, the upper bound
of a symmetric matrix p;o is introduced to conform to
Ry (Gis) "X,Gly < pyo. Thus, the inequality (Giy)” X,Giy <
R,;lpi,o is satisfied. Then, we define p; = R;lpiﬁo, based on
the Schur complement lemma, the inequality (Gig)TXiGig <
p; 1s equivalent to
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It means that the inequality given in Eq.(C.7) is held, if there
exists a matrix W;, which meets the following linear matrix
inequalities (LMIs) condition:
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Remark C.1. Note that for the matrix W;, if there is no
structural constraint, the inequality in Eq.(C.5) is equivalent
to Eq.(27), and the inequality in Eq.(C.8) will be equivalent to
Eq.(C.7). However, the nonlinear terms in Eqgs.(27) and (C.7)
are unable to be eliminated in this case. For this reason, an
equivalent LMI will be given, which is used to represent the
inequality in Eq.(C.5), and then the local estimation parameters
will be obtained by solving a convex optimization problem.
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APPENDIX D
PROOF OF THEOREM 3.

This section gives the proof of Theorem 3 shown in Section
4.1.

The solutions of O} and Xi, , are derived from X! in
Eqgs.(35) and (36), so that the upper bound of Z;‘; under Eq.(34)
can be represented as follows [19, 22]:
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To estimate the filter parameters C?, K/, Al and LI,
considering the given recursive equations for X! 41 and Py
in Eqgs.(43) and (44), the approach of optimizing measurement
and filtering error covariance matrices is developed based on
the local estimators ‘if;|t and £i+1|t in Egs.(17) and (18),
respectively. Therefore, the derivation process is shown as
follows:

Step 1: Solve the filter parameter ég

Due to setting t = k — 7% (k1), the measurement error ;. is

defined as:
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Next, obtain the upper bound for the covariance of the
measurement error from Eq.(D.1), and Lemmas 3 and 4:
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Therefore, we use the first order derivative Yo = 0 to obtain
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where M = a; ' 1 — EiSi(E)" > 0.

Finally, similar to the derivation of C’f, the other filter
parameters such as K?, A? and L! are generated.

Step 2: Derive the error covariance matrices O, i 41 and
P, 4, respectively.
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Firstly, Theorem 2 defines the solutions of ©} and ¥},
in Eqgs.(32) and (33). Subsequently, the upper bounds for the
covariance matrices of the estimation errors © and X! ; from
Eqgs.(35) and (36) are derived as follows:
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According to the above derivation, introducing filter pa-
rameters Cf, K/, A} and L} derived from Eqgs.(45)-(48),
and they are substituted into the upper bounds ©} and %,

from Egs.(D.6) and (D.7), respectively. Therefore, the error
covariance matrices ©; and ;| are rewritten as:

_ . . . . ~ N . o .
@g:z;+z;(E;)T(M;) EiSi-AL(=) T (M), (D8)

and

i = A — LiVi, (D.9)

where

A= (14 SiE) " (05) ) S )

== Oy (1+ (B (M) B ()

tar 1 (M) + BIE (wew?) (BD) + GiRy (G

A=A (T+2i(B)" (M) B) SiAT + o ' FFT
h
+BE (ww!') Bl + GiRGT + Y AgPr (AF) b4,
v=1

and
=i i ST AT AN AR
t = C <I+ Xt (Et) (Mt) Et) ZtAtT
+o; '"HiFl + BiE (ww]) Bl + GiR.GYT .
Subsequently, the covariance for the state with time-varying
parametric uncertainty is denoted as follows:
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Afterwards, the upper bound for the covariance matrix of
the state is obtained from
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with the initial value P, = xoxg + Py, which is similarly
calculated using the method reported in [14].

APPENDIX E
SHOWN AND DESCRIBED FOR THE FIGURES AND TABLES
OF THE NUMERICAL SIMULATION.

This section shows and describes the distributed estimation
results using the logic ZOH presented in Section 5.

The range of the performance indicator is presented in Table
E.1.

Table E.1 Comparison of the upper and lower bounds for error
covariance
Method Position Velocit Acceleration Trace

RFHDFE T 0.0 .01 0.001
RFHDEFE 2 0.0056-0.0100 0.0033
RFHDEFE 3
IRFHKF

.0I100 0.0100-0.037 .0300-0.0533
-0.0100 0.0100-0.1258 0.0291-0.1313
0.0084-0.0109  0.0004-0.0100 0.0100-0.0823  0.0279-0.0883
0.0100-0.0267 0.0100-0.0235 0.0100-0.1779  0.0300-0.2280

The distributed estimation results for the estimated states are
shown in Figs. E.1 (a)-(c), which are obtained from Egs. (17)
and (18), as well as the filter parameters given in Theorems 3.
Meanwhile, for the established system model using logic ZOH,
the linear compensation method for the packet dropouts, and
the weighted fusion criteria obtained from the local estimation
are investigated. Based on the preceding discussion, the pro-
posed RFHDFE approach possesses the advantage of the better
system performance for target tracking and computational
efficiency than the state with packet disorders and one-step
prediction estimation schemes.
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