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Uncertain Systems with Network-Induced

Complexity and Multiple Noise
Li Liu, Member, IEEE, Wenju Zhou, Minrui Fei, Zhile Yang, Hongyong Yang, and Huiyu Zhou

Abstract—This paper investigates an issue of distributed fusion
estimation under network-induced complexity and stochastic
parameter uncertainties. First, a novel signal selection method
based on event-trigger is developed to handle network-induced
packet dropouts as well as packet disorders resulting from
random transmission delays, where the H2/H∞ performance
of the system is analyzed in different noise environments. In
addition, a linear delay compensation strategy is further em-
ployed for solving the complexity network-induced problem,
which may deteriorate the system performance. Moreover, a
weighted fusion scheme is used to integrate multiple resources
through an error cross-covariance matrix. Several case studies
validate the proposed algorithm and demonstrate satisfactory
system performance in target tracking.

Index Terms—Distributed fusion estimation, network-induced
complexity, transmission delays, stochastic and deterministic
uncertainty.

I. INTRODUCTION

ENERGY Internet has been a new and advanced paradigm
established by effective integration of energy and infor-

mation network infrastructures involving traditional central-
ized generation [1], distributed energy resources [2], advanced
communication [3], smart metering [4], intelligent comput-
ing [5], and smart management systems [6]. The structure
of Energy Internet has witnessed promising solutions with
improved efficiency to holistic energy flow problems, while
accommodating the transformation of traditional power net-
works. However, owing to the requirements of growing system
scale, in order to address the challenges in system scalability
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and reliability, a new distributed networked control system
(DNCS) needs to be developed.

In the existing DNCS structure, the data or signals are ex-
changed between three system components (e.g. sensors, con-
trollers and actuators) using a shared communication network.
Furthermore, the system component is physically distributed
and interconnected with the others in order to coordinate their
tasks for achieving the desired objectives [7]. Thus, distributed
controllers are capable of coordinating their behaviors by
transmitting/receiving information to/from other controllers
within a certain neighboring area. The communication net-
works are introduced to the distributed systems [8, 9] and
this inevitably produces network-induced complexity (such as
random transmission delays, packet dropouts, packet disorders,
and missing/fading measurements), which may significantly
deteriorates the system performance [10]. Therefore, it is a
challenging issue for Energy Internet to incorporate distributed
information with network-induced complexity in controller
design and time-sensitive applications [11].

In engineering practice, noise can be categorized into
three types: bounded and stochastic uncertainty noise, energy-
bounded noise and uncertain white noise [12]. In ship control
applications [13], for example, we may expect different envi-
ronmental changes (e.g. winds, waves and currents) during the
ship navigation, leading to bounded and stochastic disturbance
uncertainties for the control units. At the same time, sensor
noise may be of unknown characteristics but bounded power,
while the instrument input can be mixed with uncertain
Gaussian white noise. To effectively establish a working
system, stochastic system uncertainty is investigated using a
multiplicative noise model [11, 14]. The correlated noise (i.e.
auto and cross-correlated noise) [14, 15] is considered when
they are handling the estimation problem over the networks.
Moreover, the bounded noise [16, 17] is introduced in a
realistic networked system to evaluate the measurement error
and external disturbances. On the other hand, filtering, in
particular H∞ filtering, plays an important role in the field of
signal processing and communications. However, considering
signal over sensor networks with transmission delays in the
communication process, H∞ filtering [8, 18] is insensitive to
the uncertainty. To solve the parametric uncertainty problem,
robust filtering based on finite-horizon Kalman filter [19] is
proposed to reduce the conservativeness and maintain the
performance of the filter.

For the transmission over networks, the one-step predic-
tion compensation is used for most of existing systems due



2 IEEE TRANSACTIONS ON CYBERNETICS

to the bandwidth constraint to handle transmission delays
and/or packet dropouts. Such that the augmented state scheme
is applied to obtain optimal estimation [20]. A model for
multi-sensor fusion system was established by using the full-
rank decomposition approach and to describe the random
observation delays and packet dropouts [21]. Moreover, to
break the resource constraints (i.e. bandwidth or energy), a
measurement re-organization method [22] has been developed
to simplify the system model with delays. Another classic
method is the modelling of delayed system by sequences of
Bernoulli random variable distributions [20, 23], where the
measurement model for each sensor is augmented by different
characteristics. Due to random delays for the involved sensors,
the local estimator based on the compensation or augmentation
method possesses high computation cost.

To reduce the unnecessary resource consumption, the de-
layed system is established by introducing the event-triggered
scheme. The containment control for multi-agent system was
investigated under the centralized event-triggered containment
algorithm to deal with constant time delays [24]. Li et al.
[25] presented an event-triggered sampled-data stabilization
for switching linear systems to obtain the average dwell time
conditions. Moreover, packet disorders inevitably appear due
to transmission delays. Several works on dealing with packet
disorders have been developed. To store the data packets, the
signal selection method of zero-order-holder (ZOH) chooses
and receives the most recent arriving data packets [26], whilst
the signal sequence re-ordering method using the logic ZOH
scheme [8, 27, 28] was introduced to choose the latest time-
stamped data packets. It is worth pointing out that the logic
ZOH based on event-trigger mechanism is widely applied in
the field of networked control systems (NCSs). However, the
issue of the fixed-time event-triggered consensus was studied
for the multi-agent systems [29]. Therefore, handling signals
with or without packet disorders, as well as estimating filter
parameters are difficult problems. In addition, with the aid of
the event-triggered scheme, designing the distributed fusion
estimation is a complex problem.

For the sake of alleviating the negative influence during
transmission, some promising estimation and filtering methods
have been proposed for distributed systems. Liu et al. [30]
introduced a two level weighted fusion scheme using the
reorganized innovation sequence as well as filtering error
cross-covariance, and presented a distributed weighted fu-
sion estimation method with transmission delay and cross-
correlated noise. Different distributed fusion schemes, and
event-triggered Kalman consensus filter [31] was used to deal
with the distributed estimation. Considering reducing energy
consumptions, the finite-horizon filtering [22, 32] derives the
filter parameters from the upper bound for the covariance
matrix of the estimation error. Furthermore, for a class of
discrete stochastic systems, a finite horizon state estimation is
investigated, which using the event-based modelling strategy
to actively dropped the disordered packet [33]. To guarantee
optimal estimation performance, Chen et al. [12] studied the
distributed fusion estimation to handle admissible parameter
uncertainties. The information fusion estimation method based
on bio-inspired computation was presented for the designing

dynamic 3D positioning system [34]. Since the distributed
estimation is converted into a convex optimization problem,
the estimated state has better robustness for the transmission
performance.

For a class of stochastic uncertain networked systems, this
paper intends to design the local filter with packet dropouts and
disorders resulting from random transmission delays, as well
as multiple noise resources. Due primarily to the difficulty in
handling the disordered and missing data packets, dealing with
stochastic and deterministic parameter uncertainties simulta-
neously. Motivated by the above analysis, the purpose of this
paper concentrates on establishing a new system description,
analyzing system performance and designing local/fusion es-
timator. The main contributions of this paper are summarized
as follows:

(i) Suppose that the proposed system model contains
energy-bounded noise and uncertain white noise. Due to the
difficulty of estimating the appropriate filter parameters, the
logic ZOH scheme is widely used in NCSs [8, 27, 28, 35, 36].
Based on the signal selection method for the logic ZOH, the
event-triggered condition is introduced, and a system model is
established to effectively deal with the network-induced com-
plex and improve system performance. The proposed system
model synthetically describes the network-induced phenomena
and simplifies the characterization of the complex network
environments.

(ii) For the energy-bounded noise and uncertain white noise,
studying the optimization problem is difficult as the objective
function is of significant nonlinear items [12, 17, 37]. The
assumption on the parameter uncertainty can be satisfied by
analyzing the mixed H2/H∞ estimation performance. Subse-
quently, different from using sequences of Bernoulli random
variables distribution [20, 38–40], a simplified local estimation
scheme in the augmented state-space with the re-organized
measurements is presented, aiming to consume fewer network
resources and provide the appropriate filter parameters.

(iii) To handle packet dropouts and missing data, instead
of adopting the augmented state approach [20, 41] of com-
pensating every step delay, a linear delay compensation for
packet dropouts is firstly presented to suppress the growing
error accumulation and alleviate the computational burden
by re-ordering measurement sequences. Moreover, to further
improve the estimation accuracy, the missing data packets
due to the packet dropouts are collected using the one-step
prediction method.

The rest of this paper is organized as follows: Establish the
stochastic uncertain model using the logic ZOH scheme in
Section 2. Section 3 shows a local estimator and analyses the
estimation performance. Section 4 elaborates the distributed
fusion estimation approach. A numerical example is presented
in Section 5 and Section 6 draws the conclusions.

Notations: Throughout this paper Rr and Rr×r denote
the r and r × r -dimensional Euclidean space, respectively.
E (·) represents the mathematical expectation operator, and the
superscript T is the transpose. M is a real symmetric matrix
satisfying M > 0, while M−1 indicates that the inverse of
M . Moreover, tr (M) is the trace of M , and the symmetric
terms in a symmetric matrix are denoted by ∗. I represents
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the identity matrix with an appropriate dimensions. l2 [0, ∞)
represents the space of a square integral function on [0, ∞),
and δk,l denotes the Kronecker function (i.e. δk,l = 1 if k = l,
and δk,l = 0 if k 6= l).

II. PROBLEM FORMULATION AND ANALYSIS

A. System Description

A considered object is measured by L sensors through the
stochastic uncertain system (Fig.1 shows that the local estima-
tion is solved by the spatially distributed sensors, subsequently,
it is sent to the fusion center).
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Fig. 1. Structure of distributed fusion estimation.
This process is described by the following linear discrete-

time model:

xk+1 =

(
Ak + FkFkEk +

~∑
ϑ=1

Aϑ$ϑ,k

)
xk +Bkwk

+Gkvk, k = 1, 2, · · ·
(1)

zik =
(
Ci

k +Hi
kFkE

i
k

)
xk +Bi

kwk +Gi
kvk , i = 1, · · · , L (2)

where xk ∈ Rr represents the system state, and zik ∈ Rmi

refers to the measurement output from the ith sensor at the
time instant k. It is assumed that the initial state x0 with
mean µ0 as well as covariance P0, which is uncorrelated
with other noise. Ak ∈ Rr×r, Bk ∈ Rr, Gk ∈ Rr,
Cik ∈ Rmi×r, Fk, Ek, Hik, Eik, Bik and Gik are known
time-varying matrices. Note that Fk represents the parameter
uncertainty satisfying FkFTk 6 I . wk ∈ l2 [0,∞) denotes the

energy-bounded noise. The multiplied term (
~∑
ϑ=1

Aϑ$ϑ,kxk)

given in Eq.(1) presents the stochastic parameter uncertainty.
$ϑ,k ∈ R (ϑ = 1, · · · , ~) and vk with covariance matrices
θϑ,k and Rk denote the Gaussian white noise. Note that they
are mutually uncorrelated and independent. In practice, it is
difficult to obtain accurate covariance θϑ,k. Therefore, the
definition of the lower bound θLϑ and the upper bound θUϑ
should be carefully determined, which satisfy the following
constraint:

θLϑ 6 θϑ,k 6 θ
U
ϑ , (3)

where the lower and the upper bounds are known.
In this paper, for the given bounds θLϑ and

θUϑ (ϑ = 1, · · · , ~), the following three conditions are
simultaneously satisfied [12, 17]:

Condition 1. When wk ≡ 0 and vk ≡ 0, the error estimation
system is asymptotically mean-square stable.

Condition 2. Satisfying the zero-initial condition and vk ≡
0, each local estimation error (e.g. eik) with an arbitrary
energy-bounded noise wk conforms to the following inequal-
ity: ∞∑

k=0

E

((
eik

)T
eik

)
< γ2

i

∞∑
k=0

E
(
wT

k wk

)
, (4)

where γi denotes the H∞ disturbance attenuation level bound
(DALB) for the estimation error. Note that eik (i = 1, · · · , L)
represent the difference between the actual and estimated
states, which is defined in Eqs.(17) and (18).

Condition 3. Each local estimation error eik with vk and
wk ≡ 0 (i.e. the Gaussian white noise and energy-bounded
noise) guarantees that the upper bound of the H2 perfor-
mance

J i = lim
k→∞

E

((
eik

)T
eik

)
(5)

is minimal. Note that the relation between noise wk and vk
are mutually uncorrelated and independent.

Remark 1. The aforementioned performance requirements for
the local estimation of each subsystem are analyzed using
the unified formulation (Conditions 1-3). Thus the filter pa-
rameters for the local estimation will be separately derived.
Comparing with the distributed fusion estimation reported in
[9, 11, 31], the proposed approach considers multiple noise
(e.g. white noise and energy-bounded noise) simultaneously. In
this sense, the noise assumption and modelling in Eqs.(1) and
(2) indicates that the distributed fusion estimation approach
can be implemented in practice, and will be made more
generalised in the future development.

B. System Modelling for Signal Selection Scheme
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Fig. 2. Sorting procedure of the packet sequence for logic ZOH and
ZOH.

Due to the resource constraints, the network congestion
unavoidably interrupts the system evaluation. During the time-
stamped data packets transmission, the signal selection scheme
is introduced based on the logic ZOH, and the latest data
packet is chosen before being transmitted. Therefore, for the
processor, the stored signals on the receiver will be updated
until it receives the latest data packet, while other data packets
are discarded. Furthermore, the packet disorders during the
transmission are dropped via the logic ZOH [27]. A typical
scenario describing the network-induced complexity is shown
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in Fig.2, and the detailed analysis is shown in Appendix A.
Meanwhile, due to the limited service quality over the network,
data packets are transmitted from the sensor to the estimator
through a communication network in a single packet manner.
Therefore, it is possible that an early leaving packet may arrive
at the processor late, which leads to packet disorders. Since the
disordered packets usually contain incorrect temporal signals,
they should be discarded [35].

Fig.2 illustrates the relationship between the states and
variables. From the previous discussion, to formulate the
relationship of current time k and time-stamp, we define
time-stamps k1 and k2 as those when we have the received
data packets and the most recent transmission signal, which
satisfies:

k = τ (k1) + k1 = τ (k2) + k2 . (6)

Remark 2. Suppose that the transmission delays are repre-
sented as η (k1) and η (k2) from the sensor to the processor
with and without logic ZOH respectively, while 0 6 η (k1) 6
η (k2) 6 N (N denotes the maximum of the transmission
delay) is satisfied. Subsequently, the transmission delays for
the received data packets are denoted as τ (k1) ∈ N and
τ (k2) ∈ N at the sampling time instant k. For the given Eq.(6),
the sampling time instant for the received data packets consists
of two components: the time-stamp and the transmission delay.

Note that the received latest data packets approximate the
current signal, and variable βk is used for expressing the
relationship between k1 and k2, that is:

k1 = k2 + βk . (7)

In which βk is determined according to the time-stamp before
being transmitted. Since the time-stamp k2 for receiving the
most recent data packet is not proceeding the latest one k1,
βk > 0 is satisfied. In terms of the transmission delays
obtained from Eqs.(6) and (7), τ (k1) = τ (k2) − βk is
rewritten, and τ (k1) 6 τ (k2) is satisfied.

According to the definition of symbol k2 and the ZOH
scheme, it should be pointed out that if no new signal input
the ZOH, its output keeps as the constant. For instance, at a
specific time instant k′ (e.g. k′ = {9, 12, 13} in Fig.2) as
well as time-stamp t (k2), if
t (k2 + 1) = k′ + 1− τ (k2 + 1) < k′ − τ (k2) = t (k2) , (8)

the received signal at time instant k′ + 1 is based on the
previous signals with time-stamp t (k2), and more updated
signals with time-stamp t (k2 + 1) are not used even if they are
available by the ZOH signal selection scheme. Therefore, the
most recent transmission signal is kept until the latest packet
is used no matter whether it is a packet disorder or not [27].

Then, using the logic ZOH in order to detect the packet
disorders, the random transmission delay satisfies:

τ (k1 + 1) ≤ τ (k1) + 1 (9)

and
t (k1 + 1) = k′ + 1− τ (k1 + 1) ≥ k′ − τ (k1) = t (k1) . (10)

This implies that the transmission signal at time k′ + 1 is
based on the outdated data packet at time-stamp t (k1), and a
more updated data packet at the time-stamp t (k1 + 1) is used
if it is available at the processor. The estimation accuracy of
system is further improved, and the computational burden is

also reduced due to the data packets with less transmission
delays [35].

As the logic ZOH is event-driven, a function f (�, �) for
the event generator is defined to determine the event-triggered
condition as follows:
t (k1 + 1) = t (k1) + minj>0 {j|f (σk, δ) > 0, j ∈ N} , (11)

in which
f (σk, δ) = σT

k Ωσk − δx̂Tk1
Ωx̂k1 (12)

and
σk

∆
= x̂k1+j − x̂k1 . (13)

Note that x̂k1+j represents the estimation at the latest event
time k1 + j, and x̂k1 is the current filter with the time-stamp
k1. Furthermore, Ω is a weighted matrix, which is symmetric
positive-definite, and δ ∈ [0, 1) is a scalar threshold.

Remark 3. In [42], the event-triggered condition is defined
in Eq.(11), and the range of the threshold parameter δ is
set to be [0, 1) in this paper, which satisfies the following
relationship:

f (σk, δ) =
[
x̂Tk1+j x̂Tk1

]
Q
[
x̂k1+j

x̂k1

]
(14)

where Q ,

[
Ω − Ω

−Ω (1− δ) Ω

]
. Note that δx̂Tk1Ωx̂k1 is a

positive scalar owing to Ω > 0. On the one hand, if δ > 1, Q
is non-positive definite. That is f (σk, δ) 6 0 for any x̂k1+j

and x̂k1 , the event-triggered condition given in Eq.(12) is
never triggered. On the other hand, if δ < 0, Q is positive
definite, namely, the event-triggered condition in Eq.(12) is
always triggered. Consequently, the scalar threshold parameter
satisfies δ ∈ [0, 1).

Next, the measurement re-organization approach is investi-
gated to simplify the system description as well as alleviate the
computational burden. For the ith subsystem using the logic
ZOH, when the processor receives the data packet zit with
time-stamp t and transmission delay τ i (k1), the stored signal
yik is re-organized as

yik = zit , (15)

where t = k − τ i (k1) in Eq.(6). Note that the processor
(i.e. estimator) receiving the time-stamped data packets may
accompany the information with packet delays and dropouts
at each sampling time [22]. It suggests that using the logic
ZOH based on event-trigger, the signals with packet dropouts
and packet disorders are translated into random transmission
delays using the time-stamped data packets.

Remark 4. For the delay systems, the well-known innovation
re-organization approach was proposed in [43, 44], which
designed l + 1 different standard Kalman filtering with the
l-step time delayed measure. To further reduce the computa-
tion cost, the proposed measurement re-organization approach
given in Eq.(15) is used to handle the random transmission
delays, which is translated into a unified form considering the
current time instant as well as the time-stamp before being
transmitted. Therefore, we design the optimal state estima-
tion for each subsystem to develop a unified finite horizon
filtering. More importantly, the network-induced events such
as packet dropouts and packet disorders resulting from the
random transmission delays are translated into the re-organized
measurement sequence, and a signal selection method based



LIU et al.: DISTRIBUTED FUSION ESTIMATION FOR STOCHASTIC UNCERTAIN SYSTEMS 5

on event-trigger is applied to further simplifying the temporal
process.

Taking into account the stored measurement sequence with
network-induced complexity, the issue of distributed fusion es-
timation is transferred into probing the optimal state estimation
x̂k|k, which is compensated and fused by local estimation x̂it|t
with transmission delay t = k − τ i (k1).

III. LOCAL ESTIMATION DESIGN

In this section, considering the system noise in Eq.(1) and
the measurement noise in Eq.(2) are different, the augmenta-
tion method for the state-space model is involved [12]. Mean-
while, the local estimator x̂ik|k (i = 1, · · · , L) is derived by
using the Schur complement lemma to analyze the estimation
performance [17].

A. Augmentation Method for State Vector

Firstly, the received data packet yik is obtained from Eqs.(2)
and (15), that is
yik =

(
Ci

t +Hi
tFtE

i
t

)
xt +Bi

twt +Gi
tvt , i = 1, · · · , L . (16)

It is assumed that the processor has a sufficient capability
to find the optimal estimated state x̂it|t from the stored valid
signals

{
yi0 , · · · , yik−1 , y

i
k

}
.

The objective of the distributed fusion estimation is achiev-
ing the optimal estimation x̂ik|k from the upper bound of the
local error covariance matrix. Thus, the local state is estimated
employing the re-organized data packets:

x̂it|t = x̂it|t−1 +Ki
t

(
zit − Ĉi

t x̂
i
t|t−1

)
, (17)

x̂it+1|t = Âi
tx̂

i
t|t−1 + Li

t

(
zit − Ĉi

t x̂
i
t|t−1

)
, (18)

where x̂it|t and x̂it+1|t denote the filter and predictor, re-
spectively. Then the local estimation errors are defined by
ẽit , xt − x̂it|t−1 and eit , xt − x̂it|t. Time-varying matrices
Ĉit , K

i
t , Â

i
t and Lit are the solved filter parameters.

In order to derive the upper bounds for the covariance
matrices of the estimation errors, the augmentation method
for state vectors including error and estimated state are defined
as:

Ψ̃i
t ,

[
ẽit

x̂it|t−1

]
, Ψi

t ,

[
eit

x̂it|t

]
. (19)

Subsequently, the augmented system model for the state-
space shown in Eqs.(1) and (17)-(19) is further discussed
in Appendix B. Note that the deterministic uncertainty Ft,
energy-bounded noise wt as well as Gaussian white noise vt
and $ϑ,t appear in Eqs.(B.4) and (B.5). It is difficult to solve
the accurate estimation using the covariance matrices Θ̃i

t and
Σ̃it+1. Therefore, this paper investigates an alternative method
to solve the upper bounds for the errors. Furthermore, the filter
parameters are optimized by minimizing the error covariance.

B. Performance Analysis

To analyse the system performance, the estimation error
from the local estimation x̂ik|k can be rewritten as:

χi
k+1 =

(
Ai

t3 + ∆Ai
t3

)
χi
k +

( ~∑
ϑ=1

($ϑ,kAϑ,t3)

)
χi
k

+Bi
t3wk +Gi

t3vk ,

ẽik = Di
t3χ

i
k ,

(20)

where χik ,

[
xk

ẽik

]
, and the parameters are defined as:

Ait3 =

[
Ak 0

Ak − Âik + Lik

(
Ĉik − Cik

)
Âik − LikĈik

]
,

∆Ai
t3 =

[FkFkEk 0(
Fk − Li

kHi
k

)
FkEk 0

]
, Aϑ,t3 =

[
Aϑ 0

Aϑ 0

]
,

Bi
t3 =

[
Bk

Bk − Li
kB

i
k

]
, Gi

t3 =

[
Gk

Gk − Li
kG

i
k

]
, Di

t3 = [0 I]

(21)
First of all, the following bounded real lemmas for the

discrete-time stochastic system χik must be satisfied.

Lemma 1. [12] For the stochastic uncertain system, the
discrete-time model is established as follows:

x′k+1 =
(
A′ + ∆A′v′k

)
x′k +B′w′k ,

z′k = C′x′k,
(22)

in which v′k is the Gaussian white noise with covariance
matrices R′k, and w′k ∈ l2 [0,∞) denotes an energy-bounded
noise. For a given scalar γ′ and the H∞ performance, the
following inequality

∞∑
k=0

E
((
z′k
)T
z′k

)
<
(
γ′
)2 ∞∑

k=0

E
((
w′k
)T
w′k

)
(23)

is held. With the aid of the system performance in Eqs.(22)
and (23), if and only if there exists a matrix X′ > 0, such that
the inequality(

A′
)T

X′A′ +
(
C′
)T
C′ +R′k

(
∆A′

)T
X′
(
∆A′

)
−X′

+
(
A′
)T

X′B′
((
γ′
)2
I −

(
B′
)T

X′B′
)−1(

B′
)T

X′A′ < 0.
(24)

is satisfied.

Lemma 2. [12] Let ΓT1 = Γ1, Γ2 and Γ3 be real matrices
with appropriate dimensions, and λk satisfying λTk λk 6 I .
Then

Γ1 + Γ3λkΓ2 + ΓT2 λ
T
k ΓT3 < 0 (25)

is held, if and only if there exists a positive scalar σ > 0, such
that the following inequality is satisfied:−σI σΓ2 0

∗ Γ1 Γ3

∗ ∗ −σI

 < 0 . (26)

On the basis of Lemmas 1 and 2, the mixed H2/H∞
performance will be analysed in this section, while the local
estimation x̂ik|k satisfies Conditions 1-3 presented above.

Theorem 1. For a given level bound γi, the requirements of
Conditions 1 and 2 are held. If and only if a matrix Xi > 0
exists, the inequality in Eq.(24) is obtained as

∆i =


−Xi Xi

(
Ai

t3 + ∆Ai
t3

)
XiB

i
t3

∗
(
Di

t3

)T
Di

t3 + Υt3 −Xi 0

∗ ∗ −γ2
i I

 < 0 , (27)

where Υt3 ,
~∑
ϑ=1

$ϑ,kA
T
ϑ,t3XiAϑ,t3, and parameters Ait3,

∆Ait3, Aϑ,t3, Bit3, Git3 as well as Di
t3 are obtained using
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Eq.(21). In this case, the upper bound of H2 performance can
be calculated by

J i 6 Tr

{
Rk

(
Gi

t3

)T
XiG

i
t3

}
, (28)

where the matrix Xi satisfies the inequality within Eq.(27),
while Git3 is denoted in Eq.(21) and Rk is the covariance of
vk.

Proof. The proof is derived and shown in Appendix C.

Depending on the Gaussian white noise $ϑ,k in Eq.(1)
as well as γi (i = 1, · · · , L) given in Condition 2, the
optimal filter parameters satisfying Conditions 1-3 are able to
be determined from the solution of the following optimization
problem:

min Tr

(
Rk

(
Gi

t3

)T
XiG

i
t3

)
, (29)

which is subject to the constraints of FkFTk 6 I , Eqs.(3) and
(27). However, solving the optimization problem from Eq.(29)
is intractable, and the following three conditions should be
analysed:

(i) For the objective function shown in Eq.(29), the matrix
term

(
Git3
)T

XiG
i
t3 is nonlinear.

(ii) The uncertain parameters Fk and θϑ,k are included in
the matrix inequality of Eq.(27).

(iii) XiA
i
t3 and XiB

i
t3 shown in Eq.(27) are nonlinear.

For the sake of obtaining an efficient solution of the
optimization problem in Eq.(29), the convex optimization issue
will be considered under a certain relaxation condition. The
derivation is also shown in Appendix C.

IV. DISTRIBUTED FUSION ESTIMATION FOR LOGIC ZOH

For the stochastic uncertain system modelled in Eqs.(1) and
(16), based on the robust finite horizon filtering, this paper
studies a distributed fusion estimation approach (RFHDFE)
by the aid of designing the local estimation x̂ik|k. Then, a
weighted robust fusion estimation is presented by investigating
a convex optimization problem to improve the accuracy of the
distributed estimation.

A. Upper Bound for Estimation Error

To design the local estimation, it is necessary to examine the
appropriate filter parameters, which are derived from the error
covariance matrix. Since the proposed system model contains
uncertain parameters and energy-bounded noise, it is difficult
to obtain the accurate estimation for state. Therefore, the guar-
anteed upper bounds based on the augmentation method are
presented by minimizing the estimation error. Then, Lemmas
3 and 4 for solving inequality constraints are introduced by
transforming the upper bound of the error covariance.

Lemma 3. [22] Suppose that matrices A, H , E, F and
X have certain dimensions, and satisfying FFT 6 I . If
there exists an arbitrary positive constant α > 0, and
α−1I−EXET > 0 is satisfied, which is a symmetric positive-
definite matrix. Thus, the following inequality is held:

(A+HFE)X(A+HFE)T

6 A
(
X−1 − αETE

)−1

AT + α−1HHT .
(30)

Note that
(
X−1 − αETE

)−1
= X +

XET
(
α−1I − EXET

)−1
EX is transformed from the

matrix inversion lemma.

Lemma 4. [22] Assuming that X > 0 and Y > 0 are
symmetric positive definite matrices. At the time instant k, the
functions satisfy the conditions st (X) = sTt (X) ∈ Rn×n and
ht (X) = hTt (X) ∈ Rn×n. If there exists Y > X , such that
the functions meet st (Y ) > st (X) and ht (Y ) > st (Y ), the
solutions Mt and Nt are derived as follows:

Mt+1 = st (Mt) , Nt+1 = ht (Nt) , M0 = N0 > 0 (31)

satisfying Mt 6 Nt.

Theorem 2. The unified form of
(A+HFE)X(A+HFE)

T from Θ̃i
t in Eq.(B.4) and

Σ̃it+1 in Eq.(B.5) based on Lemmas 3 and 4 satisfies the
following case: if there exists a positive scalar αt > 0 and
a symmetric positive-definite matrix Σit both of which satisfy
the inequality α−1

t I−Eit2Σit
(
Eit2
)T

> 0, the upper bounds of
the error Σ̃it 6 Σit and Θ̃i

t 6 Θi
t will be available. Then, the

upper bounds of Θi
t and Σit+1 are computed by the following

recursive equations:
Θ̃i

t 6 A
i
t1Σi

t

(
Ai

t1

)T
+ α−1

t Hi
t1

(
Hi

t1

)T
+Bi

t1E
(
wtw

T
t

)(
Bi

t1

)T
+Ai

t1Σi
t

(
Ei

t1

)T(
α−1
t I − Ei

t1Σi
t

(
Ei

t1

)T)−1

Ei
t1Σi

t

(
Ai

t1

)T
+Gi

t1Rt

(
Gi

t1

)T
= Θi

t ,

(32)
and

Σ̃i
t+1 6 A

i
t2Σi

t

(
Ai

t2

)T
+ α−1

t Hi
t2

(
Hi

t2

)T
+ Σi

tAϑ,t2A
T
ϑ,t2θϑ,t

+Ai
t2Σi

t

(
Ei

t2

)T(
α−1
t I − Ei

t2Σi
t

(
Ei

t2

)T)−1

Ei
t2Σi

t

(
Ai

t2

)T
+Bi

t2E
(
wtw

T
t

)(
Bi

t2

)T
+Gi

t2Rt

(
Gi

t2

)T
= Σi

t+1 .

(33)

Proof. The derivation process is obtained from Lammas 3 and
4.

Based on Theorem 2 and the finite horizon filtering, we
define the error covariance matrix in the following form:

Σi
t =

[
Σ̄i

t 0

0 Pt − Σ̄i
t

]
, (34)

where Σ̄it = E
(
ẽit
(
ẽit
)T)

and Pt = E
(
xtx

T
t

)
.

Then, the upper bounds of the error from the augmented
state vectors given in Eqs.(B.4), (B.5), (32) and (33) are
defined as follows:

E

(
eit

(
eit

)T)
= [I 0] Θ̃i

t

[
I

0

]
6 [I 0] Θi

t

[
I

0

]
= Θ̄i

t (35)

and
E

(
ẽit+1

(
ẽit+1

)T)
= [I 0] Σ̃i

t+1

[
I

0

]
6 [I 0] Σi

t+1

[
I

0

]
= Σ̄i

t+1 .

(36)

Now, the H∞ performance of Condition 2 under Lemma 1
and Eqs.(35)-(36) is derived as follows:

∞∑
k=0

E

((
ẽik

)T
ẽik

)
6
∞∑

k=0

Σ̄i
k < γ2

i

∞∑
k=0

E
(
wT

k wk

)
. (37)
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Therefore, for a given H∞ DALB γi, the inequality in Eq.(37)
holds, if and only if a matrix χ̃ik+1 for the estimation error
using the augmented state vector Ψ̃i

k in Eq.(19) can be
rewritten as:

χ̃i
k+1 =

(
Ai

t4 + ∆Ai
t4

)
χ̃i
k +

( ~∑
ϑ=1

Aϑ,t4$ϑ,k

)
χ̃i
k

+ Bi
t4wk + Gi

t4vk ,

ẽik = Di
t4χ̃

i
k ,

(38)

where χ̃ik ,

[
xk

Ψ̃i
k

]
, and the parameters are defined as:

Ai
t4 = diag

{
Ak, A

i
t2

}
,

∆Ai
t4 = diag

{
FkFkEk, H

i
t2FkE

i
t2

}
,

Aϑ,t4 = diag {Aϑ, Aϑ,t2} ,

Bi
t4 = col

{
Bk, B

i
t2

}
, Gi

t4 = col
{
Gk, G

i
t2

}
,

Di
t4 = [0 I 0] .

(39)

Note that Ait2, Hi
t2, Eit2, Aϑ,t2, Bit2, Git2 are defined in

Eq.(B.3). Then, based on Theorem 1 and Eq.(C.5), the in-
equality is satisfied

−X̃i X̃i

(
Ai

t4 + ∆Ai
t4

)
X̃iB

i
t4

∗
(
Di

t4

)T
Di

t4 + Υt4 − X̃i 0

∗ ∗ −γ2
i I

 < 0 , (40)

where Υt4 ,
~∑
ϑ=1

$ϑ,kA
T
ϑ,t4X̃iAϑ,t4.

On the other hand, the upper bound of the H2 performance
in Condition 3 is derived as follows:

J i 6 Tr

{
Rk

(
Gi

t4

)T
X̃iG

i
t4

}
. (41)

The proof is similar to that of Theorem 1 and the inequality
derivation of Eq.(C.7) from Eq.(C.5).

Next, in order to obtain Σ̄it and Pt in Eq.(34), Theorem 3 is
presented depending on the optimal filter and the predictor, as
well as the filter parameters for the ith local estimation shown
in Eqs.(17) and (18).

Theorem 3. For the ith subsystem, the time-stamped mea-
surement zit is transmitted using the logic ZOH. Meanwhile,
the received data packet is denoted as yik with transmission
delay τ i (k1) at the time instant k. Set t = k − τ i (k1), and
αt > 0 be a positive scalar. Therefore, the matrices Σ̄it and
Pt have the positive definite solutions, which are defined as
follows:

Θ̄i
t = Σ̄i

t

(
I +

(
Ei

t

)T(
M̃ i

t

)−1

Ei
tΣ̄

i
t

)
−Λi

t

(
Ξi

t

)−1(
Λi

t

)T
, (42)

Σ̄i
t+1 = ∆̃i

t − Li
t∇̃i

t , (43)

Pt+1 = At

(
P−1
t − αtE

T
t Et

)−1

AT
t + α−1

t FtFT
t

+θϑ,k

~∑
ϑ=1

AϑPtA
T
ϑ +BtE

(
wtw

T
t

)
BT

t +GtRtG
T
t .

(44)

In which

Λi
t =

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
Σ̄i

t

(
Ci

t

)T
,

Ξi
t = Ci

tΣ̄
i
t

(
I +

(
Ei

t

)T(
M i

t

)−1

Ei
tΣ̄

i
t

)(
Ci

t

)T
+α−1

t Hi
t

(
Hi

t

)T
+Bi

tE
(
wtw

T
t

)(
Bi

t

)T
+Gi

tRt

(
Gi

t

)T
,

∆i
t = At

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
Σ̄i

t

(
Ci

t

)T
+α−1

t Ft

(
Hi

t

)T
+BtE

(
wtw

T
t

)(
Bi

t

)T
+GtRt

(
Gi

t

)T
,

∇i
t = Ci

t

(
I + Σ̄i

t

(
Ei

t

)T(
M̃ i

t

)−1

Ei
t

)
Σ̄i

t

(
Ci

t

)T
+α−1

t Hi
t

(
Hi

t

)T
+Bi

tE
(
wtw

T
t

)(
Bi

t

)T
+Gi

tRt

(
Gi

t

)T
,

∆̃i
t = At

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
Σ̄i

tA
T
t + α−1

t FtFT
t

+BtE
(
wtw

T
t

)
BT

t +GtRtG
T
t +

~∑
ϑ=1

AϑPt

(
AT

ϑ

)
θϑ,t ,

and
∇̃i

t = Ci
t

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
Σ̄i

tA
T
t

+α−1
t Hi

tFT
t +Bi

tE
(
wtw

T
t

)
BT

t +Gi
tRtG

T
t .

Meanwhile, it satisfies P−1
t − αt

(
Ei

t

)T
Ei

t > 0, M̃ i
t = α−1

t I −
Ei

tPt

(
Ei

t

)T and M i
t = α−1

t I − Ei
tΣ̄

i
t

(
Ei

t

)T
> 0, respectively.

Furthermore, the re-organized local estimation given in
Eqs.(17)-(18) is facilitated by using the following filter pa-
rameters:

Ĉi
t = Ci

t

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
, (45)

Ki
t = Λi

t

(
Ξi

t

)−1

, (46)

Âi
t = At

(
I + Σ̄i

t

(
Ei

t

)T(
M i

t

)−1

Ei
t

)
, (47)

Li
t = ∆i

t

(
∇i

t

)−1

. (48)

Proof. This theorem comes from the upper bounds for min-
imizing the estimation error in the covariance matrices. Ap-
pendix D presents the procedure of proof.

B. Linear Compensation for Packet Dropouts

To solve the local state estimation x̂ik|k, this section applies
the optimal estimation x̂it|t to deriving the state x̂ik|t at the
current time instant k, which is obtained from the maximum
of the transmission delay N as well as the current received
valid signal. So the predictor x̂it+1|t is introduced to solve the
linear compensation, that is:

x̂ik|t =

(
1− τ i (k)− 1

N

)
x̂it+1|t , (49)

where τ i (k) denotes the transmission delay of the received
valid signal. The acknowledgment (ACK) time-stamped signal
zit is assigned the highest transmission priority due to the
timing, whilst the transmission delay is negligible to obtain
the estimated state x̂ik|t [45]. Thus, the filter x̂it|t and predictor
x̂it+1|t are used for compensating the estimated state x̂ik|t given
in Eq.(49).
Remark 5. Note that it is an approximate estimation using
the linear compensation method for the estimated state x̂ik|t
with delay-free in Eq.(49). The filter x̂it|t derived from the
latest data packet with time-stamp is used to estimate the
current state x̂ik|k from the compensated value x̂ik|t. To deal
with the packet dropouts, the data transmission delays for
each step will be ignored until the next received data packet.
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Due to the growing error accumulation and computational
burden using the traditional one-step predication, we propose
the linear compensation for packet dropouts, which has the
advantage of simplifying the state estimation and highlighting
the valid transmission signals. Therefore, the proposed method
is able to reduce the computational complexity, and then
alleviate the negative effect owing to the random transmission
delays. More importantly, define s = k + 1− τ i (k + 1) with
transmission delay τ i (k + 1) at the next sampling time k+1,
when s > t+ 1, the missing data packets are produced due to
the signal selection scheme. Finally, the estimated state x̂is|s
is calculated by using the one-step prediction, which meets
the artificial delay 1 < τst (k) = s− t 6 N . For the missing
data packets, the re-organized state estimation sequence will be
compensated, and the estimated values are listed as follows:{

x̂it+1|t+1, · · · , x̂
i
t+τst(k)|t+τst(k)

}
. (50)

Therefore, the objective of the linear compensation with the
random transmission delays, as well as the one-step prediction
for the missing packets, is designed the fusion estimation of
each local subsystem subsequently.

C. Distributed Fusion Estimation Based on Local Attributes
Theorem 3 presents a local state estimation, meanwhile,

the current state is estimated by using the proposed linear
compensation for packet dropouts. In addition, to improve the
state estimation accuracy from each subsystem, this section
investigates the distributed fusion estimation method with the
aid of the weighted fusion criterion.

Lemma 5. For the linear discrete-time systems described with
Eqs.(1) and (2) at time instant k, based on the established
signal selection model and linear compensation for packet
dropouts, the upper bounds for cross-covariance matrix Θ̄i,j

t

of the filtering error and cross-covariance matrix Σ̄i,jt+1 for the
prediction error between the ith and jth subsystems have the
following recursive expression:

Θ̄i,j
t =

(
I −Ki

tC
i
t

)
Σ̄i,j

t

(
I −Kj

tC
j
t

)T
+Ki

t

(
Ĉi

t − Ci
t

)(
Pt − Σ̄i,j

t

)(
Kj

t

(
Ĉj

t − C
j
t

))T
+ α−1

t Ki
tHi

t

(
Kj

tH
j
t

)T
+Ki

tG
i
tRt

(
Kj

tG
j
t

)T
+Ki

tB
i
tE
(
wtw

T
t

)(
Kj

tB
j
t

)T
+
(

Σ̄i,j
t +Ki

t

(
Ĉi

t

(
Pt − Σ̄i,j

t

)
− Ci

tPt

))
×
(
Ei

t

)T(
M̃ i,j

t

)−1

Ej
t

×
(

Σ̄i,j
t +Kj

t

(
Ĉj

t

(
Pt − Σ̄i,j

t

)
− Cj

tPt

))T
,

(51)

and
Σ̄i,jt+1 =

(
At − LitCit

)
Σ̄i,jt

(
At − LjtC

j
t

)T
+
(
At − Âit + Lit

(
Ĉit − Cit

))(
Pt − Σ̄i,jt

)
×
(
At − Âjt + Ljt

(
Ĉjt − C

j
t

))T
+α−1

t

(
Ft − LitHit

) (
Ft − LjtH

j
t

)T
+

~∑
ϑ=1

AϑPt
(
ATϑ
)
θϑ,t

+
(
Bt − Li

tB
i
t

)
E
(
wtw

T
t

)(
Bt − Lj

tB
j
t

)T
+
(
Gt − Li

tG
i
t

)
Rt

(
Gt − Lj

tG
j
t

)T
+
((
At − Li

tC
i
t

)
Σ̄i,j

t

+
(
At − Âi

t + Li
t

(
Ĉi

t − Ci
t

))(
Pt − Σ̄i,j

t

))
×
(
Ei

t

)T(
M̃ i,j

t

)−1

Ej
t

×
((
At − Li

tC
i
t

)
Σ̄i,j

t

+
(
At − Âj

t + Lj
t

(
Ĉj

t − C
j
t

))(
Pt − Σ̄i,j

t

))T

(52)

where M̃ i,j
t = α−1

t I − EitPt

(
Ejt

)T
and M i,j

t = α−1
t I −

EitΣ̄
i,j
t

(
Ejt

)T
.

To obtain the distributed fusion estimation x̂k|k, the con-
sidered system develops the linear minimum covariance, as
well as the optimal weighted fusion from the local estimation.
Therefore, the designed estimator from Eq.(1) is described as
the following convex optimization form:

x̂k|k =

L∑
i=1

Ωi
kx̂

i
k|k . (53)

To have the optimal value for the distributed fusion estima-
tion [11, 41, 46], if and only if the weighted matrix in Eq.(53)
is composed by

Ωk =
[
Ω1

k, · · · , ΩL
k

]
=
(
IT0 Π−1

k I0
)−1

IT0 Π−1
k , (54)

where I0 = [Ir , · · · , Ir]︸ ︷︷ ︸
L

T is an rL× r-dimensional matrix,

and
L∑
i=1

Ωik = Ir. Moreover, the covariance matrix based on

the linear compensation is defined as Πi,j
k , E

(
eik

(
ejk

)T)
,

and

Πk =


Π1,1

k · · · Π1,L
k

. . .

ΠL,1
k · · · ΠL,L

k

 =
(

Πi,j
k

)
rL×rL

(55)

is a symmetrical positive-definite matrix. Set Π̃k =(
Π
−1/2
k I0

)T (
Π

1/2
k Ii0

)
and Ii0 =

T

[0, · · · , Ir, · · · , 0]︸ ︷︷ ︸
L

be the

ith element in I0. It is worth noting that on the basis of the
cross-covariance of Π̃k|k , E

((
xk − x̂k|k

) (
xk − x̂k|k

)T)
,

the corresponding optimal fusion estimation is designed by
Π̃k|k =

(
IT0 Π−1

k I0
)−1

, which satisfies Π̃k|k 6 Πi
k 6 Θ̄i

k

under Eq.(35), if i = j; otherwise, we have Π̃k|k = Πi
k 6 Θ̄i

k

by setting Ωik = Ir and Ωjk = 0 (j = 1, · · · , L, j 6= i).

Remark 6. The stochastic uncertain system presents the signal
selection scheme to handle network-induced complexity simul-
taneously. Meanwhile, since the received data packets include
the latest signals, the packet disorders are actively avoided.
That is, a linear compensation method for the packet dropouts
is obtained from each local estimation x̂ik|k. Furthermore, to
achieve information exchange between any two subsystems,
we propose the convex optimization problem based on the
weighted fusion criterion, and the optimal estimated state is
available by using the linear minimum covariance matrix.
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Thus, the fusion estimation possesses higher estimation ac-
curacy than each local subsystem.

Summarizing the throughout calculation process of the dis-
tributed fusion estimation, the solution approach is illustrated
in Fig.3.

Output
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Network
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Sensor L

Filter 

Parameters 1

Filter 

Parameters L

Distrubuted
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Delay
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Delay
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ky
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| 1|
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1

|
ˆ
k tx

|
ˆ L
k tx

| |

1

,

ˆ ˆ
L

i i

k k k k t

i

i j

k

x x| |
ˆ ,k k k kx

Fig. 3. Computational procedure of RFHDFE.

D. Stability Analysis

To analysis the steady-state local estimators, the definition
and formalism of Lemma 6 is shown.

Lemma 6. [40, 41, 47] For the re-organized system shown
in Eqs.(1) and (16), the H2 performance is represented in
Eq.(41), and X̃i 6 Xi is satisfied under Eq.(40). Given
the covariance matrix E

(
ẽik+1

(
ẽik+1

)T)
by Eq.(36) with

any initial value E
(
ẽi0
(
ẽi0
)T)

> 0 due to the external
disturbance, the error covariance will converge to the positive

semi-definite solution
^

Σi. According to the upper bound for
the covariance matrix of the estimation error, the inequality
E
(
ẽik+1

(
ẽik+1

)T)
6 Σ̄ik+1 is satisfied due to Eq.(43), as well

as Tr
(
E
(
ẽik+1

(
ẽik+1

)T))
6 Tr

(
Σ̄ik+1

)
, which is rewritten

as follows:

Σ̄i
k+1 =

(
Ak − Li

kC
i
k

)(
I + Σ̄i

k

(
Ei

k

)T(
M i

k

)−1

Ei
k

)
Σ̄i

kA
T
k

+α−1
k

(
Fk − Li

kHi
k

)
FT

k

+
(
Bk − Li

kB
i
k

)
E
(
wkw

T
k

)
BT

k

+
(
Gk − Li

kG
i
k

)
RkG

T
k +

~∑
ϑ=1

AϑPk

(
AT

ϑ

)
θϑ,k .

(56)

Let the set filter parameters be
^

Li = limk→∞L
i
k given in

Eq.(48),
^

∆i = limk→∞∆̃i
k and

^

∇i = limk→∞∇̃ik in Eq.(D.9).

Therefore,
^

Σi = limk→∞E
(
ẽik+1

(
ẽik+1

)T)
is determined by

Σ̄ik. We know that matrix Ak is stable, and ρ (Ak) denotes the
spectrum radius of matrix Ak. In this situation, the estimated
state x̂ik+1|k in Eq.(18) is asymptotically stable.

Note that the stability of matrix Ak for the steady-state
filter is necessary. In addition, the error covariance matrix
E
(
ẽik+1

(
ẽik+1

)T)
is influenced by energy-bounded noise and

uncertain white noise. If matrix Ak is unstable, the error co-
variance matrices of the estimation errors will be unbounded.

Meanwhile, the covariance matrices of the filtering errors are
solved by E

(
eik
(
eik
)T)

6 Θ̄i
k shown in Eq.(35), and Θ̄i

k

is determined by Σ̄ik according to Eq.(42). Therefore, the
steady-state cross-covariance matrices for the filtering errors
are converging.

Finally, the proposed distributed fusion estimation based on
local estimation is the steady-state filter under Eqs.(53) and
(54). Note that x̂ik|k = [0 Ir] Ψi

k in Eq.(19) is the local steady-
state filter for the state xk, and Ωk is the steady-state weighted
matrix. Moreover, Πk in Eq.(55) is the steady-state covariance
matrix for the filtering error. Therefore, the variance matrix(
IT0 Π−1

k I0
)−1

is the distributed fusion estimator.
Remark 7. The proposed distributed fusion estimation (i.e.
RFHDFE) approach is not required to be calculated at each
step, so that it is easy to be implemented in engineering
application. In addition, the proposed RFHDFE alleviates the
computational burden. Since it has the computational cost with

the order of magnitude O

(
L∑
i=1

(
τ i(k)
N (mi + r)

)2
)

, where

r expresses the dimension of the state, mi represents the
measurement dimension and L denotes the number of the
subsystems. Therefore, this paper investigates the distributed
fusion estimation based on the local estimation possesses less
computation complexity and reduces the energy consumption.

V. NUMERICAL SIMULATION

We use simulations to illustrate the effectiveness of the
proposed RFHDFE approach. Considering that a moving
target tracking system is measured by three sensors, which
is described by the following state-space and measurement
models, respectively, and the related systems are modeled in
[11, 12, 22]:

xk+1 = (Ak + FkFkEk +A1$1,k)xk

+Bkwk +Gkvk, k = 1, 2, · · ·
(57)

zik =
(
Ci

k +Hi
kFkE

i
k

)
xk +Bi

kwk +Gi
kvk , i = 1, 2, 3 (58)

where the system parameters are set as follows:

Ak =

 0.9 T T 2/2

0 0.9 T

0 0 0.9

 , A1 =

 0.02 0.03 0.01

0.06 0.05 0.02

0.05 0.03 0.01

 ,
Bk =

 0.1

0.3

0.2

 , B1
k =

 0.1

0.3

0.2

 , B2
k =

 0.2

0.4

0.5

 , B3
k =

 0.4

0.5

0.2


Gk = col

{
T 2/2, T, 1

}
, Gi

k = Bi
k (i = 1, 2, 3) ,

Fk = [0.1 0.1 0.1]T , Ek = [0.02 0.02 0.02] ,

C1
k = [0.6 0.8 1] , C2

k = [1 0.8 0.5] ,

C3
k = [0.3 1 0.7] , H1

k = H2
k = H3

k = 0.8 .

Symbol T denotes the sample period and is set to be 0.1s.
The defined state xk , (sk ṡk s̈k)

T includes the position,
velocity and acceleration, respectively, of the moving target
at the time instant kT , and the maximum of the transmission
delay is set N = 5. The parameter uncertainty Fk = sin (0.6k)
is a time-varying matrix. vk and $1,k are the Gaussian white
noise with covariance Rk = 0.09 and θL1 6 θ1,k 6 θU1 , where
the covariance satisfies θL1 = 0.01 and θU1 = 0.02. The DALB
γ1 = γ2 = γ3 = 0.2, and the energy bounded noise wk is
given by wk = 2 cos (0.6k).
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Fig. 4. Comparison of covariance matrices between RFHDFE and
IRFHKF.

Without losing generality, to solve Theorem 3 with appropri-
ate filter parameters, the initial values are set as x̂0|0 = µ0 =

E (x0) = [1 1 1]
T , P0|0 = 0.01I3 as well as αk = 3.

Fig.4 demonstrates the traces for the covariance matrices
of the estimation errors. The estimated state x̂k|k using the
proposed RFHDFE with delay-free is compared against the
improved robust finite-horizon Kalman filtering (IRFHKF)
approach [22]. From Fig.4 (a), the proposed RFHDFE ap-
proach has a less upper bound than IRFHKF for the co-
variance matrices of the estimation errors. Note that due to
the weighted fusion criterion, the fused upper bound for the
cross-covariance matrix of the error is much smaller than that

of the other covariance matrices, and the fusion estimation
criterion is optimal. Comparing the estimation accuracy of
the both methods shown in Figs.4 (b)-(d), it implies that the
proposed RFHDFE method results in an appropriate estimator,
which is suitable for deriving the optimal filter parameters
and obtaining the precise estimation. Taking the energy bound
noise and unknown state-dependent noise into account, the
dynamic tracking trajectory is very close to the actual one.

The comparison of the mean square error values (MSEs)
[11, 41] are provided by Monte-Carlo shown in Table 1, to
indicate the accuracy improvement of the proposed RFHDFE
approach with network-induced complexity and multiple noise
in different noise environments. Note that the comparison of
MSEs includes the states of position, velocity and acceleration,
as well as their estimated values and runtime for each method,
respectively. It shows that the MSEs of the fusion estimation
are smaller than each subsystem, and also smaller than the
IRFHKF method. It means that the RFHDFE approach has
the capacity for obtaining better estimation performance than
each one and the IRFHKF method in the following aspects:
smaller MSEs and less time consuming.

Table 1 Comparison of mean square error values

Scheme Subsystem MSEs
Position Velocity Acceleration Time (s)

RFHDFE
Sensor 1 0.0041 0.0073 0.0335 0.0624
Sensor 2 0.0025 0.0066 0.0289 0.1560
Sensor 3 0.0018 0.0047 0.0245 0.0936
Fusion 0.0004 0.0006 0.0005 0.3432

IRFHKF 0.0124 0.0148 0.0322 1.8564

To illustrate the effectiveness of the system, the correspond-
ing tracking results of the estimation for the moving target
are shown in Fig.5. The simulation results come from the
proposed (RFHDFE) approach with packet disorders and the
IRFHKF method, which are obtained from Eqs.(57) and (58).
More importantly, the actual and the estimated states with or
without packet disorders are shown in Figs.5 (a)-(c), and it
is a further verification that using the logic ZOH is capable
of identifying and discarding packet disorders induced from
random transmission delays. Meanwhile, Fig.5 (d) verifies
the system stability by showing the traces for the covariance
matrices of the estimation errors depending on each filter and
the fusion estimation using the proposed RFHDFE method and
the IRFHKF method.

The range of the performance indicator is presented in
Table E.1 of Appendix E, which means that for the proposed
approach, the upper bounds for the covariance matrices of the
estimation errors are less than those of the IRFHKF method.
Note that the estimation performance is improved, and the
estimation accuracy is higher if the upper bound for error
covariance is close to the lower bound.

The distributed estimation results for the states are shown in
Fig. E.1. In the simulations, the re-ordering error covariance
criteria are used to compare the dynamic tracking performance
between the RFHDFE and IRFHKF methods. It suggests that
the proposed RFHDFE approach has better estimation accu-
racy than the IRFHKF method with the random transmission
delays, packet dropouts and disorders simultaneously. Since
the energy bound noise, unknown state-dependent noise, and
the actual estimation errors are lower than the upper bound, for
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the actual estimated values, the proposed RFHDFE method has
better performance including accurate system states and rapid
convergence to the steady-state.
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Fig. 5. Estimated results with or without packet disorders.

VI. CONCLUSION

In this paper, the distributed fusion estimation problem con-
sidering a class of stochastic uncertain systems with network-
induced complexity, parameter uncertainty and mixed noise
disturbance have been investigated. To handle packet dropouts
and packet disorders generated from random transmission
delays, the data packets selection and system modelling have
been implemented using the logic ZOH. For the admissible
uncertainty, the problem of the local estimation has been
investigated by analyzing the mean-square errors and the mix

H2/H∞ performance by means of the Schur complement
lemma. To estimate the state with packet dropouts, a linear
compensation method has been proposed, and the optimal
state estimation has also been presented to overcome the
influence of the limited communication capacity and suppress
the computational burden. In addition, the upper bound of
the estimation error has been designed developing the local
finite horizon filtering. Subsequently, the distributed state
estimation approach has been integrated with the weighted
fusion criterion. Moreover, the proposed distributed fusion
estimation has the advantage of higher accuracy than each
local subsystem by the performance analysis of MSEs. Finally,
the numerical simulations for the target tracking systems have
been given to illustrate the advantages and effectiveness of the
proposed RFHDFE method, in particular at the system state
and the higher accuracy of the estimated value.
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