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APPENDIX A
DESCRIPTION OF A TYPICAL SCENARIO.

This section gives the description of a typical scenario in
subsection 2.2.

Fig.2 shows a typical scenario to describe the network-
induced complexity (i.e. packet dropouts and packet disorders
generated from the random transmission delays).

For the ith subsystem, it is assumed that the upper bound of
the transmission delays is not more than 5 sample periods (i.e.
Nk 6 5, and the delay for each step satisfies Nk 6 k). η (tk)
represents the transmission delay, and the sample period is
T , while t ∈ {kT, k ∈ N} denotes the sampling time instant.
Depending on the role of the logic ZOH, the packet disorders
come from the signals before being transmitted, such as zi3
and zi2, zi8 and zi7, as well as zi11, zi10 and zi9, and then zi3, zi8
and zi11 are held at time instant k = 5, k = 9 and k = 12,
respectively.

APPENDIX B
AUGMENTED STATE-SPACE MODEL.

This section gives the definitions and derivations of the
augmented state-space model shown in subsection 3.1.

An augmented state-space model combining the systems
shown in Eqs.(1) and (17)-(19) is represented as follows:
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Based on the augmented system from Eqs.(B.1) and (B.2),

we set the covariance matrices to be Σ̃i
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under Eqs.(B.1)-(B.3). Then, the Riccati-

like equations for the covariance matrices of the estimation
errors are derived as follows:
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APPENDIX C
PROOF OF THEOREM 1 AND DERIVATION OF THE CONVEX

OPTIMIZATION PROBLEM.

This section gives the proof of Theorem 1 shown in Section
3.2.

For the ith subsystem in Eq.(20) with vk = 0, it is derived
from Lemma 1 that the requirements (i.e. Conditions 1 and 2)
are held, if and only if there exists a matrix Xi > 0 such that(

Ai
t3 + ∆Ai

t3

)T
Xi

(
Ai

t3 + ∆Ai
t3

)
+
(
Di

t3

)T
Di

t3 −Xi

+

~∑
ϑ=1

$ϑ,kA
T
ϑ,t3XiAϑ,t3

+
(
Ai

t3 + ∆Ai
t3

)T
XiB

i
t3

(
γ2i −

(
Bi

t3

)T
XiB

i
t3

)−1
×
(
Bi

t3

)T
Xi

(
Ai

t3 + ∆Ai
t3

)
< 0 .

(C.1)
Thus, the inequality (27) is obtained from Eq.(C.1) using

the Schur complement lemma [48]. On the other hand, when
the system following Eq.(20) is mean-square stable, the H2

performance J i can be expressed as follows [37]:
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where X̄i is the solution of the following Lyapunov equation:(
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Meanwhile, it is known from Eq.(27) that(
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Then, it is concluded that X̄i 6 Xi. In this case, the
upper bound of H2 performance J i can be treated as
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)
, where Xi is the solution to the matrix

inequality based on Eq.(27).
Complete the proof of Theorem 1.
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Based on Lemma 2, we define WT
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holds, and the form of the inequality is similar to Eq.(27).
Note that parameters are defined as follows:
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From Theorem 1, the H2 performance in Eq.(20) satis-
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It means that the inequality given in Eq.(C.7) is held, if there
exists a matrix Wi, which meets the following linear matrix
inequalities (LMIs) condition:[
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Remark C.1. Note that for the matrix Wi, if there is no
structural constraint, the inequality in Eq.(C.5) is equivalent
to Eq.(27), and the inequality in Eq.(C.8) will be equivalent to
Eq.(C.7). However, the nonlinear terms in Eqs.(27) and (C.7)
are unable to be eliminated in this case. For this reason, an
equivalent LMI will be given, which is used to represent the
inequality in Eq.(C.5), and then the local estimation parameters
will be obtained by solving a convex optimization problem.

APPENDIX D
PROOF OF THEOREM 3.

This section gives the proof of Theorem 3 shown in Section
4.1.

The solutions of Θ̄i
t and Σ̄i
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To estimate the filter parameters Ĉi
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considering the given recursive equations for Σ̄i
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in Eqs.(43) and (44), the approach of optimizing measurement
and filtering error covariance matrices is developed based on
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follows:
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Next, obtain the upper bound for the covariance of the

measurement error from Eq.(D.1), and Lemmas 3 and 4:
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Therefore, we use the first order derivative
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where M i
t = α−1t I − Ei

tΣ̄
i
t

(
Ei

t

)T
> 0.

Finally, similar to the derivation of Ĉi
t , the other filter

parameters such as Ki
t , Âi

t and Li
t are generated.

Step 2: Derive the error covariance matrices Θ̄i
t, Σ̄i

t+1 and
Pt+1, respectively.
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Firstly, Theorem 2 defines the solutions of Θi
t and Σi

t+1

in Eqs.(32) and (33). Subsequently, the upper bounds for the
covariance matrices of the estimation errors Θ̄i
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Ĉi

t − Ci
t

) (
Pt − Σ̄i

t

) (
Ki

t

(
Ĉi
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According to the above derivation, introducing filter pa-
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Subsequently, the covariance for the state with time-varying
parametric uncertainty is denoted as follows:
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Afterwards, the upper bound for the covariance matrix of
the state is obtained from
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with the initial value P0 = x0x
T
0 + P0, which is similarly

calculated using the method reported in [14].

APPENDIX E
SHOWN AND DESCRIBED FOR THE FIGURES AND TABLES

OF THE NUMERICAL SIMULATION.

This section shows and describes the distributed estimation
results using the logic ZOH presented in Section 5.

The range of the performance indicator is presented in Table
E.1.

Table E.1 Comparison of the upper and lower bounds for error
covariance

Method Position Velocity Acceleration Trace
RFHDFE 1 0.0096-0.0150 0.0016-0.0100 0.0100-0.0372 0.0300-0.0533
RFHDFE 2 0.0056-0.0100 0.0033-0.0100 0.0100-0.1258 0.0291-0.1313
RFHDFE 3 0.0084-0.0109 0.0004-0.0100 0.0100-0.0823 0.0279-0.0883

IRFHKF 0.0100-0.0267 0.0100-0.0235 0.0100-0.1779 0.0300-0.2280

The distributed estimation results for the estimated states are
shown in Figs. E.1 (a)-(c), which are obtained from Eqs. (17)
and (18), as well as the filter parameters given in Theorems 3.
Meanwhile, for the established system model using logic ZOH,
the linear compensation method for the packet dropouts, and
the weighted fusion criteria obtained from the local estimation
are investigated. Based on the preceding discussion, the pro-
posed RFHDFE approach possesses the advantage of the better
system performance for target tracking and computational
efficiency than the state with packet disorders and one-step
prediction estimation schemes.
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(a) State estimation for position
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(b) State estimation for velocity
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(c) State estimation for acceleration

Fig. E.1. Distributed estimation results using RFHDFE.


