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Abstract 

1. Many river rehabilitation projects have been criticised for failing to meet their goals or for 

being insufficiently monitored. There is, therefore, an urgent need to develop robust 

approaches to assessing treatment efficacy and to thus guide the increasing investment in 

rehabilitation. 

2. In-stream biotopes (formerly called ‘functional habitats’ or ‘mesohabitats’ by different 

authors) and their macroinvertebrate assemblages were used to assess the effectiveness 

of entire-channel hydromorphological rehabilitation of a 1.8 km stretch of a lowland 

stream through the town of Market Harborough, Leicestershire, UK. 

3. The project successfully enhanced the physical diversity, measured as the rehabilitated 

reach’s coefficients of variability for channel water depth and width, wet surface area, 

number of in-stream biotopes and biotope diversity. 

4. The project also enhanced the biodiversity conservation value, measured as 

macroinvertebrate total density, total biomass, richness, diversity, Ephemeroptera, 

Plecoptera & Trichoptera (EPT) richness, EPT diversity, EPT count%, and EPT biomass% - all 

of which significantly increased post-rehabilitation. Chironomidae count% and biomass% 

significantly decreased post-rehabilitation. Rehabilitation was also successful in 

significantly increasing macroinvertebrate shredder, scraper, and filter-feeder group 

density. 

5.  Changes in the rehabilitated reach’s macroinvertebrate community metrics were 

significantly related to changes in the rehabilitated reach’s percentages of cover of in-

stream biotopes and increases in biotope diversity.  

6. Macroinvertebrate structural and functional metrics can provide quantitative data for 

assessing reach-level rehabilitation outcomes, if samples are collected in a pre-defined 

sampling protocol stratified at the in-stream biotope level. 

7. The practical implications of this work are that the design of rehabilitation projects, if 

based upon the re-creation of biotope heterogeneity, will succeed in improving biological 

value and restoring near-naturalness if a suitable upstream source of macroinvertebrate 

community for natural recolonisation is available. The study shows that the concept of 

biotopes has an important role to play in river conservation management. 
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1. Introduction 

Riverine ecosystems have been altered by humans at different scales for millennia; with 

alterations ranging from catchment scale (e.g. through modifications of landscape and land 

use) to reach and in-stream scale (e.g. through channelisation and removal of large woody 

debris) (Allan, 2004; Vaughan et al., 2009). Such hydromorphological degradations often 

create a “simplified, structurally-deficient, fragmented river system” (Ayres et al., 2014) that 

negatively affects aquatic floral and faunal biodiversity (De Jalón et al., 2013; Ayres et al., 

2014; Geist & Hawkins, 2016). 

Rehabilitating major physical features by natural or artificial additions (such as stony riffles 

or flow deflectors) has been assumed to be the best way to minimise or reverse the 

ecological effects of stream and river morphological degradation (Mitsch & Jørgensen, 2003; 

Ormerod, 2003; Pedersen, Baattrup-Pedersen, & Madsen, 2006). Rehabilitation has been 

based on the belief that habitat heterogeneity promotes biodiversity (Palmer, Menninger, & 

Bernhardt, 2010) and enhances ecological functioning (Feld et al., 2011). Its success, 

however, depends on whether population, community and ecological functions recover and 

attain the characteristics typical of non-degraded reference systems (Ormerod, 2003; Geist & 

Hawkins, 2016). Macroinvertebrates are at middle trophic levels within freshwater food webs 

and can thus offer valuable information about biological improvement. Increasing the area 

available for colonisation through rehabilitation affects macroinvertebrates more than fishes, 

as the former typically move less (Gore, Crawford, & Addison, 1998). 

The European Water Framework Directive (WFD) implemented in 2000 (Council of the 

European Communities, 2000)  specified that European Union (EU) countries should achieve 

‘Good Ecological Status’ of their streams and rivers by 2015 (Muhar et al., 2016). In practice, 

however, many EU countries failed to achieve these goals, so the deadlines were pushed 

back to 2021 or even 2027. All member states must now achieve Good Ecological Status by 

2027 (European Commission, 2012). Although the UK left the EU at the end of 2020, it is 

claimed that this will not result in any deterioration of environmental standards. This seems 

unlikely, however, since the UK Environment Agency made 33% fewer inspections in 2019 

than in 2014 because of financial constraints (Everett, 2020). Furthermore, success of 

rehabilitation for biodiversity conservation remains poorly quantified and limited (Al-

Zankana, Matheson, & Harper, 2020). Only 10% of about 40,000 reported rehabilitation 
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projects in the United States of America contained any post-rehabilitation monitoring 

(Palmer et al., 2007) and only 30% of rehabilitation projects in Europe, including the UK, 

provided ecological monitoring information (Thompson, 2015). The apparently limited 

success of rehabilitation approaches is suggested to be due to: (a) failure of the rehabilitation 

to enhance hydromorphology (Tullos et al., 2009; Selvakumar, O’Connor, & Struck, 2010; 

Violin et al., 2011; Leal, 2012; Verdonschot et al., 2015); (b) masking of small changes by 

confounding factors at the larger catchment scale, such as land use, erosion, high levels of 

heavy metals and nutrient pollution (Larson, Booth, & Morley, 2001; Harrison et al., 2004; 

Roni et al., 2006; Louhi et al., 2011; Kail, Arle, & Jähnig, 2012; McManamay, Orth, & Dolloff, 

2013) and constrained recolonisation; or (c) a combination of the two. 

The conflicting results of post-rehabilitation monitoring studies, together with the relative 

infancy of stream rehabilitation science (Palmer, Hondula, & Koch, 2014) thus indicate the 

urgent need for better studies to address the links between hydromorphological 

rehabilitation and changes in stream biota in any river rehabilitation and conservation 

projects (Louhi et al., 2011; Wolter et al., 2013).  

The planning and design of effective river rehabilitation projects requires critical 

assessment of the effectiveness of past use of relevant methods  (Roni & Quimby, 2005). 

Clearly, such assessments must be based on data gathered through appropriate monitoring, 

measurement and reporting (Roni & Beechie, 2013). Unfortunately, most river rehabilitation 

schemes have failed to assess outcomes and effectiveness (Cowx et al., 2013). In other cases, 

poor statistical designs or biological methods have undermined the monitoring (Friberg et al., 

2016). Increased social pressure to conserve and improve the environment has led to an 

increasing number of river rehabilitation projects (Everard, 2012; Smith, Clifford, & Mant, 

2014; Reichert et al., 2015; Geist & Hawkins, 2016), but there is only limited evidence that 

such hydromorphological rehabilitation has marked and long-term positive ecological effects 

– particularly on macroinvertebrates (Palmer, Menninger, & Bernhardt, 2010; Feld et al., 

2011; Friberg et al., 2014; Al-Zankana, Matheson, & Harper, 2020), with only a few 

exceptions (Miller, Budy, & Schmidt, 2010; Kail et al., 2015). 

Rehabilitation projects – particularly in the UK – have generally focused on relatively large 

physical units: for example by installing large woody material to act as flow deflectors, by 

constructing riffle areas, or by widening  reaches to reinstate multichannel planforms (e.g. 
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Biggs et al., 1998; Harrison et al., 2004; Pretty & Dobson, 2004; Smith & Chadwick, 2014; 

Thompson, 2015; White et al., 2017; Al-Zankana, Matheson, & Harper, 2021). 

An holistic approach to river rehabilitation, which rehabilitates the entire channel and 

addresses hydromorphological processes, is rare but has been attracting increasing attention 

(Ayres et al., 2014). This approach creates improvements to the diversity of flow patterns 

through restructuring the channel morphology to a more natural form. It considers the whole 

physical and biological potential of the rehabilitated site, and the scale of implementation, to 

shape and sustain river habitats and biota. Thus, it enhances the recovery of both ecosystem 

structure and processes (Beechie et al., 2010). Such holistic approaches (Friberg et al., 2016) 

will help to avoid common pitfalls of engineered solutions, such as the creation of localised 

habitats that cannot be sustained by natural processes (Beechie et al., 2010; Palmer, 

Hondula, & Koch, 2014). Rehabilitating free flow (channel longitudinal connectivity) will also 

restore natural erosion-sedimentation processes (Friberg et al., 2016).  

The present work reports on an entire-channel approach, using the concept of in-stream 

biotopes as the near-natural, predictable mosaic of a whole river channel, which 

underpinned our design for rehabilitation of an engineered channel 1.8 km long through a 

small town in England. The term “biotope” refers to the physical habitats of species (or trait) 

assemblages in physical and morphological units. This term was adopted by Demars et al. 

(2012) in preference to the earlier terms “functional habitats” of  Harper et al. (1998) in the 

same study or “mesohabitats” of Armitage, Pardo, & Brown (1995). The original concept of 

‘functional habitats’ had been proposed by Harper, Smith, & Barham (1992) as a simple visual 

tool for recognising distinct ‘microhabitats’ of 1-5 m2 area in a mosaic along a river channel, 

which they showed through ‘Twinspan’ analysis to contain different assemblages of 

invertebrates. The method was developed in order to identify physically rich river channels in 

order to conserve them against engineering simplification in Eastern England. Later, the 

authors realised that such a method could also be used for rehabilitating over-simplified 

rivers (Harper et al., 1998) in a ‘building block’ or ‘jigsaw’ fashion. Kemp, Harper, & Crosa 

(1999; 2000) then showed that these habitats could be predicted from hydrological first 

principles, and could therefore be used in designing rehabilitation of degraded rivers as well 

as conservation of rivers of higher ecological quality. Over the same time period, the concept 

of ‘flow biotopes’ had been introduced to indicate the physical diversity of a river system 
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(Newson & Newson, 2000) and clear relationships had been shown between surface flow 

diversity as ‘flow biotopes’ and channel biodiversity as ‘functional habitats’ (Newson et al., 

1998). Most of the functional habitats and flow biotopes were incorporated into the ‘River 

Habitat Survey’ of the UK National Rivers Authority (Harper & Everard, 1998). A subsequent 

re-analysis of the full set of original data, from 10 UK rivers used to identify functional 

habitats (Demars et al., 2012), renamed, with ecological justification, these river micro-

habitat units as ‘biotopes’. They have recently been shown, on a smaller scale, to be an 

effective measure of restoration of Large Woody Material in a lowland stream (Al-Zankana, 

Matheson, & Harper, 2021). 

To be effective, the present study required a near-natural undamaged river stretch and a 

degraded stretch which were similar to and could be compared against the stretch about to 

be rehabilitated. We used a near-natural upstream reach of the river as the reference (also as 

a potential source of aquatic biota for natural recolonisation) and a tributary, joining at the 

downstream end of the urban stretch, which was similarly degraded but also had a near-

natural upstream section, as the control. The near-natural, reference reach was also used as 

our target state for macroinvertebrate community direction after rehabilitation (following 

Laasonen, Muotka, & Kivijärvi, 1998; Muotka et al., 2002; Louhi et al., 2011; Stranko, 

Hilderbrand, & Palmer, 2012; Winking, 2015; Lorenz, 2020). The entire project put back 

physical diversity into a degraded stretch of river (using our biotopes as measures of this) by 

creating meanders and their associated riffles, pool and runs, in a low-flow channel inside the 

straight, uniform, high-flow channel. We call this ‘rehabilitation’ or ‘remediation’ (Geist & 

Hawkins, 2016); we were not returning the channel to its former configuration. Particularly in 

urban settings, full restoration to some idealised (but generally unknown) ‘pristine’ state is 

impractical, but mitigation that reintroduces at least some ecosystem services and/or 

biodiversity can be considered to be a beneficial action.  Geist & Hawkins (2016) argue, 

moreover, that in urban areas the outcomes of rehabilitation should be assessed not only on 

a biotic basis, but on value to the public. Pragmatic remediation is thus likely to address – and 

be a compromise between – the needs of both biota and the public. 

Assessment of rehabilitation effectiveness was carried out at the three sites using a 

hierarchical method for quantitative measurement of biotopes, macroinvertebrate structure, 

and macroinvertebrate function. The specific hypotheses were that: (i) rehabilitation will 
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enhance morphological complexity and physical heterogeneity; and (ii) macroinvertebrate 

community structure and functional metrics will improve significantly in the rehabilitated 

reach compared with before rehabilitation or the control reach and will come to resemble 

those of the reference reach.   
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2. Methods 

2.1. Study sites and rehabilitation process 

The study was conducted in a Before-After-Control-Impact (BACI) design, which compared 

a 250 m section of the rehabilitated reach with an equivalently-sized near-natural upstream 

reach, and a similarly degraded tributary reach. The rehabilitated reach was within the 1.8 

km long stretch of the Welland River flowing through Market Harborough (52.475427 N, -

0.926341 W) (Figure 1). The near-natural reach of the Welland River was located upstream at 

Lubenham, 52.473637 N, -0.972636 W (‘reference reach’ hereafter), possessing a pool-riffle 

topography, a meandering platform and a wide range of organic and inorganic biotopes, 

including cobbles, gravel, sand, silt, marginal plants, macroalgae and submerged fine-leaved 

macrophytes. A straightened reach (250 m) of the Jordan River downstream of the 

rehabilitated reach at Market Harborough (52.476865 N, -0.909979 W) (‘control reach’ 

hereafter) was used as the control.  

The Welland River rises in south west Leicestershire, UK, 10 km upstream of Market 

Harborough. It flows through the gently rolling countryside of Northamptonshire, 

Leicestershire and Rutland, with mixed agriculture on boulder clay. A dramatic change occurs 

when the river enters the flat, alluvial landscape of Lincolnshire (former swamp below sea 

level) for about 80 km before it reaches the sea at the Wash. The main river and its 

tributaries together form more than 480 km of waterway. Its full catchment area is 1,554 km2 

(Figure 1) and at Market Harborough its area is just 50 km2. The landscape of the river valley 

is varied: changing from livestock-dominated hilly land of the upper Welland, with two 

market towns and several villages, into the largely arable fenlands of Lincolnshire below 

Stamford, and highly straightened channels that are tidal below Spalding, discharging to the 

Wash estuary. Natural meandering sections have been straightened and deepened, 

especially during the 1960s and 1970s, by engineering works to mitigate floods and improve 

land drainage. A near-natural reach of the Welland River at Lubenham is illustrated in Figure 

4.1b of Al-Zankana (2018). The average daily flow of the Welland River at Ashley (approx. 10 

km below Market Harborough, where the catchment area is about 5 times greater due to 

tributaries - at 250 km2) is 1.45 m3s-1 (https://nrfa.ceh.ac.uk/data/station/meanflow/31021); 

the average water depth at low-flow in the reference reach ranges between 0.08 m and 0.85 

m and average active channel width ranges between 2.7 m and 4.1 m; in the control and 

https://nrfa.ceh.ac.uk/data/station/meanflow/31021


10 

 

rehabilitated reaches before rehabilitation the channel widths were 4-5 m and the depths 

rather uniform at around 0.03 m.  The rehabilitated reach of the Welland River is illustrated 

prior to rehabilitation in Figure 4.1a of Al-Zankana (2018).  

The Jordan River is about 6 km in length rising to the south of Braybrooke village in the 

county of Northamptonshire. It joins the Welland River within Market Harborough 

downstream of the rehabilitated reach (its ecological conditions were not affected by the 

rehabilitation activities). The control reach of the urban Jordan River had been modified 

similarly to the Welland River, its naturally meandering channel having been straightened and 

deepened (See Figure 4.1c of Al-Zankana (2018). Its channel is overly wide with steep banks, 

some of which are lined with concrete. The control reach thus had the same habitat 

conditions as the rehabilitation reach before the rehabilitation activities. Both the Jordan 

River and the Welland River rise in a similar landscape with only low-diffuse pollution of 

modern agriculture (Figure 1C). Both the Jordan River and the Welland River had similar 

upstream macroinvertebrate communities capable of supplying species for recolonisation 

(Welland Rivers Trust, Geoff Gilfillan, pers. comm.). 

The 1.8 km reach of the Welland River through Market Harborough town was 

rehabilitated by the Welland Rivers Trust and the University of Leicester as the ‘Welland for 

People and Wildlife’ project over six months between autumn 2014 and spring 2015 

(Welland Rivers Trust, 2015). Rehabilitation comprised the removal of six weirs and by-

passing a further two by reconnecting a cut-off backwater channel. A new low-flow channel 

was created within the existing bank-full flood channel, known as a ‘two-stage channel 

approach’. The new low-flow channel was meandered and narrowed, created by building 

berms constructed from the spoil derived from the digging of pools in meander bends. The 

coarser material was deposited between the bends, creating a series of pool-riffle sequences. 

These were expected to create variable width and depth, with wet area on berms for 

marginal plants to grow. These objectives were expected to create a gradual rather than the 

former sudden gradient (hence increasing current speed thus large particle biotopes with 

submerged fine-leaved macrophytes), create berms (hence emergent and marginal plant 

biotopes), pools (hence tree root and floating-leaved plant biotopes), to reduce the risk of 

erosion and provide safer access to the river for the community. Some native macrophytes 
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were planted into coir mesh to initially stabilise the new berms, otherwise nothing was 

added.  

  The study measured physical and biological parameters before (spring 2014) and at 

quarterly intervals after rehabilitation (spring, summer, autumn 2015; spring, summer, 

autumn 2016), using the methods described below. This generated a very large quantity of 

data reported in Al-Zankana (2018), but for clarity this paper is restricted to a comparison of 

the pre-rehabilitation sampling (spring 2014, two sampling occasions, mid-March and mid-

May) with the final post-rehabilitation sampling 18 months later in spring 2016 (two sampling 

occasions; mid-March and mid-May).  
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 Channel morphology and in-stream biotope composition 2.2.

In spring 2014 (the middle of March, April and again in May – three occasions), before the 

rehabilitation of the Welland River had begun, the wetted surface area (m2), channel width 

(the wetted width) and depth (mid-river) were recorded every 5 m at all three sites. The 

channel depth was measured to the nearest centimetre at the centre of each 5 m cross 

section. The percentage of each in-stream biotope was estimated using lateral transects 

spaced every 5 m (perpendicular to the flow). The total number of biotopes and their 

coverage area for each 5 m transect were calculated following (Entrekin et al., 2009). All 

transect measures were summed to give reach-level total wetted surface area, channel 

width, channel depth and biotope number and percentages for each study reach. Following 

rehabilitation, the same measurements were recorded quarterly in spring, summer and 

autumn, to record changes. In-stream biotopes were visually identified following Demars et 

al. (2012). The biotopes identified and sampled were: cobbles (CO), gravel (G) and sand (SA), 

silt (SI), tree-roots (TR), marginal plants (MP), leaf litter (LL), macroalgae (MA) and submerged 

fine-leaved macrophytes (MSF). Boulders (BL) and large woody debris (WD) were not 

sampled as there were not enough patches of them to collect three independent samples per 

visit. Metrics were calculated to describe the morphological condition of the study reaches, 

based on the data from the reach-level morphological survey and in-stream biotope 

mapping, as follows: 

a) In-stream biotope diversity by the Shannon-Wiener diversity index (SWI) (Shannon & 

Weaver, 1949), following Kemp (1999) and Poppe et al. (2015), where ‘species’ were 

replaced by biotopes - named “SWI-biotope” hereafter. Number of in-stream biotopes was 

used rather than the number of species, and biotope proportions used instead of densities. 

The diversity index thus depends on both biotope richness and dominance. Greater values of 

SWI reflect both higher numbers of biotopes and greater equitability. 

b) The coefficients of variation (CV) of channel water depth and of channel width (CV-

depth, CV-width) were calculated from all the measurements made along the reach. 

Coefficient of Variation is defined as the ratio of the standard deviation to the mean. 
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 Sampling and processing of macroinvertebrates 2.3.

Pre-rehabilitation macroinvertebrate samples were collected in spring 2014 (two 

occasions, March and May). Post-rehabilitation samples were collected in spring 16 (two 

occasions, March and May). Samples were collected from all available biotopes (habitat 

patches) within the reaches and are referred to as biotope-specific samples. Three 

macroinvertebrate samples from separate patches of each existing biotope (those covering 

≥1% area of the riverbed within a given reach) were collected on each sampling visit. Samples 

were collected using a Surber sampler (500 µm mesh size). The area (0.09 m2) within the 

frame was disturbed for 30 s to dislodge all animals in the substrate; and the animals were 

subsequently swept by the water into the net for collection. In-stream macrophyte stems and 

leaves within the sampler frame were enclosed in the net and then cut off from the plant as 

close to the substratum as possible, and then sampled together with substrate. In-stream 

macroalgae were enclosed in the net and also sampled with the benthos. Flow was created 

manually in slow flowing biotopes (marginal plant and silt) to assist sample collection. 

Macrophyte or macroalgae surface areas were not added when expressing data from them 

as per m2 of substratum. 

In total, 228 macroinvertebrate samples were collected. In the control reach, in spring 

2014,  fifteen samples were collected on each occasion, from five biotopes (three samples 

per biotope) (G, SA, SI, MP and MSF). The same number of samples were collected in spring 

2016. 

In the reference reach, in spring 2014, twenty-one samples were collected on each 

occasion, from seven biotopes (CO, G, SA, SI, MP, MA and MSF). The same number of 

samples were collected in spring 2016.  

In the rehabilitated reach, in spring 2014, eighteen samples were collected on each 

occasion, from six biotopes (CO, G, SA, SI, TR and LL). The same number of samples were 

collected after rehabilitation (spring 2016), together with three additional samples from each 

of MP and MSF, to give 24 samples on each occasion. 

Macroinvertebrate samples were kept separate; specimens from each sampled biotope 

were identified and counted in the laboratory. Specimens were identified to the lowest 

practical taxonomic level (either species or genus) with the exception of Oligochaeta and 
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Coleoptera, which were identified to family; with Diptera also identified to family (except 

Chironomidae which were identified to sub-family). Macroinvertebrate biomass (mg Dry 

Mass (mgDM)) was estimated according to published size-specific mass regressions (Meyer, 

1989; Wenzel, Meyer, & Schwoerbel, 1990; Burgherr & Meyer, 1997; Poepperl, 1998; 

González, Basaguren, & Pozo, 2002; Giustini et al., 2008) except for Dry Mass of Oligochaeta 

and insect larvae, which were measured directly (following Rodriguez & Verdonschot, 2002; 

Benke & Huryn, 2006) as there were no appropriate length:mass regressions for them. 

Macroinvertebrate abundance data for each biotope were assigned to eight feeding 

strategies (hereafter called Functional Feeding Groups, FFG) according to Tachet et al. (2010). 

Reach-level values of taxon count sample-1, taxon biomass sample-1, and FFG count 

sample-1 were calculated according to the relative coverage area of each sampled biotope in 

the given reach. The given reach-level variable lists were created by summing biotope-

specific list values that were weighted by their availability percentage (following Huryn & 

Wallace, 1987; Lugthart & Wallace, 1992; Kedzierski & Smock, 2001; Pedersen et al., 2007; 

Jähnig et al., 2010). 

Macroinvertebrate total density (individuals sample-1), taxon richness, taxon diversity 

(Shannon-Wiener diversity), evenness, EPT richness, EPT diversity, EPT count%, and 

Chironomidae count% metrics were calculated (using a built-in option in PRIMER v.7 software 

(Clarke & Gorley, 2015)) from the reach-level taxon count sample-1 data lists. Total biomass 

(mgDM sample-1), EPT biomass%, and Chironomidae biomass% were calculated from reach-

level taxon biomass sample-1
 data lists. The reach-level FFG count sample-1 data list was used 

to calculate the percentage of density contributed by each FFG (following Tullos et al., 2009).   
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 Data analysis 2.4.

Wet surface area, CV-depth, CV-width, number of biotopes, SWI-biotope and in-stream 

biotope composition (predictor variables hereafter) were normalised (using a built-in option 

in PRIMER v.7 software (Clarke & Gorley, 2015)), Euclidean distance matrices were then 

calculated and used in a two-way permutational MANOVA (Anderson, Gorley, & Clarke, 

2008). Principal Component Analysis (PCA) was conducted to visualise which predictor 

variables separated the study reaches. PCA results were ordinated by reaches; and variables 

contributing >0.5 Spearman’s rank correlation () were included as vectors (following Clark, 

2011). Two-way permutational MANOVA with Period (fixed factor, two levels: before, after) 

and Reach type (fixed factor, three levels: control, reference, rehabilitated), was used to run a 

BACI design test and all possible pair-wise tests. All tests used 9999 random permutations 

under a reduced model. When there were too few (< 100) possible permutations to obtain a 

reasonable test, a P value was calculated using 9999 Monte Carlo draws from the appropriate 

asymptotic permutation distribution (Anderson & Robinson, 2003).  

Macroinvertebrate total density, total biomass and FFG densities were adjusted to show 

values per square metre before the data analysis. Macroinvertebrate total density, total 

biomass, taxon richness, taxon diversity, evenness, EPT richness, EPT diversity, EPT count%, 

EPT biomass%, Chironomidae count% and Chironomidae biomass% metrics (response 

variables hereafter) were log(x), Sqrt(x), or Asin(x) transformed prior to the analysis to 

improve the normality of the data distribution and satisfy the test requirements, where 

applicable. A Euclidean distance matrix was first used to calculate distances between samples 

for each metric separately and reaches were compared before-after rehabilitation period 

using the same permutational MANOVA design. 

When a permutation MANOVA gave a significant (P<0.05) overall interaction (Reach  

Period) in predictor variables or in any response variable, all pairwise comparisons were 

made to examine which elements contributed to the overall interaction (significant 

dissimilarities). If there was no overall effect but there were only Reach or Period effects, all 

the pairwise comparisons related to that Reach effect or Period effect were examined, 

because the aim of the study was to capture all changes (all significant dissimilarities).  
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The relationships between response variables and predictor variables of the rehabilitated 

reach were analysed using distance-based linear modelling (DISTLM) (following Eddy & 

Roman, 2016; Heerhartz et al., 2016). Euclidean distance matrices of all response variables 

used for the previously described permutational MANOVA analyses were used separately. 

Sequential tests were used to determine which predictor variable or combinations of which 

predictor variables best explained variability in each response variable. Each sequential test 

was performed with a step-wise selection procedure using Akaike’s information criterion 

(AICc). The relationship between response variables and predictor variables was determined 

using Spearman’s rank correlation (>0.5). 
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3. Results 

  Channel morphological variables and in-stream biotope composition 3.1.

The creation of a low-flow channel clearly provided more area for marginal macrophytes 

to grow and increased the number of organic and mineral biotopes, so that the rehabilitated 

reach had more in-stream biotopes and higher biotope diversity (SWI-biotope) than either 

the control reach or the reference reach (Table 1). PCA of the predictor variables (wet surface 

area, CV-depth, CV-width, number of biotopes, SWI-biotope and in-stream biotope 

composition) showed that, before rehabilitation, both control and rehabilitated reaches were 

separated from the reference reach along the first axis (PC1 in Figure 2, Table S1). PC1 

described 60.9% of the differences between the control and rehabilitated reaches (which lay 

towards the left of PC1) and the reference reach (towards the right; Figure 2). This separation 

was driven by higher silty biotope percentages in the control and rehabilitated reaches ( = 

0.54), than the reference reach (Table 1). The reference reach also had a higher proportion of 

gravel ( = 0.54) than the other two reaches (Table 1). PC2 captured 26% of the differences 

between the rehabilitated reach (towards the top of PC2) and the reference reach (towards 

the bottom; Figure 2). Leaf litter ( = 0.58), marginal plants ( = 0.54), SWI-biotope ( = 0.55), 

and number of biotopes ( = 0.57) were the most important contributors to PC2 (Table S1). 

They all remained higher in the rehabilitated reach than the reference reach (Table 1). 

There were statistically significant interactions between Period and Reach for the 

predictor variables (Permutation MANOVA, Pseudo-F = 125.2, df = 2, P=0.001) (Tables S2). 

Before rehabilitation, the measured predictor variables of the control and rehabilitated 

reaches were similar but differed significantly (post-hoc Student’s t test, t = 77.62, df = 4, 

P=0.001 and t = 71.49, df = 4, P=0.001) from that of the reference reach (Table S3). 

Rehabilitation significantly increased the rehabilitated reach’s variability in the measured 

predictor variables (t = 9.23, df = 4, P=0.002) (Table S4). Less of the surface area of stones & 

gravel was covered by silt compared to that in the pre-rehabilitation condition or in the 

control reach. The rehabilitated reach remained significantly different from the reference 

reach (t = 37.88, df = 4, P=0.001) (Table S3), despite the significant improvement in its 

channel morphology and biotope composition.  
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  Macroinvertebrate community metrics 3.2.

Forty macroinvertebrate taxa were recorded in both the control reach and the 

rehabilitated reach prior to rehabilitation; 71 in the reference reach (Table S5). Two years 

after rehabilitation, the number of taxa in the rehabilitated reach had increased to 55 but 

was unchanged in the other two reaches. All newly recorded species in the rehabilitated 

reach were also recorded in the reference reach. The rehabilitated reach’s 

macroinvertebrate total density, total biomass, taxon richness, taxon diversity, evenness, EPT 

richness, EPT diversity, EPT count%, and EPT biomass% all increased significantly (P<0.005) by 

Spring 2016 compared with before rehabilitation (Figure 3, Table 2). 

There were statistically significant interactions between Period and Reach for each of: 

macroinvertebrate total density (Permutation ANOVA, Pseudo-F = 23.92, df = 2, P=0.0001), 

total biomass (Pseudo-F = 31.43, df = 2, P=0.0001), taxon richness (Pseudo-F = 7.65, df = 2, 

P=0.002), taxon diversity (Pseudo-F = 56.19, df = 2, P=0.0001), evenness (Pseudo-F = 31.87, df 

= 2, P=0.0001), EPT diversity (Pseudo-F = 10.73, df = 2, P=0.0003), EPT count% (Pseudo-F = 

13.49, df = 2, P=0.0001), Chironomidae count% (Pseudo-F = 38.63, df = 2, P=0.0001), 

Chironomidae biomass% (Pseudo-F = 18.20, df = 2, P=0.0001) (extra information is provided 

in Table S6). There was statistically significant Period effect for EPT richness (Pseudo-F = 5.95, 

df = 1, P=0.016) and statistically significant Reach effects for each of EPT richness (Pseudo-F = 

39.62, df = 1, P=0.0001) and EPT biomass% (Pseudo-F = 11.94, df = 1, P=0.0003). 

The control and rehabilitated reaches were statistically similar to each other (P>0.05) 

before the rehabilitation process (Spring 2014), shown by pairwise tests between reaches 

(extra information is provided in Table S7) according to their measured macroinvertebrate 

community metrics (Figure 3,Figure 4). The reference reach had significantly higher values 

(P<0.005) for total density, total biomass, taxon richness, taxon diversity, evenness, EPT 

richness, EPT diversity, EPT count%, and EPT biomass% compared to the control and 

rehabilitated reaches (Figure 3,Figure 4, Table 2). The control and rehabilitated reaches had 

significantly higher (P<0.005) Chironomidae count% and Chironomidae biomass% as 

compared to comparable values for the reference reach (Figure 4, Table 2).  

Rehabilitation significantly (P<0.005) affected all measured macroinvertebrate community 

metrics of the rehabilitated reach (extra information is provided in Table S8) after just two 

years. Chironomidae count% and Chironomidae biomass% decreased significantly (P<0.005) 
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(Figure 4, Table 2). The rehabilitated reach differed significantly (P<0.005) by Spring 2016 

from the control reach in terms of all measured metrics and moved toward the reference 

reach in terms of taxon richness, taxon diversity, EPT richness, EPT biomass%, Chironomidae 

count% and Chironomidae biomass% (Table S7). Evenness and EPT diversity metrics were 

improved beyond those of the reference reach (Table 2).  
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 Functional Feeding Groups 3.3.

There were statistically significant interactions between Period and Reach for each of 

shredder (permutation ANOVA, Pseudo-F = 45.41, df = 2, P=0.0001), scraper (Pseudo-F = 

30.13, df = 2, P=0.001) and filter-feeder (Pseudo-F = 6.82, df = 2, P=0.003) (Table S9). 

The control and rehabilitated reaches initially were statistically similar to each other 

(P>0.05) in terms of their shredder, scraper and filter-feeder densities, shown by pairwise 

tests between reaches (Table S10). The reference reach had higher values (P<0.005) for 

shredder, scraper and filter-feeder density than either other reach (Figure 5, Table 3). 

Shredder density in the rehabilitated reach after rehabilitation increased significantly (t = 

15.68, df = 10, P=0.0025) (Table S11) to 392 individuals m-2 from 61 individuals m-2 before. 

Scraper density also increased significantly (t = 13.08, df = 10, P=0.0026) to 249 individuals m-

2 from 139 individuals m-2. Filter-feeder density increased significantly (t = 6.20, df = 10, 

P=0.0026) to 141 individuals m-2 from 48 individuals m-2 (Figure 5, Table 3). Despite these 

significant increases, the rehabilitated reach remained significantly different from the 

reference reach (Table S10).  
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 Relationships between response variables and predictor variables of the rehabilitated 3.4.

reach 

DISTLM show that, post-rehabilitation increases of macroinvertebrate evenness were 

positively related to increases in in-stream biotope diversity (SWI-biotope). Increases in 

Gravel%, Marginal plant%, and leaf litter% were related positively to significant increases in 

most of the measured macroinvertebrate community metrics - total density, total biomass, 

taxon richness, taxon diversity, EPT richness, EPT diversity, and EPT biomass% . However, 

Gravel% was related negatively to variations in Chironomidae count% and Chironomidae 

biomass%. Silt% was related negatively to total biomass and EPT count%.  

Before-after variations in macroinvertebrate FFG densities were explained mainly by post-

rehabilitation changes in in-stream biotope percentages rather than by other channel 

morphological metrics. Significant increases in shredder macroinvertebrate density was 

related positively to post-rehabilitation increases in Gravel%, Marginal plant%, and leaf 

litter%. Scraper density increased significantly in a positive relationship to post-rehabilitation 

increase in Gravel%. Filter-feeder density increased significantly in a positive relationship to 

post-rehabilitation increase in SWI-biotope. The significant proportion of the variations 

(before-after changes) in each response variable explained by the given predictor variables 

are available in Table 4.  
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4. Discussion 

Significant enhancements in the rehabilitated reach’s macroinvertebrate community 

structure and function in this study were correlated with clear increases in in-stream biotope 

diversity and changes in biotope percentages. The significant relationship between increases 

in macroinvertebrate structural and functional metrics and changes in biotope percentages – 

rather than changes in measured channel morphology metrics – indicates the importance of 

in-stream biotopes as structural and functional units in stream ecology, and as indicators for 

monitoring the outcomes of stream rehabilitation projects. The significant post-rehabilitation 

increases in macroinvertebrate taxon richness, taxon diversity, total density and total 

biomass recorded in the rehabilitated reach indicate that rehabilitation increased the stability 

of coarse mineral biotopes and resource availability of organic biotopes for 

macroinvertebrates. Reduced embeddedness of coarse biotopes improved the suitability of 

these substrates for many taxa because of increased substrate stability, reduced deposition 

of fine sediments, and increases in the availability of food in epilithic biofilms (Wood & 

Armitage, 1997). It is known that organic biotopes support higher taxon richness and 

diversity (Friberg et al., 1994; Friberg et al., 1998; Harrison et al., 2004; Friberg et al., 2014; 

Verdonschot et al., 2015). 

Higher measurements of EPT richness, EPT diversity, EPT count%, and EPT biomass also 

indicate that environmental conditions, particularly water velocity, substrate availability and 

oxygen concentrations, were improved by rehabilitation – EPT is considered a good metric 

when physico-chemical measures are not taken – because the three taxa are sensitive to 

environmental stressors (Downes et al., 1998).  Only a few other river rehabilitation studies 

have shown clear improvement in macroinvertebrate communities (Friberg et al., 1994; Biggs 

et al., 1998; Laasonen, Muotka, & Kivijärvi, 1998; Pedersen et al., 2007; Rios-Touma et al., 

2015; Lorenz, 2020). The primary source of new species here was expected to be 

downstream drift from an upstream reference reach, as aerial recolonisation by insects might 

be expected to take longer than two years (Matthaei, Werthmüller, & Frutiger, 1997; Lorenz, 

2020).  

The significant increase in abundance of shredder macroinvertebrates indicates greater in-

stream complexity, as these taxa are dependent on the availability of coarse particulate 

organic matter being deposited in pool areas (Smock, Metzler, & Gladden, 1989; Fenoglio et 
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al., 2005). Conversely, the increase in areas of higher water velocities and larger, more stable 

substratum particles of riffles and boulders offer more profitable foraging areas for scrapers 

(algal grazers), and more suitable attachment sites for filter-feeders (Williams & Moore, 

1986; Allan, 1995). We did not sample boulders (emergent or submerged boulders) in this 

study because there were not enough patches of them to collect three independent samples 

per visit, but their presence (as oviposition substrates) in the rehabilitated reach could have 

accelerated the recovery process and recolonisation of many taxa. Larger interstitial pores 

could also increase retention of particulate organic food and act as refugia from diverse flow 

conditions (Gee, 1982; Culp, Walde, & Davies, 1983). Absence of a resource (biotope) can 

result in unsuccessful or limited success of rehabilitation projects as macroinvertebrate 

species often have specific biotope requirements at different stages of their life, requiring 

that all these biotopes must be present and of sufficient quality to guarantee recolonisation 

and development of sustainable populations (Demars et al., 2012; Verdonschot et al., 2015). 

Deposit-feeders continually dominated in the control reach, indicating that sedimentation 

- as the dominant physical process - was detrimental to a diverse macroinvertebrate 

community. Similarly, degraded reaches are characterised by homogeneous habitat 

conditions (because of reduced flow diversity) and limited biotope availability (e.g. surface 

coverage of biotopes by siltation). Siltation can shift the macroinvertebrate composition 

towards taxa with low dissolved oxygen requirements (Angradi, 1999; Zweig & Rabeni, 2001) 

and decrease those vulnerable to fine sediments (due to damage of filter-feeding apparatus 

or delicate gills) (Wood & Armitage, 1997; Larsen, Vaughan, & Ormerod, 2009). The low 

abundance of scrapers and filter-feeders in the control reach provided more evidence of the 

negative effects of silt on macroinvertebrate functional composition. Deposition of fine 

sediment is associated with reduced food quality or impaired access to food resources for 

scraper and filter-feeder invertebrates (Kreutzweiser, Capell, & Good, 2005; Rabení, Doisy, & 

Zweig, 2005). 

The rehabilitated reach attained conditions similar to those of the reference reach two 

years after rehabilitation. Few other rehabilitation studies have evidenced such clear, 

combined structural and functional recovery of macroinvertebrate populations and 

communities in such a short time. Some of these others have indicated that 

hydromorphological rehabilitation did not generally promote macroinvertebrate biodiversity, 
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even if habitat changes were considerable (Lepori et al., 2005; Jähnig et al., 2010; 

Northington et al., 2011; Ernst, Warren, & Baldigo, 2012; Stranko, Hilderbrand, & Palmer, 

2012; Haase et al., 2013; Friberg et al., 2014; Pedersen, Kristensen, & Friberg, 2014), whilst 

others reported only moderate levels of improvement (Purcell, Friedrich, & Resh, 2002; 

Harrison et al., 2004; Roni et al., 2006; Schiff, Benoit, & Macbroom, 2011; Testa, Shields, & 

Cooper, 2011; Smith et al., 2019). These earlier studies may have failed to fully capture 

positive effects of rehabilitation on macroinvertebrate biodiversity because of the methods 

used to sample macroinvertebrates. Most of the above evaluations sampled only riffle or 

riffle-pool habitats, and thus did not cover all available in-stream biotopes. These are the 

least likely to change as a result of habitat enhancement (Brooks et al., 2002; Palmer, 

Menninger, & Bernhardt, 2010). One resolution to the problem of adequate sampling comes 

from the multi-habitat sampling protocol set out in the EU WFD. This reflects the proportions 

of microhabitat types (equivalent to in-stream biotopes) that are present with ≥5% cover 

(Jähnig et al., 2010; Haase et al., 2013; Verdonschot et al., 2015; Funnell, 2019; Lorenz, 

2020).  

The failure of some of many earlier rehabilitation projects to increase biotope composition 

and diversity may also explain a consequent lack of positive response by macroinvertebrates 

(e.g. Jähnig & Lorenz, 2008; Verdonschot et al., 2015). Macroinvertebrate species often have 

specific biotope requirements at different stages of their life, requiring that all these biotopes 

must be present and of sufficient quality to guarantee recolonisation and development of 

sustainable populations (Demars et al., 2012; Verdonschot et al., 2015). Limitation of the 

availability of key organic biotopes in rehabilitated rivers can hinder colonisation by 

additional species (Lorenz, Jahnig, & Hering, 2009).  

The present study highlights the importance of rehabilitating in-stream biotopes in river 

channel conservation improvements, because they are ecologically relevant for the 

biodiversity of macroinvertebrates. It also highlights the importance of them as a monitoring 

design that can measure both structural and functional outcomes. In-stream biotopes were 

first shown to be the building blocks of river conservation and should become the prime 

focus of river managers (Harper, Smith, & Barham, 1992; Harper & Everard, 1998; Newson et 

al., 1998; Harvey, Clifford, & Gurnell, 2008). We show here that they still have a place within 

the new priorities of river conservation (Boon, 2012). For example, understanding biotopes 
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goes some way towards addressing the lack of basic research addressing the relationships 

between physical habitat and biological communities as highlighted by Vaughan et al. (2009) 

and Boon (2012). If we understand biotopes, we may be in a better position to not only 

rehabilitate waterways, but to identify and conserve those with high conservation value. Pre-

defined sampling of the macroinvertebrate community - stratified at in-stream biotope level - 

is better than random sampling of the entire reach to capture hydromorphological 

rehabilitation outcomes. Both structural and functional aspects of ecological integrity in 

macroinvertebrate communities need to be assessed, because maintaining functional 

redundancy through taxonomic biodiversity is the main rehabilitation target (Palmer, 

Ambrose, & Poff, 1997). 

 

Conclusion 

This study spanned only 18 months, but it nevertheless demonstrated that biodiversity 

improvements can begin within such a short period. Although it may have failed to detect 

changes in some taxa, or longer-term changes, it demonstrates the importance of post-

rehabilitation monitoring which, as recently reported, is infrequently implemented (Al-

Zankana, Matheson, & Harper, 2020). 

Rehabilitation schemes need clearly defined target states, and judging success against 

reference or control sites (Geist & Hawkins, 2016). The lack of any differences in the control 

or reference reaches’ macroinvertebrate structural (Table S8) and functional (Table S11) 

metrics (before vs after) strongly suggested that the positive changes in the rehabilitated 

reach’s metrics were induced by the morphological effects of the rehabilitation applied to 

that reach only and not by any climatic or other environmental changes between years.  

Rehabilitation projects should be evidence based and well monitored so that lessons can 

be learnt from successes and failures to inform best practice (Geist & Hawkins, 2016). The UK 

River Habitat Survey (Environment Agency, 2003) and IUCN’s river restoration strategy (Addy 

et al., 2016) provide landscape-scale monitoring methods, but these methods rely on the 

smaller underlying units of assessment being accurate, robust and replicable. In riverine 

environments, biotopes represent the smallest hydromorphological scale at which 

macroinvertebrate community structure or function can be meaningfully quantified (Harvey, 
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Clifford, & Gurnell, 2008), so assessment at this level is crucial for the success of large-scale 

methods. We show by biotope analysis the rehabilitation of whole-channel 

hydromorphological heterogeneity, enhancing biotope biodiversity and thus 

macroinvertebrate community matrices. Our work demonstrates the utility of in-stream 

biotope analysis in the assessment of river rehabilitation outcomes.  
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Table 1. Mean and Standard Deviation (SD) of predictor variables (channel morphology 
metrics and biotope composition) of the three study reaches recorded before and after 
rehabilitation. Sample size of each mean=3. CV-depth; coefficients of variation of channel 
depth, CV-width; coefficients of variation of channel width, SWI-biotope; in-stream biotope 
diversity characterised by the Shannon-Wiener diversity index. 

 

Predictor 
variables 

Period Control Reference Rehabilitated 

Mean SD Mean SD Mean SD 

CV-depth Before 0.36 0.07 0.61 0.06 0.34 0.30 

After 0.36 0.06 0.62 0.08 0.45 0.07 

CV-width Before 0.13 0.04 0.33 0.01 0.14 0.02 

After 0.13 0.02 0.34 0.03 0.35 0.02 

SWI-biotope Before 0.67 0.05 0.82 0.04 0.76 0.03 

After 0.67 0.04 0.81 0.06 0.94 0.03 

Wet surface area 
(m2) 

Before 815 4 968 6 887 4 

After 818 5 970 4 875 4 

Number of 
biotopes 

Before 5 0 7 0 6 0 

After 5 0 7 0 8 0 

Cobbles% Before 0.0 0.0 11.3 0.5 4.3 0.1 

After 0.0 0.0 11.2 0.5 7.4 0.3 

Gravel% Before 36.0 1.5 71.7 1.3 38.1 1.6 

After 35.0 1.8 73.0 1.9 58.7 1.2 

Sand% Before 5.0 0.5 4.4 1.0 13.5 1.1 

After 8.5 0.9 4.9 1.2 4.0 0.4 

Silt% Before 52.0 2.3 2.2 0.1 41.1 3.1 

After 51.0 1.2 1.8 0.2 3.4 0.2 

Tree root% Before 0.0 0.0 0.0 0.0 1.7 0.2 

After 0.0 0.0 0.0 0.0 3.0 0.3 

Marginal plants% Before 1.3 0.0 1.6 0.0 0.0 0.0 

After 1.0 0.0 2.2 0.01 9.0 0.5 

Leaf litter% Before 0.0 0.0 0.0 0.0 1.2 0.0 

After 0.0 0.0 0.0 0.0 10.0 1.3 

Macroalgae% Before 0.0 0.0 6.7 0.8 0.0 0.0 

After 0.0 0.0 5.0 0.3 5.0 0.6 
Submerged Fine-
leaved 
Macrophytes% 

Before 5.8 0.8 2.0 0.0 0.0 0.0 

After 4.5 0.1 2.0 0.0 4.5 0.2 
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Table 2. Mean and Standard Deviation (SD) of response variables (macroinvertebrate 
metrics) in three study reaches. Sample size of each mean=6. 

 

Response variables Period Control Reference Rehabilitated 

Mean SD Mean SD Mean SD 

Total density 
(individuals.m-2) 

Before 853.7 176.7 1816.9 119.6 775.1 91.0 

After 868.7 208.9 1894.9 170.8 1188.1 234.7 

Total biomass 
(mgDM.m-2) 

Before 253.8 67.8 2618.3 532.1 300.2 205.8 

After 207.3 81.0 3238.0 640.1 1858.4 397.0 

Taxon richness Before 3.2 0.5 7.1 0.4 3.8 0.3 

After 3.1 0.4 6.6 0.6 6.6 0.3 

Taxon diversity Before 7.0 1.9 20.9 1.5 7.0 0.9 

After 6.7 1.8 20.8 3.4 23.2 1.4 

Evenness Before 0.6 0.1 0.8 0.0 0.5 0.0 

After 0.6 0.1 0.8 0.0 0.9 0.0 

EPT richness Before 1.4 0.7 3.5 0.1 1.6 0.7 

After 1.1 0.7 3.2 0.5 3.0 0.1 

EPT diversity Before 2.5 0.5 8.5 1.3 3.6 1.6 

After 2.2 0.8 7.8 2.9 11.7 1.2 

EPT count% 
 

Before 1.8 1.5 39.8 7.0 2.5 1.6 

After 1.6 1.4 32.8 7.3 16.9 1.0 

Chironomidae 
count% 

Before 51.3 11.2 10.6 1.2 48.5 7.0 

After 56.9 9.2 11.0 2.6 12.7 2.0 

EPT biomass% Before 6.7 13.5 25.1 10.2 10.1 9.2 

After 8.2 17.0 22.5 2.3 20.8 5.4 

Chironomidae 
biomass% 

Before 18.2 11.5 3.2 0.1 11.4 6.9 

After 22.4 11.4 3.6 0.4 2.8 0.4 
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Table 3. Mean and standard deviation (SD) of FFG density (individuals.m-2) for three study 
reaches. Sample size of each mean=6. 

 

FFG Period Control Rehabilitated Reference 

Mean SD Mean SD Mean SD 

Absorber Before 26.9 24.1 32.8 8.2 28.4 9.0 

After 26.6 23.0 23.0 5.9 16.6 5.7 

Deposit-feeder Before 302.3 54.7 285.0 35.8 284.6 24.1 

After 305.3 67.6 193.9 64.0 247.4 18.1 

Shredder Before 97.0 41.6 61.0 14.3 544.7 54.1 

After 100.9 40.8 392.0 66.3 560.1 99.8 

Scraper Before 145.7 49.0 139.0 9.0 613.3 80.5 

After 146.0 49.3 249.0 31.0 655.5 55.4 

Filter-feeder Before 86.3 38.1 48.3 15.4 170.9 26.6 

After 95.6 39.3 141.0 36.4 251.1 29.6 

Piercer Before 1.3 0.6 5.3 3.4 4.6 4.8 

After 1.2 0.5 18.7 9.2 9.5 5.4 

Predator Before 147.8 30.0 136.0 12.7 154.7 45.8 

After 140.6 38.4 151.0 12.3 127.3 31.0 

Parasite Before 46.3 20.1 33.2 4.4 15.7 3.8 

After 52.5 20.2 18.7 3.6 27.3 14.7 
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Table 4. Summary of sequential tests, obtained from distance-based linear models 
(DISTLM), seeking relationships between  variations in response variables (macroinvertebrate 
metrics) and predictor variables (channel morphological and biotope composition) of the 
rehabilitated reach. Values displayed are significant at P<0.05 and indicate both the 
proportion of variability explained by each predictor variable and the cumulative variability 
explained by the models. + indicate additions to the model. Correlations were obtained using 

Spearman’s rank correlation (>0.5), ‘positive’ and ‘negative’ indicate positive or negative 
correlations. SWI-biotope, in-stream biotope diversity. 

 

Response variables Predictor variables Proportion Cumulative Relationship 

Total density Gravel% 0.87 0.87 positive 

Total biomass Marginal plant% 
+Silt% 

0.64 
0.15 

0.64 
0.79 

positive 
negative 

Taxon richness Gravel% 
+Marginal plant% 

0.39 
0.25 

0.39 
0.64 

positive 
positive 

Taxon diversity Gravel% 
+Marginal plant% 

0.58 
0.18 

0.58 
0.76 

positive 
positive 

Evenness SWI-biotope 0.98 0.98 positive 

EPT richness Gravels% 0.52 0.52 positive 

EPT diversity Gravels% 0.78 0.78 positive 

EPT count% Silt% 0.96 0.96 negative 

Chironomidae 
count% 

Gravel% 0.95 0.95 negative 

EPT biomass% Gravel% 
+Leaf litter% 

0.38 
0.23 

0.38 
0.61 

positive 
positive 

Chironomidae 
biomass% 

Gravel% 0.70 0.70 negative 

Shredder Gravel% 
+Marginal plant% 
+Leaf litter% 

0.43 
0.33 
0.20 

0.43 
0.76 
0.96 

Positive 
positive 
positive 

Scraper Gravel% 0.95 0.95 positive 

Filter-feeder SWI-biotope 0.78 0.78 positive 
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Figure 1. Map of the study area. A) Outline of the UK. B) Outline of the catchment of the 
River Welland and the location of Market Harborough. C) The location of the reference reach, 
the rehabilitated reach and the control reach. Drawn by Mr Chris French, Welland Rivers 
Trust. 
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Figure 2. PCA ordination plots showing before-after trends of channel morphology metrics 
and in-stream biotope composition, based on reach-level data measured before and after 
rehabilitation. In the Period-Reach key, B refers to ‘Before rehabilitation’ and A to ‘After 

rehabilitation’. Vectors indicate variables correlated at >0.5. SWI-biotope, in-stream biotope 
diversity. 
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Figure 3. Before-after variations in: A) Total density. B) Total biomass. C) Taxon richness. D) 
Taxon diversity. E) Evenness. B, Before rehabilitation; A, After rehabilitation; DM, dry mass. 
Pairs of matching lowercase letters (a, b or c) indicate statistically indistinguishable data 
values.  
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Figure 4. Before-after variations in: A) EPT richness. B) EPT diversity. C) EPT count%. D) 
Chironomidae count%. E) EPT biomass%. F) Chironomidae biomass%. B, Before rehabilitation; 
A, After rehabilitation; DM, dry mass; EPT, Ephemeroptera, Plecoptera & Trichoptera. Pairs of 
matching lowercase letters (a, b or c) indicate statistically indistinguishable data values.  
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Figure 5. Before-after variations in macroinvertebrate functional feeding group average 
abundance (individuals m-2). B, Before rehabilitation; A, After rehabilitation. 


