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Figure S1. Funnel plots for effects on educational outcomes. A. Genetic nurture
effects. B. Direct genetic effects. C. Unadjusted parental effects. D. Unadjusted child

effects.
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Figure S2. Jackknife sensitivity analyses for effects on educational outcomes.
A. Genetic nurture effects. B. Direct genetic effects. C. Unadjusted parental effects.
D. Unadjusted child effects. The estimate corresponding to each study listed reflects
the pooled beta from a meta-analysis where that study was omitted.
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Figure S3. Forest plot of multilevel random effects model for unadjusted
effects on educational outcomes. A. Unadjusted parental effects. B. Unadjusted
child effects. Effect sizes were standardised beta coefficients, which represent how
many standard deviations of change in educational outcome occur per standard
deviation of change in EA PGS.



MREM of parental effects MREM of child effects

Genetic nurture effects Unadjusted parental effects Direct genetic effects Unadjusted child effects
Kcohort 7 3 7 6
Kestimate 19 8 15 10
Brooled 0.08 0.21 0.17 0.24
Bos% cl 0.07-0.10 0.15-0.26 0.12-0.21 0.19-0.29
O?Level 2 X2<0.01, p=.5000 X2 <0.01, p=.5000 X2<0.01, p=.5000 X?=1.68, p=.0977
O%Level 3 X2<0.01, p=.5000 X?=5.73, p=.0083 X?=5.12,p=.0118 X?=1.40,p=.1187
I? Level 1 >99.99% 19.14% 21.54% 14.57%
I? Level 2 <0.01% <0.01% <0.01% 24.11%
I Level 3 <0.01% 80.86% 78.46% 61.32%
Publication bias Q=10.88, p=.3486 Q=3.22,p=.0727 Q=0.02, p=.8787 Q=10.90, p =.3427

Table S5. Three-level random effects models after removing the potentially influential study (Kong et al. 2018)

Note. Sensitivity analysis to assess the role of a potentially influential study was performed by removing the largest included study Kong et al. 2018. MREM =
Multilevel random effects model; 8 = standardized regression coefficients (i.e., the metric of effect sizes); Cl = confidence interval; x? Statistics from likelihood-
ratio test to test within-cohort variance (0?Level 2) and between-cohort variance (0?Level 3) for significance; /2 = % of the total variance accounted for by random

sampling variance (Level 1), variation within cohorts (Level 2), variation between cohorts (Level 3); Publication bias, assessed by using precision (sampling
variance) to predict the effect size.



Parental effects Child effects

Joint parental model? Unadjusted parental effects Unadjusted child effects  Joint child model°
Kcohort 8 3 7 8
Kestimate 30 8 11 27
Brooled 0.11 0.21 0.24 0.2
Bos% cl 0.08-0.14 0.15-0.26 0.20-0.28 0.16-0.24
Brobust cI® 0.07-0.14 0.08-0.33 0.19-0.29 0.15-0.24
O?Level 2 X2 =45.23., p <.0001 Xx?<0.01, p=.5000 X?=1.55, p=.1067 X?=160.17, p < .0001
O%Level 3 X?=1.23,p=.1339 X?=5.73, p=.0083 X?=1.27,p=.1298 X?=5.46, p = .0097
I? Level 1 10.17% 19.14% 11.57% 8.70%
I? Level 2 65.83% <0.01% 28.51% 36.17%
I Level 3 24.00% 80.86% 59.92% 55.13%

Publicaiton bias

Q=4.01, p=.0453

Q=3.22, p=.0727

Q=0.47, p=.4917

Q=9.56, p=.0020

Table S6. Three-level random effects models of unadjusted parental and child effects on educational outcomes

Note. 2 Effect sizes of genetic nurture and unadjusted parental effects were jointly modelled. ® Effect sizes of direct genetic and unadjusted child effects were

jointly modelled. ¢ Robust confidence intervals were cluster-robust variance estimations , for details see Supplemental Notes 7.1. MREM = Multilevel random

effects model; B = standardized regression coefficients (i.e., the metric of effect sizes); Cl = confidence interval; x2 Statistics from likelihood-ratio test to test

within-cohort variance (0?Level 2) and between-cohort variance (0?Level 3) for significance; > = % of the total variance accounted for by random sampling variance

(Level 1), variation within cohorts (Level 2), variation between cohorts (Level 3); Publication bias, assessed by using precision (sampling variance) to predict

the effect size.



Educational attainment

Educational achievement

Subgroup Kcohort Kestimate  Bpooled  B95% CI Kestimate  Bpooled  B95% cl

Genetic nurture effects 2 3 0.11  0.08-0.14 3 0.05 0.01-0.09
Direct genetic effects 2 2 0.12  0.07-0.17 2 0.21 0.16-0.26
Unadjusted child effects 2 1 0.28 0.22-0.34 2 0.24 0.21-0.28

Table S9. Moderating role of educational outcome type within study

Note. Type of educational outcome moderation robustness check by examining studies assessing both educational attainment and achievement. Moderation

analysis was performed with studies (de Zeeuw et al., 2020 and Rustichini et al., 2018) in which both educational attainment and achievement were

assessed. No effects of unadjusted parental effects were available from these studies and therefore were not shown here.

Type of the outcome assessed as a dichotomized moderator [educational attainment (the highest level of education completed, e.g., year of schooling),
educational achievement (how well performed at school, e.g., high school grades)]. Dummy variables were created for each category of the potential

moderator. In order to obtain the mean effect (including significance and confidence interval) of all categories, separate meta-regressions were conducted,

taking each category as the reference category in turn.



Supplemental Notes

1 Capturing genetic nurture effects with parent(s)-offspring genotype
1.1 Virtual-parent design

The parental genetic material transmitted to their offspring is randomly assigned
during meiosis, with each allele having a 50% chance of being transmitted to the
gamete (egg or sperm) and then to the offspring. Alleles that are not transmitted to
offspring can nonetheless influence offspring outcomes through environmental rather
than genetic pathways. The non-transmitted parental genotype can be considered as
a “virtual parent” who is not genetically related to the offspring, whereas the
transmitted parental genotype (50% from mother and 50% from father) makes up the
child genotype. The effect of polygenic scores (PGSs) derived from non-transmitted
parental genotype on offspring outcome is thus free from genetic confounding
between parents and offspring due to shared genotypes.

In regressions with child education as the outcome, let PGSt and PGSnr be the
standardised PGS of transmitted and non-transmitted parental genotypes
respectively, Cp be the child phenotype, and Brand Bnt be the corresponding
respective coefficients. The model can be expressed as follows:
Cp =01 *PGSt+ fBnr *PGSnT + €
The estimated genetic nurture effects are:
Genetic nurture effects = Byt
As both transmitted and non-transmitted parental genotype have nurturing effects,
direct genetic effects originating in the child are:
Direct genetic effects = B7- Bt
For detailed decompositions of aforementioned equations see '. For more
sophisticated decompositions of genetic influences using the virtual parent design,
including genetic nurture effects, direct genetic effects, the assortative mating—
induced confounding effect for the direct genetic effect component, and the
confounding effect of the genetic nurturing component, see 2.



1.2 Statistical control approach

The statistical control approach utilizes the complete parental genotype as an
aggregation of transmitted and non-transmitted genotypes. Disentanglement of
genetic nurture and direct genetic effects is achieved by modelling the association
between parental PGS(s) and offspring phenotype while controlling for offspring
PGS. As offspring genotype can fully mediate the effects of the parental transmitted
genotype, the remaining effects of parental genotype on offspring outcome can be
environmentally mediated, i.e., via genetic nurture effects. Similarly, since the effect
of offspring genotype is controlled for parental genotype, it thus reflects direct

genetic effects free from the inflation from genetic nurture.

Let PGSc, PGSm and PGSp be the standardised PGS of child, maternal and paternal
genotype respectively, and Bc, Bv and Br be the corresponding coefficients. The full
statistical control model can be expressed as follows when genotypes of both
parents are available:
Cp=Lc*PGSc+ fm*PGSu+ Lr*PGSp + e
The partial statistical control model can be expressed as follows when genotypes of
one parent is available:
Cp=fc*PGSc+pm*PGSu+e
or
Cp =Bc *PGScpBpr*PGSp + e

The estimated genetic nurture effects are:

Maternal genetic nurture effects = fBu

Paternal genetic nurture effects = Bp
Importantly, estimates from the partial statistical control model can still be biased as
they do not account for the confounding role of the other parent’s PGS 3. The
estimated direct genetic effects are:

Direct genetic effects = Sc



2 Study selection and assessment
2.1 Literature search

Two search strategies were employed for study identification. First, we
systematically searched the following databases:

1) Ovid:

i) MEDLINE In-Process & Other Non-Indexed Citations and Daily
i) EMBASE

i) PsycINFO

2) Web of Science Core Collection:

i) Sciences Citation Index Expanded (SCI-EXPANDED);

ii) Social Sciences Citation Index (SSCI);

iii) Arts & Humanities Citation Index (A&HCI);

iv) Emerging Sources Citation Index (ESCI).

3) PubMed.

The search terms are described below:

((education* [Title/Abstract]) OR (academic [Title/Abstract]) OR (college degree
[Title/Abstract]) OR (college entry [Title/Abstract]) OR (university degree
[Title/Abstract]) OR (university entry [Title/Abstract]) OR (school performance*
[Title/Abstract]) OR (school achievement* [Title/Abstract]) OR (performance in school
[Title/Abstract]) OR (schooling [Title/Abstract])

AND

(polygenic scor* [Title/Abstract]) OR (polygenic risk scor* [Title/Abstract]) OR
(genetic scor* [Title/Abstract]) OR (genetic risk scor* [Title/Abstract]) OR (genomic
scor* [Title/Abstract]) OR (genomic risk scor* [Title/Abstract]) OR (genome-wide
polygenic scor* [Title/Abstract])

AND

(nature of nurture [Title/Abstract]) OR (genetic nurtur* [Title/Abstract]) OR (virtual-
parent design [Title/Abstract]) OR (pseudo-control [Title/Abstract]) OR (dynastic
effect” [Title/Abstract]) OR (intergeneration* [Title/Abstract]) OR (multigeneration®
[Title/Abstract]) OR (transmit* allele* [Title/Abstract]) OR (nontransmit* allele*
[Title/Abstract]) OR (non-transmit* allele* [Title/Abstract]) OR (passive gene—
environment correlation [Title/Abstract]) OR (genetic inheritance [Title/Abstract]) OR



(genetic confounding* [Title/Abstract]) OR (genetic transmission [Title/Abstract]) OR
(genetic influence* [Title/Abstract]) OR (parental transmission [Title/Abstract]) OR
(maternal transmission [Title/Abstract]) OR (paternal transmission [Title/Abstract])
OR (parental influence* [Title/Abstract]) OR (maternal influence* [Title/Abstract]) OR
(paternal influence* [Title/Abstract]) OR (social inheritance [Title/Abstract]) OR
(social genetic effect” [Title/Abstract]) OR (environmental transmission
[Title/Abstract]) OR (cultural transmission [Title/Abstract]) OR (vertical transmission
[Title/Abstract]) OR (familial transmission [Title/Abstract]) OR (family-based stud*
[Title/Abstract]) OR (trio* [Title/Abstract] OR (triad* [Title/Abstract] OR (dual*
[Title/Abstract] OR (dyad* [Title/Abstract]))

These search terms were translated into suitable terms for the Ovid database
(MEDLINE, EMBASE and PsycINFO), Web of Science and PubMed, which can be
made available upon request.

Second, we manually searched the reference list of relevant articles, including
studies that used virtual parent and statistical control approaches to investigate the
genetic nurture effects on education, as well as unpublished evidence in preprint
platforms were screened to identify articles that were missed by the search. Two
authors (B.W. and T.S.) independently screened all articles retrieved from the search

on Rayyan (http://rayyan.qcri.org), a free platform for systematic review #. Potentially

eligible studies (see criteria below) were then reviewed in full text. This search
resulted in n=12 studies eligible for inclusion.

2.2 Inclusion criteria

Studies were included if they assessed genetic nurture effects on educational
outcomes, either educational attainment (e.g., years of education completed, highest
degree obtained) or educational achievement (e.g., national tests scores or levels,
school grades) in the general population. Due to lack of data in preliminary searches,
it was part of the protocol to exclude studies that were conducted in clinically-
referred sample or focused exclusively on specific types of educational outcomes
(e.g., performances on math course or linguistics). No genetic nurture study on
clinical sample or specific educational outcomes was present after the systematic



search. Studies were required to use one of the two designs that rely on genotype
data from parents and their biological offspring: 1) virtual parent: testing genetic
nurture effects on education by using parent(s) non-transmitted genotype to predict
children’s education. In this case polygenic scores of educational attainment
(hereafter referred as EA PGSs) calculated from at least one parent’s non-
transmitted alleles should be used; 2) statistical control: testing genetic nurture
effects on education by using parent(s)' whole genotype to predict children’s
education over and above children's own genotype, in this case the EA PGSs of
child and at least one parent should be used. Sibling > ¢ and adoption designs ” were
not included in the meta-analysis to avoid introducing additional heterogeneity but
served as measure of comparability and robustness when discussing results of our

pooled genetic nurture effects.

2.3 Assessment of methodological quality

An adapted version of the Newcastle - Ottawa Quality Assessment Scale for Cohort

Studies® was applied to evaluate the methodological quality of the included studies.

The following scoring criteria was used:

Methodological quality assessment criteria of studies on genetic nurture
effects on education

Note: A study can be awarded a maximum of one point for each numbered item
within all categories.

Representativeness and attrition

1) Population representativeness of the cohort
a) truly population-based on community, e.g. pregnancy/birth cohort or other
population-based cohort (1)
b) somewhat representative of the population , e.g., twin cohort (0.5)
c) selected group of users, e.g., case-control, genomics company (0)
d) no description of the cohort (0)
2) Attrition in the cohort (due to genotyping or outcome availability)
a) complete cohort - all subjects of original cohort are used (1)
b) subjects lost unlikely to introduce bias - small number lost - > 70 % of
original cohort are used, or description provided of those lost' (1)



c) < 70% of original cohort are used and no description of those lost (0)
d) no statement (0)
only code 1 when loss of participants is unlikely to introduce bias, e.g., if
description indicates random loss.

Exposure: polygenic scores (PGSs) of educational attainment

3) Power/size of the genome-wide association studies (GWASSs) used to compute
the PGSs
a) Lee etal. etal. (2018, N =1,131,881 (1)
b) Okbay et al. et al. (2016, N = 293,723 (0.5)
c) Rietveld et al. et al. (2013, N = 101,069 (0)
4) Sample overlap
a) the cohort does not overlap with the sample used to derive the GWAS (1)
b) an updated GWAS excluding the cohort is used (1)
c) the cohort is used to derive the GWAS (0)
5) Genetic ancestry
a) the cohort is from the same genetic ancestry with the GWAS? (1)
b) the cohort is from different genetic ancestry with the GWAS? (0)
2European descent
Comparability/confounding

6) Study fully accounts for genetic nurture effects
a) yes, study uses control by design, i.e., virtual parent design (1)
b) yes, study uses statistical control and accounted for PGSs of both parents
and child (1)
c) yes, study uses statistical control and accounted for PGSs of one parent
and child (0.5)
d) no (0)

7) Study accounts for the confounding of age, sex and principal components (PCs)
a) yes, study controls for age, sex and PCs (1)
b) yes, study controls for sex and PCs and all participants were the same on
age (1)
c) yes, study partly controls for age, sex and PCs (0.5)
d) no (0)

Outcome: Educational attainment and educational achievement

8) Assessment of outcome



a) official record (1)
b) instrument tested for validity and reliability (1)
c) self-report (0.5)
b) no description (0)

9) Same underlying phenotype of outcome and GWAS
a) the outcome represents the same underlying phenotype as measured by
the GWAS used, e.g., years of education, highest degree obtained (1)
b) the outcome represents somewhat the same underlying phenotype as
measured by the GWAS used, e.g., national tests scores, school grades (0.5)
c) the outcome presents different phenotype as measured by the GWAS
used, e.g., cognitive performance, math course level, EA difference between
twins (0)

Detailed methodological score of each included study see Table S3. It should be
noted that most of the included studies (9 out of 12) had limited representativeness
of their original cohort. Taking the minimal attrition rate per study on genetic nurture
estimates, the median attrition rate was 55.6% (attrition rate for each estimate see
Table S4). This substantial rate in attrition among the included studies is mainly due
to missingness of genetic data (i.e. samples not genotyped within cohorts) or

ancestry restriction due to predominantly European-descent samples of GWASs °.



3 Data extraction and synthesis
3.1 Effect size calculation

Standardised beta coefficients, which constituted the most commonly reported metric
among the included studies, were used to measure effect sizes. One study 1°
reported unstandardised betas, which were manually standardised by multiplying
unstandardised coefficients by the ratio of standard deviations of the corresponding
independent variable and dependent variable. Some studies did not report the
standard error of estimates, which was necessary for estimating the pooled effect
size. For studies that reported 95% confidence intervals -5, standard errors were
manually calculated by dividing corresponding confidence intervals (upper limit —
lower limit) by 3.92. For studies that reported t-test statistics ¢, standard errors were
manually calculated by dividing corresponding standardised betas by t-test statistics.
For studies that did not report data allowing for direct calculation of standard errors ?,
following non-response after contacting the author, we imputed standard errors from
corresponding estimates and sample sizes by using the compute.es_0.2-4 package

7 in R version 3.6.1 '8,

Genetic nurture effects in one of the included studies '° using average parental PGS
was recalibrated to improve comparability with other studies using individual parental

PGS. Details see in Supplemental Notes 7.2.

For studies using the virtual parent design 2 >4, estimates of unadjusted child
effects (based on transmitted PGS) and genetic nurture effects (based on non-
transmitted PGS) were reported. The magnitude of direct genetic effects can be
imputed as follows:

In regressions of the child education on both parental transmitted polygenic score
(PGSt) and non-transmitted polygenic score (PGSnr), let N be the sample size, Bt
be the coefficient of PGSt and Byt the coefficient of PGSnt, or be the standard error
of Br and ont be the standard error of Bnr. Bris the effect of the children’s PGS on
their own phenotype and Gnris the effect of genetic nurture. Thus, estimated direct
genetic effects Bairect = BT - Bnt 2. The variance of Bairect is equal to the sum of
variance of Br and Onr. Let gdirect denotes the standard error of direct genetic effects,

then it can be expressed as: Oairect = V(02 + ONT?).



3.2 Multilevel Random Effects Model (MREM)

The three-level MREM was performed following the tutorial of Assink and Wibbelink
20 and incorporated variation in effect sizes from three sources: Level 1 variance
attributed to random sampling, which corresponds to the standard error of each
individual effect size; Level 2 variation between estimates within a single cohort;
Level 3 variation in estimates between different cohorts. Here the cohort level was
defined as the original population-based sample on which the data about genotype
and educational outcomes was collected. In this meta-analysis, we included 12
studies from eight independent cohorts (see Table 1, column ‘Cohort’). This level
was employed to account for the violation of independence due to multiple estimates
and studies from the same cohort. For example, two studies '* 2! were both from the
Framingham Heart Study (FHS), and in one study ?' several estimates of genetic
nurture effects were reported using genotypes from mothers and fathers. One
special case was that participants in the Minnesota Center for Twin and Family
Research (MCTFR) cohort were drawn from several longitudinal studies including
the Minnesota Twin Family Study (MTFS) cohort, thus in the meta-analysis they

were considered as the same cohort.



4 Unadjusted parental and child effects
4.1 Unadjusted parental effects

We derived k = 8 estimates of unadjusted parental effects on offspring educational
outcomes (i.e., without adjusting for genetic nurture effects). Table S6 “Joint parental
model” column shows MREM findings when jointly meta-analysing genetic nurture
effects and unadjusted parental effects (Bmixture = 0.11, 95% CI [0.08, 0.14], robust CI
[0.07, 0.14]). When evaluating the heterogeneity in effect sizes, we found that a
substantial proportion of variance reflected within-cohort heterogeneity (Prevei 2=
65.83%). This indicates that within-cohort factors (i.e., differences in effect sizes
between outcomes within the same cohort) may account for some of the variation in
effect sizes. Results of subgroup analysis showed that the magnitude of genetic
nurture effects and unadjusted parental effects were highly significantly different (Q =
20.58, df=1, p <.0001). As is shown in Table S6 and Figure S3, estimates from
unadjusted parental effects (Bparental unadjusted = 0.21, 95% CI [0.15, 0.26], robust ClI
[0.08-0.33]) only were larger than genetic nurture. The variance among effect sizes
of unadjusted parental effects mainly resulted from the between-cohort heterogeneity
(PLevel 3=86.86%), suggesting that factors in which the cohorts may differ (e.g., type
of the educational outcome, age when the outcome was assessed, accuracy of the
GWASSs) accounted for some of the variation in effect sizes. The funnel plot (see
Figure S1) and formal test with precision as a moderator (Q = 3.22, p = .0727)
suggested no publication bias in estimates of unadjusted parental effects. Results of
jackknife leave-one-out analysis (see Figure S2) suggested no substantial role of a
single influential study.

4.2 Unadjusted child effects

We derived k = 11 estimates of unadjusted child effects on their own educational
outcomes, i.e., effects of child PGS without considering genetic nurture effects.
Table S6 “Joint child model” column shows MREM findings of child effects on
education when jointly meta-analysing direct genetic effects and unadjusted child
effects (Bmixture = 0.20, 95% CI [0.16, 0.24], robust CI [0.15, 0.24]). More variance
among effect sizes in the joint model was attributable to between-cohort
heterogeneity than within-cohort heterogeneity (Prevei2 =36.17% versus Pevel 3=
55.13%). Results of subgroup analysis showed that magnitudes of direct genetic



effects and unadjusted child effects were significantly different (Q = 6.39, df=1, p
=.0115). As is shown in Table S6 and Figure S3, the magnitude of unadjusted child
effects (Bchild unadjusted = 0.24, 95% CI [0.20, 0.28], robust CI [0.19, 0.29]) was larger
than direct genetic effects and comparable to estimates obtained from studies
assessing the explanatory power of EA PGSs on one’s educational outcome without
accounting for genetic nurture effects, which typically range between 8= 0.15 and 8
= 0.39 62224 More variance among effect sizes in unadjusted child effects was
attributable to between-cohort heterogeneity than within-cohort heterogeneity (Pievel 2
= 28.51% versus Prevei 3=59.92%). The funnel plot (see Figure S1) and formal test
with precision as a moderator suggested no publication bias in estimates of
unadjusted child effects (Q = 0.47, p = 0.4917). Results of jackknife leave-one-out

analysis (see Figure S2) suggests no substantial role of a single influential study.



5 Other sources of heterogeneity in genetic nurture effects

The magnitude of genetic nurture effects on children’s educational outcomes may
vary according to several factors other than parent of origin, we examined the
sources of heterogeneity in genetic nurture, direct genetic as well unadjusted effects
by several meta-regression analyses (see Table S7).

5.1 Study design

It is unclear whether the magnitude of genetic nurture effects in empirical studies
differs depending on the analytic method used (i.e., virtual parent or statistical
control). Moreover, due to lack of complete trio data (i.e. child and both parents),
genetic nurture effects have often been estimated among parent-offspring pairs. It is
unclear to what extent the missing parental genotype bias estimates. Therefore, we
examined whether using different designs moderated effect sizes by comparing
estimates relying on virtual parent (using parental non-transmitted PGS to predict
children’s education), partial statistical control (using PGS of one parent to predict
children’s education while controlling for the child’s PGS) and full statistical control
(using PGS of one parent to predict children’s education while controlling for the
child’s and the other parent’s PGS).

Genetic nurture effects detected by the virtual parent design (Bvirtual parent = 0.07, 95%
CI1[0.06, 0.08]) were lower than those obtained from the statistical control approach
(Bpartial control = 0.09, 95% CI [0.07, 0.10], Bruii control = 0.09, 95% CI [0.06, 0.11], p
=.0443). In contrast, different designs captured similar effect sizes for direct genetic
effects (Bvirtual parent = 0.15, 95% CI [0.08, 0.21], Bpartial control = 0.18, 95% CI [0.13,
0.24], Brull control = 0.15, 95% C1 [0.08, 0.22], p = .5039).

Here, the magnitude of genetic nurture effects was slightly smaller in the virtual
parent design versus the statistical control approach. Although we found no strong
evidence for differences based upon findings from partial control (one parent) or full
control (two parents), this may however reflect that these estimates were from
different samples, hiding true differences. A recent study has shown the importance
of using complete trio data, as missing the genotype of one parent can bias direct
genetic effects and genetic nurture effects 3. Evidence from one of the included



studies 2% using both partial and full statistical control approach echoed this view.
Additional work is needed to compare estimates of genetic nurture using different
analytical methods within the same sample to better understand the equivalence and

comparability of different approaches.

5.2 Type of educational outcome

Previous genetically informed studies on educational outcomes have focused on
attainment or achievement interchangeably 23 24.26. 27 However, both efforts relied
on the GWASSs of educational attainment, which is likely to more strongly correlate
with educational attainment than achievement. Therefore, studies examining
educational attainment may capture genetic nurture effects more accurately than
those examining educational achievement. We thus considered whether the type of
educational outcome moderated effect sizes by comparing studies assessing

educational attainment and educational achievement.

Similar effect sizes of genetic nurture effects were found for educational attainment
and achievement (Battainment = 0.09, 95% CI [0.07, 0.11], Bachievement = 0.07, 95% CI
[0.05, 0.10], p = .3079). However, when restricting the analysis to studies where both
educational attainment and achievement were assessed ' 28, larger genetic nurture
effects on educational attainment relative to educational achievement were found
(see Supplemental Notes 7.5, Table S9). Another explanation of larger genetic
nurture effects for educational attainment compared to educational achievement is
that attainment may be more socially influenced than achievement 2. That is, it may
be easier for parents to influence attainment (e.g. by accessing more exclusive
schooling or financially supporting further education). However, developmental
trends in genetic nurture effects warrant more investigation. Heritability of
educational outcomes increases with age . Conversely, the nurturing behaviours
from parents may impact offspring more at earlier ages, as they spend more time at
home rather than school, spend more time with their parents rather than peers,
which might lead to genetic nurture effects decreasing with age. Moreover, genetic
nurture may act distinctively over time through different pathways as suggested by a
recent study showing parent non-cognitive but not cognitive related characteristics
were more important for educational achievement at age 16 than age 12 3'.



Direct genetic effects were larger for educational achievement (Bachievement = 0.19,
95% CI [0.14, 0.24]) than for educational attainment (Battainment = 0.14, 95% CI [0.08,
0.19]) and there was evidence of a moderating effect (p = .0466). The robustness of
this finding was confirmed by restricting the analysis to studies reporting effects for
both attainment and achievement (see Supplemental Notes 7.5, Table S9). This
finding agrees with previous twin evidence, which suggested ~60% heritability for
educational achievement measured in childhood and adolescence 3? and ~40% for
educational attainment measured in adulthood 32 34. Several plausible explanations
might account for the consistently higher heritability/direct genetic effect in
educational achievement. One is that educational achievement is measured during
compulsory schooling. The difference thus may reflect more genetically influenced
traits in children like intelligence, personality and psychopathology %. In contrast,
years of education one completed is likely to be influenced by a wider range of
factors, such as career plan or financial situation 2% 3¢ 37 Another explanation is that
educational achievement is often measured with standard tests/scores which reflect
one’s relative ranking/decile among peers. Education years, however, can be more
ambiguous as essentially different routes, such as academic and vocational, are not
distinguished, which may introduce heterogeneity and measurement error. Future
studies should examine genomic predictions with consistent measures of
educational achievement across different developmental stages in order to capture
dynamic changes. Evidence from one study, the Twins Early Development Study
(TEDS), suggested that the predictive precision of PGSs (i.e., unadjusted child

effects) on educational achievement increased from ages 7 to 16 .

5.3 Predictive accuracy of the GWAS used to derive the PGSs

Genome-wide association studies (GWASs) have advanced rapidly in the last
decade (Visscher et al., 2017). The first GWAS of educational attainment EA
(hereafter referred to as “EA GWAS”) was conducted in 2013 (EA1) in a discovery
sample of 101,069 individuals, and found three independent SNPs with genome-
wide significance (i.e., p value threshold of 5 x 1078)3°. The discovery sample was
extended to 293,723 individuals in 2016 by the second EA GWAS (EAZ2), which
identified 74 genome-wide significant loci associated with years of schooling



completed 4°. The most recent EA GWAS (EA3) was conducted in 2018 in a sample
of approximately 1.1 million individuals (N = 1,131,881), the marked increase in
sample size boosted the predictive accuracy/statistical power to detect genetic
associations and resulted in identifying 1,271 independent genome-wide-significant
SNPs 41. Based on the EA GWASsSs, polygenic scores (PGSs)*> 43 can be derived to
provide a single value reflecting an individual's genetic propensity to educational
attainment (referred to as “EA PGS”; it is a sum of an individual’s effect alleles
weighted by effect sizes obtained from the EA GWAS). For example, EA PGSs
derived from EA1, EA2 and EA3 explained about 2%, 3.2% and 11-13% of the
variance in educational attainment, respectively. As studies have derived individual’s
genetic propensity depending on the most powerful data at that time of publication,
to what extent the estimated genetic nurture effects differ depending on the accuracy
of EA GWASSs used remains untested. Therefore, we compared effect sizes from
PGSs based on different EA GWASSs.

As expected and consistent with previous studies '% 38, the predictive accuracy of the
GWASSs used to construct the PGS significantly moderated effect sizes of genetic
nurture. Estimates of genetic nurture effects based on more accurate GWASs were
significantly larger (Beasz= 0.09, 95% CI [0.08, 0.11], Bea2= 0.07, 95% CI [0.06, 0.08],
Pgenetic nurture = .0066). Similar results were found for unadjusted parental effects (Beas
=0.24, 95% CI[0.21, 0.27], Bea2 = 0.16, 95% CI [0.15, 0.18], Beat = 0.08, 95% CI
[0.01, 0.16], punadjusted parental < .0001) and unadjusted child effects (Beaz = 0.27, 95%
Cl[0.241, 0.31], Bea2 = 0.20, 95% CI [0.16, 0.24], Bea1 = 0.13, 95% CI [0.05, 0.20],
Punadjusted child = .0010). However, there was no significant difference for direct genetic
effects due to the larger uncertainty in estimates (Beasz = 0.18, 95% CI [0.14, 0.23],
Beaz = 0.14, 95% CI [0.08, 0.20], pdirect genetic = .1783).

5.4 Study characteristics

We also tested the moderating roles of a number of study characteristics reflecting
methodological quality and sample representativeness, including study quality,
sample size and attrition rate of the cohort.



Study quality was indexed by the total score of the methodological quality described
in Supplemental Notes 2.3. Detailed score of each included study see Table S3.
Methodological quality was negatively associated with the magnitude of genetic
nurture effects (slope = -0.02, pgenetic nurture = .0072) and unadjusted parental effects
(slope = 0.05, punadjusted parental = .0353).

The sample size was tested in the unit of 1,000 participants due to the relatively
large sample size in studies (mean = 3,372, median = 1,626). For the sample size of
which each effect size was based on, see Table S4. To note, only the largest sample
size assessing genetic nurture effects in each cohort was used to compute the total
sample size of the current meta-analysis (i.e., 38,654) in a conservative manner to
preclude any overlap within the cohort. In Table1, sample sizes were reported per
study and outcome category (i.e., educational attainment vs. educational
achievement) as part of the study summary. Sample size (slope = -0.001, p = .0225)
was negatively associated with the magnitude of genetic nurture effects in a modest

manner.

Both moderating effects of methodological quality and sample size can be attributed
to the potentially influential study 2 with the highest quality score and sample size
(see Table S8). Nevertheless, it suggests that more reliable studies, namely with
more rigorous methodology and larger sample size, may produce more conservative

estimates of genetic nurture effects on educational outcomes.

Considering the prevalent attrition in original cohorts across studies (details see
Supplemental Notes 2.3), the moderating role of attrition rate was tested. For the
attrition rate of each effect size, see Table S4. Among four MREM of effects on
educational outcomes, attrition in the cohort did not clearly moderate any estimate
(p > .05).



6 Family-level adjustment

We tested the moderating role of family-level adjustment, including parental
education level and family socioeconomic status (SES) to quantify the extent to
which genetic nurture effects can be attributed to these distal family-level factors. As
shown in the last panel of Table S7, we compared effect sizes with and without
family-level adjustments. Effect sizes included in the main meta-analysis were
unadjusted for family-level adjustment (Kgenetic nurture =22, Kdirect genetic = 16, Kparental
unadjusted =8, Kchild unadjusted =11). All available effect sizes in the included studies with
family-level adjustment of parental education or family SES were extracted as
adjusted estimates (Kgenetic nurture =18, Kdirect genetic = 11, Kparental unadjusted =4, Kchild unadjusted
=3). Effect sizes adjusted for family-level factors were only used to test the
moderating role of family-level adjustment and not included in the main meta-
analysis as they were fundamentally different from unadjusted ones. It should be
noted that one study '° reported genetic nurture and direct genetic effects only with
family-level adjustment, and unadjusted parental and child effects both with and
without family-level adjustment. Therefore, for this particular study '°, only effect
sizes of unadjusted parental and child effects were included in the main meta-
analysis, and all effect sizes were used for the moderator analysis of family-level

adjustment.

The unadjusted effects were visually larger than the family-level adjusted effects for
both genetic nurture and direct genetic effects. The largest decrease in effect sizes
attributable to adjustment was present for genetic nurture effects (Bunadjusted = 0.07,
95% CI [0.07, 0.08] vs. Badjusted = 0.02, 95% CI [0.01, 0.03]), which was supported by
a highly significant moderating effect (pagjustment < .0001) and remained robust when
tested in a sensitivity analysis (see Table S8). Smaller changes in effect sizes
following family-level adjustment were present for direct genetic effects (Bunadjusted =
0.17, 95% CI [0.13, 0.20] vs. Badjusted = 0.14, 95% CI [0.10, 0.18]), in which case the
moderating effect was also significant (padjustment = .0098). After accounting for
parental education level or family SES, the effect of unadjusted parental and child
effects on children’s educational outcomes were both attenuated by ~30%. (punadjusted
parent = .0001, Punadjusted child = .0223).



7 Sensitivity analyses
7.1 Robust confidence intervals of dependent estimates

Among some included studies, we extracted multiple, statistically dependent effect
size estimates from the same cohort. We utilized MREM to handle the dependence
of effect sizes. As sensitivity checks, we also reported, robust confidence intervals
(robust ClI) of cluster-robust variance estimations, which is out of the MREM
framework and obtained using the package clubSandwich version 0.5.0 “in R

version 3.6.1 18,

7.2 Impact of recalibrating estimates using the average parental PGS

In general, comparing estimates using maternal, paternal, maternal and/or paternal
genomic measures should be straightforward by directly compared their absolute
values. Caution is warranted when using the average parental PGS, in which case
the R? (variance explained) is unbiased but the estimate is inflated (compared to
using individual parental PGS):
Let PGSwm be the maternal polygenic score and PGSp be the paternal polygenic
score, and let R?v and R?% be the variance explained by PGSy and PGS,
respectively. The variance explained by the average parental PGS, R?ye parent,
equals to the addition of variance of mother and father (R2ave parent = R?w + R%p) when
assuming PGSw and PGSp are uncorrelated. Thus, the standardised estimated
genetic nurture effects from the average parental PGS, Bave parent is equal to the
square root of R?v + R%. Assuming that genetic nurture effects from mother and
father are equal (R?m = R?p = Rnd parent), and let Bind parent be the standardised
estimate of genetic nurture effects from the individual parental PGS, the relationship
between Bave parent aNd B ind parent are:
Genetic nurture effects from the average parental PGS:

Bave parent = \ (2R2ind parent) = V2 Bind parent
Genetic nurture effects from the individual parental PGS:

Bind parent = V(RZave parent/2) = Bave parent/\2
Due to the abovementioned reason, one of the included studies ° utilizing the
average parental PGS to capture genetic nurture effects had an outlying estimate (8
Willoughby original = 0.20) relative to other estimates included in our study. We thus used
the recalibrated estimate (8 wiloughby adjusted = 0.20/\2 = 0.14) for the main meta-



analysis to obtain better comparability with other studies using individual parental
PGS.

The impact of this adjustment is examined by meta-analysing genetic nurture effects
with the originally reported effect size. Using the original estimate of average
parental PGS resulted in similar genetic nurture effects (8 willoughby original = 0.08, 95%
CI1[0.07, 0.09], robust CI [0.06, 0.10]) but introduced more publication bias (Q =
8.59, p =.0034). The moderating effect of analytical design was still significant (Q =
6.17, p = 0.0457), with smaller estimates from the virtual parent design than the
statistical control approach. Such results were expected, as the adjusted average
parental PGS was derived from the statistical control approach and the recalibration
decreased that estimate.

In our meta-analytic pooled estimate, the magnitude of genetic nurture represents
the effects from an individual parent for easier comparison between studies.
However, when comparing the relative contribution of genetic nurture and direct
genetic effects, genetic nurture effects from both parents should be considered. With
genetic nurture of an individual parent explaining Bgenetic nurture = 0.08% = 0.64% of
variance in offspring educational outcomes and assuming effects from both parents
are equal and independent, genetic nurture of both parents explains 0.64%*2 =
1.28% of variance in offspring educational outcomes. As such, the magnitude of
genetic nurture from both parents Booth parents = V1.28% = 0.11, and the genetic
nurture effects/ direct genetic effects ratio = 0.11/0.17 = 0.65. This finding is
consistent with recent Relatedness Disequilibrium Regression (RDR) evidence “°, in
which genetic nurture effects originating in both parents explained 6.6% of the
variance in EA, corresponding to an effect size of approximately 0.26 (the square
root of 0.066). RDR-estimated direct genetic effects/heritability explained 17% of the
variance in EA, corresponding to an effect size of approximately 0.41 (the square
root of 0.17). The ratio of genetic nurture/direct genetic effects derived from the RDR
method is thus 0.26/0.41=0.63.



7.3 Impact of a potentially influential study

Due to the Inverse-variance weighting strategy adopted in our meta-analysis, one of
the included studies ? might be more influential than others since standard errors in
that study (imputed based on their corresponding effect sizes and sample sizes)
were very small. Therefore, we tested the impact of this potentially influential study
by re-running the meta-analysis omitting its estimates. We tested the robustness of
our pooled effects as well as the distribution of variance in the MREM to see whether
the narrow confidence intervals and approximate homogeneity of genetic nurture
effects were exclusively attributed to this study, e.g., the Kong et al. 2018 study
reported three estimates of genetic nurture effects using maternal, paternal and
parental non-transmitted PGS. In addition, we performed meta-regression without
estimates from this study for all the moderators that were potentially impacted, since
the Kong et al. 2018 study may have independently influenced the moderating
effects in some cases. For example, multiple genetic nurture effects from the Kong et
al. 2018 study using maternal, paternal and parental non-transmitted PGS) may
unduly impact on the moderating effect of parent of origin and mask effects from
other studies.

The potentially influential study of Kong et al. 2018 did not show substantial impact
on distributions of variance, pooled estimates, but resulted in some publication bias
and changes in moderating effects of methodological quality and sample size on the
magnitude of genetic nurture effects. For details see Tables S5 and S8.

7.4 Jackknife leave-one-out analyses

To account for any other potential influences from included studies, we assessed the
undue effect of individual studies on our pooled estimates through jackknife leave-
one-out analyses, by testing changes in the estimate across permutations in which

each study was omitted in turn. For visualization of results see Figure S2.

7.5 The moderating effect of outcome type within study

Two of the included studies '+ 28 assessed both educational attainment and
achievement, we thus checked the robustness of moderating effect of outcome type
within study by running the meta regression within these two particular studies. As



shown in Table S9, the moderation role for outcome type on genetic nurture effects
became statistically significant (Battainment = 0.11, 95% CI [0.08, 0.14], Bachievement =
0.05, 95% CI [0.01, 0.09], p = .0228). The difference in direct genetic effects was
larger in the opposite direction (Battainment = 0.12, 95% CI [0.07, 0.17]), Bachievement =
0.21, 95% CI1 [0.16, 0.26], p = .0144).
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