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Figure S1. Funnel plots for effects on educational outcomes. A. Genetic nurture 

effects. B. Direct genetic effects. C. Unadjusted parental effects. D. Unadjusted child 

effects. 

 
 



A.   B.  

C.   D.  
 
Figure S2. Jackknife sensitivity analyses for effects on educational outcomes. 
A. Genetic nurture effects. B. Direct genetic effects. C. Unadjusted parental effects. 

D. Unadjusted child effects. The estimate corresponding to each study listed reflects 

the pooled beta from a meta-analysis where that study was omitted.  

  



A.  

B.  
 
Figure S3. Forest plot of multilevel random effects model for unadjusted 
effects on educational outcomes. A. Unadjusted parental effects. B. Unadjusted 

child effects. Effect sizes were standardised beta coefficients, which represent how 

many standard deviations of change in educational outcome occur per standard 

deviation of change in EA PGS. 



 MREM of parental effects  MREM of child effects 

  Genetic nurture effects Unadjusted parental effects  Direct genetic effects Unadjusted child effects 

kcohort 7 3  7 6 

kestimate 19 8  15 10 

βpooled 0.08 0.21  0.17 0.24 

β95% CI 0.07-0.10 0.15-0.26  0.12-0.21 0.19-0.29 

σ2
Level 2 χ2 < 0.01, p = .5000 χ2 < 0.01, p = .5000  χ2 < 0.01, p = .5000 χ2 = 1.68, p = .0977 

σ2
Level 3 χ2 < 0.01, p = .5000 χ2 = 5.73, p = .0083  χ2 = 5.12, p = .0118 χ2 = 1.40, p = .1187 

I2 Level 1 >99.99% 19.14%  21.54% 14.57% 

I2 Level 2 <0.01% <0.01%  <0.01% 24.11% 

I2 Level 3 <0.01% 80.86%  78.46% 61.32% 

Publication bias Q = 0.88, p = .3486 Q = 3.22, p = .0727  Q = 0.02, p = .8787 Q = 0.90, p = .3427 

 

Table S5. Three-level random effects models after removing the potentially influential study (Kong et al. 2018) 
Note. Sensitivity analysis to assess the role of a potentially influential study was performed by removing the largest included study Kong et al. 2018. MREM = 

Multilevel random effects model; β = standardized regression coefficients (i.e., the metric of effect sizes); CI = confidence interval; χ2 Statistics from likelihood-

ratio test to test within-cohort variance (σ2
Level 2) and between-cohort variance (σ2

Level 3) for significance; I2 = % of the total variance accounted for by random 

sampling variance (Level 1), variation within cohorts (Level 2), variation between cohorts (Level 3); Publication bias, assessed by using precision (sampling 

variance) to predict the effect size. 

  



 Parental effects  Child effects 

  Joint parental modela Unadjusted parental effects  Unadjusted child effects Joint child modelb 

kcohort 8 3  7 8 

kestimate 30 8  11 27 

βpooled 0.11 0.21  0.24 0.2 

β95% CI 0.08-0.14 0.15-0.26  0.20-0.28 0.16-0.24 

βrobust CI
c 0.07-0.14 0.08-0.33  0.19-0.29 0.15-0.24 

σ2
Level 2 χ2 = 45.23., p < .0001 χ2 < 0.01, p = .5000  χ2 = 1.55, p = .1067 χ2 = 60.17, p < .0001 

σ2
Level 3 χ2 = 1.23, p = .1339 χ2 = 5.73, p = .0083  χ2 = 1.27, p = .1298 χ2 = 5.46, p = .0097 

I2 Level 1 10.17% 19.14%  11.57% 8.70% 

I2 Level 2 65.83% <0.01%  28.51% 36.17% 

I2 Level 3 24.00% 80.86%  59.92% 55.13% 

Publicaiton bias Q = 4.01, p = .0453 Q = 3.22, p = .0727  Q = 0.47, p = .4917 Q = 9. 56, p = .0020 

 

Table S6. Three-level random effects models of unadjusted parental and child effects on educational outcomes 
Note. a Effect sizes of genetic nurture and unadjusted parental effects were jointly modelled. b Effect sizes of direct genetic and unadjusted child effects were 

jointly modelled. c Robust confidence intervals were cluster-robust variance estimations , for details see Supplemental Notes 7.1. MREM = Multilevel random 

effects model; β = standardized regression coefficients (i.e., the metric of effect sizes); CI = confidence interval; χ2 Statistics from likelihood-ratio test to test 

within-cohort variance (σ2
Level 2) and between-cohort variance (σ2

Level 3) for significance; I2 = % of the total variance accounted for by random sampling variance 

(Level 1), variation within cohorts (Level 2), variation between cohorts (Level 3); Publication bias, assessed by using precision (sampling variance) to predict 

the effect size. 

  



   Educational attainment  Educational achievement 

Subgroup  kcohort   kestimate  βpooled β95% CI   kestimate  βpooled β95% CI 

Genetic nurture effects 2  3 0.11 0.08-0.14  3 0.05 0.01-0.09 

Direct genetic effects 2  2 0.12 0.07-0.17  2 0.21 0.16-0.26 

Unadjusted child effects 2   1 0.28 0.22-0.34   2 0.24 0.21-0.28 

 

Table S9. Moderating role of educational outcome type within study 
Note. Type of educational outcome moderation robustness check by examining studies assessing both educational attainment and achievement. Moderation 

analysis was performed with studies (de Zeeuw et al., 2020 and Rustichini et al., 2018) in which both educational attainment and achievement were 

assessed. No effects of unadjusted parental effects were available from these studies and therefore were not shown here. 

Type of the outcome assessed as a dichotomized moderator [educational attainment (the highest level of education completed, e.g., year of schooling), 

educational achievement (how well performed at school, e.g., high school grades)]. Dummy variables were created for each category of the potential 

moderator. In order to obtain the mean effect (including significance and confidence interval) of all categories, separate meta-regressions were conducted, 

taking each category as the reference category in turn. 

 



Supplemental Notes  

1 Capturing genetic nurture effects with parent(s)-offspring genotype  

1.1 Virtual-parent design  

The parental genetic material transmitted to their offspring is randomly assigned 

during meiosis, with each allele having a 50% chance of being transmitted to the 

gamete (egg or sperm) and then to the offspring. Alleles that are not transmitted to 

offspring can nonetheless influence offspring outcomes through environmental rather 

than genetic pathways. The non-transmitted parental genotype can be considered as 

a “virtual parent” who is not genetically related to the offspring, whereas the 

transmitted parental genotype (50% from mother and 50% from father) makes up the 

child genotype. The effect of polygenic scores (PGSs) derived from non-transmitted 

parental genotype on offspring outcome is thus free from genetic confounding 

between parents and offspring due to shared genotypes.  

 

In regressions with child education as the outcome, let PGST and PGSNT be the 

standardised PGS of transmitted and non-transmitted parental genotypes 

respectively, Cp be the child phenotype, and βT and βNT be the corresponding 

respective coefficients. The model can be expressed as follows: 

Cp = βT * PGST + βNT * PGSNT + e 

The estimated genetic nurture effects are: 

Genetic nurture effects = βNT 

As both transmitted and non-transmitted parental genotype have nurturing effects, 

direct genetic effects originating in the child are: 

Direct genetic effects = βT - βNT 

For detailed decompositions of aforementioned equations see 1. For more 

sophisticated decompositions of genetic influences using the virtual parent design, 

including genetic nurture effects, direct genetic effects, the assortative mating–

induced confounding effect for the direct genetic effect component, and the 

confounding effect of the genetic nurturing component, see 2. 

 



1.2 Statistical control approach 

The statistical control approach utilizes the complete parental genotype as an 

aggregation of transmitted and non-transmitted genotypes. Disentanglement of 

genetic nurture and direct genetic effects is achieved by modelling the association 

between parental PGS(s) and offspring phenotype while controlling for offspring 

PGS. As offspring genotype can fully mediate the effects of the parental transmitted 

genotype, the remaining effects of parental genotype on offspring outcome can be 

environmentally mediated, i.e., via genetic nurture effects. Similarly, since the effect 

of offspring genotype is controlled for parental genotype, it thus reflects direct 

genetic effects free from the inflation from genetic nurture.  

 

Let PGSC, PGSM and PGSP be the standardised PGS of child, maternal and paternal 

genotype respectively, and βC, βM and βP be the corresponding coefficients. The full 

statistical control model can be expressed as follows when genotypes of both 

parents are available: 

Cp = βC * PGSC + βM * PGSM + βP * PGSP + e 

The partial statistical control model can be expressed as follows when genotypes of 

one parent is available: 

Cp = βC * PGSC + βM * PGSM + e 

or 

Cp = βC * PGSC βP * PGSP + e 

The estimated genetic nurture effects are: 

Maternal genetic nurture effects = βM 

Paternal genetic nurture effects = βP 

Importantly, estimates from the partial statistical control model can still be biased as 

they do not account for the confounding role of the other parent’s PGS 3. The 

estimated direct genetic effects are: 

Direct genetic effects = βC 

 



2 Study selection and assessment  

2.1 Literature search 

Two search strategies were employed for study identification. First, we 

systematically searched the following databases: 

1) Ovid: 

i) MEDLINE In-Process & Other Non-Indexed Citations and Daily  

ii) EMBASE  

iii) PsycINFO  

2) Web of Science Core Collection: 

i) Sciences Citation Index Expanded (SCI-EXPANDED); 

ii) Social Sciences Citation Index (SSCI); 

iii) Arts & Humanities Citation Index (A&HCI); 

iv) Emerging Sources Citation Index (ESCI). 

3) PubMed. 

 

The search terms are described below: 

((education* [Title/Abstract]) OR (academic [Title/Abstract]) OR (college degree 

[Title/Abstract]) OR (college entry [Title/Abstract]) OR (university degree 

[Title/Abstract]) OR (university entry [Title/Abstract]) OR (school performance* 

[Title/Abstract]) OR (school achievement* [Title/Abstract]) OR (performance in school 

[Title/Abstract]) OR (schooling [Title/Abstract])  

AND  

(polygenic scor* [Title/Abstract]) OR (polygenic risk scor* [Title/Abstract]) OR 

(genetic scor* [Title/Abstract]) OR (genetic risk scor* [Title/Abstract]) OR (genomic 

scor* [Title/Abstract]) OR (genomic risk scor* [Title/Abstract]) OR (genome-wide 

polygenic scor* [Title/Abstract]) 

AND  

(nature of nurture [Title/Abstract]) OR (genetic nurtur* [Title/Abstract]) OR (virtual-

parent design [Title/Abstract]) OR (pseudo-control [Title/Abstract]) OR (dynastic 

effect* [Title/Abstract]) OR (intergeneration* [Title/Abstract]) OR (multigeneration* 

[Title/Abstract]) OR (transmit* allele* [Title/Abstract]) OR (nontransmit* allele* 

[Title/Abstract]) OR (non-transmit* allele* [Title/Abstract]) OR (passive gene–

environment correlation  [Title/Abstract]) OR (genetic inheritance [Title/Abstract]) OR 



(genetic confounding* [Title/Abstract]) OR (genetic transmission [Title/Abstract]) OR 

(genetic influence* [Title/Abstract]) OR (parental transmission [Title/Abstract]) OR 

(maternal transmission [Title/Abstract]) OR (paternal transmission [Title/Abstract]) 

OR (parental influence* [Title/Abstract]) OR (maternal influence* [Title/Abstract]) OR 

(paternal influence* [Title/Abstract]) OR (social inheritance [Title/Abstract]) OR 

(social genetic effect* [Title/Abstract]) OR (environmental transmission 

[Title/Abstract]) OR (cultural transmission [Title/Abstract]) OR (vertical transmission 

[Title/Abstract]) OR (familial transmission [Title/Abstract]) OR (family-based stud* 

[Title/Abstract]) OR (trio* [Title/Abstract] OR (triad* [Title/Abstract] OR (dual* 

[Title/Abstract] OR (dyad* [Title/Abstract])) 

 

These search terms were translated into suitable terms for the Ovid database 

(MEDLINE, EMBASE and PsycINFO), Web of Science and PubMed, which can be 

made available upon request.  

 

Second, we manually searched the reference list of relevant articles, including 

studies that used virtual parent and statistical control approaches to investigate the 

genetic nurture effects on education, as well as unpublished evidence in preprint 

platforms were screened to identify articles that were missed by the search. Two 

authors (B.W. and T.S.) independently screened all articles retrieved from the search 

on Rayyan (http://rayyan.qcri.org), a free platform for systematic review 4. Potentially 

eligible studies (see criteria below) were then reviewed in full text. This search 

resulted in n=12 studies eligible for inclusion. 

 

2.2 Inclusion criteria 

Studies were included if they assessed genetic nurture effects on educational 

outcomes, either educational attainment (e.g., years of education completed, highest 

degree obtained) or educational achievement (e.g., national tests scores or levels, 

school grades) in the general population. Due to lack of data in preliminary searches, 

it was part of the protocol to exclude studies that were conducted in clinically-

referred sample or focused exclusively on specific types of educational  outcomes 

(e.g., performances on math course or linguistics). No genetic nurture study on 

clinical sample or specific educational outcomes was present after the systematic 



search. Studies were required to use one of the two designs that rely on genotype 

data from parents and their biological offspring: 1) virtual parent: testing genetic 

nurture effects on education by using parent(s)’ non-transmitted genotype to predict 

children’s education. In this case polygenic scores of educational attainment 

(hereafter referred as EA PGSs) calculated from at least one parent’s non-

transmitted alleles should be used; 2) statistical control: testing genetic nurture 

effects on education by using parent(s)' whole genotype to predict children’s 

education over and above children's own genotype, in this case the EA PGSs of 

child and at least one parent should be used. Sibling 5, 6 and adoption designs 7 were 

not included in the meta-analysis to avoid introducing additional heterogeneity but 

served as measure of comparability and robustness when discussing results of our 

pooled genetic nurture effects. 

 

2.3 Assessment of methodological quality  

An adapted version of the Newcastle - Ottawa Quality Assessment Scale for Cohort 

Studies8 was applied to evaluate the methodological quality of the included studies.  

 

The following scoring criteria was used: 

Methodological quality assessment criteria of studies on genetic nurture 
effects on education 
Note: A study can be awarded a maximum of one point for each numbered item 

within all categories.  

Representativeness and attrition 

1) Population representativeness of the cohort 

a) truly population-based on community, e.g. pregnancy/birth cohort or other 

population-based cohort (1) 

b) somewhat representative of the population , e.g., twin cohort (0.5) 

c) selected group of users, e.g., case-control, genomics company (0) 

d) no description of the cohort (0)  

2) Attrition in the cohort (due to genotyping or outcome availability) 

a) complete cohort - all subjects of original cohort are used (1) 

b) subjects lost unlikely to introduce bias - small number lost - > 70 % of 

original cohort are used, or description provided of those lost1 (1) 



c) < 70% of original cohort are used and no description of those lost (0) 

d) no statement (0) 
1only code 1 when loss of participants is unlikely to introduce bias, e.g., if 

description indicates random loss. 

Exposure: polygenic scores (PGSs) of educational attainment 

3) Power/size of the genome-wide association studies (GWASs) used to compute 

the PGSs 

a) Lee et al. et al. (2018, N = 1,131,881 (1) 

b) Okbay et al. et al. (2016, N = 293,723 (0.5) 

c) Rietveld et al. et al. (2013, N = 101,069 (0) 

4) Sample overlap 

a) the cohort does not overlap with the sample used to derive the GWAS (1) 

b) an updated GWAS excluding the cohort is used (1)   

c) the cohort is used to derive the GWAS (0) 

5) Genetic ancestry 

a) the cohort is from the same genetic ancestry with the GWAS2 (1) 

b) the cohort is from different genetic ancestry with the GWAS2 (0) 
2European descent 

Comparability/confounding 

6) Study fully accounts for genetic nurture effects 

a) yes, study uses control by design, i.e., virtual parent design (1) 

b) yes, study uses statistical control and accounted for PGSs of both parents 

and child (1) 

c) yes, study uses statistical control and accounted for PGSs of one parent 

and child (0.5) 

d) no (0) 

7) Study accounts for the confounding of age, sex and principal components (PCs) 

a) yes, study controls for age, sex and PCs (1) 

b) yes, study controls for sex and PCs and all participants were the same on 

age (1) 

c) yes, study partly controls for age, sex and PCs (0.5) 

d) no (0) 

Outcome: Educational attainment and educational achievement 

8) Assessment of outcome  



a) official record (1) 

b) instrument tested for validity and reliability (1) 

c) self-report (0.5) 

b) no description (0) 

9) Same underlying phenotype of outcome and GWAS 

a) the outcome represents the same underlying phenotype as measured by 

the GWAS used, e.g., years of education, highest degree obtained (1)  

b) the outcome represents somewhat the same underlying phenotype as 

measured by the GWAS used, e.g., national tests scores, school grades (0.5)  

c) the outcome presents different phenotype as measured by the GWAS 

used, e.g., cognitive performance, math course level, EA difference between 

twins (0) 

 

Detailed methodological score of each included study see Table S3. It should be 

noted that most of the included studies (9 out of 12) had limited representativeness 

of their original cohort. Taking the minimal attrition rate per study on genetic nurture 

estimates, the median attrition rate was 55.6% (attrition rate for each estimate see 

Table S4). This substantial rate in attrition among the included studies is mainly due 

to missingness of genetic data (i.e. samples not genotyped within cohorts) or 

ancestry restriction due to predominantly European-descent samples of GWASs 9.  

 

  



3 Data extraction and synthesis 

3.1 Effect size calculation  

Standardised beta coefficients, which constituted the most commonly reported metric 

among the included studies, were used to measure effect sizes. One study 10 

reported unstandardised betas, which were manually standardised by multiplying 

unstandardised coefficients by the ratio of standard deviations of the corresponding 

independent variable and dependent variable. Some studies did not report the 

standard error of estimates, which was necessary for estimating the pooled effect 

size. For studies that reported 95% confidence intervals 11-15, standard errors were 

manually calculated by dividing corresponding confidence intervals (upper limit – 

lower limit) by 3.92. For studies that reported t-test statistics 16, standard errors were 

manually calculated by dividing corresponding standardised betas by t-test statistics. 

For studies that did not report data allowing for direct calculation of standard errors 2, 

following non-response after contacting the author, we imputed standard errors from 

corresponding estimates and sample sizes by using the compute.es_0.2-4 package 
17 in R version 3.6.1 18.  

 

Genetic nurture effects in one of the included studies 19 using average parental PGS 

was recalibrated to improve comparability with other studies using individual parental 

PGS. Details see in Supplemental Notes 7.2. 

 

For studies using the virtual parent design 2, 12-14, estimates of unadjusted child 

effects (based on transmitted PGS) and genetic nurture effects (based on non-

transmitted PGS) were reported. The magnitude of direct genetic effects can be 

imputed as follows: 

In regressions of the child education on both parental transmitted polygenic score 

(PGST) and non-transmitted polygenic score (PGSNT), let N be the sample size, βT 

be the coefficient of PGST and βNT the coefficient of PGSNT, σT be the standard error 

of βT and σNT be the standard error of βNT. βT is the effect of the children’s PGS on 

their own phenotype and βNT is the effect of genetic nurture. Thus, estimated direct 

genetic effects βdirect = βT - βNT 2. The variance of βdirect is equal to the sum of 

variance of βT and βNT. Let σdirect denotes the standard error of direct genetic effects, 

then it can be expressed as: σdirect = √(σT2 + σNT2).  



 

3.2 Multilevel Random Effects Model (MREM) 

The three-level MREM was performed following the tutorial of Assink and Wibbelink 
20 and incorporated variation in effect sizes from three sources: Level 1 variance 

attributed to random sampling, which corresponds to the standard error of each 

individual effect size; Level 2 variation between estimates within a single cohort; 

Level 3 variation in estimates between different cohorts. Here the cohort level was 

defined as the original population-based sample on which the data about genotype 

and educational outcomes was collected. In this meta-analysis, we included 12 

studies from eight independent cohorts (see Table 1, column ‘Cohort’). This level 

was employed to account for the violation of independence due to multiple estimates 

and studies from the same cohort. For example, two studies 10, 21 were both from the 

Framingham Heart Study (FHS), and in one study 21 several estimates of genetic 

nurture effects were reported using genotypes from mothers and fathers. One 

special case was that participants in the Minnesota Center for Twin and Family 

Research (MCTFR) cohort were drawn from several longitudinal studies including 

the Minnesota Twin Family Study (MTFS) cohort, thus in the meta-analysis they 

were considered as the same cohort.  

 

  



4 Unadjusted parental and child effects 

4.1 Unadjusted parental effects 

We derived k = 8 estimates of unadjusted parental effects on offspring educational 

outcomes (i.e., without adjusting for genetic nurture effects). Table S6 “Joint parental 

model” column shows MREM findings when jointly meta-analysing genetic nurture 

effects and unadjusted parental effects (βmixture = 0.11, 95% CI [0.08, 0.14], robust CI 

[0.07, 0.14]). When evaluating the heterogeneity in effect sizes, we found that a 

substantial proportion of variance reflected within-cohort heterogeneity (I2Level 2 = 

65.83%). This indicates that within-cohort factors (i.e., differences in effect sizes 

between outcomes within the same cohort) may account for some of the variation in 

effect sizes. Results of subgroup analysis showed that the magnitude of genetic 

nurture effects and unadjusted parental effects were highly significantly different (Q = 

20.58, df = 1, p < .0001). As is shown in Table S6 and Figure S3, estimates from 

unadjusted parental effects (βparental unadjusted = 0.21, 95% CI [0.15, 0.26], robust CI 

[0.08-0.33]) only were larger than genetic nurture. The variance among effect sizes 

of unadjusted parental effects mainly resulted from the between-cohort heterogeneity 

(I2Level 3 = 86.86%), suggesting that factors in which the cohorts may differ (e.g., type 

of the educational outcome, age when the outcome was assessed, accuracy of the 

GWASs) accounted for some of the variation in effect sizes. The funnel plot (see 

Figure S1) and formal test with precision as a moderator (Q = 3.22, p = .0727) 

suggested no publication bias in estimates of unadjusted parental effects. Results of 

jackknife leave-one-out analysis (see Figure S2) suggested no substantial role of a 

single influential study.  

 

4.2 Unadjusted child effects 

We derived k = 11 estimates of unadjusted child effects on their own educational 

outcomes, i.e., effects of child PGS without considering genetic nurture effects. 

Table S6 “Joint child model” column shows MREM findings of child effects on 

education when jointly meta-analysing direct genetic effects and unadjusted child 

effects (βmixture = 0.20, 95% CI [0.16, 0.24], robust CI [0.15, 0.24]). More variance 

among effect sizes in the joint model was attributable to between-cohort 

heterogeneity than within-cohort heterogeneity (I2Level 2 = 36.17% versus I2Level 3 = 

55.13%). Results of subgroup analysis showed that magnitudes of direct genetic 



effects and unadjusted child effects were significantly different (Q = 6.39, df = 1, p 

= .0115). As is shown in Table S6 and Figure S3, the magnitude of unadjusted child 

effects (βchild unadjusted = 0.24, 95% CI [0.20, 0.28], robust CI [0.19, 0.29]) was larger 

than direct genetic effects and comparable to estimates obtained from studies 

assessing the explanatory power of EA PGSs on one’s educational outcome without 

accounting for genetic nurture effects, which typically range between β = 0.15 and β 

= 0.39 16, 22-24. More variance among effect sizes in unadjusted child effects was 

attributable to between-cohort heterogeneity than within-cohort heterogeneity (I2Level 2 

= 28.51% versus I2Level 3 = 59.92%). The funnel plot (see Figure S1) and formal test 

with precision as a moderator suggested no publication bias in estimates of 

unadjusted child effects (Q = 0.47, p = 0.4917). Results of jackknife leave-one-out 

analysis (see Figure S2) suggests no substantial role of a single influential study.  

 

  



5 Other sources of heterogeneity in genetic nurture effects 

The magnitude of genetic nurture effects on children’s educational outcomes may 

vary according to several factors other than parent of origin, we examined the 

sources of heterogeneity in genetic nurture, direct genetic as well unadjusted effects 

by several meta-regression analyses (see Table S7). 

 

5.1 Study design 

It is unclear whether the magnitude of genetic nurture effects in empirical studies 

differs depending on the analytic method used (i.e., virtual parent or statistical 

control). Moreover, due to lack of complete trio data (i.e. child and both parents), 

genetic nurture effects have often been estimated among parent-offspring pairs. It is 

unclear to what extent the missing parental genotype bias estimates. Therefore, we 

examined whether using different designs moderated effect sizes by comparing 

estimates relying on virtual parent (using parental non-transmitted PGS to predict 

children’s education), partial statistical control (using PGS of one parent to predict 

children’s education while controlling for the child’s PGS) and full statistical control 

(using PGS of one parent to predict children’s education while controlling for the 

child’s and the other parent’s PGS).  

 

Genetic nurture effects detected by the virtual parent design (βvirtual parent = 0.07, 95% 

CI [0.06, 0.08]) were lower than those obtained from the statistical control approach 

(βpartial control = 0.09, 95% CI [0.07, 0.10], βfull control = 0.09, 95% CI [0.06, 0.11], p 

= .0443). In contrast, different designs captured similar effect sizes for direct genetic 

effects (βvirtual parent = 0.15, 95% CI [0.08, 0.21], βpartial control = 0.18, 95% CI [0.13, 

0.24], βfull control = 0.15, 95% CI [0.08, 0.22], p = .5039).  

 

Here, the magnitude of genetic nurture effects was slightly smaller in the virtual 

parent design versus the statistical control approach. Although we found no strong 

evidence for differences based upon findings from partial control (one parent) or full 

control (two parents), this may however reflect that these estimates were from 

different samples, hiding true differences. A recent study has shown the importance 

of using complete trio data, as missing the genotype of one parent can bias direct 

genetic effects and genetic nurture effects 3. Evidence from one of the included 



studies 25 using both partial and full statistical control approach echoed this view. 

Additional work is needed to compare estimates of genetic nurture using different 

analytical methods within the same sample to better understand the equivalence and 

comparability of different approaches. 

 

5.2 Type of educational outcome 

Previous genetically informed studies on educational outcomes have focused on 

attainment or achievement interchangeably 23, 24, 26, 27. However, both efforts relied 

on the GWASs of educational attainment, which is likely to more strongly correlate 

with educational attainment than achievement. Therefore, studies examining 

educational attainment may capture genetic nurture effects more accurately than 

those examining educational achievement. We thus considered whether the type of 

educational outcome moderated effect sizes by comparing studies assessing 

educational attainment and educational achievement.  

 

Similar effect sizes of genetic nurture effects were found for educational attainment 

and achievement (βattainment = 0.09, 95% CI [0.07, 0.11], βachievement = 0.07, 95% CI 

[0.05, 0.10], p = .3079). However, when restricting the analysis to studies where both 

educational attainment and achievement were assessed 14, 28, larger genetic nurture 

effects on educational attainment relative to educational achievement were found 

(see Supplemental Notes 7.5, Table S9).  Another explanation of larger genetic 

nurture effects for educational attainment compared to educational achievement is 

that attainment may be more socially influenced than achievement 29. That is, it may 

be easier for parents to influence attainment (e.g. by accessing more exclusive 

schooling or financially supporting further education). However, developmental 

trends in genetic nurture effects warrant more investigation. Heritability of 

educational outcomes increases with age 30. Conversely, the nurturing behaviours 

from parents may impact offspring more at earlier ages, as they spend more time at 

home rather than school, spend more time with their parents rather than peers, 

which might lead to genetic nurture effects decreasing with age. Moreover, genetic 

nurture may act distinctively over time through different pathways as suggested by a 

recent study showing parent non-cognitive but not cognitive related characteristics 

were more important for educational achievement at age 16 than age 12 31.  



 

Direct genetic effects were larger for educational achievement (βachievement = 0.19, 

95% CI [0.14, 0.24]) than for educational attainment (βattainment = 0.14, 95% CI [0.08, 

0.19]) and there was evidence of a moderating effect (p = .0466). The robustness of 

this finding was confirmed by restricting the analysis to studies reporting effects for 

both attainment and achievement (see Supplemental Notes 7.5, Table S9). This 

finding agrees with previous twin evidence, which suggested ~60% heritability for 

educational achievement measured in childhood and adolescence 32 and ~40% for 

educational attainment measured in adulthood 33, 34. Several plausible explanations 

might account for the consistently higher heritability/direct genetic effect in 

educational achievement. One is that educational achievement is measured during 

compulsory schooling. The difference thus may reflect more genetically influenced 

traits in children like intelligence, personality and psychopathology 35. In contrast, 

years of education one completed is likely to be influenced by a wider range of 

factors, such as career plan or financial situation 29, 36, 37. Another explanation is that 

educational achievement is often measured with standard tests/scores which reflect 

one’s relative ranking/decile among peers. Education years, however, can be more 

ambiguous as essentially different routes, such as academic and vocational, are not 

distinguished, which may introduce heterogeneity and measurement error. Future 

studies should examine genomic predictions with consistent measures of 

educational achievement across different developmental stages in order to capture 

dynamic changes. Evidence from one study, the Twins Early Development Study 

(TEDS), suggested that the predictive precision of PGSs (i.e., unadjusted child 

effects) on educational achievement increased from ages 7 to 16 38. 

 

5.3 Predictive accuracy of the GWAS used to derive the PGSs 

Genome-wide association studies (GWASs) have advanced rapidly in the last 

decade (Visscher et al., 2017). The first GWAS of educational attainment EA 

(hereafter referred to as “EA GWAS”) was conducted in 2013 (EA1) in a discovery 

sample of 101,069 individuals, and found three independent SNPs with genome-

wide significance (i.e., p value threshold of 5 × 10−8)39. The discovery sample was 

extended to 293,723 individuals in 2016 by the second EA GWAS (EA2), which 

identified 74 genome-wide significant loci associated with years of schooling 



completed 40. The most recent EA GWAS (EA3) was conducted in 2018 in a sample 

of approximately 1.1 million individuals (N = 1,131,881), the marked increase in 

sample size boosted the predictive accuracy/statistical power to detect genetic 

associations and resulted in identifying 1,271 independent genome-wide-significant 

SNPs 41. Based on the EA GWASs, polygenic scores (PGSs)42, 43 can be derived to 

provide a single value reflecting an individual’s genetic propensity to educational 

attainment (referred to as “EA PGS”; it is a sum of an individual’s effect alleles 

weighted by effect sizes obtained from the EA GWAS). For example, EA PGSs 

derived from EA1, EA2 and EA3 explained about 2%, 3.2% and 11-13% of the 

variance in educational attainment, respectively. As studies have derived individual’s 

genetic propensity depending on the most powerful data at that time of publication, 

to what extent the estimated genetic nurture effects differ depending on the accuracy 

of EA GWASs used remains untested. Therefore, we compared effect sizes from 

PGSs based on different EA GWASs.  

 

As expected and consistent with previous studies 12, 38, the predictive accuracy of the 

GWASs used to construct the PGS significantly moderated effect sizes of genetic 

nurture. Estimates of genetic nurture effects based on more accurate GWASs were 

significantly larger (βEA3= 0.09, 95% CI [0.08, 0.11], βEA2= 0.07, 95% CI [0.06, 0.08], 

pgenetic nurture = .0066). Similar results were found for unadjusted parental effects (βEA3 

= 0.24, 95% CI [0.21, 0.27], βEA2 = 0.16, 95% CI [0.15, 0.18], βEA1 = 0.08, 95% CI 

[0.01, 0.16], punadjusted parental < .0001) and unadjusted child effects (βEA3 = 0.27, 95% 

CI [0.241, 0.31], βEA2 = 0.20, 95% CI [0.16, 0.24], βEA1 = 0.13, 95% CI [0.05, 0.20], 

punadjusted child = .0010). However, there was no significant difference for direct genetic 

effects due to the larger uncertainty in estimates (βEA3 = 0.18, 95% CI [0.14, 0.23], 

βEA2 = 0.14, 95% CI [0.08, 0.20], pdirect genetic = .1783). 

 

5.4 Study characteristics 

We also tested the moderating roles of a number of study characteristics reflecting 

methodological quality and sample representativeness, including study quality, 

sample size and attrition rate of the cohort.  

 



Study quality was indexed by the total score of the methodological quality described 

in Supplemental Notes 2.3. Detailed score of each included study see Table S3. 

Methodological quality was negatively associated with the magnitude of genetic 

nurture effects (slope = -0.02, pgenetic nurture = .0072) and unadjusted parental effects 

(slope = 0.05, punadjusted parental = .0353).  

 

The sample size was tested in the unit of 1,000 participants due to the relatively 

large sample size in studies (mean = 3,372, median = 1,626). For the sample size of 

which each effect size was based on, see Table S4. To note, only the largest sample 

size assessing genetic nurture effects in each cohort was used to compute the total 

sample size of the current meta-analysis (i.e., 38,654) in a conservative manner to 

preclude any overlap within the cohort. In Table1, sample sizes were reported per 

study and outcome category (i.e., educational attainment vs. educational 

achievement) as part of the study summary. Sample size (slope = -0.001, p = .0225) 

was negatively associated with the magnitude of genetic nurture effects in a modest 

manner. 

 

Both moderating effects of methodological quality and sample size can be attributed 

to the potentially influential study 2 with the highest quality score and sample size 

(see Table S8). Nevertheless, it suggests that more reliable studies, namely with 

more rigorous methodology and larger sample size, may produce more conservative 

estimates of genetic nurture effects on educational outcomes.   

 

Considering the prevalent attrition in original cohorts across studies (details see 

Supplemental Notes 2.3), the moderating role of attrition rate was tested. For the 

attrition rate of each effect size, see Table S4. Among four MREM of effects on 

educational outcomes, attrition in the cohort did not clearly moderate any estimate 

(p > .05).  

 

  



6 Family-level adjustment 

We tested the moderating role of family-level adjustment, including parental 

education level and family socioeconomic status (SES) to quantify the extent to 

which genetic nurture effects can be attributed to these distal family-level factors. As 

shown in the last panel of Table S7, we compared effect sizes with and without 

family-level adjustments. Effect sizes included in the main meta-analysis were 

unadjusted for family-level adjustment (kgenetic nurture =22, kdirect genetic = 16, kparental 

unadjusted =8, kchild unadjusted =11). All available effect sizes in the included studies with 

family-level adjustment of parental education or family SES were extracted as 

adjusted estimates (kgenetic nurture =18, kdirect genetic = 11, kparental unadjusted =4, kchild unadjusted 

=3). Effect sizes adjusted for family-level factors were only used to test the 

moderating role of family-level adjustment and not included in the main meta-

analysis as they were fundamentally different from unadjusted ones. It should be 

noted that one study 10 reported genetic nurture and direct genetic effects only with 

family-level adjustment, and unadjusted parental and child effects both with and 

without family-level adjustment. Therefore, for this particular study 10, only effect 

sizes of unadjusted parental and child effects were included in the main meta-

analysis, and all effect sizes were used for the moderator analysis of family-level 

adjustment.  

 

The unadjusted effects were visually larger than the family-level adjusted effects for 

both genetic nurture and direct genetic effects. The largest decrease in effect sizes 

attributable to adjustment was present for genetic nurture effects (βunadjusted = 0.07, 

95% CI [0.07, 0.08] vs.  βadjusted = 0.02, 95% CI [0.01, 0.03]), which was supported by 

a highly significant moderating effect (padjustment < .0001) and remained robust when 

tested in a sensitivity analysis (see Table S8). Smaller changes in effect sizes 

following family-level adjustment were present for direct genetic effects (βunadjusted = 

0.17, 95% CI [0.13, 0.20] vs. βadjusted = 0.14, 95% CI [0.10, 0.18]), in which case the 

moderating effect was also significant (padjustment = .0098). After accounting for 

parental education level or family SES, the effect of unadjusted parental and child 

effects on children’s educational outcomes were both attenuated by ~30%. (punadjusted 

parent = .0001, punadjusted child = .0223). 

  



7 Sensitivity analyses  

7.1 Robust confidence intervals of dependent estimates 

Among some included studies, we extracted multiple, statistically dependent effect 

size estimates from the same cohort. We utilized MREM to handle the dependence 

of effect sizes. As sensitivity checks, we also reported, robust confidence intervals 

(robust CI) of cluster-robust variance estimations, which is out of the MREM 

framework and obtained using the package clubSandwich version 0.5.0 44 in R 

version 3.6.1 18.  

 

7.2 Impact of recalibrating estimates using the average parental PGS 

In general, comparing estimates using maternal, paternal, maternal and/or paternal 

genomic measures should be straightforward by directly compared their absolute 

values. Caution is warranted when using the average parental PGS, in which case 

the R2 (variance explained) is unbiased but the estimate is inflated (compared to 

using individual parental PGS): 

Let PGSM be the maternal polygenic score and PGSP be the paternal polygenic 

score, and let R2M and R2P be the variance explained by PGSM and PGSP, 

respectively. The variance explained by the average parental PGS, R2ave parent, 

equals to the addition of variance of mother and father (R2ave parent = R2M + R2P) when 

assuming PGSM and PGSP are uncorrelated. Thus, the standardised estimated 

genetic nurture effects from the average parental PGS, βave parent is equal to the 

square root of R2M + R2P. Assuming that genetic nurture effects from mother and 

father are equal (R2M = R2P = R2ind parent), and let β ind parent be the standardised 

estimate of genetic nurture effects from the individual parental PGS, the relationship 

between βave parent and β ind parent are:  

Genetic nurture effects from the average parental PGS: 

βave parent = √ (2R2ind parent) = √2 βind parent 

Genetic nurture effects from the individual parental PGS:  

βind parent = √(R2ave parent/2) = βave parent/√2 

Due to the abovementioned reason, one of the included studies 19 utilizing the 

average parental PGS to capture genetic nurture effects had an outlying estimate (β 

Willoughby original = 0.20) relative to other estimates included in our study. We thus used 

the recalibrated estimate (β Willoughby adjusted = 0.20/√2 = 0.14) for the main meta-



analysis to obtain better comparability with other studies using individual parental 

PGS.  

 

The impact of this adjustment is examined by meta-analysing genetic nurture effects 

with the originally reported effect size. Using the original estimate of average 

parental PGS resulted in similar genetic nurture effects (β Willoughby original = 0.08, 95% 

CI [0.07, 0.09], robust CI [0.06, 0.10]) but introduced more publication bias (Q = 

8.59, p =.0034). The moderating effect of analytical design was still significant (Q = 

6.17, p = 0.0457), with smaller estimates from the virtual parent design than the 

statistical control approach. Such results were expected, as the adjusted average 

parental PGS was derived from the statistical control approach and the recalibration 

decreased that estimate.  

 

In our meta-analytic pooled estimate, the magnitude of genetic nurture represents 

the effects from an individual parent for easier comparison between studies. 

However, when comparing the relative contribution of genetic nurture and direct 

genetic effects, genetic nurture effects from both parents should be considered. With 

genetic nurture of an individual parent explaining βgenetic nurture = 0.082 = 0.64% of 

variance in offspring educational outcomes and assuming effects from both parents 

are equal and independent, genetic nurture of both parents explains 0.64%*2 = 

1.28% of variance in offspring educational outcomes. As such, the magnitude of 

genetic nurture from both parents βboth parents = √1.28% = 0.11, and the genetic 

nurture effects/ direct genetic effects ratio = 0.11/0.17 = 0.65. This finding is 

consistent with recent Relatedness Disequilibrium Regression (RDR) evidence 45, in 

which genetic nurture effects originating in both parents explained 6.6% of the 

variance in EA, corresponding to an effect size of approximately 0.26 (the square 

root of 0.066). RDR-estimated direct genetic effects/heritability explained 17% of the 

variance in EA, corresponding to an effect size of approximately 0.41 (the square 

root of 0.17). The ratio of genetic nurture/direct genetic effects derived from the RDR 

method is thus 0.26/0.41=0.63. 

 



7.3 Impact of a potentially influential study 

Due to the Inverse-variance weighting strategy adopted in our meta-analysis, one of 

the included studies 2 might be more influential than others since standard errors in 

that study (imputed based on their corresponding effect sizes and sample sizes) 

were very small. Therefore, we tested the impact of this potentially influential study 

by re-running the meta-analysis omitting its estimates. We tested the robustness of 

our pooled effects as well as the distribution of variance in the MREM to see whether 

the narrow confidence intervals and approximate homogeneity of genetic nurture 

effects were exclusively attributed to this study, e.g., the Kong et al. 2018 study 

reported three estimates of genetic nurture effects using maternal, paternal and 

parental non-transmitted PGS. In addition, we performed meta-regression without 

estimates from this study for all the moderators that were potentially impacted, since 

the Kong et al. 2018 study may have independently influenced the moderating 

effects in some cases. For example, multiple genetic nurture effects from the Kong et 

al. 2018 study using maternal, paternal and parental non-transmitted PGS) may 

unduly impact on the moderating effect of parent of origin and mask effects from 

other studies.   

 

The potentially influential study of Kong et al. 2018 did not show substantial impact 

on distributions of variance, pooled estimates, but resulted in some publication bias 

and changes in moderating effects of methodological quality and sample size on the 

magnitude of genetic nurture effects. For details see Tables S5 and S8.  

 

7.4 Jackknife leave-one-out analyses 

To account for any other potential influences from included studies, we assessed the 

undue effect of individual studies on our pooled estimates through jackknife leave-

one-out analyses, by testing changes in the estimate across permutations in which 

each study was omitted in turn. For visualization of results see Figure S2. 

 

7.5 The moderating effect of outcome type within study 

Two of the included studies 14, 28 assessed both educational attainment and 

achievement, we thus checked the robustness of moderating effect of outcome type 

within study by running the meta regression within these two particular studies. As 



shown in Table S9, the moderation role for outcome type on genetic nurture effects 

became statistically significant (βattainment = 0.11, 95% CI [0.08, 0.14], βachievement = 

0.05, 95% CI [0.01, 0.09], p = .0228). The difference in direct genetic effects was 

larger in the opposite direction (βattainment = 0.12, 95% CI [0.07, 0.17]), βachievement = 

0.21, 95% CI [0.16, 0.26], p = .0144).  
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