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S1: Dike growth and relaxation 

S1A. Kinetics-dominated versus toughness-dominated growth for linear pressure model 

Spence and Turcotte (1985) developed a first-order approximate model for the growth of 

a 2D dike of length 𝐿 and thickness 𝑇 in a linear elastic host with plane strain modulus 

𝐸′ =
𝐸

1−𝜈2, fracture toughness 𝐾𝐼𝑐, and magma viscosity 𝜂. This analysis is re-evaluated 

here for the purposes of dike scaling interpretation, and to investigate the criteria for 

transition between toughness and kinetic-controlled dike formation.  

 

Stress intensity at the dike tip 
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The mode I stress intensity at the tip of a crack subject to an internal pressure distribution 

𝑝(𝑥) is given by 

 

𝐾𝐼 =
1

√𝜋𝑎
∫  𝑝(𝑥)√

𝑎 + 𝑥

𝑎 − 𝑥
𝑑𝑥

𝑎

−𝑎

 

(A.1) 

where 𝐿 = 2𝑎. A simple linear approximation to the pressure distribution is proposed 

such that 𝑝(𝑥) = 𝑃 + Δ𝑃 |
𝑥

𝑎
|. In this case equation (A.1) gives 

 

𝐾𝐼 = √
𝑎

𝜋
 (𝜋𝑃 + 2Δ𝑃) 

(A.2) 

The condition for fracture propagation is 𝐾𝐼 = 𝐾𝐼𝑐. Given the central magma pressure 𝑃, 

it is then required that  

Δ𝑃 =
𝜋

2
[

𝐾𝐼𝐶

√𝜋𝑎
− 𝑃] 

(A.3) 

for dike propagation to occur. In the kinetic-controlled limit we can assume that the 

material resistance of the host rock is negligible (𝐾𝐼𝑐 = 0) which yields the result that 

Δ𝑃 = −
𝜋

2
𝑃.  

 

Spence and Turcotte (1985) analysis 

The volume (area) of the 2D dike is assumed to evolve as a prescribed function of time, 

𝑉 = 𝑄𝑡, where 𝑄 (𝑚2/𝑠) is a constant, and the magma pressure is assumed to be linear, 

such that 𝑝(𝑥) = 𝑃 [1 −
𝜋

2
|

𝑥

𝑎
|] as above. [Note the problem with the exact pressure 

distribution was solved numerically by Spence and Sharp (1985) for self-similar dike 

evolution with 𝑉(𝑡) = 𝑄𝑡𝛼]. From their analysis we have the following parameters  

𝛾 =
2𝐾

(6𝑄𝜂𝐸′)
1
4

= (
4

3𝜋
)

1
4 (6𝐴0

3 − 1)

(1 + 12𝐴0
3)

3
4
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𝑘 =
(1 + 12𝐴0

3)
1
2

√12𝜋𝐴0
2

 

𝐾 =
𝐾𝐼𝐶

√𝜋
 

(A.4) 

such that the parameter introduced in equation (5) is defined in terms of these as 

 

𝜆 =
𝐾𝐼𝑐

(𝑄𝜂𝐸′)
1
4

=
6

1
4√𝜋

2
𝛾 = (

𝜋

2
)

1
4 (6𝐴0

3 − 1)

(1 + 12𝐴0
3)

3
4

 

(A.5) 

The dike length and thickness are given in terms of the parameters in (A.4) by equations 

(27) and (28) in Spence and Turcotte (1985) 

 

𝐿 =
2

6
1
6

. 𝑘𝑄
1
2 (

𝐸′

𝜂
)

1
6

𝑡
2
3 

 

𝑇 = 2.6
1
6. 𝑘𝐴0. 𝑄

1
2 (

𝜂

𝐸′
)

1
6

𝑡
1
3 

(A.6) 

where 𝑡 is time. These can be combined to give 

 

𝑇 = 24
1
4𝑘

1
2𝐴0 (

𝑄𝜂

𝐸′
)

1
4

𝐿
1
2  

(A.7) 

Following equation (4) we write this as 

 

𝑇 = 𝑓. √
8

𝜋

𝐾𝐼𝑐

𝐸′
𝐿

1
2 

(A.8) 
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such that  

 

𝑓 = √
𝜋

8
. 24

1
4

𝑘
1
2𝐴0

𝜆
=

(1 + 12𝐴0
3)

2(6𝐴0
3 − 1)

 

(A.9) 

 

This is the blue line shown in Figure 2. 

 

Now, in the kinetic-controlled limit (𝜆 → 0) we have 𝛾 → 0 so (A.1) gives 6𝐴0
3 = 1 such 

that 

 

𝑓 = √
3𝜋

32
𝜆−1 

(A.10) 

This is the red line shown in Figure 2 and shows that the viscous terms work well for 𝜆 <

0.2. Given 2D volume (area) 𝑉2𝐷 = 𝑄𝑡 we can also write this as 

 

𝐿 = √
6

𝜋
(

𝐸′

𝑄𝜂
)

1
6

𝑉2𝐷

2
3 = √

6

𝜋
(

𝑉2𝐷
2

𝐿𝜂
)

1
3

              𝑇 = √
6

𝜋
(

𝑄𝜂

𝐸′
)

1
6

𝑉2𝐷

1
3 = √

6

𝜋
(𝐿𝜂𝑉2𝐷)

1
3 

(A.11) 

and 

 

𝑇 = (
6

𝜋
)

1
4

(𝐿𝜂𝐿)
1
2 

(A.12) 

which only depends on the kinetic length scale 𝐿𝜂 as expected.  

 

In the toughness-controlled limit (𝜆 → ∞) we note that equations (34) and (35) in Spence 

and Turcotte (1985) are wrong, as they show a 𝜂 dependence which should not be there 
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in this regime. Carrying out the algebraic substitutions correctly, the actual result is as 

follows. In the limit of 𝜆 → ∞ we get 

 

𝜆 = (
3𝜋

8
)

1
4

𝐴0

3
4 

(A.13) 

then 

 

𝑘 = (
3

8𝜋2
)

1
6

. 𝜆−
2
3 

(A.14) 

giving, from (A.6), 

 

𝐿 = (
2

𝜋
)

1
3

𝜆−
2
3𝑄

1
2 (

𝐸′

𝜂
)

1
6

𝑡
2
3 = (

2

𝜋
)

1
3

(
𝑄𝐸′

𝐾𝐼𝐶
)

2
3

𝑡
2
3 

(A.15) 

and  

𝑇 = 2 (
2

𝜋
)

2
3

𝜆
2
3𝑄

1
2 (

𝜂

𝐸′
)

1
6

𝑡
1
3 = 2 (

2

𝜋
)

2
3

(
𝑄

1
2𝐾𝐼𝑐

𝐸′
)

2
3

𝑡
1
3 

(A.16) 

Writing this in terms of 𝑉2𝐷 = 𝑄𝑡 gives 

 

𝐿 = (
2

𝜋
)

1
3

(
𝐸′

𝐾𝐼𝐶
)

2
3

𝑉2𝐷

2
3 = (

2

𝜋
)

1
3

(
𝑉2𝐷

2

𝐿𝐾
)

1
3

             𝑇 = 2 (
2

𝜋
)

2
3

(
𝐾𝐼𝑐

𝐸′
)

2
3

𝑉2𝐷

1
3 = 2 (

2

𝜋
)

2
3

(𝐿𝐾𝑉2𝐷)
1
3 

(A.17) 

 

Combining these gives equation (3) 
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𝑇 = √
8

𝜋
(𝐿𝐾𝐿)

1
2 = 1.60(𝐿𝐾𝐿)

1
2 

(A.18) 

which only depends on the toughness length scale as expected, and yields 𝑓 = 1 in this 

case as required. 

 

S1B. Non-linear inflation and relaxation model 

The aim here is to extend the analysis of Spence and Turcotte (1985), which has been re-

evaluated in appendix A, to be applicable to the general case where 𝑉(𝑡) is a general 

function of time. Here an approximate analytical solution is derived using a variational 

method for kinetic processes defined by Cocks et al. (1998). This postulates that the best 

estimate of a kinetic field minimises a variational function 

 

Π = Ψ + 𝐺̇ 

(B.1) 

where Ψ is a dissipation potential and 𝐺̇ is the rate of change of Gibbs free energy. In this 

case, the dissipation is due to magma flow. The Gibbs free energy is the driving force for 

this flow. It has two contributions 

𝐺 = 𝑈𝑒 + 2Γ𝐿 

(B.2) 

where 𝑈𝑒  is the change in elastic strain energy in the host rock due to changes in the dike 

geometry and/or magma pressure (equivalent to the energy release rate for crack 

growth), and 2Γ𝐿 is the fracture energy, where Γ ≈
𝐾𝐼𝑐

2

2𝐸′ is the (constant) energy per unit 

area of fracture and 2𝐿 is the area of the crack face created as two crack faces are 

produced by splitting. Here the analysis is limited to the kinetic-controlled regime such 

that the second term is omitted, i.e. Γ = 0. 

  

 

Gibbs free energy, 𝐺 
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Here we utilise the fact that in linear elasticity the change in elastic strain energy, 𝑈𝑒 =

1

2
Ω, is half the work done by the applied load.  Here, this is the work done by the internal 

pressure, 𝑝(𝑥), in generating an opening thickness, ℎ(𝑥) 

 

Ω = ∫ 𝑝(𝑥)ℎ(𝑥)𝑑𝑥
𝑎

−𝑎

 

(B.3) 

The deformed shape for the assumed kinetic-controlled pressure profile, 𝑝(𝜉) =

𝑃 [1 −
𝜋

2
 |𝜉|] is given by equation (20) in Spence and Turcotte (1985) as 

 

ℎ(𝜉) =
2𝑃𝐿

𝐸′
[√1 − 𝜉2 +

1

2
𝜉2 ln (

1 − √1 − 𝜉2

1 + √1 − 𝜉2
)] 

(B.4) 

where 𝜉 = 𝑥/𝑎. Note that the definition of maximum thickness, 𝑇 = ℎ(0), recovers 

equation (2). The volume of magma-filled crack is 

 

𝑉(𝑡) =
𝐿

2
∫ ℎ(𝜉)𝑑𝜉

1

−1

= 1.051
𝑃𝐿2

𝐸′
= 0.525 𝐿𝑇 

(B.5) 

Evaluation of the integral gives 

 

Ω = 0.527
𝑃2𝐿2

𝐸′
= 𝛽𝑃𝑉 

(B.6) 

where 𝛽 = 0.502. This scaling is universal, with only the exact value of the pre-factor 

𝛽 depending on the choice of pressure distribution within the dike. Note that for a 

uniform pressure of 𝑝(𝑥) = 𝑃 the pressure term can be moved out of the integral in (B.3) 

such that Ω = 𝑃𝑉 in this case. Hence it is expected that the actual distribution will 

produce a pre-factor somewhere between these two cases, i.e. 𝛽 is between 0.5 and 1.0. 
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Dissipation potential, 𝛹 

The average magma flux through the dike at a distance 𝑥 from the centre assumes laminar 

flow such that magma flows down the pressure gradient 

 

𝑗(𝑥) = −𝑘𝑓 

(B.7) 

where 𝑘(𝑥) =
ℎ(𝑥)3

12𝜂
 is the permeability of the magma channel and 𝑓 =

𝜕𝑝

𝜕𝑥
 is the driving 

force for flow per unit volume. Following Cocks et al. (1998) we write this in terms of a 

dissipation rate per unit volume 𝜓 such that 

 

𝑓 = −
𝜕𝜓

𝜕𝑗
 

(B.8) 

The total dissipation can then be determined from (B.7) and (B.8) to be 

 

Ψ = ∫ 𝜓𝑑𝑥
𝑎

−𝑎

=
1

2
∫

𝑗2

𝑘
𝑑𝑥

𝑎

−𝑎

 

(B.9) 

The flux is related to the dike shape. For 0 ≤ 𝑥 ≤ 𝑎 we have 

 

𝑗(𝑥) = − ∫
𝜕ℎ

𝜕𝑡

𝑥

0

𝑑𝑥 + 𝑗0 

(B.10) 

where the flux at the centre of the dike is 𝑗(0) = 𝑗0.  It is tempting to determine the flux 

using the dike profile defined by (B.4) for the linear pressure gradient, but this is not 

possible as the chosen pressure distribution is not an exact solution. In practice the 

pressure gradient 𝑓 at the tip must be infinite to generate a finite flux where the dike 

thickness ℎ is zero (Rubin, 1995). If (B.4) is used then the dissipation potential is infinite 

at the tip. To simply generate an estimate of the dissipation, we therefore assume a 
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simple rectangular dike shape, whereby the dike is of length 𝐿 and average thickness 𝑇̃ 

where volume conservation requires that 𝑉 = 𝐿𝑇̃. This will provide the correct scaling, 

and the contribution from the actual shape can be calibrated later from the solution of 

Spence and Turcotte (1985). Equation (B.5) yields the relation 𝑇̃ = 𝑐𝑇, where 𝑐 = 0.525. 

Now (B.10) becomes 

 

𝑗(𝑥) = − ∫
𝜕𝑇̃

𝜕𝑡

𝑥

0

𝑑𝑥 + 𝑗0 = −𝑐𝑇̇𝑥 + 𝑗0  

(B.11) 

where 𝑗0 =
1

2
𝑉̇ > 0 is the rate of change of half the magma volume in the growing dike. 

Given 𝑉̇ = 𝑐(𝑇̇𝐿 + 𝑇𝐿̇) we can write this as 

𝑗(𝑥) = 𝑐𝑇𝑎̇ (
𝑥

𝑎
) + 𝑗0 (1 −

𝑥

𝑎
) 

(B.12) 

To calculate (B.9) we assume an average permeability 𝑘̃ = 𝑑.
𝑇̃3

12𝜂
 where the pre-factor 𝑑 

is to be determined based on the dike shape. The dissipation potential is therefore 

 

Ψ =
𝐿

12𝑘̃
[(𝑐𝑇𝐿̇)

2
+ 𝑐𝑇𝐿̇𝑉̇ + 𝑉̇2] 

(B.13) 

 

Variational functional, 𝛱 

We write 𝑃 =
𝐸′𝑇

2𝐿
=

𝐸′𝑉

2𝑐𝐿2 from equation (2) such that (B.6) becomes Ω =
𝛽𝐸′𝑉2

2𝑐𝐿2  and hence 

 

𝐺̇ =
1

2
Ω̇ =

𝛽𝐸′𝑉2

2𝑐𝐿2
[
𝑉

𝑉

̇
−

𝐿̇

𝐿
] 

(B.14) 

The variational functional (B.1) can therefore be written as 
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Π =
𝐿

12𝑘̃
[(𝑐𝑇𝐿̇)

2
+ 𝑐𝑇𝐿̇𝑉̇ + 𝑉̇2] + [

𝑉

𝑉

̇
−

𝐿̇

𝐿
] 

(B.15) 

As 𝑉̇ is prescribed in this analysis, the only kinetic degree-of-freedom is 𝐿̇ whose optimal 

solution minimises (B.15) such that 
𝜕Π

𝜕𝐿̇
= 0. This gives 

𝐿

12𝑘̃
[2𝑐2𝑇2𝐿̇ + 𝑐𝑇𝑉̇] =

𝛽𝐸′𝑉2

2𝑐𝐿3
 

(B.16) 

Now, as we have already seen, 𝑉̇ = 𝑐[𝑇𝐿̇ + 𝐿𝑇̇]. To make simple analytical progress, we 

follow Spence and Turcotte (1985) by looking for power law solutions where 𝑇 = ℎ𝐿𝑚, 

where ℎ and 𝑚 are constants. This yields 𝐿𝑇̇ = 𝑚𝑇𝐿̇ and thus 𝑉̇ = 𝑐(𝑚 + 1)𝑇𝐿̇ such that 

(B.16) becomes 

 

(3 + 𝑚)𝑐2𝑇2𝐿

12𝑘̃
𝐿̇ =

𝛽𝐸′𝑉2

2𝑐𝐿3
 

(B.17) 

Substituting for 𝑘̃ = 𝑑.
(𝑐𝑇)3

12𝜇
 and 𝑇 =

𝑉

𝑐𝐿
 we get 

 

𝐿̇ =
𝑑𝛽𝐸′𝑉3

2𝑐(3 + 𝑚)𝜇𝐿5
 

(B.18) 

Rearranging and integrating over time gives 

𝐿(𝑡) = 𝐴 (
𝐸′𝑆

𝜂
)

1
6

 

(B.19) 

where the pre-factor 𝐴 = (
3𝑑𝛽

4𝑐(3+𝑚)
)

1

6
  and we have introduced the variable 

 

𝑆(𝑡) = 4 ∫ 𝑉(𝑡)3𝑑𝑡 
𝑡

0
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(B.20) 

The pre-factor is calibrated using the linear growth case of 𝑉 = 𝑄𝑡 examined by Spence 

and Turcotte (1985) for which 𝑚 =
1

2
 and 𝐴 = 1.38.  

 

General solution 

We therefore determine how the length, maximum thickness and maximum pressure in 

the dike evolve over time for a general volumetric time evolution 𝑉(𝑡) as 

 

𝐿(𝑡) = 1.38 (
𝐸′𝑆

𝜂
)

1
6

            𝑇(𝑡) = 1.38𝑉 (
𝜂

𝐸′𝑆
)

1
6

         𝑃(𝑡) = 0.94𝑉 (
𝐸′2𝜂

𝑆
)

1
3

 

(B.21) 

This assumes a self-similar shape for the dike during growth, although this will not 

necessarily be completely true during the relaxation phase, which is complicated by 

freezing.  

 

Inflation stage solution for power law magma injection 

If we assume power law growth during the inflation phase, such that 𝑉(𝑡) = 𝑄𝑡𝛼, then 

(B.21) can be expressed as  

 

𝐿(𝑡) = 1.38𝑄
1
2 (

𝛽̂𝐸′

𝜂
)

1
6

𝑡
3𝛼+1

6        𝑇(𝑡) = 1.38𝑄
1
2 (

𝜂

𝛽̂𝐸′
)

1
6

𝑡
3𝛼−1

6        𝑃(𝑡)

= 0.94 (
𝐸′2𝜂

𝛽̂
)

1
3

𝑡−
1
3 

(B.22) 

where 𝛽̂ =
4

3𝛼+1
. Note that the scaling is identical to the exact solution of Spence and 

Sharp (1985). Now, the thickness–length relationship can be written in a more general 

form as 
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𝑇 = 1.381−𝑚 (
𝜂

𝛽̂𝐸′
)

1+𝑚
6

𝐿𝑚 

(B.23) 

where 𝑚 =
3𝛼−1

3𝛼+1
. Note that Equation 6 is recovered if 𝛼 = 1 when the exponent reduces 

to 𝑚 =
1

2
. 

 

Relaxation stage solution 

If we assume growth ends at time 𝑡 = 𝑡0  then the final volume is 𝑉(𝑡0) = 𝑉0 = 𝑄𝑡0
𝛼. The 

dike can still evolve over time even without magma emplacement, although at a much-

reduced rate. If this evolution occurs for an additional relaxation time 𝑡𝑟 such that 𝑡 =

𝑡0 + 𝑡𝑟, then in (B.21) we have 

𝑆 = 4𝑉0
3 (𝑡𝑟 +

𝑡0

3𝛼 + 1
) 

(B.24) 

We can see that during volumetric growth the length increases as 𝑡
1

6
+

𝛼

2  and during 

constant volume relaxation it increases more slowly, tending towards 𝑡
1

6 when 𝑡𝑟 ≫ 𝑡0. 

Similarly, the thickness increases during volumetric growth as 𝑡−
1

6
+

𝛼

2   and decreases during 

constant volume relaxation, tending towards 𝑡−
1

6 when 𝑡𝑟 ≫ 𝑡0. 

 

S1C. Solidification time 

An upper estimate for the time for relaxation (before freezing) is obtained from equation 

(9) 

 

𝑡𝑟 =
𝑇(𝑡𝑟)2

16𝜅𝛽2
 

(C.1) 

where the final thickness 𝑇(𝑡𝑟) is given by (B.21) and (B.24). These equations can be re-

arranged into a quartic in 𝑡𝑟 
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𝑡𝑟
3 (𝑡𝑟 +

𝑡0

3𝛼 + 1
) =

(1.38𝑉0)6

4𝑉0
3(16𝜅𝛽2)3

(
𝜂

𝐸′
) 

(C.2) 

which can be solved numerically.  
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S2. Dike and vein scaling data presented in Figures 1, 3, and 6. Full references provided in 

the main article. 

 

S3. Calculation of toughness versus viscous growth from Equations A9 and A10 in 

supplement S1, based on analysis by Spence and Turcotte (1985). 

 

S4. Calculation of dike inflation and relaxation for different parameters: (A) 𝑄 = 1𝑚2/𝑠, 

𝑠 = 0.65 (i.e., 𝑄 = 1𝑚2𝑠−0.65), 𝐸′ = 1 𝐺𝑃𝑎, 𝜇 = 108 𝑃𝑎. 𝑠 and 𝜅 = 10−6 𝑚2/𝑠. Plots in 

B–F show effects of changing individual parameters relative to (A), with: (B) reduced 𝜇 =

106 𝑃𝑎. 𝑠; (C) higher growth rate 𝑄 = 10 𝑚2𝑠−0.65; (D) higher growth exponent (and 

rate) with 𝑄 = 1 and 𝑠 = 1 (i.e., 𝑄 = 1𝑚2/𝑠); (E) lower growth exponent 𝑠 = 0.5 with 

increased 𝑄 = 10𝑚2𝑠−0.5 (note that without increasing 𝑄, growth takes hundreds of 

years); (F) lower thermal diffusivity (which affects cooling rate) with 𝜅 = 10−7𝑚2/𝑠. 


