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Here we first briefly discuss pseudospectra for quasimatrices and then present an
optimality result on the extension of the Ito-Murota approach to quasimatrix pairs;
see subsection 5.2.

Let A and B be ∞× n quasimatrices. We define the spectrum of the pair (A,B)
as follows:

(SM0.1) Λ(A,B) := {λ ∈ C : ∃0 ̸= v ∈ Cn, ∀x ∈ [−1, 1], A(x)v = λB(x)v}.

We mentioned previously that rectangular matrix pencils usually do not have
eigenvalues. Analogously, the spectrum of the quasimatrix pair (A,B) is often empty.
We nonetheless wish to discuss points that are nearly in the spectrum.

A nice tool for analyzing the behavior of the spectrum of matrices and opera-
tors [SM3] under small perturbations is the pseudospectrum; see [SM11] and [SM13]
for a detailed discussion of the various aspects of pseudospectra in those situations.
This notion can be extended readily to the case of quasimatrices. Let ϵ > 0 be
arbitrary and σmin denote the smallest singular value. We call

(SM0.2) Λϵ(A,B) =

{
z ∈ C :

σmin(zB− A)√
1 + |z|2

< ϵ

}
,

the ϵ-pseudospectrum of the quasimatrix pair (A,B), see [SM1, SM2]. Obviously
Λ(A,B) ⊆ Λϵ(A,B), for every ϵ > 0. More generally, Λϵ̂(A,B) ⊆ Λϵ(A,B) if ϵ̂ < ϵ.
By minimizing the perturbation so that solutions exist as in (5.2), the Ito-Murota
algorithm can be seen as a method for finding a set of points in the ϵ-pseudospectrum
of (A,B), for small values of ϵ.

Example 1. Let A(x) = [T0(x), T1(x), · · · , T5(x)] and B(x) = [P0(x), P1(x), · · · ,
P5(x)] defined on [−1, 1], where Pi denotes the i-th Legendre polynomial1. It can be
verified that Λ(A,B) = {1, 1, 4

3 ,
8
5 ,

64
35 ,

128
63 } and that for example v3 = [−1√

2
, 0, 1√

2
, 0, 0, 0]T

is the eigenvector corresponding to λ3 = 4
3 . Figure SM1 illustrates Λϵ(A,B) on a grid

of z-values.

As explained before, a major difficulty with the generalized rectangular eigenvalue
problem even in the discrete case is that the eigenpairs may fail to exist under pertur-
bations. Motivated by the work [SM1] of Boutry, Elad, Golub, and Milanfar, we focus
on the following reformulation of (SM0.1) that searches for the minimal perturbation
to the quasimatrix-matrix pencil (A,B) such that the perturbed pencil (Â, B̂) has n
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Fig. SM1. Graphical inspection of the spectrum and the pseudospectra of the ∞×6 quasimatrix
pencil of Example 1. Red crosses denote the eigenvalues.

linearly independent eigenvectors:

(SM0.3)


minimize ∥[Â− A B̂− B]∥2F ;
subject to Â, B̂ ∈ C(∞+d)×n, {(λk,vk)}nk=1 ⊆ C× Cn,

Âvk = λkB̂vk, k = 1, 2, . . . , n,
{v1,v2, . . . ,vn} : linearly independent.

The next proposition gives a sufficient condition for the existence and uniqueness
of the optimal solution to (SM0.3) and hints an algorithm for its solution in terms of
the following SVD2.

(SM0.4) [B A] = UΣV ∗ = [U1 U2]

[
Σ1:n

Σn+1:2n

] [
V ∗
11 V ∗

21

V ∗
12 V ∗

22

]
,

It is a direct extension of the results from the discrete case [SM5, SM7] to
quasimatrix-matrix objects; see also [SM12, p. 51]. To keep the paper self-contained
we give a proof of the proposition which requires a few definitions and the following
three lemmas. For a quasimatrix-matrix A ∈ C(∞+d)×n we define

(SM0.5) ∥A∥2 := max
0̸=x∈Cn

∥Ax∥2
∥x∥2

,

and

∥A∥F :=
(
trace(A∗A)

)1/2

=
( n∑

i=1

σ2
i (A)

)1/2

.

In addition, A is called unitary if A∗A = In.

Lemma SM0.1. For anyW ∈ Cn×k and unitary quasimatrix-matrix U ∈ C(∞+d)×n,
we have

∥UW∥2 = ∥W∥2.
2See (4.2) for details but notice that it was for the case of [A B].
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Proof. For every x ∈ Cn we have ∥Ux∥2 = ∥(Ux)∗(Ux)∥2 = ∥x∗Inx∥2 = ∥x∥2.
The invariance of the 2-norm follows from (SM0.5).

The following continuous analogue of the well-known Eckart-Young-Mirsky theo-
rem will be used. It is stated in terms of the Frobenius norm of a quasimatrix-matrix.

Lemma SM0.2. The first k-terms in the SVD of a quasimatrix-matrix A ∈ C(∞+d)×n

form its best rank-k approximation in the Frobenius norm.

Proof. The reasoning is analogous to that of quasimatrices as in [SM9, p. 62]
and [SM10].

The next lemma is a continuous analogue of the the result in [SM6, p. 321] for
the discrete case.

Lemma SM0.3. Let A,B ∈ C(∞+d)×n and consider the SVD (SM0.4) of [B A]. If
σn(B) > σn+1([B A]), then V11 and V22 are nonsingular and σn([B A]) > σn+1([B A]).

Proof. We first use proof by contradiction to show that V22 is nonsingular. As-
sume that there exists a vector x with unit 2-norm such that V22x = 0. The second
equation in [B A]V = [U1 U2]Σ reads as BV12 + AV22 = U2Σn+1:2n meaning that

(SM0.6) ∥BV12x∥2 = ∥U2Σn+1:2nx∥2.

As we saw in Lemma SM0.1, the 2-norm is invariant under multiplication by a
quasimatrix-matrix like U2 whose columns are orthonormal function-vectors. There-
fore, using (SM0.6) we have

σn+1([B A]) = ∥Σn+1:2n∥2 = ∥U2Σn+1:2n∥2 ≥ ∥U2Σn+1:2nx∥2 = ∥BV12x∥2 ≥ σmin(B),

which is a contradiction.
The second part follows if we prove that σn([B A]) ≥ σn(B). This is an interlacing

property for singular values of a quasimatrix-matrix which is valid because the singular
values of any quasimatrix-matrix are just the singular values of the R factor of its
QR factorization (see (4.3) and (4.4)) and the R factor is always a discrete matrix for
which the interlacing property of singular values is a basic fact [SM8].

Proposition SM0.4. Let A,B ∈ C(∞+d)×n and consider the SVD (SM0.4) of
[B A]. If σn(B) > σn+1([B A]), then there exists a unique optimal solution to
(SM0.3) attained for

Â = A− U2Σn+1:2nV
∗
22, and B̂ = B− U2Σn+1:2nV

∗
12,

if and only if V12V
−1
22 is diagonalizable.

Proof. We prove the result in two steps. In the first step we just extend the
argument by Ito and Murota [SM7, Thm. 2, part i)] to the case of quasimatrix-matrix
objects by showing that (SM0.3) is equivalent to the following continuous-discrete
total least-squares problem

(SM0.7)


minimize ∥[Â− A B̂− B]∥2F ;
subject to Â, B̂ ∈ C(∞+d)×n

range(Â) ⊆ range(B̂).

Let P1 denote the set of all feasible solutions to (SM0.3) and assume that Â, B̂ and
{(λk,vk)}nk=1 are one of those feasible solutions. Assuming V := [v1, v2, . . . ,vn] and
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Λ := diag(λ1, λ2, . . . , λn), the constraints Âvk = λkB̂vk for k = 1, 2, . . . , n means that
ÂV = B̂V Λ and since columns of V are linearly independent, (SM0.3) is equivalent
to Â = B̂V ΛV −1. This representation shows that P1 is the same as the set of all
(Ã, B̃) ∈ C(∞+d)×n ×C(∞+d)×n satisfying Ã = B̃Z where Z ∈ Cn×n is diagonalizable.

Let P2 denote the set of all (Ã, B̃) ∈ C(∞+d)×n × C(∞+d)×n satisfying Ã = B̃Z
where Z ∈ Cn×n is not necessarily diagonalizable. This means that P2 is the set of
all (Ã, B̃) such that range(Ã) ⊆ range(B̃). Obviously P1 ⊆ P2. Since there exists a
diagonalizable matrix in an arbitrarily close neighborhood of any square matrix Z,
we have P2 ⊆ P1 where P1 denotes the closure of P1. In addition, ∥[Ã−A B̃−B]∥2F
is a continuous function of (Ã, B̃). Therefore,

inf
(Ã,B̃)∈P1

{∥[Ã− A B̃− B]∥2F } = inf
(Ã,B̃)∈P2

{∥[Ã− A B̃− B]∥2F },

which means that optimal solutions to (SM0.3) and (SM0.7) are the same.
Now in the second step we first derive explicit formulas for the unique optimal

solution to (SM0.7) (and according to the first step an optimal solution to (SM0.3)
as well.) The assumption σn(B) > σn+1([B,A]) together with Lemma SM0.3 implies
that V11 is nonsingular and that σn([B A]) > σn+1([B,A]). We rewrite the formula
Â = B̂Z as

[B̂ Â]

[
Z
−I

]
= 0,

implying that the rank of the augmented quasimatrix-matrix [B̂ Â] is at most n.
Therefore, we can view solving (SM0.7) as finding the minimal (in the Frobenius
norm) rank-n perturbation [B̂ Â] to [B A]. According to Lemma SM0.2, the latter
problem can be solved by the rank-n truncation of the SVD (SM0.4), i.e.,

[B̂ Â] = U1Σ1:n[V
∗
11 V ∗

21],

which is unique as σn([B A]) > σn+1([B A]). To find the corresponding solution Ẑ
to B̂Z = Â we therefore put

U1Σ1:nV
∗
11Z = U1Σ1:nV

∗
21.

Since V11 is nonsingular, Ẑ = (V21V
−1
11 )∗ solves B̂Z = Â in (SM0.7). From the

orthogonality of the partitioned matrix V it follows that (V21V
−1
11 )∗ = −V12V

−1
22 .

On the other hand if Ẑ corresponding with the optimal solution [B̂ Â] to (SM0.7)
is diagonalizable, then its eigenpairs {(λk, vk)}nk=1 satisfy a representation of the form

Ẑ = V ΛV −1 which by B̂Ẑ = Â means that (B̂, Â) is an optimal solution to (SM0.3).
Conversely, if (B̂, Â) is an optimal solution to (SM0.3), then Â = B̂V ΛV −1 which
means that Ẑ = V ΛV −1 is diagonalizable.
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