SUPPLEMENTARY MATERIALS: LEAST-SQUARES SPECTRAL
METHODS FOR ODE EIGENVALUE PROBLEMS*
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Here we first briefly discuss pseudospectra for quasimatrices and then present an
optimality result on the extension of the Ito-Murota approach to quasimatrix pairs;
see subsection 5.2.

Let A and B be co x n quasimatrices. We define the spectrum of the pair (A, B)
as follows:

(SMO0.1) AAB):={AeC:30#veC" Vre[-1,1], A(x)v=AB(z)v}.

We mentioned previously that rectangular matrix pencils usually do not have
eigenvalues. Analogously, the spectrum of the quasimatrix pair (A, B) is often empty.
We nonetheless wish to discuss points that are nearly in the spectrum.

A nice tool for analyzing the behavior of the spectrum of matrices and opera-
tors [SM3] under small perturbations is the pseudospectrum; see [SM11] and [SM13]
for a detailed discussion of the various aspects of pseudospectra in those situations.
This notion can be extended readily to the case of quasimatrices. Let ¢ > 0 be
arbitrary and o, denote the smallest singular value. We call

(SMO0.2) A(A,B) = {z ec. TmnBZA) e},

V1|22

the e-pseudospectrum of the quasimatrix pair (A, B), see [SM1, SM2]. Obviously
A(A,B) C A(A,B), for every € > 0. More generally, A;(A,B) C A (A,B) if é < e.
By minimizing the perturbation so that solutions exist as in (5.2), the Ito-Murota
algorithm can be seen as a method for finding a set of points in the e-pseudospectrum
of (A, B), for small values of e.

Ezample 1. Let A(z) = [To(z),T1(x), -+ ,T5(x)] and B(z) = [Po(x), P (), -,
Ps(x)] defined on [—1, 1], where P; denotes the i-th Legendre polynomial’. It can be
verified that A(A,B) = {1,1, §7 %, %, %} and that for example vy = [‘757 0, %, 0,0,0]"
is the eigenvector corresponding to A3 = %. Figure SM1 illustrates A.(A, B) on a grid
of z-values.

As explained before, a major difficulty with the generalized rectangular eigenvalue
problem even in the discrete case is that the eigenpairs may fail to exist under pertur-
bations. Motivated by the work [SM1] of Boutry, Elad, Golub, and Milanfar, we focus
on the following reformulation of (SMO0.1) that searches for the minimal perturbation
to the quasimatrix-matrix pencil (A, B) such that the perturbed pencil (A, I§) has n
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Fic. SM1. Graphical inspection of the spectrum and the pseudospectra of the oo X 6 quasimatriz
pencil of Example 1. Red crosses denote the eigenvalues.

linearly independent eigenvectors:

minimize  [|[A—A B — B]||%;

subject to A, B € Clotdxn f(\ vi)}p_, € C xC,
Avk:)\kévk, k:1,2,...,n,
{v1,va,...,vp}: linearly independent.

(SMO0.3)

The next proposition gives a sufficient condition for the existence and uniqueness
of the optimal solution to (SMO0.3) and hints an algorithm for its solution in terms of
the following SVD?.

(SM0.4) Y e I
n+1:2n

Vi Voo
It is a direct extension of the results from the discrete case [SM5, SM7] to

quasimatrix-matrix objects; see also [SM12, p. 51]. To keep the paper self-contained
we give a proof of the proposition which requires a few definitions and the following

three lemmas. For a quasimatrix-matrix A € C(°t9)*" we define
[[Ax]|2
SMO.5 Allg := ,
(SM0.5) o
and
1/2 n 1/2
Al = (trace(A*A)) " = (D o(A))

In addition, A is called unitary if A*A = I,,.

LEMMA SMO.1. For any W € C™** and unitary quasimatrix-matrix U € C(oot+d)xn
we have

[UW ]|z = [[W][2.

2See (4.2) for details but notice that it was for the case of [A B].



SUPPLEMENTARY MATERIALS: LEAST-SQUARES SPECTRAL METHODS  SM3

Proof. For every x € C" we have ||[Ux||2 = |[(Ux)*(Ux)|2 = ||x*I.x]l2 = [|x]]2.
The invariance of the 2-norm follows from (SMO0.5).

The following continuous analogue of the well-known Eckart-Young-Mirsky theo-
rem will be used. It is stated in terms of the Frobenius norm of a quasimatrix-matrix.

LEMMA SMO0.2. The first k-terms in the SVD of a quasimatriz-matriz A € C(ootd)xn
form its best rank-k approximation in the Frobenius norm.

Proof. The reasoning is analogous to that of quasimatrices as in [SM9, p. 62]
and [SM10]. d

The next lemma is a continuous analogue of the the result in [SM6, p. 321] for
the discrete case.

LEMMA SMO.3. Let A, B € C(®+9x" and consider the SVD (SM0.4) of [B A]. If
On > Op+1 , then Vi1 an 20 are nonsingular and o, > Op+1 .
(B) > 0 i1([B Al), then Vi and V; ingular and o, ([B A]) > 01([B A))

Proof. We first use proof by contradiction to show that Voo is nonsingular. As-
sume that there exists a vector x with unit 2-norm such that Voox = 0. The second
equation in [B A]V = [U; U)X reads as BVig + AVay = UsX,,41.2, meaning that

(SM0.6) [BVi2x|[2 = [[U2Xnt1:20% ]| 2-

As we saw in Lemma SMO.1, the 2-norm is invariant under multiplication by a
quasimatrix-matrix like Uy whose columns are orthonormal function-vectors. There-
fore, using (SM0.6) we have

ont1([B A]) = [|[Znt1:20ll2 = [U2Znt1:20 ]2 = U2Zni1:20% ]2 = ||BVi2x]||2 > omin(B),

which is a contradiction.

The second part follows if we prove that o, ([B A]) > 0,,(B). This is an interlacing
property for singular values of a quasimatrix-matrix which is valid because the singular
values of any quasimatrix-matrix are just the singular values of the R factor of its
QR factorization (see (4.3) and (4.4)) and the R factor is always a discrete matrix for
which the interlacing property of singular values is a basic fact [SMS]. O

PROPOSITION SMO0.4. Let A,B € C+Dx" gnd consider the SVD (SM0.4) of
[B Al. If 0,(B) > on41([B A]), then there exists a unique optimal solution to
(SMO0.3) attained for

A =A- U2zn+1:2n‘/2*23 and é =B - U22n+1:2n‘/1*27

if and only if V12V251 is diagonalizable.

Proof. We prove the result in two steps. In the first step we just extend the
argument by Ito and Murota [SM7, Thm. 2, part i)] to the case of quasimatrix-matrix
objects by showing that (SMO0.3) is equivalent to the following continuous-discrete
total least-squares problem

minimize ||[A ~A B- BJ||%;
(SMO0.7) subject to A, B e Clootd)xn
range(A) C range(B).

Let P, denote the set of all feasible solutions to (SM0.3) and assume that A, B and
{(Ak, Vi) }7_, are one of those feasible solutions. Assuming V' := [vy, va, ..., Vv,] and
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A = diag(A1, Mg, ..., Ap), the constraints Avy, = A\iBvy for k = 1,2,...,n means that
AV = éVA and since columns of V' are linearly independent, (SM0.3) is equivalent
to A = BVAV~!. This representation shows that P; is the same as the set of all
(A, I§) e Clootd)xn o Clootd)xn gatisfying A = BZ where Z € C"*" is diagonalizable.

Let P, denote the set of all (A, B) € Clootd)xn » Clootd)xn gatisfying A = BZ
where Z € C™ "™ is not necessarily dlagonalizable This means that P is the set of
all (A,B) such that range(A) C range(B). Obviously P, C P,. Since there exists a
diagonalizable matrix in an arbitrarily close neighborhood of any square matrix Z,
we have Py C P; where P; denotes the closure of P;. In addition, |[[A —A B - BJ|%

is a continuous function of (A, B). Therefore,

inf {|[A-A B-BJ|z}= inf {|[A-A B-BJ3},
(AB)ep, (AB)eP,

which means that optimal solutions to (SMO0.3) and (SMO0.7) are the same.

Now in the second step we first derive explicit formulas for the unique optimal
solution to (SMO.7) (and according to the first step an optimal solution to (SMO0.3)
as well.) The assumption 0, (B) > 0,4+1([B,A]) together with Lemma SM0.3 implies
that V4, is nonsingular and that 0,([B A]) > o,41([B,A]). We rewrite the formula

A=BZ as
A o~ | Z
CRI R

implying that the rank of the augmented quasimatrix-matrix [Ig A] is at most n.
Therefore, we can view solving (SM0.7) as finding the minimal (in the Frobenius
norm) rank-n perturbation [B A] to [B A]. According to Lemma SMO0.2, the latter
problem can be solved by the rank-n truncation of the SVD (SM0.4), i.e

B Al=UiZia[Viy V5,

which is unique as 0, ([B A]) > 0,41([B A]). To find the corresponding solution Z
to BZ = A we therefore put

Ulzlznvl*lz = Ulzl:n‘/z*l-

Since Vi, is nonsingular, Z = (Va1 V;71)* solves BZ = A in (SM0.7). From the
orthogonality of the partitioned matrix V it follows that (Va1 V;7!)* = —Via V.

On the other hand if Z corresponding with the optimal solution [B A] to (SM0.7)
is dlagonahzable then its elgenpalrs {( Mk, vk)} L_, satisfy a representation of the form
Z = VAV ! which by BZ = A means that (B,A) is an optimal solution to (SM0.3).
Conversely, if (B,A) is an optimal solution to (SM0.3), then A = BVAV~! which

means that Z = VAV ! is diagonalizable. ]
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