## UNIVERSITY OF LEICESTER



## Drug consumption, collected online in 2011-2012

Elaine Fehrman<br>Men's Personality Disorder and National Women's Directorate, Rampton Hospital, Retford, Nottinghamshire, DN22 0PD, UK, Elaine.Fehrman@ nottshc.nhs.uk<br>Vincent Egan<br>Department of Psychiatry and Applied Psychology, University of Nottingham, Nottingham, NG8 1BB, UK, Vincent.Egan@nottingham.ac.uk

Evgeny M. Mirkes

Department of Mathematics, University of Leicester, Leicester, LE1 7RH, UK, em322@le.ac.uk

The database contains records for 1885 respondents. For each respondent 12 attributes are known: personality measurements which include NEO-FFI-R (neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness), BIS-11 (impulsivity), and ImpSS (sensation seeking), level of education, age, gender, country of residence and ethnicity. In addition, participants were questioned concerning their use of 18 legal and illegal drugs (alcohol, amphetamines, amyl nitrite, benzodiazepines, cannabis, chocolate, cocaine, caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD, methadone, mushrooms, nicotine and volatile substance abuse and one fictitious drug (Semeron) which was introduced to identify over-claimers. For each drug they selected either never used the drug, used it over a decade ago, or in the last decade, year, month, week, or day.

The database contains 18 classification problems. Each of the independent label variables contains seven classes: 'Never Used', 'Used over a Decade Ago', 'Used in Last Decade', 'Used in Last Year', 'Used in Last Month', 'Used in Last Week', and 'Used in Last Day'.

Two versions of database is presented: original database with nominal input features and quantified database with numerical attributes.

Problems which can be solved:

- Seven class classifications for each drug separately.
- Problems can be transformed to binary classification by union of part of classes into one new class. For example, 'Never Used', 'Used over a Decade Ago' form class 'Non-user' and all other classes form class 'User'.
- The best binarization of classes for each attribute.
- Evaluation of risk to be drug consumer for specific drug.

The detailed description of the database is presented in:

1. [1] Fehrman, E., Egan, V., Gorban, A.N., Levesley, J., Mirkes, E.M., Muhammad, A.K. Personality Traits and Drug Consumption: The Story Told by Data, 2019, https://www.springer.com/gp/book/9783030104412
2. [2] Fehrman, E., Muhammad, A.K., Mirkes, E.M., Egan, V., Gorban, A.N., 2017. The Five Factor Model of personality and evaluation of drug consumption risk. In Data Science (pp. 231-242). Springer, Cham, https://doi.org/10.1007/978-3-319-55723-6_18
3. [3] Fehrman, E., Muhammad, A.K., Mirkes, E.M., Egan, V., Gorban, A.N., The Five Factor Model of personality and evaluation of drug consumption risk, arXiv preprint arXiv:1506.06297, 2015, https://arxiv.org/ abs/1506.06297

Successful classifiers have been created for all drugs, thus providing the possibility of evaluating individuals for the risk of drug consumption. For most drugs sensitivity and specificity are greater than $75 \%$.

## Contents

1 Data collection ..... 4
1.1 Personality measurements ..... 4
1.2 Drug use ..... 5
2 Input feature transformation ..... 7
2.1 Ordinal features quantification ..... 7
2.2 Nominal feature quantification ..... 7
3 Output features description ..... 9
3.1 Alcohol ..... 9
3.2 Amphet ..... 9
3.3 Amyl ..... 9
3.4 Benzos ..... 10
3.5 Caff ..... 10
3.6 Cannabis ..... 10
3.7 Choc ..... 10
3.8 Coke ..... 11
3.9 Crack ..... 11
3.10 Ecstasy ..... 11
3.11 Heroin ..... 12
3.12 Ketamine ..... 12
3.13 Legalh ..... 12
3.14 LSD ..... 13
3.15 Meth ..... 13
3.16 Mushrooms ..... 13
3.17 Nicotine ..... 14
3.18 Semer ..... 14
3.19 VSA ..... 14
4 Original input features description (Original.csv) ..... 15
4.1 ID ..... 15
4.2 Age ..... 15
4.3 Gender ..... 15
4.4 Education ..... 16
4.5 Country ..... 16
4.6 Ethnicity ..... 16
4.7 Nscore ..... 17
4.8 Escore ..... 17
4.9 Oscore ..... 18
4.10 Ascore ..... 18
4.11 Cscore ..... 19
4.12 SS ..... 19
4.13 Impulsivity ..... 19
5 Quantified input features description (Quantified.csv) ..... 20
5.1 ID ..... 20
5.2 Age ..... 20
5.3 Gender ..... 20
5.4 Education ..... 21
5.5 Country ..... 21
5.6 Ethnicity ..... 21
5.7 Nscore ..... 22
5.8 Escore ..... 22
5.9 Oscore ..... 23
5.10 Ascore ..... 23
5.11 Cscore ..... 23
5.12 SS ..... 24
5.13 Impulsivity ..... 24
Bibliography ..... 24

## Chapter 1

## Data collection

The database was collected by Elaine Fehrman between March 2011 and March 2012. An online survey tool from Survey Gizmo was employed to gather data with maximum anonymity, this being particularly relevant to canvassing respondents' views, given the sensitive nature of drug use. All participants were required to declare themselves at least 18 years of age prior to informed consent being given.

The study recruited 2051 participants over an 12-month recruitment period. Of these persons, 166 did not respond correctly to a validity check built into the middle of the scale, so were presumed to being inattentive to the questions being asked. Nine of these persons were found to also have endorsed using a fictitious recreational drug, and which was included precisely to identify respondents who over-claim, as have other studies of this kind [4]. This led a useable sample of 1885 participants (male/female $=943 / 942$ ).

The snowball sampling methodology recruited a primarily (93.5\%) native English-speaking sample, with participants from the UK (1044; 55.4\%), the USA (557; 29.5\%), Canada (87; 4.6\%), Australia (54; 2.9\%), New Zealand ( $5 ; 0.3 \%$ ) and Ireland $(\mathrm{n}=20 ; 1.1 \%)$. A total of $118(6.3 \%)$ came from a diversity of other countries, none of whom individually met $1 \%$ of the sample or did not declare the country of location. Further optimizing anonymity, persons reported their age band, rather than their exact age; 18-24 years ( $643 ; 34.1 \%$ ), 25-34 years $(481 ; 25.5 \%), 35-44$ years $(356 ; 18.9 \%)$, $45-54$ years ( $294 ; 15.6 \%$ ), $55-64(93 ; 4.9 \%)$, and over $65(18 ; 1 \%)$. This indicates that although the largest age cohort band were 18 to 24 , some $40 \%$ of the cohort was 35 or above, which are a sample often missed in studies of this kind.

The sample recruited was highly educated, with just under two thirds (59.5\%) educated to, at a minimum, degree or professional certificate level: $14.4 \%$ (271) reported holding a professional certificate or diploma, $25.5 \%$ $(\mathrm{n}=481)$ an undergraduate degree, $15 \%(\mathrm{n}=284)$ a master's degree, and $4.7 \%(\mathrm{n}=89)$ a doctorate. Approximately $26.8 \%(\mathrm{n}=506)$ of the sample had received some college or university tuition although they did not hold any certificates; lastly, $257(13.6 \%)$ had left school at the age of 18 or younger.

Participants were asked to indicate which racial category was broadly representative of their cultural background. An overwhelming majority $(91.2 \% ; 1720)$ reported being White, $1.8 \%$ (33) stated they were Black, and $1.4 \%$ (26) Asian. The remainder of the sample $(5.6 \%$; 106) described themselves as 'Other' or 'Mixed' categories. This small number of persons belonging to specific non-white ethnicities precludes any analyses involving racial categories.

### 1.1 Personality measurements

In order to assess personality traits of the sample, the NEO-FFI-R) questionnaire was employed [5]. The NEO-FFI-R is a highly reliable measure of basic personality domains; internal consistencies are $0.84(\mathrm{~N}) ; 0.78(\mathrm{E})$; 0.78 (O); 0.77 (A), and 0.75 (C) [6]. The scale is a 60 -item inventory comprised of five personality domains or factors. The NEO-FFI-R is a shortened version of the Revised NEO-Personality Inventory (NEO-PI-R) [5]. The five factors are: N (Neuroticism), E (Extraversion), O (Openness), A (Agreeableness), and C (Conscientiousness) with 12 items per domain. These traits can be summarized as:

1. Neuroticism a long-term tendency to experience negative emotions such as nervousness, tension, anxiety and depression;
2. Extraversion manifested in outgoing, warm, active, assertive, talkative, cheerful, and in search of stimulation characteristics;
3. Openness a general appreciation for art, unusual ideas, and imaginative, creative, unconventional, and wide interests,
4. Agreeableness a dimension of interpersonal relations, characterized by altruism, trust, modesty, kindness, compassion and cooperativeness;
5. Conscientiousness a tendency to be organized and dependable, strong-willed, persistent, reliable, and efficient.

All of these domains are hierarchically defined by specific facets [7]. [8] observe that the score Openness and Extraversion domains of the NEO-FFI instrument are less reliable than Neuroticism, Agreeableness, and Conscientiousness. Participants were asked to read the 60 NEO-FFI-R statements and indicate on a five-point Likert scale how much a given item applied to them (i.e. $0=$ 'Strongly Disagree', $1=$ 'Disagree', $2=$ 'Neutral', 3 $=$ 'Agree', to 4 = 'Strongly Agree').

We expected that drug usage is associated with high N , and low A and C . The darker dimension of personality can be described in terms of low A, whereas much of the anti-social behaviour in non-clinical persons appears underpinned by high N and low C [9]. The so-called 'negative urgency' is the tendency to act rashly when distressed, and characterized by high N , low C , and low A [10]. The negative urgency is partially proved below for users of most of the illegal drugs. In addition, our findings suggest that O is higher for drug users.

The second measure used was the Barratt Impulsiveness Scale (BIS-11) [11]. The BIS-11 is a 30 -item selfreport questionnaire, which measures the behavioural construct of impulsiveness, and comprises three subscales: motor impulsiveness, attentional impulsiveness, and non-planning. The 'motor' aspect reflects acting without thinking, the 'attentional' component poor concentration and thought intrusions, and the 'non-planning' a lack of consideration for consequences [12]. The scale's items are scored on a four-point Likert scale. This study modified the response range to make it compatible with previous related studies [13]. A score of five usually connotes the most impulsive response although some items are reverse-scored to prevent response bias. Items are aggregated, and the higher BIS-11 scores, the higher the impulsivity level [14]. The BIS-11 is regarded a reliable psychometric instrument with good test-retest reliability (Spearman's rho is equal to 0.83 ) and internal consistency (Cronbach's alpha is equal to 0.83 ; [11, 12].

The third measurement tool employed was the Impulsiveness Sensation-Seeking (ImpSS). Although the ImpSS combines the traits of impulsivity and sensation-seeking, it is regarded as a measure of a general sensation-seeking trait [15]. The scale consists of 19 statements in true-false format, comprising eight items measuring impulsivity (Imp), and 11 items gauging sensation-seeking (SS). The ImpSS is considered a valid and reliable measure of high risk behavioural correlates such as substance misuse [16].

### 1.2 Drug use

Participants were questioned concerning their use of 18 legal and illegal drugs (alcohol, amphetamines, amyl nitrite, benzodiazepines, cannabis, chocolate, cocaine, caffeine, crack, ecstasy, heroin, ketamine, legal highs, LSD, methadone, mushrooms, nicotine, and volatile substance abuse (VSA)) and one fictitious drug (Semeron) which was introduced to identify over-claimers.

It was recognised at the outset that drug use research regularly (and spuriously) dichotomises individuals as users or non-users, without due regard to their frequency or duration/desistance of drug use [17]. In this study, finer distinctions concerning the measurement of drug use have been deployed, due to the potential for the existence of qualitative differences amongst individuals with varying usage levels. In relation to each drug, respondents were asked to indicate on if they never used the drug, used it over a decade ago, or in the last decade, year, month, week, or day. This format captured the breadth of a drug-using career, and the specific recency of use. The seven categories of drug users are depicted in Figure 1.1.


Figure 1.1: Categories of drug users

It can be seen that participants who had used a drug the previous day belong to the category 'Used in last day' and also to the categories 'Used in last week', 'Used in last month', 'Used in last year' and 'Used in last decade'. There are two special categories (see Figure 1.1): 'Never used' and 'Used over a decade ago'. These two categories were placed into the class of 'Non-user', and all other categories into the class 'User', as the simplest version of binary classification. Further in this study we analysed this binary classification.

The proportions of drug users differed for different drugs. The database sample comprised 1885 individuals without any missing data. Consumption of alcohol, caffeine, and chocolate was relatively common (over $96 \%$ ). Consumption of cannabis and nicotine was also high (over 67\%). Consumption of benzodiazepines, ecstasy, and legal highs was less, at $41 \%$. Consumption of amphetamines, mushrooms and cocaine was approximately $36 \%$. Consumption of ketamine and amyl nitrite is approximately $19 \%$. Consumption of methadone is above $22 \%$ and LSD is less than $30 \%$. Finally, crack, heroin, and VSA use is approximately $10 \%, 11 \%, 12 \%$, respectively. These numbers characterise the group of respondents. It is worth to mention here that the sample is biased to the higher proportion of drug users and for the population consumption of the illegal drugs is expected to be significantly lower [18].

## Chapter 2

## Input feature transformation

There are many data mining methods to work with continuous data. It is necessary to quantify all categorical features to use these methods especially for features with big number of levels. Really, if we apply logistic regression for these data with categorical coefficients then we have to use dummy coding directly or indirectly. In this case we have $n-1$ coefficients for feature with $n$ levels. It means that we fit logistic regression in the 250 dimensional space (age contains 6 levels, gender contains 2 levels, education contains 9 levels, country contains 7 levels, ethnicity contains 7 levels, Nscore contains 49 levels, Escore contains 42 levels, Oscore contains 35 levels, Ascore contains 41 levels, Cscore contains 41 levels, impulsive contains 10 levels, and SS contains 11 levels: $5+1+8+6+6+48+41+34+41+41+9+10=250$ ). After quantification we can fit logistic regression model in 12 dimensional space. It means that feature quantification can be used as effective dimensionality reduction method.

### 2.1 Ordinal features quantification

One of the widely used techniques to analyse categorical data is the calculation of polychoric correlation [19, 20]. The matrix of polychoric coefficients further is used to calculate principal components, etc. The technique of polychoric correlation is based on suggestion that values of ordinal feature are the result of discretization of continuous random values with fixed thresholds. Furthermore, this latent continuous random value follows the normal distribution. Unfortunately, polychoric correlation techniques have two drawbacks: it defines the thresholds of discretization but not the values for each category and the defined thresholds are different for different pairs of attributes.

Let us have the ordinal feature $O$ with categories $o_{1}, o_{2}, \ldots o_{k}$, and with number of cases $n_{i}$ of category $o_{i}$. The empirical estimation of probability of category $o_{i}$ is $p_{i}=n_{i} / N$, where $N=\sum n_{i}$. The sample estimation of thresholds are evaluating as:

$$
\begin{equation*}
t_{i}=\Phi^{-1}\left(\sum_{j=1}^{i} p_{j}\right) \tag{2.1}
\end{equation*}
$$

The simplest method of ordinal feature quantification is to use thresholds (2.1) and select the 'average' value in each interval. There are several variants of 'average' value. For this study we use the value with average probability: if thresholds $t_{i-1}$ and $t_{i}$ define the interval of category $o_{i}$, then average probability is

$$
\begin{equation*}
q_{i}=\Phi^{-1}\left(\sum_{j=1}^{i-1} p_{j}+\frac{p_{i}}{2}\right) \tag{2.2}
\end{equation*}
$$

The polychoric coefficients, calculated on base of quantification (2.2), have less likelihood than polychoric coefficients calculated by using the maximum likelihood approach. The merit of this approach is the usage of the same thresholds for all pairs of attributes and explicit formula for calculation the categories' values.

### 2.2 Nominal feature quantification

We cannot use techniques described above to quantify nominal features such as gender, country of location and ethnicity because categories of these features are unordered. To quantify nominal features we implemented the technique of nonlinear CatPCA [21]. This procedure includes four steps:

1. Exclude nominal features from the set of input features and calculate the informative principal components [22-25] in space of retained input feature. To select informative components we use Kaiser's rule [26, 27].
2. Calculate the centroid of each category in projection on selected principal components.
3. Calculate the first principal component of centroids.
4. The numerical value for each component is the projection of its centroid on this component.

The process of nominal feature quantification for the feature 'Country' is depicted in Figure 2.1. Figure 2.1 shows that points corresponding to the UK category are located very far from any other points.

As an alternative variant of nominal feature quantification we use dummy coding [28] of nominal variables: 'country' is transformed into seven binary features with values 1 (if 'true') or 0 (if 'false'): UK, Canada, USA, Other (country), Australia, Republic of Ireland and New Zealand; Ethnicity is transformed into seven binary features: Mixed-White/Asian, White, Other (ethnicity), Mixed-White/Black, Asian, Black and Mixed-Black/Asian.


Figure 2.1: CatPCA quantification of 'Country' on the plane of the first two principal components

## Chapter 3

## Output features description

### 3.1 Alcohol

Alcohol is recency of alcohol consumption. It is output attribute with the following distribution of classes.
Table 3.1: Alcohol consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 34 | $1.80 \%$ |
| CL1 | Used over a Decade Ago | 34 | $1.80 \%$ |
| CL2 | Used in Last Decade | 68 | $3.61 \%$ |
| CL3 | Used in Last Year | 198 | $10.50 \%$ |
| CL4 | Used in Last Month | 287 | $15.23 \%$ |
| CL5 | Used in Last Week | 759 | $40.27 \%$ |
| CL6 | Used in Last Day | 505 | $26.79 \%$ |

### 3.2 Amphet

Amphet is recency of amphetamine consumption. It is output attribute with the following distribution of classes.
Table 3.2: Amphetamine consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 976 | $51.78 \%$ |
| CL1 | Used over a Decade Ago | 230 | $12.20 \%$ |
| CL2 | Used in Last Decade | 243 | $12.89 \%$ |
| CL3 | Used in Last Year | 198 | $10.50 \%$ |
| CL4 | Used in Last Month | 75 | $3.98 \%$ |
| CL5 | Used in Last Week | 61 | $3.24 \%$ |
| CL6 | Used in Last Day | 102 | $5.41 \%$ |

### 3.3 Amyl

Amyl is the recency of amyl nitrite consumption. It is output attribute with the following distribution of classes.
Table 3.3: Amyl nitrite consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1305 | $69.23 \%$ |
| CL1 | Used over a Decade Ago | 210 | $11.14 \%$ |
| CL2 | Used in Last Decade | 237 | $12.57 \%$ |
| CL3 | Used in Last Year | 92 | $4.88 \%$ |
| CL4 | Used in Last Month | 24 | $1.27 \%$ |
| CL5 | Used in Last Week | 14 | $0.74 \%$ |
| CL6 | Used in Last Day | 3 | $0.16 \%$ |

### 3.4 Benzos

Benzos is recency of benzodiazepines consumption. It is output attribute with the following distribution of classes:
Table 3.4: Benzodiazepines consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1000 | $53.05 \%$ |
| CL1 | Used over a Decade Ago | 116 | $6.15 \%$ |
| CL2 | Used in Last Decade | 234 | $12.41 \%$ |
| CL3 | Used in Last Year | 236 | $12.52 \%$ |
| CL4 | Used in Last Month | 120 | $6.37 \%$ |
| CL5 | Used in Last Week | 84 | $4.46 \%$ |
| CL6 | Used in Last Day | 95 | $5.04 \%$ |

### 3.5 Caff

Caff is recency of caffeine consumption. It is output attribute with the following distribution of classes.
Table 3.5: Caffeine consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 27 | $1.43 \%$ |
| CL1 | Used over a Decade Ago | 10 | $0.53 \%$ |
| CL2 | Used in Last Decade | 24 | $1.27 \%$ |
| CL3 | Used in Last Year | 60 | $3.18 \%$ |
| CL4 | Used in Last Month | 106 | $5.62 \%$ |
| CL5 | Used in Last Week | 273 | $14.48 \%$ |
| CL6 | Used in Last Day | 1385 | $73.47 \%$ |

### 3.6 Cannabis

Cannabis is recency of consumption. It is output attribute with the following distribution of classes.
Table 3.6: Cannabis consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 413 | $21.91 \%$ |
| CL1 | Used over a Decade Ago | 207 | $10.98 \%$ |
| CL2 | Used in Last Decade | 266 | $14.11 \%$ |
| CL3 | Used in Last Year | 211 | $11.19 \%$ |
| CL4 | Used in Last Month | 140 | $7.43 \%$ |
| CL5 | Used in Last Week | 185 | $9.81 \%$ |
| CL6 | Used in Last Day | 463 | $24.56 \%$ |

### 3.7 Choc

Choc is recency of chocolate consumption. It is output attribute with the following distribution of classes.
Table 3.7: Chocolate consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 32 | $1.70 \%$ |
| CL1 | Used over a Decade Ago | 3 | $0.16 \%$ |
| CL2 | Used in Last Decade | 10 | $0.53 \%$ |
| CL3 | Used in Last Year | 54 | $2.86 \%$ |
| CL4 | Used in Last Month | 296 | $15.70 \%$ |
| CL5 | Used in Last Week | 683 | $36.23 \%$ |
| CL6 | Used in Last Day | 807 | $42.81 \%$ |

### 3.8 Coke

Coke is recency of cocaine consumption. It is output attribute with the following distribution of classes:
Table 3.8: Cocaine consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1038 | $55.07 \%$ |
| CL1 | Used over a Decade Ago | 160 | $8.49 \%$ |
| CL2 | Used in Last Decade | 270 | $14.32 \%$ |
| CL3 | Used in Last Year | 258 | $13.69 \%$ |
| CL4 | Used in Last Month | 99 | $5.25 \%$ |
| CL5 | Used in Last Week | 41 | $2.18 \%$ |
| CL6 | Used in Last Day | 19 | $1.01 \%$ |

### 3.9 Crack

Crack is recency of crack consumption. It is output attribute with the following distribution of classes.
Table 3.9: Crack consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1627 | $86.31 \%$ |
| CL1 | Used over a Decade Ago | 67 | $3.55 \%$ |
| CL2 | Used in Last Decade | 112 | $5.94 \%$ |
| CL3 | Used in Last Year | 59 | $3.13 \%$ |
| CL4 | Used in Last Month | 9 | $0.48 \%$ |
| CL5 | Used in Last Week | 9 | $0.48 \%$ |
| CL6 | Used in Last Day | 2 | $0.11 \%$ |

### 3.10 Ecstasy

Ecstasy is recency of ecstasy consumption. It is output attribute with the following distribution of classes.
Table 3.10: Ecstasy consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1021 | $54.16 \%$ |
| CL1 | Used over a Decade Ago | 113 | $5.99 \%$ |
| CL2 | Used in Last Decade | 234 | $12.41 \%$ |
| CL3 | Used in Last Year | 277 | $14.69 \%$ |
| CL4 | Used in Last Month | 156 | $8.28 \%$ |
| CL5 | Used in Last Week | 63 | $3.34 \%$ |
| CL6 | Used in Last Day | 21 | $1.11 \%$ |

### 3.11 Heroin

Heroin is recency of heroin consumption. It is output attribute with the following distribution of classes.
Table 3.11: Heroin consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1605 | $85.15 \%$ |
| CL1 | Used over a Decade Ago | 68 | $3.61 \%$ |
| CL2 | Used in Last Decade | 94 | $4.99 \%$ |
| CL3 | Used in Last Year | 65 | $3.45 \%$ |
| CL4 | Used in Last Month | 24 | $1.27 \%$ |
| CL5 | Used in Last Week | 16 | $0.85 \%$ |
| CL6 | Used in Last Day | 13 | $0.69 \%$ |

### 3.12 Ketamine

Ketamine is recency of ketamine consumption. It is output attribute with the following distribution of classes:
Table 3.12: Ketamine consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1490 | $79.05 \%$ |
| CL1 | Used over a Decade Ago | 45 | $2.39 \%$ |
| CL2 | Used in Last Decade | 142 | $7.53 \%$ |
| CL3 | Used in Last Year | 129 | $6.84 \%$ |
| CL4 | Used in Last Month | 42 | $2.23 \%$ |
| CL5 | Used in Last Week | 33 | $1.75 \%$ |
| CL6 | Used in Last Day | 4 | $0.21 \%$ |

### 3.13 Legalh

Legalh is the recency of "legal high" (no illegal) consumption. It is output attribute with the following distribution of classes

Table 3.13: Legal high consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1094 | $58.04 \%$ |
| CL1 | Used over a Decade Ago | 29 | $1.54 \%$ |
| CL2 | Used in Last Decade | 198 | $10.50 \%$ |
| CL3 | Used in Last Year | 323 | $17.14 \%$ |
| CL4 | Used in Last Month | 110 | $5.84 \%$ |
| CL5 | Used in Last Week | 64 | $3.40 \%$ |
| CL6 | Used in Last Day | 67 | $3.55 \%$ |

### 3.14 LSD

LSD is recency of LSD consumption. It is output attribute with the following distribution of classes
Table 3.14: LSD consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1069 | $56.71 \%$ |
| CL1 | Used over a Decade Ago | 259 | $13.74 \%$ |
| CL2 | Used in Last Decade | 177 | $9.39 \%$ |
| CL3 | Used in Last Year | 214 | $11.35 \%$ |
| CL4 | Used in Last Month | 97 | $5.15 \%$ |
| CL5 | Used in Last Week | 56 | $2.97 \%$ |
| CL6 | Used in Last Day | 13 | $0.69 \%$ |

### 3.15 Meth

Meth is recency of methadone consumption. It is output attribute with the following distribution of classes.
Table 3.15: Methadone consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1429 | $75.81 \%$ |
| CL1 | Used over a Decade Ago | 39 | $2.07 \%$ |
| CL2 | Used in Last Decade | 97 | $5.15 \%$ |
| CL3 | Used in Last Year | 149 | $7.90 \%$ |
| CL4 | Used in Last Month | 50 | $2.65 \%$ |
| CL5 | Used in Last Week | 48 | $2.55 \%$ |
| CL6 | Used in Last Day | 73 | $3.87 \%$ |

### 3.16 Mushrooms

Mushrooms is recency of magic mushrooms consumption. It is output attribute with following distribution of classes:

Table 3.16: Magic mushrooms consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 982 | $52.10 \%$ |
| CL1 | Used over a Decade Ago | 209 | $11.09 \%$ |
| CL2 | Used in Last Decade | 260 | $13.79 \%$ |
| CL3 | Used in Last Year | 275 | $14.59 \%$ |
| CL4 | Used in Last Month | 115 | $6.10 \%$ |
| CL5 | Used in Last Week | 40 | $2.12 \%$ |
| CL6 | Used in Last Day | 4 | $0.21 \%$ |

### 3.17 Nicotine

Nicotine is recency of nicotine consumption. It is output attribute with the following distribution of classes.

| Table 3.17: Nicotine consumption |  |  |  |
| :--- | :--- | ---: | ---: |
| Value | Class | Cases | Fraction |
| CL0 | Never Used | 428 | $22.71 \%$ |
| CL1 | Used over a Decade Ago | 193 | $10.24 \%$ |
| CL2 | Used in Last Decade | 204 | $10.82 \%$ |
| CL3 | Used in Last Year | 185 | $9.81 \%$ |
| CL4 | Used in Last Month | 108 | $5.73 \%$ |
| CL5 | Used in Last Week | 157 | $8.33 \%$ |
| CL6 | Used in Last Day | 610 | $32.36 \%$ |

### 3.18 Semer

Semer is the recency of alleged consumption of a fictitious drug: Semeron. It is output attribute with the following distribution of classes.

Table 3.18: Semer consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1877 | $99.58 \%$ |
| CL1 | Used over a Decade Ago | 2 | $0.11 \%$ |
| CL2 | Used in Last Decade | 3 | $0.16 \%$ |
| CL3 | Used in Last Year | 2 | $0.11 \%$ |
| CL4 | Used in Last Month | 1 | $0.05 \%$ |
| CL5 | Used in Last Week | 0 | $0.00 \%$ |
| CL6 | Used in Last Day | 0 | $0.00 \%$ |

### 3.19 VSA

VSA is recency of volatile substance consumption (e.g., solvents, petrol, etc ). It is output attribute with the following distribution of classes:

Table 3.19: VSA consumption

| Value | Class | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| CL0 | Never Used | 1455 | $77.19 \%$ |
| CL1 | Used over a Decade Ago | 200 | $10.61 \%$ |
| CL2 | Used in Last Decade | 135 | $7.16 \%$ |
| CL3 | Used in Last Year | 61 | $3.24 \%$ |
| CL4 | Used in Last Month | 13 | $0.69 \%$ |
| CL5 | Used in Last Week | 14 | $0.74 \%$ |
| CL6 | Used in Last Day | 7 | $0.37 \%$ |

## Chapter 4

## Original input features description (Original.csv)

Database does not contain missing values.

### 4.1 ID

ID is number of record in original database. It cannot be related to participant. It can be used for reference only.

### 4.2 Age

Age (Ordinal) is age of participant and has one of the following values:

| Table 4.1: Age |  |  |  |
| :--- | :--- | ---: | ---: |
| Value | Meaning | Cases | Fraction |
| Ag1 | $18-24$ | 643 | $34.11 \%$ |
| Ag2 | $25-34$ | 481 | $25.52 \%$ |
| Ag3 | $35-44$ | 356 | $18.89 \%$ |
| Ag4 | $45-54$ | 294 | $15.60 \%$ |
| Ag5 | $55-64$ | 93 | $4.93 \%$ |
| Ag6 | $65+$ | 18 | $0.95 \%$ |

### 4.3 Gender

Gender (Nominal) is the gender of participant: Value Meaning Cases Fraction

| Table 4.2: Gender |  |  |  |
| :--- | :--- | ---: | ---: |
| Value | Meaning | Cases | Fraction |
| F | Female | 942 | $49.97 \%$ |
| M | Male | 943 | $50.03 \%$ |

### 4.4 Education

Education (Ordinal) is level of education of participant and has one of the values:
Table 4.3: Education

| Value | Meaning | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| Ed1 | Left school before 16 years | 28 | $1.49 \%$ |
| Ed2 | Left school at 16 years | 99 | $5.25 \%$ |
| Ed3 | Left school at 17 years | 30 | $1.59 \%$ |
| Ed4 | Left school at 18 years | 100 | $5.31 \%$ |
| Ed5 | Some college or university, no certificate or degree | 506 | $26.84 \%$ |
| Ed6 | Professional certificate/ diploma | 270 | $14.32 \%$ |
| Ed7 | University degree | 480 | $25.46 \%$ |
| Ed8 | Master degree | 283 | $15.01 \%$ |
| Ed9 | Doctorate degree | 89 | $4.72 \%$ |

### 4.5 Country

Country (Nominal) is country of current residence for the participant and has one of the following values:
Table 4.4: Country

| Value | Meaning | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| AU | Australia | 54 | $2.86 \%$ |
| CA | Canada | 87 | $4.62 \%$ |
| NZ | New Zealand | 5 | $0.27 \%$ |
| OT | Other | 118 | $6.26 \%$ |
| IE | Republic of Ireland | 20 | $1.06 \%$ |
| UK | UK | 1044 | $55.38 \%$ |
| US | USA | 557 | $29.55 \%$ |

### 4.6 Ethnicity

Ethnicity (Nominal) is the ethnicity of the participant and has one of these values:
Table 4.5: Ethnicity

| Value | Meaning | Cases | Fraction |
| :--- | :--- | ---: | ---: |
| AS | Asian | 26 | $1.38 \%$ |
| BL | Black | 33 | $1.75 \%$ |
| BA | Mixed-Black/Asian | 3 | $0.16 \%$ |
| WA | Mixed-White/Asian | 20 | $1.06 \%$ |
| WB | Mixed-White/Black | 20 | $1.06 \%$ |
| OT | Other | 63 | $3.34 \%$ |
| WH | White | 1720 | $91.25 \%$ |

### 4.7 Nscore

Nscore (Interval) is the participants NEO-FFI-R Neuroticism raw score. Possible values can range from 12 to 60 ( 12 items rated from 1 to 5 ) and are presented in the table below. Variables up to measure 2.11 all follow this model.

Table 4.6: Neuroticism raw score

| Value |  | Cases | Fraction | Value | Cases | Fraction | Value | Cases | Fraction |
| :--- | ---: | ---: | :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| S12 | 1 | $0.05 \%$ | S29 | 60 | $3.18 \%$ | S46 | 67 | $3.55 \%$ |  |
| S13 | 1 | $0.05 \%$ | S30 | 61 | $3.24 \%$ | S47 | 27 | $1.43 \%$ |  |
| S14 | 7 | $0.37 \%$ | S31 | 87 | $4.62 \%$ | S48 | 49 | $2.60 \%$ |  |
| S15 | 4 | $0.21 \%$ | S32 | 78 | $4.14 \%$ | S49 | 40 | $2.12 \%$ |  |
| S16 | 3 | $0.16 \%$ | S33 | 68 | $3.61 \%$ | S50 | 24 | $1.27 \%$ |  |
| S17 | 4 | $0.21 \%$ | S34 | 76 | $4.03 \%$ | S51 | 27 | $1.43 \%$ |  |
| S18 | 10 | $0.53 \%$ | S35 | 69 | $3.66 \%$ | S52 | 17 | $0.90 \%$ |  |
| S19 | 16 | $0.85 \%$ | S36 | 73 | $3.87 \%$ | S53 | 20 | $1.06 \%$ |  |
| S20 | 24 | $1.27 \%$ | S37 | 67 | $3.55 \%$ | S54 | 15 | $0.80 \%$ |  |
| S21 | 31 | $1.64 \%$ | S38 | 63 | $3.34 \%$ | S55 | 11 | $0.58 \%$ |  |
| S22 | 26 | $1.38 \%$ | S39 | 66 | $3.50 \%$ | S56 | 10 | $0.53 \%$ |  |
| S23 | 29 | $1.54 \%$ | S40 | 80 | $4.24 \%$ | S57 | 6 | $0.32 \%$ |  |
| S24 | 35 | $1.86 \%$ | S41 | 61 | $3.24 \%$ | S58 | 3 | $0.16 \%$ |  |
| S25 | 56 | $2.97 \%$ | S42 | 77 | $4.08 \%$ | S59 | 5 | $0.27 \%$ |  |
| S26 | 57 | $3.02 \%$ | S43 | 49 | $2.60 \%$ | S60 | 2 | $0.11 \%$ |  |
| S27 | 65 | $3.45 \%$ | S44 | 51 | $2.71 \%$ |  |  |  |  |
| S28 | 70 | $3.71 \%$ | S45 | 37 | $1.96 \%$ |  |  |  |  |

### 4.8 Escore

Escore (Interval) is NEO-FFI-R Extraversion. Possible values are presented in the table below.

| Table 4.7: Extraversion raw score |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | :--- | ---: | ---: | :--- | ---: | ---: |
| Value | Cases | Fraction | Value | Cases | Fraction | Value | Cases | Fraction |
| S16 | 2 | $0.11 \%$ | S31 | 55 | $2.92 \%$ | S45 | 91 | $4.83 \%$ |
| S18 | 1 | $0.05 \%$ | S32 | 52 | $2.76 \%$ | S46 | 69 | $3.66 \%$ |
| S19 | 6 | $0.32 \%$ | S33 | 77 | $4.08 \%$ | S47 | 64 | $3.40 \%$ |
| S20 | 3 | $0.16 \%$ | S34 | 68 | $3.61 \%$ | S48 | 62 | $3.29 \%$ |
| S21 | 3 | $0.16 \%$ | S35 | 58 | $3.08 \%$ | S49 | 37 | $1.96 \%$ |
| S22 | 8 | $0.42 \%$ | S36 | 89 | $4.72 \%$ | S50 | 25 | $1.33 \%$ |
| S23 | 5 | $0.27 \%$ | S37 | 90 | $4.77 \%$ | S51 | 34 | $1.80 \%$ |
| S24 | 9 | $0.48 \%$ | S38 | 106 | $5.62 \%$ | S52 | 21 | $1.11 \%$ |
| S25 | 4 | $0.21 \%$ | S39 | 107 | $5.68 \%$ | S53 | 15 | $0.80 \%$ |
| S26 | 21 | $1.11 \%$ | S40 | 130 | $6.90 \%$ | S54 | 10 | $0.53 \%$ |
| S27 | 23 | $1.22 \%$ | S41 | 116 | $6.15 \%$ | S55 | 9 | $0.48 \%$ |
| S28 | 23 | $1.22 \%$ | S42 | 109 | $5.78 \%$ | S56 | 2 | $0.11 \%$ |
| S29 | 32 | $1.70 \%$ | S43 | 105 | $5.57 \%$ | S58 | 1 | $0.05 \%$ |
| S30 | 38 | $2.02 \%$ | S44 | 103 | $5.46 \%$ | S59 | 2 | $0.11 \%$ |

### 4.9 Oscore

Oscore (Interval) is NEO-FFI-R Openness to experience. Possible values are presented in the table below.
Table 4.8: Openness to experience raw score

| Value | Cases | Fraction | Value | Cases | Fraction | Value | Cases | Fraction |
| :--- | ---: | ---: | :--- | ---: | ---: | :--- | ---: | ---: |
| S24 | 2 | $0.11 \%$ | S38 | 64 | $3.40 \%$ | S50 | 83 | $4.40 \%$ |
| S26 | 4 | $0.21 \%$ | S39 | 60 | $3.18 \%$ | S51 | 87 | $4.62 \%$ |
| S28 | 4 | $0.21 \%$ | S40 | 68 | $3.61 \%$ | S52 | 87 | $4.62 \%$ |
| S29 | 11 | $0.58 \%$ | S41 | 76 | $4.03 \%$ | S53 | 81 | $4.30 \%$ |
| S30 | 9 | $0.48 \%$ | S42 | 87 | $4.62 \%$ | S54 | 57 | $3.02 \%$ |
| S31 | 9 | $0.48 \%$ | S43 | 86 | $4.56 \%$ | S55 | 63 | $3.34 \%$ |
| S32 | 13 | $0.69 \%$ | S44 | 101 | $5.36 \%$ | S56 | 38 | $2.02 \%$ |
| S33 | 23 | $1.22 \%$ | S45 | 103 | $5.46 \%$ | S57 | 34 | $1.80 \%$ |
| S34 | 25 | $1.33 \%$ | S46 | 134 | $7.11 \%$ | S58 | 19 | $1.01 \%$ |
| S35 | 26 | $1.38 \%$ | S47 | 107 | $5.68 \%$ | S59 | 13 | $0.69 \%$ |
| S36 | 39 | $2.07 \%$ | S48 | 116 | $6.15 \%$ | S60 | 7 | $0.37 \%$ |
| S37 | 51 | $2.71 \%$ | S49 | 98 | $5.20 \%$ |  |  |  |

### 4.10 Ascore

Ascore (Interval) is NEO-FFI-R Agreeableness. Possible values are presented in the table below.
Table 4.9: Agreeableness raw score

| Value | Cases | Fraction | Value | Cases | Fraction | Value | Cases | Fraction |
| :--- | ---: | ---: | :--- | ---: | ---: | :--- | ---: | ---: |
| S12 | 1 | $0.05 \%$ | S34 | 42 | $2.23 \%$ | S48 | 104 | $5.52 \%$ |
| S16 | 1 | $0.05 \%$ | S35 | 45 | $2.39 \%$ | S49 | 85 | $4.51 \%$ |
| S18 | 1 | $0.05 \%$ | S36 | 62 | $3.29 \%$ | S50 | 68 | $3.61 \%$ |
| S23 | 1 | $0.05 \%$ | S37 | 83 | $4.40 \%$ | S51 | 58 | $3.08 \%$ |
| S24 | 2 | $0.11 \%$ | S38 | 82 | $4.35 \%$ | S52 | 39 | $2.07 \%$ |
| S25 | 1 | $0.05 \%$ | S39 | 102 | $5.41 \%$ | S53 | 36 | $1.91 \%$ |
| S26 | 7 | $0.37 \%$ | S40 | 98 | $5.20 \%$ | S54 | 36 | $1.91 \%$ |
| S27 | 7 | $0.37 \%$ | S41 | 114 | $6.05 \%$ | S55 | 16 | $0.85 \%$ |
| S28 | 8 | $0.42 \%$ | S42 | 101 | $5.36 \%$ | S56 | 14 | $0.74 \%$ |
| S29 | 13 | $0.69 \%$ | S43 | 105 | $5.57 \%$ | S57 | 8 | $0.42 \%$ |
| S30 | 18 | $0.95 \%$ | S44 | 118 | $6.26 \%$ | S58 | 7 | $0.37 \%$ |
| S31 | 24 | $1.27 \%$ | S45 | 112 | $5.94 \%$ | S59 | 1 | $0.05 \%$ |
| S32 | 30 | $1.55 \%$ | S46 | 100 | $5.31 \%$ | S60 | 1 | $0.05 \%$ |
| S33 | 34 | $1.80 \%$ | S47 | 100 | $5.31 \%$ |  |  |  |

### 4.11 Cscore

Cscore (Interval) is NEO-FFI-R Conscientiousness. Possible values are presented in the table below:

| Table 4.10: Conscientiousness raw score |  |  |  |  |  |  |  |  |
| :--- | ---: | ---: | :--- | ---: | ---: | :--- | ---: | ---: |
| Value | Cases | Fraction | Value | Cases | Fraction | Value | Cases | Fraction |
| S17 | 1 | $0.05 \%$ | S32 | 39 | $2.07 \%$ | S46 | 113 | $5.99 \%$ |
| S19 | 1 | $0.05 \%$ | S33 | 49 | $2.60 \%$ | S47 | 95 | $5.04 \%$ |
| S20 | 3 | $0.16 \%$ | S34 | 55 | $2.92 \%$ | S48 | 95 | $5.04 \%$ |
| S21 | 2 | $0.11 \%$ | S35 | 55 | $2.92 \%$ | S49 | 76 | $4.03 \%$ |
| S22 | 5 | $0.27 \%$ | S36 | 69 | $3.66 \%$ | S50 | 47 | $2.49 \%$ |
| S23 | 5 | $0.27 \%$ | S37 | 81 | $4.30 \%$ | S51 | 43 | $2.28 \%$ |
| S24 | 6 | $0.32 \%$ | S38 | 77 | $4.08 \%$ | S52 | 34 | $1.80 \%$ |
| S25 | 9 | $0.48 \%$ | S39 | 87 | $4.62 \%$ | S53 | 28 | $1.49 \%$ |
| S26 | 13 | $0.69 \%$ | S40 | 97 | $5.15 \%$ | S54 | 27 | $1.43 \%$ |
| S27 | 13 | $0.69 \%$ | S41 | 99 | $5.25 \%$ | S55 | 13 | $0.69 \%$ |
| S28 | 25 | $1.33 \%$ | S42 | 105 | $5.57 \%$ | S56 | 8 | $0.42 \%$ |
| S29 | 24 | $1.27 \%$ | S43 | 90 | $4.77 \%$ | S57 | 3 | $0.16 \%$ |
| S30 | 29 | $1.54 \%$ | S44 | 111 | $5.89 \%$ | S59 | 1 | $0.05 \%$ |
| S31 | 41 | $2.18 \%$ | S45 | 111 | $5.89 \%$ |  |  |  |

### 4.12 SS

SS (Ordinal) is sensation-seeking measured by the ImpSS measure. Possible values are presented in the table below:

Table 4.11: Conscientiousness (left) and impulsiveness (right) raw score

| Value | Cases | Fraction |
| :--- | ---: | ---: |
| SS00 | 71 | $3.77 \%$ |
| SS01 | 87 | $4.62 \%$ |
| SS02 | 132 | $7.00 \%$ |
| SS03 | 169 | $8.97 \%$ |
| SS04 | 211 | $11.19 \%$ |
| SS05 | 223 | $11.83 \%$ |
| SS06 | 219 | $11.62 \%$ |
| SS07 | 249 | $13.21 \%$ |
| SS08 | 211 | $11.19 \%$ |
| SS09 | 210 | $11.14 \%$ |
| SS10 | 103 | $5.46 \%$ |


| Value | Cases | Fraction |
| :--- | ---: | ---: |
| I0 | 20 | $1.06 \%$ |
| I1 | 276 | $14.64 \%$ |
| I2 | 307 | $16.29 \%$ |
| I3 | 355 | $18.83 \%$ |
| I4 | 257 | $13.63 \%$ |
| I5 | 216 | $11.46 \%$ |
| I6 | 195 | $10.34 \%$ |
| I7 | 148 | $7.85 \%$ |
| I8 | 104 | $5.52 \%$ |
| I9 | 7 | $0.37 \%$ |

### 4.13 Impulsivity

Impulsivity (Ordinal) is impulsiveness as measured by BIS-11. Possible values are presented in the table above.

## Chapter 5

## Quantified input features description (Quantified.csv)

Database does not contain missing values. Tables with descriptive statistics present minimal (Min), maximal (Max), and mean (Mean) values and standard deviation (STD).

### 5.1 ID

ID is number of record in original database. It cannot be related to participant. It can be used for reference only.

### 5.2 Age

Age is age of participant. This feature is quantified from ordinal original.
Table 5.1: Age

| Value | Meaning | Cases | Fraction |  |  |  |  |
| :---: | :--- | ---: | ---: | ---: | :---: | :---: | :---: |
| -0.95197 | $18-24$ | 643 | $34.11 \%$ | Descriptive statistics |  |  |  |
| -0.07854 | $25-34$ | 481 | $25.52 \%$ |  |  |  |  |
| 0.49788 | $35-44$ | 356 | $18.89 \%$ | Min | Max | Mean | STD |
| 1.09449 | $45-54$ | 294 | $15.60 \%$ | -0.95197 | 2.59171 | 0.03461 | 0.87813 |
| 1.82213 | $55-64$ | 93 | $4.93 \%$ |  |  |  |  |
| 2.59171 | $65+$ | 18 | $0.95 \%$ |  |  |  |  |

### 5.3 Gender

Gender is the gender of participant. This feature is quantified from nominal original.

| Value | Meaning | Cases | Fraction. | 2: Gender | Descriptive statistics |  |  |  |
| :---: | :--- | ---: | ---: | :---: | :---: | :---: | :---: | :---: |
| 0.48246 | Female | 942 | $49.97 \%$ | Min | Max | Mean | STD |  |
| -0.48246 | Male | 943 | $50.03 \%$ | -0.48246 | 0.48246 | -0.00026 | 0.48246 |  |

### 5.4 Education

Education is level of education of participant. This feature is quantified from ordinal original.
Table 5.3: Education

| Value | Meaning | Cases | Fraction |
| :---: | :--- | ---: | ---: |
| -2.43591 | Left school before 16 years | 28 | $1.49 \%$ |
| -1.73790 | Left school at 16 years | 99 | $5.25 \%$ |
| -1.43719 | Left school at 17 years | 30 | $1.59 \%$ |
| -1.22751 | Left school at 18 years | 100 | $5.31 \%$ |
| -0.61113 | Some college or university, no certificate or degree | 506 | $26.84 \%$ |
| -0.05921 | Professional certificate/ diploma | 270 | $14.32 \%$ |
| 0.45468 | University degree | 480 | $25.46 \%$ |
| 1.16365 | Masters degree | 283 | $15.01 \%$ |
| 1.98437 | Doctorate degree | 89 | $4.72 \%$ |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -2.43591 | 1.98437 | -0.00379 | 0.95004 |

### 5.5 Country

Country is country of current residence for the participant. This feature is quantified from nominal original.
Table 5.4: Age

| Value | Meaning | Cases | Fraction | Descriptive statistics |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -0.09765 | Australia | 54 | 2.86\% |  |  |  |  |
| 0.24923 | Canada | 87 | 4.62\% |  |  |  |  |
| -0.46841 | New Zealand | 5 | 0.27\% |  |  |  |  |
| -0.28519 | Other | 118 | 6.26\% | Min | Max | Mean | 0.70015 |
| 0.21128 | Republic of Ireland | 20 | 1.06\% | -0.57009 | 0.96082 | 0.35554 | 0.70015 |
| 0.96082 | UK | 1044 | 55.38\% |  |  |  |  |
| -0.57009 | USA | 557 | 29.55\% |  |  |  |  |

### 5.6 Ethnicity

Ethnicity is the ethnicity of the participant. This feature is quantified from nominal original.
Table 5.5: Age

| Value | Meaning | Cases | Fraction |
| ---: | :--- | ---: | ---: |
| -0.50212 | Asian | 26 | $1.38 \%$ |
| -1.10702 | Black | 33 | $1.75 \%$ |
| 1.90725 | Mixed-Black/Asian | 3 | $0.16 \%$ |
| 0.12600 | Mixed-White/Asian | 20 | $1.06 \%$ |
| -0.22166 | Mixed-White/Black | 20 | $1.06 \%$ |
| 0.11440 | Other | 63 | $3.34 \%$ |
| -0.31685 | White | 1720 | $91.25 \%$ |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -1.10702 | 1.90725 | -0.30958 | 0.16618 |

### 5.7 Nscore

Nscore is NEO-FFI-R Neuroticism. This feature is quantified from interval original.
Table 5.6: Neuroticism

| Score | Cases | Value | Score | Cases | Value | Score | Cases | Value |
| ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 12 | 1 | -3.46436 | 29 | 60 | -0.67825 | 46 | 67 | 1.02119 |
| 13 | 1 | -3.15735 | 30 | 61 | -0.58016 | 47 | 27 | 1.13281 |
| 14 | 7 | -2.75696 | 31 | 87 | -0.46725 | 48 | 49 | 1.23461 |
| 15 | 4 | -2.52197 | 32 | 78 | -0.34799 | 49 | 40 | 1.37297 |
| 16 | 3 | -2.42317 | 33 | 68 | -0.24649 | 50 | 24 | 1.49158 |
| 17 | 4 | -2.34360 | 34 | 76 | -0.14882 | 51 | 27 | 1.60383 |
| 18 | 10 | -2.21844 | 35 | 69 | -0.05188 | 52 | 17 | 1.72012 |
| 19 | 16 | -2.05048 | 36 | 73 | 0.04257 | 53 | 20 | 1.83990 |
| 20 | 24 | -1.86962 | 37 | 67 | 0.13606 | 54 | 15 | 1.98437 |
| 21 | 31 | -1.69163 | 38 | 63 | 0.22393 | 55 | 11 | 2.12700 |
| 22 | 26 | -1.55078 | 39 | 66 | 0.31287 | 56 | 10 | 2.28554 |
| 23 | 29 | -1.43907 | 40 | 80 | 0.41667 | 57 | 6 | 2.46262 |
| 24 | 35 | -1.32828 | 41 | 61 | 0.52135 | 58 | 3 | 2.61139 |
| 25 | 56 | -1.19430 | 42 | 77 | 0.62967 | 59 | 5 | 2.82196 |
| 26 | 57 | -1.05308 | 43 | 49 | 0.73545 | 60 | 2 | 3.27393 |
| 27 | 65 | -0.92104 | 44 | 51 | 0.82562 |  |  |  |
| 28 | 70 | -0.79151 | 45 | 37 | 0.91093 |  |  |  |
| Descriptive statistics  |  |  |  |  |  |  |  |  |


| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -3.46436 | 3.27393 | 0.00004 | 0.99808 |

### 5.8 Escore

Escore is NEO-FFI-R Extraversion. This feature is quantified from interval original.
Table 5.7: Extraversion

| Score | Cases | Value | Score | Cases | Value | Score | Cases | Value |
| ---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 16 | 2 | -3.27393 | 31 | 55 | -1.23177 | 45 | 91 | 0.80523 |
| 18 | 1 | -3.00537 | 32 | 52 | -1.09207 | 46 | 69 | 0.96248 |
| 19 | 6 | -2.72827 | 33 | 77 | -0.94779 | 47 | 64 | 1.11406 |
| 20 | 3 | -2.53830 | 34 | 68 | -0.80615 | 48 | 62 | 1.28610 |
| 21 | 3 | -2.44904 | 35 | 58 | -0.69509 | 49 | 37 | 1.45421 |
| 22 | 8 | -2.32338 | 36 | 89 | -0.57545 | 50 | 25 | 1.58487 |
| 23 | 5 | -2.21069 | 37 | 90 | -0.43999 | 51 | 34 | 1.74091 |
| 24 | 9 | -2.11437 | 38 | 106 | -0.30033 | 52 | 21 | 1.93886 |
| 25 | 4 | -2.03972 | 39 | 107 | -0.15487 | 53 | 15 | 2.12700 |
| 26 | 21 | -1.92173 | 40 | 130 | 0.00332 | 54 | 10 | 2.32338 |
| 27 | 23 | -1.76250 | 41 | 116 | 0.16767 | 55 | 9 | 2.57309 |
| 28 | 23 | -1.63340 | 42 | 109 | 0.32197 | 56 | 2 | 2.85950 |
| 29 | 32 | -1.50796 | 43 | 105 | 0.47617 | 58 | 1 | 3.00537 |
| 30 | 38 | -1.37639 | 44 | 103 | 0.63779 | 59 | 2 | 3.27393 |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -3.27393 | 3.27393 | -0.00016 | 0.99745 |

### 5.9 Oscore

Oscore is NEO-FFI-R Openness to experience. This feature is quantified from interval original.
Table 5.8: Openness to experience

| Score | Cases | Value | Score | Cases | Value | Score | Cases | Value |
| ---: | ---: | :---: | ---: | ---: | :---: | ---: | ---: | :---: |
| 24 | 2 | -3.27393 | 38 | 64 | -1.11902 | 50 | 83 | 0.58331 |
| 26 | 4 | -2.85950 | 39 | 60 | -0.97631 | 51 | 87 | 0.72330 |
| 28 | 4 | -2.63199 | 40 | 68 | -0.84732 | 52 | 87 | 0.88309 |
| 29 | 11 | -2.39883 | 41 | 76 | -0.71727 | 53 | 81 | 1.06238 |
| 30 | 9 | -2.21069 | 42 | 87 | -0.58331 | 54 | 57 | 1.24033 |
| 31 | 9 | -2.09015 | 43 | 86 | -0.45174 | 55 | 63 | 1.43533 |
| 32 | 13 | -1.97495 | 44 | 101 | -0.31776 | 56 | 38 | 1.65653 |
| 33 | 23 | -1.82919 | 45 | 103 | -0.17779 | 57 | 34 | 1.88511 |
| 34 | 25 | -1.68062 | 46 | 134 | -0.01928 | 58 | 19 | 2.15324 |
| 35 | 26 | -1.55521 | 47 | 107 | 0.14143 | 59 | 13 | 2.44904 |
| 36 | 39 | -1.42424 | 48 | 116 | 0.29338 | 60 | 7 | 2.90161 |
| 37 | 51 | -1.27553 | 49 | 98 | 0.44585 |  |  |  |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -3.27393 | 2.90161 | -0.00053 | 0.99623 |

### 5.10 Ascore

Ascore is NEO-FFI-R Agreeableness. This feature is quantified from interval original.
Table 5.9: Agreeableness

| Score | Cases | Value | Score | Cases | Value | Score | Cases | Value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 12 | 1 | -3.46436 | 34 | 42 | -1.34289 | 48 | 104 | 0.76096 |
| 16 | 1 | -3.15735 | 35 | 45 | -1.21213 | 49 | 85 | 0.94156 |
| 18 | 1 | -3.00537 | 36 | 62 | -1.07533 | 50 | 68 | 1.11406 |
| 23 | 1 | -2.90161 | 37 | 83 | -0.91699 | 51 | 58 | 1.2861 |
| 24 | 2 | -2.78793 | 38 | 82 | -0.76096 | 52 | 39 | 1.45039 |
| 25 | 1 | -2.70172 | 39 | 102 | -0.60633 | 53 | 36 | 1.61108 |
| 26 | 7 | -2.5383 | 40 | 98 | -0.45321 | 54 | 36 | 1.81866 |
| 27 | 7 | -2.35413 | 41 | 114 | -0.30172 | 55 | 16 | 2.03972 |
| 28 | 8 | -2.21844 | 42 | 101 | -0.15487 | 56 | 14 | 2.23427 |
| 29 | 13 | -2.07848 | 43 | 105 | -0.01729 | 57 | 8 | 2.46262 |
| 30 | 18 | -1.92595 | 44 | 118 | 0.13136 | 58 | 7 | 2.75696 |
| 31 | 24 | -1.772 | 45 | 112 | 0.28783 | 59 | 1 | 3.15735 |
| 32 | 30 | -1.6209 | 46 | 100 | 0.43852 | 60 | 1 | 3.46436 |
| 33 | 34 | -1.47955 | 47 | 100 | 0.59042 |  |  |  |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -3.46436 | 3.46436 | -0.00024 | 0.99744 |

### 5.11 Cscore

Cscore is NEO-FFI-R Conscientiousness. This feature is quantified from interval original.
Table 5.10: Conscientiousness

| Score | Cases | Value | Score | Cases | Value | Score | Cases | Value |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: |
| 17 | 1 | -3.46436 | 32 | 39 | -1.25773 | 46 | 113 | 0.58489 |
| 19 | 1 | -3.15735 | 33 | 49 | -1.13788 | 47 | 95 | 0.7583 |
| 20 | 3 | -2.90161 | 34 | 55 | -1.0145 | 48 | 95 | 0.93949 |
| 21 | 2 | -2.72827 | 35 | 55 | -0.89891 | 49 | 76 | 1.13407 |
| 22 | 5 | -2.57309 | 36 | 69 | -0.78155 | 50 | 47 | 1.30612 |
| 23 | 5 | -2.42317 | 37 | 81 | -0.65253 | 51 | 43 | 1.46191 |
| 24 | 6 | -2.30408 | 38 | 77 | -0.52745 | 52 | 34 | 1.63088 |
| 25 | 9 | -2.18109 | 39 | 87 | -0.40581 | 53 | 28 | 1.81175 |
| 26 | 13 | -2.04506 | 40 | 97 | -0.27607 | 54 | 27 | 2.04506 |
| 27 | 13 | -1.92173 | 41 | 99 | -0.14277 | 55 | 13 | 2.33337 |
| 28 | 25 | -1.78169 | 42 | 105 | -0.00665 | 56 | 8 | 2.63199 |
| 29 | 24 | -1.64101 | 43 | 90 | 0.12331 | 57 | 3 | 3.00537 |
| 30 | 29 | -1.5184 | 44 | 111 | 0.25953 | 59 | 1 | 3.46436 |
| 31 | 41 | -1.38502 | 45 | 111 | 0.41594 |  |  |  |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -3.46436 | 3.46436 | -0.00039 | 0.99752 |

### 5.12 SS

SS is sensation seeing measured by $\operatorname{ImpSS}$. This feature is quantified from ordinal original.
Table 5.11: Sensation seeing

| Value | Score | Cases | Fraction |
| :---: | ---: | ---: | ---: |
| -2.07848 | 0 | 71 | $3.77 \%$ |
| -1.54858 | 1 | 87 | $4.62 \%$ |
| -1.18084 | 2 | 132 | $7.00 \%$ |
| -0.84637 | 3 | 169 | $8.97 \%$ |
| -0.52593 | 4 | 211 | $11.19 \%$ |
| -0.21575 | 5 | 223 | $11.83 \%$ |
| 0.07987 | 6 | 219 | $11.62 \%$ |
| 0.40148 | 7 | 249 | $13.21 \%$ |
| 0.76540 | 8 | 211 | $11.19 \%$ |
| 1.22470 | 9 | 210 | $11.14 \%$ |
| 1.92173 | 10 | 103 | $5.46 \%$ |

Descriptive statistics

| Min | Max | Mean | STD |
| :---: | :---: | :---: | :---: |
| -2.07848 | 1.92173 | -0.00329 | 0.96370 |

### 5.13 Impulsivity

Impulsivity is impulsiveness measured by BIS-11. This feature is quantified from ordinal original.
Table 5.12: Impulsiveness

| Value | Score | Cases | Fraction | Descriptive statistics |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -2.55524 | 0 | 20 | 1.06\% |  |  |  |  |
| -1.37983 | 1 | 276 | 14.64\% |  |  |  |  |
| -0.71126 | 2 | 307 | 16.29\% |  |  |  |  |
| -0.21712 | 3 | 355 | 18.83\% |  |  |  |  |
| 0.19268 | 4 | 257 | 13.63\% | Min | Max | Mean | STD |
| 0.52975 | 5 | 216 | 11.46\% | -2.55524 | 2.90161 | 0.00721 | 0.95446 |
| 0.88113 | 6 | 195 | 10.34\% |  |  |  |  |
| 1.29221 | 7 | 148 | 7.85\% |  |  |  |  |
| 1.86203 | 8 | 104 | 5.52\% |  |  |  |  |
| 2.90161 | 9 | 7 | 0.37\% |  |  |  |  |

## Bibliography

1. Fehrman, E., Egan, V., Gorban, A.N., Levesley, J., Mirkes, E.M., Muhammad, A.K. Personality Traits and Drug Consumption: The Story Told by Data, 2019, https://www.springer.com/gp/book/9783030104412
2. Fehrman, E., Muhammad, A.K., Mirkes, E.M., Egan, V., Gorban, A.N., 2017. The Five Factor Model of personality and evaluation of drug consumption risk. In Data Science (pp. 231-242). Springer, Cham, https://doi.org/10.1007/978-3-319-55723-6_18
3. Fehrman, E., Muhammad, A.K., Mirkes, E.M., Egan, V., Gorban, A.N., The Five Factor Model of personality and evaluation of drug consumption risk, arXiv preprint arXiv:1506.06297, 2015, https://arxiv.org/abs/1506.06297
4. Hoare, J., Moon, D. (eds.) Drug misuse declared: findings from the 2009/10 British Crime Survey. Home Office Statistical Bulletin 13/10 (2010). Available: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/116321/hosb1310.pdf. Accessed 27 Dec 2017
5. Costa, P.T., MacCrae, R.R.: Revised NEO-personality inventory (NEO PI-R) and NEO five-factor inventory (NEO FFI): Professional manual. Psychological Assessment Resources, Odessa, FL (1992)
6. Egan, V.: Individual differences and antisocial behaviour. In: Furnham, A., Stumm, S., Petredies, K., (eds.): The Blackwell-Wiley Handbook of Individual Differences, pp. 512-537. Blackwell-Wiley, Oxford (2011). https://doi.org /10.1002/9781444343120.ch19
7. McCrae, R.R., Costa, P.T.: The NEO personality inventory: using the five-factor model in counseling. J. Couns. Dev. 69(4), 367-372 (1991). https://doi.org/10.1002/j.1556-6676.1991.tb01524.x
8. Egan, V., Deary, I., Austin, E.: The NEO-FFI: Emerging British norms and an item-level analysis suggest N, A and C are more reliable than O and E. Personal. Individ. Differ. 29(5), 907-920 (2000). https://doi.org/10.1016/s0191-8869(99)00242-1
9. Jakobwitz, S., Egan, V.: The dark triad and normal personality traits. Personal. Individ. Differ. 40(2), 331339 (2006). https://doi.org/10.1016/j.paid.2005.07.006
10. Settles, R.E., Fischer, S., Cyders, M.A., Combs, J.L., Gunn, R.L., Smith G.T.: Negative urgency: a personality predictor of externalizing behavior characterized by neuroticism, low conscientiousness, and disagreeableness. J. Abnorm. Psychol. 121(1), 160-172 (2012). https://doi.org/10.1037/a0024948
11. Stanford, M.S., Mathias, C.W., Dougherty, D.M., Lake, S.L., Anderson, N.E., Patton, J.H.: Fifty years of the Barratt Impulsiveness Scale: An update and review. Personal. Individ. Differ. 47(5), 385-395 (2009). https://doi.org/10.1016/j.paid.2009.04.008
12. Snowden, R.J., Gray, N.S.: Impulsivity and psychopathy: Associations between the barrett impulsivity scale and the psychopathy checklist revised. Psychiatry Research. 87(3), 414-417 (2011). https://doi.org/10.1016/j.psychres .2011.02.003
13. García-Montes, J.M., Zaldívar-Basurto, F., López-Ríos, F., Molina-Moreno, A.: The role of personality variables in drug abuse in a Spanish university population. Int. J. Ment. Health Addict. 7(3), 475-487 (2009). https://doi.org/10.1007/ s11469-007-9144-y
14. Fossati, P., Ergis, A.M., Allilaire, J.F.: Problem-solving abilities in unipolar depressed patients: comparison of performance on the modified version of the Wisconsin and the California sorting tests. Psychiatry Res. 104(2), 145-156 (2001). https://doi.org/10.1016/s0165-1781(01)00307-9
15. Zuckerman, M.: Behavioral expressions and biosocial bases of sensation seeking. Cambridge University Press, New York (1994).
16. McDaniel, S.R., Mahan, J.E.: An examination of the Impss scale as a valid and reliable alternative to the SSS-V in optimum stimulation level research. Personal. Individ. Differ. 44(7), 1528-1538 (2008). https://doi.org/10.1016/j.paid.2008.01.009
17. Ragan, D.T., Beaver, K.M.: Chronic offenders: a life-course analysis of marijuana Users. Youth \& Soc. 42(2), 174-198 (2010). https://doi.org/10.1177/0044 118x09351788
18. Home Office UK: Drug misuse: findings from the 2013 to 2014 Crime Survey for England and Wales, 2nd edn. (2014). Available: https://www.gov.uk/govern ment/statistics/drug-misuse-findings-from-the-2013-to-2014-csew. Accessed 27 Dec 2017
19. Lee, S.Y., Poon, W.Y., Bentler, P.M.: A two-stage estimation of structural equation models with continuous and polytomous variables. Br. J. Math. Stat. Psychol. 48(2), 339-358 (1995). https://doi.org/10.1111/j.20448317.1995.tb01067.x
20. Martinson, E.O., Hamdan, M.A.: Maximum likelihood and some other asymptotically efficient estimators of correlation in two way contingency tables. J. Stat. Comput. Simul. 1(1), 45-54 (1971). https://doi.org/10.1080/009496572088 10003
21. Linting, M., van der Kooij, A.: Nonlinear principal components analysis with CATPCA: A tutorial. J. Pers. Assess. 94(1), 12-25 (2012). https://doi.org/10.1080/00223891.2011.627965
22. Pearson, K.: On lines and planes of closest fit to system of points in space. Philos. Mag. Ser. 6 2(11), 559-572 (1901). https://doi.org/10.1080/14786440109462720
23. Gorban, A.N., Zinovyev, A.Y.: Principal manifolds and graphs in practice: from molecular biology to dynamical systems. Int. j. neural syst. 20(03), 219-232 (2010). https://doi.org/10.1142/s0129065710002383
24. Gorban, A.N., Kégl, B., Wunsch, D.C., Zinovyev, A.Y. (eds.): Principal Manifolds for Data Visualisation and Dimension Reduction. LNCSE, vol. 58, Springer, Berlin-Heidelberg-New York (2008). https://doi.org/10.1007/978-3-540-73750-6
25. Gorban, A.N., Zinovyev, A.Y.: Principal graphs and manifolds. In: Olivas, E.S., Guerrero, J.D.M., Sober, M.M., Benedito, J.R.M., López, A.J.S. (eds.): Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques. pp. 28-59. IGI Global, Hershey - New York (2009). https://doi.org/10.4018/978-1-60566-766-9.ch002
26. Guttman, L.: Some necessary conditions for common-factor analysis. Psychometrika 19(2), 149-161 (1954). https://doi.org/10.1007/bf02289162
27. Kaiser, H.F.: The application of electronic computers to factor analysis. Educ. Psychol. Meas. 20(1), 141151 (1960). https://doi.org/10.1177/001316446002000116
28. Gujarati, D.N.: Basic econometrics, 4th edn. McGraw-Hill, New York (2004)
29. Terracciano, A., Lóckenhoff, C.E., Crum, R.M., Bienvenu, O.J., Costa, P.T.: Five-factor model personality profiles of drug users. BMC Psychiatr. 8(1), 22 (2008). https://doi.org/10.1186/1471-244x-8-22
