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Abstract 
 The Stackelberg heuristic is a simulation heuristic in which a player optimizes against 
best-reply counterstrategies, and a game is Stackelberg-soluble if the resulting Stackelberg 
strategies are in equilibrium.  To test the hypothesis that players use this heuristic in 
Stackelberg-soluble games, 100 subjects played all 12 ordinally nonequivalent 2 × 2 games, 
nine of which (including Prisoner’s Dilemma and Stag Hunt) were Stackelberg-soluble and 
three (including Battle of the Sexes and Chicken) were non-Stackelberg-soluble.  Subjects 
significantly preferred Stackelberg strategies in Stackelberg-soluble games, and a protocol 
analysis of stated reasons for choice showed that joint payoff maximization and strategic 
dominance were given as reasons significantly more frequently in Stackelberg-soluble than in 
non-Stackelberg-soluble games. 
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1. Introduction 
 There are grounds for believing that, in certain classes of games at least, players tend to 
use a form of reasoning that Colman and Bacharach (1997) called the Stackelberg heuristic.  
This is a generalization of the “minorant” and “majorant” models that von Neumann and 
Morgenstern (1944, section 14.4.1, pp. 100-104) used to rationalize their solution of strictly 
competitive games.  The assumption underlying the Stackelberg heuristic is that players 
reason with a type of simulation heuristic (Kahneman and Tversky 1982) in which both 
players choose strategies that maximize their own payoffs on the assumption that any choice 
will invariably be met by a counterstrategy that maximizes the co-player’s payoff, as if the 
co-player could choose second in a perfect-information version of the game with 
foreknowledge of the first player’s choice.  For example, a player in a simultaneous-choice 
game such as the well-known Prisoner’s Dilemma game may use the following type of 
Stackelberg reasoning: 
 
 Suppose my fellow prisoner were able to move second, with the benefit of knowing what 

I had chosen to do.  In that case, if I were to cooperate, then my fellow prisoner’s selfish 
interest would be best served by responding with a defecting choice, and I would end up 
with the worst possible payoff.  On the other hand, if I were to defect, then my fellow 
prisoner’s self-interest would again be served by a defecting choice, but in this case I 
would get a slightly better payoff.  It follows that to do the best for myself in the 



sequential version of the game I should defect; therefore I’ll defect in the actual 
simultaneous-choice version of the game. 

 
 Formally, in any two-person game Γ = 〈Si, Hi〉, where Si, i ∈ {1, 2} is Player i’s strategy 
set and Hi is a real-valued payoff function defined on the set S = S1 × S2, Player i applies the 
Stackelberg heuristic as follows.  First, Player i assumes that Player j can anticipate Player i’s 
thinking about the game as if choosing second with perfect information of Player i’s choice.  
This implies that for every strategy si in Player i’s strategy set Si, Player j, who is assumedly 
rational, responds with a strategy f such that f(si) is invariably a best reply of Player j to si, so 
that 
 Hj(si, f(si)) ≥ Hj(si, sj)   ∀ sj ∈ Sj. 
Second, assuming that both players are fully informed about the rules of the game and the 
payoff functions, Player i expects this to happen and chooses a payoff-maximizing strategy 
based on the assumption that Player j’s response will invariably be a best reply f(si).  In other 
words, Player i chooses a counterstrategy for which maxi Hi(si, f(si)) is attained.  This is 
called Player i’s Stackelberg strategy or h strategy.  If in any game Γ the players’ h strategies 
constitute a Nash equilibrium, then Γ is Stackelberg-soluble (or h-soluble) and the 
corresponding equilibrium is called a Stackelberg solution (or h solution).  In a two-person 
game, a (Nash) equilibrium is an outcome in which each strategy is a payoff-maximizing best 
reply to the co-player’s strategy. 
 There are several grounds for believing that the Stackelberg heuristic may influence the 
thinking of human decision makers.  First, the Stackelberg heuristic relies on evidential 
reasoning (Eells 1985; Jeffrey 1983; Nozick 1969, 1993), a form of reasoning in which 
decisions are made by maximizing the conditional expected utilities of possible acts rather 
than the pure expected utilities as in classical decision theory, the utilities of outcomes being 
weighted by their probabilities given the specified acts, irrespective of whether there is any 
causal connection between the acts and the outcomes.  There is experimental evidence to 
show that people do, in certain circumstances, use evidential forms of reasoning.  For 
example, Quattrone and Tversky (1984) reported that subjects expressed a greater willingness 
to vote in an election when they believed that the outcome would depend on the proportion of 
like-minded voters who voted rather than on the behaviour of non-aligned voters, even 
though the effect of an individual’s vote would be negligible (and equal) in both cases, and 
they predicted that their preferred candidate would be more likely to win the election if they 
themselves voted.  This is a clear example of evidential reasoning. 
 Second, the Stackelberg heuristic is a form of simulation heuristic, by which people 
reason about events through an operation resembling the running of a simulation model, and 
Kahneman and Tversky (1982) have provided empirical evidence that people use simulation 
heuristics to analyse counterfactual propositions (e.g., “If only I had driven home by my 
regular route, I wouldn’t have collided with the truck at the intersection”) by mentally 
“undoing” events that have occurred and then running mental simulations of the events with 
the corresponding parameters of the model altered. 
 The third ground for believing that people use Stackelberg reasoning is the powerful 
psychological appeal of payoff dominance as a criterion for choosing between Nash equilibria 
in games, and the ability of experimental subjects to exploit payoff-dominant equilibrium 
points by focusing successfully on them in certain pure coordination games (Schelling 1960, 
chap. 3; Mehta et al. 1994a, 1994b) and in other games of common interests (Cooper et al. 
1990, 1992a, 1992b).  If e and f are any two distinct Nash equilibria in a two-person game, 
then e (strictly) payoff-dominates f iff Hi(e) > Hi(f) for both players i ∈ {1, 2}.  According to 
the payoff-dominance principle, in any game, if one equilibrium point e payoff-dominates all 



others, rational players will choose strategies corresponding to e.  Harsanyi and Selten’s 
(1988) general theory of equilibrium selection in games is based on this assumption (together 
with a slightly different principle of risk dominance), and most game theorists have accepted 
its intuitive force (e.g., Crawford and Haller 1990; Farrell 1987, 1988; Gauthier 1975; Lewis 
1969; Sugden 1995). 
 Games with unique payoff-dominant Nash equilibria that are Pareto-optimal are called 
games of common interests (Aumann and Sorin 1989), and although in any such game the 
payoff-dominant equilibrium is the “obvious” choice, it has been argued that the payoff-
dominance principle cannot be justified by conventional game-theoretic reasoning (Gilbert 
1989, 1990).  In a two-person common-interest game, for example, Player I has a reason to 
choose the strategy corresponding to the payoff-dominant Nash equilibrium only if there is a 
reason to expect Player II to do likewise; but Player II has a reason to choose it only if there 
is a reason to expect Player I to choose it, and we have an infinite regress that provides 
neither player with any reason for choosing the payoff-dominant equilibrium.  Colman and 
Bacharach (1997) argued that the Stackelberg heuristic provides a clarification of the 
psychological appeal of payoff dominance and an explanation for the otherwise inexplicable 
ability of experimental subjects to solve certain types of pure coordination games in practice. 
 Colman (1997) has shown that all pure coordination games are soluble by the Stackelberg 
heuristic with the help of Bacharach’s (1993) variable-frame theory. 
 Colman and Bacharach (1997) proved that every game of common interests is 
Stackelberg-soluble or h-soluble, that its h solution is its payoff-dominant Nash equilibrium, 
and that in every game with Pareto-rankable Nash equilibria, a Stackelberg solution is a 
payoff-dominant Nash equilibrium.  They also proved that there are h-soluble games that are 
not games of common interests and games with payoff-dominant Nash equilibria that are not 
h solutions.  These last two theorems raise the empirical question of which classes of games 
elicit Stackelberg reasoning, assuming that people do indeed use Stackelberg reasoning to 
choose strategies in certain games. 
 The aim of the experiment described below is to examine the strategy choices of subjects 
in a wide range of simple two-person mixed-motive games and to determine whether 
Stackelberg strategies tend to be chosen.  Each subject made a single strategy choice in each 
of twelve 2 × 2 mixed-motive games, nine of which were Stackelberg-soluble or h-soluble.  
We hypothesized that players would tend to use Stackelberg strategies in the h-soluble 
games. 
 
2. Method 
 
2.1. Subjects 
 The subjects were 100 undergraduate students at the University of Leicester, 53 male and 
47 female.  Their ages ranged from 18 to 43 years with a mean of 21.64 (SD = 4.18).  They 
were recruited via posters on campus notice-boards and a mail message broadcast via the 
Internet to all computer users at the university.  They were paid £1.00 for completing the 
experiment plus a variable additional sum ranging from a minimum of £1.20 to a maximum 
of £4.80 according to the payoffs that they accumulated in the twelve games during the half-
hour testing session. 
 
2.2. Payoff matrices 
 The strategic structures of games can be distinguished according to their ordinal payoff 
structures.  In the case of 2 × 2 games, if each player’s preferences among the four possible 
outcomes are rank-ordered from most preferred (with a payoff of 4) to least preferred (with a 



payoff of 1), then there are exactly 78 ordinally nonequivalent 2 × 2 games (Rapoport and 
Guyer 1966).  Of these 78, twelve are symmetric in the sense of presenting both players with 
the same payoff function, so that each would face the same choice if the players’ roles were 
reversed.  The twelve ordinally nonequivalent 2 × 2 games used in this study (see Figure 1) 
were generated by inserting the numbers 4, 3, 2, and 1 into the four cells of a 2 × 2 matrix in 
every possible order or permutation, constructing a symmetric game for each permutation, 
and deleting games that turned out to be identical to others another apart from the 
(strategically irrelevant) labelling of their rows or columns. 
 _______________________________________ 
 Figure 1 about here 
 _______________________________________ 
 Each payoff matrix was printed on a separate sheet, with the row-player’s strategy labels 
and payoffs printed in red and the column-player’s in blue, and the twelve matrices were 
presented to the subjects in random order.  Of the twelve games used in the experiment, nine 
(Games 1, 4, 5, 7, 8, 9, 10, 11, and 12 in Figure 1) turned out to be Stackelberg-soluble, and 
the remaining three (Games 2, 3, and 6) were non-Stackelberg-soluble. 
 
2.3. Design and procedure 
 A within-subjects experimental design was used, with each subject making a single 
strategy choice in each of the twelve games.  Subjects were tested in small even-numbered 
groups, and throughout the testing session the word “game” was avoided in favour of 
“decision-making task”.  After being split into pairs, the subjects were given the following 
written instructions: 
 
 You have just been split up into pairs and you are each going to have to choose between 

two alternatives, A or B.  You have each been given 12 grids.  Your objective is to 
maximize the number of points that you win for yourself, and therefore the amount of 
money that you will receive.  The numbers in the grid are the points you win.  You will 
be given £1 for completing all 12 grids and, on top of that, 10 pence per point scored.  
Each person must decide whether to choose A or B.  You will do this without knowing 
what your partner has chosen.  After each choice, explain clearly but briefly (a sentence 
or two at most) why you made the choice that you made.  Enter your choice and 
explanation into the table on the next sheet. 

 
Each member of a pair was arbitrarily assigned the role of row-player (labelled Red) or 
column-player (labelled Blue).  The pair was then told that Red would choose between rows 
A and B and Blue between columns A and B.  It was explained to them that their payoffs 
would depend on the choices made by both members of the pair, who would write down their 
choices out of sight of each other.  It was further explained that the pair of numbers in each 
cell of the matrix represented the participants’ payoffs — the first number the payoff to Red 
and the second the payoff to Blue.  They were reminded that each unit of payoff represented 
10 pence, which would be added to their payment after completion of all twelve decisions. 
 The subjects were asked to supply demographic information (age and sex) on the front 
page of their answer booklets and were then shown a sample game based on a payoff matrix 
that was not used in the actual experiment.  Their comprehension of the rules and payoffs was 
tested by asking each of them to write down in their answer booklets what would happen in a 
specified hypothetical outcome of this game.  They were invited to ask for clarification of 
anything they did not understand, and the experiment proper was not begun until the 
experimenter was satisfied that the subjects understood what they had to do and precisely 



how their joint strategy choices would affect their payoffs. 
 The subjects in each pair were then seated back to back and were invited to examine the 
first payoff matrix (which was labelled Grid 1).  They were asked to record their choices (A 
or B) opposite the label of Grid 1 in their answer booklets, where they were also asked to 
write their brief explanations for their choices.  After 60 seconds, they were told that they had 
30 seconds remaining on that grid, and after 90 seconds they were asked to examine the 
second game (Grid 2).  The procedure was repeated for each of the remaining games.  No 
feedback regarding the co-player’s choices or points accumulated was given until all twelve 
games had been played. 
 
3. Results 
 
3.1. Quantitative results 
 The frequencies of Stackelberg (h) strategy choices in the twelve games are shown in 
Table 1, together with the results of chi-square tests.  The purpose of the chi-square tests was 
to evaluate the significance of departures from chance in the relative frequencies of 
Stackelberg (h) and non-Stackelberg (non-h) strategy choices, the main hypothesis being that 
there would be a significant bias towards h strategies in each of the h-soluble games. 
 _______________________________________ 
 Table 1 about here 
 _______________________________________ 
 It is clear from Table 1 that there was a highly significant bias towards Stackelberg (h) 
strategies in all nine of the Stackelberg-soluble games.  The relative frequencies with which 
Stackelberg strategies were chosen in these games were strikingly high, usually over 90 of 
the 100 subjects and never fewer than 78/100 choosing the h strategies.  The effect sizes were 
determined using Cohen’s (1988, 1992) index w = √(χ2/N), which is designed to provide an 
indication of the magnitude of any departure from a chance baseline.  Following Cohen’s 
suggestion, we classified w ≥ .50 as a large effect size, w ≥ .30 as medium, and w ≥ .10 as 
small.  Using this index, the effect sizes in the Stackelberg-soluble games were all large, 
ranging from w = .56 in Game 12 to w = .96 in Game 1.  These findings strongly confirm the 
main hypothesis of the experiment. 
 The non-Stackelberg-soluble games yielded much smaller effect sizes, and the direction 
of bias was mixed: in one case (Game 2) there was a significant bias (72/100) towards the 
Stackelberg strategy, with a medium effect size; in another (Game 3) there was a significant 
bias (70/100) towards the non-Stackelberg strategy, with a medium effect size; and in the 
third (Game 6) there was no significant bias in either direction, with 47/100 of subjects 
choosing the Stackelberg strategy and a negligible effect size. 
 
3.2. Qualitative results 
 A simple protocol analysis was performed on the subjects’ stated reasons for their 
choices, which were recorded immediately after each decision.  An examination of these 
reasons by two raters resulted in a rough classification into the following nine categories 
(illustrative verbatim examples from the subjects’ protocols are shown in parentheses): 
 1. Expected utility maximization: choosing a strategy that maximizes the average or 
expected payoff (“The average of the two blue B numbers is higher than the A”; “Because 2 
+ 4 is better than 1 + 3”). 
 2. Joint payoff maximization: choosing a strategy that maximizes the total payoff of the 
pair (“Most points for both”; “Mutually beneficial”). 
 3. Strategic dominance: choosing a strategy that yields a better payoff than the other 



strategy irrespective of the co-player’s choice (“Because I’ll get more points for B whether he 
chooses A or B”; “Because I get more points whatever she chooses”). 
 4. Sequential reasoning or mind-reading: choosing a strategy on the basis of a guess or 
inference about the co-player’s likely choice (“Because it is the highest payoff for me if 
player II chooses B which I believe she will as A is too risky for her”; “Red [the other player] 
will choose B as their minimum score will be 2.  Blue will score 2 or 3”). 
 5. Relative payoff maximization: choosing a strategy with the aim of beating the co-
player (“Cannot lose, can only be equal or better [than the other player]”; “The points are 
either equal to or higher than the blue points”). 
 6. Minimax: choosing a strategy that offers the best of the worst possible payoffs (“To 
avoid scoring 1”; “Prefer to guarantee two points than risk getting only one if Red chooses 
A”). 
 7. Maximax: choosing a strategy that provides the possibility of receiving the highest 
possible payoff in the game (“4 pts is available”; “I might get 4 points”). 
 8. Individual payoff maximization: choosing a strategy with the aim of maximizing 
personal payoff irrespective of other considerations (e.g. “Carries the highest possible scores 
for me”; “Maximum personal benefit.  No point in competing”). 
 9. Ambiguous or unclassifiable: obscure, indefinite, enigmatic, and irrelevant (“Balanced, 
equal in that square”; “With B I can get either 3 or 4 points, with A it’s 1 or 2”). 
 _______________________________________ 
 Table 2 about here 
 _______________________________________ 
 In the relatively few cases in which subjects gave two or more distinct reasons for a 
choice, the reason that was judged to be most strongly emphasized was counted, and where 
two or more reasons seemed to be equally emphasized, only the first was counted.  The 
distribution of reasons that emerged from the protocol analysis is shown in Table 2. 
 Across games, the most frequent reason for choice, by a slim margin, was joint payoff 
maximization (Reason 2).  However, an examination of Table 2 shows that this reason was 
almost never given for choices in non-h-soluble games.  This is to be expected, because it is 
only in games of common interests, which Colman and Bacharach (1997) proved are 
necessarily Stackelberg-soluble, that the notion of joint payoff maximization makes sense.  
Some of the other reasons are also differentially applicable across games for theoretical 
reasons.  In particular, expected utility maximization (Reason 1) is indecisive in games 3, 6, 
8, and 12, because in those games both strategies yield the same expected utility if equal 
probabilities are assigned to the co-player’s choices (on the principle of insufficient reason); 
and strategic dominance does not apply to games 2, 3, 6, 8, 11, and 12, because those games 
do not have dominant strategies. 
 Our main concern was with the differences between h-soluble and non-h-soluble games.  
We therefore performed a series of chi-square goodness-of-fit tests to evaluate the 
significance of any differences in the frequencies of reasons for choice between h-soluble and 
non-h-soluble games, correcting the expected frequencies for the fact that three-quarters of 
the games were h-soluble.  The results showed, first of all, that there were no significant 
differences between h-soluble and non-h-soluble games in the frequencies of relative payoff 
maximization (Reason 5), individual payoff maximization (Reason 8), and ambiguous or 
unclassifiable responses (Reason 9).  Two reasons were given significantly more frequently 
in h-soluble than non-h-soluble games, namely joint payoff maximization (Reason 2), χ2(1) = 
46.49, p < .0001, and strategic dominance (Reason 3), χ2(1) = 33.31, p < .0001.  Four reasons 
were given significantly more frequently in non-h-soluble than h-soluble games: expected 
utility maximization (Reason 1), χ2(1) = 12.37, p < .0004; sequential reasoning or mind-



reading (Reason 4), χ2(1) = 15.62, p < .0001; minimax (Reason 6), χ2(1) = 35.70, p < .0001; 
and maximax (Reason 7), χ2(1) = 24.35, p < .0001. 
 
4. Discussion 
 The results of this experiment confirm the hypothesis that players tend to choose 
Stackelberg strategies in Stackelberg-soluble games.  In all nine of the Stackelberg-soluble 
games, the subjects manifested large and highly significant biases towards the Stackelberg 
strategies. 
 Six of the twelve games used in the experiment (Games 1, 4, 7, 8, 11, and 12) were games 
of common interests (Aumann and Sorin 1989), and all of them were Stackelberg-soluble.  
Partly overlapping with the common-interest games were six (Games 1, 4, 5, 7, 9, 10) in 
which both players had strictly dominant strategies (a strictly dominant strategy being one 
that yields a higher payoff than the other strategy irrespective of the response of the co-
player), and all of these were Stackelberg-soluble.  Included in this dominant-strategy group 
was Game 10, the familiar Prisoner’s Dilemma game, in which 79 per cent of subjects chose 
Stackelberg strategies, Game 4, Harmony (90 per cent), and Game 9, Deadlock (97 per cent). 
 In all of the games with dominant strategies, the Stackelberg strategies and dominant 
strategies coincided, so it is unclear whether they were chosen because of their Stackelberg 
property or their dominance property.  In these games the subjects’ choices, though 
consistent with the hypothesis of Stackelberg reasoning, provide inconclusive evidence of it. 
 The evidence is more persuasive in the remaining Stackelberg-soluble games (Games 8, 
11, and 12) in which choices were not influenced by considerations of strategic dominance.  
In Game 8, the Stag Hunt game, 79 per cent subjects chose Stackelberg strategies, and in 
Games 11 and 12 the proportions were 97 per cent and 78 per cent respectively.  All of the 
corresponding effect sizes were large, and these results suggest that the subjects were indeed 
influenced by Stackelberg reasoning.  Further indirect evidence for this emerges from the 
protocol analysis of the subjects’ stated reasons for choice (Table 2).  In Games 8, 11, and 12 
the predominant reasons for choice were joint payoff maximization and sequential reasoning 
or mind-reading.  However, chi-square analysis revealed that, although joint payoff 
maximization was mentioned as a reason significantly more frequently in h-soluble than non-
h-soluble games, the reverse was true for sequential reasoning or mind-reading, a puzzle that 
we shall discuss below. 
 The remaining three games were non-Stackelberg-soluble, and had no direct bearing on 
the main hypothesis, but the behaviour of the subjects in these games was of some interest 
none the less.  All three were characterized by double, asymmetric Nash equilibria (see 
Colman 1995, chap. 6 for a detailed analysis of their strategic properties).  In Game 2, Battle 
of the Sexes, the subjects showed a significant tendency to avoid the altruistic B strategies 
and to choose the Stackelberg A strategies, which do not intersect in a Nash equilibrium 
point.  In Game 3, the game of Chicken, subjects showed a significant avoidance of the 
Stackelberg B strategies, which are both dangerous and out of equilibrium, and a preference 
for the cautious A strategies, which are also out of equilibrium.  Finally, in Game 6, the game 
of Leader, almost equal numbers of subjects chose the non-equilibrium Stackelberg B 
strategies and the non-equilibrium A strategies. 
 There is no particular reason to expect players to choose Stackelberg strategies that do 
not intersect in Nash equilibria.  The famous indirect argument of von Neumann and 
Morgenstern (1944, section 17.3, pp. 146-148), developed further by Luce and Riaffa (1957, 
pp. 63-65), implies that if there is a unique solution to a game, then it must be what is 
nowadays called a Nash equilibrium.  The gist of the indirect argument is that, if the players 
are rational payoff-maximizers and are fully informed about the game, and if they know that 



their co-players are also rational and fully informed, then they can anticipate each other’s 
thinking through what Bacharach (1987) has called the “transparency of reason”, and each 
will choose a best reply to the other’s (rightly) anticipated strategy, and because by definition 
a Nash equilibrium consists of strategies that are best replies to each other, it follows that a 
unique rational solution must invariably be a Nash equilibrium.  This suggests that if rational 
players are influenced by Stackelberg reasoning, such reasoning should lead them to choose 
Stackelberg strategies in games that are Stackelberg-soluble.  The findings reported in this 
article corroborate that hypothesis strongly for simple 2 × 2 games, but further evidence from 
a wider range of games is required before a more general conclusion can be drawn about 
Stackelberg reasoning. 
 The protocol analysis of the subjects’ stated reasons for their choices showed that joint 
payoff maximization and strategic dominance were given as reasons significantly more 
frequently in h-soluble than in non-h-soluble games, and that expected utility maximization, 
sequential reasoning or mind-reading, minimax, and maximax were given significantly more 
frequently in non-h-soluble than in h-soluble games.  The disproportionate frequency of joint 
payoff maximization and dominance as reasons for choice in h-soluble games is explained by 
the fact that, in contrast to the non-h-soluble games, all of the h-soluble games were either 
games of common interest or games with dominant strategies.  Joint payoff maximization and 
dominance are powerful and persuasive reasons for choice in games in which they are 
applicable.  It may seem surprising, at first, that sequential reasoning or mind-reading were 
given as reasons significantly more frequently in non-h-soluble than in h-soluble games, 
because these forms of reasoning are characteristic of Stackelberg reasoning, which is most 
obviously applicable to h-soluble games.  However, this category included all reasons based 
on guessing or inferring what the other player was likely to choose, and in hindsight it seems 
obvious that players were likely to be driven by default to these forms of speculation in 
games in which more cogent considerations of common interests and strategic dominance 
were lacking.  This may also explain why expected utility maximization, minimax, and 
maximax were given as reasons for choice significantly more frequently in non-h-soluble 
games. 
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Table 1 
Stackelberg (h) strategy choices in 2 × 2 games (N = 100) 
Game   h    χ2  p <  Effect size w† Bias towards  
__________________________________________________________ 
1*  98  92.17  .001     .96 h strategy 
2  72  19.37  .001     .44 h strategy 
3  30  16.01  .001     .40 non-h strategy 
4*  90  64.01  .001     .80 h strategy 
5*  95  81.01  .001     .90 h strategy 
6  47   0.37  .548     .06 ns 
7*  98  92.17  .001     .96 h strategy 
8*  79  33.65  .001     .58 h strategy 
9*  97  88.37  .001     .94 h strategy 
10*  79  33.65  .001     .58 h strategy 
11*  97  88.37  .001     .94 h strategy 
12*  78  31.37  .001     .56 h strategy 
__________________________________________________________ 
*h-soluble games 
†w ≥ .50 large, w ≥ .30 medium, w ≥ .10 small 



Table 2 
Distribution of reasons for choice across games 
  Reasons for choice†

Game 1 2 3 4 5 6 7 8 9 

1* 1 29 30 13 4 2 8 7 6 

2  11 4 1 39 6 17 12 2 8 

3  5 14 0 26 4 22 10 1 18 

4* 5 46 3 18 4 7 4 1 12 

5* 0 12 25 21 3 10 1 1 27 

6  1 4 0 30 4 23 13 0 25 

7* 1 32 11 20 4 5 1 1 25 

8* 0 28 0 33 4 6 5 0 24 

9* 0 8 29 9 4 8 1 1 40 

10*  3 10 13 23 5 16 5 0 25 

11*  4 43 1 16 6 7 3 2 18 

12*  2 39 0 19 7 7 6 2 18 

Total 33 269 113 267 55 130 69 18 246 
 
*h-soluble games 
† See text for descriptions of the reasons 



Fig. 1. Ordinally nonequivalent h-soluble and non-h-soluble symmetric 2 × 2 games, showing 
Nash equilibria and h strategies. 
 

 A* B 
A* 4, 4 3, 2 

B 2, 3 1, 1 

Game 1† 

 

 A* B 
A* 2, 2 4, 3 

B 3, 4 1, 1 

Game 2 
 

 A B*

A 3, 3 2, 4 

B* 4, 2 1, 1 

Game 3 
 

 A* B 
A* 4, 4 2, 3 

B 3, 2 1, 1 

Game 4† 

 

 A* B 
A* 3, 3 4, 2 

B 2, 4 1, 1 

Game 5† 

 

 A B*

A 2, 2 3, 4 

B* 4, 3 1, 1 

Game 6 
 

 A* B 
A* 4, 4 3, 1 

B 1, 3 2, 2 

Game 7† 

 

 A* B 
A* 4, 4 1, 3 



B 3, 1 2, 2 

Game 8† 

 

 A* B 
A* 3, 3 4, 1 

B 1, 4 2, 2 

Game 9† 

 

 A B*

A 3, 3 1, 4 

B* 4, 1 2, 2 

Game 10 
 

 A* B 
A* 4 4 2, 1 

B 1, 2 3, 3 

Game 11† 

 

 A* B 
A* 4, 4 1, 2 

B 2, 1 3, 3 

Game 12† 

 

†h-soluble games 
*h-strategies 
The first number in each cell is the payoff to the row player; the second is the payoff to the 
column player.  Shaded cells are Nash equilibria. 
 


