IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 6, JUNE 2007

Real-Time Optimal Mission Scheduling
and Flight Path Selection

Yoonsoo Kim, Da-Wei Gu, and Ian Postlethwaite

Abstract—We consider a mission in which m UAVs with a capacity limit
q each visit n(< mgq) targets in a hostile environment in a cooperative
manner (and return to where they departed from) such that the cost re-
flecting operating time and risk exposed is minimized. We first propose
a mixed-integer linear programming (MILP) formulation which exactly
solves the problem and then propose four alternative MILP formulations
which are computationally less intensive and, therefore, suited for real-time
purposes, but yield a theoretically guaranteed suboptimal solution. The
main contributions of this note are an exact but compact MILP formula-
tion, using a room concept, and four nonexact formulations, each one of
which ensures a certain level of solution quality and relatively fast compu-
tational time for the considered real-time mission scheduling problem.

Index Terms—Mixed-integer linear programming (MILP), real-time
target assignment, unmanned air vehicle (UAV).

I. INTRODUCTION AND PROBLEM STATEMENT

For m identical unmanned air vehicles (UAVs) U; (i =
1,2,...,m,m > 2) at corresponding starting positions Tg, a
battle field flight mission is considered. The terrain is assumed to
cover an area X and is defended by enemy air defences, radar/SAM
(surface-to-air-missile) units (so-called threats). There are several
threats, some of which are “pop-ups,” and, thus, their locations
are not known a priori. The UAVs are required to visit n spots
T; (7 = 1,2,...,n,n > m) within the terrain X! and possibly to
return to where they departed from. In this note, we consider a mission
in which the UAVs visit all the targets in a cooperative manner (and
return to where they departed from) such that the cost (reflecting
UAV operating time and risk exposed) incurred by any single UAV’s
travel is minimized while keeping the number of targets visited by a
single UAV below a certain limit ¢. More precisely, we would like to
calculate T*

def . )
* = min max T(k);
k A(k);

T (1.1)

where T is the least maximum cost among all UAVs in visiting their
assigned targets (and returning to their departure points), A is the set
of feasible target assignments to UAVs, A(k)(€ A) is one of the fea-
sible assignments, A(k); is the subassignment given to the ith UAV
within A(k), and, finally, T'(k); is the optimal cost of completing the
subassignment A(%); by the ith UAV. We note that the objective func-
tional to be minimized is appropriate for balancing workloads across
UAVs. We first propose a mixed-integer linear program (MILP) for-
mulation which exactly solves the problem (1.1), and then we propose
four alternative MILP formulations which are computationally less in-
tensive but yield a theoretically guaranteed suboptimal solution.
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'We assume that the n targets are sufficiently spread out so that UAVs can
easily follow the reference (straight-line) paths which will be constructed in
Section II.

1119

Many research directions have been explored regarding the problem
in question. These include Weapon-target assignment [1], [10],
timetabling [14], the celebrated Traveling Salesman Problem [13],
and, more generally, capacity-limited vehicle routing problems [7],
[11]. We note that these problems are slightly different from the
problem in the present context, in that 1) we may not require UAVs to
return to their starting positions; 2) we minimize the individual tour?
cost for balanced workload, not the total cost incurred by the whole
mission; 3) UAVs do not necessarily depart from the same depot. There
is also much literature available on coordinated target assignment of
UAVs, for example, [2]-[5], and some of which add the timing and
precedence constraints to the original problem [3]. However, here we
focus more on the computational aspect of the basic task assignment
problem which is also of important practical significance to planning
a mission in a hostile as well as uncertain environment. As the under-
lying problem is known to have a membership in the class of NP-hard
problems, it is often unhelpful to approach the problem in a direct or
exact manner. Nevertheless, as many papers have shown, direct MILP
formulations offer a promising way forward in terms of providing an
optimal solution to the problem in spite of its computational demand
[3]. As an alternative approach, tabu search-based methods are also
useful for this purpose [11], [12]. When time is critical, heuristic or
nonexact methods have been considered, even if global optimality
may not be achieved [4], [7]. Among many heuristics, we note the
iterated optimal tour partitioning (I10TP) algorithm proposed in
[7], [9], mainly for multivehicle-single-depot routing with capacity
constraints. With the IOTP algorithm, it is claimed that one can obtain
a tour whose cost is at most 2 — 1/q times of the optimal tour cost,
where ¢ is the capacity of vehicles.

In conclusion, what would be desirable is a direct MILP formula-
tion combined with a nonexact method in such a way that the advan-
tages of each are enjoyed. In this note, we have partially achieved this,
and subsequently we can handle the target assignment problem effec-
tively in terms of optimality and computational complexity. We pro-
pose four MILP formulations each of which ensures a certain level of
solution quality and relatively fast computational time for the consid-
ered problem. More usefully, suboptimality bounds are derived for each
of them. The note is organized as follows. In Section II, we create a
feasible network of routes over which a UAV can operate based on a
variation of the visibility line method introduced in [3] and [6] for UAV
applications. In Section III-A, we then proceed to present an exact but
compact MILP formulation solving the problem with and without the
UAVSs’ return constraint using a room concept. In Section III-B, we then
propose four nonexact methods, which are computationally fast, still
using MILP to obtain a suboptimal assignment along with a worst-case
analysis. Finally, numerical examples are given in Section IV to sup-
port the use of the proposed formulation for real-time purposes.

II. CONSTRUCTION OF FEASIBLE FLIGHT PATHS

Based on the exact or estimated knowledge of the location of
possible threats, we first calculate the probabilistic risk distribution
P(w)(w = (w0, yo, z0) € X) over X. In this note, we regard the prin-
cipal source of danger as M enemy missile units with short R (7 Km),
medium R,,, (25 Km), or long R; (65 Km) ranges, and subsequently
calculate P(w) from the following formula, as given in [6], P(w) =
1- lel(l — P;(w)), where P;(w) = (1 —=Step(d, Ry i3, k1)) X
Step(d,0.1 X Rysmiy.k2) X Step(sin™'(z0/d).7,ks), where
Step(a,b,c) = (1 4+ (@ — b)/\/c? + (a — b)?)/2, d is the distance

from w to the ¢th missile, v (assumed to be (.17rad) is the lower

_zln this note, by four, we denote a sequence of moves made by U;; starting at
T} (and ending at T};, when required).
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coverage angle of the radar of each missile system, and ki, k2, k3
are the softness parameters of the step function with the values of
5, 1, 0.1 in this note, respectively. One can then construct a network
G of relatively safe routes that allow UAVs to visit all the targets
while guaranteeing a certain degree of safety. Such a network G can
be designed and updated in real-time through various path planning
methods using, for example, Voronoi diagrams [4] or visibility lines
(3], [6].

More precisely, we first consider a cover C(P,) of the set P, =
{w| P(w) > p} of unsafe points for a constant value p > 0. As the
complexity of describing such a cover often leads to a heavy computa-
tional workload, we approximate C(P,) by the union of smallest cubes
or rectangles covering P, for real-time use. We assume that the loca-
tion /; and the strength (range) s; of all threats f; can be estimated or
informed in real-time, and C(P,) is the union of the smallest cubes
covering U;{w | [|w — I;|| < s;}. Then, given the cover C(P,), we
construct a network G(V, £), where V and & are the sets of vertices
and edges on G, respectively. The elements of V' include the initial lo-
cations of the UAVs T3 (i = 1,2,...,m), the locations of the targets
T;(j = 1,2,...,n), and the Vertlces of C(P,) (the corner points of
each cube). Each edge e € £ is a straight path connectlng two distinct
vertices v;,v; € V except the pairs (T3, T3)(i,j = 1,2,...,m),
along which the UAV’s traveling cost co(v;,v;) (reﬂectmg the length
as well as the total risk of the path) is less than some fixed constant
«. As a result, it is unlikely that paths strictly passing through C(P,)
belong to £. We calculate the cost co(v;,v;) as follows:

co(vi, v;) = kljvi —vj|| + (1 — k)
,"l(‘::i,z,vj)—1

Pyrt1) + Plys)
« Z % (2.2)

llos =il
k=1

where k(€ [0,1]) is a parameter that allows us to make a compro-
mise between the length and the risk of the path, e.g., x = 0.2 in
our examples, P(yx) is the risk at equally spaced intermediate points
ye(k = 1,2,....B3(vi, vj), 41 = Vi, Yp(v;,0;) = v;) on the path be-
tween v; and v}, and integer 3(v;, v;) is proportional to ||v; —v;]|, e.g.,
Bvi,vj) = )]}. We then finally construct a
matrix Cy = [Co(4,5)] € R™*" and a vector ¢ = [e(n(v,w))] €
R"("~1)/2 guch that C (i, ) (respectively, ¢(n(v,w))) is the cheapest
cost of traveling from T} to T} (respectively, T, to T) over the net-
work G(V, &), where ¢ € {1,2,....,m},j € {1,2,...,n},v,w €
{1,2,....n}v < w),n(v,w)=(v=1)n—v(v— 1)/2—1—7[!—1) and
c(n(v,w)) = e(n(w,v)). Dijkstra’s algorithm in [8] could be used for
generation of Cy and c.

III. OPTIMAL TARGET ASSIGNMENT

In this section, we will suggest several MILP formulations. The first
MILP (denoted by E when ignoring UAV return or by E..; when con-
sidering UAV return) solves the problem (1.1) exactly. Unfortunately,
as one will see in Section IV, this approach is computationally very ex-
pensive. This motivates us to propose nonexact algorithms (for short,
H,,...,H,) which first solve

(3.3)

Pimin def in max 'j_‘(k)f
ko A(k)

where a substitute 'i‘(k)f less than T(k); is used so that rmin <
T™. The nonexact algorithms involve lower computational complexity.
Methods H and H> (H3 and H4) are meant for the problem that does
not (does) demand all the UAVs to return to where they departed from.
Each nonexact algorithm employs different 'i‘(k)f in (3.3). The result
obtained by solving (3.3) can be further improved through a so-called
Phase II procedure, which will be introduced in Section III-B.
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A. Exact MILP Formulation

1) With No UAV Return: As each UAV visits at most ¢ distinct tar-
gets, we consider the problem as if each UAV has ¢ rooms (numbered
from 1 to ¢) to hold the identifiers (IDs) of targets. This concept leads
to deﬁning integer variables ;s (€ {0,1,2,...,n}) and binary vari-
ables a;’s (€ {0,1}) as wij = SF_, kau,wherel €{1,2,...,m}
and j € {1 2,...,q}. The variable af‘] represents the relatlonshlp be-
tween the jth room of the ¢th UAV and the kth target. With these vari-
ables, we need

m q
afj <1 Vij and ZZCLZ =1 Vk

i=1 j=1

34)

k=1

where i = {1,...,m},j ={1,...,¢}and k = {1,...,n}, in order
to guarantee that each room of a UAV holds at most one target’s ID and
each target is covered by exactly one UAV.

Second, we force the rooms of a UAV to be filled in ascending order
of room number, i.e.,

Zdi(]’ﬂ) < Zaij Vi, j
k=1 k=1

where i = {1,...,m}andj = {1,...,¢ — 1}, so that the resultant
path for the zth UAV becomes T — T7 g = Tepy — - — T,Tiq, ,
where ¢’ (< ¢) is the largest nonzero (nonempty) room number of the
ith UAV. Next, we associate an edge, i.c., a path between T} s or be-
tween T3 and T}, with its corresponding cost. Recalling the cost matrix
Co and the vector ¢ defined in Section II, the cost corresponding to the
edge between Tj and T, is S_p_, Co(i, k)al;.

On the other hand, the MILP expression of the traveling cost be-
tween targets requires the introduction of additional auxiliary variables
Yin(v,w) (as well as ym(v w) and ;z}f-n(v,w)) which are defined through
the following inequalities:

(3.5)

ajj + afL(i+1> + aii + ajn

Lr](L w) + yLI](L w) VI’ j”U"LU (36)

Yin(o,w) = ZU“](L w) vl v, (37)

17](1 w) € {0 ]‘} Li}iv](u‘w) € [07 1] VZ‘J‘ v, w (38)

wherei € {1,...,m},j € {l,...,¢—1},v,w € {1.2,...,n}(v <

w) and n(v,w) = (v — 1)n — v(v — 1)/2 + w — v. The corre-
sponding traveling cost from 7., to qu_q, viaTy,p, ... aTrq-(q/,l))
becomes > ! 2“7,“ c(n(v,w)) Yin(v,w)- The inequality (3.6) en-
ables ym(v w) and subsequently VYin(v,w) in (3.7) to be 1 only if a;; =

,(7+1) =1lor au = “:(;+1) = 1. In other words, y;,(v,w) is set to 1
only if the vth and wth targets are assigned to the consecutive jth and
(j 4+ 1)th (or (j + 1)th and jth) rooms of the ith UAV. Finally, putting
together all the necessary constraints, we have the program Fr: mini-
mize r subject to (3.4)—(3.8) and

Lil

n—1 n
ZCO(I L)azl + Z Z W) Yin(o,w) < TV (3.9)
v=1 w=v+1

Col(i, k) [respectively, ¢(n(v,w))] is the traveling cost from T¢ to T}
(respectively, from 7T, to 7%, ). We note that the total number of binary
variables used in F: and the total number of constraints are both of the
order of mn?q.

2) With UAV Return: The UAVs’ return constraint requires us to
add an additional term that accounts for the return cost to the left side
of (3.9). The constraint (3.5) facilitates the identification of the first
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target covered by each UAV and to calculate the corresponding trav-
eling cost, i.e., Y., _; Co(i, k)ak, . But simultaneously it complicates
the traveling cost from the final target covered by a UAV to its departure
point in terms of existing variables in F . For this reason, we introduce
additional variables bfj ’s satistying the following inequalities:

k k .
a;1 = bil Vz,k

n

(3.10)

bijny — Y aly UG < bigony + »_al; Vi gk (3.11)
k=1

k=1

afj < bf;”} < afj + (1 - Zaf]) Vi, j, k

k=1

(3.12)

where: € {1,...,m},j € {2, ..,q}ke{l ..,n}.

The variable bf is a copy of au, but bk = 1 foral j €
{¢ + 1,....q} if the ith UAV visits T} last and covers only
¢ (< q) targets. Then, the original problem with the UAVs’
return constraint can be handled by solving Fr with the in-
clusion of (3.10)—(3.12) but with the replacement of (3.9) by
> iy Colik)(a i +b5€q )+>C 1l PO =u1 c(n(v, w)in(w,wy <7
for every i. By noting that ) ;' — af; € {0,1}, one can readlly prove
that (3.11)—(3.12) guarantees b” = b,‘(J_]), £y, a” = 0; other-
wise, b¥; = af;. For instance, suppose that the ith UAV covers 71, T3
and Ts in turn and ¢ = 5. This implies that a}, = a3, = a% = 1 but

a; ] = 0 for all other j, k’s. On the other hand, by (3.10)—(3.12), we
have b}, = b3, = b% = b3, = b% = 1 but bffj = 0 for all other j, ks.
We note that the order of binary variables and constraints used for this
UAV’s return case are the same as the no-return case.

B. Nonexact Algorithms

As indicated earlier, the previous MILP formulation requires the
order of mn®q binary variables and the constraints are highly restric-
tive. This motivates us to seek a formulation which is numerically
tractable but not perfectly optimal. In this section, we will still use
MILP, but with fewer restrictions. The solution obtained via the MILP
is to be utilized to construct a suboptimal assignment and to yield a
corresponding worst-case bound that enables us to evaluate the quality
of the proposed algorithm.

1) With No UAV Return: In this section, we propose two MILP for-
mulations. One (H ) is computationally faster but less optimal than the
other (Hy). Our first strategy H; is stated as follows. Phase L. Subop-
timal partitioning: Consider an optimization problem F; (see below)
that partitions the underlying set of targets into m subsets 7;(i =
1,2,...,m) such that 1) each 7; contains at most ¢ elements; 2) the
traveling cost from T} to the farthest, i.e., most expensive, target, with
respect to T, in 7; is minimized; 3) each target is covered by exactly
one UAV. Phase II. Optimal path-planning: For each 7;, solve Fr to
obtain the optimal path of visiting all the targets contained in 7; by the
ith UAV.

The following program F; creates a partition as described in the first
phase of H;: minimize r subject to

Z rij =1

Zmij S q v"\
=1 i=1

Vi ay €{0.1} Vi (.13)
max Co(i,j)xij <r Vi (3.14)
J

m

where (3.14) can be rewritten as Co (7, j) x;; < r, where UAV index
i € {1,...,m} and target index j € {1,...,n}. The program F;
that solves for x;; is another MILP but involves much fewer binary
variables than F . The variable x;; tells us whether the :th UAV covers
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the jth target, i.e., the jth target belongs to 7; covered by the ith UAV,
where 7; C 7 = {11, T>,...,T,}. We note that 77 does not consider
the traveling cost between targets. Instead, it just tries to minimize the
worst cost [i.e., T (j)7 in(3.3)] of traveling between a UAV, say initially
at TP, and the farthest target, with respect to 77, to be reached by the
UAV while satistying the capacity constraint.

As mentioned earlier, one favourable fact of the optimization
problem F; is that the resultant objective function value r of JF;
can serve as a lower bound on the actual optimal solution of the
original problem. In other words, if we let rmin be the solution to F7,
then roin < T, where T™ is defined in (1.1). In addition, we have
T; < (2¢ — 1)rmin < (2¢ — 1) T*, where T} is the ith UAV’s
optimal cost of visiting all the targets in 7; obtained by solving F7.
The first inequality is due to the fact that for every 4, 7; has at most ¢
elements in it. Thus, we obtain T/T* < 2¢g— 1, where T = max; T}.
Last, we note that the number of binary variables and, respectively,
constraints for Phase I are both of the order of mn.

Our next strategy H> employs the same strategy as H but solves the
following F7> in place of F; in Phase I: minimize r subject to (3.13),
(3.14)

Tij + Tik 1
YinGw) S T SUnGw T 50 YinGw € {0, 1}
Vi,j.k(j < k) (3.15)
C’(”(ja k))yin(j,k) S r VI%]? l‘(.} < l-) (316)
where7 € {1,....m},j,k € {1,...,n}and n(j, k) = (j — 1)n —

Jj(j —1)/2+ k — j. The program F> considers the cost of traveling
between targets as well, as opposed to F. In this regard, y;, is intro-
duced to represent the connectivity between two targets. The inequality
(3.15) guarantees that y;,, is set to 1 only if the 7th UAV covers both T’;
and T,.

For further analysis on H>, we note the fact that if a UAV departing
from Ty visits ¢ targets at T;(j = 1,2, ..., q), then the cheapest cost
of traveling from 15 to T or between T ’s is less than the optimal cost
of traveling to all the ¢ targets by a single UAV. Therefore, since one
can construct a feasible tour with ¢ edges if a UAV needs to cover ¢
targets, we readily see that the resultant objective function value 7min
of F> satisfies the following relationship: T; < ¢7min < ¢T7, or
T/T" < ¢, where T is the ith UAV’s optimal cost of visiting all the
targets in 7; obtained by solving F» and T = max; T} . Comparing
to H;, we note that the worst-case is tighter, but the total number of
binary variables and constraints for Phase I are increased to the order
of mn?.

2) With UAV Return: Interestingly, one can further narrow the gap
between T and T* with the aid of the UAVS’ return constraint. As
a preliminary example, we could have 27, < T7, if one further
imposed the return constraint. This is because the optimal tour cost
needed for a UAV should be at least the return (two-way) cost of visiting
the farthest target with respect to the starting position of the UAV. Thus,
if one solves the original problem including the return constraint via
H,, one can expect a solution whose corresponding cost T satisfies
T} < 2qrmin < ¢T7,0or T/T" < q.

We now take further advantage of the UAVSs’ return constraint
to improve the algorithm quality. We first observe that if a UAV
departing at Tp visits ¢ targets at T;(j = 1,2,...,¢) and returns
to Ty, and T is the optimal tour cost needed for the UAV, then
the cheapest cost cco(Ty, Ty) of traveling from Ty to T via only
T}, i.e., cco(To, T;) + cco(Ty,T}), is less than T5. Moreover, one
can show that cco(T;,T;) + cco(T;,Tx) < T% Vi, j, k, where
i.j,k € {0,1,....q}. This observation results in two additional
nonexact approaches. The first approach H3 minimizes the cost of
traveling from 7 to the second target position (possibly 7j itself)
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y (x 200 km)

y (x 200 km)

X (x 200 km)

(b)

Fig. 1. Comparison of optimal and suboptimal tours. (a) Optimal tour for the
two UAVs obtained by E. (b) Suboptimal tour for the two UAVs obtained by
H, or H,.

via the first target position. More generally, the second approach H,
minimizes the cost of traveling from any 7 (including T5) to next
two target positions. As a result, Hs and H,4 employ the following
programs, F3: minimize r subject to (3.13)—(3.15)

2Co(i,j)xi; < v Yi,j
Co(i,j)xij + c((G, k) Yinie) <7

(3.17)
Vi . k(j < k) (3.18)

and F,: minimize r subject to (3.13)—(3.15) and

C(”?(J'-,k))ym(]‘,k) + C(n(kal))yin(k,l) S r
Vi g k(i <k k<1) (3.19)

wherei € {1,...,m},j,k, L €{L,...,n}and n(j, k) = (j — L)n—
JG-10/2+k—7. The terms on the left-hand sides of (3.17)~(3.19)
correspond to cco(Tg,T;) + cco(T;, Ty ), cco(Ty, Tj) + cco(Ty, Tk)

and cco(Tj, Ti) + cco(Tx, 1), respectively. We note that (3.17) is not
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included in F4, because it appears to be not as useful as in H3 in terms
of improving the worst-case bound.

With the scheme H3, one can construct a feasible path with a cost
of (2(¢ = 1)/3 4+ 1)rmin, if ¢ = 3k + 1(k = 0,1, 2,...); otherwise,
the cost is 2[¢/3]7min, Where 7min is the resultant objective function
value of F3. Since rmin < T, thus, T/T* < 2(¢—1)/3+1,if¢ =
3k+1(k=0,1,2,...); otherwise, T/T* < 2[q/3]. Similarly, the
construction of a feasible tour may yield the bound for Hy, T/T* <

[(q+1)/2].

IV. NUMERICAL EXAMPLES

In this section, we present test examples to show the efficacy of the
proposed algorithms. We fix the number m of UAVs, the capacity limit
¢ and the number n of targets, while we randomly generate one hun-
dred sets of data including the number, locations, strengths (ranges) of
threats (missiles) and the locations ¢ of UAVs in operation and the lo-
cations T; of targets. We assume that, for the purpose of visualization,
UAVs operate at a fixed altitude 2 (km) over the generated hostile area
[0, 200] x [0, 200] (km), i.e., X = [0, 200] x [0, 200] x 2 (km). Based
on each data model, the cost matrix C'p and the vector ¢ in Section II
are calculated. For the simulation with each set of data, we measure the
computational time to obtain a solution using the proposed methods.

We first show how the solutions differ by the proposed approaches.
Fig. 1(a) depicts one scenario among the one hundred data sets when
m = 2,¢q = 3 and n = 6. In the figure, five missile units, marked as
“x,” with different ranges are deployed in X and the size of each dotted
rectangle, i.e., C(P,) in Section III, around each missile unit represents
the strength (range) of each unit. Using the formula given in (2.2) and
Dijkstra’s algorithm, we calculate the cheapest cost of traveling be-
tween all the necessary vertices, i.e., Ty, 1o, T;’s (j = 1,2,...,6)
and the four corner points of each rectangle. Given the cost, the exact
approach E yields the optimal tour, as shown in Fig. 1(a), for the two
UAVs when the UAVs’ return requirement is ignored. As plotted in the
figure, the first (second) UAV visits targets in the order of 15, 7> and 73
(T, Ty and T5) and the tour cost T is 226.31. However, different as-
signments demanding higher cost are obtained with nonexact method
H, (or H>), as shown in Fig. 1(b). One can see that in this case the
first (second) UAV covers T5(T5) instead of T5(75s), which increases
the tour cost to 265.71. The figures for illustrating the solutions ob-
tained using E,.; and H3 (or H4) are omitted for brevity. We then
measure the average computation times needed and the average T /T*
for each of the one hundred cases with fixed m, ¢ and n, when a per-
sonal computer equipped with an Intel(R) Pentium 4 CPU 3.40 GHz.
is used. When m = 2,g = 3, and n = 6, the execution times (in
seconds) required for E, H;, H», E,.., H3, and H, are 0.754, 0.662,
0.681, 0.813, 0.685, and 0.748, respectively. The associated T /T™ are
1, 1.280, 1.124, 1, 1.050, and 1.050, respectively. Whenn = 5,¢ = 4
and n = 20, the execution times required for E, H;, H, E,o¢, H3,
and H4 are 5000+, 0.931, 4.054, 5000+, 5.861, and 224.0, respectively.
The associated T /T* are 1+, 1.685+, 1.391+, 1+, 1.292+, and 1.292+,
respectively, where 2+ denotes a number greater or equal to «. We note
that the exact optimization procedure was forced to terminate at 5000 s
and returns the best solution up to that moment when the example with
rn = 20 was tested. These results show that the nonexact methods per-
form much faster than the exact ones, and H> and Hs especially yield
a quality solution in a reasonable time when ¢ < 4. In all the test cases
(even when n = 20), H, and H3 show the performance of yielding a
solution in 6 s, as well as guaranteeing T /T* < 1.5. In contrast, the
computational burden of solving F: dramatically increases as n does.
These experiments also show that the nonexact methods accounting
for the UAVs’ return constraint yield a solution closer to the optimal
solution than the ones that ignore the UAVs’ return constraint, as the
worst-case analysis suggested in the previous sections.
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V. CONCLUDING REMARKS AND FUTURE WORK

We have discussed exact, as well as nonexact, methods to the target
assignment problem with and without the UAVs’ return constraint. We
first showed how the problem can be exactly formulated in MILP which
is likely to be cumbersome as the problem size increases. We then
showed theoretically as well as numerically that the nonexact methods,
especially Hy and H3, perform well in terms of optimality and com-
putational complexity when ¢ is small (< 4). As mentioned at the be-
ginning of the note, other practical constraints, e.g., timing constraints
discussed in [3], could be considered as a next step.
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A Counterexample to a Conjecture
of Guryvits on Switched Systems

Michael Margaliot

Abstract—We consider products of matrix exponentials under the
assumption that the matrices span a nilpotent Lie algebra. In 1995,
Gurvits conjectured that nilpotency implies that these products are, in
some sense, simple. More precisely, there exists a uniform bound ! such
that any product can be represented as a product of no more than ! matrix
exponentials. This conjecture has important applications in the analysis
of linear switched systems, as it is closely related to the problem of reach-
ability using a uniformly bounded number of switches. It is also closely
related to the concept of nice reachability for bilinear control systems. The
conjecture is trivially true for the case of first-order nilpotency. Gurvits
proved the conjecture for the case of second-order nilpotency using the
Baker—Campbell-Hausdorff formula. We show that the conjecture is false
for the third-order nilpotent case using an explicit counterexample. Yet,
the underlying philosophy behind Gurvits’ conjecture is valid in the case
of third-order nilpotency. Namely, such systems do satisfy the following
nice reachability property: any point in the reachable set can be reached
using a piecewise constant control with no more than four switches. We
show that even this form of finite reachability is no longer true for the case
of fifth-order nilpotency.

Index Terms—Bang-bang control, bilinear control systems, differential
inclusions, Lie algebra, Lie’s product formula, optimal control, singular
control, switched linear systems, Fuller’s problem.

I. INTRODUCTION

Consider the linear switched system
x(t) = Ayyx(t) (1

where x(-) € R", 0:Ry — {0,1} is a piecewise-constant function
called the switching function, and Ao, A1 € R"*". Roughly speaking,
(1) models a system that can “switch” between the two linear subsys-
tems x(t) = Aox(t) and X(¢t) = A;x(t). Switched systems have
numerous applications and are recently attracting considerable interest
(see, e.g., [8] and [15]).

It is usually assumed that the switching function has a finite number
of discontinuities on every bounded interval of time. Let X}, denote the
set of switching functions with up to & — 1 discontinuities on [0, T,
and denote

F(Ao, A1k, T): = { exp(C1t1) exp(Cata) ... exp(Chrtr):

k
Ci € {Ao, AL}t > (),ij = T}

j=1

that is, a product of up to k exponentials of the system’s matrices with
“total time” 1. Then, any solution x of (1) corresponding to some o €
Y satisfies the following property. For any T > 0, x(T') = Hx(0)
for some H € F( Ao, A1, k,T). Thus, the matrices in the set F are in
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