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An upper bound is obtained by integrating the cost along the simu-
lated trajectory, starting inxi = (�5; 0; 0)T , qi = 1, is 8.5. The lower
bound given by the value function is 7.9.

VII. CONCLUSION

This note presented an extended version of the Hamilton–Ja-
cobi–Bellman (HJB) inequality to be used for optimal control of
hybrid systems. The extended version constitutes a successful mar-
riage between computer science and control theory, containing pure
discrete-dynamic programming as well as pure continuous-dynamic
programming as special cases.

The extended HJB inequality, which gives a lower bound on the
value function, was discretized to a finite, computer-solvable LP that
preserves the lower bound property. Based on the value function, an
approximation of the optimal control feedback law was derived.

A problem with DP is the “curse of dimensionality,” an expression
coined by Bellman, the inventor of this method. Since the cost for a
family of trajectories is computed (rather than a single trajectory as in
the Pontryagin maximum principle), the problem grows exponentially
in the number of states.

The advantage with this method, however, is its applicability and
ease of use for low-dimension systems. The discretization method pre-
sented in this note allows problems with up to three continuous states
on a 336-MHz Ultra Sparc II.

A set of MATLAB commands has been compiled by the authors to
make it easy to test the aforementioned methods and implement the
examples. The LP solver that is used is “PCx,” developed by the Op-
timization Technology Center, Illinois. The MATLAB commands and
a manual of usage are available free of charge upon request from the
authors.
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Output Violation Compensation for Systems With Output
Constraints

Matthew C. Turner and Ian Postlethwaite

Abstract—The problem of output constraints in linear systems is
considered, and a new methodology which helps the closed loop respect
these limits is described. The new methodology invokes ideas from the
antiwindup literature in order to address the problem from a practical
point of view. This leads to a design procedure very much like that found
in antiwindup design. First, a linear controller ignoring output constraints
is designed. Then, an additional compensation network which ensures
that the output limits are, as far as possible, respected is added. As the
constraints occur at the output, global results can be obtained for both
stable and unstable plants.

Index Terms—Linear systems, output constraints, saturation.

I. INTRODUCTION

The literature reveals a vast and varied treatment of linear systems
subject to input, or saturation, constraints. This problem has been
tackled from many different perspectives and its study has formed one
of the most important topics in the control community over several
decades. To avoid repeating prior work, we do not describe this work
in detail; it suffices to mention that there are now several mature
techniques available to cope with input constraints [1]. The amount
of attention devoted to this problem is perhaps not surprising when
one considers the virtual omnipresence of control constraints in real
engineering systems.

Control constraints are not the only time-domain constraint present
in control systems, however. In addition to constraints on the transient
response of various closed-loop signals (e.g., rise time, settling time),
there are sometimes “hard” or “soft” limits imposed on the magnitude
of certain plant outputs, or states. These limits reflect issues such as
safety requirements or are there to prevent excessive maintenance to
system components. For example, in certain aircraft, during the ap-
proach to land, there is a limit on the angle of attack to prevent acci-
dents caused by stall or pilot error, etc. Alternatively, if a certain value
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is exceeded too frequently, this can cause increased wear on compo-
nents, requiring more frequent maintenance to preserve performance
and safety. Thus the study of output limits is an important subject for
engineers.

There are several ways of tackling what we call “output con-
straints”—constraints on a system’s state, or linear combinations
of states, which can be measured or estimated reasonably accu-
rately—some already existing in the literature. Many of these have
been combined with the input-constraint literature and have, arguably,
not been given the attention they deserve in their own right. Possibly
one of the more complete works on output constraints is that of [3],
where the authors group both state and control constraints into the
search for a “maximum output admissible set”—the set of all states
such that these time domain constraints are not violated. This leads to
a quite significant linear programming problem and a controller can
be designed such that it ensures that the state always belongs to the
maximum output admissible set.

Another way of incorporating such constraints into controller de-
sign is via model predictive control, and other receding horizon-based
strategies. In such an approach, time domain constraints such as control
and state limits can be taken into account by adding them as constraints
in the optimization procedure. However, along with the method of [3],
such an approach is generally expensive in terms of computation and is
often lacking in terms of intuition. Thus, for many applications, partic-
ularly those where real-time computational availability is limited, these
two methods can be unattractive for the practical control engineer.

The other way of taking into account output constraints, and the one
which we revisit in this note, is so-called “override control.” This is a
technique used predominantly in industry as, typically, it is the simplest
and least restrictive in terms of nominal controller structure. There is
little documentation describing this approach to handling output con-
straints, the most lucid and comprehensive accounts occurring in [4]
and [5]. Essentially, the idea behind override control is to design a con-
troller such that, for a given output, the system behaves as normal until
an output limit—which may be in a different channel to that being con-
trolled—is violated, in which case the control is altered to bring this
output below its limit again. This is closely related to multimode con-
trol (e.g., [9]), where there are more control objectives than control in-
puts and to obtain satisfactory performance, the control system must be
switched at certain points. The works of [5] and [4] give ananalysisof
performance and stability of such systems and guidelines on designing
compensators, but, in our opinion, do not tackle thesynthesisof such
compensators in a methodical manner. In addition, much of the work in
[4] is directed toward single-loop schemes, which allows one to observe
a very similar structure to antiwindup systems. Another paper related
to these ideas is that of [14], although the actual control strategy used
is invariance based and results in a more complicated control law.

The work in this note was motivated by real engineering problems
where the plant under consideration is quite large and where any so-
lution to an output constraint problem must be simple due to further
constraints on computation. The basic, but less general, framework of
the problem we consider was introduced in [13] and used in [12] for
successfully conditioning a vertical/short takeoff land (VSTOL) air-
craft model (a similar but purely static approach was used in [8]).

We use the same basic idea as override control; first, a controller is
designed for the nominal linear system; then, in the event of output vio-
lation, an additional compensator becomes active to regulate the output
back below its limit. However, our work builds on the traditional over-
ride control in several useful ways: it gives a definition of the problem
we are trying to solve with our output violation compensator; it gives
sufficient conditions, in terms of linear matrix inequalities (LMIs), for
anoutput violation compensatorto exist; and it is directed at multivari-
able systems as well as single-loop configurations.

In [2], a similar, but different, problem to the one we define
here is considered. Reference [2] treats the stability analysis of a
single-input–single-output closed-loop system subject to both input
and output constraints. Our work differs from [2] in that we consider
the designof a violation compensator which can be “retro-fitted” to
ensure stability and we do not explicitly consider input constraints.

Notation is standard throughout, withkxk :=
p
x0x denoting the

Euclidean norm andkxkp denoting theLp norm of a vectorx(t). The
inducedLp norm iskH(:)ki;p := sup

06=x2L (kH(x)kp=kxkp). The
distance is given bydist(x;X ) := infw2X kx�wk. The space of real
rational,i�j-dimensional transfer function matrices is denotedRi�j ;
the subset of these which are analytic in the closed right-half complex
plane, with supremum on the imaginary axis, is denotedRH1.

II. PROBLEM FORMULATION

A. Nominal System

We consider the plant

G(s) �
_xp = Apxp +Bpu+Bpdd

y = Cpxp +Dpu+Dpdd

yl = Cplxp +Dplu+Dpdld

(1)

wherexp 2 n is the plant state,u 2 m is the control input,y 2
n is the output, which is fed back to the controller,d 2 n \ Lp1

is a disturbance acting on the plant, andyl 2 q is the output on which
limits are imposed. We make no assumption on the location of the poles
of G(s). From this, we define the following transfer function matrices
to represent the disturbance feedforward and feedback parts ofG(s):

G1(s) �
Ap Bpd

Cp Dpd

G2(s) �
Ap Bp

Cp Dp

: (2)

We assume that the following stabilizing linear controller has been de-
signed

K(s) � _xc = Acxc +Bcy +Bcrr

u = Ccxc +Dcy +Dcrr
(3)

wherexc 2 n is the controller state andr 2 n \ Lp represents a
disturbance on the controller, normally the reference input. From this,
we designate the following transfer functions:

K1(s) � Ac Bcr

Cc Dcr

K2(s) � Ac Bc

Cc Dc

: (4)

Assumption 1:The nominal closed loop system formed out of the
interconnection ofG(s) andK(s) is internally stable and well posed.
Equivalently

•
I �K2(s)

�G2(s) I

�1

2 RH1;

• lims!1(I �K2G2)
�1(s) exists.

This is necessary for our work to make any practical sense, and, in
addition, we assume thatK(s) has been designed such that for most
common reference demands,yl(t) behaves sensibly and exceeds its
limits only occasionally. This assumption is reminiscent of the anti-
windup literature where it is implicitly assumed that the control input
saturates infrequently.

1Although this seems to preclude persistent disturbances, one could viewd =

0 as an initial perturbation from a final equilibrium withd 6= 0 to overcome this
technical difficulty.
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Fig. 1. Output violation compensation scheme.

Fig. 2. Equivalent representation of the output violation compensation
scheme.

B. Output Limiting

Consider Fig. 1, which shows how violation compensation is intro-
duced into the system. We have modeled the output limits as a satura-
tion functionym = sat(yl), where

sat(yl) = [sat(yl;1); . . . ; sat(yl;q)]
0 (5)

and sat(yl;i) = sign(yl;i) � min fjyl;ij; �yl;ig, �yl;i > 0,
8 i 2 f1; . . . ; qg. �yl;i denotes the output limit in theith channel of
yl.2 In order to activate the violation compensator�(s) 2 RH1, we
compare the “limited” signalym to the actual output signalyl and if
there is a difference, then�(s) will become active. This is similar to
the antiwindup strategy except, there the “real” signal is the limited
signal,um = sat(u); here the “real” signal is the unlimited signal,
yl. If �(s) is active, it produces a signal�(s) which is then fed into
the controller, thus

K(s) �
_xc = Acxc +Bcy +Bcrr + �1

u = Ccxc +Dcy +Dcrr + �2
(6)

where� = [�01 �
0
2]
0 2 n +m. Hence, if an output has been violated,

the control is modified in order to regulate the output below the limit
again. Equivalently, this can be drawn as Fig. 2, where we have used the
fact that~y = yl � sat(yl) = Dz(yl) (Dz(:) represents the deadzone
operator). The resulting closed-loop can now be described by

Gcl(s) �

_x = Ax +B0w + �B�

y = Cyx+Dy0w+ �Dy�

yl = Cx+D0w + �D�

(7)

2Note, here we consider the symmetric saturation function, although the re-
sults apply also to nonsymmetric saturation functions in the Sector[0; I]

Fig. 3. Alternative output violation compensation scheme.

wherew = [r0 d0]0—a full description of these state-space matrices
is given in the Appendix for convenience. By Assumption 1,A is a
Hurwitz matrix.

An important variation on this theme is to feed� into the controller
as shown in Fig. 3, where� 2 n is subtracted from the reference
and can be interpreted as a “back-off” of the reference demand. In this
case, the dimensions of�(t) and�(s) are changed and the modified
form of the controller is

K(s) �
_xc = Acxc +Bcy +Bcr(r � �)

u = Ccxc +Dcy +Dcr(r � �):
(8)

This can be important from a conceptual point of view and also can
allow one to take advantage of an already decoupled closed loop in the
case of multivariable systems (assumingGcl(s) has been decoupled to
some extent usingK(s)). This case can be handled with little extra dif-
ficulty; only the state-space matrices (given in the Appendix) change.

III. STABILITY AND PERFORMANCE

The task now is to design�(s) 2 RH1 such that stability is main-
tained and some performance improvement is obtained by adding it
to the system. One appealing way to measure performance is by how
much the actual outputyl(t) deviates from the ideal limited output
sat(yl(t)), that is, performance can be measured by the size of~y(t).
Ideally, we would like~y(t) = 0, 8 r, d, x0, but with our configuration
this is not possible.3 Instead we approximate this objective by trying
to keepk~yk small in response to the exogenous input,w(t). Also, as a
subsidiary minimization problem, we would like to keep�(t) small—if
�(t) is large this probably indicates that our original objective, that
is the nominal linear response, has been “backed-off” considerably.
Hence, we could pose the following optimization problem:

�?(s) = arg inf
stab:�(s)

sup
[r d ] 2L

W
1=2
1 ~y

W
1=2
2 �

p

kwkp
(9)

for some matricesW1, W2 > 0. This objective is a hard optimization
problem, so instead we will be content to ensure that

W
1=2
1 ~y

W
1=2
2 �

p

< 
 kwkp (10)

for some integerp 2 [1;1) and some suitably small
 > 0. We now
formally define the problem we seek to address in the remainder of this
note (a definition which was inspired by that given in [10]).

3In order for�(s) to become active,~y(t) 6= 0 for somet � 0.
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Definition 1: �(s) 2 RH1 is said to solve the output violation
compensation problem if the closed loop is internally stable well posed
and the following conditions hold.

2) If dist(yl;Y) = 0 8 t � 0, then� = 0 8 t � 0 (assuming zero
intial conditions for�(s)).

3) If dist(yl;Y) 2 Lp, for some integerp 2 [1;1), then� 2 Lp,
whereY = [��yl;1; �yl;1] � � � � � [��yl;q; �yl;q].
�(s) is said to solve strongly the output violation compensa-

tion problem if condition 3) holds.
4) Inequality (10) is satisfied for some integerp 2 [1;1), some


 > 0, and some matricesW1, W2 > 0.
Remark 1: Condition 1) ensures linear behavior ifyl(t) never vio-

lates its limits (note thatDz(yl) = 0 8 yl 2 Y): it is trivially satisfied
if �(s) 2 RH1, but if we allow�(:) to be nonlinear this condi-
tion is needed. Condition 2) ensures that ifyl(t) exceeds its limits for
some finite time, thus exciting�(s), then afteryl(t) falls below its
threshold, linear behavior will eventually resume. This is reminiscent
of the anti-windup literature where the local structure of the controller
is preserved unless saturation occurs. This property makes our work a
special case of the general local-global framework introduced in [11].
Condition 3) ensures a finiteLp gain which roughly captures the per-
formance of the system as discussed earlier. Condition 3) implies con-
dition 2).

This note only considers the stronger version of the problem; the
weaker version, which doesnot involvefiniteLp gains, is the subject of
ongoing research. Our first result is anexistenceresult for admissable
compensators.

Lemma 1: For a given closed-loop systemGcl(s), there always ex-
ists a�(s) which solves strongly the output violation compensation
problem for any matricesW1, W2 > 0.

Proof: We give a simple proof, although there are several. First,
let Gcl(s) be partitioned as

yl = Gcl(s)
w

�
= [Gcl;1(s) Gcl;2(s)]

w

�
: (11)

By the assumed stability of the nominal linear systemGcl(s), the sub-
systemsGcl;1(s) andGcl;2(s) are both stable. AsGcl;2(s) 2 RH1
it follows that, for some~
 > 0 we havekGcl;2ki;2 = kGcl;2k1 =: ~
.
Note also thatkDz(:)ki;2 = 1 So, by the small gain theorem, if

k�(s)k1 = � < ~
�1 (12)

the closed loop isL2 bounded. So, let�(s) be a transfer function sat-
isfying this bound and, moreover, let it be strictly proper to ensure well
posedness, then it follows that

k~yk2 �(1� ~
�)�1kGcl;1k1kwk2 (13)

k�k2 �(1� ~
�)�1�kGcl;1k1kwk2: (14)

Next, definez1 := W
1=2
1 ~y andz2 := W

1=2
2 �, then noting thatW1

andW2 are constant matrices and thatk[z1 z2]k2 � kz1k2 + kz2k2
we have

z1

z2 2

� kGcl;1k1(1� ~
�)�1

� �� W
1=2
1 + ��� W

1=2
2 kwk2: (15)

Setting 
 := kGcl;1k1(1 � ~
�)�1 �� W
1=2
1 + ��� W

1=2
2

proves condition 3 of the strong output violation compensation

problem has been satisfied (which implies condition 2). Noting that
�(s) is linear, and assuming zero initial conditions, proves that part
(1) of the problem is satisfied.

Although Lemma 1 ensures the existence of a compensator which
solves strongly the output violation compensation problem, using it
as a synthesis guide would probably lead to poor results: for a large
reaction—and, thus, swift output regulation—we would like the gain
of �(s) to be quite large. Of course, the small gain analysis of Lemma
1 restricts this. The following theorem allows the optimization of an
L2 performance index using a static compensator�.4

Theorem 1: There exists a compensator� 2 (n +m)�q which
solves strongly the output violation compensation problem forp =
2 if there exist matricesQ > 0, U = diag(�1; . . . ; �q) > 0, L 2
(n +m)�q and a postive-real scalar� such that the LMI

QA0 +AQ �BL+QC 0 B0 0 0

? �2U + �DL+ L0 �D D0 U L0

? ? ��I 0 0

? ? ? �W�1
1 0

? ? ? ? �W�1
2

< 0:

(16)
is satisfied. Furthermore, if this inequality is satisfied, a compensator
satisfying anL2 gain bound of
 = +

p
� is given by� = LU�1.

Proof: By virtue of�(s) being linear, condition 1) of the output
violation compensation problem is satisfied. To see theL2 gain part, fix
p = 2, and note that we want to enforce (10) for some positive–definite
matricesW1, W2 > 0. As� = �~y, we obtain

W
1=2
1 ~y

W
1=2
2 �~y

2

< 
kwk2: (17)

Assume there exists a functionv(x) = x0Px > 0 such that

d

dt
x
0
Px +

W
1=2
1 ~y

W
1=2
2 �~y

2

� 

2kwk2 < 0: (18)

Then, it follows that (17) is satisfied and, hence, the output
violation compensation problem is solved. Next, note that as
Dz(:) 2 Sector[0; I], we have~yi(yl;i � ~yi) � 0 8 i 2 f1; . . . ; qg.
This implies there exists a matrixW = diag(w1; . . . ; wq) > 0 such
that

~y0W (yl � ~y) � 0: (19)

Hence, a sufficient condition for inequality (18) to hold is that the in-
equality

d

dt
x
0
Px+ ~y0(W1 +�0W2�)~y

�
2w0w + 2~y0W (yl � ~y) < 0 (20)

is satisfied. This can be rewritten as (21), shown at the bottom of the
page. Using standard Schur complement arguments and congruence
transformations, along with the definitions� := 
2 andL := �U , it
follows that this holds iff the inequality (16) is satisfied.

To prove well posedness, we first need the following lemma, similar
to that proven in [6], except for a varying�. The proof is found in the
Appendix.

4Static compensators require no extra states to be added to the system.

x

~y

w

0
A0P + PA P �B�+ C 0W PB0

? W1 + �0W2�� 2W +W �D�+ �0 �D0W WD0

? ? �
2I

x

~y

w

< 0: (21)
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Lemma 2: If �2V + ~DV + V ~D0 < 0 andV is diagonal posi-
tive–definite, thenI� ~D�(z(t)) is nonsingular for all matrices� 2 �,
where

� := f�(z(t)):� = diag(�1(z1(t)); . . . ; �q(zq(t)))

�i(:) 2 [0; 1]g (22)

where�i(zi(t)) is unique for allzi(t).
In order to prove well posedness, we need to prove that

yl(t) = Cx(t) +D0w(t) + �D�~y(t) (23)

has a unique solution for all~y(t) = Dz(yl(t)). As Dz(yl) is a
globally Lipschitz sector bounded nonlinearity, there exists a unique
�(yl(t)) 2 � such thatDz(yl) = �(yl(t))yl(t), 8 yl(t). So we
can replaceDz(yl(t)) by the uniquely determined time-varying gain
�(yl(t))yl(t) 2 �. Thus, the question of well posedness reduces to
whether we can find a unique solution to

yl(t) = Cx(t) +D0w(t) + �D��(yl(t))yl(t) (24)

for all yl(t). Existence is equivalent to the invertibility of
(I � �D��(yl(t)) 8 �(:) 2 �. Using Lemma 2, we know
this to be the case if

�2V + �D�V + V
0�0 �D0 < 0 (25)

holds for some diagonal matrixV > 0. Inspecting the LMI in the
theorem and noting thatL := �U , we see that this is indeed the case
asU > 0 is diagonal. Uniqueness is somewhat harder to prove but
follows by noting thatjDzi(:)j is monotonically increasing and such
that jDzi(yl;i)j � jyl;ij, 8 yl;i.

Corollary 1: There exists a compensator� 2 (n +m)�q

which solves strongly the output violation compensation problem
for all integers p 2 [1;1) if there exist matricesQ > 0,
U = diag(�1; . . . ; �q) > 0 andL 2 (n +m)�q such that the
following LMI is satisfied:

QA0 + AQ �BL+QC 0

? �2U + �DL+ L0 �D
< 0: (26)

Furthermore, if this inequality is satisfied, then a suitable compensator
is given by� = LU�1.

Proof: The well-posedness part of the proof is identical to that
of Theorem 1. The derivation of the LMI (26) is similar except that
we omit theL2 gain objective. To see that finiteLp gain still holds
note that the LMI (26) gives sufficient conditions for the existence of
a Lyapunov functionv(x) = x0Px > 0 such that_v(x) < ��kxk2
whenw = 0. This implies that the origin ofGcl(s) is exponentially
stable with~y = Dz(yl). Now, note that the functions

f(x;w) =Ax+B0w + �B�Dz(yl) (27)

h(x; w) =Cx+D0w + �D�Dz(yl) (28)

are globally Lipschitz in bothx andw (note well-posedness). Then,
[7, Th. 6.1] can be invoked to establish thatkh(x;w)kp < 
kwkp for
some
 > 0 and all integersp 2 [0;1), i.e., the output violation
compensation problem is solved strongly.

Remark 2: The advantage of Theorem 1 is that it gives a construc-
tive way of minimizing theL2 gain by way of the LMI (16). The ad-
vantage of Corollary 1 is that it is less computationally demanding, and
not biased toward theL2 gain.

IV. DYNAMIC SUBOPTIMAL COMPENSATORS

Although static compensators are, from a computational perspective,
desirable as they require little extra online computation, in certain cir-
cumstances they may not be appropriate as they feature no frequency
shaping. For example, we may want the signal� to contain only low
frequencies to avoid any jerkiness in the control input (which could
cause actuator degradation in the long term). By including a lowpass
filter in �(s) this could be avoided easily; without such an option, it
would be difficult to enforce.

This section is devoted to the synthesis of a class of suboptimal com-
pensators which address this problem. Rather than explicitly synthe-
sising optimal dynamic compensators which tend to be high order and
can also suffer from numerical problems in the synthesis and imple-
mentation stages, we choose to synthesise suboptimal dynamic com-
pensators. By suboptimal compensators, we mean those by which we
choose the dynamic part of the compensators but also cascade this
with a static matrix which is synthesised optimally. In other words,
we let �(s) be given by�(s) = ~�(s)K� 2 R(n +m)�q , where
~�(s) 2 R(n +m)�(n +m) is a given dynamic transfer function matrix,
andK� 2 (n +m)�q is a static matrix to be synthesised in some sort
of optimal fashion. It is the construction ofK� which the remainder of
this section addresses.

The first step is to assign~�(s) 2 RH1 the minimal state-space
realization

~�(s) � _xf = Afxf +Bf 

� = Cfxf +Df 
(29)

where = K�~y. Augmenting the nominal systemGcl(s) with these
dynamics, we have

~Gcl(s) �
_~x = ~A~x+ ~B0w + ~B1 

yl = ~C1~x+ ~D01w + ~D1 

� = ~C2~x+ ~D2 :

(30)

A full expression for the “tilded” matrices is given in the Appendix.
Theorem 2: Given ~�(s) 2 RH1 such that deg(~�(s)) = k, there

exists akth-order compensator,�(s) = ~�(s)K� 2 R(n +m)�q

which solves strongly the output violation compensation problem for
p = 2 if there exist matricesQ > 0, U = diag(�1; . . . ; �q) > 0,
L 2 (n +m)�q and a positive real scalar� such that the LMI

Q ~A0 + ~AQ ~B1L+Q ~C 01 ~B0 Q ~C 02 0

? �2U + ~D1L+ L0 ~D01 ~D01 L0 ~D02 U

? ? ��I 0 0

? ? ? �W�1
2 0

? ? ? ? �W�1
1

< 0:

(31)
is satisfied. Furthermore, if this inequality is satisfied a suitableK�

satisfying a finiteL2 gain
 = +
p
� is given byK� = LU�1.

Proof: Noting (30), the proof is similar,mutatis mutandis, to the
proof of Theorem 1.

Corollary 2: Given ~�(s) 2 RH1 such that deg(~�(s)) = k, there
exists akth order compensator,�(s) = ~�(s)K� 2 R(n +m)�q

which solves strongly the output violation compensation problem
for all integersp 2 [1;1) if there exists matricesQ > 0,
U = diag(�1; . . . ; �q) > 0 andL 2 (n +m)�q such that the
following LMI is satisfied:

Q ~A0 + ~AQ ~B1L+Q ~C 01
? �2U + ~D1L+ L0 ~D01

< 0: (32)

Furthermore, if this inequality is satisfied a suitableK� is given by
K� = LU�1.
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Proof: Noting (30), the proof is similar,mutatis mutandis, to the
proof of Corollary 1.

Often, simple structures for dynamic compensators are quite ade-
quate for our purposes; for example, a compensator with dynamic part

~�(s) = diag ~�1(s); ~�2(s) 2 R(n +m)�(n +m) (33)

with ~�i(s), i = 1; 2 chosen as first-order transfer functions may be
adequate.

V. CONCLUSION

This note has addressed the synthesis of compensators which attempt
to constrain the output of a system to lie below a given threshold. The
compensators advocated do not inhibit the small-signal performance
of the closed-loop system, in contrast to some schemes available in
the literature. In addition, the compensators are always accompanied
by stability and performance guarantees and can be synthesised using
LMIs which are now reasonably easy to solve using modern software.

APPENDIX I

A. State-Space Realizations ofGcl(s) and ~Gcl(s)

The state-space matrices ofGcl(s) are easily derived as

A :=
Ap +Bp

~�DcCp Bp
~�Cc

Bc�Cp Ac +Bc�DpCc

B0 :=
Bp

~�Dcr Bpd +Bp
~�DcDpd

Bcr +Bc�DpDcr Bc�Dpd

(34)

�B :=
0 Bp

~�

I Bc�Dp

Cy :=[�Cp �DpCc ] (35)

D0y := [�DpDcr �Dpd ]

�Dy := [ 0 �Dp ] (36)

C := [Cpl +Dpl
~�DcCp Dpl

~�Cc ]

D0 := [Dpl
~�Dcr Dpdl +Dpl

~�DcDpd ]

�D := [ 0 Dpl
~� ] (37)

where� = (I �DpDc)
�1 and ~� = (I �DcDp)

�1. If the modified
form of output violation compensation is used, where� 2 n is input
as described in (8), the following state-space matrices change form:

�B := �
Bp

~�Dcr

Bcr +Bc�DpDcr

�Dy := ��DpDcr

�D := �Dpl�Dcr: (38)

Using the state-space matrices ofGcl(s), it is easy to derive

~A :=
A �BCf

0 Af

~B0 :=
B0

0

~B1 :=
�BDf

Bf

(39)

~C1 := [C �DCf ]

~D01 :=D0; ~D1 := �DDf (40)
~C2 := [ 0 Cf ]

~D2 := Df : (41)

APPENDIX II

A. Proof of Lemma 2

The proof here follows closely that of [6]. First from the assumption
that�i(zi(t)) is unique8 i 2 fi; . . . ; qg, it follows that�(z(t)) is
unique for allz(t) and hence thatI � ~D�(z(t)) is unique for allz(t).
Now assumeI � ~D�(z(t)) is singular for somez(t); this implies
9w 6= 0 such that

[I � ~D�(z(t))]w = 0: (42)

This implies, for some diagonal matrixV > 0, that

w
0�(z(t))V [I � ~D�(z(t))]w = 0: (43)

Defining �w := �(z(t))w, this can be written as

�w0V w � �w0V ~D �w =0 (44)

) �w0V w �
1

2
�w0V ~D �w �

1

2
�w0 ~D0 �w =0: (45)

As V is diagonal and�i(:) 2 [0; 1], we can write

�w0V w =

q

i=1

�i(zi(t))viw
2
i (46)

�

q

i=1

�
2
i (zi(t))viw

2
i = �w0V �w: (47)

Using this in (45) yields

�w0V �w �
1

2
�w0V ~D �w �

1

2
�w0 ~D0 �w � 0: (48)

However, by assumption, we have that�2V + ~DV + V ~D0 < 0, so
we have a contradiction and, thus,I � ~D�(z(t)) cannot be singular.
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A New Parameterization of Stable Polynomials

T. E. Djaferis, D. L. Pepyne, and D. M. Cushing

Abstract—In this note, we develop a new characterization of stable poly-
nomials. Specifically, given positive, ordered numbers (frequencies), we
develop a procedure for constructing a stable degree monic polynomial
with real coefficients. This construction can be viewed as a mapping from
the space of ordered frequencies to the space of stable degree monic
polynomials. The mapping is one–one and onto, thereby giving a complete
parameterization of all stable, degree monic polynomials. We show how
the result can be used to generate parameterizations of stabilizing fixed-
order proper controllers for unity feedback systems. We apply these re-
sults in the development of stability margin lower bounds for systems with
parameter uncertainty.

Index Terms—Robustness, stability, stability margin.

I. INTRODUCTION

Stable polynomials can be studied in many ways and from a number
of different perspectives. In particular, one can think of polynomials in
terms of their roots or coefficients. One can exploit their Markov pa-
rameters or take the Hermite–Biehler theorem viewpoint [5] and con-
sider their “even” and “odd” parts. In this characterization, a polyno-
mial will be stable if and only if the even and odd parts form a “positive
pair.” In the “frequency domain,” one can express this fact in terms of
a set of frequencies that interlace. Another frequency domain interpre-
tation states that a stable degreen-polynomial has the property that as
! ranges from 0 to1 the graph of the polynomial plotted in the com-
plex plane has increasing phase and the net increase isn�=2 rad [6].
The finite Nyquist theorem [1] offers a different interpretation where a
polynomial is stable if and only if for at a finite number of frequencies
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the polynomial value lies in appropriately defined consecutive sectors.
The Mikhailov criterion is one possibility where the sectors are 90�

wide and nonoverlaping.
We take a frequency domain viewpoint and “construct” a polyno-

mial by requiring that it “behave” in a particular manner. Specifically,
given an ordered set of frequencies0 < !1 < !2 <; . . . ; < !n we re-
quire that the polynomial value lie on a specifiedstraight line(not ray)
at each frequency. This generates a set oflinear equations in the poly-
nomial coefficients which when solved identifies a polynomial. The
corresponding polynomial is shown to be stable and this construction
can be viewed as a mapping between ordered sets ofn frequencies and
monic, stable, degreen polynomials. The mapping isone–oneandonto
and the space of positive, ordered frequencies isconvex. We demon-
strate these properties in Section II and in Section III show how this
result leads immediately to parameterizations of fixed-order, proper,
stabilizing controllers. We then apply these results in developing an-
alytic expressions for stability margin lower bounds for systems with
parameter uncertainties.

II. PARAMETERIZATION OF STABLE POLYNOMIALS

Consider the question of parameterizing the set of all stable poly-
nomials. One can approach this question in several ways. If one fixes
the number of real and complex conjugate roots, then one can express
each real root by a degree one factor and each pair of complex conjugate
roots by a degree two factor. Multiplying out the terms, one can obtain
the coefficients of the polynomial as functions of the roots. Clearly, if
a different distribution of real and complex conjugate roots is chosen
then a different expression will be obtained. We would like to develop a
different characterization, one that has the same functional representa-
tion regardless of the polynomial root distribution. Furthermore, since
our ultimate goal is robust analysis and design, we would like to have
this parameterization give us certain advantages in that context.

We first introduce the following notation and, for simplicity
of exposition, assume thatn is odd: �(s) = sn + �1s

n�1 +
�2s

n�2 + � � � + �n, �e(s) = �n + �n�2s
2 + �n�4s

4 + � � �,
�o(s) = �n�1 + �n�3s

2 + �n�5s
4 + � � �, �(s) = �e(s) + s�o(s),

��(s) = j�e(s) + s�o(s). Suppose that we are givenn frequencies
0 < !1 < !2 <; � � � ; < !n and we require that at these frequencies
the value of some polynomial lies onstraight lines through the
origin at angles�=4; 3�=4;5�=4; . . . ; n�=4, respectively. Note the
distinction betweenstraight linesand rays. These conditions do not
a priori guarantee that the constructed polynomial is stable. It would
have been stable if we required that it lie on theraysthrough the origin
at angles�=4; 3�=4;5�=4; . . . ; n�=4 as an immediate consequence
of the finite Nyquist theorem. In particular, we require that ats = j!1

the value of the polynomial lies on the line at angle�=4 rad. This can
be expressed as

�e (j!1) = !1�o (j!1) : (1)

If we require that ats = j!2 the value of the polynomial lie on the line
through the origin at3�=4 rad, this can be written as

�e (j!2) = �!2�o (j!2) : (2)

Continuing in this manner we can generate a system ofn linear equa-
tions in the polynomial coefficients. For odd numbered frequencies
(odd numbered quadrants) the expression will be as in (1) and for even
numbered frequencies (even numbered quadrants) the expression will

0018-9286/02$17.00 © 2002 IEEE
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