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On the 2-compact group DI(4)

By Dietrich Notbohm at Leicester

Abstract. Besides the simple connected compact Lie groups there exists one fur-
ther simple connected 2-compact group, constructed by Dwyer and Wilkerson, the group
DI(4). The mod-2 cohomology of the associated classifying space BDI (4) realizes the rank
4 mod-2 Dickson invariants. We show that mod-2 cohomology determines the homotopy
type of the space BDI(4) and that the maximal torus normalizer determines the isomor-
phism type of DI(4) as 2-compact group. We also calculate the set of homotopy classes of
self maps of BDI(4).

1. Introduction

As introduced by Dwyer and Wilkerson in their influential paper [10], a p-compact
group is a pair (X, BX) of spaces such that X is Fp-finite, i.e. H *(X;F,) is a finite vector
space, BX is pointed, both spaces are p-complete (in the sense of [3]) and the loop space
QBX and X are homotopy equivalent. This is a homotopy theoretic generalization of the
concept of compact Lie groups. For a connected compact Lie group G, the pair (G, BGp)
together with the natural equivalence QBG,' =~ G, is a p-compact group, which, by abuse
of notation, we also denote by G. For odd primes, there exist many connected p-compact
groups which do not come from compact Lie groups, e.g. Sullivan showed that, if n divides
p — 1, the sphere S?*~! gives rise to a connected p-compact group (8=, B(S™ 1))
[29]. At the prime 2, Dwyer and Wilkerson constructed the only known example DI(4) of
a connected 2-compact group, which is not a Lie group [9]. The classifying space BDI(4)
realizes the rank 4 mod-2 Dickson invariants, namely the ring of invariants of the natural
action of GI(4,F;) on the rank 4 polynomial algebra H *((BZ/2)*; F2). In fact, they con-
jectured that every connected 2-compact group is a product of a connected compact Lie
group and copies of DI(4). In this work we will approach this conjecture by showing that
the 2-compact group DI(4) satisfies some uniqueness results. We also show that this con-
jecture is at least rationally true (see Theorem 1.7).

p-compact groups behave astonishingly similar as compact Lie groups. Every
p-compact group X has a maximal torus Ty — X, a Weyl group Wy, a maximal torus
normalizer Ny — X and a center Z(X) — X, all with basically the same properties as
in the case of compact Lie groups. And two p-compact groups X and Y are isomorphic
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if the classifying spaces BX and BY are homotopy equivalent. For further details about
p-compact groups see the survey article [17] or the references mentioned there.

For p-compact groups, there are two classification conjectures around. A map
between algebras over the Steenrod algebra is called a 2#™-map.

Conjecture 1.1. (i) Let X be a simply connected or centerfree p-compact group.
A p-complete space A is equivalent to BX if and only if there exists a A -isomorphism
H*(4;F,) = H*(BX; ).

(i) Towo connected p-compact groups X and Y are isomorphic, ie. the classifying
spaces BX and BY are equivalent, if and only if the maximal torus normalizer Ny and Ny are
isomorphic.

At the prime two, both conjectures are proved for special unitary groups [6], {7],
[19], [22], for the exceptional Lie group G {32] and for the special orthogonal groups
SO(2n+ 1) [20], [26], [28]. For the spinor groups Spin(2n + 1) [26], for Sp(n) [30] and the
exceptional Lie group F; [31] only the second part is known.

We will show that both conjectures are also valid for the Dwyer-Wilkerson example
DI(4).

Theorem 1.2. A 2-complete space A is homotopy equivalent to BDI(4) if and only if
there exists a A -isomorphism H*(A;F2) = H*(BDI(4); F2).

Theorem 1.3. A 2-compact group X is isomorphic to DI(4) if and only if the maximal
torus normalizer Ny and Npyay are isomorphic.
* * 4 61(47 |F2) 3 M
If H*(4;F,) = H*((BZ/2)";F,) , standard methods show that QA is F,-finite
(see [9]). The pair (Q4, A) gives rise to a 2-compact group. The next proposition shows that
Theorem 1.2 and Theorem 1.3 are equivalent statements.

Proposition 1.4. For a 2-compact group X, the maximal torus nor-
malizer Ny and Npyay are isomorphic if and only if there exists a XA -isomorphism
H*(BX;F,) = H*(BDI(4); F»).

It turns out that we can get away with less assumptions to prove a version of Theo-
rem 1.3. We only need the rational Weyl group data of a 2-compact group to compare with
DI(4).

Every p-compact group X has an associated p-adic lattice Ly :=m(Ty)
which carries an action of the Weyl group Wy. If X is connected, the representation
Wy — GI(Ly ® Q) represents Wy as a pseudo reflection group, i.e. Wy is finite and gen-
erated by elements fixing a hyperplane of codimension 1. The above representation gives
the rational Weyl group data of X. We say that two p-compact groups X and Y have
the same rational Weyl group data if the two representations Wy — G/(Ly ® Q) and
Wy — GI(Ly ® Q) are weakly isomorphic. That is there exists an abstract isomorphism
Wy = Wy such that Ly ® @ and Ly ® Q are isomorphic as ZI’,‘[WX]-modules.
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Proposition 1.5.  Let X be a 2-compact group which has the same rational Weyl group
data as DI(4). Then, the normalizers Nx and Npy) are isomorphic.

We get the following corollary which is a slightly stronger result than Theorem 1.3.

Corollary 1.6. A 2-compact group X is isomorphic to DI(4) if and only if X and
DI(4) have the same rational Weyl group data.

Proof. This follows from Proposition 1.5 and Theorem 1.3. [

The next theorem shows that the above mentioned conjecture of Dwyer and Wilker-
son is rationally true.

Theorem 1.7. Every connected 2-compact group X splits into a product X = X1 X Xz
such that Xy is isomorphic to some copies of DI(4) and X has the same rational Weyl group
data as a suitable connected compact Lie group G.

Finélly we characterize the homotopy classes of self maps of BDI(4).

Theorem 1.8. Let i: Tpyay = DI(4) be a maximal torus of DI (4). Then, for two self
maps f,g: BDI(4) — BDI(4), the following conditions are equivalent.

(1) fand g are homotopic.
(ii) The compositions f o Bi and g o Bi are homotopic.
(iii) H*(f;25) ® Q= H*(g;Z;) ® Q.

In fact, we will show that every self f: BDI(4) — BDI(4) is an Adams operation (sce
Section 6). That is there exists a ky € Z5 such that f induces on H*(BDI (4);Z25) ®Q
multiplication by (ks)'. The 2-adic integer Ay is called the degree of f. It will turn out that
ky is either 0 or a 2-adic unit, that all these values can be realized and that ky determines f
up to homotopy (Theorem 3.5).

The strategy for the proofs of Theorem 1.2 and Theorem 1.3 is clear and known
to experts. It uses the construction of the classifying space BDI (4) of Dwyer and Wilker-
son. They constructed BDI(4) as a homotopy colimit of a diagram based on the Rector

category of H*((BZ/2)*; [FQ)GI(4’ F2) which is equivalent to the Quillen category of DI(4),
namely the category of elementary abelian 2-subgroups of DI (4). One of the spaces in that
diagram is the classifying space BSpin(7) of the 2-compact group Spin(7), which plays a
major role in the construction. The missing gap for completing the proof is a uniqueness
result for Spin(7) which is provided in [26]). Having this at hand we construct a map from
the homotopy colimit approximating BDI(4) to the classifying space BX of a p-compact
group satisfying Proposition 1.4. And this map will turn out to be an equivalence after
completion.

Remark. As Wilkerson pointed out to us, one can get away with weaker assump-

tions as in Theorem 1.3 or Corollary 1.6. If the Weyl groups of a 2-compact group X’
and DI(4) are isomorphic as abstract groups, then both have isomorphic normalizers as
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well as isomorphic mod-2 cohomology. In fact, this applies to several 2-compact groups. A
detailed proof will appear in future work by Dwyer and Wilkerson.

There is also some overlap with work by Dwyer and Wilkerson. Proposition 14,
Corollary 1.6 and Theorem 1.8 are also known to them and were presented by Wilkerson at
conference talks in Seattle and Orlando [34].

The paper is organized as follows. In Section 2 we recall the construction of BDI 4)
of Dwyer and Wilkerson. In Section 3 we discuss self maps of DI(4) and prove Theorem
1.8. Section 4 contains the proof of Proposition 1.4, Section 5 the proofs of the theorems
1.2 and 1.3, Section 6 the proof of Proposition 1.5 and the final section the proof of Theo-
rem 1.7.

We will use the language of p-compact groups all over the places. For references we
refer the reader to the survey article [17] or the references mentioned there.

Mostly, cohomology is taken with F, as coefficients. And H*ZA(—) denotes the
cohomology groups H*(—;Z5) ® Q.

We thank the Max-Planck-Institut fiir Mathematik in Bonn for their hospitality when
the main part of this work was done. We also would like to thank the referee for pointing
out a mistake in the proof of Proposition 1.4 and her/his indication how to correct it.

2. The construction of DI(4)

In this section we recall the construction of DI(4) and other material from
[9]. The general linear group GI(4,F2) acts on the 4-dimensional [F,-vector space
Ey = ([F2)4 and therefore on the algebra of formal polynomial functions F2[Es] on
E4 with coefficients in F,. That is the symmetric part of the tensor algebra of the dual
of E. We can identify this algebra with the algebra H*(BEs;[F;). The ring of in-
variants H “(BE‘;)(;I(“’F2 = F,es, €12, €14, €15) carries an action of the Steenrod algebra /5.
The indices denote the degree of the classes. The action is determined by Sq*(cs) = c12,
Sq?(c12) = 14 and Sq'(c4) = cis.

The Bockstein spectral sequence collapses at the Ej-page and shows that
H(BDI(4);Z}) = Qp[xs, X12,x25]. This is also true for any space A such that

H*(A) = H*(BE)™*"),
DI(4) is a 2-compact group of rank 3 with maximal torus Tp;4) =~ (sY)? — DI(4).

The Weyl group Wpy4) = Z/2 x GI(3,F,) arises as the pseudo reflection group No. 24 in
the Clark-Ewing list of irreducible rational pseudo reflection groups [4]. The representation

IVD1(4) = Z/Z X G1(3, le) — GI(LD1(4)) = Gl(3,Z£\)
maps the generator of Z/2 on —I where I is the identity. The composition

Wpia — GI(3,23) — GI(3, F,) is the projection on the second factor [9], Theorem 5.1.
In particular Lpy4)/2 := Lpya) ® F2 is an irreducible Wpja)-module.
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Lemma 2.1, Every Wpyay-lattice of Lpya) ® Q is isomorphic to Lpya) as Z;,‘[IVDI(4)]-
module.

Proof. Let Lc Lpys)®Q be a Wpi)-lattice. There exists a Wpi(s)-equivariant
monomorphism L — Lpys) such that the cokernel K is a torsion group and such that rank
of K/2 := K ® F, is smaller than 3. Tensoring with 72 yields an exact sequence

0 — Tor(K,Z/2) — L/2 — Lpya/2 — K/2 >0

of Wpy)-modules. Since Lpis/2 is irreducible, K/2=0, hence K=0 and
L=Lpysy. O

Next we describe the Quillen category of DI(4). Since
H*(BDI(4);F2) = H*(BEq; F,)GF2)

every elementary abelian 2-subgroup E = DI(4) is subconjugated to E4 and every pair of
subgroups E,E’ ¢ E4 of the same dimension are conjugate in DI (4). Essentially, for
i=1,...,4, there is exactly one elementary abelian 2-subgroup E; = DI(4) of dimension i.
The Quillen category is equivalent to the full subcategory of the following shape

1y Gl2R) GI(3,F2) GI(4,F2)
Ey > Ly > Ej = Fy

where the groups above the objects denote the self maps and where = denotes the set of
morphisms from E; to Ejy.

We have Cpys)(Es) = Es. And C3:= Cpr@)(E3) = Tpray ™ Z/2 where Z/2 acts on
Tpy4) via an Adams operation Y~ ! of degree —1, i.e. 'Vl induces on 7,(BTpj(4)) multipli-
cation by —1. The group E; is contained in Tpy4) and therefore toral in DI(4) as
well as E, and E;. The induced action of GI(3,F;) on Tpy4) comes from the repre-
sentation GI(3,F,) — GI(3,Z%) given by restricting the 2-adic Weyl group representation
Wpia) — GI(3,Z3) to the second component. Moreover, C; := Cpya)(E2) = SU(2)3/A,
where A is the image of the diagonal embedding of Z/2— SU (2)). And
C:= CD](4)(E1) =~ Spin(7).

The decomposition diagram of BDI(4) given by the centralizers of the elementary
abelian subgroups of DI(4) [8], [11] has the form

ay GI(2,F2) GI(3,F2) GI(4,F2)
BC, === B(C, < BCj < E;

Let Top denote the category of topological spaces and let ©: A, (DI (4)) — Top be
the functor given by the above diagram. Then, evaluation at basepoints establishes a map

hOCOlimAp(Dl(‘g)) 0- BD1(4).
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Theorem 2.2 ([8], [9]).  The map hocolimy (pysy) © — BDI(4) is a mod-2 equivalence.

The 2-compact groups C; and Spin(7) are isomorphic. We will switch between them.
For example, for the above decomposition diagram it is more appropriate to work with
C) since we have to think of it as a centralizer, and for describing self maps of BDI(4) we ;
prefer to work with Spin(7).

Remark 2.3. We do need some more detailed information about the subgroup
Spin(7) = DI(4). Let E| — E4 be the inclusion of the first coordinate. The isotropy sub-

1
group I' := Iso(E)) c GI(4,F,) is the subgroup of all matrices of the form < 0 ;) such
that 4 € GI(3,F,). The classifying space BCpy4)(E1) = BSpin(7); has mod-2 cohomology
H*(BSpin(7); F2) = H*(BCpiay(E1); F2) = H*(BEg; )"

This ring of invariants is a polynomial algebra and H*(BSpin(7);F2) = F2|ds, ds, dy, ds)
where subindices denote degrees. In particular, H*(BDI(4);F2) — H*(BSpin(7);F,) is a
monomorphism. Moreover, since E; is subconjugated to Tpys), Spin(7) < DI(4) is a sub-
group of maximal rank and Ws,3) = Wpy4). The Euler characteristic (DI(4)/Spin(7))
of the homotopy fiber of BSpin(7) — BDI(4) is the index of [Wpyay : Wepin(z)] of the Weyl
groups. The order of Wpy) is 336, the order of W7 is 48 and z(DI(4)/Spin(T)) =1.
We explained this calculation in detail since, unfortunately, there is a misprint in [9], The-

orem 1.8. This calculation always works for subgroups of p-compact groups of maximal
rank [11], [18].

The maximal torus normalizer Npj(4) contains the subgroup
Tpray X Z/2 = Cpya)(E3)-

And therefore a unique subgroup Es < Tpy4y) X Z/2 < ND1(4) Since Spin(7) = Cpyay(Er)
and since Ey < Tpya), the Weyl group W7y © Wpys is the isotropy subgroup of E; for
the Wpys)-action on Tpyyy [11].

We finish this section with some statements necessary for later purpose.
Proposition 2.4.  For any elementary abelian 2-group E, the map
[BE, BEy] — [BE, BDI(4)]
Sfactors through the bijection
[BE, BE4)/Gl(4,F,) — [BE, BDI(4)].

Proof. Since H* (BDI (4); [Fz) ~ H*(BEg; IFZ)GI(4"F2), this statement is
well known. It follows from facts about Lannes’ 7-functor, namely that
H*(map(BE, BX);F,) = TE(H*(BDI(4); F»)) and that

TE(H*(BEy; ) "™ = (TE(H*(BEs; F2)))"™™ = H* (map(BE, BE); )

[15], [10] (for the latter sequence of isomorphisms see also [9]). [

Gl(4,F,)

Lemma 2.5. There exist exactly one monomorphism
R* := H*(BDI(4);F;) — S* := H*(BSpin(7); F2)

of algebras over the Steenrod algebra, such that S becomes a finitely generated R-module.
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Proof. Let A*:= H*(BEy;F,) and E4 < Spin(7) the standard inclusion. This
inclusion induces a monomorphism S* — A*. Therefore it suffices to show the statement if
we replace S* by 4*. Let a: R* — A* be the map induced by the inclusion BEs — BDI(4).
Let f: R* — A* be any map which makes 4* to a finitely generated module over R*. In
particular, § is a monomorphism. Then there exists an automorphism y: 4* — 4* such that
By = a. Since GI(4,F,) is the Galois group of the integral extension R* — 4%, the maps «
and f have the same image. [

The classifying space BNpys) of the normalizer Npj) of DI(4) fits into a fibra-
tion BTpyay — BNpray — BWpis) where the Wp4)-action on BTp is described by the
Weyl group action of Wpyay on Lpya). We say that the normalizer splits, if the projection
BNpjsy = BWpy) has a right inverse. Passing to classifying spaces, the semi direct prod-
uct Tpyay X Wpyay always produces a fibration, which splits.

Such fibrations, considered as extensions of BTpya) by BWpys), are classified by
elements of H3(IVD1(4); ft3 (BSHE(BTD1(4)))) = H3(I‘VDI(4); LD1(4)) where SHE(BTD](4))
denotes the set of self equivalences of BT homotopic to the identity, where Wpyqa) acts
on Lpy) via the Weyl group action, and where the latter cohomology groups denote group
cohomology with twisted coefficients (see [23]).

Lemma 2.6. The normalizer Npiay does not split.

Proof. Let E; < Tpya) be the elementary abelian subgroup of Tpy4) described
above. Let H < Z/2 x GI(2,F,) be the subgroup generated by Z/2 and the matrices of the

I 0 x
form | 0 1 =« |. This is an elementary abelian subgroup isomorphic to Z/2? and acts
0 01

trivially on E,. If the normalizer Npy4) does split it contains the subgroup generated by E3
and H which is isomorphic to Z/2%. And so does DI(4). This is a contradiction since every
elementary abelian subgroup of DI(4) is subconjugated to E4 = DI (4) (see Proposition
24). O

Lemma 2.7. H?3(Wpy); Lpia)) = Fa.

For the proof we do need a description of the mod-2 cohomology
of the dihedral group Dg of order 8. We use the presentation of Dg given as
Dg:={x,y:x’= yi=1= (xy)4}. There exists a rank 2 elementary abelian 2-subgroup
E..c D, generated by x and z:=xy. The cohomology of Dg is given by
H*(Dg; F2) = Fa[vg, vy, w2] /(vx, vy) where degv, = degvy = 1 and degw, = 2. The mod-2
group cohomology of E,. is given by H *(Exz; F2) = Fafuy, 1:] where both classes have
degree 1. Restriction to Ey. maps vy to iy, w; 10 iz, and u; to 0. All this can be found in [1].

Proof of Lemma 2.7. For abbreviation we set G := Gl(3,F,) and denote by I' = G

1 x =%
the subgroup of G generated by all matrices of the form 0 * *
0 * =
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Since Wpysy = Z/2x G we can use the Lyndon-Hochschild-Serre spectral se-
quence to calculate H3(Wpyay; Lpiay) = Z/2. The following terms in the E;-page have
total degree 3: H3(G; H(Z/2; Lpiw)), H*(G; H'(Z/2; Lprs)), H'(G; HZ/2; Lpiw))
and H®(G;H(Z/2; Lpys))). Since Z/2 acts via multiplication by —1 on Lpy), the
cohomology groups H*(Z/2;Lpya)) vanish in even degrees, and are isomorphic to lF%
in odd degrees. Moreover, we have (F3)¢ = 0. This shows that the first and the last two
cohomology groups are trivial, and that H2(G; H'(Z/2; Lpys))) = H*(G;F3). Since there
exists a non trivial extension of Tpy4y by Wpy4)y (Lemma 2.6), the cohomology group
H3( Wpi@); Lpia)) as well as H 2(G; [F%) contain at least two elements.

The G-representation [Fg is induced from the 1-dimensional trivial representation for
the subgroup I' = G. Hence, by the Shapiro Lemma H 2(G;F3) =~ H*(T; F2). The subgroup
of upper triangular matrices of G is a 2-Sylow subgroup for G as well as for I" and iso-

1 10
morphic to Dg. We will use our above description and identify x with { 0 1 0 |, the
: ' 1 00 1 01 0 0 1
element y with | 0 1 1 | and the element zwith | 0 1 0
\0 0 1 00 1

Since H*(I';Z/2)~ H *(Dg; Z/2)**™ is isomorphic to the stable elements of the
cohomology of a 2-Sylow subgroup, we have to calculate the latter group. The sub-
group K := {((l) 3) :Ae G2, IFz)} =~ GI(2;F,) = G normalizes Ex. = Dg and acts
on E.. via matrix multiplication from the right applied to a single row. This repre-
sentation is isomorphic to the dual representation of the standard representation on
E,.. Hence, on H*(Ex:;Z/2), the subgroup K acts via the standard representation on
HY(E,.;Z/2) = Hom(E,:,F2). A short calculation shows that H YE; F2)¥ = Fy is gen-
erated by the element 12 + ., + u2. In particular this shows that v2,w. € H}(Ds; Z/2) are
not stable elements and that H2(H; Z/2) =~ H?(Dg; F,)**** contains at most two elements.
And therefore, H*(Wpiuay; Lpis)) = H*(G; BYxH (TR)xFh O

3. Self maps of BDI(4)

In this section we want to prove Theorem 1.8. We use the same notation as in
Section 2.

Remark 3.1. Every elementary abelian 2-subgroup E.c DI(4) of rank k,
1 <k<4, is conjugate to the inclusion Ej < Eqc< DI (4). We denote by
ix: BCy := BCpy4)(Ex) — BDI (4) the inclusion of the centralizer of Ey. Let ¢: Cr — DI(4)
be a monomorphism. Since E4 = Cy, there exists a homomorphism p: E4 — E4 such that
the diagram

E4—C—> Cr
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commutes up to conjugation (Proposition 2.4). Actually, pis a monomorphism, because ¢
is one [10], and therefore an isomorphism. Since the Weyl group of E4 = DI(4) is GI(4;F2)
we can assume that p = id and that the restriction ¢|g, is the inclusion Ex = DI (4). Passing
to centralizers establishes a monomorphism ¢': Cr = Cc, (Ex) — Cpi4 (Ex) = Ck. In fact,

this is an isomorphism [18].

Because Ep < Ci is central there exists a homomorphism g Cr X Ex — Cr. By
construction, B¢'s BCy — map(BEx, BDI (4)) pgipe, = BCk is the adjoint of the composi-
k

tion BCy x BE} KA BCy. 1_339) BDI(4) and an equivalence. If i = 1 or 2, the centralizer Ci
is connected and E; < Ci is subconjugated to the maximal torus of Ck.

All this together establishes the assumptions made in Proposition 4.6 of [25]. The
conclusion we can draw is the following. If By: BC; — BDI(4) is another map such that
H4(Bg) = H§(ByY), then B and By are homotopic.

Lemma 3.2. A map g: BSpin(7)y — BDI(4) is either homotopic to the constant map
or there exists a self equivalence h: BSpin(7); — BSpin(7)5 such that Biy o h~g.

Proof. Let ¢: Spin(7) — DI(4) be the underlying homomorphism such that
g =~ B¢. The homomorphism ¢ is either conjugate to the constant map or the kernel of ¢
is a central subgroup of Spin(7) [21], hence a subgroup of Z/2. If the kernel is the trivial
group, then ¢ is a monomorphism. If the kernel equals Z/2, then ¢ factors through a
monomorphism ¢: SO(7) = Spin(7)/(Z/2) — DI(4) [21). This gives a contradiction, since
SO(7) contains an elementary abelian 2-group of rank 6 and DI(4) does not. Therefore, ¢
is either the constant map or a monomorphism. In the latter case, the existence of /i follows
from Remark 3.1. [

Proposition 3.3. Let f: BDI (4) — BDI(4) be a self map. Then the following holds:
(i) The map f'is either homotopic to the constant map or an equivalence.

(ii) There exists a self map I BSpin(T); — BSpin(7); such that the diagram

BSpin(7); ", BSpin(7)}
Biy Biy

BDI(4) —L— BDI(4)

commutes up to homotopy.

Proof. If f o Bi is null homotopic we can choose the constant map for /i. Hence,
the second part is a consequence of Lemma 3.2.

The map h is either null homotopic or an equivalence [14]. If /1 is an equivalence, then
f induces a monomorphism in mod-2 cohomology, therefore an isomorphism, and is an
equivalence.

Since the Weyl group index [Wpr) : Wepin(n)) is 0dd, Spin(7) and DI(4) have the
same 2-Sylow subgroup P < Spin(7) < DI(4). Thus, if / is null homotopic, the restriction
f1gp is null homotopic and so is f itself {24]. O
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For a p-compact group X, we call a self map f: BX — BX an Adams operation of
degree k € Z; if, for any class x € Hé'}(BX), f*(x) = kix. We denote the units of Z; by
z3*. ’

Corollary 3.4. Every self equivalence of BDI (4) is an Adams operation whose degree
is a 2-adic unit.

A

Proof. Every self equivalence of BSpin(7); has this property [14]. Since
Hes (BDI(4)) — H *;(BSpin(?)) is a monomorphism, the statement is a consequence of
Proposition 3.3. [

Considering the constant map as an Adams operation of degree 0, the above corol-
lary establishes a map

D: [BDI(4), BDI(4)] — {0} [1Z5".
Theorem 3.5. The map D: [BDI(4), BDI(4)] — {0} 123" is a bijection.
We postpone the proof of Theorem 3.5 to the end of this section.

Proof of Theorem 1.8. 1f, for two maps f,g: BDI(4) — BDI(4), the restrictions to
BTpj) are homotopic, then both induce the same map in rational cohomology, are Adams
operations of the same degree and therefore homotopic by Theorem 3.5. O

As in Section 2 we denote by A := A,(DI(4)) the Quillen category of DI (4) and by
© := Opjs): A — Top the functor describing the Dwyer-Wilkerson decomposition. Since
hocolimy ® — BDI(4) induces an equivalence after 2-adic completion (Theorem 2.2) we
get an equivalence

map(BDI(4), BDI(4)) = holim, map (©,BDI(4)).
The equivalence establishes a map
[BDI(4), BDI(4)] — lL@A[G, BDI(4)].

For ¢ € lim [®, BDI(4)] and an object E = X of A we denote by map(BC(E), BDI(4))
— A . $
the component determined by ¢ and by

map(BDI(4), BDI(4)) 4 = holims map(©, BDI(4)) 5
the union of all components whose image is ¢.

The homotopy groups of the last space can be calculated with the Bousfield-Kan
spectral sequence [3]. The E2-term has the form

E?; 2 lin, 7;(map(BC, BDI(4))), =: lim', T;(¢)-

If ¢ is the image of the constant map, then, for all E,

map (BCDI(4) (Ek), BDI(4))¢ = BDI(4)
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and the functor TI;(¢) is the constant functor. If ¢ is the image of a self equivalence
f: BDI(4) — BDI(4), then composition with f induces a natural equivalence

I = T1;(id) = T;(¢).
Since for any abelian p-compact group 4 and any p-compact group X
BZ(Cx(A)) ~ map(BCx(4), BCx(A)),y = map(BCx(A4), BX) p,

where i denotes the inclusion of the centralizer [11], [25), the functor IT; is naturally equi-
valent to the inclusion functor J: A — /b into the category of abelian groups.

In both cases the higher derived limits all vanish [9], the Bousfield spectral sequence
collapses and is concentrated in a singular line. This allows to prove the following propo-
sition:

Proposition 3.6. (i) The map (BDI(4), BDI(4)] — IEIA[G, BDI(4)] is a bijection.

(ii) For all non trivial self maps f: BDI(4) — BDI(4), the mapping space
map(BDI(4), BDI(4)) , is contractible, and map(BDI(4), BDI(4)) .. = BDI(4).

Proof. The first part follows from the above considerations.  They
also show that, for all non trivial self maps f:BDI(4) — BDI (4), we have
map(BDI(4), BDI(4));, ~ map(BDI(4), BDI(4)) - The first mapping space is equivalent
to the classifying space of the center of DI(4) {11], which is trivial [9]. The component of
the constant map is calculated in [11]. O

Proof of Theorem 3.5. Let A’ = A denote the full subcategory whose objects are
elementary abelian 2-subgroups of DI(4) of rank less or equal to 2. Then, the results of
[27] say that the second arrow of

[BDI(4), BDI(4)] 5 lim [©, BDI(4)] — lim [0, BDI(4)]

is an isomorphism. The first isomorphism follows from Proposition 3.7. We denote by
ig: Cpry(E) — DI(4) the inclusion of the centralizer of E.

We first show that D is an injection. The degree of a self map of BDI(4) is deter-
mined by the induced map in rational cohomology. Let f,g: BDI (4) — BDI(4) be two self
maps. Since a self map is null homotopic if and only if it induces the trivial map in rational
cohomology [16], the map f is null homotopic if and only if g is. Moreover, if f is not null
homotopic it is an equivalence as well as g. The compositions f o Big and g o Big induce
the same map in rational cohomology. If the rank of E is less or equal to 2, then Remark
3.1 shows that both compositions are actually homotopic. By Proposition 3.6, this implies
that f =~ g. Hence, D is an injection.

The degrec 0 is realized by the constant map. For ke z5y* and E < DI(4)
of rank < 2, the centralizer Cpy4)(E) is the completion of a connected compact Lie
group. There exists an Adams operation S2: BCpyay(E) — BCpy) (E) of degree k [14]. Let
fE := Big o f}: BCpy4)(E) — BDI (4) denote the composition. We want to show that the
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tuple (fg)gcar gives an element of llm [@ BDI(4)] That is that for every morphism
Ey — E; the composition BC(E;) — BC(EO) = BDI(4) is homotopic to fg. By con-
struction, the composition and fg, induce the same map in rational cohomology. Remark
3.1 implies that both maps are homotopic. Therefore, (fE)gcar € hm ,[©,BDI(4)] and D is
surjective (Proposition 3.7), which finishes the proof. [J

4. The proof of Proposition 1.4
First we assume that X is a 2-compact group, such that
H*(BX;F,) = H*(BDI(4);F2) = H*(BE4; F2)™*F).

Lemma 4.1. (i) Every elementary abelian 2-subgroup E < X is subconjugated to
Esc X.

(11) The 2-compact group X is connected, centerfree and simple. In particular, the
rational Weyl group representation Wy — GI(Lx ® Q) is irreducible.

(ili)y X and DI(4) have the same rational Weyl group data.

 Proof The A-map H*(BX;F;) — H*(BE4;F,) can be realized by a topological
map BE; — BX [15] which makes E4 < X to a subgroup of X. Moreover, since / *(BE; F2)
is an injective object in the category o of algebras over the Steenrod algebra, every map
BE — BX factors through BEj,. This proves (i).

For p-compact groups, the T-functor calculates the cohomology of classifying
spaces of centralizers of elementary abelian p-subgroups [10]. Since the 7-functor com-
mutes with taking invariants, a central subgroup E < E4 = X has to be fixed under the
action of GI(4,[F;). There are no nontrivial fixed points, and therefore X is centerfree.

As a connected centerfree 2-compact group, X splits into a product of simple
centerfree 2-compact groups {12]. A non trivial splitting of X would establish a non triv-
ial splitting of H*(BX;[F,) into a tensor product. But such a splitting does not exist for
H*(BEg; [FZ)G’ 4F2) Hence, X is simple. Since, for p-compact groups, simple just means that
the associated rational Weyl group is irreducible [12], [24], the last fact of (ii) is obvious.

As already mentioned m Sectlon 2, the s/-action on H*(BX;[F;) implies that

& (BX) = Q3 [ys, yi2, y2s] = (BDI(4)). Since Hg,y(BX) = HaA(BTX)WX [10], the

2-compact groups X and DI(4) have the same rank and the Weyl groups Wy and Wpya)

the same degrees. Looking at the classification of all irreducible rational pseudo reflection

groups [4] shows that both Weyl groups are weakly isomorphic. That is that X and DI(4)
have the same rational Weyl group data. [

Proof of Proposition 1.4 (first half). Let X be a 2-compact group, such that
H*(X;F,) = H*(BDI(4); F;). We want to show that both have isomorphic maximal torus
normalizer. By Lemma 4.1, we can identify Wy and Wpy) via the rational Weyl group
data. Then Ly and Lpys) are Wpy)-lattices of Lpjq) ® Q. By Lemma 2.1, both lattices
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are isomorphic. That is we can identify BTy and BTpya) as Wpj)-spaces. Hence, both
normalizers are extensions of Tpsay by Wpia). Using Lemma 4.1, the argument in the
proof of Lemma 2.6 shows that Ny also does not split. By Lemma 2.8, there exists only one
non splitting extension. This shows that Ny and Npj) are isomorphic. O

Now we prove the other half of Proposition 1.4, which is nothing but part (vi) of the
following proposition. '

Proposition 4.2. For a 2-compact group X, such that Ny and Npy) are isomorphic,
the following holds:

(i) The 2-compact group X is connected.

(ii) There exists a monomorphism Spin(7) — X such that Spin(7) is a subgroup of
maximal rank.

(iii). The Euler characteristique 7(X/Spin(7)) is odd.
(iv) The map j*: H*(BX;F) — H* (BSpin(7); F2) is a monomorphism.
(v) The subgroup E4A<: Nprgy = X is self centralizing and
H*(BX;F,) = H*(BEs; F2)™*,
where Wy ‘is the Weyl group of E4 c X.
(vi) H*(BX;F,) = H*(BDI(4); F) as algebras over the Steenrod algebra.

Here, the Weyl group Iy is the group of all elements w € GI(4,F,) such that the
inclusion iy: E4 — X and the composition iy are conjugate in X,

Proof. By [10], for any p-compact group Y, the map Wy = mo(Ny) — mo(Y) is an
epimorphism and the kernel is the Weyl group of the component Yo of the unit. Hence,
there exists an epimorphism Wy = Z/2 x GI(3, F,) — mo(X). The target is a 2-group and
the kernel W, is the Weyl group of Xp. In particular, since X and Xp have both rank 3, the
rational representation, Wo — GI(3, Q3) represents Wy as a pseudo reflection group. The
order of W, divides 336 = 24 . 3.7 which is the order of Wp(s). We have to find all pseudo
reflection groups of rank 3 for which the product of the degrees is divisible by 3 and 7. Only
the group No. 24 satisfies this property, which is the Wpy(). Hence, mo(X) is trivial and X
connected. This proves part (i).

The maximal torus normalizer Ny = Npy) contains a unique subgroup E4 < Npj)
(Remark 2.3). Let Ey < E4 be the inclusion of the first coordinate. Since the Weyl group of
Cy(E)) and of the component of the unit Cy(E)), can be read off from the maximal torus
normalizer Ny [11], Theorem 7.6, the centralizers Cx(E;) and Cpy(4)(E1) have isomorphic
maximal torus normalizer as well as Cy(Ei)q and Cpreay(E1)o- Since Spin(7) = Cpra)(£1)
is connected, Cy(E;) and Cx(E), have isomorphic Weyl groups. Hence, Cx(Ei) is con-
nected and has the same maximal torus normalizer as Spin(7). By [26], this implies that
both are isomorphic, which proves part (ii).
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The subgroup Spin(7) < X is of maximal rank. As explained in Remark
2.3, the Euler characteristique of X/Spin(7) equals the Weyl group index
[Wx : Wepny] = [Wpia) : Wspin(ny) which is odd (Remark 2.3). This proves part (iii).

There exists a transfer tr: H*(BSpin(7);F,) — H*(BX;F,) such that the com-
position with the restriction map j*: H*(BX;F;) — H*(BSpin(7); [Fz) is multiplication by
%(X/Spin(7)) [5). Since this is an odd number, the composition is the identity and the map
J* of (iv) a monomorphism as desired. We also notice that the transfer is a linear map of
H*(BX)-modules.

Since E; centralizes E;, we have E4 < Spin(7). And since E|} = E4, we have
Cx(E4) = Cspin7)(Es) = E4. The last identity follows because E; < Spin(7) is self cen-
tralizing.

Let R*:= H*(BX;F2), S* := H*(BSpin(7); F,) and A* := H*(BE4;F,). Then the
composition i*: R* — §* — A4* is a monomorphism and the Adams-Wilkerson embedding.
Let D* < A* be the smallest Hopf algebra containing R* which is also an algebra over the
Steenrod algebra. By [7], Theorem 3.6, we have D* = T5*(R*) = H* (BCX(E4) Fp) = A"
The last identity follows since E4 < X is self centralizing.

Since A4* is a finitely generated R*-algebra, the fields of fractions
F(R*) c F(A*) establish an algebraic extension. We can apply [33], Theorem II. In
our situation it tells us that there exists a ‘Galois’ group W < GI(E4) such that
R* < Un(F(R*)) = (4*)" = F(R*), where Un(F(R*)) denotes the unstable part of
F(R*). Since the homotopy classes of maps BE4 — BX can be identified with the maps
H*(BX;F,;) — H*(BE4;F;) of algebras over the Steenrod algebra, W = Wy is the Weyl
group of E4 < X. This establishes a chain of monomorphisms

= (4" = (41" = 8%,

where I', as explained in Section 2, denotes the Weyl group of Ej < Spin(7). Let
xe(4* )"" Then, x = a/b with a,b € R* and b - tr(x) = tr(bx) = tr(a) = a. Since we are
doing calcul'ltlons in a subring of a polynomial ring this shows that tr(x) € R* is divisible
by b, that R* — (A4* )W" is an epimorphism and that R* =~ (4* )"X. This proves part (v).

Finally we have to prove part (vi). By construction, I = Wy < GI(4,F,). The
first inclusion is proper. Otherwise, the map BSpin(7)5 — BX induces an isomorphism in
mod-2 cohomology and is an equivalence. This is a contradiction, since Spin(7) and X have
non isomorphic maximal torus normalizer, and are therefore non isomorphic [18].

Lemma 4.3 below shows that I' = GI(4, F,) is a maximal subgroup. This implies
that Wy = Gl(4,F;) and that H*(BX;F,) = H*(BDI(4);F,). This proves the last part and
finishes the proof. [

The stabilizer subgroup of a subspace U’ = U := (F,)" is the subgroup of G/(n, F,) of
all elements which map U’ onto itself. For p =2 and for a 1-dimensional subspace, the
isotropy subgroup and the stabilizer subgroup are equal.

Lemma 4.3. For any prime p, the stabilizer subgroup T < Gl(n,F,) of any
1-dimensional subspace of U is a maximal subgroup.
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Proof. We can assume that T is the stabilizer subgroup of the subspace generated
by the first standard basis vector e;. We write every element of B e Gl(n,F,) in the form

B= (’Z AC/[), where pelF,, b and c¢ have n—1 components and where M is an

(n—1)xn- 1) matrix. For elements of T, we have u +0,b=0and M € Gl(n—1,Fp,).

Let T<I'<Gi(mF,). We have to show that T'=Gl(n,Fp). Since
N\GI(n,F,) = U = U\{0}, the quotient I'\GI(n,F,) is a quotient of U’. Therefore, it
is sufficient to show that T acts transitively on U’. .

Let B= (‘Z L) ¢T; ie b+0. Multiplying B by elements of T from the left

shows that, for every vector u € U, there exists a matrix B’ € I'" such that the first column
(u',b') equals u. Thus, the I"-orbit of e contains all vectors of U’ and I acts transitively
onU'. O

5. Proof of the Theorems 1.2 and 1.3

Because of Proposition 1.4, both theorems are a consequence of the following state-
ment.

Theorem 5.1. Let X be a 2-compact group, such that X and DI(4) have isomorphic
maximal torus normalizer and such that H* (BX;F)) = H* (BDI(4); F») (as algebras over the
Steenrod algebra). Then, X and DI (4) are isomorphic as 2-compact groups. :

The rest of this section is devoted to the proof of Theorem 5.1. And X will always
denote a 2-compact group satisfying the assumptions of the theorem. Before we start with
the proof we fix some notation, which partly was already introduced in Section 2 and
Section 3. Any compact Lie group G appearing in the decomposition diagram of BDI (4) is
the centralizer Cpy)(Ex) = Ci of a k-dimensional elementary abelian 2-subgroup of
DI(4). Actually, for all k, Cg is already contained in C = Spin(7). We denote by
jk: BCy — BCy and ji: BCr — BDI(4) the maps associated to these inclusions. In partic-
ular, ij: BC; — BDI(4) comes from the standard inclusion C) < DI(4). We denote by
T the maximal torus of C; and denote by jr: BT — BC, the associated map of the in-
clusion. The composition T < Ci = DI (4) is also a maximal torus and establishes the
map ir: BT — BDI(4). By W := Wpys we denote the Weyl group of DI(4) and by
Ly = m(T) the ‘dual weight lattice’.

Lemma 5.2. (i) There exist a monomorphism fi: BCy — BX and an isomorphism
H*(BX;[F,) = H*(BDI(4); F2) such that the diagram

H*(BCi;Z/2)

AT

H*(BX;F) = — H*(BDI(4);F2)

conunutes.
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(i) The composition T ZA BC,; L\ X is a maximal torus and the associated Weyl
group representation Wy — GI(Lr) is weakly isomorphic to the Weyl group representation
W — GI(L7).

Proof. The composition of inclusions Ey c Esc T X Z/2= G = Npiayd(T) = X
factors through the maximal torus 7. By Proposition 4.3, Cx(E) = Spin(7) = C; which
establishes the monomorphism fj: BC; — BX. This map induces a monomorphism
fi*: H*(BX;F2) — H*(BC); ;) in mod-2 cohomology (Proposition 4.3) and makes the
target to a finitely generated module over the source. By Lemma 2.5, both maps, f|* and i}

have the same image. Therefore the desired isomorphism H*(BX;F,) = H*(BDI(4); F2)
exists. This proves the first part.

The composition T = Cy < X is obviously a maximal torus. The weak isomorphism
between the two Weyl group representations follows from Lemma 2.1. [

“Using Part (i) of this lemma we can identify the maximal tori and Weyl groups of
DI(4) and X. The inclusion 7' < X establishes a map fr: BT — BX and fr = fijr.

Let A, (DI (4)) denote the Quillen category of the DI(4) and let
©: A,(DI(4)) — Top

be the functor described in Section 2, which gives the Dwyer-Wilkerson decomposition
for DI(4). This functor maps Ej on the space BCy. := BCpy(a)(Ex). For each space BCy. we
use the inclusion jxBCx — BC; (see Section 2), to define fy: BCx — BX by the composi-

tion f; := fiji.

Proposition 5.3. Let oz Ej — Ey, be any morphism of A,(DI(4)). Then, fiO(«) and fi
are homotopic maps. ~ - -

Proof. Since iy = i1 jx, we can assume that ! = 1. By assumption, ijO(«) and i, are
homotopic. Now we check the statement for each value of i. '

For k = 1 there is nothing to show since the automorphism group of E| is trivial.

Let E; = C; be the standard inclusion. Then, BCy ~ BEj4 and, by Lemma 5.2, the
triangle

H*'(BE4; Z/2)

Y o
A : ',

14

H*(BX;F) = — H*(BDI(4); F»)

commutes. Since homotopy classes of maps BE; — BX are determined by the induced map
in mod-2 cohomology, the statement also follows for & = 4.

Supplied byTbg_I?:_r[’ELsh Library - "The world's knowledge"




-

Notbohm, 2-compact group DI(4) 179

For k = 2,3 we first notice that the maximal torus T = C; also establishes a maximal
torus for Cy.

Claim. The restrictions fiO(«)|sr and fi|pr are homotopic.

Proof. The restriction @(«)|pr factors through a self map w: BT — BT. Since
i109(a) = iy, we have irw = i which shows that w e I¥. Hence,

NHO@)sr = fijrw = frw =~ fr = fijr = filpr,
which proves the claim. [J

Now we consider the cases k =2 and k = 3 separately. The centralizer C; comes
from a compact connected Lie group with center E; < T < C; and the inclusion C; € X
induces a homotopy equivalence BCy ~ BCx(E,). Therefore all assumptions of Proposi-
tion 4.6 of [25] are satisfied (for X = DI(4) this is explained in more detail in Remark 3.1).

Part (c) of that proposition and the above claim imply that fi©(«) =~ f>. This proves the
statement for k = 2.

The final case k = 3 is a consequence of the above Claim and the next Proposi-
tion. [J

Proposition 5.4. Let g,h: BC3 — BX be two maps such that the restrictions g|pr and
h|sr are homotopic and monomorphisms. Then g and h are homotopic. '

Proof. The 2-compact group C, establishes a fibration BT — BC, — BZ/2. The
group action of Z/2 on L := np(BT) is given by multiplication by —1. Let g’ := g|pr and
let M, denoteé the union of all components of map(BC,, BX) whose restriction to BT is
homotopic to g’. We make BT — BC, into a fibration respectively into a principal Z/2-

bundle. Then M, can be described as the homotopy fixed-point set (map(BT, BX) g,)hz/ 2
[13]. We only have to show that this homotopy fixed-point set is connected. Since g’ is
a monomorphism, it can serve as a maximal torus and map(BT, BX ); ~ BT. Hence,
the Borel construction establishes a fibration BT — E — BZ/2 and the space of sections
is homotopy equivalent to the homotopy fixed-point set. In this case, up to homotopy,
the sections are classified by the obstruction group H2(BZ/2;L) where Z/2 acts on L
as described above. Since H?(Z/2;Z4) = 0 for the nontrivial action of Z/2 on Z3, this
obstruction group vanishes and the space of sections of the above fibration is connected
as well as the homotopy fixed-point set. This proves the statement. [

Let K := hocolimy,(py4y) ©- This is the realization of a simplicial space. By K

we denote the realization of the n-skeleton of this simplicial space. By the definition of the
homotopy colimit, Proposition 5.3 establishes a map

é: K — BX.
Proof of Theorem 5.1.  We want to extend the map ¢,: K() — BX to K by induction

over the skeleton. There exists an obstruction theory for such extension problems [35],
whose obstruction groups we describe next.
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Let II;: A,(DI(4)) — /b be the functor taking values in the category of
abelian groups, which is defined by IT;(Ex) := m(map(BCy, BX), ). The above men-
tioned obstruction groups are given by higher derived limits of this functor. Since
BEy ~ map(BCy, BX),,, the functor IT; is trivial for i + 1 and nothing but the inclu-
sion functor J: A, (DI(4)) — s7b for i = 1. Here, J is defined by J(E;) := Ex. The higher
derived limits of J are calculated in [9] and shown to vanish. Therefore, we can solve
the extension problems and there exists a map ¢: K — BX. By construction K — BDI 4)
is a mod-2 equivalence. And this establishes a homotopy equivalence BDI(4) ~ BX and
finishes the proof of Theorem 5.1. []

6. The proof of Proposition 1.5

In this section we will prove Proposition 1.5. Throughout we denote by X a 2-
compact group which has rationally the same Weyl group data as DI(4). We want to show
that the maximal torus normalizer Ny is isomorphic to ND1(4) From Lemma 2.1 we know
that X and DI(4) have the same integral Weyl group data; i.e. there exists an abstract iso-
morphism Wy = Wpy4) and a WD,(4)-equ1var1ant isomorphism Ly =~ Lpyy where WD,(4)
acts on Ly via the abstract isomorphism. That is we can identify the maximal tori, the
lattices as well as the Weyl groups and denote them by T, L and W. Let Z/2 = E; = T be
the inclusion into the first coordinate as described in Section 2. Let ¥ := Cx(E)) denote
the centralizer of Ey. Then T < Y is a maximal torus and, since the Weyl group of the
centralizer of a toral subgroup can be calculated from the Weyl group data [11] (Theorem
7.6), the Weyl group action of Wy on L is the same as for Spin(7) which is Cpiy(Er).

Since Ey = T < Y is a central subgroup, we can pass to the quotient ¥ := Y/Z/2.
Since E; = T < Yy both groups have isomorphic group of components and 1somorphlc
Weyl groups, which we identify and which we denote by ¥'. In fact, W' ~ Z/2223 is
isomorphic to the Weyl group of Spin(7) respectively SO(7). The maximal torus T := Ty
fits into an exact sequence 1 - Z/2=E — T — T — 1 and the lattice L into a short
exact sequence 0 — L — L — Z/2 — 0 of W'-modules which is the same as for the lattices
associated to the extension 1 — Z/2 — Spin(7) — SO(7) — 1. Hence Y has 2-adically the
same Weyl group data as SO(7).

We can identify several maximal tori, associated lattices and Weyl groups. In this
section we will denote by 7" and L the maximal tori and associated lattices of DI(4), X,
Spin(7) and Y, by T and L the maximal tori and associated lattices of SO(7), O(6) and ¥,
by IV the Weyl groups of DI(4) and X, and by I’ the Weyl groups of Spin(7), Y, SO(7),
O(6) and Y.

The above considerations are collected in the following lemma.

Lemma 6.1. Let X be a 2-compact group with the same rational Weyl group data as
DI(4). Then there exists 2-compact groups Y and Y such that the following holds:

(1) X has 2-adically the same Weyl group data as DI(4).

(ii) Y has the 2-adically the same Weyl group data as Spin(7) and Y as SO(7).
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(iii) There exists a short exact sequence
1-22-Y—-Y—

of 2-compact groups. Moreover, the classifying map BY — B*Z[2 of the principal fibration
petween the classifying spaces is non trivial.

(iv) The 2-compact group Y < X isa subgroup of maximal rank.

(v) If the maximal torus normalizer N splits, then Ny splits as well as Ny and Ny and
Nso(z) are isomorphic.

Proof. The claims (i), (ii), (iv) and the first half of (iii) we already discussed. Since
Y and Y have the same components, we have BY # BY x BZ/2. That is that the classify-
ing map BY — B2Z/2 is non trivial. The maximal torus normalizer Ny and Ny fit into a
diagram of extensions

] — T —— Ny — W' —— 1

-l

i » T » Ny — W — 1.

Hence, the normalizer Ny is isomorphic to the pull back, induced by the inclusion
W' < W, of the extension Ny of T by W. This shows that, if Ny splits, then Ny splits.
Moreover, if Ny splits then Ny does it, too. It can be constructed by a push out from Ny.
Since Nso(7) also splits, this proves the last claim. [

The Weyl group W' = Wsog) of SO(7) is isomorphic to the wreath product Z/21%3
and acts on Z§3 ~ L in the obvious way. Let V5 := {(a1,az2,a3) € Z/23 :ay +ay +az =0},
This is an X3-equivariant subgroup of Z/2=Viand W=V XE3c W =xV;3X X3 is
a normal subgroup. Actually, " is the Weyl group of SO(6) and the inclusion W < W'
is induced by the inclusion SO(6) = SO(7).

We are interested in thevhomotopy type of BY. We say that two 2-com1')'act groups

X and Y have the same N-type, if there exist isomorphisms Ny = Ny and mo(X) = mo(Y)
such that the diagram

Ny =, Ny

|

o(X) —— mo(Y)
commutes. For a more detailed description of this notion, see [26].

Lemma 6.2. If the maximal torus normalizer Nx splits, then the Sfollowing holds:

(i) The 2-compact group Y has the same N-type as SO(7) or as 0(6).

(ii) The 2-compact group Y is either isomorphic to SO(7) or to O(6).
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For the proof we will need the following lemma.

Lemma 6.3. Let n be a finite 2-group and p: W' = Z /2133 — 7 be an epimorphism,
such that the kernel of p is generated by elements of order 2. Then either n is the trivial group
ormn=7Z/2and W" is the kernel of p.

Proof. Let oeZ; denote an element of order 3. And let K denote the kernel
of p. Then o e K and since K = W' is a normal subgroup, every element of the form
(v,1)(0,6)(v,1)(0,0%) = (v+0(v),1) is contained in K, where ve V3. The elements
v+ o(v) generate the subgroup V>. Moreover, since K is generated by elements of order
two and since any element of the form (v,o) has order divisible by three, there exists
an element (i, 7) € K of order two, where 7 € X3 is a transposition. The order condition
implies that w e V>, and hence that (0,7) € K, that X3 ¢ K and that W' < K. Since the
index of W' e W is equal to 2 this proves the claim. []

Proof of Lemma 6.2. For any p-compact group Z, the map Nz — no(Z) is onto
and factors through the Weyl group Wz. The kernel of the map Wz — no(Z) is the Weyl
group and the kernel of Nz — mo(Z) the maximal torus normalizer of the connected com-
ponent of Z. For the prime 2, the Weyl group of a connected 2-compact group is generated
by reflection, in particular by elements of order two.

By Lemma 6.1 (v) we know that Ny and Nso(y) are isomorphic. If Y is connected,
then Y and SO(7) have the same N-type. If Y is not connected, the group of components
no(Y) is a finite 2-group. By Lemma 6.3, this shows that no(Y) = Z/2 and that the kernel
of W' — mo(Y) equals W”. Therefore, ¥ and O(6) have the same N-type. This. proves
part (i). For SO(2n+ 1) and O(n), the N-type determines the isomorphism type of these
2-compact groups [26]. This proves the second part. []

For the proof of Proposition 1.5 we need one further lemma.
Lemma 6.4. For any section s: Woy — Nowy of the projection Nogy — Wowy of
the maximal torus normalizer of the orthogonal O(n) to the Weyl group, the composition

Bs': BW — BN — BO(6) induces in mod-2 cohomology a map which is injective in degree 1
and 2. ' '

Proof. Let T := Tq(, denote the maximal torus, W := Wom) the Weyl group and
N := Np( the maximal torus normalizer of O(n). We have a diagram of fibrations

T — O(n)/W —— O(n)/N

Pl

T — . BW B, BN

b

BO(n) —— BO(n).
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The top row shows that H'(O(n)/N;F2) = H' (O(n)/ W;F2). Since
H*(BO(n); F2) — H*(BN; )

is a monomorphism, there are no differentials in the Serre spectral sequence of the right
column which end at the horizontal edge. Therefore, in the Serre spectral sequence of the
middle column there is no differential ending at H *(BO(n); F) for x = 1,2, which proves
the statement and H*(BO(n); F2) — H*(BW;[F2) is a monomorphism for k=1,2. O

Now we are in the situation to prove Proposition 1.5.

Proof of Proposition 1.5.  Since we know that X and DI(4) have the same 2-adic
Weyl group data (Lemma 2.1) and since there exist only two extensions of Tpy) by Wpia)
(Lemma 2.7), we only have to prove that Ny does not split.

There exists a non trivial principal fibration BZ/2 — BY — BY — B%?Z/2 and a
monomorphism BY — BX of maximal rank with the properties mentioned in Lemma 6.1.
Hence the classifying map BY — B27/2 describes a non trivial two dimensional mod-2
cohomology class.

: Let us assume that Ny does split. If Y is connected, then BY ~ BSO(7); (Lemma
6.2) and BY = BSpin(7)3, since H*(BSO(7); F,) = F,. Since the maximal torus normalizer
of Spin(7) does not split, this gives a contradiction. :

If ¥ is not connected then BY =~ BO(6); (Lemma 6.2). By Lemma 6.4, for any
section Bs: BIV — BNy the composition BW — BNoe) — BO(6) — B?Z/2 is not null
homotopic. In particular there exist no lift of this composition to BY. Hence, Ny is a
non splitting maximal torus normalizer as well as Ny (Lemma 6.1), which is again a con-
tradiction. Therefore Ny is a non splitting extension and isomorphic to Npy@4)- O

7. Proof of Theorem 1.7

We start directly with the proof. For any connected 2-compact group X there
exists a short exact sequence Z — X — X of 2-compact groups respectively a fibration
BZ — BX — BX for the associated classifying spaces, such that Z < X is a central sub-
group, in particular a product of a finite abelian 2-group and a torus, and.such that X
is centerfree [18]. In fact, the fibration is principal and has a classifying map BX — B*Z.
By [12], X = [] Yi is congruent to a finite product of simple centerfree 2-compact groups

!
Y;. In particular, for all i, the rational Weyl group representation Wy, — Gl(Ly, ® Q) is
irreducible. (Actually, all this is true for any prime.) If ¥; has the same rational Weyl group
data as DI(4), then Y; and DI(4) have isomorphic maximal torus normalizer (Remark 4.3)
and are isomorphic by Theorem 1.3. ' '

Let X; be the product of all factors Y; with the same rational Weyl group data as
DI(4) and X; the product of all the others. At the prime 2, the rational Weyl group repre-
sentation of DI(4) is the only irreducible pseudo reflection group over @34 which is not
weakly isomorphic to the 2-adic rational Weyl group representation of a simple connected
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compact Lie group. This follows by checking the Clark-Ewing list [4]. Therefore X5 has the
same rational Weyl group data as a suitable connected compact Lie group, and Xj is con-
gruent to a product of copies of DI(4) (Corollary 1.6).

Since BDI(4) is 7-connected, the composition BX; — BX| x BX; — B*Z is
null homotopic and BX ~ BX) x BX, where BX, is the fiber of the composition
BX, — BX| x BX, — B*Z. Since BX, fits into a fibration BZ — BX, — BX,, we can
think of it as the classifying space of a 2-compact group X5 . And, up to some trivial sum-
mands, BX has the same rational Weyl group data as BX. In particular, BX> has the same
rational Weyl group data as a suitable connected compact Lie group. This proves Theorem
1.7. O
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