
Ambiguity Aversion     1 

Pulford, B. D., & Colman, A. M. (2008). Size doesn’t really matter: Ambiguity aversion in Ellsberg urns with 

few balls. Experimental Psychology, 55, 31-37. 

 

 

Size Doesn’t Really Matter: Ambiguity Aversion in Ellsberg Urns with Few Balls 

 

Briony D. Pulford and Andrew M. Colman 

University of Leicester 

 

 
Abstract 

When attempting to draw a ball of a specified color either from an urn containing 50 red balls and 50 black balls 

or from an urn containing an unknown ratio of 100 red and black balls, a majority of decision makers prefer the 

known-risk urn, and this ambiguity aversion effect violates expected utility theory. In an experimental 

investigation of the effect of urn size on ambiguity aversion, 149 participants showed similar levels of aversion 

when choosing from urns containing 2, 10, or 100 balls. The occurrence of a substantial and significant 

ambiguity aversion effect even in the smallest urn suggests that influential theoretical interpretations of 

ambiguity aversion may need to be reconsidered. 
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Ambiguous prospects, with outcome probabilities that cannot be calculated from first 

principles or estimated from empirical evidence, present a major challenge to decision theory. 

The issue was first highlighted by Knight (1921), who introduced a distinction between 

decisions made under risk and uncertainty, and simultaneously by Keynes (1921), who drew 

a parallel distinction between probability and weight of evidence. In Knight’s more familiar 

terminology, a decision is risky when the decision maker does not know what outcome will 

occur but knows the outcome probabilities, or can judge them with some confidence, and 

uncertain when the decision maker is ignorant even of the probabilities. Knight illustrated this 

distinction with an example of two people making blind drawings from an urn containing 

balls of two colors: ―One man knows that there are red and black balls, but is ignorant of the 

numbers of each; another knows that the numbers are three of the former to one of the latter‖ 

(pp. 218-219). The first faces a decision under (unmeasurable) uncertainty, nowadays more 

commonly called ambiguity in psychological literature; the second faces a decision under 

(measurable) risk. 

This distinction was ignored or rejected by most subsequent decision theorists, partly 

because ambiguity is relatively intractable, and partly because decision theorists (e.g., Raiffa, 

1961) were quick to point out that we can always apply the principle of insufficient reason 

and assign equal probabilities to the outcomes of an ambiguous choice. Knight (1921) 

evidently believed that people handle uncertainty in this way: ―It must be admitted that 

practically, if any decision as to conduct is involved, such as a wager, the first man [choosing 

from the ambiguous urn] would have to act on the supposition that the chances are equal‖ (p. 

219). Savage (1954), in his influential axiomatic subjective expected utility (SEU) theory, 

brushed ambiguity aside on the grounds that, in order to incorporate it into decision theory, 

second-order probabilities would be required, and ―the introduction of an endless hierarchy 

seems inescapable. Such a hierarchy seems very difficult to interpret, and it seems to make 

the theory less realistic, not more‖ (p. 58). Second-order probabilities can be calculated when 

outcome probabilities are not known directly but ―probabilities of probabilities‖ can be 

inferred, as when a decision maker does not know the ratio of red and black balls in an urn 

but knows that every possible ratio is equally probable. 
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Ambiguity Aversion 

In spite of its theoretical intractability, ambiguity is common in everyday decisions. 

Furthermore, it is psychologically distinguishable from risk, and empirical evidence 

contradicts Knight’s (1921) assumption that human decision makers merely assign equal 

probabilities to the outcomes of ambiguous prospects. A substantial body of evidence has 

shown that most decision makers prefer risky prospects with equal outcome probabilities to 

ambiguous ones. This is the ambiguity aversion effect, and the classic demonstration of it is 

the Ellsberg paradox (Ellsberg, 1961; Fellner, 1961). In Ellsberg’s simplest illustration, two 

urns are filled with red and black balls, Urn A containing 50 red and 50 black balls, randomly 

mixed, and Urn B containing an unknown ratio of 100 red and black balls, randomly mixed. 

A decision maker chooses either color (red or black) and either urn (A or B) for a blind 

drawing and wins a prize if a ball of the chosen color is drawn. Most decision makers strictly 

prefer the known-risk Urn A to the ambiguous Urn B, irrespective of the preferred color. 

Ambiguity aversion violates the axioms of subjective expected utility (SEU) theory, for 

the following reason. Suppose a decision maker tries to draw a red ball and strictly prefers 

Urn A to Urn B. Because the decision maker knows that the probability of drawing a red ball 

from Urn A is 1/2, it can be inferred from SEU theory that the subjective probability of 

drawing a red ball from Urn B must be less than 1/2. It follows that this decision maker’s 

subjective probability of drawing a black ball from Urn B must be greater than 1/2, because 

the two probabilities must sum to unity in the urn, given that the ball must be either red or 

black. This suggests that the decision maker prefers drawing a black ball from Urn B to 

drawing a red ball from Urn A, and the decision to try for a red ball from Urn A is therefore 

inconsistent with the decision maker’s own preferences. It fails to maximize SEU and 

therefore violates SEU theory. Nevertheless, most decision makers prefer the known-risk Urn 

A for both red and black balls, thereby manifesting ambiguity aversion. 

Since Ellsberg (1961) discovered this intuitively compelling violation of SEU theory, 

empirical evidence has confirmed that ambiguity aversion is a powerful and robust 

phenomenon (Camerer, 1995, pp. 644-649; Camerer & Weber, 1992; Curley & Yates, 1989; 

Frisch & Baron, 1988; Keren & Gerritsen, 1999; Rode, Cosmides, Hell, & Tooby, 1999). It 

has been found even when decision makers, without being told the actual ratio of red to black 

balls in Urn B, were told that every possible ratio is equally likely, although this information 

about second-order probabilities makes the objective chances equal in both urns. 

 

Theoretical Interpretations 

 Ambiguity aversion is easy to demonstrate but surprisingly hard to explain. It has been 

suggested (e.g., Krähmer & Stone, 2006; Tetlock, 1991) that it arises from a desire to avoid 

the anticipated regret that would follow from drawing a losing ball from an ambiguous urn. 

These and other current theories have no obvious implications regarding the number of balls 

in the known-risk and ambiguous urns, and the effects of urn size, including very small urns, 

do not appear to have been systematically investigated. However, there are at least two 

prominent theories that have strong implications for urn size. 

The first is Einhorn and Hogarth’s (1985) descriptive model based on the anchoring and 

adjustment heuristic (Slovic & Lichtenstein, 1971). According to this model, a decision 

maker faced with an ambiguous prospect begins with a provisional probability estimate and 

then adjusts it up or down on the basis of a mental simulation in which all probability 

distributions that might apply are imagined, and those that are judged to be inapplicable are 

excluded. The adjustment is affected by two factors, represented by parameters in the model: 

the amount of perceived ambiguity (θ), causing a linear increase in the size of the adjustment, 

and the decision maker’s attitude towards ambiguity in the given circumstances (β), causing a 

further non-linear adjustment that may vary for different probability values. Einhorn and 
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Hogarth reported four experiments, based on Ellsberg urn choices, in which the model 

parameters show most decision makers adjusting their subjective probabilities of success in 

ambiguous urns down from 1/2, causing them to prefer known-risk urns. 

According to Einhorn and Hogarth (1985), there are special circumstances in which 

decision makers are likely to prefer ambiguous to known-risk options (pp. 435-436), but ―the 

amount of ambiguity is an increasing function of the number of distributions that are not 

ruled out (or made implausible) by one’s knowledge of the situation‖ (p. 435). The model 

does not include any effect of urn size on the initial estimate, although such an effect is quite 

conceivable. However, the amount of perceived ambiguity θ reflects the ―cognitive 

simulation process‖ (p. 450), or more specifically ―the degree to which one simulates values 

of p that might be‖ (p. 438), and when a decision maker has relatively sparse relevant 

information, ―one would expect ambiguity to be high because few distributions are ruled out‖ 

(p. 442). The model seems to imply greater ambiguity aversion in larger urns, because ―there 

are costs of investing in imagination, increased mental effort and the discomfort that results 

from greater uncertainty‖ (p. 459), and above all because the size of the adjustment parameter 

θ increases monotonically with the number of distributions that need to be imagined and not 

ruled out (p. 435)—there are more of these distributions in larger urns. 

This suggests a clear prediction about urn size. In a mental simulation of an ambiguous 

urn containing 100 red and black balls in an unknown ratio, there are 101 possible 

distributions to be imagined, from no red balls to 100 red balls, and none of these is ruled out 

or excluded. But in a mental simulation of an ambiguous urn containing just two red and 

black balls in an unknown ratio, there are only three distributions to be imagined and not 

excluded, namely no red balls, one red ball, and two red balls. In terms of the model, the 

larger urn is therefore perceived to be vastly more ambiguous than the smaller one. Because 

only three distributions are imagined and none excluded in the two-ball urn, the model 

assigns a minute value to the parameter θ that quantifies the amount of perceived ambiguity 

and determines the size of the ambiguity aversion effect. 

A second theoretical approach with strong implications for urn size was put forward by 

Rode et al. (1999). They suggested that ambiguity aversion arises from decision makers 

associating ambiguous outcomes with high payoff variability—although our calculations (see 

Appendix) suggest that variability is not necessarily greater in ambiguous options. According 

to this approach, ambiguity aversion is a by-product of the application of a risk-sensitive 

cognitive architecture, adapted by evolution for optimal foraging, that takes account of both 

the mean and the variance of expected payoffs to minimize the probability that the outcome 

will fail to satisfy the organism’s need (Stephens & Krebs, 1986). If an organism needs X 

calories of food to survive, and if two resource patches have the same mean calorie payoff 

but different payoff variances, and the mean payoff of the low-variance patch is above X, 

then the organism should forage in that patch; but if the mean payoff in the low-variance 

patch is below X, then it should forage in the high-variance patch. In the extreme case in 

which the low-variance patch has zero variance (the payoff is certain), the organism is certain 

to satisfy its need by foraging in that patch if the mean payoff is above the threshold X and 

certain to fail if the mean is below X; but if the mean is below X, then foraging in the high-

variance patch yields a small but positive probability of satisfying its need. Hence, according 

to Rode et al., decision makers ―are not avoiding ambiguity per se: instead, they are avoiding 

the high variance of outcomes of ambiguous options‖ (p. 296). 

According to Rode et al. (1999), ambiguity aversion arises from an overgeneralization of 

this policy to decisions in which one of the options has an unspecified distribution. They 

provided evidence to support the conjecture that human decision makers tend to avoid 

ambiguous options only when known-risk options meet their needs. First, they showed that 

the size of the ambiguity-aversion effect tends to increase with the probability of success in 
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the known-risk option. Second, in an experiment in which decision makers had to choose 

between a known-risk option with obviously high payoff variability and an ambiguous option 

with obviously low payoff variability, most chose the low-variability option. These results 

reversed the standard ambiguity aversion effect and provided further corroboration for this 

interpretation. 

In ambiguous urns in which every possible distribution is equally likely, as they were in 

our experiment and those of Rode et al. (1999), it is possible to calculate expected payoff 

variances exactly (see Appendix). The expected variance in an ambiguous urn containing n 

balls, calculated as the mean of the n equiprobable variances that might apply to the urn, turns 

out to be 1/6 – 1/6n. Hence, the expected payoff variance increases rapidly for small values of 

n and never exceeds 1/6. The expected payoff variance is very small for a 2-ball ambiguous 

urn (0.08) and much larger in 10-ball and 100-ball ambiguous urns (0.15, and 0.16 

respectively). These expected payoff variances are smaller, not larger, than the variances for 

known-risk urns. In a known-risk urn of any size with 50% balls of each color, the payoff 

variance is 0.25. This result seem to be at odds with the theory of Rode et al. (1999), which 

interprets ambiguity aversion as a consequence of variance avoidance. 

Urn size clearly has relevance to the interpretation of ambiguity aversion. If the effect 

turns out to be unaffected by urn size, and particularly if ambiguity aversion is found even in 

very small urns, then an explanation of it will have to include something in addition to the 

cognitive mechanisms suggested by Einhorn and Hogarth (1985) and Rode et al. (1999). 

Evidence from other areas of research suggests that decision makers are sometimes sensitive 

to urn sizes. For example, Denes-Raj and Epstein (1994) showed that many people preferred 

drawing from a large urn than from a smaller one with fewer winning balls but a larger 

proportion of winning balls, even when they understood that the probability of winning was 

greater in the small urn. Typically, they preferred to draw from an urn containing seven 

winning balls among 100, rather than from an urn containing one winning ball among 10. 

Introspective reports suggested that they preferred the larger urn because it offered more 

ways of winning. 

To clarify the possible effects of urn size on ambiguity aversion, we therefore 

investigated choices in a standard Ellsberg urns task, using urns of widely different sizes, 

from the conventional 100 balls down to just two balls. 

 

Method 

Participants 

The sample consisted of 151 undergraduate students and members of the general public 

(100 women and 51 men) with a mean age of 23.03 years (SD = 10.24, range 16 to 76). 

Prizes of £30 sterling were awarded to three lottery winners, with entry to the lottery being 

dependent on drawing a blue ball from an urn containing red and blue balls. The responses of 

two participants were illegible and were discarded, reducing the usable sample size to 149. 

 

Materials 

Three pairs of urns were used, each urn containing red and blue balls. The pairs differed 

according to the number of balls in each urn: 2, 10, or 100 balls. For each urn size, one of the 

urns contained 50% red and 50% blue balls (the known-risk urn), and the other contained a 

randomly selected ratio of red and blue balls (the ambiguous urn). 

 

Design and Procedure 

This experiment was designed to examine the effects of urn size (2, 10, or 100 balls) on 

urn choice (known-risk or ambiguous urn) using an independent-groups experimental design. 

The ratio of red to blue balls was known to the decision makers in the known-risk urn and 
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was unknown in the ambiguous urn. Participants were told that if they picked a blue ball, they 

would be entered into a lottery with the chance of winning one of three £30 prizes. They were 

free to choose from either the known-risk or the ambiguous urn. Participants were randomly 

assigned to these three treatment conditions, and they began by filling in consent forms and 

providing demographic and contact details. Those assigned to the 100-ball condition were 

then presented with the following written instructions: 

 
Consider the following problem carefully, then write down your decision. On the table are two urns, 

labeled A and B, containing red and blue marbles, and you have to draw a marble from one of the urns 

without looking. If you get a blue marble, you will be entered into a £30 lottery draw. 

Urn A contains 50 red marbles and 50 blue marbles. Urn B contains 100 marbles in an unknown color 

ratio, from 100 red marbles and 0 blue marbles to 0 red marbles and 100 blue marbles. The mixture of red 

and blue marbles in Urn B has been decided by writing the numbers 0, 1, 2, ... 100 on separate slips of 

paper, shuffling the slips thoroughly, and then drawing one of them at random. The number chosen was 

used to determine the number of blue marbles to be put into Urn B, but you do not know the number. Every 

possible mixture of red and blue marbles in Urn B is equally likely. 

You have to decide whether you prefer to draw a marble at random from Urn A or Urn B. What you 

hope is to draw a blue marble and be entered for the £30 lottery draw. Consider very carefully from which 

urn you prefer to draw the marble, then write down your decision below. You will draw a marble from your 

chosen urn straight afterwards. 

I prefer to draw a marble from Urn A / Urn B. .......... 

 

Minor alterations were made for the treatment conditions with smaller urns, replacing the 

number 100 with either 2 or 10. So, for example, the two-ball condition read ―the mixture of 

red and blue marbles in Urn B has been decided by writing the numbers 0, 1, 2 on separate 

slips of paper, shuffling the slips thoroughly, and then drawing one of them at random‖ and 

the 10-ball condition read ―the mixture of red and blue marbles in Urn B has been decided by 

writing the numbers 0, 1, 2, ... 10 on separate slips of paper, shuffling the slips thoroughly, 

and then drawing one of them at random‖. 

Each participant drew a ball from the chosen urn, and those who drew blue balls were 

entered into the prize lottery. The ratios of red to blue balls in the ambiguous urns were 

decided randomly, as described in the written instructions. In the two-ball condition, the 

known-risk urn contained one red and one blue ball, and in the ambiguous urn the 

randomization procedure resulted in two red balls. In the 10-ball condition, the known-risk 

urn contained five red and five blue balls, and the ambiguous urn eight red and two blue 

balls. In the 100-ball condition, the known-risk urn contained 50 red and 50 blue balls, and 

the ambiguous urn 53 red and 47 blue balls. 

 

Results 

Of the 149 decision makers who participated in the experiment, 106 (71%) chose the 

known-risk urn, and 43 (29%) chose the ambiguous urn. This finding replicates the basic 

ambiguity aversion effect across urn sizes, χ
2 

(1, N = 149) = 26.64, p < .001, effect size w = 

.42 (medium). In this experiment, the same number of men and women chose the ambiguous 

urns. 
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Table 1 

Choices of Known-risk and Ambiguous Urns of Three Different Sizes 

 Urn Chosen 

Urn size Known-risk Ambiguous 

2 29 (64.44%) 16 (35.56%) 

10 36 (78.26%) 10 (21.74%) 

100 41 (70.69%) 17 (29.31%) 

Total 106 (71.14%) 43 (28.86%) 
 

Results for different urn sizes are shown in Table 1. Strong ambiguity aversion effects 

occurred in all urn sizes, and urn choice was not significantly influenced by urn size: χ
2 

(2, N 

= 149) = 2.12, p = .35, ns. To provide a more severe test of the effect of urn size, data from 

urn sizes of 10 and 100 were collapsed to determine whether urn choice differed significantly 

between smallest (2) and larger sizes (10 or 100), but the association remained non-

significant: χ
2 

(1, N = 149) = 1.41, p = .24, ns. Furthermore, if urn sizes 2 and 10 are 

collapsed and compared with urn size 100, the association is still non-significant: χ
2 

(1, N = 

149) = 0.92, p = .53, ns. Taken together, these results provide clear-cut confirmation of the 

finding that the number of balls, and hence the number of possible permutations of colors in 

the ambiguous urn, had no significant effect on urn choice and hence ambiguity aversion. 

 

Discussion 

Only 29% of the decision makers chose ambiguous urns, replicating the fundamental 

ambiguity aversion effect across urn sizes. The participants knew that every possible 

distribution of balls in the ambiguous urns was equally probable, with the obvious 

implication that the objective chances were equal in the known-risk and ambiguous urns, but 

a medium-sized ambiguity aversion effect occurred nonetheless. This is hardly a new finding, 

but the occurrence of a substantial and significant ambiguity aversion effect even in the 

smallest urn fails to confirm predictions implied by two leading theoretical interpretations of 

ambiguity aversion (Einhorn & Hogarth, 1985; Rode et al., 1999). 

According to Einhorn and Hogarth’s (1985) model, smaller urns should necessarily be 

perceived as less ambiguous than larger ones, because far fewer distributions need to be 

imagined and excluded in the mental simulation that is hypothesized to occur during the 

process of judgment and decision making, and according to the model’s equations, this 

should reduce the size of the ambiguity aversion effect. We found no urn size effect, and a 

significant ambiguity aversion effect occurred even in the smallest urn, containing just two 

balls. With only three distributions to simulate, namely no red balls, one red ball, and two red 

balls, compared to 101 distributions in the largest 100-ball urn, and none to exclude in either 

case, the ambiguity aversion effect should have been eliminated or at least greatly attenuated, 

yet it remained significant even in this very small urn. The risk-sensitive foraging theory of 

Rode et al. (1999) also predicts very little ambiguity aversion in the smallest urn, because 

expected payoff variance is close to zero when there are only two balls in the urn, and our 

findings are therefore inconsistent with that theory also. If ambiguity aversion is related to 

variance avoidance, then our findings suggest that decision makers have a tolerance for 

payoff variance up to some threshold above σ
2
 = 0.25 and that, for all urn sizes, they tend to 

prefer known-risk alternatives for some other reason. 
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Whatever accounts for ambiguity aversion, our finding that the effect remained 

significant in the smallest urn seems difficult to reconcile with the purely cognitive theories 

that we have considered in this article. In spite of the vastly smaller number of distributions 

in the smallest urn, careful data analysis failed to reveal evidence of any diminution of 

ambiguity aversion. One possibility is that ambiguity aversion is driven by the range of 

probabilities of success—the range was from zero to unity in urns of all three sizes in our 

experiment—rather than the number of distributions that need to be mentally simulated (as 

suggested by Einhorn & Hogarth, 1985) or the expected payoff variance (as suggested by 

Rode et al., 1999). What is most revealing is the positive finding of a significant effect in the 

smallest urn, and this needs to be taken into account in any interpretation of ambiguity 

aversion. 

We have provided preliminary rather than conclusive evidence that we hope will inspire 

further research into urn size effects. Our experimental design was restricted to between-

subjects urn size comparisons, to avoid confounding urn size with subject-expectancy effects, 

although a within-subjects design might possibly have made urn size more salient and caused 

decision makers to have been more sensitive to these differences (cf. Denes-Raj & Epstein, 

1994). If decision makers were presented in a future study with choices between ambiguous 

urns of different sizes, then a significant preference for smaller urns would provide evidence 

in favor of theories of ambiguity aversion, such as those of Einhorn and Hogarth (1985) and 

Rode et al. (1999), that imply different degrees of aversion in urns of different sizes. On the 

other hand, an absence of any significant urn size preferences would be consistent with 

theories that have no obvious implications for urn size, including the interpretation that we 

suggest below. However, irrespective of any between-subjects or within-subjects urn size 

comparisons, our finding of significant ambiguity aversion in the smallest urn is inconsistent 

with purely cognitive theories that imply that ambiguity aversion arises from the mental 

effort involved in mentally simulating the possible distributions or avoiding high-variance 

options. Our research was also restricted to comparing preferences for 50-50 known-risk urns 

with ambiguous urns containing unknown numbers of winning balls between 0 and 100 per 

cent, although we acknowledge that preferences for restricted-range ambiguous urns with (for 

example) between 40 and 60 per cent winning balls also deserve investigation. 

With these caveats in mind, we believe that existing theories of ambiguity aversion may 

need to be reconsidered in the light of our findings. Our results show that ambiguity aversion 

occurs when decision makers are unable to quantify the risks involved in ambiguous options, 

even when the outcome sets are easily cognitively simulated and the expected payoff 

variance is very small. We agree with Rode et al.’s (1999) finding that ambiguity aversion is 

caused by aversion to the unknown probability parameter and is not due to a comparative 

process. We suggest that ambiguity aversion may arise from a more general intolerance of 

uncertainty, and in particular from the aversive and disturbing effects of uncertainty, 

irrespective of urn size. Most people prefer to avoid exposing themselves to events and 

circumstances that they do not understand (Becker & Brownson, 1964; Freeston, Rhéaume, 

Letarte, Dugas, & Ladouceur, 1994; Furnham, 1994; Ghosh & Ray, 1997), and ambiguity 

aversion may be a particular manifestation of this. Uncertainty induces a disturbing and 

aversive psychological state. However, there are large individual differences in intolerance of 

uncertainty. Habitual worriers tolerate uncertainty less well than others and appear to be 

especially prone to define ambiguous prospects as threatening (Butler & Mathews, 1983, 

1987), and this may explain why some people display more ambiguity aversion than others. 

Purely cognitive interpretations that ignore such affective processes are unlikely to provide a 

complete explanation of ambiguity aversion. 
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Appendix 

Expected Payoff Variance in Ambiguous Urns 

 

An ambiguous urn contains n balls, of which k ( k 0, 1, . . ., n) are red and the rest black, 

with every value of k equally likely. A decision maker draws a ball and receives a payoff of x 

= 1 if it is red. 

The probability of a red ball is 1/2, by symmetry. Formally, 

0 0

1 1 1 1 1
1 .

1 1 1 2 2

n n

k k

k
k n n

n n n n n n
 

In an urn containing exactly k red balls, the expected payoff E(x) = μ = k/n. By definition, the 

variance σ
2
 = E(x – μ)

2
 = E(x

2
 – 2μx + μ

2
). Because μ is a constant, σ

2
 = E(x

2
) – 2μE(x) + μ

2
, 

and because μ = E(x),  

σ
2
 = E(x

2
) – 2[E(x)]

2
 + [E(x)]

2
 = E(x

2
) – [E(x)]

2
 = 

2 2
2

2 2
.1 .

k k k k

n n n n
 

We first prove by induction that 
2

0
[ ( 1)(2 1)] / 6

n

k
k n n n . For n = 0, the formula 

reduces to 0 = 0, which is true. We now prove that if it holds for n, then it must also hold for 

n + 1. 
1 2 2 2
0 0

( 1) .
n n

k k
k k n  

Using the expression for 
n

k
k

0

2 assumed above, this is equal to [n(n + 1)(2n +1)]/6 + (n 

+1)
2
 = [(n +1)/6][n(2n + 1) +6(n +1)], which simplifies to [(n + 1)/6][2n

2
 +7n + 6] = [(n + 

1)/6][(n + 2)(2n +3)] = [(n + 1)/6](n + 2)[(2n + 1) + 1], and this is equal to {[(n + 1)][(n + 1) 

+ 1][2(n + 1) + 1]}/6, as required. Therefore, for all n, 
2

0
[ ( 1)(2 1)] / 6.

n

k
k n n n  

The sum of variances for all values of k is 
2 2

2 20 0 0
.

n n n

k k k

k k k k

n n n n
 

This is equal to 

2

2 20 0

1 1 2 11 1 1 1
,

2 6

n n

k k

n n n n n
k k

n n n n
 

which simplifies to (n +1)/2 – [1/n][(n + 1)(2n + 1)]/6. The expected variance is thus 

2 1 1 1 ( 1)(2 1)
.

1 2 6

n n n
E

n n
 

Therefore, E(σ
2
) = 1/2 – (2n +1)/6n = 1/2 – 1/3 – 1/6n = 1/6 – 1/6n. This expression measures 

the expected payoff variance in an ambiguous urn. 

The expected variance tends to 1/6 as n → ∞. For n = 2, E(σ
2
) = 1/6 – 1/12 = 1/12 ≈ 

0.083; for n = 10, E(σ
2
) = 9/60 = 0.150; and for n = 100, E(σ

2
) = 99/600 = 0.165. 
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