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Abstract

A Computational Analysis of the Gradient Navigation Strategies of the
NematodeCaenorhabditis elegans
SERGE THILL

Inthe present thesis, we apply computational methods to the study of animaaiter. Specif-
ically, we are interested in the gradient navigation strategi€s elegansfor which we show that
there are many interesting questions that have not yet been answesridtinyg research.

In order to study the behaviour 6f eleganswe first develop a range of tools to help us do so.
We base a large part of our work on Markov-like models of behaviodisarce these are not Marko-
vian in the strict sense (limiting the analytical tools which can be used to studybtteariour), we
first present a possible transformation from a Markov-like model witfalsde transition probabil-
ities into a strictly Markovian model. We next present a framework for stugdthie behaviour of
behavioural models which is not restricted to the work presented heiie likely to find general
use in behavioural studies.

Using these tools, we then analyse the chemotactic behavioGr efegans showing that
we can adequately explain most features of this behaviour using ee#figgncy considerations.
We also show that the main behavioural strategy, so-caiiediettesis likely to be caused by an
inability to sample the environment during a turn and that the animal my not be apamygradient
information while reversing.

Finally, we investigate the deterministic isotherm tracking strategy displayecl lejegans
We develop a computational model for this behaviour which is able to repeodll of the main
features ofC. elegangsotherm tracking and we propose a candidate neural circuit which might
encode this strategy. Additionally, we briefly discuss the use of stochastiegies by the animal
when moving towards its preferred temperature.

In summary, the work presented here therefore provides contributidn® tmajor fields: we
extend the methodology available for behavioural analysis in ethology armbmtribute a number
of insights and advancements to the fieldofelegansesearch.
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Chapter 1

Aims and Motivations

HE nematodeCaenorhabditis elegaris a popular organism for behavioural and neuroscien-
T tific studies (See.g.de Bono and Maricg2005. This is mainly due to the comparative
simplicity of its behaviour, the fact that the complete connectivity of its neuralit is known
(White et al, 1986 and the fact that it is usually possible to destroy specific neurons aseth\ab
the resulting change in behaviour.

It thus has to be one of the main goals of the behavioural resear€h elegango describe,
quantify and understand the behaviour of the nematode as completelysétsigaod/hile reviewing
the literature (Chapte2), however, we find that several interesting questions have not et be
adequately addressed. For instance, the animal is capable of navigamgal gradients towards
the source of a chemical and it has been shown that it performs this tiamigsing a directed
random walk strategyRierce-Shimomura et all999 but this behaviour has not been significantly
studied further since that fundamental study. Yet several questiorangfor instance, given that
the locomotion ofC. eleganscan be broken down into three behavioural units (forward runs, turns

and reversals, segariwala et al. 2003 Miller et al., 2009, how important is each behavioural
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unit for performing the overall navigation effectively and what is its rabe aelationship to the
other identified units? In what different ways could these units be cominineffective navigation
strategies?

The aim of this thesis therefore is to address the above questions as wibléaspen ones we
identify in the literature and by this further the field of behavioural studieS.alegans Specifi-
cally, we will address a range of questions regarding both chemotactitharmotactic behaviour,
but we will restrict the scope of the present work to gradient navigatraiegjies used by the animal.

Our main approach is computational, that is to say we will use computational nufdéls
behaviours we are interested in and analyse them for novel predictiotieese behaviours. The
choice of these model is ethologically guideé@finer 1996 Martin and Batesorl993 see Chapter
2) but part of the analysis used in this thesis requires a novel approactuésstanding behaviour
based on computational models, as will be discussed in Chéptehas therefore also become a
second aim of this thesis to provide such a novel approach. While our rehavioural interest
in this work is focused oi€. eleganswe find it nonetheless desirable to formulate this approach
in a general way so that it may find applications in a range of behaviotdies not necessarily
restricted to the field of. elegansesearch.

We are therefore trying to achieve two aims in this thesis. First, and most impprias
wish to further the study o€. elegansbehaviour using computational approaches and focusing
on open questions regarding its gradient navigation strategies. Seeowiktvto formulate any
methodology we develop in the course of this work in such a way that it majsbéba useful in

studies outside the field &. elegansesearch.
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1.1 Organisation of this thesis

We have divided the present thesis into four conceptually distinct paxtsi RndlV deal with
the introductory matters and the overall discussion and suggestiongrtioerfuvork respectively.
The research carried out for this thesis is presented in 4 chapters areicdpread over two parts.
Partll is concerned with general computational techniques for modelling and aplysimal
behaviour. It is not specific t€. elegansand the work presented in this part is likely to find
applications in a variety of fields. Padiit deals specifically with the major gradient navigation

strategies ofC. elegans



Chapter 2

Literature Review

THE aim of this chapter is to introduce the nemat@leclegansand review the current state
of the art inC. elegangesearch. While doing so, we will simultaneously identify open

guestion that can be addressed in the present thesis.

2.1 The nematodeC. elegans

2.1.1 Etymology

The nameCaenorhabditis eleganis actually a blend of three words:Kawos (kainos, gr.):
recent, referring to the Pleistocene epoch (The word Pleistoceneved&om IIAeioros (pleistos,
gr.) meaning 'most’ andKawos), PaBdos (rhabdos, gr.): rod (rhabditis meaning rod-like and
referring to the genus of rod-like organisms), atdgang(lat.): elegant, referring to the 'elegant’
sinusoidal movements of the nematode.

C. eleganswas initially simply namedRhabditis eleganby Emile Maupas(1899 1900. In

1952, Gunther Osche revised tRbabditisgenus, introducingCaenorhabditisas a subgenus-
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Figure 2.1: The nematode. elegansPicture adapted fromAftun and Hall 2005.

che 1952, changing the name ®habditis (Caenorhabditis) elegarsinally, EllsworthDougherty
(1953 elevated some of the sub-genera from Osche to genus statGs afejangeceived its cur-

rent name.

2.1.2 General facts

C. eleganspictured in its adult form in Fig2.1, is a small free-living organism, roughly 1
mm long and with a life expectancy of 2 to 3 weeks, beginning with fertilisatibrelegansnoves
through several larvae stages until it reaches its adult form rough&y? after hatching. Its body
is transparent with all cells, including the neurons, visible through a miopesend it is easy to
culture, making it an ideal candidate for developmental and genome stlidegzroduces sexually,
although there are no female specimen but rather only males and hermtgghrbtiles are found
only very rarely however and virtually all laboratory studies are on hphraalites.

The majority of research involvinG. eleganss genetical (see for instan&addle et al, 1997,
since the genome dE. elegands completely mapped and relatively small, with only about 100
Megabases, which are arranged on 6 chromosomes and an estimatetldotainol 20,000 genes

(Wei et al, 1996. In the present thesis, however, we are more interested in the betre\aoul
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Figure 2.2: The layout of the nervous systenCinelegangDurbin, 1987

neuroscientific studies @. elegange.g.de Bono et a].2002 Dunn et al, 2004 Pierce-Shimomura
et al, 1999 Ryu and SamueR002 Mori and Ohshimal995. These may also make use of the
research into th€. elegangienome ¢.g.de Bono and Bargmant998 Mori, 1999 Cheung et aJ.
2004). Indeed, since the genome is completely known, it becomes possible tbrbutants lacking
specific neurons. Along with laser ablation techniques, with which it is plessildestroy selected
neurons, these methods are a powerful way of investigating the behavfanction of certain
neurons in live animalse(g. Mori and Ohshimal1995 Tsalik and Hobert2003 Hardaker et aJ.

2001).

2.2 The neural architecture ofC. elegans

The “brain” of the nematod€. elegansonsists of 302 neurons, a number which stays constant
across individualsWhite et al, 1986 (see appendiA for a list of neurons and their approximate
location). Those neurons are connected via approximately 5000 chesyiegbses and 2000 gap
junctions (Niebur and Erd4s1993 and the connectivity has been virtually completely mapped out
(White et al, 1986, albeit only for one individual. An electronic database listing all the syioap
connections in a convenient format also exigdshio et al. 2003. It has also been shown that

the connectivity of theC. elegansieural system satisfies the constraints on a small world network

1A mathematical graph in which any node can be reached from any otierin a small number of steps, but in
which most nodes are not actually direct neighbours.
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(Nishikawa et al.2002).

The neurons are separated into 116 morphologically different cladsapiaf 1996, which in
turn are generally divided into three categories: sensory neuronsyeatens and motor neurons.
47 neurons are believed to sensory neur&@plan 1996, of which 32 appear to be chemo-sensory
(Lanjuin and Sengupt2004), as their sensory endings are generally exposed to the environment.
Around 20 neurons actually belong to a smaller pharyngeal sub-cirduiithvis solely concerned
with body functions related to feeding and digestion and is largely indepédé¢éhe main neu-
ronal circuit @very, 1993 Albertson and Thomsqri 976 while most of the remaining neurons are
grouped together in a nerve ring/Nbite et al, 1986, see Fig2.2).

The interneurons can be further subdivided into primary interneuroaigdns which are di-
rectly connected to sensory neurons), secondary interneuromsh(ate only connected to other
interneurons) and command interneurons (which are connected to motonsgferrée and Lock-
ery, 1999. All neurons are named by letter sequences which are usually 3 to 4 fetterslass of
neurons followed by a letter identifying the individual neurons inside tlaesisc

When looking at the general function of neurons (e.g. are they sensarons, and if so, to
what stimuli doe they react?), it is usually sufficient to consider the 116e$asither than individual
neurons ¢€.g.Gabel et al.2007 Gray et al, 2005 Dunn et al, 2004, although it has been shown
that the difference between two neurons may be important in more detailadibeh For instance,
Wes and Bargman(00]) showed that the two AWC neurons, involved in chemo-sensing, are
functionally distinct and a loss of this diversity results in impaired chemotaxis.

The largest part of the neural studies in the fiel@€oklegansesearch concerns itself with the
identification of the functional role of certain neurons (for overvieveg, for instancé8argmann
1993 de Bono and Maricd2005, making use, for instance, of laser ablations or selective mutations
to destroy or deactivate certain neurons in order to determine how this feittt dfehaviour. This

has led for instance to the identification of neurons that take part in cheticqgag.Bargmann and
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Horvitz, 1991 and thermotactic behaviouMpri and Ohshimal995 as well as the identification
of the likely circuit for touch sensitivityGhalfie et al. 1985. Most of these investigations aimed to
discover neurons involved in the processing of a general stimalgslitermal or chemical). Other
studies have determined neurons that are involved in generating partadarotory outputé.g.

Gray et al, 2005.

2.3 Neurophysiology

This section will give an overview of the neurophysiological data availabl€. elegans As
will be evident, the available knowledge on the neurophysiology.afleganss far from complete,
and while laser ablation and mutation studies have allowed us to identify the rfotfeoent
neurons, the small size @. eleganshas, until recently, made it impossible to obtain intracellular
recordings Nickell et al, 2002. Indeed, the cell bodies of the neurons are typically oplynin
diameter and as an extra challenge, the worm is protected by a cuticle wipiddes at attempts
to dissect the anima3oodman et a.1998.

Thus, several key data have actually been adapted from the largetaaemacaris suum
Generally, data fronfAscaris s.is usually used in modelling studies when equivalent data is un-
available fromC. elegandtself (see for instanceFerrée and Lockeryl999). However, this is
problematic since there are indications tAatcaris s. differs in several aspects fro@. elegans
both in intracellular propertiedNjckell et al, 2002 as well as through the significant difference

thatAscaris s.actually also features spiking neuroméidbur and Erd4s1993.

2.3.1 C. elegansneurons

In most animals, neurons transmit information between them using spikesti@n @oten-

tials), which are essentially electrical pulses travelling down the axons oh¢heons and are
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caused by the opening and closing of different types of ion chan@Re({lly and Munakata
2000. The detailed dynamics behind these action potentials were first deséoibgidnt squid
axons byHodgkin and Huxley(1952. However, their model is now generally used for describing
the dynamics of spiking neurons in most animals, including human beings.

The most striking feature . elegansieurons then, is that they lack the" voltage depen-
dent ion channel, which is essential for the Hodgkin-Huxley model ofadiigig between neurons
(Nickell et al, 2002. Instead, it is assumed, based on data flsoaris s.and recordings from
a few C. eleganseurons that they use slow, graded potentials based on calcium dynardics a
electrotonic effects to transmit signaNi¢kell et al, 2002 Goodman et al.1998.

Intracellular calcium dynamics have only recently been measured in detaivéosensory
neurons: ASJGabel et al.2007 and AFD Clark et al, 2006, involved in electrosensation and
thermosensation respectively. These studies have used calcium imadingjtes to determine
how changes in the environment might be translated into sensory signalglabd discussed in
more detail later on.

One of the only detailed intracellular recordings and characterisation vidodl channels
has been done biMickell et al. (2002, who looked in detail at the chemo-sensory neurons AWA
and AWC. While they were unable to clearly measure the value of the restiegti@ due to the
limitations of the equipment and techniques currently available (with values neefsom different
cells ranging from-16 to—65 mV), they found a region of high membrane resistance, bounded by
inwardly (active at potentials lower than50 mV) and outwardly (active at potentials higher than
—20 mV) rectifying currents, between20 and—70 mV. Outwardly rectifying channels were found
to be activated b &?* as well as, as mentioned before, by depolarisation while inwardly rectifying
channels were separated into two types, both activated by hyperptitarjseith one being difficult
to characterise and the other one being most likely a non-selective cationeih

Thus it is clear that our knowledge of the intracellular propertie€.ofleganseurons is not
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sufficient at the moment for constructing detailed computational models @& tireesons. However,
as will be argued in sectio.3.3 this lack of data is not a fundamental problem for the work

presented in this thesis.

2.3.2 C. elegans Synapses

As there is virtually no physiological data on the synapse€ o€legansitself, data from
Ascaris s.is generally used as it seems reasonable to assumé.tegansynapses will function
in a similar way Ferrée and Lockery1999. Thus, post-synaptic voltage can likely be modelled as
the result of a sigmoid function of the pre-synaptic voltage.

An interesting study byschuske et al(2004 shows that the GABA neurotransmitter @
elegansactually has both an inhibitory and an excitatory function. The inhibitorycefias been
observed in motor neurons controlling ventral and dorsal muscles.dir o bend the body.
eleganscontracts the muscles on either the ventral or the dorsal side while using @#Brvation
to relax the muscles on the opposing side. The excitatory effect has beerved during defecation,
where GABA releases from the AVL and DVB neurons are required titeexnuscle contractions
resulting in the expulsion of intestinal contents. Other known standar@imansmitters that have
been found irC. elegangusually by analysing the genome for their expression) include serotonin,
dopamine and acetylcholine. For additional discussion, see for indRiddke et al.(1997).

In general however, the signs of most synapses have not beenretkgetiand remain thus
unknown. Some studies attempt to identify synaptic signs through computatiodals €.g.Ma-
jewska and Juste2002; Iwasaki and Gomi2004), however none of them are without problems.
The study byMajewska and Just@001), violates the hypothesi®ale, 1935 that any one neuron
uses the same neurotransmitters at all its synapses, as ndigdgdaki and Gom{2004). For their
part, lwasaki and Gom{2004 use spiking neurons in their simulations, which ignores one of the

key facts abou€. elegansieurons that researchers feel reasonably confident about, nénaietlye
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animal does not use spiking neurons.

2.3.3 Implications of the lack of neurophysiological datadr the present thesis

Itis evident from the data presented here that neurophysiologicahiatton abouC. elegans
is rather scarce and data frokscaris s.cannot be used unreservedly. For this reason it cannot be
expected that detailed computational models of any neural circuitry umggygiven behaviour
will be produced in this thesis. While this would not be impossible in principle &ad somewhat
constrained since the connectivity of the neural circuitry is krfigwnch investigations would only
have a theoretical interest at best but would remain without real pnegliptiwers. In particular,
it can be shown that even when neural and synaptic dynamics are kaawigiven neural circuit
can nonetheless produce the same overall behaviours for a wideabwalees for its parameters
(Prinz et al, 2004). In the case o€. eleganswhere not even the dynamics are known in sufficient
detail, this issue would be even more severe.

However, while detailed models of the neural circuitry are not likely to bé&uligethe present
work, the situation is different when considering functional models whiclug on the computa-
tions required for performing a certain behaviour but do not actuallyyaivout a detailed neural
implementation of these computations. An interesting study in this respect haddmee byDunn
et al. (2009. In their work, they train and optimise neural networks to perform chectiotae-
haviour (discussed in the next section). While the merits of the architectiihe metworks they
find in this way are debatable for the reasons discussed abav®) et al.(2009 focus, in part
of their discussion, on the computations performed by their networks rditaerthe layout itself.
They thus find, for instance, that the animal is likely to compute the first timeatie of the inputs

perceived by the chemosensory neurons. They have thus formulagegssary computation that is

2This is an interesting situation in itsel. elegansstands apart as being the only animal for which we know the
neural connectivity but not the neural dynamics. In the case of wtbst, higher lifeforms, neural dynamics can be
known in great detail but the exact connectivity remains unknown andbe modelled at best using general statistical
guesses on its possible nature.
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performed within the neural circuitry &. elegansvhose plausibility is independent of the actual
biological neural implementation.

In this thesis, we take a similar approach, in particular in Chajter which we consider the
computational requirements for certain behaviours and formulate rests@ithe computational
capabilities ofC. elegans Any discussion of neural computations will therefore remain at the

functional level.

2.4 The behaviour ofC. elegans

It has been said before that the main interests of the present work laagideral. In this
section, we therefore give an overview of the behaviou€Coklegansand open questions to be
addressed in the present thesis will be highlighted. Some behaviourstticulza the feeding
behaviour, are mentioned only out of interest and for the sake of compk=tdut will not be the
subject of major investigations in the remaining chapters of this thesis. The&viiogds a quick

summary of the behaviours that will be dealt with in the thesis:

e Chemotaxis the ability of the animal to navigate chemical gradients using a directed random

walk.

e Thermotaxis, the ability of the animal to navigate towards a preferred thermal region in

thermal gradients, again using a directed random walk.
e Isotherm tracking, the ability of the animal to follow a “line” defined by a specific tempera-
ture within a thermal gradient with great accuracy.
2.4.1 Locomotion

C. elegangmoves forward through sinusoidal movements of the body while lying on its side

and contracting its ventral and dorsal muscles respectivetgy( et al, 2005. These sinusoidal
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Figure 2.3: Tracks of 3 worms allowed to wander for 20 minutes in a unifaadignt (Fig. 2a
from Pierce-Shimomura et all999.

Figure 2.4: Tracks of 4 worms allowed to wander for 5 minutes in a radialigma (Fig. 3a from
Ferrée and Lockeny999. Peak of the gradient is at the centre of the figure.
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swims, which characterise the movementofelegansan be interrupted by turns, which fall into
two main categories: reversals and omega turesrée and Lockenil999. During reversals, the
worm first moves backwards and then turns into a different direction vemlemega turns is a
movement during which the worm bends its head towards its tail, thus forminghépe ©f the
Greek letterQ before moving off into a different directiorP{erce-Shimomura et all999. It is
thus possible to identify three different locomotory behaviou@.ielegansforward runs, reversals
and turns. The overall movement®©f elegangienerally resembles a random wallatiwala et al,
2003 see Fig.2.3), but can be heavily influenced by external parameters, for exampfeeksence
of a chemical gradient in which the worm tends to move towards the peak gfaldeent (Fig.2.4).

It is known that the sinusoidal movement is produced by ventral andildoesirons exciting
and inhibiting each other beginning in the head of the animal. The resultingdigheé head is
then propagated along the length of the body, resulting in the sine-wave Iikennent but it is
an open question whether or not these rhythmic movements are actually mdajade@Gentral
Pattern Generator (CPG3zuki et al.20053. Detailed models of the motor neurons and the body
of C. elegandhave also been produce8uzuki et al. 2005ha), which are capable of reproducing
the general body shapes Gf elegansbut while interesting from a theoretical point of view, the
biological relevance is again debatable, in particular since these studign@ashe existence of a
CPG even though this remains unconfirmed.

From a behavioural point of view, it is also perhaps more interesting tafiigede how sensory
and interneurons affect the locomotory outpuCofelegansather than the mechanics by which the
behaviour is produced.A candidate neural circuit for the locomotio@.afleganss presented in
Fig. 2.5 Gray et al.(2009 show that killing the AWC or the ASK neurons (sensory neurons for
detecting volatile and water soluble chemicals respectively) has no effgbiedoehaviour in the
presence of food or on the dispersal behaviour observed whendime kas been in the absence

of food for a longer time (see sectidh4.?. However, it does affect the local search behaviour
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Figure 2.5: Fig. 3a fromGray et al, 2005. A candidate circuit for locomotion i€. elegans

Command interneurons are shown in green, sensory-, inter- and neatars are indicated by their
respective shapes, arrows indicate synaptic connections and esbars gap junctions (where the
style of the arrow or of the H-shape indicates the number of connectidnede the neurons at

either end).
displayed when the worm is moved from food to an environment without fasthe killing of the
AWC or the ASK neurons reduces the frequency of reversals andataegs. In contrast, killing
the ASI chemo-sensory neurons resulted in an inability to reduce theefmegwf short reversals
during the dispersal behaviour. Killing the thermotactic AFD neurons led toal slecrease of
reversals and omega turns during local search, but this effect wassmadker than the ones pre-
viously observedGray et al, 2005. Killing other sensory neurons had little or no effect on the
locomaotion.

Tsalik and Hober(2003 also find a decrease in reversal frequency when the AFD neurens ar
killed, hypothesising that it is actually caused by an increase in forwarduuation, which could
be explained by the fact th@t elegansises the AFD neurons to suppress reversals when in aversive
thermal conditions.

Gray et al.(20095 go on to identify the roles of non-sensory neurons in the locomotory be-
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haviour. They show that killing the AlZ neurons reduced the frequefshort reversals on food
while killing AIB or RIM neurons resulted in animals that did not exhibit a higirequency of
longer reversals and omega turns upon removal from food. Animals ;élivi or RIM neurons
were not able to initiate the dispersal behaviour after having been renfrmredood for a longer
amount of time.

The finding on the AlY and RIM neurons is consistent with what has besareed previously
by Tsalik and Hober{2003, who noted that their removal caused hyper-reversal behavitay T
also find that the removal of AlY results in a slightly defective chemotaxispatih this defect can
be overcome by increasing the chemical’s concentration, thus indicatinthehAtY neurons are
not the only gateway through which sensory neurons can modulate locomotio

The AVA command neurons are essential for reversals and backwamehmeat Chalfie et al,
1985 Niebur and Erdds1993 and unsurprisinglyGray et al.(20095 show that killing these neu-
rons results in a complete inability to generate long reversals and a much feqeefcy of short
reversals whilst in the presence of food. Omega turns, on the other\wareinot affectedNiebur
and Erd6g1993 also show that backward movement can be completely disabled by eliminating
both the AVA and the AVD neurons or the DA neurons, whereas simply elimigaif\ or DD
just results in impaired backwards movement. Similarly, the animal can be ezhdgleable to move
forward by removing both the AVB and PVC neurons or the DB neurom&reas simply remov-
ing AVB or DD results in impaired forward movementliebur and Erdgs1993. Ablating the
RIM motor neurons resulted in an increase of short reversals. Tleisteibuld be reversed by also
killing the AVA command neurons, suggesting that RIM might use the connediiotihe command
neurons in order to suppress short revergatay et al, 2005.

Finally, Gray et al.(2005 look at which neurons affect omega turns. It turns out that killing
either the SMD or RIV neurons decreases the frequency of omega withsSMD being respon-

sible for the omega turn amplitude while killing the RIV neuron removes the biabédirst head
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swing after a reversal being into the ventral direction.

Perhaps the most fascinating insight to be gained from these studies isdghatdh main
locomotory behaviours of. elegans namely forward runs, turns and reversals, appear to be di-
rectly and separately encoded in neural subcircuits. We will use thiddestwhen choosing a

computational model of. elegandehaviour.

2.4.2 Feeding and social behaviours

The movement of. eleganshanges dramatically depending on whether it is currently in the
presence or the absence of fo@tdy et al, 2009. In the presence of foodGfay et al, 2005 have
found that the worms move forward slowly, reverse frequently, althoughdabersals are usually
quite short, and almost never exhibit omega turns. If the worms are maditb@ dbod, however, the
frequency of short reversals decreases while the frequency gfreversals increases at the same
time, as does the frequency of omega turns. This high frequency obeds@nd omega turns was
found to decrease again after a longer time in the absence of food, rgsaltonger runs in one
direction.

The feeding behaviour dE. elegansgs interesting, not only because of the feeding itself, but
also because some straingbfelegansexhibit a kind of social behaviour during feedirdg(Bong
2003. In fact, social strains will not reduce their speed upon encountéoiog until they have
aggregated with othe€. elegandndividuals, whereas solitary worms will start feeding immedi-
atelyde Bono et al.2002. This social behaviour seems to be related purely to feeding however.
The aggregation behaviour of the social strains is not observed in se@ed of food, or when the
worms are well-fedde Bono et al.2002.

As far as neural mechanisms underlying this social behaviour is cattetrappears that it
is mediated by neurons responsible for detecting noxious stidelBpno et al.2002. In fact,

de Bono et al(2002 show that the two neuron groups in question are ASH and ADL, as the



Chapter 2: Literature Review 19

aggregation behaviour is significantly disrupted if both ASH and ADL nesi@re ablated. Just
killing either both ASH or both ADL neurons, however, did not significantfjuence the worm’s
behaviour. It appears that bacterial odour emanating from the fodéintsg induce the social
aggregation behaviour, although the exact reason for this behaeioaims rather uncleadé Bono
et al, 2002.

In a related studyCoates and de Bor(@002 identify more neurons which could play a role in
producing the aggregation behaviour. They note that suppressingRe PQR and URX neurons
inhibits social feeding. These neurons are unusual, because thitye amely ones to be exposed to
the body fluid ofC. eleganswhich appears to be its blood analog@oétes and de Bon@002),
but it is unclear how exactly these neurons affect the aggregatiowibehalndeed, it is not even

known for sure if all three affect the behaviour, or merely one or twihem.

2.4.3 Gradient navigation behaviours

Most of the behavioural work o@. elegandias been done on its behaviour in graded environ-
ments, which is also the main interest of the present thesis. Here, we willreuigh behaviour in

the two main environments navigated by the animal: chemical gradients and tlogresal

Chemotaxis

Chemotaxis refers to the ability @f. elegango navigate chemical gradients either towards the
source of this chemicag(g. if the source is food) or away from ie(g. if the source is a predator).
The animal is capable of identifying different chemicals and able to act agwadient created by
one chemical even if another chemical has a strong uniform presé&fesegnd Bargmanr2001).

In order to successfully perform chemotaxis,elegansnust have a way of assessing the surround-
ing chemical gradient. Chemosensors®feleganscan be found both at the head and at the tip

of the tail Ferrée and Lockeryl999. However, mutants in which the rear sensors are blocked
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Figure 2.6: Fig. 5c fromRierce-Shimomura et all999 showing the separation of tracks into
runs and pirouettes. Dark parts of the track have been classified asvdeneas lighter parts have
been classified as a pirouette.
are not significantly impaired in performing chemotaxXf¥afd 1973, thus suggesting that only
the front sensors play a major role. It is not known exactly how the wasesses the chemical
gradient, howeverHerrée and Lockeryl999. Two likely mechanisms exist: either the gradient
is sampled during head sweeps resulting from its typical sinusoidal métfard(1973 or simply
while moving forward through the environmeigrée and Lockeryi999.

One of the earliest studies into chemotaxis has been doialogt (1973, who hypothesised
that the animal performs chemotaxis by keeping its head pointed up the chgnsidant “like a
weather wane pointing into the wind”. However, this strategy has since siggrseded by the
pirouette strategy initially proposed IBierce-Shimomura et a11999. According to this strategy,
a pirouette is a “series of turns interspersed with short ruRgr¢e-Shimomura et all999 see
Fig. 2.6). During chemotaxis, it has been shown that these pirouettes occur ragsently when
the worm is currently heading down the gradient and least frequentiy ithie heading up the
gradient Pierce-Shimomura et all999. Critically, Pierce-Shimomura et g[1999 also show, that
the start of pirouettes is not correlated with the absolute concentration ohémeical, but with a

change in concentration. Further, on average the worm will be headiadawourable direction
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after a pirouette.

The directed random walk as described by the pirouette strategy remaatctied model of
C. eleganshemotactic behaviour to date. One subsequent behavioural study diveeidyang that
the pirouette strategy is the only behavioural strategy used in chemd®éisg-Shimomura et al.
20095 while another attempted to identify the required sensorimotor transformatmessary for
the pirouette strategyMiller et al., 2005 but in general, there have been no further significant
behavioural studies of chemotaxis.

However, there are still several interesting open questions. Themanadk strategy used by
C. elegangombines forward runs, turns and reversals into the pirouette stratedy,this strategy
optimal given these available locomotory behaviours or do other strategit® More generally, if
C. elegansocomotion consists of these three behaviours (which are all directly edaéodlifferent
neural circuits, as seen previously in this chapter), how should thegrbbined in order to perform
efficient chemotaxis?

Further, does the observed behaviour give any insights in the undedgmputations? It has
been shown previously for instance, ti@ateleganss likely to compute the first time derivative of
the sensory inputunn et al, 2004, but are other insights possible as well? These questions will
be addressed in Chapter

Most of the sensory neurons for chemical stimuli are thought to be knGe AWC neu-
rons are known to sense at least five odours: butanone, benzdédeh@-pentanedione, isoamyl
alcohol and 2,4,5-trimethylthiazol®/es and Bargman2001). Other sensory neurons involved in
chemotaxis include AWA and AWB which also respond to volatile odorants (Ad#sing odorants
to which the worm is attracted and AWB odorants by which it is repellehjuin and Sengupta
20049), ASE and ASK for water-soluble chemicalégplan 1996 and ADF, ASG, ASI and ASJ for
water soluble compounds and pheromoriéasplan 1996. Fig. 2.7 shows most of the significant

connections and the interneurons thought to be involved in chemotaxis.
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Figure 2.7: Fig. 8 fromDBunn et al, 2004. The simplified circuit shown is a part of the chemo-
sensory circuit inC. elegans Dashed lines are gap junctions, arrows are chemical synapses and
self connections actually represent chemical synapses between thef paurons in that class.
Pathways in which there were 'fewer than 2 pre-synaptic densities @rféhan 3 gap junctions’
were ignored in this diagram.

Response to the sensory cues seems to be mainly mediated by the AlY neliihoogh a
second route via AlZ and RIB also existBs@lik and Hobert2003, hinting at redundancy within
the C. eleganseuronal circuit. However, animals whose AlY neurons have been killkghow

a defective chemotaxic behaviour unless higher concentrations of ¢émeicdl are presenf6alik

and Hobert2003.
2.4.4 Thermotaxis

Navigation towards a preferred temperature

Similarly to its behaviour in chemical gradien@, eleganss able to navigate thermal gradients
towards regions of preference. This “region of preference” is difyithought to be a region whose
ambient temperature is roughly the cultivation temperature of the anBaatel et a.2003, but

it has recently been shown that the preferred temperature is actualty dmasecent thermal history
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(Biron et al, 2006.

The history of the study of thermotaxis . eleganss perhaps more interesting than the
corresponding history of chemotactic studies as our knowledge of thavioein keeps evolving
even today. One of the first studies of thermotaxis was dorddiry and Ohshimg1995, in what
is essentially a study of the neural system of the nemathddegans Mori and Ohshimg1995
distinguish between a thermophilic and a cryophilic driv€ireleganswhere the cryophilic drive
is used for moving down a thermal gradient towards the preferred tetopeend the thermophilic
one for moving upwards towards the preferred temperature. The sadheato identified the
AFD neuron class as being the main thermosensory neuron, while hyjsathethat a second
thermosensory neuron also had to exMbri and Ohshimg1995 tried to identify more neurons
involved in the thermotactic circuit by killing off neighbouring neurons of AHDey found that
killing both AlY neurons, which are post-synaptic to the AFD neuronsylted in a significant
cryophilic movement as well as the loss of the isotherm tracking ability. Iriteghg killing AlZ,

a post-synaptic partner of AlY resulted in worms actually exhibiting a therifiofdehaviour.

To investigate the relationships between the AFD, AlY and AlZ neurbtmsj and Ohshima
(1995 killed off pairs of them, but found that only killing AFD together with AlZ yieldlany useful
information. Animals to which this was done exhibited a far more extreme abnbehatiour than
those which only had AFD killed, suggesting that AlZ receives informatiomfa further, as yet
unidentified, thermosensory neuron. Further, when looking at fupgbssible candidates for the
thermotactic circuit, both the RIA (which is post-synaptic to both AlY and AlZ) &IB (which is
post-synaptic AlY and pre-synaptic to AlZ and RIA) interneurons vedse found to slightly affect
thermotaxis in new ways. In terms of identifying a neural circuit for therntadmehaviour, this
study byMori and Ohshimg1995 remains the most important work.

Ryu and Samug2002), in the first paper investigating the behavioural strategies beBind

eleganghermotaxis however find no behavioural evidence for the thermophilie dtiggested by
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Mori and Ohshimg1995), that is to say, they find no evidence that the animal will move towards its
preferred temperature if the ambient temperature is lower. The study ddesyophilic behaviour,
whose mechanism is similar to the pirouette strategy proposed for chemotariqeriods are
extended if the worm is heading down a gradient compared to movement ot@pis environment
and shortened if it is heading up a gradient.

Interestingly, the controversy surrounding the existence of the theiititoghive continues.
Ito et al.(2006 argue for the existence of a thermophilic drive which may only becomeesatier
a longer period of time and therefore missed in studies like the oriRyloyand Samue(2002).
On the other hand, studies of the calcium dynamics within the AFD neuronajeacstll the only
known thermosensory neurons, show no activity at temperatures bedogreferred oneimura
et al, 2004 Clark et al, 2009.

Whether or not a second thermosensory neuron, as hypothesiséatignd Ohshimg1995
exists also remains unknown. On one hand, the existence of such ameigiitt explain the con-
troversy around the thermophilic drive but on the other hand, it has $lemmn that activity of the
AFD neuron is sufficient to explain all other thermotactic behavio@igrk et al, 2007, 20086.
There are thus still open research questions about the navigat@netégansn thermal environ-
ments. However, these questions are less concerned with behavicaiedies and more with the
thermal range in which these strategies are active. As such, they aanbegred by experimental
work and do not lend themselves well to the theoretical computational wodiwéeo perform in
the present thesis. For this reason, we will not address either the thatimdpive or the possible
existence of another thermosensory neuron in later chapters of this thesis

A study which claims to have found a thermophilic drive however, and whésieves a little
discussion has been done Bgriwala et al(2003. In this behavioural studgariwala et al(2003
find that the turning rate of the animal increases if the worm is placed in a tampehbelow

the preferred one (similar to the observationsRyu and Samug2002) for the cryophilic drive).
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Further, they find that the cryophilic drive manifested by the worm in thetlysaictually resembles
an avoidance response, where the worm first reverses and tHempean omega turn.

The results fronZariwala et al.(2003 thus appear to be at odds with those fr&yu and
Samuel(2002. However, it is important to note that that the experimental setups in thediestu
differ substantially from each other. WhereRgu and Samue{2002 put the worm on thermal
gradients either above or below the preferred temperature and othserveovement across this
gradient,Zariwala et al(2003 either increased or decreased the ambient temperature (initially set
to 20°C, the cultivation and thus the preferred temperature of wild type worms)°i@/s3ep, but
did not provide a thermal gradient leading back towards the prefemepkt@ture. This difference
in setup (most notably the lack of an actual gradierfaniwala et al(2003’s study) suggests that
it is entirely possible for both experiments to, in fact, be looking at a diftesgre of behaviour.

This suggestion is backed up by the fact ttRyi and SamueP002 also found, as discussed
earlier, that the turn probability of the animal is different depending ortheret is in an isotropic
environment or in a gradien€. elegansghus appears to be exhibiting a different behaviour depend-
ing on whether it is simply placed in a warmer environment or a thermal gradiiénthus possible
thatZariwala et al(2003 have inadvertently studied the animal’s response to sudden temperature
changes rather than its navigation strategies in thermal gradients. Thecsigndifference lies in
the fact that during a sudden temperature drop below the preferred riegmee the AFD neuron
would switch from active to silent which in turn may trigger a behaviourgloase. If the animal is
already in a thermal gradient below the preferred temperature, the acfitiity AFD neuron would
remain unchanged.é€. silent) and would thus not trigger a behavioural response. The theilcoph

response discovered Bariwala et al(2003 may thus not apply to navigation in thermal gradients.
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Isothermal tracking

A second interesting behaviour observed in thermal environments is thentyaxf isothermal
lines in the graded environment. However, this behaviour has not yevescmuch attention in the
literature. It was first characterised Ryu and Samug[2002 who noted that the behaviour only
appears if the animal is within 2 to & of its preferred temperature. Interestingdamuel et al.
(2003 have shown that the synaptic output of the AFD neurons increases $amhe temperature
range and may thus regulate the on- and offset of the isotherm trackiagibar.

A more comprehensive study of isothermal tracking behaviour has hextistped bylLuo et al.
(2006. In this study, it was found that isotherm tracks are periods of pra@difigrward movement,
suggesting that the animal continuously performs small course corretbi@tsy on the track. It
does so with amazing precision: while tracking isotherms it does not deviatetfrem by more
than 01 °C. At the same time, however, the animal does not appear to be activelpgéesiktherm
alignment as isotherm tracks are separated by periods of stochastic nmb&@1d€. elegansioes
not appear to align onto them deterministically. Finally, it has been shown thanimal is not
likely to keep a memory of the isotherm it is currently tracking but maintains therabgihthrough
other means.

Luo et al. (2009 then formulate a strategy which might be employedyelegans They
propose that the animal continuously adjusts the rate of curvature of #teskgment in function
of the sensory input in order to balance warming and cooling phasegydutinad sweep and thus
maintain the alignment. The strategy thus attempts to achieve and maintain a balarevenal th
input which should keep the animal aligned with the isotherm. This is puzzlingVewas such a
balance would also exist were the animal to move directly perpendicularly iedtieermal track,
that is to say directly into (or away) from the gradient. If the strategy pegdyLuo et al.(2009
could be used for such a navigation into the gradient, the animal would b&atdeigate towards

its preferred temperature deterministically rather than stochastically usin@thé&sstrategy. Since
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this would be clearly at odds with observed behaviour, it would imply that tita¢eg)y proposed
by Luo et al.(2006 is not actually a candidate strategy for isothermal trackin@ bglegansand a
new strategy would have to be formulated. We will discuss and addressdhesiis Chapte6 of
the present thesis.

The ability of C. elegango deterministically track isotherms raises another important ques-
tion that has not yet been answered: why would the animal use a stodtestiag)y for navigating
towards its preferred temperature at all? It is clearly able to sample the tdmpesia sufficient
resolution and respond with sufficiently precise movements for deterministiteisoal tracking,
so what prevents it from using the same sensory and locomotory capaliditieavigating de-
terministically towards its preferred temperature? This question will also besskt in Chapter

6.

2.4.5 Electrical fields navigation

It has recently become evident that electrosensory behavidlireleganss actually also me-
diated by the neural circuitry3abel et al.2007), rather than being, for instance, a simple physical
effect. The navigation strategy used by the animal in electrical fields ajsaepto be determin-
istic: it will crawl at a specific angle to the field towards the negative poleinfgresting parallel
with isotherm tracking is the fact that in both cases, the optimal direction is #hen@sopotential)
gradient lines rather than perpendicularly to them. Concerning electetéinfavigation however,
it has been found that the intracellular calcium levels in ASJ, the main sensoargn involved
in this behaviour, is directly correlated with the travel angle relative to theredaktfield and is
highest (lowest) when the animal is directly facing the positive (negatve) (@abel et al.2007).
In contrast to navigation in thermal environments thus, the output of ASJ itsdlf sufficient to
directly mediate the deterministic strategy and no further computational stepseted.

Therefore, even though the optimal direction in both cases lies parallel &s”l{frsothermal
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or isopotential) in the environment, the similarities between isotherm trackingleciieal field
navigation end there. When navigating electrical fields, the animal is abledeiype the optimal
direction immediately and as such, the behaviour is of lesser interest todmsedthowever serve
as another example of a navigation problem in wiicheleganaises a deterministic rather than a

stochastic navigation strategy.

2.5 Ethological considerations for modelling and analysing behaviour

The previous section has introduced the animal we are interested in atifiedeseveral open
questions relating to its behaviour. In order to successfully address tjuestions, we therefore
need tools enabling us to both model and analyse this behaviour. We agfothanterested in
methods from the field of Ethology which will allow us to achieve our goals usiagmly compu-
tational means.

Perhaps the largest part of the methods available in Ethology are actuadigroed with the
measuring of behaviour in experimental setups [@adin and Batesorl993 for an introduction).
This is less interesting in the context of the present thesis since our worgétdased on existing
and published behavioural measurements. Nonetheless, a few cdinceptkis methodology can

help in guiding our work and providing its ethological context.

2.5.1 The context of the present work within the field of Etholog

First, it is generally accepted that the field of Ethology mostly aims to addresgypas of

questions Kartin and Batesoril993, initially proposed byTinbergen(1963:

e How is a behaviour performed (Proximate causation)?
e How does a behaviour evolve during the lifetime of an animal (Ontogeny)?

e What is the function of a behaviour?
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e How did a behaviour evolve?

The questions we have identified in the previous section are mainly relatedfirsttaand last
point in this classification. We are interested in the strategies underlying thetiodehaviour as
well as the mechanisms underlying isothermal tracking, both of which relatis tiirst class of
guestions. Additionally, we are interested in studying the use of stochastér than deterministic
navigation strategies for reaching preferred temperatures in a gradiedranent. This investiga-
tion falls within the final class identified blinbergen(1963, although the question might be better
formulated as YWhydid a behaviour evolve?”. Together, these classes thus define thegithblo

context of our work.

2.5.2 Modelling behaviour

A second interesting concept from the methodology for measuring behasithe concept of
behavioural unit(Lehner 1996. Given a continuous observed behaviour, it is possible to break it
down into functionally distinct units. Choosing appropriate units is importatiican be a difficult
task but at the same time, well-chosen units would provide an ideal basisdangutational model
of a behaviour. In the case @f eleganswe have seen previously in this chapter that locomotory
patterns are generally divided into three different classes (forwars, turns and reversals) and
that these classes appear to have their own underlying neural sutsciféiven the fact that these
classes can be observed both behaviourally and within the neural girtiidy seem ideal choices
as behavioural units. There have been two previous studies whiclagsedputational model based
on these unitsZariwala et al.2003 Miller et al., 2005, giving us additional confidence that these
units are a reasonable choice. We therefore base our computatiorstigatiens on these models

with three behavioural states.
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2.5.3 Analysing models of behaviour

Finally, we need to consider the nature of the computational model used in ttksZesiwala
et al. (2003; Miller et al. (2005 model the stochastic gradient navigation using a Markov-like
model. This will be discussed in more detail in Cha@dout an immediate issue with such a model
is that it is not strictly Markovian since its transition probabilities depend orreaténput. This
makes it in principle impossible to directly use Markovian properties for amaytbe behaviour
of the model analytically, instead forcing the use of numerical simulationse Simch Markov-like
models are however an attractive tool for modelling stochastic behaviofusdtion of external
input (see alse@.g. Sanchez-Montafiés and Pear2806 with potential applications outside the
field of C. elegansit is interesting to investigate if they can be somehow converted into a strict
Markov model with the aim of making the full array of Markovian analysis teghes available.

Chapter3 is dedicated to this investigation.

2.6 Summary of Chapter2

This chapter has introduced the nemat@leslegansand the current state of the art of the

research on this animal. Several open questions have been identifigdnekid to be addressed:

e Given the three locomotory behaviours@felegangforward runs, turns and reversals), how
are these best combined if the aim is efficient chemotaxis? Is the piroueteggteanployed

by the animal optimal in this sense? Why are pirouettes used at all?

e Is it possible to derive novel predictions on the computational capabilitifgeainimal from

the chemotactic behaviour?

e Is the existing proposed strategy for isotherm trackingp(et al, 2006 reasonable? If not,

can another strategy be proposed?
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e Given how well the animal tracks isotherms, why does it rely on stochastitegtes at all
when navigating towards the preferred temperature? Are deterministioggtsafevented

by something fundamental?
Additionally, we have identified a need for novel techniques for analysatgviour:

e Is it possible to convert Markov-like models with variable transition probalsliti¢o strict

Markov models? If so, how can this be done and what are the restricifiamy;?

e Can we propose a framework for analysing behaviour based on catiopatanodels which

is able to extract novel information and make novel predictions on this mir&v

The remainder of this thesis is dedicated to answering these questionschihieakquestions
relating to the analysis of behavioural models are addressed first aimitjets gained from that

work is then applied to address the open issues in the study of the behafduelegans
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Chapter 3
Translating Markov-like models of behaviour into strict

models

T is sometimes possible to model goal-oriented behaviours of animals using @Mk
I model. These are based on a Markov process, which models the seqfestates a given
system can be irBrémaud 1999 Grinstead and Snell997). A fundamental characteristic of such
a process is that the next state depends only on the present one amdoisiaselected from all
states of the system based wansition probabilities i.e. the likelihood for each state to be the
successor of the current state. If the transition probabilities are fix@éd@mot change over time,
the model isstrictly Markovian.

When such a model is used in behavioural studies, the states are ustitilysgespond to
the different observed behavioural units while the transition probabilitesiependent on some
external variable or input. A very basic example is given in Bd. Here, we consider a fictional
animal, which can only eat or sleep; the model therefore only contains ties starresponding
to these behavioural units. Since the model is Markov-like, transitions bativesse states are

probabilistic. To be useful in modelling behaviour, however, these transitieed to be a function

33
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0.8 0.2
Hungry Full

Figure 3.1: An example behavioural model of a fictional animal whose s#laiours are eating
and sleeping. The model is Markov-inspired since the transitions betweethftérent states of
the model (corresponding to behavioural units of the animal) are prolhilisit is not strictly
Markovian since the exact values of the transition probabilities are a funatithe hunger level of
the animal.

of some external input or variable which modulates the overall behavidlie onodel, which means
the model is no longer strictly Markovian (but merely Markov-like). In thareple of Fig.3.1, this
variable is the hunger level of the animal, represented here as a simple anatyle; the animal
is either hungry or full. If it is hungry, the transition probabilities in the model such that the
animal is very likely to eat but not likely to sleep (black transition probabilitigspther words, if
the animal is currently sleeping, it is likely to stop doing so and start eating anid #ating, it is
likely to continue doing so. Once the animal is full, it becomes more likely to stopgeatid start
sleeping (red transition probabilities).

Such a model can then be used for different investigations. Giventarceet of transition
probabilities, one can try to assess how optimal they are with respect to s@inérgthe basic ex-
ample of Fig.3.1, one could for instance assume that the goal is to stop feeling hungrycat/qs
possible. Alternatively, one could investigate what the optimal transitiorgfmibties are if only the
model of the behaviour and a goal are given. In terms of animal behati@se two investigations
are very different: the first one assesses the optimality of the actualveldsehaviour with respect
to some goal, the second one determines what the optimal behaviour gitean behavioural units
would be. It is possible that the answer to the second question turns oetthe lobserved set of

transition probabilities used for the first question, but this does not saglyshave to be the case.

Combined, the results from these investigations can then answer quesitaristee optimality of
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the observed behaviour as well as the likely goals and motivations gogemsbehaviour.

Given the Markovian nature of the model, it would then be very tempting to ubaitkovian
properties to answer questions such as the above. In particularabability of absorption in a
given state(i.e. the likelihood that the model will end up in a given state, usually a goal state),
or themean first passage timgée. the mean time it takes the model to reach a certain state for
the first time) seem ideally suited in principle for such investigations since thdy te used to
determine (1) what the likelihood that the model reaches a given goal 2 bog long the model
would take on average to reach a given goal. Unfortunately, a numbssues prevent the direct
use of the Markovian properties. There are two important ones: (1) tiielndue to its variable
transition probabilities, is not strictly Markovian and properties like the dulitiya absorption or
the mean first passage time are therefore impossible to compute. (2) Eveh tirgumodelled
behaviour may be goal-oriented, there is no actual representation afaheithin the model itself.
In other words, even though the model acts on external variables (e.gutiyer state in our simple
example), it has no representation of them and the Markovian propeotiés thus not inform on
the performance of the model with respect to this goal.

These issues may seem critical, but they do not render Markov-ingpioeéls of behaviour
useless. lItis still possible to assess the optimality of a given set of transitibalglities or to de-
termine an optimal set of transition probabilities through numerical simulationseridiing on the
model, it may even still be possible to use some of the Markovian propertiaddiitional insights.
These points will be illustrated more fully in Chapgebut for now, we wish to investigate whether
it is possible to overcome the restrictions imposed by the variability of the trangitadrabilities
and the absence of a goal state in order to allow an evaluation of these rnasietson Markovian
properties. In other words, is it possible to translate a Markov-like mddadleaviour, such as the
one shown in Fi@.1into a strict Markov model?

In this chapter, we introduce a Markov-like model ©f elegansgradient navigation upon
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which most of our investigations presented in Chapteiill be based. We will show that there is
indeed a possible transformation into a strict Markov model and we will défisenodel. How-
ever, although the model exists, computational limitations prevent us frorallgctomputing its
Markovian properties. Next, we apply the same technique to a model of tiaeiber of a different
animal, the moth, which is sometimes studied under simplified conditions. Again, llagibar
will be modelled using a Markov-like model which we translate into a strict Markadel. In
this case, our computational ressources are sufficient for computingahevian properties and
we can investigate the behaviour of the model analytically. In particular, Wese this model to
briefly investigate the optimality of the surge-cast behaviour displayed byl in chemotactic

searches.

3.1 A model ofC. elegans gradient navigation

C. eleganss a soil-living nematode with the ability to navigate a number of different graslien
(mainly chemical and thermal) using a directed random walk strategy whicbatess the frequency
of random reorientation manoeuvres if the animal is moving in a desired dinewitio respect to the
gradient and increases this frequency if it is f@iefce-Shimomura et all999 Ryu and Samuel
2002. A key feature of theC. elegansstrategy are so-callguirouettes which are a series of small
runs and turnsHierce-Shimomura et all999), interrupting long runs with increased frequency if
the animal is travelling in a disadvantageous direction on the gradient. Trothgged byC. elegans
are typically seen as being one of two types: omega turns, which are akagge in direction; and
reversal turns, during which the animal reverses for a short pefitiche before moving forward
again in a different direction.

The behaviour o€. elegan$as been described in the literature using a three-state probabilistic

model in which each of the states corresponds to one of the behaviautglidentified for the
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p«(F|F)

P(FIR) P(FIT)

p(RIF) P(TIF)

P«(RIT)

Figure 3.2: A dual Markov-like model that can be used to desdibelegangyradient navigation
behaviour Pierce-Shimomura et all999. The states correspond to the different locomotive be-
haviours shown by the animal: (F)orward runs, (T)urns and (R$al®r Transition probabilities can
have two values depending on the direction of the model relative to the gtadieey are written
pk(Y|X) for the transition probability of stat into stateY with k € {u,d} indicating whether the
value is for moving (u)p- or (d)own-gradient.

animal and the probability of moving from one state to another is dependethieadirection of
travel relative to the gradienZériwala et al.(2003; Miller et al. (2009, see Fig. 3.2). These
behavioural units correspond to runs (called Ehstate here, in which the animal moves forward),
reversals (th& state in which it reverses) and turns (fhestate in which it changes direction). In
principle, it is possible to move from every state into every other state atteaetstep and the
transition probability for moving fronX to'Y is written pk(Y|X), with k € {u,d} as the value of the
probability depends on whether or not the model is moving up-gradkeaty) or down-gradient
(k=d). It has been shown that such a model is able to reproGuetéegangradient navigation in
both chemical and thermal gradients given an appropriate set of transitbabilities Zariwala

et al, 2003 Miller et al., 20095.

The purpose of this section is to determine if it is possible to analyse the bahafithis

model analytically. The actual analysis of the behaviouCofeleganss presented in detail in
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Chapters. Where required in the following, we assume that the model defined irBR2gavigates
in a Cartesian space towards the peak of a gradient, located at the@{tB). The model moves
with a fixed velocityv and the direction in which it is currently heading is given by the afghé

the trajectory with the-axis.

3.1.1 Translation into a strict Markov model

We are primarily interested in the navigation©f eleganstherefore our goal state is repre-
sented in the physical space in which the worm moves (and of course iottesgonding virtual
space for the model). Typically, this state would be located at the peak efaicél gradient. Since
a strict Markov model needs to include the goal state in order to be usefuiged to define such
a model over the space the model can move in, assigning a state to everijt pambccupy. It
is worth pointing out here that an infinite number of states are acceptablérintdgarkov model
provided that they are countably infinite. Hence, the fact that the modekténally moving in
an infinite space does not pose a fundamental problem as long the nuinploénte the model can
occupy is countable. This will be achieved through a limitation in the turn stataessied below.

Next, we note that the transition probabilities at any given time do not depieectlg on
the position in space but on the current state (given by the Markov-likeethadd the direction
in which the animal has moved with respect to the gradient in the last step. #dvesadhese
dependencies by associating six states of the strict model with every pdsitsmace, three of
which correspond to the up-gradient movement of the Markov-like modgign 3.2 while the
remaining ones correspond to the down-gradient one.

Finally, we consider changes in orientation. If the model moves forwareverses, the head-
ing 6 remains unchanged. If the model turns, however, the orientation is sextea decreased
by a value chosen from a distribution that depends on the direction refatitie gradientRierce-

Shimomura et al.1999. By requiring this distribution to be discrete, we can ensure that the possi-
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ble new directions form a finite and countable set; we can thereforergaarthat every state in the
Markov model has a countable number of successor states and thustt@tmumber of states
in the model will be countable.

We can characterise every state in the strict Markov model we seek to dlytéire values:
The position in spacéx,y), the orientatiord, the previous behavioural statec {F, T,R} and the
direction relative to the gradiemte {0,1}, where a value of 0 stands for a down-gradient and a
value of 1 for an up-gradient movement. Now Ak, y, 0,z g) be the current active state. We next
need to determine the successor states, a€. all the states in the strict model that can be reached

from A. The first two successor states are:
e As(x+vcosh,y+vsing, 6,F, f(x,y,0)), equivalent to a forward movement by the model
e Ar(x—vcosB,y—vsing,6,R g), equivalent to a reversal by the model

wheref(x,y,0) is a function defined as:

1 if /X2 +y2—/(x+vcosB)2+ (y+vsing)2 > 0
f(xy.0) = (3.1)

0 otherwise

and gives the value fay by determining if the forward movement has brought the model closer to
the peak (up-gradient movement) or not (down-gradient movementanlbe noted that we only
update the information related to the gradient when the model is moving farWhislis based on
the observation that the animal is likely to do the same (see Ché)pter

The remaining successor states are the result of a turn by the mod&g bet the set of all
possible new orientations based on the current heading and directitver&bethe gradieng. The

family of successor states as a result of a turn are thus given by:

o A (x,Y,0,T,g),Va € O
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The transition probabilities into each of these new states depend, as pigwioted, orz andg
as well as on the transition probabilities of the original model. iz, ), pr(z,9) and p$(z,g)
denote the transition probabilities for the transitighis- A-, A — Agr andA — A respectively.
We can then define all transition probabilities of the strict model as a funcfitioee from the

Markov-like model:

pu(Flz) ifg=1
Pr(z,0) =

pa(Flz) ifg=0

Pu(Rlz) ifg=1
Pr(z,9) =

Pa(Rl2) ifg=0

\

pTg"z ifg=1
pf(z9) = ’ (3.2)

Pa(T2) ¢ oy

B ifg=0

where|Qq4| denotes the cardinality of the s8f; we are therefore assuming that all value©if
have an equal likelihood of being chosen. This completes our definitiorstofca Markov model.
Goal states are easily defined as they are in experiments with real worromissthat are within
a certain distancd from the peak of the gradient. The set of goal st&esmn thus be defined as a

subset oMM, the set of all states in the Markov model:

G C M|VA(X,Y,8,29) e M, A€ G < /X2+y2<d (3.3)

If these goal states are made absorbing, it is possible in theory to calcidateetin time to
absorption for any given set of transition probabilities for the original darkov-like model. Min-

imising this mean time to absorption is then equivalent to finding the set of transitbalglities
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that allow efficient navigation towards the centre of the gradient by thénatigrodel. In order for
this calculation to be possible, the number of states in the model must be finite.

It is easily shown, however, that any model of a useful size containsnnty states to be
analysed computationally. Assume for instance that the model can move omlyictual petri
dish with a diameter of 10cm. By definition, the number of states of our modelcim gwvorld
would be finite. Now, for simplicity, we assume that the model can only move entangular grid
world whose points are separated by a distanc@/e are thus severely underestimating the total
number of states by settif@y = {0,7/2,11,372}. The numbeM of possible points on the virtual
petri dish that can be reached by the model is thus approximately giverebgréfa of the dish
if it is expressed withv as the unit length. For a realistic valuew{Ferrée and Lockeryl999,
this givesN = 1(2) = 11(%22)2 ~ 162190. Remembering that the model attache&,pstates
to each of these points, we have a total number of 3892560 states in this mbitél,means the
transition probability matrix would contaiy 1.51 x 102 elements. Since we have underestimated
the number of states by several orders of magnitude due to our restobtiee ofQy, it is clear
that it is not practical with the currently available computational resourcesdhate this model
further. We therefore leave it as a theoretical model which serves élsstration of the concept
of translating Markov-like models into strict Markov models and will analysebteaviour ofC.
elegansased on numerical simulations as discussed in Ch&ptarthe next section, however, we

will show, that an analytical evaluation is not always impractical.

3.2 Moth behaviour as a dual Markov-like model

3.2.1 Moth behaviour

Similarly to C. elegansthe moth is also on occasion faced with a navigation problem that

requires it to find the source of a chemical. Unl&eeleganshowever, the moth may not make use
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of a clear continuous stream of information about its progress towaidissarce. Typically, the
source, which the moth attempts to reach, emits a chemical plume consisting aduadipockets
of odour which propagate with the win@#&lkovsky and Shraimar2002. The moth is thus not
exposed to a chemical gradient but has to navigate based only on thaatifum of whether or not
it has found one of these pockets.

In nature, the moth does so by employing a so-called surge-and-cdsggtf@aker, 1986
Vickers and Baker1994: if it encounters a pocket, it will fly directly into the wind (surge) but if
it goes without such encounters for some time, it moves backwards andréts perpendicularly
to the wind direction until it finds another pocket (cast). It is this surgk-east strategy and its

optimality as a solution to the navigation problem that we wish to investigate here.

3.2.2 A dual Markov-like model of the moth plume navigation bdraviour

Although the real moth moves in a continuous three dimensional world, simplelsreadebe
defined on a two dimensional grid worl&&nchez-Montafiés and Pear2606 Balkovsky and
Shraiman 2002, a Cartesian space in which the possible points the model can occupyl are a
M(x,y)|x,y € Z. In such a world with the assumption that the moth never stays at the same po-
sition two time steps in a row, the model has four possible points it can move toré@ntlyrat a
point with coordinatesi, j): (F)orward to the pointi — 1, j), (U)p to the point(i, j + 1), (D)own
to the point(i, j — 1) and finally (R)everse to the poifit+ 1, j). These four possible movements
thus form the states of our Markov-like model of the moth (), similarly to the previous one
for C. elegangFig. 3.2). Additionally, Sanchez-Montafiés and Peaf2806 have shown that it is
sufficient to consider just two different strategies for understandinip leemotaxis: one when a
pocket has been encountered and another otherwise. Similarly @. #legansnodel, the moth
model is thus dual, with one set of transition probabilities for each of thes@ossibilities. We

can thus again write the transition probabilities for this modghd¥|X) for moving from statexX
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Figure 3.3: A dual Markov-like model of moth chemotactic navigation in a simpi \gorld.
Possible state transitions are indicated by arrows but the corresporaisgiton probabilities are
not explicitly indicated for clarity. In this model, the F and R states corresporidrward and
backward movements, equivalent to a step to the left or the right resglgativthe grid world.
Similarly, the U and D states correspond to lateral movements, equivalenttép afs or a step
down in the grid world.
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to stateY with k € {1,2}, where a value of 1 indicates the transition probability value in the case of
an encounter of a pocket and 2 the transition probability value otherwise.

It is worth underlining that there is a difference between this model andoth&&nchez-
Montafiés and Pear¢2006): the latter models the locomotion by randomly selecting one of the
F, U, D or R states at each time step, where the probabilities of getting picke@ddh state are
guided by the information of whether or not a pocket has been encedrdéthat time step. In the
present model, due to its Markovian nature the probability for each statettrigy picked in the
next time step additionally depends on the state the model is currently in, potealli@iyng more
complex behaviour to emerge.

To be complete for the present purpose, the grid world needs to featoeree and emit-
ted pockets. Here, we model this in the same wagaschez-Montafiés and Pea(2606 and
Balkovsky and Shraima(R002: at every time step (1) a pocket appears at the source, which is
located at the origin and (2) all existing pockets currently at coordinat¢s move with equal

probability to eitheri+1,j+1), (i+1,j) or(i+1,j—1).

3.2.3 Conversion into a strictly Markovian model

Since the model moves in a very simple discrete grid world where the souttee@fime is the
goal state the model should reach, we can define a new Markov modeidh @dch state represents
a point on this grid. While this model could potentially have an infinite number t#sté remains
Markovian because the number of states would be countably infinite. Similatthe©. elegans
model then, every point on the grid is represented by four states in thennéel to incorporate the
states from the original Markov-like model. Likewise, every state of thetstrazlel can have up to
four successor states (Fig.4).

The transition probabilities into these states additionally depend on the fabiethi&r or not a

pocket has been encountered in the current state. Pockets move(ryyjhane alone in arandom
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Figure 3.4:

A visual representation of a strict Markov model based on the Markavrikdel of Fig.3.3. The
example is for a 5 5 grid world. @A) The grid world in which the model can move. Current location
is given by the green dot, possible locations at the next time step by the regnadtoured dots:

a forward movement places the model at the purple dot, a reversal atathgeodot, an upward
movement at the red dot and a downward movement at the blue dot. Twegeaoiangle represents
the plume source.B) Corresponding strict Markov model. Every crossing of lines reprssa
state. The different actions the moth can perform are implemented as wiiffayers in the strict
model. Goal states are indicated by turquoise rectangles. An example wkatctate and its the

four successor states is shown basedon (
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walk fashion - it is thus possible to calculate the probability of encounterimgkgbin a given point
on the grid at any time. Let(i, j) be this probability for the poin, j). Finally, letA(x,y, z) be the
current active state, withe {F,U,D, R} corresponding to the states of the Markov-like model. Its

four possible successor states are (Big):

e A:(x—1,y,F), equivalent to a forward movement by the model
e Ay(Xx,y+1,U), equivalent to an upward movement by the model
e Ap(x,y—1,D), equivalent to a downward movement by the model

e Ar(x+1,y,R), equivalent to a backward movement by the model

The transition probabilities into each of these states depend on the valamdim(x,y) as well as
the transition probabilities of the original model. L@t(x,y,2), pu (X, Y,2), Po(X,Y,2) andpr(X,Y,2)
be the transition probabilities for the transitiohs- A, A— Ay, A— Ap andA — Ag respectively.

We have:

PF(%Y,2) =m(xy) p1(F[2) + (1 —m(x,y)) p2(F [2)
Pu(%,¥,2) =m(x,y)p1(U[2) + (1 —m(x,y)) p2(U2)
Po(%Y,2) =m(x,y)p1(D|2) + (1 —m(x,y)) p2(D|2)

Pr(X,¥,2) =m(x,y)p1(R2) + (1 —m(xy)) p2(R[2) (3.4)

These equations are sufficient to define a strict Markov model overrighevgrid in which the
moth moves, but we still need to give an expressiomfigx,y). For this, we can reformulate the

problem based on the dynamics of the plume: given sprhew many different ways are there to
X
add—1, 0 and 1 inx steps in order to obtaiyi? The answer, usually writte , is given by

y 2
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theyth element in thetth row of the trinomial triangleor by Andrews(1990:

X
(3.5)

X x!
, | ARGz
2

where not every term of the sum or even the sum itself necessarily exish this, we can obtain

m(x,y) by noting that the coefficients in thith row in the trinomial triangle sum td 3

m(x, y) =

3X
o T
1=0 TIj+y)I(x=2]—y)!
_ J(J+3}2 (x=2j-y) (3.6)

This completes our definition of a strict Markov model based on the grid watlda plume

of pockets based on our previous dual 3-state Markov model of the nebtvtour.

3.2.4 Goal states and optimisation in a finite grid world

Since the strict Markov model has a state per point in the grid world, thesatfithe plume
is also a state (in fact, 4 states, one for each valug of this model. Also, failure states (with
x = —1, effectively meaning the model has moved past the source) are avaBaisied on this, we
can immediately calculate the probability of absorption into one of the goal statagy starting
position. Itis also possible to calculate the mean time to absorption, but it is imptwrstness that
this represents the mean time to reach either a goal or a failure state. It isssdtlp to single out
goal states in the calculation of the mean time to absorption; to do so would relgtiimang only

the goal states as absorbing states but this would then change the bel&timientire Markov

1A numerical triangle similar to Pascal’s triangle, except that each valueaw & given by summing the left, middle
and right values in the row above.
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model since failure states would become transient. Nonetheless, we wilkshbtlie mean time to
absorption can be a useful metric in this optimisation task.

At this point, we need to consider the grid world in which the model will move. Wiaekov
model as defined previously can accommodate an infinite number of statesphder to calculate
the mean time to absorption and the probability of absorption into a particular thiatieansition
probability matrix of the model is needed, which in turn requires the numbeat#ssto be finite.
The number of states is further limited by computational restrictions: sinceithaisate for every
point in the grid world and there is an added third dimension to accommodate fibielifstates
of the original dual model, the number of states is given Ky 4where is the number of points
on thex-axis andY the corresponding value for theaxis. Therefore the number of elements
in the transition probability matrix is given biAXY)? and for the example ot € [-1,30] and
y € [-60,60], this evaluates to 225120016 elements. It is therefore clear that neitleey &xge
world nor an attempt at deriving an analytical expression for both theghitty of absorption into
a goal state and the mean time to absorption are practical. We therefore therinean time to
absorption and the probability to absorption at run time from a specific setreition probabilities
for the original dual model and use these values to optimise that model. S8iwill discuss
some of the techniques that can be used specifically in MATLAB to keep thewations feasible
within a reasonable time scale.

Whenever one has to limit the size of the world in which a model can move, two inmporta
guestions need to be answered: 1) What happens to the model if it attempted@utside of the
world and 2) How do the results generalise to larger, potentially infinite warlds

For the present purposes, we address the first point by definingfttiat, model would nor-
mally move outside of the world with a probabilify it will instead remain in the current position
with the same probability. It should be noted that this will have an effect oresnodels that have

a natural tendency to attempt to move beyond the borders of the worldtafting points close to
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the border, the mean time to absorption may be reported wrongly dependihg tvansition prob-
abilities of the original model. This is because the way we define the bordkibgs the model

from entering the state that would have taken it outside of the world (typicallptUDown) and

instead forces it to remain in the current one. This is acceptable heradeec®dels that would
be seriously affected would by definition not display a behaviour aimedkiamigtéhem close to the
source and therefore would not be interesting. In general, the high@rdfability of success for
a given point, the more likely the model is to move towards the source fromahgtgnwards and
consequently the probability that it will move to the border and be affectetddogps.

The second point is easily addressed by evaluating the results fromlé efa given size
either in a larger or in an infinite world. To this effect, we define the size ofatbiéd in which
the model is optimised asc [—1,30] andy € [—60,60] whereas the result will be evaluated again
based on the Markovian properties of a world with [—1,50] andy € [-100,100 as well as by

running a model moth based on the optimised transition probabilities in an infinitd. wor

3.3 Computational implementation

In this section, we detail computational techniques that are useful for imptergecalcula-
tions with the large transition probability matrices resulting from our model in MABLio ex-
emplify how a careful design of a program can significantly reduce thepatational cost of the
operations. First, however, we recall the definitions of the mean time tophwsoand the proba-

bility of absorption into a given state. Details on the optimisation process argiggn

3.3.1 Properties of absorbing Markov chains

The canonical form of the transition probability matrix of an absorbing Madhain is:
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Wheret; .. .t, are transient and; . . . ay, absorbing statesy, denotes the identity matrix of size
m, 0 is a matrix of all zeros. Based on this form, the fundamental matrof the model can be
defined aN = (I, — Q)~%. N always exists for absorbing Markov chains and contains the number
of steps the model can be expected to spend in each state (columns)diesfongtion if started in a
given state (rows) (for a proof, s&rinstead and Snell997 p. 418). The mean time to absorption
for each starting state thus follows trivially by summing across all rows,iproducing a vector
T whoseith element is the mean time to absorption of the model if started in stateurther,
calculatingA = N x R creates ax by m matrix in which each elemertt, j) is the probability of

absorption into state; if the model is started in state

3.3.2 Considerations for the implementation in MATLAB

The first important observation is that although the number of states anthths&e of the
transition probability matrix is large, each row will only contain four non-aealies at most (since
each state can only have a maximum of four successor states, by definitieargest part of the
transition probability matrix therefore consists of zeros and is thus usefisg@sparsematrix to
store the transition probabilities, significantly reducing the memory load.

The second observation is that in order to compute the fundamental iawix first need
to generate an appropriately sized identity matrix. Since we have made thiddrapsobability

matrix (and thu®Q) sparse, it is sensible to generate a sparse identity matrix usisgdhe instead
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of theeye function, resulting in a significant time saving.

Thirdly, we note that to compute the fundamental matrix, we need to take theénwiy — Q,
which is computationally very expensive for large matrices. It is thus wewdhsing that summing
the rows of a square matrix with side lengthwhich is required to compute the mean time to
absorption, is equivalent to multiplying this matrix with a column vector of lengthones. Naming
this vectorC,, we thus hava = (I, — Q)~*-C, and we note that the probability of absorption is
given byA = (I, — Q)~%-R For all values of interest, we therefore need to multiply the inverse
of a matrix with another matrix. In MATLAB, this is an operation implementedvesrix left
division, defined a®\\B = A~1. B, which computes the result with negligible error without actually
generating the inverse. Using this operator we can therefore agaia seym@ficant amount of time.

Together, these considerations make the calculation of both the mean time tptiaipsand

the probability of absorption into a goal state feasible at run-time in an optimisagorithm.

3.3.3 Optimised values

All transition probabilities are optimised in a Cartesian world with coordinate aarg:
[—1,30] andy € [-60,60]. Like Sanchez-Montafiés and Pea(@€06, we consider the model
to be successful if it arrives at either of the poif@s—1), (0,0) or (0,1) (see Fig. 3.4) and to
have failed if it arrives at a point with axscoordinate of—1 without having passed through one
of the aforementioned goal points. The total probability of absorption intoah gfatepy, i.e. the
probability of success, is thus defined as the sum of the probabilitiesrfeingrin each of those
states.

The mean time to absorption cannot be defined exclusively for the goad,stat@reviously
discussed. Also, the mean time to absorption can vary with katidy. To be able to optimise
the mean time to absorption in a meaningful way for all points in the world it thexefeeds to

be normalised for the distance from the source. We note that the mean timeotptadrsinto a
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goal state is dependent on botlandy, but the mean time to absorption into a fail state mostly
depends ox. This is because the goal states are located in a small region around thendrilg

the fail states form a line with equatigh : x = —1. Any normalisation of the overall mean time to
absorption will thus depend on the probability of success in the sense d¢natisha probabilitypy,
that the normalisation will depend orandy and a probability 1- py that it will only depend orx.

This yields:

1_
Tn(X,Y) :Txy<\/)%y2+ x+2y> (3.7)

wheret,(X,y) is the normalised and,y the original mean time to absorption for a starting point with
coordinategx,y). There is a small error here caused by the fact that the pntg and (0, —1)
are also goal states, which is not taken into account in the formula, b« #ietr distance to the
origin is small, the error is negligible for our purposes.

Since we are interested in finding results that are general for the entitd, itais best to
considerpy for all points in the world but, only for points that show a non-zero probability of
success. We therefore optimise either the meap,obr 1, over all points for which they are
considered. Other possible values for optimisation would be for example maaimmainimal
values found in the entire world, but initial trials have shown this to be ledsiiuban the mean,
in particular because in some conditions there will always be points with eitbgrabability of
success or a very large mean time to absorption. Therefore, optimisingofee tfalues would

almost certainly result in a flat shape of the cost function masking othemteesting minima.

3.3.4 Optimisation algorithm

A standard simulated annealing approaKirkpatrick et al, 1983 Cerny, 1985 is used to

optimise the system. The transition probability funct®r- exp((Es—En)/T) for E, > EsandP =1
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transition probabilities

transition probabilities

model model model model
A T A T A T A T
pi(FIF) 11 p(FID) 1 p2(FIF) 0 1 p(FID) O
pi(UIF) 0 O pUID) 0 p2(UIF) 05 O p2(U|D) 0.5
pDIF) 0 0  pyDD) O p2(DIF) 05 0  p(DD) 05
pi(RF) 0 0 p1(RD) 0 p(RF) 0 0  p(RD) 0O
pi(FU) 1 p1(F|R) p2(FIU) O p2(F|R)
p1(UU) O p1(U|R) p2(UU) 05 p2(U|R)
p1(DU) 0O p1(DIR) p2(DU) 05 p2(DIR)
pi(RU) O p1(RR) p2(RU) 0 P2(RR)

Table 3.1: Resulting transition probabilities when the model is optimised for eithan trae to
absorption T) or probability of absorption into a goal stgi®) alone. Values which have no effect
on model behaviour are omitted. Of interest is that the reversal state idrusedher solution.
Further, the solution minimising the time to absorption relies solely on forward moveniereas
the solution maximising the probability of absorption into a goal state shows a lipige and
cast behaviour.

otherwise is also standard. Hefiejs the current temperature of the system &@ndE, are the
energies of the current state and the selected neighbour respeclikelinitial temperature of the

system is set to a conservatiVe= 20 x 10° ° and the cool-down for each time-step is defined as

Tio1 = aT; with a = 0.99.

3.4 Optimised source location behaviour

All optimisations were done based on a model whose world size was givarely-1, 30)
andy € [-60,60]. For the purposes of illustration however, we re-evaluate those modelarigea
world (x € [-1,50] andy € [—100,100) to show that the results are not dependent on the size of
the world. This is further underlined by an evaluation through a numeiicailation in an infinite

world.
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Figure 3.5: Properties and behaviour of the two solutions in a finite two dimsadgiad world. @A)
Probability of absorption in a goal state af) fnean time to absorption for each possible starting
point of a world withx € [1,50] andy € [-100 100 when the model is optimised to maximise the
probability of absorption.) Example track when the model is run in an infinite world. Red circles
indicate positions at which a pocket has been encountered. Sourcatsdat coordinated,0)
Note that vertical lines may actually be multiple overlapping up-and-down mavism@, E, F)
Analogue results when the model is optimised to minimise mean time to absorption.
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3.4.1 Optimisation of single properties

Table 3.1 lists the two solutions found when either the mean normalised time to absorption
was minimised or the probability of absorption into a goal state maximised. It is immigdiate
obvious that the solution using a minimal normalised mean time to absorption is fisticess
it ignores all information about the plume and simply moves forward. On the othed, the
solution maximising the probability of absorption into a goal state displays balragiso found
by Sanchez-Montafiés and Peaf2@06), that is reminiscent of the strategy used by the moth: when
a pocket is encountered, the model always moves forward, othenms®és up or down with equal
probabilities. It can be pointed out that this solution for maximal probabilitybsbaption into a
goal state is not unique; other solutions which use different transitidvepilities between the up
and down states when no pocket is present exist. Common to all solutioesdois a probability
of 0 for moving forward if no pocket has been encountered.

Figure3.5shows the probability of absorption into a goal state and the mean time to absorptio
for every possible starting position in the grid world as well as example tafechedel moths driven
by the respective transition probabilities. The most important observatiendibat the mean times
to absorption for the model optimising the probability of absorption into a gotd ata generally
very large. Conversely, the model optimised solely for a low mean time to almsohas a success
rate of O for all starting positions not directly opposite the goal statesgramyit useless for all

practical purposes.

3.4.2 Optimisation of combined properties

Based on these results, it is interesting to investigate if configurations exisadhieve a
reasonable success rate within a reasonable time. In principle, this caalgseal by restraining
one parameter while optimising the other: maximising the probability of absorptioa oal state

while forcing the time to absorption to be low or minimising the time to absorption whilénfgrc
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Figure 3.6: Optimal model maximising the probability of absorption while keepingnibaen time

to absorption low. &) Probability of absorption andj mean time to absorption for each possible
starting state.@) An example successful track by a model moth based on these resultsoesde
the starting position to avoid confusion based on the use of reversals in ttied.n@ircles represent
encounters with pockets of the plume. The shown trajectory may hide opartamovements.



Chapter 3: Translating Markov-like models of behaviour into strict models 57

transition probabilities

pu(FIF) 1 p1(FID) 0.7 p2(FIF) 0.1 p2(FID) 0.6
p1(U|F) 0 p1(U|D) 0.3 p2(UIF) 018  p(UID) 0.16
p1(DIF) 0 p1(D/D) O p2(DIF) 0 p2(D|D) 0.096
p1(R|F) 0 p1(R|D) 0 p2(RIF) 0.72 p2(RD) 0.144
pe(FIU) 01 pi(FIR) 05 p(FU) 1 p2(FIR) 0.8
p(UU) O p1(UIR) 0 p(UU) 0 p2(UIR) 0O
p1(DU) 09 p1(DIR) 05  p(DU) 0O p2(D|R)  0.06
p1(RU) 0 pi(RR) 0 p2(RU) 0 p2(RIR)  0.14

Table 3.2: The solution found if the probability of success is optimised while thettimlksorption

is forced to be low. Of interest is the high probability of alternating backe/ardi forward move-
ment when no pocket is present which is most likely to be interrupted by aardpmovement.
The general strategy of the model is thus to make a slow progress towandspér left, but with a
mostly intact surge behaviour (different from the classic surge betawidy because there is also
a chance to move downwards when a pocket has been encountered).

the probability of absorption into a goal state to be higlg(mean over all states 0.7). When
the latter is done, the solution previously found when maximising only the pil@paib absorption
into a goal state is found again (Fi8.5A and B). This is a strong indication that this is in fact the
most time-efficient solution if a high probability of absorption into a goal statedsired.

Fig. 3.6and Tab.3.2show the result of optimising the probability of absorption while keeping
the normalised mean time to absorptigrbelow 10. Although this value is chosen arbitrarily based
on results fronSanchez-Montafiés and Peaf2806), the results are similar for different values. In
particular the characteristic candle-flame shaped corridor with nonpzetmbility of absorption
into a goal state (Fig3.6A) is always seen, although the direction may vary. The strategy employed
here is thus a variation of the one used by the time-optimised model3BD.and E): the model
moves more or less in a pre-determined direction (biased towards the uftperthes particular
example) but unlike the first solution, the progress is slower and affégtepdckets of the plume.

In particular, it is interesting to note that the model has a high likelihood ofptagy alternating

forward and reverse steps, interrupted by the occasional upwardmemit. The strategy is thus

a combination of slowly moving in a predetermined direction while frequently firogyeround a
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Figure 3.7: A) Probability of absorption into a goal state af) (mean time to absorption for the
optimised model detailed in TaB.2based on numerical simulations with 100 runs per data point.
position, presumably to increase the chance of encountering a pockat gdkition is within the
plume. The overall failure of this solution to provide high probabilities of essdor all possible
points in the world is therefore a result of the need to move in a predetermimeetiah in order to
satisfy the constraints imposed on the mean time to absorption.

Fig, 3.6B also exemplifies the previously discussed effect that defining a boeasfehave on
the results. It can be seen in the upper right corner that the mean time tptarsdéor points that
are more likely to hit the upper border before they reach the goal ordagliates increases more
steeply compared to unaffected points. A comparison withF@8f shows that this does not affect

points with a non-zero probability of success. Therefore, the resutiseisain unaffected.

3.4.3 Comparison with numerical simulations

To investigate how the restriction of the model to a finite world for analysis&fife results,
if at all, we have evaluated the set of transition probabilities detailed in3[alagain using numer-
ical simulations of model moths in an infinite world, starting at all poimty)|x € [1,50] andy €

[-100,100. For each of these points, the success probability was calculated bygtrtiodel
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100 times and counting the number of successful runs. The mean time tptdrsas calculated
from the mean running time of each of these 100 simulations. Both results@ave ghFig. 3.7.

To assess the difference between the numerical results in an infinite watlthese derived
from Markovian properties in a finite world, we compute the RMSE betweemwibhand find a very
low value (0067). The RMSE between the numerical and Markovian property-basedalised
mean times to absorption is found to be high.@3steps). This is due to the previously discussed
effect the border can have on the mean time to absorption for certain stpoiimg. If only start
states that have a non-zero probability of absorption into a goal stat@aselered, the RMSE
drops to 120 steps.

We have thus shown that, although the restriction to a finite world can affechéan time
to absorption, it does not do so dramatically for points that are of interektiti@nally, the prob-
ability of absorption into a goal state computed with negligible error. In terms wipctational
requirements, the numerical simulation presented here has taken appréximatdays on a Pen-
tium 1V 3.2GHz with Hyper-threading and 2GB of RAM whereas the equivaleriuatian of the
Markovian properties is achieved in under 90s (and under 20s forthkes world size used in the
optimisation process itself), thus clearly underlining the advantage gaioedtifie translation into

a strict Markov model.

3.5 Summary of Chapter3

This Chapter contains two main achievements which each merit a discussion:iweuhave
shown how a dual Markov-like model of behaviour can be translated istoict Markov model
for analysis and we have analysed the behaviour of a very simple modetltbfiuone-navigation

behaviour.
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3.5.1 Uses and limits of the translation into strict Markov madels

The translation into a strict Markov model has been motivated mainly througletiee to be
able to optimise a behavioural Markov-like model by calculating its probabilityustess or the
mean time required to achieve a certain goal analytically. The goal state l(a@s\ilee start states)
must therefore be present in the resulting Markov model. Since we haeermd ourselves only
with navigational problems here, the strict model had to be defined overdhd im which the
original dual state model can move, which has resulted in a rather largeenwhitates in all
examples considered here. This does not prevent the model to beouselder types of goal states
(e.g. not being hungry) as long as the space in which the start and goal sta&kare finite or
countably infinite and the multi-state model of the behaviour navigates throisgbpidice.

This space also imposes the most severe limitation on the strict model - while théitseliie
may be countably infinite, it needs to be finite in practise so that the probabilélsufrption and
the mean time to absorption can be computed from the transition probability matrexsiZé of
this finite world is then further restricted by the available computational ressuiThis limitation
is obviously not always relevant - most laboratory behavioural éx@ets are carried out in finite
surroundingsé€.g.on a petri dish folC. elegany models could thus be analysed in virtual versions
of these experiments.

The restriction to a finite world does however require a definition for hagdittempts by the
model to move outside of the world, which again depends on the specific modet investiga-
tion. For the simple moth model used here, this was not defingidori, so we chose to replace
movements across the border with a stay in the current positionC Feleganon the other hand,
the abundant ethological experiments involving the observation of the animalpetri dishi(e.

a finite, bounded world) allow the definition of appropriate responsesnftance via the touch
avoidance respons€lialfie et al, 1985.

The moth model included a failure state, but as@helegansnodel shows, this is not always
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necessary. The presence of failure states affects which valuescasel in the analysis of the
model. Without a possibility to fail, the probability of absorption into a goal state eningless but
the mean time to absorption very relevant. If failure states are presentptbeiity of absorption
is very informative but the mean time to absorption needs to be analysed witbrcau

In general, if the restriction to a finite world in which a Markov like model can en@vac-
ceptable, it is useful to translate it into a strict Markov model so it can ble&eal without having
to resort to repeated time consuming simulations, that can be subject to stafisticeltions. The
net gain depends on the problef; elegansgmoves in an environment which is nice in the sense
that information about the environment remains similar in different runsusectne gradient can
be sampled reliably at any point in space. This is different for the mothkgte®f the source
propagate according to a random walk and a trajectory that has enciniany plumes in one
run may go without hitting a single one in a repeat attempt. It is thus much easiemerically
optimise the original dual Markov-like model @. elegangsee Chapteb) than it is to optimise
the corresponding moth model. Therefore, while a translation into a stridtdManodel is not

necessarily required for th@. elegansnodel, it is essential for an analysis of the moth model.

3.5.2 Moth navigation towards the source of a plume

Using the strict Markov model, it has been possible to analyse the behavidyrerformance
of a dual Markov-like model based solely on the four directions the maoalelngove in at any
given step. It has been shown that minimising the mean time to absorption aldsedeclearly
unreasonable behaviour. Maximising the probability of absorption into lestgte has resulted in a
surge-and-cast behaviour similar to the ethological description for diagiaan the real moth, but
the mean time to absorption was rather large. Attempting to optimise the probabilitgardion
while at the same time constraining the mean time to absorption has resulted in astimjestat-

egy not observed in the moth: the model will travel forward in a certain timecusually at some
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non-zero angle with respect to tkexis but will frequently hover in one position for a while which
slows the overall travel down. This slow forward movement increasegribteability of finding
pockets and thus the probability of success for some starting points butithet@rmined direction
of overall movement means the starting positions that have a non-zemssyaobability form a
corridor in the world.

Of particular interest is the result that any attempt to optimise for mean time topaiosor
while keeping the probability of success high also results in a surgeastdsehaviour. While
it has been speculated previously that such a strategy is indeed theobésirfg successful at
finding the sourceRalkovsky and Shraimar2002), this has not previously been shown explicitly.
Similarly to the results bysanchez-Montafiés and Peaf2@06), it is found that 2 sets of transition
probabilities are sufficient for this behaviour to emerge. The emergirtghgdsehaviour in this
case is rather primitive however and different, more efficient, castingggtes have been proposed
which additionally make use of the restrictions on the source location a poicketies Balkovsky
and Shraiman2002. It would thus be interesting to use the work presented here as a basis fo
discovering and evaluating the different types of casting strategiesdbat& question of particular
interest is what type of information the moth actually uses in its naviga¥iergéssola et 812007).
Here, we have simply used the presence or absence of a pocketgit@myime step, but it is also
possible for instance, that the animal integrates the number of pocket®itréacs in a given time
window to direct its behaviour.

However, the purpose here was simply to illustrate that problems using Mékieomodels
which can be translated into strict Markov models while remaining computableagdsto show
an example analysis. Further analysis of the moth behaviour will thus haeedeferred to a later
date. For now, we will focus on ways to analyse computationals models subbse introduced in

this chapter.



Chapter 4
A framework for the systematic analysis of behavioural

models

HAPTER 3 has introduced a Markov-like model 6f elegangyradient navigation behaviour
C and has touched on the fact that it is interesting to consider the optimality itican
probabilities under certain conditions. In this chapter, we will presentrgpoehensive framework
for analysing the behaviour of an animal based on a computational modsideBebeing very
useful for the study of behaviour, the framework has applications irr dtiraains as well; this will

be discussed at the end of the chapter.

4.1 Using optimisation to analyse behaviour

When optimisation techniques are applied to behavioural models, it can be witinthof
determining which cost parameter an observed behaviour minimises (assinatinige behaviour
is optimal in some sense), as seen for instance in Optimal Foraging TiMacA(thur and Pianka

1966. In Action Selection studies, the aim is to identify how an animal might determiog@émal

63
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course of action even though evaluating all possible courses is compullgtiahibitive (seee.g.
Seth 2007). In such a scenario, finding a single optimal solution is usually sufficiarthd present
work however, we are more concerned with finding at least a refesenset ofdifferentconfig-
urations of a behavioural model as this would inform on the differengiptesstrategies potentially
available to an animal.

How does one go about finding such a representative set? The bahaf/eo computational
model is dictated by its parameters. In the Markov-like models used here, dheshe transition
probabilities but this may of course differ in other models. In general ttiéierent strategies for
reaching a given goal can be understood as being located in diffegians of the parameter space
of the model. Not every point in the parameter space will represent agicatdgy. Some may be
inefficient, others may not address the goal of the behaviour undestigagon at all. It is therefore
interesting to ask which regions of the parameter space of a model contairabgtrategies and
which ones do not.

It is important to define what is understood by “regions” of a parametgrespSince our aim
here is to apply the framework to Markov-like models, the parameter spadeenihite since each
parameter can only take on values from a limited rar{@¢l| for transition probabilities). The
entire parameter space of such a model will thus be-dimensional hypercube (assuming the
range of each parameter is the same - if not, some sides of the parametenmsyaoe longer than
others and the shape would strictly be thdimensional equivalent of a rectangular prism but this
has no consequences for the framework presented here) and a ietgien simply an arbitrarily
defined subspace contained within that hypercube. Trying to find ageptative set of optimal
configurations for any model then amounts to defining a set of such egiwh determining for
each of those regions whether or not it contains an optimal configuration.

Subspace searches have been used in previous optimisation studiéls astweh a different

aim. Like most work in Optimisation Theory, these studies attempt to find methods tovienpro
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the speed and/or the reliability of optimisation algorithms, either generally opgwific types of
problems. This can be achieved, for instance, by identifying lower-diimealssubspaces of the
entire search space most likely to contain the global optimuméese8yrd et al, 1987 Branch
et al, 1999. Our interest here however is to find a set of optimal solutions by seareach
subspace individually for one, a task for which these approachemadesigned for.

In a sense we are thus interested in obtaining a rough description of the sh#he cost
function through searching the subspace. Other methods exist fosarptitis shape, but they are
mostly concerned with identifying local smoothness or sh&bdippides et al(2005 for instance
achieve this by first deriving an optimal solution and then slightly varyingaymaore parameters
in order to assess to what extent this affects the performance of the soldt@ local shape of
the cost function at the point of the investigated solution can then be idfekgain, however,
we are more interested in the location of minima than the overall shape of theunogon. The
main difference between the present study and other work in optimisatiagestadhus the explicit
search for multiple minima, which we aim to undertake by searching subsp&ffesency in the
speed of execution is of lesser interest to us here (in contrast to manystidees), although we
will show later that our approach here can in some tasks also perfornfraralithis point of view.

If the aim is thus to derive a set of subspaces in order to find a repatiserset of minima,
there are some restrictions on this set for it to be useful: 1) when coeditiegether, the regions
need to cover the entire parameter space and 2) no regions shoulgoviédriareason for the first
restriction is obvious - without it some regions of the parameter space migat be explored at
all. The second restriction ensures that we will not find the same optimalgooations in two
different regions. With these restrictions in mind, a natural way to gen#rateet of regions is
simply to divide the parameter space into a number of smaller spaces by cuttloggtane or
more dimensions as illustrated in Fig.1 for a simple 2-dimensional space. There isanpriori

restriction on the nature of these cuts; one could for instance divideiorensdion into two parts
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Figure 4.1: A simple illustration of how a parameter space can be divided irfevedif regions
by cutting along the dimensionsA) 16 regions, B) 4 regions, C) 4 different regions andX), 8
regions.

but another into four (Fig4.1D). Here, however, we only consider cuts dividing each parameter
equally €.g Fig. 4.1A or C) - each dimension is therefore treated the same as far as the crdation o
subspaces is concerned.

An important side effect of treating each dimension the same is that it becarasible to
use a recursive approach for evaluating the regions of the paramet=. sConsider for instance
the example division of a 2-dimensional parameter space given indElé\. This space contains
16 regions and using a sequential approach, each of these regiait lvave to be evaluated in
turn. It is easily seen that such an approach could be very time-consifrtiiegparameter space
is high-dimensional. A recursive approach to finding optimal configuratwithin this parameter
space is illustrated in a step-by-step fashion in g2 The parameter space is first considered
in its entirety. An optimisation algorithm is run in this space and if an optimal cor#tgur is
found in it, the space is then divided into two subspaces and the optimisatiaittalgoerun in
each part. This subdivision of each subspace takes place until the opbfuabn found in one
fails to meet the performance criterion or until the division process hakipeal a subspace whose

size meets a termination criterion. In the example here, the termination criterion ity sirsjole
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Figure 4.2: A step by step example of a recursive exploration of a paraspetee, assuming a divi-
sion into 16 subspaces as in Fgl1A. Blue dots indicate the location of the optimal configurations
the algorithm is trying to findStep 1 Entire space is analysed, an optimal solution is found (green
dot in subsequent steps¥tep 2 The space is divided vertically into two equal halves (red line).
An optimal solution has already been found in the left half, it does thus ewd to be evaluated
again. No good solution is found in the right half - this portion of the paransgiace is now ex-
cluded from further analysis (coloured yellow in subsequent stepEps 3-7 repeats of step 2,
dividing the remaining space alternatively along the horizontal and the aleaticl evaluating each
half unless an optimal solution is already known to exist in that half.
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length smaller or equal t§/s of the original space. In the general casenafimensional spaces, a
good termination criterion could be based on the volume of the subspaa@ssRe analysis of the
cost function has been used before, but in a different conkgtamada et al{2004) for instance
use an optimisation algorithm which relies on a quadratic cost function in thely.stheir overall
cost function however could not be approximated by a quadratic funaigmoblem which they
overcome by recursively subdividing the overall space into subspatavever, the aim here still
is to derive a single optimal configuration, while our interest remains in @septative set of them.

A final consideration which needs to be discussed concerns the defofittgiimal configura-
tion. When an optimisation algorithm is run in a subspace of the entire parampater, $he optimal
solution it finds is only local to that subspace. It is therefore importantfio@le/hat can be consid-
ered an important solution so that the local minimum found by the algorithm inspaab can be
correctly identified as being a global minimum or not. There are multiple possibfittietefining
such a criterion of optimal performance, depending on the exact praloteler consideration. One
option is to base this criterion on the score of the solution found by the optimisdgorithm when
it is run on the entire parameter space. In the case of stochastic modedsyihaiways be a slight
natural variation in the performance and repeated runs of an optimisatioritiafy on the entire
parameter space might thus generate a distribution of scores. This distribatidghen be used for
the definition of performance that can be considered optimal. An examplebfas approach will
be given in Chapteb.

This completes the informal definition of our recursive approach forioiba representative
family of optimal configurations for a given model of behaviour with respe@ given goal and a
formal, slightly more elaborate definition will be given in the next section. It isortgmt to realise
that one of the main advantages of this approach is that it can discoyeeaeatative set aifferent
optimal strategies with which the model can achieve its goal. There is less amphdmding all

minima which are similar to each other, since the algorithm only looks for one opsiohation
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Figure 4.3: An example of how different ways of dividing the parametacspvill affect the results.
Dots represent all optimal configurations in the spaé¢ A division which is not very informative
since optimal solutions are located close to the dividing bor@3rA(better division which is more
useful in determining interesting regions within the parameter space.

per region. This is because two distinct but very similar strategies (gt by two points in
the parameter space that are very close to each other), particularly ichastioc model, are likely
to generate the same overall behaviour. To what extent strategiesrasidered too similar to be
different remains of course a matter of somewhat subjective judgemdris alependent on the
problem under investigation. The present framework caters for thildwyiag the division of the
parameter space into arbitrarily small subsections. Itis thus always [eossdefine the size of the
regions one will consider in function of what one judges best for agpreblem.

An issue that needs more careful consideration is that the algorithm ¥oyusbreasons can-
not place any restrictions on the location of the optimal configurations withimethiens of the
parameter space. This means that it is in principle possible that the optimawaitittns found for
two neighbouring regions are in fact located on the border between tegsms and would thus
encode similar behaviours. This is not necessarily a problem if it onlydrepp few times and it
is easily verified if this is an issue by looking at the exact locations of thedfaptimal configura-
tions within the parameter space. If too many are located at borders, it masehd to rerun the

algorithm so the parameter space is divided into smaller regions. This illushigdésthat the best



Chapter 4: A framework for the systematic analysis of behavioural models 70

way of dividing parameters within this algorithm is dependent on the specdidgm (Fig.4.3).
There are also a number of interesting general features to the framelyadtks independent
of the specific optimisation technique used. This allows the investigator to eldustever tech-
nique is best suited for the model he wishes to study. 2) It is indepenfite ohosen modelling
technique. We have only discussed on Markov-like models here besacis@ model will be used
in Chapter5, but in principle any model with a finite parameter space can be used withalificae
tion to the algorithm. If the parameter space is infinite (for instance if one or aidihe parameters
can take any value), the division of the parameter space needs to Insicered since an infinite
space cannot be divided into two halves. Assuming that an acceptablefwayding the space

can be found however, the algorithm remains usable.

4.2 Formal definition of the recursive algorithm

In this section, a formal definition of the recursive algorithm is given ificgeht detail to serve
as a template for implementations. It is based on the previous section butsttiergpabilities of
the algorithm slightly beyond what has been discussed already, espeegalyling the definition

of the criterion of optimal performance.

Definition 1. Let.S denote the finite n-dimensional parameter space and the gets{ll; |1 <i <
n} and Us = {l 5|1 <i < n} contain the lower and upper bounds for each dimensiag. diVe call
division of the spaces along dimension d and writg -+ d, the creation of two space® and A/
with associated setsgk = L, Ugr = {Uaz|(Vi # d,Ugs = Ug) A (Ugg, = Usa/2) }, Loy = {lo¢| (Vi #

d’lfM = IS)/\(I% = ISd/Z)}, UN =Ugs.

Remark 1. This definition only shows the division of the parameter spaceihadves for simplic-

ity, but it is easily seen that the division can be defined for amyMas§ + dy, = {Ml, ey Mm}

Example 1. LetS be a parameter space such that & {0,0,0,0,0} and Us = {1,1,1,1,1}. § +
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2, = {M,2(} such that L, = {0,0,0,0,0}, Uy, = {1,1/2,1,1,1}, Ly, = {0,1/2,0,0,0} and Uy, =

{1,1,1,1,1}.

Definition 2. Let T = {tx|1 < k < m} be a set such that £ R and & <ty if K > 1. Let s be the
value of the minimum found in a parameter spgdsy an optimisation algorithm anghn its exact

location. We call ¥ € T|[Aw € T|vs >w > g thevalue of S if [T| > 1. If [T| = 1As<T,vs =s.
Remark 2. vg may not exist. This will be used in the algorithm below.

Definition 3. Let Vs = (ug, —ls,) - ... - (ug, —ls,) be the volume of the initial parameter spage

We callt|0 < 1 <V, thetermination thresholdf our algorithm.

Remark 3. T may not beD in order to prevent infinite recursion in the algorithm below= Vs is
acceptable but does not improve on just running running an optimisatgorithm on the entire

parameter space.

Definition 4. Let X be a subdivision of the parameter spat@and vy the value ofX. We call the
output fromX the triplet By = { X, Xmin, Vx } and we call the output frons the set O of all triplets

P generated by the algorithm gh

Algorithm 1. Preliminaries: Let d= 1. Let O= & be the set of results from the algorithm. L%t
be the initial n-dimensional parameter space and definad 7" as required.

Step 1. Obtain the location of the minimumyi and its score s inS from the optimisation
algorithm and determinegw

Step 2: If v does not exist, letw= 4. Let O= OU {{S, Snin,Vs}} and halt.

Step 3: Calculate the volume Mf S. If b < T, let O= OU{{S, Smin,Vs}} and halt.

Step 4: Perform$ ~d = {M, A\ }.

Step5: Letd=d+ 1. Ifd >n, letd= 1.

Step 6: Run algorithm with§ = M, d and O.

Step 7: Run algorithm withS = A/, d and O.
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Remark 4. Time may be saved by aborting the optimisation algorithm in step 1 prematurety o

aminimum s<t,vt €T is found.

Using the present algorithm, one systematically divides the initial paramet= gpga smaller
subspaces with a volumé < 1 and valuevg, which allows to assess what local minima one may
expect in different regions defined byf the parameter space. In particukadefines the resolution
of this visualisation: as — 0 the resolution will increase.

The sefT allows the user to define the different values for the minima that he is interiested
and depends on the specific problem. This extends the notion of a criterioptimal performance
discussed previouslyl may be a singleton, in which case it functions exactly like the previously

discussed criterion.

4.3 Analysing the set of optimal solutions

Applying the recursive algorithm to the parameter space of a model thusajes a list of
regions within the entire parameter space containing optimal configuratiche efodel. It fol-
lows trivially that regions which do not contain optimal configurations are ase known. The
available methods for analysing this family depend in part on the nature of ttiel nbit is Marko-
vian or Markov-like, one may for instance wish to look simply at the distributibthe transition
probabilities across the optimal configurations found by the algorithm. It dsayle possible to
look at certain Markovian properties of these configurations. Theselrspecific types of analysis
will be presented more fully in Chapt&r in which the present framework is actually applied to a
Markov-like model. Here, however, we focus on an analysis which ifiGgijbe independently of
the model and very informative on the relative importance of each parawfetee model with
respect to optimal performance.

It is possible to see the determination of whether or not a given region glttaeneter space
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contains an optimal configuration as a decision process on the valuedifféhent parameters. As
an example, consider again a simple 3-dimensional parameter space, wdiidtes into 8 equal
regions (cut once along each dimension). Let the parameters be ksdwBandC, each varying
between 0 and 1. After using the recursive algorithm, it is known for e&tfhose regions whether
or not they contain an optimal configuration. When focusing on the vahgeraach parameter is
allowed in a given regiony in the output from the algorithm as specified in secoB), this list

will provide the following kind of information:

o |f 0<A<O0)5 0<B<05and 0<C<0.5 a good solution is found.

e If 0<A<O0)5 0<B<05and 0.5<C<0.5 a good solution is found.

o If 0<A<O0S5 05<B<1and 0<C<0.5no good solution is found.

o If 0<A<O0S5 05<B<1and 05<C<0.5n0 good solution is found.

o If 0.5<C<AL] 0<B<05and 0<C<0.5 a good solution is found.

o If 0.5<C<AL] 0<B<05and 0.5<C<0.5 a good solution is found.

e |f 05<A<] 05<B<1and 0<C<05 no good solution is found.

e |f 05<A<1 05<B<1and 0.5<C<0.5 no good solution is found.

This information covers all the regions in the parameter space and camptesested as a
decision tree, as shown in Fg4. The tree shown is not the smallest possible tree. In fact, it is
easily seen that the only decisive factor in determining whether or noi@regntains an optimal
configuration is the allowed value rangeBéince all good solutions are found whr: 0.5. While
this is obvious in the present simple example, finding the smallest decision tteacthaately

represents a given data set is not a trivial problem in the general ttasan be solved, however,
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‘YesHYes‘ ‘YesHYesH No H No‘ ‘No H No‘

Figure 4.4: A simple decision tree based on the example from settBoriYellow nodes represent
parameters, edges the restrictions on the value of the parameter in thenpaieand boxes indicate
whether or not a particular combination of value ranges contains an optmfdjaration.

using an Al technique called the ID3 algorithii{chell, 1997). Briefly, the ID3 uses information
theory Shannon and Weavet949 to compute the information entropy of the data set. In our
example, we have 3 paramete#s B andC and two possible conclusions - a region either does or

does not contain an optimal configuration.

The entropy of the entire s&tis then given by:

__ 5 ISl 18
E(S = i; S log, S (4.1)

where|§ is the cardinality of théS, |S| the number of items with conclusiomndn = 2 since
we only have two conclusions. A decision tree will split this entire set into a murabsubsets
along one of the parameters. The ID3 algorithm decides which parametse farst for this split

based on the reduction in entropy this will achieve for the resulting sulisats paramete®, the
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algorithm therefore computes the gain of splitt@glong this parameter:

s I8l

G(S®)=E(9 E

(S) (4.2)

wherev represents each of the values that the parandetam take (0- 0.5 and 05— 1 for any
parameter in our exampledy is the subset 08in which @ takes valuer and|S,| is the cardinality
of this set. The parameter which provides the highest gain is then usedfastthede in the tree
and the algorithm is rerun on each of the remaining subtrees until the erithogysubtree is 0 or
all parameters have been used in the parent tree. The resulting tree likeheto be the smallest
tree which can accurately represent the given data set.

In our example above, itis simple to see that the gain is maximal when the trealscdalong
parameteB and that the resulting subtrees will all have an entropy of 0. The optimaidedree
in our example thus consists of a single nd8e,

Issues can arise if the data set is not completg. {f there were some regions in our example
for which we wouldn’t know whether or not they contained an optimal gumétion) or if there
are conflicts in the data(g. if one region were both labelled as containing and not containing an
optimal configuration). However, our recursive algorithm ensuresthiege problems will not be
encountered and it will thus always be possible to use the ID3 algorithiméoconstruction of a
decision tree based on the output of the recursive algorithm.

The real interest here is not the tree itself, however. An example treeavilebn in Chapter
5, but in general, when the model analysed using this framework has anlangiger of parameters
which are divided into several smaller regions, even a size-optimised trgbeartao large to read.
However, it is still possible to compute the average location of each paraaidter model in the

tree,i.e. how far from the top node it can be found in the different subtrees.eSime algorithm
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places parameters which are most relevant to reducing the entropy @fttheed, and thus are most
important in the behaviour described by the model, at the top, this effectjealgrates a ranking of
the model parameters according to their importance in the behaviour the meghibging. In our
simple example, we would find that paramegeas the only important parameter in the model.
There are several advantages which can be gained from suchiag.afkits simplest, it pro-
vides a better understanding of the importance of the correspondingitetsd units with respect
to the overall goal which in turn informs on the nature of the different siresethat exist to achieve
this goal. If some behavioural units are not present in the ranking atsaleen in our simple ex-
ample above, this is also informative since those units were presumably ubeditodel because
they were observed in the animal whose behaviour is being modelled. Tis®scan thus iden-
tify behavioural units which are unlikely to contribute to achieving a certaai god are thus more
likely observed due to other, perhaps uncontrolled variables in the toeinavexperiments which
formed the basis of the computational model. A more detailed application of thiofygrealysis

will be seen in Chaptés.

4.4 Other applications for the framework

The recursive search of the parameter space is obviously usefohlydor analysing compu-
tational models of behaviour but can be applied to any optimisation problemiamtlis useful to
understand the distribution of global minima across the parameter space.it9soot restricted
by the choice of model or optimisation technique, it is generally applicable. Whdeof course
always possible that faster approaches exist for a given speafidgon, our approach can always
be used if those are not yet known.

A second, perhaps more interesting application of this algorithm is that it eipndealing

with local minima problems in heuristic optimisation tasks. Consider for instanceattzngter
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Figure 4.5: A randomly generated parameter space used here to illustregeapplications of our
framework. Red indicates peaks, blue valleys. White circle shows globationin.

space shown in Fig4.5. Finding the global minimum (indicated by the white circle, and with a
value of 14233) is a hard task even for algorithms that are designed to overconmeliogaa, like
Genetic Algorithms Eraser and Burneltl970 or Simulated AnnealingKirkpatrick et al, 1983
Cerny, 1985. Table4.1 summarises the performance of a standard SA algorithm, our recursive
approach with a variety of different divisions of the parameter spadeaasequential subspace
search using the same parameter space divisions. When using theveeapoach (using the
same SA algorithm for the optimisation), the criterion for optimal performancebigarily set to

10. It is easily seen that even when each parameter is just divided intoh@vohance of locating

the global minimum increases significantly from 2% to 62% as measured in Bategpruns of

the algorithms. Similarly, the mean optima returned over those runs decrea®e858+ 3.78 to
2.41+1.76 indicating that even when the recursive algorithm fails to locate the gbgiahum, the

best value found is still closer to the optimum in the recursive approact.p&hormance of the
recursive algorithm only increases as the parameter space is dividesiriatter spaces. However,

the increased ability of dealing with local minima comes at an obvious cost - uiresgmore
computational time (Tabld.1) The performance of the sequential subspace search is qualitatively

similar and with a low number of subspaces almost identical to the recurgireagh. As the
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Technique Prob. of finding minimum Mean score found Mean time (s)
Standard SA m2 658+3.78 155

Recursive witht =1/4  0.62 241+1.76 895

Sequential withh =1/4  0.68 219+1.42 983

Recursive witht = /16  0.64 166+0.78 2097

Sequential witht = 1/16  0.70 165+0.77 4330

Recursive witht = 1/64 0.9 143+0.01 4862

Sequential witht = 1/64 0.9 143+0.01 17758

Table 4.1: The chance of finding the global minimum in the parameter spasa $héig. 4.5and
the mean and standard deviation of the solutions found in 50 trials for a stiesicrulated annealing
algorithm, a sequential subspace search and our recursive algoiititimgl the parameter space
into 4, 16 and 64 subspaces respectively. The mean running time of thighaiggare also shown.
number of subspaces increases, however, the mean running time aftleatal approach becomes
much larger compared to the recursive algorithm, which is expected sinlveaifsaevaluates all
subspaces.

To better judge the relation between the increased cost and the increasedss we ask how
often each of the algorithms would need to be run in order to have returagtbtbal minimum with

a probability of 09 (i.e. the best observed success rate). To do so, we use the Pascal titistribu

(Feller, 1968:
f(t)=pa-p" Y (4.3)

which gives the probability that an event happens for the first time atttifriee probability of the
event happening at any time s Summing fromt = 1 tot = n then gives the probability of the

event having happened for ahy n. For a givenp, we thus need to find the smallessuch that:
n

Zl p(1—ptY>009 (4.4)

t=

The results are summarised in tadle. It can be seen that under these circumstances, each of
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Technique Runs required Approx. time required (s)
Standard SA 114 176

Recursive witht =1/4 3 26.85

Sequential with =1/4 3 2949

Recursive witht = 1/16 3 6291

Sequential withh = 1/16 2 86.6

Recursive witht = 1/64 1 4862

Sequential witht = 1/64 1 17758

Table 4.2: The number of times an algorithm needs to be run to have foundbtied ghinimum
with a probability of 09 and the corresponding time cost

the recursive algorithms outperforms the standard simulated annealinghatgsignificantly. A
similar effect has been found for the sequential approach: unlessuthben of subspaces is set
to 64, it outperforms the standard approach significantly. Compared tec¢hesive approach, the
performance is rather similar when the parameter space is divided into ssedjot this is no
longer true for other divisions.

Interestingly, it can also be seen that dividing the parameter space intorsregitss does not
necessarily result in a faster performance if a target probability of dwimd the global minimum
is set. In our example, dividing the parameter space into 4 regions is a moreffigient solution
for finding the global minimum with probability.0 than a division into 64 regions.

While it is of course not normally knowa priori with what probability a heuristic optimi-
sation approach will find a global minimum in an unknown parameter spacas ithus still been
shown that using our recursive approach as well as a sequentsgdastébsearch can both increase
this probability in a single run at the expense of requiring more time and caevadntarget prob-
ability over multiple runs in less time than a standard approach. Compared @ensiafjsubspace
searches of the same granularity, the recursive approach mainly @sowitime advantage which
increases with the number of subspaces, but at least in our example #ie@wdifference between
the most time-efficient solutions for achieving a probability & 6f finding the global minimum

was minimal.
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4.5 Summary of Chapter4

This chapter has introduced a framework for analysing computationallsofleehaviour by
discovering a family of configurations which allow the model to perform sorhedeur optimally.
This family of configurations is found by systematically searching the parasgaee of the model
for different strategies by which the model could achieve a certain gaaknalysis based on the
ID3 algorithm has been introduced which allows the ranking of the modekspeters with respect
to the goal-oriented behaviour. Additionally, it has been shown that thesirerk has uses outside
of behavioural analysis, especially in the case of heuristic optimisation ireapder space that is
likely to trap a standard algorithm in local minima.

The strengths of the framework here are its generality and independesygecific modelling
or optimisation techniques. This makes it very useful as a general toolafogthfor the analysis
of goal-oriented behaviour. An example applicationCtoelegangradient navigation behaviour

will be given in Chapteb.
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Chapter 5
Stochastic gradient navigation strategies of. elegans

model ofC. elegangyradient navigation has been introduced in secBdn Here, we use

A this 3-state model to investigate this gradient navigation behaviour in detail.llynitie
answer the question: how do the behavioural units observed élegandave to interact in order
to navigate gradients towards their centre as fast as possible? Usingutienfork described in
Chapter4, we systematically derive a family of solutions, which represents the divefsenergy
efficient solutions that could be adopted by the animal. This solution set ligsadefor common
properties, which allows us to determine how the behavioural units of thmpiestic model need
to interact to navigate gradients efficiently and it will be shown @atlegandike strategies form
the largest part of the optimal solutions. The fact tGatelegandike behaviour emerges in the
optimal configurations we derive allows us to be confident both in terms ofefegance of the
original model as well as our new predictions that result from it, thus dsetrating the usefulness
of our framework as a general approach to analysing complex bemaviou

We initially add the assumption that the model is able to act upon gradient infomvatiite

it is moving forward but not during reversals, which we show later to beasanable assump-

82
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tion. Also, it is worth underlining here that our results will be specific to thisiad of model and
therefore it is important that it has been shown to reprodiicelegan$ehaviour for at least some

specific choice of parametemdiller et al., 2005 Zariwala et al, 2003.

5.1 Optimisation of the model

A general question when considering the optimisation of a model of animavtmhr is which
cost function should be optimised as the animal’s behaviour has likely evimhasttiress a number
of constraints. Here, we choose to optimise for energy efficieKopi{man 2000 and we relate
the energy cost to the time taken by the model to navigate towards the centradiflagradient
from a fixed starting position.

C. eleganss capable of navigating gradients in both directions; it will for example move
towards food but away from noxious stimuli even though they both pmdhemical gradients.
In the context of our work, we use a radial gradient whose directioefineld towards the centre.
Since the model used here only receives the sign of the change in dradértime as an input,
the exact nature of the increase in concentration as distance to the peaés#s has no effect on
the results. Here, we thus simply define the gradient as increasing linedhlg nadial direction.
We test virtual worms whose behaviour is dictated by a specific set ofttcangrobabilities for the
model by setting a task which requires them to navigate this gradient froracadtarting position
towards the centre. The faster a virtual worm performs this navigation, the efficient the choice

of transition probabilities for the underlying model is.

5.1.1 Parameter space of the model

The model has three states ((F)orward run, (T)urn and (R)evengti)two sets (one for up-

gradient (1) and one for down-gradientl) travel) of three probabilities attached to each state (Fig.
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3.2). This gives a total of 18 transition probabilities. It is however possiblepoasent each set of
three probabilities by just two valugs andp; (with {¢;,p;} € [O, 1]2 andi € {F,R T}) as in the

following example for up-gradierit state probabilities:

pu(FIF) =bF (5.1)
pu(RIF) =(1—9F)pF (5.2)
Pu(TIF) =(1—¢F)(1—pF) (5.3)

In behavioural terms, the parametgrrepresents the likelihood of remaining in the statehile
pi determines which of the remaining two states will be the most likely successoifsttttei is
left. The parameter space of the model can thus be represented in justesons, which has no
effect on the range of behaviours that the model can display but simpliesptimisation process
significantly. The multiplicative relationship between the parameters ensatethéhsum of each

set of probabilities will always be 1, irrespective of the values taked; landp;.

5.1.2 Definition of the criterion for optimal performance

As was noted in Chaptet, the recursive algorithm we use for analysing the model requires
ana priori definition of a criterion for optimal performance. In this case, it can beimdtafrom
the performance of the best solution found by the SA algorithm when ritheoantire parameter
space.

Due to the stochastic nature of the model, there will be some variability in therpenice
of this solution, but it is possible to use this variability to define a limiting value foatwdan
be considered an optimal solution to the problem. The variability was determjnegtimising

models 50 times and noting the distribution of the performance scores (seb.BigA Pearson
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Figure 5.1: Distribution of the scores of 50 solutions found by the SA alguariththe stochastic
parameter space. Bin sizeds3.1. Meanu = 22293s and STy = 6.57s. Black line shows fitted
Gaussian. The shape, mean and standard deviation of the distribution det#mnutefinition of
optimal solutions (those with a scose< U+ 30, see text).

X2 test confirms that this distribution with megn= 22293s and standard deviati@an= 6.57s is

normal, which (from the cumulative distribution function) indicates thaB®% of all scores are

lower thanu+ 30. Since the distribution represents a collection of optimal performancesamwe c

define a model obtaining a scae p+ 30 = 24264s as being optimal.

5.1.3 Model assessment

Individual simulated worms whose behaviour is determined by a specifif sansition prob-
abilities for the model are tested in a virtual gradient. The starting position ahtidel is fixed
at a distance of 202 mm from the peak of the gradient and the initial orientation cycles from 0
to 360° in 5 ° increments for each run. A total of 72 runs are performed per assesantthe
average time required to come withirbnm of the peak of the gradient defines the value of the
cost function at the point defined by the model’s transition probabilities amlttie score of the

transition probabilities.
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5.1.4 Simulation of worms

All simulations of virtual worms take place in a Cartesian space with discrete tipecté s.
The virtual worms are only able to assess the change in gradient over tielemdving forward.
It is not known if this is also true fo€. elegansbut we will show that this is likely to be a correct
assumption (seBesulty. Fixed parameters have been set to realistic values where possibl: trav
speed has been implemented as a constant se22on@m/s Ferrée and Lockeryl999 and turn
rates are chosen randomly from values between 0 arids50r up-gradient turns and 50 and 210
°/s otherwise, reflecting values that have been observed in real anPiateg-Shimomura et al.
1999. C. elegansalso exhibits a directional bias even when the animal is moving forwriedde-
Shimomura et al2005. This is implemented as a Gaussian distribution with medat:2.12°/s
(Pierce-Shimomura et all999. Reversals are implemented as a forward movement with a negative

speed and the same directional bias.

5.1.5 Simulated annealing

A standard simulated annealing approakirkpatrick et al, 1983 Cerny, 1985 is used to
optimise the system. The transition probability funct®r- exp((Es—En)/T) for E, > EsandP =1
otherwise is also standard. Hefiejs the current temperature of the system &@ndE, are the
energies of the current state and the selected neighbour respectielinitial temperature of the
system is set td = 15x 10° ° and the cool-down for each time-step is definedias = aT; with
o = 0.99. The algorithm halts successfully before the end of the cool-down dfudien whose

score is equal or better than the criterion for optimal performance is found
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Figure 5.2: Probability distributions of solutions found by the optimisation algaoritBach subplot
indicates the distribution of the values for one transition probability acrossoaltions. Both
up- (black circles) and down-gradient (transparent squaresjbtistms are shown, although up-
gradient data is only meaningful for the state (first row). Rows correspond to the active states
and columns to the possible successor states. The third subplot in thevirgius displays the
distribution of transition probabilities from tHe state into theR state. Bin size is Q. Of interest
are strong preferences for specific values, seen for instanceoforthe up-gradient and down-
gradient values op(F|F) (top left).

5.2 C. elegansgradient navigation strategies

Dividing each dimension once using the recursive algorithm, we determia¢®4B of the
total 4096 hypercubes in the parameter space contained at least ond eplirtian. In this section,

we seek to understand what the common requirements for optimal perfarasc

5.2.1 Probability distributions show run shortening during down-gradient naviga-

tion

First, we consider the distribution of values for every transition probabifithie@model across
all identified solutions. This allows us to easily identify transition probabilities tlaate similar
values for all solutions, thus indicating a strong preference for thdsesia

The distributions of the transition probabilities for the 945 solutions are showig. 5.2 The

distribution for theF state is expected: 98 % of the individuals have,(F|F) = 1, 9026 % have
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pa(F|F) < 0.3, thus showing the typical preference ©f elegandor long runs when going up-
gradient and short ones when going down-gradient. However, it igesttag to note thapy(R|T)

is close to O for most individuals (489 % the individuals haveq(R|T) < 0.1, 8804% p4(R|T) <
0.5), making ar -R sequence uncommon, which is similar to observations in real aniZ@aisvala
et al, 2003 Miller et al., 2005. Sincepy(F|F) = 1 for most solutions, all transition probabilities
related to the other two states will have no effect on the behaviour when ghaphgradient and
are distributed randomly across the value range.

We briefly investigate the robustness of the solutions by selecting the run-dimeaof a model
parameter randomly from a flat distribution centred around the optimal vaiubédt parameter and
with a spread of & anew at every time step. We analyse the effect of such a fluctuationchn ea
of the parameters in turn. Although the fluctuation is quite strong, the time the nredglise to
navigate towards the peak when only one of the down-gradient parametiuctuated remains
within 105% of the original performance. When all down-gradient pataraare fluctuated simul-
taneously, the required time increases to 112% of the original one. A ftigriuaf the parameter
encodingpy(F|F) however results in a complete inability of the solutions to perform well in the
task. Even if the spread of the distribution is reduced.ig the solutions only reach the peak of
the gradient after 140% of the original time. This loss in performance hemgwnainly due to the
fact that none of the other up-gradient parameters were actually optitnydbe algorithm. If they
are manually set to optimal valuase( facilitating a return to thé& state), a fluctuation with spread
0.1of py(F|F) results in a small increase in navigation time to 113% while the original spread of
0.5 results in an increase to 150%.

We have thus shown that the model remains relatively robust even agaorgg fluctuations
except if they affect all up-gradient parameters at the same time. If osljgde parameter is
fluctuated, the strongest decrease in performance is observpg FF ), which is to be expected

since the solutions will spend the largest amount of their travel time goingaghiemt in the- state.



Chapter 5: Stochastic gradient navigation strategiesCofelegans 89

Figure 5.3: ID3 decision tree for visualising the regions of the energyfoastion divided into
those that contained an optimal solution and those that did not. Only pararatéeting down-
gradient navigation are considered here. Edge labels indicate wheghesltie range for the pa-
rameter specified by the parent node will be (I)ow-(®3), (m)edium {/3—2/3) or (h)igh ¢/3—1) in
the sub-tree below that edge. Combinations (e.g. low or medium, indicatedry)‘4re possible

if the sub-trees for each branch are identical. Diamond nodes decidedliedid of staying in the
behavioural state indicated by the node (they thus represeqtgheameters of the reduced param-
eter space) while square nodes decide if the likelihood of leaving a stateseglli@vards either of
the possible successor states (thus representing aeameters). The notatioh< Z > Y is used

to indicate that a low value range will bias the likelihood of leavihigeavily towardsX whereas a
high value range will bias it towardé. Each leaf node, represented by a circle, indicates whether
the region of the energy cost function defined by the preceding desisioithe value ranges for
the different parameters has been found to contain at least one optilizs@Yes) or not (No).

It can thus be seen for instance that no optimal solution has been fourel iegion defined by a
medium value for remaining in the state and a high bias for moving into thestate if leaving the

F state. This tree can also be used to determine how important every paranretéeibehaviour
(see tablé.1).

We found no clear differences in the effect on performance whem pirameters are singled out
for fluctuations. We have also not found any clear differences iropegnce between individual

members of the family of solution in this investigation.

5.2.2 Ranking of the behavioural units

Next, we apply the ID3 algorithm as discussed in Chaptés create a ranking of the be-

havioural units. The results from the distribution analysis in the previoctsoseallow a simpli-
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Value Span
Rank Node Low Med High  Mean pos.
1 F 141% 272% 587% 1+0
2 T<F>R 556% 264% 18% 2t0
3 R 26% 198% 164% 32+0.44
4 F<T>R 21% 27% 12% 45+0.84
5 T 6% 99% 68% 457+0.78
6 F<R>T 05% 07% 0% 533+1.15

Table 5.1: Summary of the ID3 tree in Fi§.3emphasising the distribution of hypercubes in which
no optimal solution was found by the SA algorithm over the sub-trees (lowiutimeathd high) below
each node. Mean pos. indicates the average position of a node in thedrineatandard deviation.
Rank sorts nodes according to their mean position, which indicates the imgmdathe parameter
represented by each node in gradient navigation.
fication of the parameter space: since all up-gradient chains afeF ) ~ 1, it is admissible to
ignore the up-gradient parameters and focus on the down-gradiestwdthout loss of generality.
The model will simply remain in th& state when moving up-gradient and the behaviour will thus
be independent of the other up-gradient parameters. Since it capmhadeg.5.2that the optimal
configurations for some values are located at the division border,-wertihe recursive algorithm
with every dimension divided into three, rather than two parts (with valueesiogl/3], |1/3,2/3]
and]2/3, 1] per dimension) for this analysis, as discussed in Chabpter

The resulting decision tree is shown in Flg.3. Since it indicates all hypercubes that do not
contain an optimal solution, it is possible to calculate the total percentage oflthee@sional space
of the cost function that is occupied by such hypercubesb@®2) and how these hypercubes are
distributed over the subbranches of all nodes (squares or diamonds i5.8) in the decision tree
(see tablé.1). Table5.1indicates the mean position and the resulting rank of each node.

The ranking confirms that the most important feature while moving downiggrafbr suc-
cessful gradient navigation is the parameter determining the length ofribrwas. Additionally,

the distribution of hypercubes containing no optimal solution undeptliE |F) node increases as

the value increases, with over half being located in the Ighl] range. This implies that longer
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runs when going down-gradient are worse than shorter ones, whésipéxted and corresponds to
observed behaviour in the real animBldrce-Shimomura et afl999.

The second important feature is the behavioural unit following the fahwar, where a prefer-
ence for reversals is clearly seen as 55% of all hypercubes with no égtilaion lie in a region of
the parameter space which favours turns over reversals as a suctass to forward runs. This is
similar to observations i€. elegansyhich often precedes turns with a reversatdy et al, 2005.
The length of reversals is also important and there is a clear preferenskdrt reversals as only
2.6% of the hypercubes with no optimal solution are located in the[@#3] range, in agreement
with observations in the real animalt{ao et al.2003.

Beyond the third level, the standard deviation of the mean position increadesting that
these nodes are scattered throughout levels 3 to 6. This makes it moraltdifii@assess their

significance as interdependent effects are quite likely.

5.2.3 Changing the criteria for optimal performance has litle impact on results

We have shown in the previous section that only the down-gradient peremaee of interest.
Here, we briefly investigate how the choice of the criteria for optimal perémice affects the results.

We originally defined the criterion for optimal performance as the mean plas gtandard
deviations of the distribution of scores obtained by running the optimisationithligoon the entire
parameter space 50 times. Here we analyse if the distributions of the probabiligs for the
down-gradient parameters (depicted in FagR) change substantially for different definitions of the
criterion for optimal performance.

To do so, we collect three subsets from the original family of solutionsviidiaials whose score
is less or equal than the mear) plus zero, one or two standard deviatioo$ ¢f respectively. We
compute the same histograms as depicted in%@for each subset and normalise for the number of

individuals in each set. We then compare these histograms with the origimah¢ataalised) one by
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Figure 5.4: Mean first passage times from Thetate into thé= andR states (left) and from thR
state into theF andT states (right). The preference for short MFTs iftdtypically < 6 s) can
easily be seen. Dashed line visualises correlation.
computing the RMSE between the original and each new one. We find a RMB&L80 between
the original histogram and that of the subset with a criteriop¢f20. This RMSE increases to
0.0534 for the subset with a criterion pf+ o and to 01029 for the one with a criterion qf

Since we normalised the data, the RMSE indicates the difference in changepmfrtion
between the data in the different histograms. It can thus be seen thatfégrerdie between the
histograms is less than 2% if one standard deviation is subtracted from th@aorii@r optimal
performance, which increases to 5% and 10% if two or three standaiatidag are subtracted.
Thus the change in histograms remains relatively small even when the famdiutibss is halved
(since a criterion defined simply as the mean would remove the entire rightsidendf the curve
in Fig. 5.1) and we can therefore feel confident that the results presentedgneaa valid for other

reasonable choices of a criterion for optimal performance.

5.2.4 Markovian properties reveal the use of pirouettes

Finally, because the model used here is Markov-like, we consider thikoMan properties of

all solutions found by the SA algorithm. These properties are generalfyldee understanding
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the behaviour of a Markov model and, as for the probability distributioyaig strong trends
and preferences for specific values across all solutions indicateeeoants for optimal behaviour.

It has been noted before that the type of probabilistic model used he Markovian in the
strict sense due to the non-stationary transition probabiliNélef et al., 2005. Nonetheless, it

is possible to consider the transition probabilities for up- and down-gradienements separately
as strict Markov chains in a meaningful way as the only transition point fsamchain into the
other is located in th& state (the only state in which the model can receive information about
the gradient which will determine whether up- or down-gradient probalsilére going to be used
in the next step). Here, we call arp-gradient chaira sequence of states determined exclusively
by up-gradient transition probabilities awldwn-gradient chaira sequence of states determined
exclusively by down-gradient transition probabilities.

To confirm that the optimal solutions make use of all the states of the model mgute their
ergodicity. A Markov chain is ergodic if every state in the chain can benezhwithin a certain time.
We found that 12 of the solutions returned by the SA algorithm have ngoder down-gradient
chains and that in all cases, tRestate is excluded from the chain. An additional 51 solutions have
a very low probability of entering th® state 4(R|F) + p4(R|T) < 0.1). 6.66% of the models
under consideration therefore do not rely on Ehgtate in their strategies, preferring Bncoli-like
run and tumble approacBérg and Brown1972. The presence of these solutions exemplifies that
a bacterial strategy can in some cases perform similarly to the more intGcatiegansstrategy.
However, the low number of such solutions in comparison with those thatewsesals indicates
that reversals may improve the robustness of the performance as athergpers are varied.

To determine the likely sequences of behavioural units, we next cortbilprean first passage
times (MFTs) of all solutions found by the optimisation algorithm. This is the mean timeresl
by the model to reach a given state for the first time if started in a given dtter & is only possible

to consider the MFT for ergodic chains. Since most solutions have abgarp-gradient chains in
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the F state pu(F|F) = 1, making it impossible to leave that state again), only the down-gradient
chains (withpg(R|F) + pg(R|T) > 0.1) are considered. Additionally, MFTs starting from the
state cannot be taken into account as this state contains a transition poineiof@gnadient chain.

Fig. 5.4shows the MFTs for all qualifying solutions from the SA algorithm and stdtesn
clearly be seen that the MFT frominto F is relatively low across all solutions (meard3+ 0.87
s), similar to the MFT fromR into F (mean 301+ 0.96 s). Periods of reversals and turns are
therefore frequently interrupted by forward runs, which will be slifottte model is still heading
down-gradient. The models thus tend to use a pirouette strategyufn events interspersed with
short runs) similar to that d€. elegangPierce-Shimomura et all999.

The MFT fromT into R shows a much higher variability (mear8444.02 s) while the MFT
from Rinto T remains relatively low for most individuals (mear03+ 1.26 s). A Kendellz test
reveals a noticeable correlation (valu®.22) between the MFTs for leaving tfiestate but less so
for leaving theR state (correlation value.07) (see Fig5.4). Since the MFT fronT into Ris low
only if the MFT fromT into F is high, runs are the clearly preferred successor behavioural uait to
turn. In other words, the models are not likely to follow turns with reverdiig. lack of correlation
between the MFTs leaving tHe state indicates the lack of a clear preference for a successor state
to Rin the family of solutions, which can also be seen in the analysis of the ID3idetise (Fig.
5.3and tables.1).

The MFTs intoF also give a good indication of the average length of sequences composed
reversals and turns between forward runs and confirm the pregefenfrequent returns into the
F state already observed in the transition probability distribution (&ig. They do not, however,
give an indication about the length of the resulting pirouette itself as it is mwkrwhether the

next step in thé- state will be in the up-gradient or the down-gradient chain.



Chapter 5: Stochastic gradient navigation strategiesCofelegans 95

5.2.5 Pirouettes may emerge in part from an inability to samge the gradient during

aturn

Next, we try to pin down the cause of these pirouettes. There are twotasgebe model
which could in principle give rise to them: (1) intrinsic properties of the distidims from which
the turn rates are sampled, or (2) assumptions on the gradient sampling dhitieyraodel. We
have tested the effect of the second consideration by modifying the modeéasit is also able
to sample the gradient during turns. This modified model was then optimisedef@athe task
and a family of solutions derived as before. First, we noticed that the aswilyf of solutions
had 1393 members (compared to the previous 945), indicating that progjcidgent information
during turns has facilitated the task. The threshold for optimal performameever was virtually
identical to that for the original family (2422 s versus the original 2424 s), indicating that the
additional information did not provide a large performance gain. Since thisfamily now has
two transition states between up- and down-gradient chains (ifr tae well as thel state), it
is no longer possible to identify pirouettes based on Markovian propettes.a\We therefore
simulated each optimal solution in both the new and original families 20 times and ieéritig
proportion of down-gradient reorientation sequences that do ntdiccenF state, other than those
located at the beginning of the sequence. We find that on averafié%8of all down-gradient
reorientation sequences in tracks produced by the original family of setutiad not involve a
forward movement, whereas for the new family this value increased sigrilfida 64+ 6%. The
number of pirouettes executed by this model is thus higher if the model is uttablaluate the
gradient during a turn. Although it is difficult to control for the exaceeffof the distributions from
which the turn rates are sampled, we have thus shown that they are natytloawose of pirouettes.

Comparison with biological data is difficult because the proportions of pites with at least
one forward movement exclusively within down-gradient reorientatigueseces has not yet been

identified. When all reorientation sequences are considered, therpoopis estimated at about
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40% (Pierce-Shimomura et all999, but since the length of forward runs is much shorter while
going down-gradient, turns interspersed with small runs are more likelygpemawhile moving
down-gradient whereas single turns are more likely to happen while mophggadient. The pro-
portion of turns interspersed with runs can therefore be expected tigbertthan the reported
40% when considering only down-gradient movements. It is thus possdiléthanimal also uses
pirouettes at least in part because it may not always continuously &vdhechange in gradient

during a turn, but more biological data would be needed to confirm this.

5.2.6 Performance on planar gradients

It is interesting to investigate the performance of our optimal solutions in a diffigrent
type of environment: a planar gradient. In this case, gradient contentdecreases linearly with
the distance to th& axis, but is independent of the specific horizontal position in the Cartesian
plane. Since the peak of the gradient is now essentially a line, we expéchdugls will take
less time to navigate towards it than in radial environments. Indeed, whemily faf optimal
solutions is derived in a planar environment, it contains 1881 members cainoa®@d5 for the
planar environment and their performance when started at the same distandhe peak is lower
(121794 15.64 s) than that of models in a radial environment (#89-19.89 s).

We then simulated the family originally optimised for radial environments in the plamar
and find that there is no significant differengex 0.3) in performance with those optimised for the
planar environment (mean time to the peak .4P% 11.69 s). The converse is not true, however
- models optimised for planar environments perform significantly wopse 0.001) in a radial
environment (mean time to peak 202 29.59 s versus 1884+ 19.89 s).

We have thus shown that our models also perform close to optimal levels iar gleadients
for which they where not originally optimised and that a radial environmastdeen a good initial

choice.
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Figure 5.5: Probability distribution of the transition probabilities of optimal solgiassuming the
model is able to process gradient information during a reversal. Bin sizé.i€0mpared with Fig.
5.2, a smaller proportion of the models hapgF |F) ~ 1 and more models hayg (R/R) ~ 1. The
functional role of reversals in these models can thus be similar to that cdfdmuns.

5.2.7 Models naturally dwell at the peak

Although our models have been optimised solely for efficient navigation ofjtheient, we
find that they naturally dwell near the peak once it is reached. After theelmoedached the peak,
they were typically found to stay within.®+0.39 mm of it. Although our models can not slow
down and become stationary like real animals, it is interesting to observehatithe dwelling at
the peak need not explicitly be represented in the cost function and mawydmexgent property of

the gradient navigation even in the real animal

5.2.8 Gradient information during reversals leads to unnatiral behaviour

It is not known whethef. eleganss capable of acting upon gradient information while it is
reversing, but reported state transition probabilitid#lér et al., 2009 suggest that it does not. This
can be examined by enabling sampling of the gradient while reversing in thel ot previously
and optimising it using our recursive approach to collect a set of optinhatios given the new

conditions. If this is done, 1782 hypercubes are found to contain safutiapable of optimal
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Figure 5.6: Four randomly chosen example tracks of models with reveradilegt information
enabled (right) and disabled (left). Runs are indicated in grey, rdgdrshlack. It can be easily
seen that the right model’'s use of reversals is abnormal.

performance and the decision tree generated by the ID3 algorithm (ownh}lindicates that the
performance of the solutions is unsatisfactory wipg(F |F) and py(R|R) are both less than..
These results indicate that optimised models will useRfandR states as functionally equivalent
units.

Fig. 5.5 shows that a large number of the solutions now found do not possestrdhg s
preference for forward runs when moving up-gradient observeedihanimalsPierce-Shimomura
etal, 1999 and our previous set of optimised models (). Similarly, a large percentage of the
new solutions us@y(R/R) = 1 (Fig. 5.5), effectively navigating towards the centre of the gradient
while moving backwards, which has also never been observed in rieahlan Example tracks of
worms modeled with those probabilities (F&6) underline the abnormal use of reversals.

When comparing the performance of 2000 runs from this new family of solsitwaith the
original family, we found that being able to act on gradient information duraversals gives the
models a small but significanp(< 0.001) advantage (mean time to navigate to the peak:7534
19.65 s versus 189 19.9 s). Interestingly however, when the equivalent families optimised for
planar gradients are compared, no significant difference in perfoeriambserved (1224 15.62
sversus 1279+ 15.64 s,p > 0.7).

We have thus shown that the ability to act upon gradient information durireggals can in
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some cases give the models a slight advantage; it is therefore interestimgetwethat the animal
does not appear to do so. However, this may be due simply to mechansahseaince the animal
reverses over its own tracks, it is possible that gradient informationées disrupted within those
tracks. Alternatively, since most sensory neurons are located in tliedigbhe animal, gradient
information may simply be obscured by the animal’s body and thus unavailabfegdureversal.
Given that the gain from such information is minimal, this is unlikely to put the anitalsavere

disadvantage.

5.3 The family of solutions can be used for investigations of novel sit-

uations

An interesting test for any computational model is its evaluation in a novel taskHizh it
was not originally designed. In this section, we first show that the familyhiftions previously
derived perform similarly to real animals in a situation they were not originakighed for: step
changes in the concentration of the otherwise uniform chemical envirdnriidée behaviour of
C. elegansn such a situation has been previously studiedviijer et al. (2005 and we base our
present analysis on their results.

We then use the family of solutions to investigate two interesting questions: 1f) &kéhéhe
effects of the responses to downsteps and upsteps in gradient tratioes displayed by. ele-
gan® This has been touched upon but not fully investigatetidler et al. (2005. 2) The same
study artificially deleted either the downstep or the upstep response in cdiopatanodels of
real animals and shows that models with a deleted downstep response &illthesregions of
higher concentration in the quadrant assay (bi@). This seems at odds with the pirouette strategy
(Pierce-Shimomura et all999: how can a model which cannot react to entering a lower concen-

tration (.e. does not display pirouettes) outperform a model which is still able to avoiditinge
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concentration (using pirouettes)? It is therefore interesting to see wheéean reproduce this
behaviour with our family of solutions or find the behaviour one would exfyee the pirouette
strategy.

Although it would be preferable to use our family of models without modificasome adjust-
ments are unavoidable. First, the models possess two sets of transitioniltiebathich regulate
behaviour depending on whether the concentration of the chemical emerd increases or de-
creases. However, since the chemical concentration in the preseminegpts is mostly invariant
over time, a situation that has been virtually impossible in the task for which thelsnwdee opti-
mised, they need to be extended with a set of transition probabilities for this@itugince there is
little point in optimising a model for a situation in which there is no clear goal bardt@inputs
available to the model, we derive this set of transition probabilities from aqus\experimental
study ofC. elegangZariwala et al, 2003); they are thus biologically realistic.

Second, it is important to consider not just the chemical stimulus itself but algdHhis trans-
lates into neural activityC. eleganseurons are thought to signal mainly using calcium dynamics,
which have a slow timecourse. No intracellular studies of the calcium dynama®imosensory
neurons exist so far, but they have been studied in AFD, the main themswgeneurons irC.
elegangClark et al, 2009. In those experiments, it was found that intracellular calcium increases
(decreases) if a temperature upstep (downstep) is experienced andldidy recovers to pre-
stimulus levels (over a timecourse af20 s for upsteps and 80 s for downsteps) unless another
temperature step is experienced. In the previous simulations of our optimigkglana period in
which no gradient changes are experienced was impossible and tiegtrefdehaviour of the mod-
els was consistent with the dynamics even though those were not explicitly inmgkuniato the
models. Here however, situations in which there is no change in the envinbrameepossible and
the corresponding neural dynamics therefore need to be added to tledsm&dr simplicity, we

base these on the upstep responses of the AFD neurons: informatitiretteethas been a change in
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Test Home

Home Test

Figure 5.7: The quadrant assay setup. Quadrants denoted by 'Hontaircan environment with
a reference concentration whereas the quadrants denoted 'Tetstirceither an up or a downstep
from these concentrations.

the chemical environment will persist in the model for 20 s unless a charige apposite direction

is noticed.

5.3.1 Quadrant assays

Miller et al. (2005 separate the plate on which the animals move into quadrants (seeHig.
with the concentration in the quadrants such that two quadrants containranents the animal is
used to (home quadrants) and the other two contain either upsteps ortejpsvfrom the concen-
tration in the home quadrants (test quadrants). It is shown that animaés predtay in the home
guadrant when the other quadrants are a downstep but prefer thhegaddrants if the concentra-
tion increases in them. The quantitative measure for this is simply based onnttieenaf worms

in each type of quadrant:
| — Ny — Ns
N Ny + Ns

(5.4)
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whereNy is the number in the home quadrants awglis the number in the step response test
guadrants.

Similarly to Miller et al. (2009, we find that the models prefer the home quadrants if their
concentration is higher than that of the test quadraat@.65+ 1.3) and the test quadrant otherwise
(I = —0.684+0.07). The models somewhat outperform real animals in this test but this is mamly d
to the fact that the models by design do not take the amplitude of the gradigmtsteccount, so
quantitative matches cannot be expected in this assay. Nonethelessalitetige match between

the models behaviour and that of the animals is clearly seen.

5.3.2 Responses to step changes in concentration

Miller et al. (2005 expose animals to a uniform change (upstep or downstep) in gradient at
single point in time while recording their ethograms. These ethograms arertedhinto 4 functions
of probability versus time by calculating the amount of time spent by each aninoaleirof four
states over 10 s bins of the ethogram. The final data corresponds to thentestandard deviation
of these functions over all animals versus time. The main states correspford/éod runs, turns
and reversals; a fourth state is used for behaviour that is not clednhedéut the probability of
that state remains near O for the entire time.

When both the upstep and downstep experiments are replicated with a alubgefamily of
models, we observe similar responses to those reportddilley et al. (2005 for real animals. An
upstep results in a transient increase of the probability of finding models imtvarid state with
corresponding decreases of the probabilities for both other state$(BigA reduction in the stan-
dard deviation is also observed. Conversely, a downstep results imeadedn forward probability
with a corresponding increase in the standard deviation of the turn glibpabd an increase in the
reversal probability (Fig5.9). Miller et al. (2009 only report forward state probability states for

the downstep situation, so it is not possible to judge the realism of the chemtesreversal and
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Figure 5.8: Evolution of the Probability of finding models in a given state \#etisoe in the case
of an upstep (indicated by the dashed line). Black line is mean probabilityl foroaels, red area
indicates standard deviation. A clear response can be seen after tep apghe probability of
finding models in the forward state increases to 1 (with a STD of 0 for thesponding time)
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Figure 5.9: Evolution of the Probability of finding models in a given state \&tigue in the case of
an downstep (indicated by the dashed line). Black line is mean probabilityl foodels, red area
indicates standard deviation. Again, a clear response can be seea flovthstep, as (1) a decrease
in the mean probability forward runs, (2) an increase in the standardtidevat the probability of
turns and (3) an increase in the mean probability of reversals.
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Transition type Sig. of
Type of model High - Low - High Low - High - Low difference
Fully functional 1162+154s 3437+5.15s p<0.001
Upstep disabled 190+091s 1845+18s p < 0.001

Downstep disabled 642+350s 8444+49.79s p>051

Table 5.2: Summary of the times elapsed between a transition from a quadtarihevhigher
(lower) concentration into the other type of quadrant and the return toigiermh(lower) concen-
tration. The effects of disabling either upstep or downstep responsdsecseen and compared to
the performance of a fully functional model. It is immediately apparent thabdigy the downstep
response has a much more critical impact than disabling the upstep. Also ghitwep value from

a non-parametric Kruskal-Wallis test on the difference between the tvgsiagptimes for each type
of model.

turn probabilities, but the change in forward probability matches well.

5.3.3 Virtual mutants in quadrant assays

Miller et al. (2005 create virtual mutants based on the ethograms collected from the real an-
imals and artificially remove either their ability to respond to downsteps or to upsieggradient
concentration. When these virtual mutants are tested in the same quadeast, dseir performance
is lower, indicating that both downstep and upstep responses play a rdieritotaxis.

When the downstep response is disabled in our models, a much more extitanseofechemo-
taxis is seen in our models than in the modeldMilfer et al. (2005 (I = —2.74+0.72 if the test
concentration is an upstep= 0.03+ 0.57 if it is a downstep), losing all ability to perform well in
this test. When the upstep response is disabled, however, our modelghetahility to show the
behaviour of the animald & —2.6 + 0.07 if the test concentration is a upstéps 0.29+0.14 if it
is a downstep) but their performance is reduced compared to the assagllwibponses enabled
(as evidenced by a non parametric Kruskal-Wallis test on the chemotaxisfiode each repeat of
the experimentd f = 1, p < 0.001 if the step to the test concentration is a downspep,0.001 if

the step to the test concentration is an upstep).
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Deleting upstep responses from our model thus replicates the effeud fmuMiller et al.
(2005 whereas deleting downstep responses exceeds it. The finding thatelsptinses make
guantitatively detectable contributions to the performance in the quadisayt t#sus holds true for
our models, but we can additionally conclude from our test that the dogimegponse is more
important than the upstep response; in other words, that pirouettes remiaipartant feature for
our models in this test.

It is also interesting to analyse the strategy in this quadrant assay by loakiihg times
between the crossings of the borders of the quadrants (summarised . Jjalif fully functional
models cross from the higher concentration region into the lower contientragion, the mean
time until they return to the higher concentration region i621# 1.54 s, whereas if they cross
from the lower region into the higher region, the mean time until they return to ter leegion is
34.37+5.15 s. There is a statistical significance between the two crossing tme$.001).

If the response to an upstep is eliminated, the mean time spent in the lower régiarr@ss-
ing is 1290+ 0.91 s whereas the mean time spent in the higher region after crossing %t188.
There is a strong difference between the two cross times for these mugan®@01) and a weaker
difference between the time spent in the lower region by these mutants and thatfolly func-
tional models (M01< p < 0.01).

Finally, if the response to a downstep is eliminated, the mean time spent in the kgi@n r
after crossing is 62+ 35.0 s whereas the mean time spent in the higher region after crossing is
84.44+ 4979 s. There are obviously strong differences with all of the perforemboth by the
fully functional models and those that have had an the upstep responeeas (0 < 0.001 in all
cases). There is no significant difference, however, between tilvesgossing timesg > 0.51).

Therefore, the main effect of the upgradient response is to extend thepien¢in the higher
concentration compared to the time spent in the lower concentration. If it isvezinbme in the

higher concentration reduces significantly and there is a weak effebedime spent in the lower
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concentration, but overall, the existence of the downgradient regsgerenough to ensure more
time is spent in the higher concentration than in the lower one.

If the downgradient response is removed, however, there is no langfatistically detectable
difference between the times spent in the higher and lower concentraggpectively and the time
in the lower concentration increases significantly compared to both the fultfitunal models and
and those without an upgradient response. Without the downgradmganmse thus, it becomes im-
possible to differentiate between the two levels of concentration and thetefkeep the time spent
in the lower concentration as low as possible, which again illustrates the impeépirouettes in

this assay.

5.4 Summary of Chapter5

5.4.1 Components ofC. elegans gradient navigation

Based on a simple probabilistic model connecting different behavioura ahC. elegans
we have been able to predict tHat elegansmay not act on gradient information while reversing
because optimised models that could do so displayed behaviour that digreetwaell with that
found in the real animal. We have further demonstrated that the animal miglasatn part use the
pirouette reorientation strategy due to an inability to sense or act upon igradiggation while in
the process of turning. The random walk strategy may thus be a comseqgoian inability to use
alternative, deterministic strategies due to insufficient or insufficientlyrateinput at the sensory
level. This is further supported by recent studies which show@haiegansises a deterministic
strategy rather than a random walk for navigating electrical figkibgl! et al.2007) towards the
negative pole. It has been suggested that the different sensory madal#ie converge upon a
common neural sub-circuit for navigatioBdriwala et al.2003. If this is the case, our results and

those ofGabel et al(2007) suggest that this sub-circuit may in principle, depending on the nature
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of the sensory input, be capable of more deterministic navigation strategieththeandom walk
usually observed. This point will be investigated in more detail in Chater

Additionally, we have shown that to be successful at gradient navigdtag forward runs
when going up-gradient and short forward runs when moving domdignt are necessary. In this,
the optimised models reproduce the behaviour observed in real aniRiatsg-Shimomura et al.
1999. Our family of optimal solutions also demonstrates that reversals werdriailysrequired
for successful gradient navigation, but in the models that did use thenopg greference for using
them at the end of a forward run rather than a turn was found, which is sitoithe behaviour
observed irC. elegangGray et al, 2005. Additionally, we found thaR— T sequences were more
likely thanT — Rones, implying that there is a higher likelihood of following a reversal with a tur
than vice versa. This feature has also been observed in real anfasilsdla et al. 2003.

For other parameters, no strong requirements for successful gradiggation in the condi-
tions of our simulation were found. In particular, the lack of a strong effepy (T |T) indicates that
the distribution from which the amplitude of a single turn is sampled (which is detechiigy the
experimentally fixed distribution of the turn rate and the time spent iTthate) is not important,
with reorientation manoeuvres consequently relying on a series of tucheuas. The optimised
models thus demonstrapgrouettessimilar to those found itC. elegangPierce-Shimomura et al.
1999.

In general, we find a close agreement between the behaviour of ouldsrtbde have been
optimised to minimise travel time towards the centre of a gradient and the obseivadour ofC.
elegans This is a strong indication that the main aim of the gradient navigation behassbibited
by the animal is to navigate it as efficiently as possible given the availableibeha units.

The only notable discrepancy we find is that the optimised models will not usogihte a turn
while going up-gradient, whereas real animals dRieice-Shimomura et all999. The behaviour

of the optimised models here is easily explained as they have been optimisdfitfenegradient
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navigation alone and in such a strategy, initiating turns while moving in a fabteudirection can
clearly not be optimal.C. elegansbehaviour however may exhibit multiple strategies aimed at
achieving different and sometimes conflicting goals simultaneously. The anandbr instance
react to changes in oxygen levelSheung et a).2005 and is sensitive to touctChalfie et al,
1985, which may induce behavioural patterns influenced by the surfacénmmt is moving. The
model used here (Fig.2) thus displays a pure gradient navigation strategy whereas the behaviou
of the nematode, even in experimental conditions, may be more complex. Thisatsshow
optimisation techniques can be used to accurately describe a strategy witheaggial using the
behavioural units available to the animal even though the observed behmight encode multiple

simultaneously active strategies.

5.4.2 Evaluating computational models in novel tasks

We have shown that our models, in spite of having been neither designedrfoptimised
in step response situations can reproduce the behavioQr efegansn such situations reason-
ably well. To achieve this, only minimal biologically realistic modifications were ssag/ which
extended the models by giving them the ability to recognise situations in whichamge in con-
centration is experienced.

We have also been able to demonstrate the effects of the upgradient wndrddient re-
sponses on the performance in the quadrant assay. In particulaavweelmown that in our models,
deleting the downstep response results in a failure to perform well in thrilFaputzassay, which does
not reconcile well with the results kliller et al. (2005, but fits well with the predictions of the

pirouette strategyRierce-Shimomura et all999.
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5.4.3 On the computational analysis of behaviour

Overall, none of the conclusions above would be easy to arrive atdxpmrimental observa-
tion alone, mainly due to the inaccessibility of the parameters involved. We hav@ltistrated how
computational techniques for optimising behavioural models and analysimgsiés can comple-
ment and extend the understanding of a behaviour that has beenaabegperimentally. Although
we have focused of. elegangyradient navigation here, our framework is however general and

would remain useful for studying behaviours of other animals.



Chapter 6

Deterministic isotherm tracking of C. elegans

HAPTER 5 has dealt exclusively with the stochastic navigation strategies employ€d by
C elegansfor navigating different types of gradients towards a region of pesieg. In the
case of chemotaxis, this is the only observed strategy. If the animal is ptaegtiermal gradient
however, two strikingly different strategies can be observed: if the drisnaear its preferred
temperature, it will sometimes track isothermal lines in the environment with reivlargeecision,
not deviating by more than.D°C (Ryu and Samue2002 and on average for about 35 lsup
et al, 2007, initially erroneously reported as 80 s hyo et al.(2006). If the ambient temperature
is higher than the preferred one however, the animal will move towards li@wgeratures using
again a directed random walRyu and SamueR002 similar to the one observed for chemotaxis,
characterised in Chaptér

In the present chapter, we are interested in the isotherm tracking behafibe animal. While
the behaviour has been known for several decades €t al, 2006, it has received relatively little
attention in the literature (see Chap2r To date, only one computational model of the strategy the

animal might employ to achieve this isotherm tracking has been propbsedef al, 200§. We
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are not convinced by this model however, as will be shown later in thetehamnd therefore we
propose a different one here, based on likely sensory informatioieifvean be collected in a single
headsweep) about the environment.

Even though we do not have detailed information about the computatiorathitiips of the
C. eleganseural circuit (as discussed in Chap®r we are then able to formulate the general
computations required for our proposed isotherm tracking strategyuaimd) the resulting (neces-
sary) requirements on the connectivity between some neurons, weam@h sige neural circuit of
C. elegandgor subcircuits meeting these requirements.

Finally, we have some interest in the fact that the animal seems to navigatelsaav@mpera-
ture of preference stochastically but will track isotherms deterministicallis fidis been observed
multiple times in the same experimental setupg.(Mori and Ohshimal995 Ryu and Samuel
2002 so it is unlikely that the use of the stochastic strategy is due to differene@gerimental
setup. It is also unlikely to be due to noisy systems or inaccuracies at terger motor levels
since the animal is capable of precisely tracking isotherms in the same envirbrménteresting
guestion therefore is whether or not the animal would, at least in thearg, sufficient information
about the thermal environment available to navigate towards its prefemgubtature determinis-
tically or whether the stochastic strategy is used simply because the serfsonyaition does not
permit other approaches.

We can investigate the available sensory information when navigating towarégerred tem-
perature in parallel to our determining the information available for isotherokitrg since both
investigations are very similar. In fact, one can define the optimal travedtiirefor both isotherm
tracking and navigation towards a preferred temperature in relation to ttheiists themselves:
for isotherm tracking, it is (obviouslyparallel to the isotherms while it iperpendicularto the

isotherms and pointing towards colder regibméen the animal is travelling towards its preferred

IThis follows from the general observation that the animal only appearmt@ towards its preferred temperature
when currently in warmer regionRyu and SamueR002), see Chapte2
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Figure 6.1: Figure 6a frorhuo et al.(2006, illustrating the behaviour of their isotherm tracking
model. The model is travelling at an and@do the isotherm. Shown are tracks when the course
correction of the model is disabled (black) in which case the model keepagatthe same angle
and enabled (grey) in which case the model curves more vigorouslyrdtqiban point ay (shown

in magnification) since the change in gradient his highet. athis results in a course correction
eventually aligning the model onto the isotherm.

temperature. First however, this chapter will discuss the isotherm trackouel of Luo et al.

(2006 in more detail.

6.1 Issues with the existing model of isotherm tracking

6.1.1 Definition of the existing model

C. elegangmoves forward by producing undulating sine-like movements, alternatiaaly c
tracting ventral and dorsal muscles. These contractions originate agdldesegment of the animal
and then travel along the remainder of the bddyo et al.(2006 propose a model of isotherm track-
ing which essentially contends that the animal continuously adapts the intemsity ivcurves its
head in function of the perceived change in temperature. The idea isigwailttallow the animal to
balance warming and cooling phases encountered during the lower pedpgst of the headsweep
since the head movements can only be identical during those parts if the anmwliigy directly

along an isotherm. According to their model, if the animal were to travel at at digdle to an
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isotherm, it would curve more vigorously during one part of the head pwem the other, causing
a slight turn aligning the animal more with an isotherm (Fd).

MathematicallyLuo et al.(2006 implement their model as follows: the direction in which the
head is travelling at any given time is given by its an@® relative to a fixed line so th&= /2 if
the animal is moving perpendicularly away from the gradient. This angle &diy an oscillator

whose acceleration is dependent on the current change in gradientThus:

8" (t) = Bow?sin(wt) (1+ f (T'(1))) (6.1)

where8y = 4 is the amplitude of the headsweep—= 1t is the frequency of the headsweep and
f(-) is a function determining in what mann€f(t) affects the acceleratiohuo et al.(2006 note
that the minimal requirement is th&{x) = f(|x|) (which ensures that the response to a cooling
phase is the same as that to a warming phase of identical amplitude) afigkiisegx® for most

of their discussion while acknowledging that other possible forms exise,lj¢s a free parameter
of the model representing a gain. The change in gradient over time, fiisadlynply given by the

direction of the animal’s heat), its current speed and the steepness of the gradieiit:

T'(t) = |v||OT|sin(6(t)) (6.2)

It should be noted that we have given a simplified version of the gradsaat lyLuo et al.(2006
reduced to a spatial time-invariant gradierituo et al. (2006 also superimpose a time-varying
pulsating gradient over the spatial one given here in EgRin some of their experiments (which

is included as a second term in EgB.2). They use this second gradient to show that the animal
continuously determines the direction of the isotherm. To illustrate some of thesiggth this
model, however, it is sufficient to consider the behaviour of the model wittartithe-invariant

gradient.
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6.1.2 Behaviour of the model

Numerical simulations of the model as defined in sedfidnlshow that it is possible to find a
value for the free parametgrso that the model can correct the direction it which it travels towards a
direction parallel to gradient lineg o et al, 2006. We are interested here in the balancing strategy
the model employs in this course correction. It relies on an asymmetry beteegradient changes
encountered during the upper and the lower half of the headsweeh islicieed the case for most
directions which are not parallel to the gradient lines. However, onédnaiso expect the gradient
changes during both parts of the headsweep to be symmetrical if the magelonteavel directly
perpendicularly to the isotherm (since the perpendicular is an axis of sygnmdtoth planar and
radial gradients).

Here we therefore investigate the course correction of the model defin&djris. 6.1 and
6.2 as a function of the initial travel angke relative to the gradient lines. We make one change,
which does not affect the overall behaviour, to the model: we replacsiteebased oscillator for
the headsweeps with a cosine-based one. The reason for this is simpgtthieat it will simplify
the specification of initial conditions for solving Eqr&1 and6.2 numerically, as the speed of the
oscillator®'(0) will be 0 regardless of the acceleration componer8.iif the oscillator is cosine-
based. If it is sine-based, as in the original mo@&D) will depend on the acceleration component
and the relationship is not clear. The initial condition 630) is similar in both cases, it merely
depends om. For a cosine-based oscillator, this is given@®) = 6y + o, whereas it would be

0(0) = a for a sine-based one. The modified Egjtthus reads:

0’ (t) = —Bow? cos(ut) (1+ f (T'(t))) (6.3)

Since the gradient as defined by Edh2is planar and of linear steepness, the gradient change is
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Figure 6.2: The course correction due to the gradient-dependent tdfgmiré.1 as a function of
the initial heading and the steepness of the gradié)tTfree dimensional view of the the function.
(B) The same function viewed along tfe z) plane. The model does not apply course correction if
the initial orientatioro € {0,772, Tt}
independent of the location of the animal, it merely depends on its directiogrouF@urposes, we
therefore investigate the course correction implemented by the model dmengeadsweep. If no
correction is performed during the first headsweep, then the same wilttoeldor any following
headsweeps because of the nature of the gradient and the modeiisgheddnever change. It
is worth underlining that we are not interested here to see if the coursection helps alignment
of the isotherm (which is regulated by the free paramgjemwe are merely trying to determine
for which initial travel directionsx a course correction exists. This allows us to ignore the free
parameteg (which we do by simply setting it to 200, the “realistic” value determined.by et al.
(2006), which will affect the amplitude of a course correction but not its existgas long ag = 0
of course).

To compute the course correction, we first numerically derive the shag)an function of
the initial headingx and the steepness of the gradiefit (restricted to values between 0 and O
as in Cuo et al, 2006) over one headsweep and then calculate the difference between teadwo

values. The course correction thus computed is shown in6:8). We find that, regardless of the
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steepness of the gradient, there is never a course correction if the mddelelling either along
the isothermd < {0, 1t}) or roughly perpendicular to it~ 12).

If the model is not moving exactly on one of the trajectories to which no carogection is
applied, the course correction will tend to reorient it towards the paralleér than the perpendic-
ular to the isotherm (Fig6.2). However, this behaviour can be changed into a reorientation towards
the perpendicular simply by multiplying for instance the free paranggbgr—1. In C. elegansuch
a switch could easily be mediated by the AFD neuron, whose synaptic actigrgaises when the
animal is in a region in which isotherm tracking occussinuel et a).2003.

This is therefore significant behaviour; when the model is travelling pelipelarly to the
gradient lines it is in fact navigating the gradient in a direction that coulattijréake it to a region
of preferred temperature. €. eleganghus were to perform isotherm tracking as proposed by
the model, balancing cooling and warming periods during the headsweepld thus use the
exact same deterministic strategy for navigating gradients towards a refginierest. However,
it has been shown repeatedly that navigation, when the optimal direction tiethangradient, is
stochastic even in thermal environmen®&y/( and SamueR002 Zariwala et al. 2003 Ito et al,
2006. We find it very unlikely that the animal will always use a different statitastrategy for
navigating towards a region of interest if the same goal could be reachedefficiently by using
the strategy for navigating along gradient lines without modification. Thehagssufficient reason
for asking if isotherm tracking could be performed by an alternative giyatdich acknowledges
the fact that isotherm tracking is the only deterministic gradient navigatiotegyr@bserved. We

will see in the remainder of this chapter that such a strategy can indeediespd.
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Figure 6.3: A simple diagram illustrating Eq6.5. Shown are the head segménattached to the
centroid of the model at poir@ and ending in the tip of the hedd as well as the general travel
directiona and the angle between the head and the travel dire6tidie coordinates of the head
(x4 andyy) are also given.

6.2 Modelling the animal

In the remainder of this chapter, we model the animal’s movement in a slightlyediffevay
from Luo et al.(2006§. Mainly, we define the direction of the he&idhot with respect to a fixed
line in space but with respect to the centroid of the model’s body, which inisumavelling at an
anglea to the horizontal (Fig6.3). This addresses a shortcoming in the definition of the model by
Luo et al.(2006, which does not explicitly take into account that the fixed line against wlish
defined is only fixed in a linear gradient but not in a radial one (since xkd fine itself is defined
as being parallel to the gradient lines).

First, it is important to understand how a gradient may be perceived bynihgak which
requires us to be able to define the location of the animal in the gradient @oamyin time. We
therefore modeC. elegansas a simple system moving in a Cartesian space. This system consists
of a pointC, moving at a constant speednd a head segment of lendttattached to this point

whose anglé with respect to the travel directiam of the pointC is given by a simple harmonic
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oscillator followingLuo et al.(2006:

L Tt
B(t) = 2 cos(§> (6.4)
In this system, the end poikt of the head segment represents the tip of the head where the sensory
neurons are located. It is thus the position of this point in space that watarested in, and its

coordinates can be given as a function of time

Xn (t) = vtcosa + hcos(a + %%os(%))

Yh (t) :vtsina+hsin(a+gcos<%)) (6.5)

Since we are interested in the different navigational strategies primariladedrenvironments, we
define such a gradient within the Cartesian space. For simplicity, we use k silapar gradient
with linear steepness here. This is acceptable in this case since we areterdgtied in how the
animal will perceive the environment during a single head sweep and gs/emall size and slow
speed, most natural environments can be approximated with a linear plauierd within the
region available to the animal during one headsweep. It should be notedigwimplification only
applies to the mathematical analysis in this chapter; all numerical simulationsdisegradients.
We initially define the orientation of the gradient in space so that gradient(iieessotherms) are

parallel to thex-axis. The strength of the gradiegtapparent to the model at times therefore

simply given by theyy (t):

at) =yu(t)

:vtsina+hsin(a+gcos(%)> (6.6)



Chapter 6: Deterministic isotherm tracking @f. elegans 120

In radial gradients however, the gradient lines will not necessarihaballpl to thex axis as assumed

in Eqn6.6. Rather, they will be parallel to the tangent to the circle with ce@ti¢ghe peak of the
gradient) at the current location of the model. When approximating a radidient at a given time

t, the gradient information can be derived by rotating the initial planar gnada@that the isotherm
lines become parallel with the tangent (see Fégd). The gradient information thus depends on
botha and the angley between the tangent to the gradient at the model’s current location and the
X-axis

The equation of the tangent to a circle centred on the origin at the p@iryb) is given by:
XoX+ Yoy — (3§ +Y5) =0 (6.7)

A directional vector of the tangent is thL?s(yo/|yo\, —xo/|yo|) @andy is then simply given in function

of the scalar product betweéri and a directional vector of theaxis i (1,0):

_ Xo 1 Yo

- (6.8)
Yol /14 (32)

where the signs ofy andyp are used to (1) ensure the correct orientation of the directional vector
of the tangent and (2) to makedirectional (Fig. 6.4). For the special cases & = 0 or yg =

0, y is simply £72 or O radians respectively andis obviously not defined at the origin. The
gradient informatiorg,,q available to the model during one headsweep in a radial gradient is thus
approximated by substituting Eq6.8into Eqn.6.6.

Orad(t) = vtsin(a +y)+hsin(0( +vy+ gcos(;{t)) (6.9)
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> >

Figure 6.4: Diagram detailing how a radial gradient (top) can be approsdizy planar gradients
(bottom). An example is shown for each quadrant. In each case, btb@ndesgreen arrows indicate
the direction of the gradient, the directional vector of the tangent (dottes) lared the directional
vector of thex-axis respectively. Magenta arcs indicate the aygbetween the tangents and the
x-axis. It is important to notice how the orientation of the tangent’s directioaetiors changes in
each quadrant in order to keep the desired orientation relative to thewgtragimilarly, the direction

of the angle between the tangents andxtaxis depends on which half of the plane the tangent is
located in. The approximated shape of the gradient at any pbimt the plane is then given by
rotating the planar gradient (bottom) usipgo that the gradient lines become parallel to the tangent
to the circle centred on the origin kst
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6.3 Available sensory information during one headsweep

Based on the model defined above, we can now investigate (1) how thel ampaerceive
the gradient depending on its direction of travel relative to the gradieh{Znwhat information
the animal could thus, at least theoretically, derive about its directionuelatithe gradient based
on this perception. It is worthwhile to repeat at this point that there aretamyprincipal direc-
tions of interest for us in this investigation: parallel to the isotherm (for isataétracking) and
perpendicularly to it (for navigating towards a preferred temperatima)on-planar gradients, the
perpendicular can be defined in relation to the tangent to the isotherm asegpi the isotherm
itself.

If the animal is travelling in parallel to the isotherms, we already know that itsepéion
of the environment contains sufficient information to navigate deterministiclhgahose lines;
the question of interest is thus not whether this information exists but whatitdakes and what
computations are required to extract it from the perceived informationtahe environment. If
the animal’s desired direction is perpendicular to the gradient howeverpdgtiget fully known
what kind of information it can extract from its perception of the environim8o far, it has simply
been shown that it is sufficient for stochastic gradient navigat@ark et al, 2007). Here, we take
this one step further and ask if it would also in principle be sufficient foet@mininistic gradient
navigation strategy that does not depend on some continuous balantivegimbut.

There are some previous results on the sensory capabilit@seléganghat we need to take
into account at this point. First, it is known that the animal can compute thegehiangradient
over time,d9/dt in both chemicalPunn et al, 2004 and thermalClark et al, 2007) environments.
During stochastic gradient navigation, the signigit alone is sufficient for successfully reaching
the region of interest in the environmelRyu and SamueR002 Miller et al., 2005 see Chapter

5). Second, it has also been shown that intracellular calcium dynamics ingilmedeensory neuron
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Figure 6.5: The evolution of the amplitude informatiaras perceived by the model during one
headsweep, plotted against the anglleetween the head and the direction of travel. Colour rep-
resents time. A) Large figure shows the amplitude information if the model is moving exactly
parallel to the gradient (red arrow), two smaller figures show the sameriafmn when the model
is travelling at an angle of e ands radians respectively to the red arrovB) (Same informa-
tion when the model is travelling perpendicular to the gradient (large figurégviating from the
perpendicular by-1/6 or /6 radians (small figures).
AFD very accurately reflect changes in outside temperatiak et al, 2006 in thermal environ-
ments warmer than the preferred temperature. Since we base the followlygision the observed
behaviour in thermal environments, we therefore use the amplitudi#dsobs a starting point when
modelling sensory information.

We thus first give an expression for the evolution of this amplitude informatitavailable

at the head of the modelled animal) over time. This is simply given by the time deeialtithe

gradient (Eqn6.6):

: hre M Tty . Tt
a(t) = vsina — ?cos(a + ZCOSE) sin— (6.10)

Fig. 6.5 shows how the model perceives the environment during a single heagh shath when

heading exactly into the optimal direction for a given behaviour (largedg)uand when travelling
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at an angle (small figures) based on E@n1Q0 Of particular initial interest is the fact that there
appears to be a point at which the amplitude during both the downsweepean@dtveep of the
head is the same if the travel direction is almost perpendicular @iBB). If the travel is more
parallel to the gradient lines, this point disappears (BigA).

Does the head angle at which this crossover point is encounteredya@myaformation about
the optimal direction if the animal attempts to navigate perpendicularly to the gtdidies? As-
suming that it is encountered at tirgeduring the downsweep, the head will be at the same angle
again at time 4-t. during the upsweep. With this consideration, we can use &d@to determine

tc as a function of the travel directianby solving:

. hre T T\ . /T : hre T T4-t)\ . [(T(4—1t)
vsina — ?cos<a +2 cos?) sm(7) = vsina — 8cos<0( +2 c052> sin <2>

(6.11)

where we impose & t; < 2 to restrict the potentially infinite number of solutions to those

encountered within the first downsweep. The solution is then given by:

te = %cos*1 (i (g— a)) (6.12)

which imposes the conditioﬁ <a< %“ on a, confirming what can be guessed from Fig.5,
namely that the crossover point only appears if the model is travelling with lassatii4 radians

difference to a perpendicular line to the gradient. Substituting Bgtin Eqgn. 6.4, we see that
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the angled. at timetc is given by:

—a (6.13)

The model thus encounters the crossover point when the angle betwderaditsand the travel
direction is precisely the difference between the actual travel directidragravel direction per-
pendicular to the gradient. It is worth noting that this result is independdiith the speed and
the length of the head segmédmin this model.

It is possible to find this information in a different way, which only requirespling of the
gradient during one half of a headsweep. For this, we consider thefigtange in gradient strength
during the headsweep. Fi@.5 suggests that head angle at which the point of fastest descent is
encountered is correlated with the deviation from the optimal course. This @uxurs when the

derivative of Eqn6.10is minimal. This derivative is given by:

% = rgj [4 cos(%) cos(a + gcos<%>) + TISir? (%) sin (a + 2005(%))] (6.14)

but we have not been able to find the minima analytically. Therefore, wetiga&sthe hypothesis
numerically and compute the head an@leat which Eqn.6.14is minimal for values ofx between

4 and3/4 radians infy/18oincrements. We find that, although there is no 1 : 1 relationship between
required course correction afg this time, the two are still heavily correlated and the relationship

can be approximated linearly by (see also Bg):

a—18-103

Om = ——57908

(6.15)
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Figure 6.6: The relationship between the minima of Egi4 (blue dots) and the required course
correction for alignment onto the optimal direction (red line). It is possibleno & linear trans-
formation approximately mapping the minima onto the required course corregtieen(dots, see
Eqgn.6.15.

The RMSE of this fit is~ 2.3 x 102 radians, indicating that the fit is not perfect but likely to be
sufficient for the present purposes. This is thus an alternative strategse advantage is that it
only requires information from one half of a headsweep at the cosecigion.

We have therefore shown that at least two strategies for travelling pdicpaarly to the
isotherms exist based on information obtained during one headsweep.in@dmtth the result
by Clark et al.(2007), showing that the amplitude information can be used to determine whether
one is generally moving up or down the gradient, it has thus been provathéhaformation avail-
able toC. elegansloes contain sufficient information for a deterministic gradient navigatiatesty
towards a temperature of preference.

Similarly, we can consider the amplitude information in the case of isotherm trpahkihask if

the amplitude information might allow a deterministic navigation strategy by providfogniration
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on the degree of off-courseness, similar to what has just been pfovgerpendicular gradient
navigation. As can be seen in Figi.5A, the time at which the amplitude information reaches
a maximum or minimum seems again to be correlated with the travel angle; it is thudya like
candidate for providing this information. In principle, one would verify thyfinding the roots of
the derivative given by Eqré.14 but we have not been able to find the roots analytically. Therefore,
we again investigate the hypothesis numerically and compute the headgraglerhich Eqn.6.14
equals O for values af between—m4 andma radians in/180 increments. We again find that the
relationship between the required course correctiontgndan be approximated linearly (with a
RMSE of~ 3.3 x 10~3 radians) by:

a—57-10"3

Onm=—""57100 (6.16)

Next we investigate a model implementing this strategy that can perform isothteactdng
up to or exceeding the performance®f elegans While tracking isotherms, the animal does not
deviate from them by more thanl0C and follows them for about 35 s on averageqd et al,
2007).We can therefore test this model by determining at which point it will devrate fts starting
gradient value by more thanC. If we use the fit as given by Eq6.16 the model can only track
example radial gradients for 4 s (gradient radius 1 cm) and 7 s (gradigios 7 cm). All gradients
have a linear steepness 6f@/mm. If we optimise the constants in E¢ghl16for longest isotherm
tracking in a gradient with radius 7cm however, the performance imptowasd close to 2 min for
a radius of 1cm and 1 hour for a radius of 7cm, where 1 hour is also the timearipitsed on the
simulations. The new approximation is given by:

a+0.8-103

Om=—"571703 6.17)



Chapter 6: Deterministic isotherm tracking @f. elegans 128

[
[=)

Femeea - 160

=
[e2]
~

! 150

=
(=2
~

1 140

[N
~

330

=
o
~

Tracking duration (s)
[
N

’ 120

Tracking duration (min)

@
.

Pad :10

(=2
\
\

Isotherm radius (cm)

Figure 6.7: Performance of a model using the head aglet whichda/at = 0 as sole guidance in
an isothermal tracking test for radial isotherms of different sizesoRaence is defined as the time
until the model deviates by more tharlOC from the isotherm. Gradient steepness CImm.
Solid dark blue line shows performance (lgfaxis) using the initial linear approximation of the
relationship betweef, and the error in directio given by Eqn.6.16 while dashed light blue
line shows performance (riglytaxis) when the constants in Eq.16 have been optimised for
longest isotherm tracking (Eqré.17). Dashed line plateaus at 1 hour, the maximum duration in
these simulations.

and Fig.6.7 shows the performance of both the original and the new fit in radial gresharying
in radius from 1cm to 10cm.

Therefore, although the error caused by the initial approximation is todfisagnt for an ac-
ceptable performance, there nonetheless exists a linear relationshighétywanda that can be
used to matclC. elegandn isotherm tracking performance. It is worthwhile to note that the fit
presented in Eqn6.17is not the only one which will produce acceptable performance and merely
serves to illustrate that linear transformations betw&ganda which enable the model to perform
isotherm tracking at acceptable levels exist. Additionally, the gradientsingbdse experiments
were extremely steep (IC/mm), illustrating that the model can perform well even in extreme con-
ditions. Its performance can be expected to improve in more realistic gradéegis 1 °C/cm).

Even though the exact relationship betwé&gnanda is not clear, we have thus shown that even a
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rough linear transformation &, is sufficient for isotherm tracking.

It has thus been demonstrated that, based on the information available tonttad, ansimple
strategy relying only on determining the maximum or minimum of the amplitude informationgd
a headsweep can be sufficient for isotherm tracking behaviour. &sithtegy is both simpler than
that proposed bizuo et al.(2006 (since no continuous adaption of the motor output is required) and
is more consistent with the overall behaviour@felegangsince it cannot be used for navigating
perpendicularly to the gradient).

Finally, we observe that the performance of the model improves with thesratiibe isotherms
(Fig. 6.7) which is a novel prediction on the animal behaviour. Unfortunately, peemental data
with which this prediction could be verified exists at the moment; we therefove tha verification

for a later date.

6.4 A candidate neural circuit for isotherm tracking

We have argued in Chapt@rthat too little is known about the detailed neural dynamics of
C. elegando realistically expect to be able to model their computations in a meaningful manner
Nonetheless, we can consider some of the requirements from our isothaekim¢y model and how
they translate into requirements on tBe eleganseural circuitry as well as compare to what is

already known about the general behaviour of some neurons.

6.4.1 Restrictions imposed by our model

Our strategy has two functionally distinct parts: (1) computing the secoridatlee of the
sensory information and (2) correcting the current course in functicheohead angle relative
to the body at the time where the computed second derivative was 0. Assthmainthis course

correction is computed by a single neuron class CORR (see@8). we can then specify some
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Figure 6.8: Candidate neural circuit for isotherm tracking. CORR corspaierse correction using
input from any of the head motor neurons and the second derivatitleeagensory information
DIFF2 and communicates this correction to the SMD motor neuron.

requirements on the connectivity of that neuron and thus identify candittatthis function within
the neural circuit oC. elegans

First, CORR needs to be postsynaptic to whichever neuron computes tived sgerivative.
Since it is hard to make any strong statements about Gowlegansmight compute derivatives
without detailed knowledge of its neurocomputational power, we will nothisérom the outset to
constrain the choice of candidates for CORR (but see below for soralafien).

Second, our strategy assumes that the angle of the head relative to tiwedcehthe body
is available to that neuron. This angle could in principle be derived fronttinent state of the
muscles and their degree of contraction/relaxation and it should therwdfarde able to predict it
from motor neuron activity. While itis in principle possible that any motor newauld provide this
information, we believe it is most likely to come from one of the head motor nsu(ah because
their activity is most likely to be directly correlated with the angle and (2) bexthes signal path
transmitting this information to the interneurons in nerve ring of the animal woutdlieshortest.

We therefore require CORR to be postsynaptic to any of the head nesranSiB, SMB, SMD,
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Neuron Known properties Likely candidate
OLL*  Sensory neuron No

RIA Involved in thermotaxis With Reservations
RIC* Yes

PLN Strongly associated with PLM neurons No

SAA*  May be part of locomotory circuit Yes

AVK* Yes

RIB May be involved in thermotaxis No

ADA Yes

AlB May be required for executing omega turns  Unlikely

RIS Yes

Table 6.1: List of the candidate neurons for the CORR neuron assumemipute the course
correction during isothermal tracking in our model. Neurons marked witrstarigk (*) are only
candidates if no assumption on the computation of the second derivative é& mad
RMD, RME, RIM or RIV (Gray et al, 2005.

Third, CORR has to be able to communicate the required course correctioreto@ which
can actually implement itGray et al.(2005 andGabel et al(2007) list the SMD motor neurons as
a likely candidate for controlling this kind of course corrections; in particGibel et al(2007) hy-

pothesise that it is responsible for carrying out the required courseations during the navigation

of electrical fields. We therefore require CORR to be presynaptic to thHe Sddirons.

6.4.2 Candidate neurons for computing course correction

Using the restrictions above, we searched the connectivity ofCthelegansneural circuit
(White et al, 1986 Oshio et al. 2003 for candidate neurons. The resulting list is shown in Tab.
6.1 Some of these neurons are disqualified as candidates because &hpriar functions: OLL
is a sensory neuroéalik et al, 2003 and as such an unlikely candidate for CORR. The function
of PLN is not known, but morphologically it seems to be closely associatedthdétPLM class
(Gray et al, 2004 and since that neuron is not present in our list, we do not believe tHdti$L

a likely candidate for CORR. RIB may be involved in thermotaxis, but its ablato@s chot affect
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isotherm trackingori and Ohshimal9995, it can therefore not be one of the main neurons in a
theoretical isotherm tracking circuit. Finally, AIB is thought to mediate omegasst@ray et al,
2009, which makes it unlikely as a candidate for CORR since omega turns aeealjgrof large
but stochastically chosen amplitud@i¢rce-Shimomura et alLl999.

One particularly interesting neuron in Tab.1is the RIA neuron. It has been shown to be
involved in thermotaxis and its ablation leads to a complete loss of isotherm tradsilitgs in the
animal Mori and Ohshimal1995, which would make it an ideal candidate for CORR. However,
its ablation also renders the animal cryophilic meaning it will no longer navigaits fweferred
temperature but rather to the coldest one it can find. This behaviour éxplatined through a mere
loss of isotherm tracking abilities alone, yet our hypothesised neurorRJ@R no other functions
in thermal environments that we can predict. RIA is thus a possible candadBORR, but only
with reservations as it is likely that it performs other functions in thermal rséiaig as well and
these still need to be determined and their compatibility with CORR ascertainedreifianing
neurons are all equally likely candidates, mainly because nothing is knbout gheir specific

function and therefore nothing contradicts the hypothesis that theysesr€ ORRa priori.

6.4.3 On computing the second derivative

As said previously, it is not currently possible to know exactly how déviga can be computed
in C. elegansDunn et al(2004) for instance assume a network of 3 neurons A B and C is required,
where A is presynaptic to B and C while B is only presynaptic to C. The thedlfyaisa signal
from A to C has a fast route (the direct one) and a slow route (via B);rCtlvarefore use these
timeshifted signals to compute the derivative. However, we noteGhateganseurons usually
have several tens of connections between themsealvVhid et al, 1986, whose detailed properties
are not known. If any of those have different lengths or otherwigsesirét signals at a different

speed, a time-shifted signal for the computation of a derivative would alswdilable without the
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need for a third neuron. Finally, it is important to realise that wBeelegans:eurons are discussed,
they are usually referred to by clagsd.AFD). A class can however contain 2 to 6 neurons (AFDL
and AFDR in the case of the AFD class) and while it is usually valid to group tbgether because
they seem to fulfil their main functional role as a class rather than indivigeialons, it is entirely
possible that a single class could compute a derivative using time-shiftedssigriween its member
neurons.

It is thus clear that we cannot make strong predictions on where thedsdeomative is com-
puted if we do not know exactly how it is computed. If we assume howevat,dhe class of
neurons can compute a derivative and that AFD computes the firsatieeiClark et al, 2007,
then the candidate neuron DIFF2 would have to be postsynaptic to AFDrasgnaptic to any of
the neurons in Tab6.1 Searching the connectivity of the. elegansieural circuit again, we find
that this gives use 5 candidate neurons: AlY, ASE, AIB, AIN, and A&ditionally, the list of
candidates for CORR is reduced, leaving only ADA, RIA and RIS of the Iniigrons that we
considered likely candidates.

Of these candidates for DIFF2, ASE and AWA are chemosensory ngundich makes them
unlikely to be part in the thermosensory circuit, further underlined by ttigthiat their ablation has
little effect on thermosensatioMpri and Ohshimal995. The other neurons are all very general
interneurons with several roles each, which makes it impossible to confdeny their plausibility
as a difference engine. Since our isotherm strategy proposes thaimatead angle for the course
correction is encountered when the second derivative of the seimorsnation is 0, it is possible
that DIFF2 is an inhibitory neuron, only releasing CORR when its time-shiftedtincancel each
other out, but it is not known for any of those candidate DIFF2 neuwdrether they are excitatory,

or inhibitory.
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6.4.4 Plausibility of the isotherm tracking strategy

Given the assumption that the course correction used in our isotherm yatiategy is com-
puted by one neuron, we have been able to formulate some necessargmemts for the connec-
tivity of that neuron and with that, we were able to determine that only 5 of tRen&dirons in
C. elegandulfil these requirements and do not have other known conflicting furstidiis pro-
vides a good starting point for laser ablation studies seeking to verify ieeerge of this course
correction behaviour, but it is of course possible that the courseaan is in reality computed
elsewhere. In particular, we have assumed direct connections to #my leéad motorneurons and
the SMD motorneuron. In reality, there may be intermediate neurons within sigsaling paths,
but we have no way of predicting that. What we have shown, howeubat®ur proposed isotherm
tracking strategy is plausible on a neural connectivity level even undgydthaps most restrictive

requiremertt of direct connections to all neurons providing or requiring information.

6.5 On the use of stochastic strategies when navigating towards the

peak of gradients

We have shown previously in this chapter that it is quite likely for the animalve bafficient
information for a theoretical deterministic strategy towards its preferred textyve based on its
known computations and the intracellular calcium activity of the AFD neu@ark et al, 2006
2007. This indicates that it is not using the stochastic navigation simply as a résuitinability
to do otherwise.

It also makes it more difficult to pin down the use of the stochastic strategyaalaterministic
one on any single cause. Forinstance, it may fulfil an utility that is not immedigbgigrent through

the observation of behaviour. It is also possible that a circuit for siiichaavigation is necessary

2In the sense that allowing indirect signalling paths would only increase tndauof different possible paths.
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due to insufficient sensory resolution for chemotaxis and that the sanoé @rased (as previously
suggested be.g.Zariwala et al. 2003 for navigation towards the preferred temperature, perhaps
simply to minimise neural requirements.

It is thus clear, that we can make no strong claims about the use of stoahastigpparently
available deterministic strategies. We can however analyse the computatiqunkments of the
the two theoretical deterministic strategies we have identified earlier and certigsn to what is
known about the computational capabilitieshfelegango assess whether they may be fundamen-
tally impossible to compute for the animal.

We have presented two deterministic strategies for navigating perpentjidoléne gradient
lines. The first one, the “cross-over point” strategy is interesting tsEcéwcan actually exactly
determine any required course correction less or equaliaadians in either direction. Since it
relies on comparing gradient information from one half of a headsweetdrtm the other half,
this strategy requires at a minimum a memory system capable of functioningla® atick. There
is however no evidence yet to indicate that such a memory system ex@t®lagansIn general,
the memory systems that are known in the animal integrate stimuli over time. The naanplex
is the preference of the animal for a given temperature, initially based dertifgerature at which
it has been cultivated. In this case, it has been shown that this memoryadeshby the main
thermosensory neuron AFD itselBémuel et a).2003 and that it evolves over time based on the
recent thermal historyBiron et al, 2006. Such a system cannot operate as a FILO stack, however
and there is no evidence supporting the existence of more complex memt@amsyset.

The second, “steepest descent” strategy requires locating the minimuensgfdbnd derivative
of the gradient information during one head-sweep. However, it is not diatedy possible for a
neural circuit to locate this minimum independently of the overall gradiemgtineat the current
location using only the second derivative. The computation of the thirdatem would thus be

required as well as the location of its roots and a comparison with the sign sétioed derivative
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to ensure that the root indicate the location of steepest descent artéemdst ascent. It is known
thatC. eleganss capable of computing derivativeBnn et al, 2004 Clark et al, 2007); whether
this extends to the level of third derivatives is unknown but not in princgipf@ssible. We can thus
not reject the possibility that. eleganss capable of the computations required for a deterministic
navigation towards its preferred temperature. We do note that it seemslytti&ethe animal will
compute the third derivative of the sensory information but have no dedwidence to support this.

We also note that the simplest computational strategy we could find for determm@igitation
towards a preferred temperature (computation of the third derivativeedehsory information) is
more complex than our proposed isotherm tracking strategy (computatioa sétiond derivative
only), which may be another factor in the use of a stochastic strategy ¥igat@mg towards a
preferred temperature and of a deterministic one when following an isotherm.

Overall, however the question of wi@. elegangprefers to use stochastic navigation strategies
over deterministic ones when navigating towards its preferred temperatnens open. Here, we
have simply given some insights into required computations for theoreticahueistic strategies

that may motivate future research.

6.6 Summary of Chapter6

This chapter has investigated the deterministic isotherm tracking strategpysedlegans
We have first shown that we had sufficient doubts about the only existingputational model of
this behaviour to warrant investigating whether a different model for thigbiour could be pro-
posed. We next formulated a new model of isotherm tracking which comfhéegquired course
corrections from the second derivative of the sensory informationvétiéed that it performs up
to the standards set I6y. elegansnd formulated a candidate neural circuit which could encode this

strategy. Based on this circuit, we have tentatively identified a small list abnsunC. elegans
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which could be implicated in isotherm tracking.

Second, we have briefly verified that it is in theory likely for the animal t@irex sufficient
sensory information about the thermal environment for deterministically aamgytowards a pre-
ferred temperature. We have also briefly discussed the computationakragnts of two strategies
we have identified to this effect. Although we are unable to draw any stronglusions on the
animal’s use of stochastic strategies over deterministic ones in this case veshmvn that it
is unlikely to be simply due to insufficient available information and hope that tie$ &nalysis

motivates further research.



Part IV

Conclusions

138



Chapter 7

Summary and discussion

HE main objective of this thesis was to further the understanding of the bemavidbe
T nematodeC. elegansusing mainly computational approaches. Additionally, we aimed at
keeping any methodology developed during this work sufficiently geseriamay find applications
in other behavioural studies not necessarily concerned@itlegans

The main contributions of the present work to existing fields of reseam$ecpently fall into
two distinct categories: (1) novel insights and results into the behavialinaaral capabilities
of C. elegansand (2) theoretical and technical innovations for analysing computatmaodels of
behaviour. Here, we briefly review and discuss the achievements oféker thesis for those two

categories in turn.
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7.1 Innovations in the analysis of models of behaviour

7.1.1 Ways of determining the performance of Markov-like mockls

We first considered the best approach to analysing the behaviour oisitbdeare Markov-
like but not strictly Markovian since their transition probabilities are varialace the variable
transition probabilities prevent the analysis of their Markovian propertiesobvious approach
is to study these models through numerical simulations. It was however iimgres investigate
whether this is always necessary or whether it is possible to transfos® thedels in such a way
that the analytical Markovian tools, in particular the computation of the mean timiesturtion
and the probability of absorption into certain states, become applicable.

We have found that such a transformation is indeed possible and havelébed the approach,
illustrated with examples for two Markov-like models. An important restriction ewentl was that
it is necessary to include the goal states of the behaviour in the strict mesidting from this
transformation. This is needed so it becomes possible to calculate for iegtemenean time a
model takes to reach the goal state or the probability that it will reach it arallyticSince this
goal state is normally a physical location in the world (in the examples we hasidewed, they
were either the source of a chemical plume or the peak of a gradient),diriescnecessary to
transform the Markov-like model of behaviour into a strict Markov modeduich a way that the
states of the strict model correspond to physical locations the animal Wwkbsgiour is represented
by the Markov-like model can reach. This necessity finally restricts the atatipnal model of the
real world to one which is both finite and discrete. Additionally, since the numibsgtates in the
strict model is essentially a function of the number of locations within the modelttt that
the behavioural model can occupy, the strict model may become compuligtiotractable of the
modelled world, even if finite, is too large.

The transformation from Markov-like models into strict models we have ptedénere, while
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theoretically possible, is thus of limited use since it may not always be realsottaaccept the
necessary restrictions on the computational model of the world. In paricuafind that the

transformation is too restricted to be useful in our analysi€ oélegansehaviour and we have
therefore studied the Markov-like model of this behaviour using numesigallations.

Nonetheless the insight that Markov-like model with variable transition gitibes can be
transformed into strict Markov models if required is interesting and usefptoblems where the
restriction to simplified models is acceptable. We have given such an examptmbigering the
navigation of a moth towards the source of a chemical plume. Since both theidehof the moth
and the environment which influences this behaviour are random, argalysmrresponding model
purely through numerical simulations would be very time-consuming since #iségm amount of
repeat measure would be necessary in order to quantify the statisti@iormbetween trials in
a useful way. Using our transformation, however, it has become pessibonly to quantify the
behaviour of the model analytically but to do so in a reasonable time-frame.

Finally, we note that the major obstacle for this model is due to computationally limited
ressources as the restrictions on the modelled world are correlated withurtiigen of states in
a Markov model that can be held in memory and processed in a reasonableytooeputers. It
is thus entirely possible that the attractiveness of applying the approabhweepresented here to
problems which are more complex than the example one considered in this thlesigywncrease

as technology progresses.

7.1.2 Using Markov-like models to analyse behaviour

Next, we introduced a comprehensive framework for analysing compughtioodels of be-
haviour with the intention of deriving novel insights into this behaviour. Turelhmental motiva-
tion was that such insights might be gained from the model when its paramegtéusad so that the

overall behaviour of the model becomes optimal for some criterion otherdadistic modelling of
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the animal’s behaviour. The behaviour of the optimised model would thenpipadson with the
behaviour of the animal’'s behaviour, yield insights into the optimality of the styaiegd by the
animal. Additionally, we took into account the fact that there may well be multiplienap strate-

gies with which stochastic models in particular can achieve a certain behaweurave therefore
devised an algorithm which attempts to systematically find a family of optimal coatigus for

these models.

We then proposed that the distribution of these configurations over tlaenpter space of
the model can provide interesting information which is not readily availabla freere observa-
tion of a behaviour itself. Indeed, we expected some parameters of thd tadmemore critical
for achieving a certain behaviour than others, which would be reflectéukidlistribution of the
optimal solutions. In ethological terms, it therefore becomes possible to staddrthe relative
importance of the different behavioural units (which are derived fobservation and originally in-
spired the computational model) in achieving a certain goal. Another coasegwf the existence
of multiple strategies for achieving a given aim is that different individa@hals might rely on dif-
ferent strategies. Determining the different strategies as made possitgehespresent framework
therefore gives a more general understanding of the behaviour #ialei$o account for individual
differences.

In order to analyse the distributions of these configurations in a meaningfyl we draw
upon decision solving techniques from Al which are in turn inspired byrin&dion theory. This
analysis completes the definition of the framework which is generally applitatiie study of most
models with multiple optimal solutions assuming the analysis remains computationallyleacta
We have thus provided a powerful tool for the analysis of behaviouclwtepresents a significant
contribution to the available methods in ethological studies.

Additionally to its value for the field of ethology, we have also demonstratedsideanote

that the subdivision of the parameter space of a model can be genegdlly insoptimisation tasks
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when the corresponding cost function is highly uneven and featuring toaal minima. In such
cases, the approach can both increase the probability of finding thd ghoienum (at the cost
of requiring more time) or decrease the time required to reach a targethiiybthat the global
minimum has been found. We have not considered the applications of tm@aapdurther since it
falls outside the scope of our intended work. It seems reasonable toedsowever, that it will be

of value in some investigations.

7.2 Contributions to the field of C. elegansresearch

7.2.1 Analysis and characterisation of the stochastic graeint navigation strategy

Using our framework for analysing behaviour, we have been able tatifidor the first time,
the necessary and sufficient interactions of the different behaviauita identified inC. elegangor
efficient navigation towards the peak of gradients. Some of these wber expected - we found
for instance that runs should be long when moving in a favourable direatidrshort otherwise.
Other findings were less obvious, for instance that reversals shotlgertoo long, that the exact
amplitude of a turn is not very important or that it is more preferable to follovensals with
turns than the converse. Overall though, the behaviour of our optimisddiscaptured the actual
behaviour ofC. elegangather well and we have therefore been able to explain subtle behdvioura
sequences in the animal behaviour using considerations of efficiency.

Additionally, we have been able to show that pirouettes as us€ blegansnay specifically
emerge from an inability to sample the gradient during a turn and that the aninyahls@be
unable to act upon gradient information while reversing. These insightsspegially interesting
since they illustrate nicely how computational models can be used to predietrtbarg capabilities
of animals.

In summary, we have thus extended the knowledge about the stochastatitawv strategy
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from a mere observation of behavioural units to a detailed understaniihg elative importance
of these units and why they appear in the sequences that are obskss\&dth, the work presented
here is likely to be the most comprehensive studfotlegangradient navigation since the fun-
damental study oPierce-Shimomura et a(1999. While therefore of interest to th€. elegans
research community, these results also illustrate the usefulness of ourtediomal framework for
analysing behaviour and have been published in a high-level, interdiscip[ieer-refereed journal
(Thill and Pearcg2007).

It is perhaps interesting to relate our work to other studies of stochasiigatiam behaviours.
Random-walk based gradient navigation, particularly as exhibited in tleecfdsacterial chemo-
taxis employed for instance Hy. coli, has been analysed in great detail. The intrinsic mechanics
have been simulated as far down as the molecular levglBray et al, 2007, Likow et al,, 2005
and analytical treatments inspired by Brownian motion also egigt $chnitzer 1993. However
all the methods used in these cases are specific to bacterial chemotaxisgoularomechanics
thereof), which is different fronC. eleganshemotaxis in that it does not typically use reversals,
and some simulations rely on detailed data which has been collected oveesld8eay et al,
2007. In our work, however, we were less interested in modelling the detailedsitimechanics,
perhaps down to the molecular level, of a given behaviour. Rather, weedo study the necessary
relationships between given behavioural units in the production of a careleviour and as such,
the present work addresses different issues than previous sttidiesal random walk strategies,

even though the studied behaviour is the same.

7.2.2 A new model for isotherm tacking

Isothermal tracking behaviour . elegandas received relative little attention in the literature
so far, with only one previously published mathematical model aimed at detimnsfrategy used

by the animal Luo et al, 2006§. We were however unconvinced by this model; most notably we
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have shown that the same strategy can be used for deterministic navigatandsdive peak of a
gradient with only one additional toggle. Since such a toggle has beemkioogxist in the neural
circuitry of C. elegangor some time now$amuel et a).2003 we found it unlikely that the strategy
proposed by uo et al.(2006 would indeed represent the strategy used by the animal.

It has thus become necessary to investigate whether isothermal trackiltgadeo be per-
formed using a different strategy. We have shown that this was indessibje using only infor-
mation from the world for which we felt confident that it was actually availablthe animal. We
were able to show that our proposed strategy can also perform isotreakinty with a precision
that is sufficient to account for the actual behaviouCofelegans We do note that the strategy is
not perfect, making use of only an approximate linear transformation;\etiee fact that we can
still significantly exceed the performance ©f elegansncreases our confidence that this is not a
fundamental problem. We therefore believe that this model by itself is a s@gmiftontribution to
the study ofC. elegangehaviour in thermal environments as it addresses an important flaw of the
only previously proposed model.

We tentatively proposed a neural circuit encoding this strategy and iéergifnumber of neu-
rons that could be involved in this circuit. In doing so, we have made use oh#jor tool available
for neuroscientific exploration i€. elegansthe availability of a wiring diagram for its entire neu-
ral circuit (White et al, 1986. Even with only two restrictions on our proposed neural circuit, we
have thus been able to reduce the list of candidate neurons for compudiogulse correction in
our model down to 5. This makes an initial experimental verification of outesfyathrough laser
ablation studies possible but at the same time it illustrates the limitations on behawieurrasci-
entific studies when starting from a behavioural angle (as opposed wplasir ablation studies to
determine the role of some neurons for instance): since the detailed dgnaahics inC. elegans
remain unknown, it is only realistically possible to formulate a theoretical higél-tomputational

strategy for the behaviour one is interested in and perhaps make sonralgeedictions on the
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required neural architecture, which can then be verified experimentalyager time. It cannot at
present be known how computations are executed in detail, however.

On a final note, we have proposed that this strategy is performed by theutation of the
second derivative of the gradient information over time, aimed essentidibcaing the time of
maximal change in gradient information during one headsweep. We hae stobecause this
seems an obvious reasonable strategy to determine such a time - it is indepehthe actual
gradient strength (which is significant since the animal is known to trackesothin a thermal
bracket of approximately 8) and it can be easily implemented by an inhibitory neuron falling
silent when its time-shifted inputs cancel each other out. We do howevepatddge that we
cannot be absolutely certain that the second derivative is computeghol$sible that there may be
simpler strategies based for instance on simply the first derivative in ways/éhwere not able to
determine. However, since this would not change any of our claims bdbielexact computation
(it would still be necessary to locate a certain time point in the first derivatidethe strategy would
still require simpler computations than a deterministic navigation towards a refjpmeference),

we do not consider this further.

7.2.3 On the use of stochastic rather than deterministic sategies

One of the most fundamental questions regar@nglegandehaviour which has not yet been
adequately addressed in the literature is the use of a directed randomtreadigys to navigate
towards regions of interest. It would be tempting and at first glance maago to attribute this
choice to insufficient sensory resolutions or perhaps an inability to ymerfufficiently precise
movements in response to the sensory input. This remains a valid theory irsthefednemotaxis,
for which the precision at which the animal may sample the gradients remainswnk In the
case of thermotaxis, however, it is more difficult to make such an argumeegdthe exceptional

performance of the animal at tracking isotherms appears to suggestishziih able to sample the
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environment at sufficient detail and execute sufficiently precise movsn@nender deterministic
strategies possible.

We therefore thought it important to briefly investigate whether the animdtlaueast in
theory use its available information about the gradient to navigate towagisseof interest de-
terministically and if so, how. We first found, importantly, that the informationclwlappears to
be available to the animal is indeed sufficient for such a deterministic strabedgct, we have
been able to identify two such strategies, one which could provide peg@ientation manoeuvres
at the expense of requiring a memory capable of operating as a FILO(&bacihich there is no
evidence yet in the neural circuitry @. elegansand another which could operate using a similar
linear approximation than the one used in our proposed isothermal trackidel,nab the expense
of at a minimum requiring the computation of the third derivative.

It thus appears that the animal is likely to be able to sample sufficient informfatiateter-
ministic navigation towards its temperature of preference from the enviraremehit is therefore
interesting that it nonetheless prefers a stochastic approach. Wefeaa éw speculations why
this may be so. Most likely, it is possible that chemosensory neurons machally be able to
sample the gradient at a sufficient resolution. This would make a stoch@ategy necessary for
chemotaxis and since the same strategy would remain usable for navigatiodgdha tempera-
ture of preferenceRyu and SamueR002, there may not be a sufficient advantage to warrant the
evolution of a circuit for deterministic navigation only applicable in thermal emvitents. Alter-
natively, it may be possible that the physical distance the signal from tizerfeiron has to travel
through the neural circuitry is too large to compute the third derivative wiicgnt precision. We
note that both reasons are still speculative given the current knowvlafdgy eleganswe therefore
hope that the animal’s use of stochastic strategies over deterministic onesiatigating towards
temperatures of preference will receive further attention now that we $tzown it not to be simply

due to limitations in the available information.
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7.3 Conclusion

In Chapter2, we identified four major open questions about the behavio@. elegans

e Given the three locomotory behaviours@felegangforward runs, turns and reversals), how
are these best combined if the aim is efficient chemotaxis? Is the piroueteggteanployed

by the animal optimal in this sense? Why are pirouettes used at all?

e Is it possible to derive novel predictions on the computational capabilitifgeainimal from

the chemotactic behaviour?

e Is the existing proposed strategy for isotherm trackingp(et al, 2006 reasonable? If not,

can another strategy be proposed?

e Given how well the animal tracks isotherms, why does it rely on stochastitegtes at all
when navigating towards the preferred temperature? Are deterministioqggsapevented

by something fundamental?

As has become evident in the present chapter, we have been able ta&leqddress all
of these points. To address some of them, we have formulated a novelvoakn®r analysing
behaviour based on optimised models. The utility of this framework is not restrioC. elegans
research and we expect that it will find applications in a large variety lof\deural studies. The
work presented in this thesis has thus contributed not or@; tdlegansesearch specifically but has

also provided a methodology that we expect to have applications in theadj@iaket of ethology.



Chapter 8

Suggestions for further work

Even though the present thesis has addressed the major open questioitgally identified
in Chapter2, there are always possibilities for further research. Here, we wilflpriscuss some

possible future work based on the present thesis.

8.1 Extending the framework for analysing behavioural models

The framework for analysing behavioural models, as defined in Chéjian only strictly be
applied to models with a finite parameter space. This has suited our needsisafikieity that it
will remain useful for many other models, but for the sake of completenassuid be desirable to
extend the framework so it can also deal with infinite parameter spaces.

This is not necessarily a trivial task. The framework as defined religh@ulivision of the
entire parameter space into subspaces of equal volume. In infinite parapates, this will no
longer be possible and it therefore becomes necessary to define otm@ingfal ways of division

into subspaces.
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8.2 Experimental verification of predictions for C. elegans

We have made a number of novel predictions on the computational andyseapabilities of

C. eleganslt would be very interesting to verify these in the real animal.

8.2.1 Isotherm strategy

We have identified some candidate neurons that may be involved in the isotitzeking
strategy ofC. elegans An important follow-up to this identification would be verifying whether

isotherm tracking is disturbed when any of these neurons are destroyed

8.2.2 Resolution and operating range of chemosensory neurs

We hypothesised th&. elegansnay be using stochastic rather than deterministic strategies for
navigating towards the peak of chemical gradients due to an insufficesitt®n of the chemosen-
sory neurons. Additionally, we predicted that the animal may only be ablettopmn gradient
information while moving forward. These predictions could be verified bysukag the activity of
chemosensory neurons using calcium imaging techniques in a similar fashievork by Clark
et al, 2006 on the thermosensory neuron. This may be less trivial for chemosan#adio it was
for thermosensation though. In particular the fact that the animal hasaefilemosensory neurons

may make it more difficult to determine their sensitivity.

8.3 Behavioural work onC. elegans

8.3.1 Isotherm strategy

One particularly interesting neuron that we have identified as possibly eiatyed in the
isotherm tracking strategy @. elegansvas the RIA neuron. It is interesting because its ablation

is in fact known to disrupt isotherm tracking behavioltofi and Ohshimal995, which makes
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it relevant to our model. However, its ablation also causes cryophilic lmlmrawhich suggests
that RIA also plays a role in navigating towards the preferred temperatureseTiwo roles are
not in principle contradictory, however their relation would need to be @arifSpecifically, could
its putative role in our isotherm tracking strategy also have implications fagatvg towards the
preferred temperature? Would it be possible to propose a unified mdoletlohavigation strategies
which makes use of RIA in a way that is consistent with both what is alreadykrabout those

strategies and our predictions?

8.3.2 The use of stochastic strategies for navigating towasdhe preferred tempera-

ture

We have shown that the animal does not simply use stochastic strategiesvigating to-
wards the preferred temperature as a result of being unable to exeaetighired information for
deterministic strategies from the available sensory information. Additionalljyave argued that
both the sensory resultion and the precision of the motor output shouldffimesii to correctly
determine and execute such deterministic strategies.

It would now be interesting to examine why the animal makes use of these sticdieategies
over deterministic ones in more detail. Our outline of the necessary computédiogo theo-
retical deterministic strategies for navigating towards the preferred tetperaay assist in such

investigations.
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Appendix A

List of neurons in C. elegans

THE following is a list of neurons found in the hermaphrodiieelegans It is adapted from

Altun and Hall(2006, where detailed diagrams of each neuron’s location can also be found.

Neuron name Brief description

ADAL Ring interneuron

ADAR Ring interneuron

ADEL Anterior deirid, sensory neuron
ADER Anterior deirid, sensory neuron
ADFL Amphid neuron

ADFR Amphid neuron

ADLL Amphid neuron

ADLR Amphid neuron

AFDL Amphid finger cell

AFDR Amphid finger cell
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Neuron name Brief description

AIAL
AIAR
AIBL
AIBR
AIML
AIMR
AINL
AINR
AIYL
AIYR
AlZL
AIZR
ALA
ALML
ALMR
ALNL
ALNR
AQR
AS1
AS2
AS3
AS4

AS5

Amphid interneuron

Amphid interneuron

Amphid interneuron

Amphid interneuron

Ring interneuron

Ring interneuron

Ring interneuron

Ring interneuron

Amphid interneuron

Amphid interneuron

Amphid interneuron

Amphid interneuron

Neuron, sends processes laterally and along dorsal cord

Anterior lateral microtubule cell

Anterior lateral microtubule cell

Neuron associated with ALM

Neuron associated with ALM

Neuron, basal body. not part of a sensillum, projects into ring

Ventral cord motor neuron, innervates dorsal muscles, no veowaterpart
Ventral cord motor neuron, innervates dorsal muscles, no veoaterpart
Ventral cord motor neuron, innervates dorsal muscles, no veotaterpart
Ventral cord motor neuron, innervates dorsal muscles, no veotaterpart

Ventral cord motor neuron, innervates dorsal muscles, no veowaterpart
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Neuron name Brief description

AS6 Ventral cord motor neuron, innervates dorsal muscles, no veotaterpart
AS7 Ventral cord motor neuron, innervates dorsal muscles, no veowaterpart
ASS8 Ventral cord motor neuron, innervates dorsal muscles, no veotaterpart
AS9 Ventral cord motor neuron, innervates dorsal muscles, no veoaterpart
AS10 Ventral cord motor neuron, innervates dorsal muscles, no Veotraterpart
AS11 Ventral cord motor neuron, innervates dorsal muscles, no Veotraterpart

ASEL Amphid neuron, single ciliated endings
ASER Amphid neuron, single ciliated endings
ASGL Amphid neuron, single ciliated endings
ASGR Amphid neuron, single ciliated endings
ASHL Amphid neuron, single ciliated endings
ASHR Amphid neuron, single ciliated endings
ASIL Amphid neuron, single ciliated endings
ASIR Amphid neuron, single ciliated endings
ASJL Amphid neuron, single ciliated endings
ASJR Amphid neuron, single ciliated endings
ASKL Amphid neuron, single ciliated endings

ASKR Amphid neuron, single ciliated endings

AUAL Neuron, process runs with amphid processes but lacks ciliateidgnd
AUAR Neuron, process runs with amphid processes but lacks ciliatédgnd
AVAL Ventral cord interneuron
AVAR Ventral cord interneuron

AVBL Ventral cord interneuron
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Neuron name Brief description

AVBR

AVDL

AVDR

AVEL

AVER

AVFL

AVFR

AVG

AVHL

AVHR

AVJL

AVIR

AVKL

AVKR

AVL

AVM

AWAL

AWAR

AWBL

Ventral cord interneuron

Ventral cord interneuron

Ventral cord interneuron

Ventral cord interneuron, like AVD but outputs restricted to anteciord
Ventral cord interneuron, like AVD but outputs restricted to antecad
Interneuron

Interneuron

Ventral cord interneuron

Neuron, mainly postsynaptic in ventral cord and presynaptic in the rin
Neuron, mainly postsynaptic in ventral cord and presynaptic in tige rin
Neuron, synapses like AVHL/R

Neuron, synapses like AVHL/R

Ring and ventral cord interneuron

Ring and ventral cord interneuron

Ring and ventral cord interneuron and an excitatory GABAergic motaron
for rectal muscles. Few synapses

Anterior ventral microtubule cell, touch receptor

Amphid wing cells, neuron having ciliated sheet-like sensory endirigsety
associated with amphid sheath

Amphid wing cells, neuron having ciliated sheet-like sensory enditugsety
associated with amphid sheath

Amphid wing cells, neuron having ciliated sheet-like sensory endithgsety

associated with amphid sheath
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Neuron name Brief description

AWBR Amphid wing cells, neuron having ciliated sheet-like sensory enditasely
associated with amphid sheath

AWCL Amphid wing cells, neuron having ciliated sheet-like sensory enditasely
associated with amphid sheath

AWCR Amphid wing cells, neuron having ciliated sheet-like sensory endilusely

associated with amphid sheath

BAGL Neuron, ciliated ending in head, no supporting cells, associated sth |
BAGR Neuron, ciliated ending in head, no supporting cells, associated lvgth |
BDUL Neuron, process runs along excretory canal and into ringuerdarkly staining

synaptic vesicles
BDUR Neuron, process runs along excretory canal and into ringuerdgrkly staining

synaptic vesicles

CANL Process runs along excretory canal, no synapses, essensairfival
CANR Process runs along excretory canal, no synapses, essensiatyival
CEPDL Cephalic neuron, contain dopamine
CEPDR Cephalic neuron, contain dopamine

CEPVL Cephalic neuron, contain dopamine

CEPVR Cephalic neuron, contain dopamine

DA1 Ventral cord motor neuron, innervate dorsal muscles
DA2 Ventral cord motor neuron, innervate dorsal muscles
DA3 Ventral cord motor neuron, innervate dorsal muscles
DA4 Ventral cord motor neuron, innervate dorsal muscles

DA5 Ventral cord motor neuron, innervate dorsal muscles
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Neuron name Brief description

DAG6 Ventral cord motor neuron, innervate dorsal muscles

DA7 Ventral cord motor neuron, innervate dorsal muscles

DAS8 Ventral cord motor neuron, innervate dorsal muscles

DA9 Ventral cord motor neuron, innervate dorsal muscles

DB1/3 Ventral cord motor neuron, innervate dorsal muscles, recipirduaitor
DB2 Ventral cord motor neuron, innervate dorsal muscles, recipioleéditor
DB3/1 Ventral cord motor neuron, innervate dorsal muscles, recipirdaaitor
DB4 Ventral cord motor neuron, innervate dorsal muscles, recipioleiditor
DB5 Ventral cord motor neuron, innervate dorsal muscles, recipnolgdlitor
DB6 Ventral cord motor neuron, innervate dorsal muscles, recipnolgditor
DB7 Ventral cord motor neuron, innervate dorsal muscles, recipiolcéditor
DD1 Ventral cord motor neuron, reciprocal inhibitors

DD2 Ventral cord motor neuron, reciprocal inhibitors

DD3 Ventral cord motor neuron, reciprocal inhibitors

DD4 Ventral cord motor neuron, reciprocal inhibitors

DD5 Ventral cord motor neuron, reciprocal inhibitors

DD6 Ventral cord motor neuron, reciprocal inhibitors

DVA Ring interneuron, cell bodies in dorsorectal ganglion

DVB An excitatory GABAergic motor neuron/interneuron located in dorsctal

ganglion. Innervates rectal muscles.
DvC Ring interneuron, cell bodies in dorsorectal ganglion
FLPL Neuron, ciliated ending in head, no supporting cells, associated lvgth |

FLPR Neuron, ciliated ending in head, no supporting cells, associatedlwsith |
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Neuron name Brief description

HSNL

HSNR

1L

1R

12L

I12R

IL1DL

ILIDR

IL1L

ILIR

IL1VL

ILIVR

IL2DL

IL2DR

IL2L

IL2R

IL2VL

Herm. specific motor neuron (die in male embryo), innervate vulval lesisc
serotonergic

Herm. specific motor neuron (die in male embryo), innervate vulval lesisc
serotonergic

Pharyngeal interneuron: ant sensory, input from RIP
Pharyngeal interneuron: ant sensory, input from RIP
Pharyngeal interneuron, ant sensory.

Pharyngeal interneuron, ant sensory.

Pharyngeal interneuron, ant sensory.

Pharyngeal interneuron.

Pharyngeal interneuron, post sensory.

Pharyngeal interneuron, post sensory.

Inner labial neuron

Inner labial neuron

Inner labial neuron

Inner labial neuron
Inner labial neuron

Inner labial neuron

Inner labial neuron

Inner labial neuron

Inner labial neuron

Inner labial neuron

Inner labial neuron
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Neuron name Brief description

IL2VR
LUAL
LUAR

M1
M2L
M2R
M3L
M3R
M4
M5
MCL
MCR
MI
NSML
NSMR
OLLL
OLLR

OLQDL

OLQDR

OLQVL

OLQVR
PDA

PDB

Inner labial neuron

Interneuron, short process in post ventral cord
Interneuron, short process in post ventral cord
Pharyngeal motorneuron

Pharyngeal motorneuron

Pharyngeal motorneuron

Pharyngeal sensory-motorneuron

Pharyngeal sensory-motorneuron

Pharyngeal motorneuron

Pharyngeal motorneuron

Pharyngeal neuron that synapse onto marginal cells
Pharyngeal neuron that synapse onto marginal cells
Pharyngeal motor neuron/interneuron

Pharyngeal neurosecretory motorneuron, contain serotonin
Pharyngeal neurosecretory motorneuron, contain serotonin
Lateral outer labial neuron

Lateral outer labial neuron

Quadrant outer labial neuron

Quadrant outer labial neuron

Quadrant outer labial neuron

Quadrant outer labial neuron

Motor neuron, process in dorsal cord

Motor neuron, process in dorsal cord, cell body in pre-anadylien




Appendix A: List of neurons i@. elegans 161

Neuron name Brief description

PDEL Neuron, dopaminergic of postderid sensillum
PDER Neuron, dopaminergic of postderid sensillum
PHAL Phasmid neuron, chemosensory
PHAR Phasmid neuron, chemosensory
PHBL Phasmid neuron, chemosensory
PHBR Phasmid neuron, chemosensory
PHCL Neuron, striated rootlet in male, possibly sensory in tail spike
PHCR Neuron, striated rootlet in male, possibly sensory in tail spike
PLML Posterior lateral microtubule cells, touch receptor neuron
PLMR Posterior lateral microtubule cells, touch receptor neuron
PLNL Interneuron, associated with PLM
PLNR Interneuron, associated with PLM
POR Neuron, basal body, not part of a sensillum, projects into prgangion
PVCL Ventral cord interneuron, cell body in lumbar ganglion, synapsgs VB

andDB motor neuron, formerly called delta.
PVCR Ventral cord interneuron, cell body in lumbar ganglion, synapsegs VB

andDB motor neuron, formerly called delta.

PVDL Neuron, lateral process adjacent to excretory canal
PVDR Neuron, lateral process adjacent to excretory canal

PVM Posterior ventral microtubule cell, touch receptor

PVNL Interneuron/motor neuron, post. vent. cord, few synapses
PVNR Interneuron/motor neuron, post. vent. cord, few synapses

PVPL Interneuron, cell body in preanal ganglion, projects alongrd tmnerve ring
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Neuron name Brief description

PVPR

PVQL

PVQR
PVR

PVS

PVT
PVWL
PVWR

RIAL
RIAR
RIBL
RIBR
RICL
RICR
RID
RIFL
RIFR
RIGL
RIGR

RIH

RIML

RIMR

Interneuron, cell body in preanal ganglion, projects alongrd twonerve ring
Interneuron, projects along ventral cord to ring
Interneuron, projects along ventral cord to ring
Interneuron, projects along ventral cord to ring
PVPR interneuron of male, cell body in preanal ganglion, sexually rgino
connectivity
Interneuron, projects along ventral cord to ring
Interneuron, posterior ventral cord, few synapses
Interneuron, posterior ventral cord, few synapses
Ring interneuron, many synapses
Ring interneuron, many synapses
Ring interneuron
Ring interneuron
Ring interneuron
Ring interneuron
Ring interneuron, projects along dorsal cord
Ring interneuron
Ring interneuron
Ring interneuron
Ring interneuron
Ring interneuron
Ring motor neuron

Ring motor neuron
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Neuron name Brief description

RIPL Ring/pharynx interneuron, only direct connection between phaaynd ring
RIPR Ring/pharynx interneuron, only direct connection between plxaagpd ring
RIR Ring interneuron

RIS Ring interneuron

RIVL Ring interneuron
RIVR Ring interneuron

RMDDL Ring motor neuron/interneuron, many synapses
RMDDR Ring motor neuron/interneuron, many synapses
RMDL Ring motor neuron/interneuron, many synapses
RMDR Ring motor neuron/interneuron, many synapses
RMDVL Ring motor neuron/interneuron, many synapses

RMDVR Ring motor neuron/interneuron, many synapses

RMED Ring motor neuron
RMEL Ring motor neuron
RMER Ring motor neuron
RMEV Ring motor neuron
RMFL Ring motor neuron/interneuron
RMFR Ring motor neuron/interneuron

RMGL Ring interneuron
RMGR Ring interneuron
RMHL Ring motor neuron/interneuron
RMHR Ring motor neuron/interneuron

SAADL Ring interneuron, anteriorly projecting process that runs sufaliye
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Neuron name Brief description

SAADR
SAAVL
SAAVR

SABD

SABVL

SABVR

SDQL

SDQR

SIADL

SIADR

SIAVL

SIAVR

SIBDL

SIBDR

SIBVL

SIBVR

Ring interneuron, anteriorly projecting process that runs sublate

Ring interneuron, anteriorly projecting process that runs sutzlye

Ring interneuron, anteriorly projecting process that runs sulldte

Ring interneuron, anteriorly projecting process that runs sublitesynapses
to anterior body muscles in L1

Ring interneuron, anteriorly projecting process that runs sutaliyesynapses
to anterior body muscles in L1

Ring interneuron, anteriorly projecting process that runs sublitesynapses
to anterior body muscles in L1

Post. lateral interneuron, process projects into ring

Ant. lateral interneuron, process projects into ring

Receive a few synapses in the ring, have sublateral postedggted pro-
cesses

Receive a few synapses in the ring, have sublateral postedodgted pro-
cesses

Receive a few synapses in the ring, have sublateral postetiimdcted pro-
cesses

Receive a few synapses in the ring, have sublateral postedodgted pro-
cesses

Similar to SIA

Similar to SIA

Similar to SIA

Similar to SIA
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Neuron name Brief description

SMBDL Ring motor neuron/interneuron, has sublateral posteriorly dilgotecesses
SMBDR Ring motor neuron/interneuron, has sublateral posteriorly ddguteesses
SMBVL Ring motor neuron/interneuron, has sublateral posteriorly didgatecesses
SMBVR Ring motor neuron/interneuron, has sublateral posteriorly ditguiecesses
SMDDL Ring motor neuron/interneuron, has sublateral posteriorly didgmtecesses
SMDDR Ring motor neuron/interneuron, has sublateral posteriorly digrteesses
SMDVL Ring motor neuron/interneuron, has sublateral posteriorly didgutecesses
SMDVR Ring motor neuron/interneuron, has sublateral posteriorly dotgmi@cesses
URADL Ring motor neuron
URADR Ring motor neuron

URAVL Ring motor neuron

URAVR Ring motor neuron

URBL Neuron, presynaptic in ring, ending in head

URBR Neuron, presynaptic in ring, ending in head

URXL Ring interneuron

URXR Ring interneuron

URYDL Neuron, presynaptic in ring, ending in head

URYDR Neuron, presynaptic in ring, ending in head

URYVL Neuron, presynaptic in ring, ending in head

URYVR Neuron, presynaptic in ring, ending in head

VAL Vent. cord motor neuron, innervates vent. body muscles
VA2 Vent. cord motor neuron, innervates vent. body muscles

VA3 Vent. cord motor neuron, innervates vent. body muscles
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Neuron name Brief description

VA4

VA5

VA6

VA7

VA8

VA9

VA10

VA1l

VA12

VB1

VB2

VB3

VB4

VB5

VB6

VB7

VB8

VB9

VB10

VB11

VC1

Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.

Vent. cord motor neuron, innervates vent.

body muscles
body muscles
body muscles
body muscles
body muscles
body muscles
body muscles

body muscles

Vent. cord motor neuron, innervates vent. body muscles, but alemauron

in preanal ganglion

Vent. cord motor neuron, innervates vent. body muscles, also intenmen

ring

\ent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
\ent. cord motor neuron, innervates vent.
\Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.
Vent. cord motor neuron, innervates vent.

Vent cord motor neuron innervates vulval muscles and vent bodglesus

body muscles
body muscles
body muscles
body muscles
body muscles
body muscles
body muscles
body muscles
body muscles

body muscles
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Neuron name Brief description

VC2

VC3

VC4

VC5

VC6

VD1

VD2

VD3

VD4

VD5

VD6

VD7

VD8

VD9

VD10

VD11

VD12

VD13

Vent cord motor neuron innervates vulval muscles and vent bodyglesus
Vent cord motor neuron innervates vulval muscles and vent bodglesus
Vent cord motor neuron innervates vulval muscles and vent bodglasus
Vent cord motor neuron innervates vulval muscles and vent bodglesus
Vent cord motor neuron innervates vulval muscles and vent bodglesus
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirduaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirdaaitor
Vent cord motor neuron, innervates vent body muscles, recipirduitor
Vent cord motor neuron, innervates vent body muscles, re@pnatibitor
Vent cord motor neuron, innervates vent body muscles, re@piataibitor
Vent cord motor neuron, innervates vent body muscles, re@piatibitor

Vent cord motor neuron, innervates vent body muscles, re@piataibitor
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