
TII-07-10-0157.R1 1

Automatically Configuring Time-Triggered
Schedulers for Use with Resource-Constrained,

Single-Processor Embedded Systems
Ayman K. Gendy and Michael J. Pont, Member, IEEE

Abstract— This paper describes a novel two-stage search

technique which is intended to support the configuration of time-
triggered schedulers for use with resource-constrained embedded
systems which employ a single processor. Our overall goal is to
identify a scheduler implementation which will ensure that: (i) all
task constraints are met; (ii) CPU power consumption is “as low
as possible”; (iii) a fully co-operative scheduler architecture is
employed whenever possible. Our search process is not
exhaustive, and might be described as “best characteristics first”
approach. We proceed iteratively, stopping the search when we
have identified the first workable solution. We assume that -
because we have begun the search with “best characteristics” -
any schedule identified will represent a good (but not necessarily
completely optimal) solution. We show that the proposed
configuration algorithm is highly effective. We also demonstrate
that the algorithm has much lower complexity than alternative
“branch and bound” search schemes. We conclude by making
some suggestions for future work in this area.

Index Terms— automatic code generation, cooperative, cyclic
executive, embedded system, hybrid, non pre-emptive, pre-
emptive, scheduler, time triggered

I. INTRODUCTION
HIS paper describes a novel two-stage search technique
which is intended to support the configuration of

schedulers for use with resource-constrained embedded
systems. The specific implementation options which we
consider are a time-triggered co-operative (TTC) scheduler (a
form of cyclic executive: e.g. [1]), and a time-triggered
“hybrid” (TTH) scheduler (sometimes referred to as a “multi-
rate executive with interrupts”: [2]). Such architectures are
employed frequently in low-cost control systems (e.g.
automotive control: [3]) and in condition-monitoring / fault
diagnosis systems (e.g. [4]). Other recent uses of such simple
schedulers can also be noted. For example Gangoiti et al [16]
used a fixed-polling binary tree for USB bandwidth
scheduling using a cyclic-executive-based approach “which
has low run-time overhead” [16]. They showed that this
method helped to guarantee the quality of service

requirements for the device. In another recent study, Huang et
al

Manuscript received May 28, 2007.
The authors are with the Embedded Systems Laboratory, University of

Leicester, University Road, Leicester LE1 7RH, UK.
E-mail: {akg14, m.pont}@le.ac.uk.

[17] used co-simulation of different tools employed in PLC
programming and process modelling and simulation. They
use a cyclic executive design to mark the time instants in
which data exchange must be performed for each control loop,
in order to facilitate the design of the simulation steps in both
tools.

The type of TTC scheduler implementation discussed in
this paper is usually implemented using a hardware timer,
which is set to generate interrupts on a periodic basis (with
“tick intervals” of around 1 ms being typical). In most cases,
the tasks will be executed from a “dispatcher” (function),
invoked after every scheduler tick. The dispatcher examines
each task in its list and executes (in priority order) any tasks
which are due to run in this tick interval. The scheduler then
places the processor into an “idle” (power saving) mode,
where it will remain until the next tick. Fig. 1 shows an
example of three tasks run with TTC scheduler with a tick
interval of 1 ms. Please note that the offsets (the time,
measured from the start of the schedule, at which the task first
starts execution) of Task A and Task B are zero while the
offset of Task C is 1 ms.

Whether a TTC or TTH implementation is used, a number

of key scheduler parameters must be determined (including
the tick interval, task order, and initial delay - or phase - of
each task). Inappropriate choices may mean that a given task
set cannot be scheduled (at all). Where the parameter set does
ensure that all tasks are scheduled, inappropriate decisions
may still lead to unnecessarily high levels of task jitter and / or
to increased system power consumption. It has been
demonstrated in previous studies that the problem of
determining these parameters is NP-hard, ([7] - [14]).

Our goal in this paper is to automate the process of
parameter selection for this important class of low-resource
schedulers. In determining these parameters, we aim to ensure
that: (i) task constraints are met; (ii) power consumption is “as

T

Time (ms) 1 2

A B
Sleep

A C
Sleep

A B
Sleep

A C
Sleep

3 0

Fig. 1. Illustrating the operation of a typical (interrupt-driven) TTC
scheduler implementation.

TII-07-10-0157.R1 2

low as possible”; (iii) a fully co-operative scheduler
architecture is employed whenever possible.

The remainder of this paper is organised as follows. In
Section II, we review previous work in scheduler design and
selection. In Section III, we introduce and describe a
scheduling algorithm (“TTSA1”) which is used to automate
the process of scheduler selection and configuration. In
Section IV, we describe the process used to assess this
algorithm and present the results obtained from this
assessment. Finally, in Section V, we discuss the results,
present our conclusions and make some suggestions for future
work.

II. RELATED WORK
In this section, we review previous work in this area.

A. Time-triggered software architectures for resource-
constrained systems

This paper is concerned with the development of software
for an important class of embedded systems in which there are
two (sometimes conflicting) constraints. First, (in order to
reduce costs) we wish to implement the design on a low-cost
microcontroller which has – compared to a desktop computer
– very limited memory and CPU performance. Second, we
wish to produce a system with low levels of task jitter
(typically around 1 µs), because the application may involve
periodic data sampling.

In order to minimise costs and maximise predictability in
this type of application, we wish to keep the software
architecture as simple as possible. As a consequence, instead
of a full RTOS, some form of simple scheduler is generally
used. For example, a cyclic executive ([7], [15]) is a form of
co-operative (or “non pre-emptive”) scheduler which has a
“time triggered” [8] - as opposed to event-triggered [1] -
architecture. Provided that an appropriate implementation is
used, a time-triggered, co-operative (TTC) architecture is a
good match for a wide range of low-cost, resource-constrained
applications. TTC architectures also demonstrate very low
levels of task jitter [15], and can maintain their low-jitter
characteristics even when techniques such as dynamic voltage
scaling (DVS) are employed to reduce system power
consumption [6].

Despite some attractive features, such a TTC solution is not
always appropriate. As Allworth has noted: “[The] main
drawback with this [co-operative] approach is that while the
current process is running, the system is not responsive to
changes in the environment. Therefore, system processes
must be extremely brief if the real-time response [of the]
system is not to be impaired.” [18]. In this case a pure co-
operative scheduler will not generally be suitable. In such
circumstances, it is tempting to opt immediately for a fully
pre-emptive design. Indeed, some studies seem to suggest that
this is the only viable alternative (e.g. [15], [19]). However,
there are other design options available. For example, a
single, time-triggered, pre-empting task can be added to a
TTC architecture, to give what we have called a “time-

triggered hybrid” (TTH) scheduler [20], [21] and others have
called a “multi-rate executive with interrupts” [2]. Use of a
TTH scheduler allows the system designer to create a static
schedule made up of (i) a collection of tasks which operate co-
operatively and (ii) a single – short - pre-empting task, see
Fig. 2. Please note that in this schedule, the co-operative tasks
all have the same priority (Priority C) while the pre-empting
task has Priority P. We assume that Priority P > Priority C.
Please also note that all tasks are periodic. This is in contrast
to architectures investigated in some previous studies
(e.g. [22]) which have sought to integrate time-triggered task
scheduling with the response to aperiodic (event related)
interrupts.

In systems employing a TTH architecture, the pre-empting
task may be used for periodic data acquisition, typically by
means of an analogue-to-digital converter or similar device.
Such requirements are common in, for example, control

systems [23], and applications which involve data sampling
and Fast-Fourier transforms (FFTs) or similar techniques: see,
for example, the work by Schlindwein et al.

Time (ms) 1 2

P C- P -C
Sleep

3 0

P C- P -C
Sleep

Pre-empting task

Co-operative task

Fig. 2. Illustrating the operation of a typical TTH scheduler implementation
(adapted from [21], Figure 1).

 [4].
Please note that it is not our intention to imply that a TTH

architecture has – in terms of its scheduling behaviour – any
particularly novel characteristics. Indeed, in many cases, a
TTH architecture will be used to implement a common “rate-
monotonic” schedule: this type of schedule has been
extensively studied over a number of years: see, for example,
work by Liu and Layland [24] through to work by
Buttazzo [23]. In addition, it should be emphasised that we
support in this architecture only a single pre-empting task
(since this is all we require). As a consequence, in terms of a
theoretical scheduling analysis, this type of scheduler is of
limited interest. However, in a resource-constrained
embedded system, it is a very attractive proposition because it
allows us to create a scheduler with minimal resource
requirements which is precisely matched to the needs of many
practical applications.

B. Challenges with simple TT architecture
Two key challenges facing the developers of simple TTC

and TTH designs are the possibility of task overruns (at run
time) and the schedule fragility (at design time). We consider
these challenges in this section.

1) Impact of long tasks during system execution: As we
discussed in the previous sub-section, TTH architectures allow
a designer to execute one or more tasks of Worst Case
Execution Time (WCET) e and also respond within an
interval t to external events, such that t < (e + execution time
of the task that handles the event). This solution can be
effective, for many designs, if the WCET of every task is

TII-07-10-0157.R1 3

known at design time. Unfortunately, as many researchers
have observed ([24]- [32]), determining the WCET of tasks is
rarely straightforward.

Lack of knowledge about WCETs is a problem which faces
the developers of many embedded systems (not just those
based on TTC / TTH designs). For example, as Gergeleit and
Nett have noted: “Nearly all known real-time scheduling
approaches rely on the knowledge of WCETs for all tasks of
the system.” [29]. Nonetheless, the fact that a TTC / TTH
architectures employs static scheduling (and, even in the case
of TTH, a very limited degree of pre-emption) means that – in
the event of a task overrun – the problem may not even be
detected (let alone resolved). This may have a serious impact
on the system behaviour. For example, as Buttazzo has noted:
“[Co-operative] scheduling is fragile during overload
situations, since a task exceeding its predicted execution time
could generate (if not aborted) a domino effect on the
subsequent tasks” [23].

One simple solution to this problem is to err on the side of
caution when employing WCET estimates, thereby reducing
the chances that an overrun will occur. Typical “safety
margins” used in this way are said to be around 20% [33].
Such an approach is simple and can be effective, but it
inevitably adds to costs. An alternative is to be slightly more
conservative when estimating WCET values (e.g. add 5% to
accurate estimates) and then extend the scheduler (or add
additional hardware) in such a way that (at run time) any
overrunning tasks can be shut down, and / or the schedule can
be adjusted. This can be done by employing some form of
“watchdog timer” (e.g. [34]) in a “scheduler watchdog”
design (e.g. [35]). Alternatively, greater control over the
system behaviour can be obtained by using a “task guardian”
 [36].

2) The fragility of TTH and TTC designs: Using
mechanisms such as those outlined in the previous section, we
can obtain highly predictable behaviour from TTC and TTH
designs, even in the event of task overruns (due to error
situations or design problems). However, it remains the case
that – during the design process – TTC / TTH designs are
“fragile”: that is, small changes to the timing of particular
tasks can mean that the developer has to make substantial
changes to the whole schedule (e.g. see [1]). Our focus in this
paper is therefore on ways in which the process of configuring
TT schedulers for use in single-processor embedded systems
can be automated.

In general, automated code generation holds the promise of
reducing the time and effort required to implement safety-
critical systems, while at the same time eliminating errors
introduced in this stage of development [37]. Industries such
as aerospace and automotive have made extensive use of
automatic code generation tools aimed at control and signal
processing systems ([38]- [40]). They are used first to model
systems and then to generate code. Originally, code was

generated automatically for prototyping platforms or PCs.
More recently, code generation has become a more practical
means of generating production code for embedded hardware.
It is thought that many thousands of cars now rely on code
generated using these techniques [38].

Automatic generation of schedules and schedulers is less
common than “general purpose” code generation, but some
work has been done in this area too. For example Tindell et al
 [9] used the simulated annealing technique to solve the
problem of allocating a number of tasks to a number of
processors in a distributed hard real time architecture. Ekelin
and Jonsson [10] addressed the problem of task allocation and
scheduling using constraint programming heuristics. Xu and
Parnas [41] presented a branch and bound algorithm that finds
the optimal schedule (if one exists), for a set of processes.
The scheduler considered supports a limited degree of pre-
emption. Xu [42] extended the previous study to find a
feasible co-operative scheduler (if one exists) in a multi
processor environment. Kovalyov and Xu [43] went on to
further refine this algorithm. Sandström and Norström [44]
used genetic algorithms to assign attributes such as priorities
and offsets to a set of tasks that have complex timing
constraints in a pre-emptive priority based run-time systems
(using off-the-shelf operating systems). Dobrin and Fohler
 [45] also describe some useful techniques which are intended
to help lower the overheads (in systems involving time-
triggered scheduling and task pre-emption) by reducing the
number of task pre-emptions which occur.

All of this previous work is relevant to a discussion about
tool support for scheduler design. However, none of this
previous work relates directly to TTC / TTH architectures:
instead, such previous studies have tended to focus on
“conventional” RT operating systems (e.g. VxWorks: [44]).
Such operating systems exceed the resource requirements
available in the types of processor considered in this study.

While previous studies on scheduler parameter selection do
not relate directly to the work presented in this paper, there
has been considerable work on the “automatic” creation of
systems with a TTC architecture (e.g. [46], [47]). Such work
supports the creation of code for complete TTC systems
(including the system scheduler) using a collection of “design
patterns”. Such tools do not (so far) support the creation of
systems with a TTH architecture [5]. In addition, even with
TTC architectures, the user still needs to “hand tune” some
task parameters (like the offset) and scheduler parameters
(like the tick interval). The work presented in this paper seeks
to address the problem of choosing between TTC and TTH
schedulers and – for the chosen scheduler – determining an
appropriate set of task parameters.

TII-07-10-0157.R1 4

START
Arrange tasks in order according to their deadlines (EDF);

// Common divisors of task periods in descending order

GCD[t] = {GCD
1
, GCD

2
, …, GCD

m
}, t=1, 2,,.., m;

Sched_Strategy = {TTC, TTH};

// First check schedulability using TTC strategy

Sched_Strategy_Index = 1;

DO

 {

 Tick_Index = 1;

 DO

 {

 Tick_Interval = GCD[Tick_index];

 i = 1; Offset[i] = 0;

 Sched[i] = TRUE; Sched_Tasks = 1;

 DO

 {

 i++; Offset[i] = 0;

 DO

 {

 Length_of_Major_Cycle = LCM(Period[k]),

 k=1,2..,i ;

 Max_Offset = Max(Offset[k]), k=1,2..,I;

 Test_Period = 2* Length_of_Major_Cycle +

 Max_Offset;

 Sched[i] = Check_Sched(i, Test_Period,

 Tick_Interval, Sched_Strategy_Index);

 IF (Sched[i] = TRUE)

 { Sched_Tasks ++ ;}

 ELSE

 { Offset[i]++ ;}

 } WHILE ((Offset[i]<Period[i]) and

 (Sched[i] = FALSE));

 } WHILE (i < n);

 IF (Sched_Tasks = n)

 { print task offsets, tick interval, scheduler

 type; EXIT; }

 ELSE

 { Tick_index++;}

 } WHILE (Tick_index <= m)

 Sched_Strategy++; // Try the TTH strategy

 } WHILE (Sched_Strategy <= 2);

Print list of scheduled and unscheduled tasks;

END

Fig. 3. Pseudo code for the TTSA1 algorithm.

III. THE TTSA1 SCHEDULING ALGORITHM
In Section II, we considered the need for tools which will

help to automate the process of developing TTC and TTH
schedules. In the remainder of this paper we present and
assess a novel algorithm which addresses this need. For ease
of reference, we call this algorithm “time-triggered scheduling
algorithm 1” (TTSA1). We describe TTSA1 in this section.

A. Overview
The pseudo code shown in Fig. 3 describes TTSA1. The

input to TTSA1 is a list of task specifications and constraints.
The algorithm tests the schedulability of the given task set,
first using the TTC scheduler. If the task set cannot be
scheduled with the TTC scheduler, the process is repeated
using the TTH scheduler (see Fig. 4).

START
Current_Tick_Num= 1; j=1; Current_Time=0; Temp_Tick_Num=0;

DO {

 DO {

 IF (Task[j] is due to run)

 {

 IF (Sched_Strategy[Sched_Strategy_Index] = TTC)

 {

 // are we in the start of a new Tick?

 If (Current_Time % Tick_Interval = 0)

 // add the scheduling overhead to

 // Current_Time

 { Current_Time += TTC_Overhead}

 Temp_WCET = WCET[j];

 WHILE (Temp_WCET > (Tick_Interval - Current_Time

 % Tick_Interval))

 { //Temp_WCET is longer than reminder time in

 //current tick

 Temp_WCET -= (Tick_Interval - Current_Time %

 Tick_Interval);

 Current_Time += (Tick_Interval - Current_Time

 %Tick_Interval) + TTC_Overhead;

 }

 Current_Time += Temp_WCET;

 }

 ELSE //use TTH

 {// is it the pre-emptive tasks?

 IF ((j = p) and (Current_Tick_Num <>

 Temp_Tick_Num))

 { Current_Time += WCET[j] + TTH_Overhead;}

 ELSE

 {//it is a co-operative task, add its WCET to

 //the current

 Temp_WCET = WCET[j];

 Temp_Tick_Num = Current_Tick_Num;

 WHILE (Temp_WCET > (Tick_Interval –

 Current_Time % Tick_Interval))

 { //Temp_WCET is longer than reminder time

 //in current tick

 Temp_WCET -= (Tick_Interval - Current_Time

 % Tick_Interval);

 Current_Time += (Tick_Interval –

 Current_Time % Tick_Interval)

 + TTH_Overhead;

 Temp_Tick_Num++;

 If (Task[p] is due to run in Temp_Tick_Num)

 { //check exclusion relation

 If (Exclusion[j][p] = 1)

 {return (FALSE);}

 ELSE

 {Current_Time += WCET[p];}

 }

 }

 Current_Time += Temp_WCET;

 }

 }

 IF (D-line, Jit, Prec, Dist, or Lat constraint of

 the tasks added so far is not met)

 {return(FALSE);}

 }

 j++;

 } WHILE (j <= i);

 // Update the Current Time and Current tick count

 IF ((Current_Time < (Current_Tick_Num * Tick_Interval))

 { Current_Time += Current_Tick_Num * Tick_Interval;}

 Current_Tick_Num ++;

 } WHILE (Current_Tick_Num <= Test_Period);

RETURN TRUE;

END

Fig. 4. Pseudo code of the Check_Sched() function of TTSA1 scheduler.

TII-07-10-0157.R1 5

The output from the algorithm depends on the results of
each schedulability test, as follows:
• If all the tasks are schedulable, a suitable tick interval is

calculated, along with the task order and the required offset
value for each task.

• If the tasks cannot all be scheduled, a list of the schedulable
tasks is generated1.
To achieve this result, TTSA1 begins by sorting the tasks

according to two criteria: a) task precedence, b) task deadline
(earliest deadline first). It is then assumed that the first task
will run with zero offset and the algorithm tries to find a
suitable offset for the second task, using the longest possible
tick interval. If such an offset is identified (and the constraints
of both tasks are met), a third task is added to the system and
the process is repeated. We carry on in this way until all tasks
have been scheduled (if this proves possible), see Fig. 4.

Please note that our search process is not exhaustive, and
might be described as “best characteristics first” approach: for
example, we start with a long tick interval (which is known to
reduce power consumption: see Appendix A) and we
gradually reduce the tick interval until we match the timing
needs of the application (if ever). We proceed iteratively,
stopping the search when we have identified the first workable
solution. We assume that - because we have begun the search
with “best characteristics” - any schedule identified will
represent a good (but not necessarily completely optimal)
solution.

B. Tick interval
We have previously stated that an inappropriate choice of

tick interval may mean that a given task set cannot be
scheduled (at all). We illustrate this situation here with a
simple example.

Suppose that we employ a tick interval of 2 ms with the
task set shown in Table I (assuming zero offsets), Task B will
always run after Task A (in the same tick) and can miss its
deadline. However, using a tick interval of 1 ms and
appropriate task offsets, changing the offset of Task B to 1 ms
(1 tick), means that all tasks meet their deadlines.

Where the parameter set does ensure that all tasks are
scheduled, inappropriate choice of tick interval may still lead
– for example - to increased system power consumption. We
have not been able to find evidence in the literature to back up
this observation. Results from a small empirical study
illustrating this result are therefore presented in Appendix A.

To find the most suitable (that is, longest possible) tick
interval, the algorithm checks the schedulability using all the
common divisors of the task periods, starting with the Greatest
Common Divisor (GCD) for the best results in power
reduction. The algorithm stops at the largest possible tick
interval with which all the tasks meet their deadlines (if such
an interval exists).

1 This is intended to help the user to modify tasks which cannot be

scheduled (for example, by dividing a long task into more than one short task
 [7], [15], [20]).

C. Offset
Choice of offset can have a significant impact on the levels

of task jitter in the system.
As an example of the impact of an inappropriate offset

choice, please see Table II. In this example, the task set
cannot all be scheduled because the sum of the WCETs means
that Task C cannot meet its deadline (and there will also be
significant jitter in the start times of Task A).

By using a suitable tick interval and adjusting the task
offsets we can often achieve a workable schedule (e.g. see
 [48], [49]). For example, the tasks in Table II can be
scheduled if we use a tick interval of 5 ms and adjust the
offset of Task C to 5 ms (1 tick).

D. Test period
Choosing a suitable offset for each task may require that we

test the schedule (using different offset combinations) over a
period of time long enough to determine that all the tasks will
meet their deadlines (or not). Since all tasks are periodic, we
need to test for schedulability over the “major cycle” (a period
of time equal to the Least Common Multiple – LCM - of the
task periods: e.g. [7]).

In addition, since each task may have a different offset, the
full schedule will not necessarily begin immediately: instead,
the algorithm must therefore test the schedule for one
complete cycle, measured from the time that the last task to be
added to the schedule is executed for the first time. Finally,
we may also need to consider the task behaviour at the
boundary between the end of one (major) cycle and the start
of the next.

As a result, for a given tick interval and set of offsets, the
testing period used in this paper is represented by (1), the
units here are “ticks”.
Test_period = 2 x Length_of_Major_cycle + Maximum_offset
. (1)

We further assume (for the purposes of this paper) that the
offset of a task is in the range of [0, period], assuming that
values of offset and period are expressed in ticks.

So for a set of n tasks the longest test period can be

TABLE II
TASK SPECIFICATIONS FOR A SYSTEM IN WHICH
TASK OFFSETS AFFECT TASK SCHEDULABILITY

Task WCET
(ms)

Deadline
(ms)

Period
(ms)

Inappropriate
Offset (ms)

Appropriate
Offset (ms)

A 1 5 5 0 0

B 1.5 5 10 0 0

C 3 5 10 0 5

TABLE I
TICK SPECIFICATIONS FOR A SYSTEM IN WHICH

 TICK INTERVAL AFFECTS TASK SCHEDULABILITY
Task WCET

(ms)
Deadline

(ms)
Period
(ms)

A 0.3 0.5 2

B 0.4 0.5 2

TII-07-10-0157.R1 6

calculated form (2).
Test_period = 2 x LCM (P[1], P[2], .., P[n]) + Max (P[1],

P[2],…,P[n]) (2)
It can be seen from (2) that – in theory – the LCM of the

task periods and hence the test period could be very long
(particularly in large task sets with co-prime periods).
However, in practice, there may be some flexibility in the
choice of task periods ([20], [50]). As an example Gerber et
al [51], [52] present a design methodology in which the end-
to-end timing constraints (which is initially defined in such a
way like: the car dynamics, such as speed, must be updates,
based on the input throttle position, within period of 5 ms) are
transformed into a set of intermediate rate constraints. They
introduce an algorithm that solves these constraints by
minimising the CPU utilisation. They show that a feasible
solution for task constraints (like the period) can found by
considering the period harmonicity relationship of that task
with all its successors. Kim et al [53] go further to improve
and automate this period calibration method.

E. Task starting time
At any time, task Task[i] is considered to be due to run at

tick ‘Tick_Num’ if the condition represented by (3) is true.
(Tick_Num - Offset[i]) % Period[i] = 0 (3)

F. Deadline checking
The task deadline is the time, measured from the start of the

period, before which the task must finish its execution
(sometimes called the “relative deadline”: e.g. [44]).

Assuming that a specific segment of Task[i], which has
deadline D[i] that is less than or equal to P[i], begin its
execution at time ‘Starting_Time’ and finishes its execution at
time ‘Finishing_Time’ this task is considered to have met its
deadline if the condition in (4) is satisfied for all its segments:

(Finishing_Time – Starting_Time) ≤ D[i] (4)

G. Taking scheduler overheads into account
The scheduler overhead may have a considerable impact on

the schedulability of the task set. This overhead arises from
the time spent in handling the tick interrupt, the time spent in
updating and testing the delay of each task in turn (in order to
check which task should run next), and the time spent in
saving/resuming the state of pre-empted tasks in TTH designs.
The level of this overhead depends on many factors including
the number of tasks in the system, the scheduler type, and the
speed of the hardware used to implement the system.

Previous work has been conducted in this area, for example
Sandström et al [22] handle the interrupt overhead in an
efficient, non-pessimistic, way. In this paper we introduce an
alternative way of representing the overall scheduler overhead
for a given number of tasks. We assume that the scheduler
overhead can be represented by adding a dummy task to the
set of tasks to be scheduled. This additional task is included
in our schedule calculations at every tick and has a WCET
equal to the actual scheduler overhead. This effect is shown
in the Check_Sched() function (Fig. 4).

Of course, we need to determine the WCET value for this
“overhead” task. We cannot predict this value (without
conducting an extensive – and expensive – modelling
process). We therefore note that the maximum scheduling
overhead will occur when all the tasks run in the same tick (if
ever).

Assuming that we have n tasks and that the scheduler enters
“sleep” mode after running all the ready tasks in each tick (if
there is time left), then the scheduling overhead is given by
(5).

)][mod____(_
1

∑
=

+−=
n

i
iWCETesleepinspenttimeIntervalTickoverhead

 (5)
The overhead can be determined empirically, using a

scheduler with the same number of “dummy” (empty) tasks

TABLE IV
NUMBER OF TRIAL AND THE TOTAL TIME

3-tasks sets 4-tasks sets 5-tasks sets
TTC TTH TTC TTH TTC TTH

 TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB TTSA1 BaB

Minimum number of trials 2 2 2 2 3 3 3 3 4 4 4 4

Maximum number of trials 85 2966 75 2966 125 33571 64 35072 170 1585571 87 879901

Average number of trials 16.3 162.0 11.4 159.8 31.7 2561.7 17.4 2544.2 59.6 56283.7 23.7 46575.6

Total number of trials 16285 161962 11360 159823 31655 2561690 17360 2544241 59596 5.6E+07 23652 4.7E+07

Total time (s) 1 2 1.5 3 1.5 88 2 184 3 3091 3.5 4924

TABLE III
SAMPLE OF TASK SPECIFICATIONS AND CONSTRAINTS (SET OF 3 TASKS)

Task WCET
(µs)

Deadline
(µs)

Period
(µs)

Jitter
(µs) Exclusion Precedence Distance

(µs)
Latency

(µs)

A 496 3964 4000 1618

B 828 4711 10000 9488

64 3673 4000 67

Task A
Excludes
Task C

Task A
Precedes
Task C

Distance
between Task A

C
& Task C is

3335

Latency
between Task A

& Task C is
3921

TII-07-10-0157.R1 7

588 556580 545567 537530 497523 490

648 632658 656

0

100

200

300

400

500

600

700

TTC TTH

S ch e d u lin g s tr ate g y

N
um

be
r o

f s
ch

ed
ul

ab
le

ta

sk
 s

et
s

TTS A 1-EDF TTSA 1-LLF TTSA 1-Jiiter TTS A 1-RM

TTS A 1-S JF TTSA 1-A LL BaB

18 7
15 8

182
152174

141164
123

1 61 1 43

2 58 2 39
2 98 30 8

0

100

200

300

400

TTC TTH

Sc h e d u lin g s tr ate g y

N
um

be
r o

f s
ch

ed
ul

ab
le

ta

sk
 s

et
s

TTSA 1-EDF TTSA 1- LLF TTSA 1-Jiiter TTSA 1 -RM

TTSA 1-SJF TTSA 1- A LL BaB

Fig. 5. Number of scheduled task sets (3 interdependent tasks in each set). Fig. 7. Number of scheduled task sets (5 interdependent tasks in each set).

that will be employed in the final system. In this case, the last
term in (5),

∑
, can be assumed to be 0, and a single

set of measurements will be required for a given hardware
platform, regardless of the particular system being
implemented

=

n

i
iWCET

1
][

Determining the overhead in this way may seem to be
unduly pessimistic for a static schedule. However, this
measure of the maximum scheduler load is easily obtained
(one single measurement, rather than having to make
numerous measurements as we experiment with different
schedules). In addition making a precise measurement of this
load is – in practice – not straightforward. We therefore
choose to accept a slight risk that the scheduling decision
made will be altered by the inaccuracy of this overhead
measurement (indeed, we assume that any loss of accuracy
that results from this approach is likely to be smaller than the
errors which results from WCET approximations for the tasks:
see Section II).

Please note that we can determine the value of
time_spent_in_sleep_mode either through the use of a
hardware simulator or by making direct measurements from
the hardware.

4 18
3 47

401
335

397
33036 4

3 00
362

302

48 9
44 9

51 7 50 6

0

1 00

2 00

3 00

4 00

5 00

6 00

TTC TTH

Sch e d u lin g s t rate g y

N
um

be
r o

f s
ch

ed
ul

ab
le

ta

sk
 s

et
s

TTSA 1- EDF TTSA 1-L LF TTSA 1-Jiiter TTSA 1-RM

TTSA 1- SJF TTSA 1-A LL BaB

1 4 0
9 3

1 5 5
9 9

1 6 5
1 3 5

6 6
2 03 1 2 5

2 57
2 1 6

0

1 0 0

2 0 0

3 0 0

4 0 0

T TC TT H

S c h e d u lin g s t r a t e g y

N
um

be
r

of

sc
h

ed
u

la
b

le
 t

as
k

se
ts

T T S A 1 - ED F T T S A 1 - L L F T T S A 1 - J iite r

T T S A 1 - R M T T S A 1 - S JF T T S A 1 - A L L

Fig. 6. Number of scheduled task sets (4 interdependent tasks in each set). Fig. 8. Number of scheduled task sets (50 interdependent tasks in each set).

IV. EVALUATING THE TTSA1 ALGORITHM
We evaluate the TTSA1 algorithm in this section. The

“branch and bound” algorithm (BaB) was chosen previously
as a benchmark to test the effectives of other heuristic
algorithms [14]. The same algorithm is adapted here to
evaluate the effectiveness of the TTSA1 algorithm.

A. Algorithm complexity
Consider a set of n independent tasks, Task[1], Task[2], …,

Task[n], with periods P[1], P[2], .., P[n], respectively. As
previously discussed, the offset O[i] of task Task[i] is
assumed to take any value from zero to P[i]. Choosing a
suitable set of offsets may require testing schedulability over
the period defined by (1).

Using the BaB search algorithm a partial schedule is
constructed by adding tasks one by one to the system (trying
all possible offsets of this task). A branch is terminated if the
constraints of any added task, or the task under test, are
violated. Ignoring the possible task offsets, in the worst case
this will require testing n paths each of length n!; this has a
complexity of O(n.n!) which is “computationally intractable
and cannot be used in practical systems when the number of
tasks is high” [54]. In this case the longest testing period will
therefore be given by (6).
(number of offsets combinations) x (number of possible
execution orders) x (test period)
=

n

∏]))[],..,2[],1[(2])[],..,2[],1[(()!(][(ippPLCMiOOOMaxiiP ×+××
 (6) 1i=

This problem has an order of complexity O(tn.n!), where t
is the period (in ticks).

By contrast, the TTSA1 algorithm tries only a subset of the
possible offset combinations. In this case, the longest testing
period will be given by (7).

])))[],..,2[],1[(2])[],..,3[],2[((][(
2

iPPPLCMiOOOMaxiP
n

×+×∑

 (7)

TII-07-10-0157.R1 8

The complexity of this algorithm is O((n-1)t) or simply
O(n.t).

Please note that summation in (7) starts from index 2,
(rather than index 1). This is because the TTSA1 algorithm
assumes that, after sorting the set of tasks, the first task is
added to the system with offset 0. The offsets of subsequent
tasks are determined at the time they are added to the system
(one by one). Once an offset for a given task is identified, this
is “fixed”.

Please also note that these calculations ignore the effort
required to determine the scheduler overhead (for both the
BaB and TTSA1 calculations).

B. Algorithm performance
An empirical test of the performance of the TTSA1

algorithm was carried out. The procedure and results obtained
by applying the algorithm to a set of interdependent tasks are
detailed in this section.

1) Method: The schedulability of the task sets was
assessed using the BaB search. The results were then
compared with those obtained using the TTSA1 algorithm.

The chosen hardware platform was an NXP (formerly
Philips) LPC2129 microcontroller running on a small
evaluation board. The LPC2129 is based on an ARM7TDMI
core and is typical of modern (low cost) embedded processors.
The tests were conducted as follows:
• The measurements of scheduler load were carried out using

the NXP board.
• The BaB and the TTSA1 algorithm schedulability tests were

carried out using a simple (custom) schedule simulator,
running on a desktop PC (making use of the load
information obtained from the NXP board).
2) Dataset used: To explore the effectiveness of this

algorithm, 1000 sets of tasks were randomly generated. Each
set consisted of 3, 4 and 5 tasks specified by WCET, deadline
and period. These specifications were generated according to
the following criteria:
• 0 < WCET(i) ≤ 1000 µs (8)
• WCET(i) < P(i) ≤ 10000 µs (9)
• WCET(i) ≤ D(i) ≤ P(i) (10)

Task constraints of precedence, exclusion, distance, latency,
and upper bound of jitter were also randomly generated and
were in line with the findings from previous studies (e.g. see
 [41], [44]).

In order to simplify the calculations, task periods were
(pseudo) randomly generated at multiples of 1 ms (constrained
by (9)). Table III shows an example of a set of 3 tasks
generated according to the above constraints.

3) Extending the basic algorithm: Variations on the
original TTSA1 algorithm were also investigated in this trial.
In the original algorithm (henceforth referred to as “TTSA1-
EDF”), the tasks are added to the schedule “earliest deadline
first”.

We explored variations on this algorithm so that tasks were
added:
• According to their slack - or laxity - time (least laxity

first). This is “TTSA1-LLF” and is based on a “least

laxity first” scheduling algorithm [55].

TABLEA-1
AVERAGE POWER CONSUMPTION (MW) USING DIFFERENT TICK INTERVALS

Tick interval (ms) TTC TTH

1 16.6725 17.5583

2 16.3807 16.5104

5 16.1999 16.2332

10 16.1262 16.1524

• According to their periods (shortest period first). This
“TTSA1-RM” is related to a rate monotonic scheduling
strategy [24].

• According to their WCET (shortest WCET first). This is
referred here as “TTSA1-SJF” and is related to a “shortest
job first” scheduling strategy [56].

• According to their upper bound of jitter (shortest jitter first).
This is referred here as “TTSA1-Jitter”
4) Results (small task sets): The numbers of identified task

sets that found to be scheduled using the TTSA1 and BaB are
shown in Fig. 5 to Fig. 7. Please note that the results obtained
by combining the (unique) results from TTSA1-EDF, TTSA1-
LLF, TTSA1-RM, and TTSA1-SJF are shown in these figures
as TTSA1-ALL. The number of trials until each of the two
algorithms identified the set of tasks as
scheduled/unscheduled and the total time is also shown in
Table IV.
From the results obtained it was noted that:
• For both the TTC and TTH schedulers the results obtained

from TTSA1 (when overheads are taken into account) are
found to be a subset of the complete list of valid schedules
identified by the BaB search. In addition, although TTSA1
tests the schedulability using a subset of all the possible
offset combinations, it produces results which are similar to
those obtained with the BaB method.

• The criteria used for adding the tasks have an impact on the
schedulability of the set (different criteria may give different
results).

• Combining results from the variations of TTSA1 together
gives results which are very close to those obtained from the
BaB search while requiring a much lower number of trials,
and hence less time (see Section IV-A).
5) Results (large task set): The results shown in Fig. 5 to

Fig. 7 consider a maximum of 5 tasks. This is not an
unrealistic number for the resource-constrained systems we
are concerned with in this paper. However, this task set does
not fully test the algorithm. In order to explore the
performance of TTSA1 on larger problems, 1000 new data
sets were created. Each data set consisted of 50 tasks, each
with a maximum execution time of 1 ms and maximum period
of 100 ms. The task sets were randomly created according to
the constraints described previously. To reduce the length of
the major cycle, task periods were randomly generated as a
multiple of 10 ms. The results from this test are shown in Fig.
8. It took approximately 10 seconds to complete the
schedulability test for one set of 50 tasks using TTSA1-EDF,

TII-07-10-0157.R1 9

and a total of approximately 50 ms to complete the test for
TTSA1-All. It was not possible to complete this search using
a BaB approach as this would have required performing a
huge number of trials.

V. DISCUSSION AND CONCLUSIONS
Our aim in this paper has been to help automate the process

of determining the parameters required to schedule a given set
of tasks in a resource-constrained embedded system
employing a TTC or TTH architecture. We believe that we
have achieved this aim through the use of a novel algorithm
which – while it does not perform an exhaustive search – does
provide results close to those obtained in the BaB search, in a
fraction of time. While searching for a workable scheduler
the proposed scheduling algorithm ensures the CPU power
consumption is “as low as possible” (by choosing the longest
possible tick interval), and that task constraints are met (by
adjusting the tasks’ offsets, tick interval, and task orders).

The results, while useful, still have scope for improvement.
For example, we note that the match between TTSA1 and BaB
is better for the TTC schedules than it is for the TTH
schedules. As noted, the TTH designs support a single pre-
empting task: in this study, we assume that this task should be
the one with the shortest deadline, laxity, period, WCET, or
jitter (for the TTSA1-EDF, TTSA1-LLF, TTSA1-RM,
TTSA1-SJF, and TTSA1-Jitter algorithms, respectively). This
choice may be unduly restrictive, not least when exclusion
relations restrict the behaviour of the pre-empting task
(thereby, in many cases, marking the set as “unschedulable”).
So choosing the pre-empting task amongst all the other tasks
in the set has considerable effect on the results. Further work
is required to explore this.

APPENDIX A: POWER CONSUMPTION VS. TICK INTERVAL
The simple time triggered architectures which are discussed

in this paper (TTC / TTH) are built on the idea of executing
the tasks from a (dispatcher) function which is invoked every
scheduler tick. This function updates the state of each task,
runs “ready” tasks, then it places the processor into a power-
saving mode until the next tick. If the tick interval employed
is shorter than necessary, there may be some empty ticks
(ticks in which there is no tasks ready to run) during which the
system has to come out of the power saving mode to execute
the dispatcher before the system goes back to the power-
saving mode. This will, inevitably, increase power
consumption when compared to a design with an “optimal”
tick interval.

To illustrate the effect of tick interval on system power
consumption an empirical experiment was carried out. In this
experiment a set of 3 dummy tasks was used and run on an
NXP LPC2106 microcontroller. The period of all the three
tasks was set at 10 ms. The power consumption of the core
microcontroller was measured using a range of different tick
intervals. In each case, the results of several runs were
averaged using both TTC and TTH architectures (see Table

A-1).
It can be noticed from Table A-1 that, for both TTC and

TTH, choosing the largest possible tick interval reduces the
power consumption.

ACKNOWLEDGMENT
The authors would like to thank M. Nahas (ESL, Leicester)

for his help in making the measurements of the scheduler
overhead and K. L. Chan (ESL, Leicester) for his help in
making the power measurements.

REFERENCES
[1] A.C. Shaw, Real-Time Systems and Software, John Wiley, New York,

2001.
[2] D. Kalinsky, “Context switch,” Embedded Systems Programming, Vol.

14, No. 1, 2001, pp. 94-105.
[3] D. Ayavoo, Development of a Tool to Support the Design of Real-Time

Embedded Control Systems for X-By-Wire Applications, PhD thesis,
Embedded Systems Laboratory, University of Leicester, 2006.

[4] F. S. Schlindwein, M. J. Smith, and D. H. Evans, “Spectral analysis of
Doppler signals and computation of the normalized first moment in real
time using a digital signal processor,” Medical & Biological Engineering
& Computing, Vol. 26, 1988, pp. 228-232.

[5] C. Mwelwa, Development and Assessment of a CASE Tool to Support
the Design and Implementation of Time-Triggered Embedded Systems,
PhD thesis, Embedded Systems Laboratory, University of Leicester,
2006.

[6] T. Phatrapornnant and M. J. Pont, “Reducing jitter in embedded systems
employing a time-triggered software architecture and dynamic voltage
scaling,” IEEE Transactions on Computers (Special Issue on Design and
Test of Systems-On-a-Chip), Vol. 55, No. 2, 2006, pp. 113-124.

[7] T. P. Baker and A. Shaw, “The cyclic executive model and Ada,” Real-
Time Systems, Vol. 1, No. 1, 1989, pp. 7-25.

[8] H. Kopetz, Real-Time Systems, Design Principles for Distributed
Embedded Applications, Kluwer Academic, 1997.

[9] K. Tindell, A. Burns, and A. Wellings, “Allocating hard real-time tasks:
An NP-hard problem made easy,” Real-Time Systems, Vol. 4, No. 2,
1992, pp. 145–165.

[10] C. Ekelin and J. Jonsson, “Evaluation of search heuristics for embedded
system scheduling problems,” in Proc. Int. Conf. Principles and
Practice of Constraint Programming, Paphos, Cyprus, 2001, pp. 640 –
654.

[11] P. Brucker, M. R. Garey, and D. S. Johnson, “Scheduling equal-length
tasks under treelike precedence constraints to minimize maximum
lateness, “Mathematics of Operations Research, Vol. 2, No. 3, Aug.
1977, pp. 275-284.

[12] J. Xu and D. L. Parnas, “Pre-run time scheduling processes with
exclusion relations on nested or overlapping critical sections,” 11th
IEEE Int. Phoenix Conf. Computers and Communications, Scottsdale,
AZ, USA, 1992, pp. 774-782.

[13] S. K. Baruah, “The non-preemptive scheduling of periodic tasks upon
multiprocessors,” Real-Time Systems, Vol. 32, No.1-2, Feb. 2006, pp.9-
20,

[14] L. Cucu and Y. Sorel, “Non-preemptive multiprocessor scheduling for
strict periodic systems with precedence constraints,” In Proc. 23rd
Annual Workshop of the UK Planning and Scheduling Special Interest
Group, PLANSIG'04, Cork, Ireland, Dec. 2004.

[15] C. D. Locke, “Software architecture for hard real-time applications:
Cyclic executives vs. fixed priority executives,” Real-Time Systems,
Vol. 4, No. 1, 1992, pp. 37-52.

[16] U. Gangoiti, M. Marcos, and E. Estévez, “Using cyclic executives for
achieving closed loop co-simulation,” Proc. of the Joint 44th IEEE
Control and Decision Conference and European Control Conference
CDC-ECC’2005, Sevilla, ISSN: 0-7803-9568-9, pp. 4785-3790.

[17] C. Huang, L. Chang, and T. Kuo, "A Cyclic-Executive-Based QoS
Guarantee over USB", in IEEE 9th Real-Time and Embedded
Technology and Applications Symposium, Toronto, Canada, May 27-30,
2003, pp 88-95.

TII-07-10-0157.R1 10

[18] S. T. Allworth, An Introduction to Real-Time Software Design, London,
Macmillan, 1981.

[19] I. J. Bate, Scheduling and Timing Analysis of Safety Critical Hard Real-
Time Systems, PhD thesis, Department of Computer Science, University
of York, 1998.

[20] M. J. Pont, Patterns For Time-Triggered Embedded Systems, Addison-
Wesley, 2001.

[21] A. Maaita and M. J. Pont, “Using ‘planned pre-emption’ to reduce levels
of task jitter in a time-triggered hybrid,” UK Embedded Forum,
Birmingham, UK, University of Newcastle, 2005.

[22] K. Sandström, C. Norström, and G. Fohler, “Handling interrupts with
static scheduling in an automotive vehicle control system,” In Proc. 5th
Int. Conf. on Real-Time Computing Systems and Applications, IEEE
Computer Society, 1998, pp. 158-165.

[23] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgement day,” Real-Time
Systems, Vol. 29, No. 1, 2005, pp. 5-26.

[24] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard real-time environment,” Journal of the
ACM, Vol. 20, No. 1, 1973, pp. 40–61.

[25] L. B. Becker, E. Nett, S. Schemmer, and M. Gergeleit, “Robust
scheduling in team-robotics,” 11th Int. Workshop on Parallel and
Distributed Real-Time Systems, Nice, France, 2003.

[26] L.B. Becker and M. Gergeleit, ” Execution environment for dynamically
scheduling real-time tasks,” RTSS 2001, 22nd IEEE Real-Time Systems
Symposium, London, 2001.

[27] Y. Domaratsky and M. Perevozchikov, “Highly dependable time-
triggered operating system,” Dedicated Systems Magazine, Oct.-Dec.
2000, pp. 77-84.

[28] J. A. Engblom, A. Ermedahl, et al., “Worst-case execution-time analysis
for embedded real-time systems,” Journal of Software Tools for
Technology Transfer, Vol. 4, No. 4,2001, pp. 437-455.

[29] M. Gergeleit and E. Nett, “Scheduling Transient Overload with the
TAFT Scheduler,” GI/ITG specialized group of operating systems,
Berlin, 2002.

[30] R. Kirner and P. Puschner, “Discussion of misconceptions about worst-
case execution-time analysis,” 3rd Euromicro International Workshop
on WCET Analysis, 2003.

[31] E. Nett, H. Streich, et al., “Adaptive Software Fault Tolerance Policies
with Dynamic Real-Time Guarantees,” WORDS 96, IEEE Second Int.
Workshop on Object-oriented Real-time Dependable Systems, Laguna
Beach, California, U.S.A, 1996.

[32] P. Puschner, “Is WCET analysis a non-problem? Towards new software
and hardware architectures,” 2nd Intl. Workshop on Worst Case
Execution Time Analysis, Vienna, Austria, 2002.

[33] K. S. Vallerio and N. K. Jha, “Task graph extraction for embedded
system synthesis,” Proc. 16th Int. Conf. on VLSI Design concurrently
with the 2nd Int. Conf. on Embedded Systems Design, 2003, pp. 480-
486.

[34] J. Ganssle, The Art of Programming Embedded Systems, Academic
Press, San Diego, USA, 1992.

[35] M. J. Pont and R. H. L. Ong, “Using watchdog timers to improve the
reliability of single-processor embedded systems: Seven new patterns
and a case study,” in: Hruby, P. and Soressen, K. E. [Eds.] Proceedings
of the First Nordic Conference on Pattern Languages of Programs,
2002, pp. 159-200.

[36] Z. M. Hughes and M. J. Pont, “Design and test of a task guardian for use
in TTCS embedded systems,” UK Embedded Forum, Birmingham, UK,
University of Newcastle, 2004.

[37] M. W. Whalen and M. P. E. Heimdahl, “On the requirements of high-
integrity code generation,” Proc. of the 4th High Assurance in Systems
Engineering Workshop, 1999.

[38] P. Marsh, “Models of control,” IEE Electronics Systems and Software,
Vol. 1, No. 6, 2003, pp. 16-19.

[39] C. O'Halloran, “Issues for the automatic generation of safety critical
software,” 15th IEEE Int. Conf. Automated Software Engineering,
Grenoble, France, 2000.

[40] B. Schatz, T. Hain, et al., “CASE tools for embedded systems,”
Technical Report, Technical University of Munich, Reference No.
TUM-I0309, 2003.

[41] J. Xu and D. L. Parnas, “Scheduling processes with release times,
deadlines, precedence and exclusion relations,” IEEE Transactions on
Software Engineering, Vol. 16, No. 3, 1990, pp. 360-369.

[42] J. Xu, “Multiprocessor scheduling of processes with release times,
deadlines, precedence, and exclusion relations,” IEEE Transactions on
Software Engineering, Vol. 19. No. 2, 1993, pp. 139-154.

[43] M. Kovalyov and J. Xu, “Uniform processor scheduling with release
times, deadlines, precedence and exclusion relations International,”
Workshop Discrete optimization methods in scheduling and computer-
aided design, Minsk, Belarus, 2000.

[44] K. Sandström and C. Norström, “Managing complex temporal
requirements in real-time control systems,” 9th IEEE Conf. Engineering
of Computer-Based Systems, IEEE, Sweden, 2002.

[45] R. Dobrin and G. Fohler, “Reducing the number of pre-emptions in fixed
priority scheduling,” in Proc. 16th Euromicro Conference on Real-Time
Systems, 2004, pp.144-152.

[46] C. Mwelwa, M. J. Pont, and D. Ward, “Towards a CASE tool to support
the development of reliable embedded systems using design patterns,”
paper presented at the workshop "Quality of Service in Component-
Based Software Engineering, Toulouse, France, 2003.

[47] C. Mwelwa, K. Athaide, et al. , “Rapid software development for
reliable embedded systems using a pattern-based code generation tool”,
SAE Transactions: Journal of Passenger Cars (Electronic and Electrical
Systems), Vol. 115, No. 7, pp. 795-803.

[48] J. Goossens and R. Devillers, “The non-optimality of the monotonic
priority assignments for hard real-time offset free systems,” Journal of
Real-Time Systems, Vol. 19, No.2, 1997, pp. 107-126.

[49] J. Xu and D. L. Parnas, “Priority scheduling versus pre-run-time
scheduling,” Int. Journal of Time-Critical Systems, Vol. 18, pp. 7-23,
Kluwer Academic Publishers, 2000.

[50] J. Xu and D. L. Parnas, “On satisfying timing constraints in hard - real -
time systems,” IEEE Transactions on Software Engineering, Vol. 19,
No. 1, 1993, pp. 70 - 84.

[51] R. Gerber, S. Hong, and M. Saksena, “Guaranteeing end-to-end timing
constraints by calibrating intermediate processes, “In Proc. IEEE Real-
Time Systems Symposium, 1994, pp. 192–203. IEEE Computer Society
Press.

[52] R. Gerber, S. Hong, and M. Saksena.,” Guaranteeing real-time
requirements with resource-based calibration of periodic processes,”
IEEE Transactions on Software Engineering, Vol. 21, No. 7, 1995, pp.
579–592.

[53] N. Kim, M. Ryu, et al., “Experimental Assessment of the Period
Calibration Method: A Case Study,” Real-Time Systems, Vol. 17, No. 1,
July 1999, pp. 41-64.

[54] G. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications. Kluwer Academic, 1997.

[55] A. Chen, Real- Time Systems, Scheduling, Analysis, and Verfications,
John Wiley & Sons, 2002.

[56] J. Stankovic and K. Ramamritham, “The design of the spring kernel,”
Proc. of the IEEE real-Time Systems Symposium, 1987.

 Ayman K. Gendy received the BSc degree (Electrical
Engineering) from Assiut University, Egypt, in 1995 and
the MSc degree (Electrical Engineering) from Suez Canal
University, Egypt, in 2001. He has been working at these
universities since 1996. He is currently a PhD student at
the Embedded Systems Laboratory, University of
Leicester, UK. His primary research interests include,
scheduling design, automatic code generation, and

reliability in embedded systems.

 Michael J. Pont holds a BSc from the University of
Glasgow and a PhD from the University of Southampton.
He worked at the University of Southampton and then
University of Sheffield before joining the University of
Leicester as a Lecturer in 1992. He is currently a Reader
in Embedded Systems and Head of the Embedded
Systems Laboratory at the University of Leicester; he is
also Founder and CEO of TTE Systems Ltd. Michael’s

main research focus is on the development of techniques and tools which
support the design and implementation of embedded systems: he is
particularly interested in the links between system architecture and key
characteristics such as temporal predictability and power consumption.
Michael is author or co-author of more than 100 technical papers, and is the
author of three books. Michael is a Member of the IEEE, a Member of the
SAE, a Member of the IET and a Member of the BCS.

	INTRODUCTION
	Related work
	A. Time-triggered software architectures for resource-constrained systems
	B. Challenges with simple TT architecture
	1) Impact of long tasks during system execution: As we discussed in the previous sub-section, TTH architectures allow a designer to execute one or more tasks of Worst Case Execution Time (WCET) e and also respond within an interval t to external events, such that t < (e + execution time of the task that handles the event). This solution can be effective, for many designs, if the WCET of every task is known at design time. Unfortunately, as many researchers have observed (‎[24]- ‎[32]), determining the WCET of tasks is rarely straightforward.
	2) The fragility of TTH and TTC designs: Using mechanisms such as those outlined in the previous section, we can obtain highly predictable behaviour from TTC and TTH designs, even in the event of task overruns (due to error situations or design problems). However, it remains the case that – during the design process – TTC / TTH designs are “fragile”: that is, small changes to the timing of particular tasks can mean that the developer has to make substantial changes to the whole schedule (e.g. see ‎[1]). Our focus in this paper is therefore on ways in which the process of configuring TT schedulers for use in single-processor embedded systems can be automated.

	The TTSA1 scheduling algorithm
	A. Overview
	B. Tick interval
	C. Offset
	D. Test period
	E. Task starting time
	F. Deadline checking
	G. Taking scheduler overheads into account

	IV. Evaluating the TTSA1 algorithm
	A. Algorithm complexity
	B. Algorithm performance
	1) Method: The schedulability of the task sets was assessed using the BaB search. The results were then compared with those obtained using the TTSA1 algorithm.
	2) Dataset used: To explore the effectiveness of this algorithm, 1000 sets of tasks were randomly generated. Each set consisted of 3, 4 and 5 tasks specified by WCET, deadline and period. These specifications were generated according to the following criteria:
	3) Extending the basic algorithm: Variations on the original TTSA1 algorithm were also investigated in this trial. In the original algorithm (henceforth referred to as “TTSA1-EDF”), the tasks are added to the schedule “earliest deadline first”.
	4) Results (small task sets): The numbers of identified task sets that found to be scheduled using the TTSA1 and BaB are shown in Fig. 5 to Fig. 7. Please note that the results obtained by combining the (unique) results from TTSA1-EDF, TTSA1-LLF, TTSA1-RM, and TTSA1-SJF are shown in these figures as TTSA1-ALL. The number of trials until each of the two algorithms identified the set of tasks as scheduled/unscheduled and the total time is also shown in Table IV.
	5) Results (large task set): The results shown in Fig. 5 to Fig. 7 consider a maximum of 5 tasks. This is not an unrealistic number for the resource-constrained systems we are concerned with in this paper. However, this task set does not fully test the algorithm. In order to explore the performance of TTSA1 on larger problems, 1000 new data sets were created. Each data set consisted of 50 tasks, each with a maximum execution time of 1 ms and maximum period of 100 ms. The task sets were randomly created according to the constraints described previously. To reduce the length of the major cycle, task periods were randomly generated as a multiple of 10 ms. The results from this test are shown in Fig. 8. It took approximately 10 seconds to complete the schedulability test for one set of 50 tasks using TTSA1-EDF, and a total of approximately 50 ms to complete the test for TTSA1-All. It was not possible to complete this search using a BaB approach as this would have required performing a huge number of trials.

	V. Discussion and conclusions

