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Abstract

Non-Oscillatory Finite Volume Methods for
Conservation Laws on Unstructured Grids

by

Terhemen Aboiyar

This work focuses on the use of polyharmonic splines, a class of radial basis functions,
in the reconstruction step of finite volume methods.

We first establish the theory of radial basis functions as a powerful tool for scattered
data approximation. We thereafter provide existing and new results on the approxima-
tion order and numerical stability of local interpolation by polyharmonic splines. These
results provide the tools needed in the design of the Runge Kutta Weighted Essentially
Non-Oscillatory (RK-WENO) method and the Arbitrary high order using high order
DERivatives-WENO (ADER-WENO) method. In the RK-WENO method, a WENO
reconstruction based on polyharmonic splines is coupled with Strong Stability Preserving
(SSP) Runge-Kutta time stepping.

The polyharmonic spline WENO reconstruction is also used in the spatial discreti-
sation of the ADER-WENO method. Here, the time discretisation is based on a Taylor
expansion in time where the time derivatives are replaced by space derivatives using the
Cauchy-Kowalewski procedure. The high order flux evaluation of the ADER-WENO
method is achieved by solving generalized Riemann problems for the spatial derivatives
across cell interfaces.

Adaptive formulations of the RK-WENO and ADER-WENO methods are used to
solve advection problems on unstructured triangulations. An a posteriori error indicator
is used to design the adaptation rules for the dynamic modification of the triangular
mesh during the simulation. In addition, the flexibility of the stencil selection strategy
for polyharmonic spline reconstruction is utilised in developing a WENO reconstruction
method with stencil adaptivity.

Finally, order variation procedures are combined with mesh adaptation in order to
handle regions of the computational domain where the solution is smooth in a different
fashion from the vicinity of singularities and steep gradients with the goal of delivering
accurate solutions with less computational effort and fewer degrees of freedom when
compared to adaptive methods with fixed order of reconstruction.
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Chapter 1

Introduction

A broad spectrum of problems in science and engineering are modelled with time-

dependent hyperbolic conservation laws. Some of these problems arise in the fields

of fluid mechanics, meteorology, reservoir modelling, compressible gas dynamics, traffic

flow and in numerous biological processes. Examples of hyperbolic conservation laws

include the Euler equations for gas dynamics, the shallow water equations, the equa-

tions of magnetohydrodynamics, the linear advection equation, the inviscid Burgers’

equation and the Buckley-Leverett equation for flow in porous media. There are cer-

tain special properties and mathematical difficulties linked with these equations such

the formation of discontinuous solutions (shock waves, contact discontinuities, etc.) and

nonuniqueness of solutions. These features need to be treated with care whenever nu-

merical methods for hyperbolic conservation laws are developed. Fortunately, the rich

mathematical structure of these equations can be used as a tool for developing efficient

numerical methods. Moreover, when developing numerical methods for this class of

problems care must be taken so that the presence of a discontinuity in the numerical

solution does not induce spurious oscillations that affect the overall quality of the ap-

proximation. The methods also have to be sufficiently accurate near the discontinuity

in order to clearly reflect the nature of the exact solution. To this end, in the past few

decades, a large class of high order and high-resolution methods have been developed

to handle the discontinuous solutions that are typical of hyperbolic conservation laws,

while providing high order convergence rates. There has also been a growing interest in

the development of genuinely multidimensional methods that are capable of capturing

the geometrically complex interaction of linear and nonlinear waves.

In this thesis, we utilise radial basis functions in the reconstruction step of the spa-

tial discretization of finite volume methods for the numerical solution of conservation

laws. This is done within the framework of the Weighted Essentially Non-Oscillatory

(WENO) reconstruction method. We will first combine this novel WENO recon-

struction with Runge-Kutta time stepping where resulting numerical scheme is known

as the Runge-Kutta WENO (RK-WENO) method. We will thereafter combine the

1
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WENO reconstruction with the ADER (Arbitrary high order method using high order

DERivatives ) time discretisation and flux evaluation strategy yielding the ADER-

WENO method. Furthermore, we will implement adaptive algorithms in different

contexts for the RK-WENO and ADER-WENO methods as a strategy for improving

accuracy and reducing computational cost for problems with strong variations in their

solutions.

Usually, when the WENO reconstruction method is combined with Runge-Kutta

time stepping in the literature, the numerical scheme is also referred to as the WENO

method while when the WENO reconstruction method is combined with the ADER time

discretisation, the resulting method is simply referred to as the ADER scheme. However,

we refer to these methods in this thesis as the RK-WENO and ADER-WENO methods

to create a clear distinction between the two different settings within which the WENO

reconstruction is used.

A list of the important notations and abbreviations used in this thesis can be found

in Appendix A.

1.1 Fundamentals

1.1.1 Derivation and basic concepts

We consider a quantity Q in a region Ω in Rd, d = 1, 2, 3, and we suppose the amount of

Q contained in Ω need not be constant but can change with time. However, we assume

that the amount of change is due only to the flow of Q across the boundary of Ω. These

assumptions then provide a basis for the derivation of a conservation equation. Let the

density of Q at position x ∈ Rd and at time t be a scalar valued function denoted u(t,x)

and let F = F (u(t,x)) be the flux field for Q. Then at time t, the amount of Q in an

arbitrary ball B in Ω is given by ∫

B
u(t,x) dx.

Similarly, the outflow through the boundary of the ball during a time interval (t, t+∆t)

is given by ∫ t+∆t

t

∫

∂B
F (u(t,x)) · n ds dt,

where n denotes the outward unit normal to ∂B, the boundary of the surface of the ball.

The conservation law equation can then be formulated as:

∫

B
u(t + ∆t,x) =

∫

B
u(t,x)−

∫ t+∆t

t

∫

∂B
F (u(t,x)) · n ds dt. (1.1)
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Using the fundamental theorem of calculus and divergence theorem we can write (1.1)

as ∫

B
[ut(t,x) +∇ · F (u(t,x))] dx = 0. (1.2)

Now since (1.2) must hold for every ball B contained in Ω, and every time interval

(t, t + ∆t), it follows that the differential form of the conservation law can be expressed

as a Cauchy problem as follows:

∂u

∂t
+∇ · F (u) = 0 in R+ × Rd, (1.3)

u(0,x) = u0(x) in Rd. (1.4)

In (1.3) - (1.4), u(t,x) is the solution, F (u) = (f1(u), . . . , fd(u))T the flux function and

u0(x) the initial condition. The function u is called the classical solution of the scalar

problem if u ∈ C1(R+ × Rd) satisfies (1.3) - (1.4) pointwise. A well known property of

nonlinear conservation laws is that the gradient of u may blow up in finite time even if

the initial data u0 is smooth. Thus, after a certain time tb classical solutions for (1.3)

- (1.4) may not exist, in general. This motivates the need for defining weak solutions

which allow us to generalize the notion of solutions of conservation laws.

Definition 1.1 (Weak Solution) Let u0 ∈ L∞(Rd). Then u is called a weak solution

of (1.3) - (1.4) if and only if u ∈ L∞(R+ × Rd) and

∫

Rd

∫

R+

(
u
∂ϕ

∂t
+ F (u) · ∇ϕ

)
dt dx +

∫

Rd

ϕ(0,x)u0 dx = 0 (1.5)

for all ϕ ∈ C∞
0 ([0,∞)× Rd).

It is evident that (1.5) implies that u satisfies (1.3) - (1.4) in the sense of distributions.

Thus (1.5) and (1.3) - (1.4) have meaning in the distributional sense even when the

function u is discontinuous. A weak solution that lies in C1([0,∞)×Rd) satisfies (1.3)-

(1.4), i.e. it is also a classical solution. Furthermore, it is well known that weak solutions

are often not uniquely defined [114]. To this end, a physically relevant weak solution can

be selected from the collection of all possible solutions to a conservation law by using an

additional constraint known as an entropy condition. The entropy condition takes into

account the fact that physical processes are dissipative and that (1.3) models a physical

process in the limit as the dissipation tends to zero [114]. This solution, the so-called

entropy solution satisfies

∫ T

0

∫

Rd

|u− c|ϕt +
d∑

i=1

sign(u− c)(fi(u)− fi(c))ϕxi
dx dt ≥ 0 (1.6)
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for all non-negative test functions ϕ ∈ C∞
0 ([0, T ) × Rd) and all c ∈ R. Condition (1.6)

is also known as the Kruzkov entropy condition.

The following lemma summarizes some basic properties of solutions to (1.3) and (1.5).

Lemma 1.2 (Crandall and Majda [29]) For every choice of initial data u0 ∈ L∞(Rd)∩
L1(Rd), there exists a unique entropy solution u ∈ C([0,∞) : L1(Rd)) of (1.3) with

u(0,x) = u0(x). Denoting this solution by E(t)u0, we have:

1. ‖E(t)u0 − E(t)v0‖L1(Rd) ≤ ‖u0 − v0‖L1(Rd),

2. u0 ≤ v0 a.e. implies E(t)u0 ≤ E(t)v0 a.e.,

3. u0 ∈ [a, b] a.e. implies E(t)u0 ∈ [a, b] a.e.,

4. If u0 ∈ BV (Rd), t → E(t)u0 is Lipschitz continuous into L1(Rd) and ‖E(t)u0‖BV (Rd) ≤
‖u0‖BV (Rd).

where a.e. stands for almost everywhere.

We note that there are situations where the change in the density u of Q is also

as a result of gains due to internal sources and sinks inside Ω which we denote by

S ≡ S(u(t,x)). This leads us to the equation

∂u

∂t
+∇ · F (u) = S(u). (1.7)

The equation (1.7) is called a balance law rather than a conservation law.

1.1.2 Conservation laws in one space dimension

Several properties of conservation laws can be clearly understood from the one dimen-

sional conservation law

ut + f(u)x = 0. (1.8)

The simplest example is the linear advection equation

ut + αux = 0, (1.9)

where the Cauchy problem can be defined by this equation on −∞ ≤ x ≤ ∞, t ≥ 0

together with the initial condition

u(0, x) = u0(x).



1.1 Fundamentals 5

The solution of this problem is u(t, x) = u0(x − αt) and it is simply the initial data

propagated unchanged with velocity α. The solution u(t, x) is constant along the char-

acteristics of the equation.

A famous nonlinear conservation law is the (inviscid) Burgers’ equation

ut +

(
1

2
u2

)

x

= 0. (1.10)

Strong solutions to this problem are given by the implicit equation

u(t, x) = u0(x− u(t, x)t).

For non-linear conservation laws, the characteristic speed is a function of the solution

itself, and is not constant as in the case of the linear advection (1.9). Distortions may

form in the solution as it advances in time, resulting in the crossing of characteristics and

thus leading to loss of uniqueness of solutions. At the time tb where the characteristics

first cross, the function u(t, x) has an infinite slope, the wave breaks and a shock forms.

In general, entropy satisfying weak solutions may contain shocks or rarefaction waves.

Discontinuous solutions for a Cauchy problem can also occur when we have piecewise

constant initial data,

u(0, x) =

{
ul, x > 0;

ur, x < 0.

The conservation law combined with this type of initial data is called a Riemann problem

and the form of the solution depends on the relationship between ul and ur.

If a shock is formed in the solution of a conservation law (1.8), its speed of propagation

is determined by conservation. The relationship between the shock speed s and the states

ul and ur on either side of the shock is given by the Rankine-Hugoniot jump condition:

s =
f(ul)− f(ur)

(ul − ur)
. (1.11)

1.1.3 Multidimensional conservation laws

Many problems of interest involving conservation laws are solved in more than one space

dimension. In d-dimensions (d > 1), the conservation law (1.3) can be written in the

form

ut +
d∑

i=1

fi(u)xi
= 0, (1.12)

with initial data

u(0,x) = u0(x), (1.13)
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where u is a function of t ∈ R+ and x = (x1, . . . , xd) ∈ Rd, and fi(u), i = 1, . . . , d are

the flux functions in the xi direction. Now, given a solution u ∈ C1(R+ ×Rd) of (1.12),

we define a characteristic of (1.12) to be a curve ξ : R→ Rd that satisfies the ordinary

differential equation

dξ(t)

dt
= f ′(u(t, ξ(t))) where f ′ = (f ′1, . . . , f

′
d)

T , (1.14)

i.e.
dξi(t)

dt
= f ′i(u(t, ξ(t))) for each i = 1, . . . , d. (1.15)

For a fixed characteristic ξ, we denote by Dt the differential operator

Dt ≡ ∂t +
d∑

i=1

f ′i(u(t, ξ(t)))∂xi
, (1.16)

which is the directional derivative along ξ. Thus, (1.12) can be written as

Dtu = 0,

i.e. the solution u ∈ C1(R) is constant along the characteristics. Now dξ
dt

is constant, i.e.

ξ(t) is straight line in Rd and it follows that

u(t,x) = u0(x− tf ′(u(t,x))) where f ′ = (f ′1, . . . , f
′
d)

T , (1.17)

which is an implicit equation for u(t,x). Differentiating with respect to xj yields

∂xj
u(t,x) =

∂xj
u0(z)

1 + t
(∑d

i=1 f ′′i (u0(z))∂xj
u0(z)

) , (1.18)

where z = x− tf ′(u(t,x)). Thus, any solution of (1.12) whose initial data is such that

κ := min
z∈Rd

{f ′′i (u0(z))∂xi
u0(z)} < 0,

will suffer gradient blow up in finite time (in at least one of its partial derivatives) at

time tb = −1
κ

.

Existence and uniqueness proofs for admissible solutions of multidimensional con-

servation laws usually rely upon compactness arguments for sequences of solutions gen-

erated by the vanishing viscosity method [74] or low-order finite difference approxima-

tions [29]. Moreover, just over twenty years ago, uniqueness results have been generalized

using the concept of measure-valued solutions (see DiPerna [32]) providing a new tool

for convergence proofs for a variety of numerical methods. However, there are still no
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general existence results for multidimensional systems.

1.2 Numerical Methods

A large number of conservation laws are nonlinear and as such their analytical solutions

may be impossible to obtain. This has motivated the need to use numerical methods

for most practical applications. There are basically three main families of numerical

methods used for solving (1.3) - (1.4): finite difference methods, finite volume methods

(FVM) and finite element methods (FEM). In order to handle problems on complex

geometries and to do local mesh refinement it is preferable to use unstructured grids

consisting of triangles, quadrilaterals and other polygons. Moreover, when working on

unstructured grids, one would need to use either finite element methods or finite volume

methods.

Finite difference methods are the oldest of the methods used in the numerical solution

of differential equations. The first application was considered to have been developed

by Euler in 1768. Based on Taylor series and on the approximate definition of deriva-

tives, they are simple and straight forward methods for the discretization of differential

equations but usually require a high degree of mesh regularity. Examples of finite dif-

ference methods for hyperbolic conservation laws include the Lax-Friedrichs method,

the Lax-Wendroff method, the leap-frog method and the Beam-Warming method. The

order of any finite difference method can usually be obtained via Taylor expansions, and

the convergence and stability theory of these methods is well known. Details on the

application of finite difference methods to conservation laws can be found in the books

of Kröner [74], Hirsch [54] and Morton & Mayers [87]. The main advantage of finite

difference methods lies in their ease of implementation. One reason why finite difference

methods are not always utilised for the numerical solution of conservation laws is the

fact that they always require structured meshes which may not be suitable on certain

computational domains or for certain applications.

Traditionally finite element methods are used for the numerical solution of differ-

ential equations arising from variational minimization problems where the approximate

solution is represented by a finite number of basis functions spanning an appropriate fi-

nite dimensional approximation solution space. Over the years, there have been several

formulations of the finite element method and the method has been applied to a wide

range of problems as well as to all classes of partial differential equations (PDE). Re-

cently, there has been great interest in the design and analysis of discontinuous Galerkin

(DG) finite element methods for the discretisation of elliptic, parabolic and hyperbolic

PDEs. These methods are based on approximations that are discontinuous across el-

ement interfaces, where continuity of boundary element fluxes is weakly enforced. A
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detailed survey of the application of the finite element method to conservation laws can

be found in [25].

The finite volume method, which is the main subject of this work, is a numerical

method for solving partial differential equations that computes the values of the con-

served variables averaged across a control volume. In the rest of this section, we will

provide a brief survey of the family of finite volume methods.

1.2.1 A survey of finite volume methods

In general, the design of a finite volume method consists of two steps. In the first

step, given initial conditions, constant, linear or high order polynomials are defined

within the control volume from the cell average values of the variables. The second step

involves the interface fluxes of the control volume, from which the cell averages of the

variables are then obtained for a solution at the next time level. The flux computation

in these methods can be categorised into two types: the centred schemes and the upwind

schemes. Centred schemes are based on the averaging of Riemann fans; a technique

usually implemented on staggered grids. Centred schemes require no Riemann solvers.

Therefore, all that one has to do in order to solve a problem with such schemes is to

supply the flux function.

In upwind methods, a polynomial is reconstructed in each cell and then used in com-

puting a new cell average of the same cell at the next time step. These methods require

solving Riemann problems or computing numerical fluxes at the discontinuous interface.

The family of Godunov-type methods are generally considered to be the most success-

ful upwind methods for the numerical solution of hyperbolic conservation laws. The

original upwind method of Godunov [41] uses piecewise constant data (usually the cell

averages) on each cell. This method is only first order accurate and introduces a large

amount of numerical diffusion yielding poor accuracy and smeared results. In addition,

Godunov [41] has shown that monotonicity preserving linear schemes are at most first

order accurate. The low order accuracy of these linear schemes has led to the devel-

opment of higher order accuracy schemes which make use of nonlinearity, so that both

resolution of discontinuities and high order away from discontinuities can be attained.

Second order accurate methods such as Fromm’s method, Beam-Warming method and

Lax-Wendroff method [78] are obtained by using piecewise linear reconstructions on

each control volume. These methods give oscillatory approximations to discontinuous

solutions as shown in Figure 1.1.

An early high resolution generalisation of the Godunov finite volume method to

higher order of accuracy was due to Bram van Leer [134, 135, 136, 137, 138]. In this

series of papers, he developed amongst other things an approach known as the MUSCL
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Figure 1.1: Some finite volume methods for the linear advection equation showing oscilla-
tions near discontinuities at time t = 2 and N = 160 gridpoints. The bold line represents
the exact solution while the dotted line represents the finite volume approximation.

(Monotone Upstream-centred Scheme for Conservation Laws) method. His method and

other high resolution methods are based on linear reconstructions that are able to sup-

press possible oscillations by using the so-called slope-limiters. Examples of such limiters

include the minmod limiter, the superbee limiter, the monotonised central difference lim-

iter and the van Leer limiter. Their ability to suppress oscillations is shown in Figure 1.2.

A detailed description of these methods and other finite volume methods can be found
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Figure 1.2: High resolution finite volume methods with slope limiters for the linear
advection equation at time t = 2 and N = 160 grid points. The bold line represents the
exact solution while the dotted line represents the finite volume approximation.

in the books of Leveque [78], Kroner [74] and Toro [128]. This class of methods satisfy

a Total Variation Diminishing (TVD) property and have been analysed by Harten [49]

and Osher [92]. A major weakness of slope-limiting methods is that their accuracy in-

evitably degenerates to first order near discontinuities and even near smooth extrema.

In addition, they may produce excessive numerical dissipation. They may therefore be

unsuitable for applications involving long time simulations of complex structures like
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acoustics and compressible fluid flow. The ideas of van Leer were extended to quadratic

approximations by Colella and Woodward [28] in form of the Piecewise Parabolic Method

(PPM). Most of these methods, although initially developed for problems in one dimen-

sion, have been successfully extended to multidimensional problems, e.g. [27].

Although Godunov’s method and its generalisations can also be interpreted in one

space dimension as finite difference methods, concepts originally developed in 1D, such

as solution monotonicity and discrete maximum principle analysis are often used in the

design of finite volume methods in multi-dimensions and on unstructured meshes where

finite difference methods are not always suitable [9].

The Essentially Non-Oscillatory (ENO) method was first developed as a finite vol-

ume method by Harten et al [52] in 1987 and it is perhaps the first successful attempt

to obtain a uniformly high order accurate extension of the van Leer approach. In the

ENO reconstruction method, the data in each cell can be represented by polynomials

of arbitrary order and not just linear or quadratic ones. The numerical solutions ob-

tained by these methods are almost free from spurious oscillations. The reconstruction

procedure in [52] is an extension of an earlier reconstruction technique found in [53].

The key idea of the ENO method of order k is to consider an appropriate number of

possible stencils covering a given control volume and to select only one, the smoothest,

using some appropriate criterion like divided differences in one dimension or some suit-

able norm in two-dimensions. The reconstruction polynomial is then built using this

stencil. Numerical results for the ENO scheme have shown that the method is indeed

uniformly high order accurate and resolves shocks with sharp and monotone (to the

eye) transitions. It is also worthy to note that a finite difference version of the ENO

scheme was developed by Shu & Osher [110, 111]. In the years to follow, there has been

a lot of work on improving the methodology and expanding the range of application

of the ENO method [2, 15, 50, 109]. The ENO method was later extended to multiple

space dimensions on arbitrary meshes by Abgrall [1], Harten and Chakravarthy [51], and

Sonar [116].

In recent years, the RK-WENO method has become a popular finite difference

and finite volume method for the numerical solution of conservation laws and related

equations. It was developed as an improvement of the ENO schemes. The first RK-

WENO schemes were constructed for one dimensional conservation laws by Liu, Osher

& Chan [81] and Jiang & Shu [68] and were later extended to the two-dimensional setting

by Friedrich [38] and Hu & Shu [59]. Furthermore, Titarev and Toro [126] have used a

dimension-splitting technique to implement a RK-WENO scheme for three dimensional

conservation laws on Cartesian grids. In the WENO framework, the whole set of sten-

cils and their corresponding polynomial reconstructions are used to construct a weighted

sum of reconstruction polynomials to approximate the solution over the control volumes
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of the finite volume method. Since these early developments, RK-WENO schemes have

been used successfully in a wide range of applications and to solve other convection dom-

inated problems. They have been further developed and analysed in [79, 97, 107], have

been used to solve balance laws by Vukovic et al [139] and have been used in the nu-

merical solution of Hamilton-Jacobi equations [149]. Advantages of RK-WENO schemes

over ENO include smoothness of numerical fluxes, better steady state convergence, and

generally better accuracy using the same stencils [59].

On Cartesian grids the RK-WENO method can be formulated both as a finite dif-

ference method and as a finite volume method. The finite difference formulation of the

RK-WENO method is based on a convex combination of fluxes rather than a convex

combination of recovery functions. However, on unstructured grids, the method can

only be implemented in the finite volume setting.

The ADER-WENO method is a relatively new Godunov-type method for construct-

ing non-oscillatory finite volume schemes for hyperbolic conservation laws which are of

arbitrary high-order in space and time for smooth problems and with optimal stabil-

ity conditions for all problems. It is a fully discrete finite volume method that com-

bines high order WENO reconstruction from cell averages with high order flux eval-

uation. It was first developed in 2001 for linear advection problems with constant

coefficients by Toro et al [129, 130]. The ADER-WENO method has been utilised

in [73, 105, 125, 127, 131, 132, 133] for the solution of both scalar conservation laws

and systems of conservation laws in one and several space dimensions on structured and

unstructured meshes. Note that all the known ADER-WENO methods in the literature

are based on polynomial reconstruction methods.

1.3 Objectives, Outline and Main Results

1.3.1 Objectives and motivation

This thesis focuses on the design and implementation of non-oscillatory finite volume

methods for conservation laws on unstructured triangular grids. There are several chal-

lenges one would face when developing such methods. These include conservation in

the presence of shock waves, and the fact that spurious oscillations may be generated

in the vicinity of shock waves. Any useful numerical method for solving conservation

law must seek to resolve these difficulties. In addition, the hyperbolic nature of the gov-

erning equations and the presence of solution discontinuities makes high order difficult

to attain. As a result, several large scale applications still use low order methods, even

though there is substantial numerical evidence indicating that the high order methods

may offer a way to significantly improve the resolution and quality of these computa-
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tions [24, 28, 59, 133].

There are currently several non-oscillatory numerical discretisations that have been

constructed for achieving high resolution and high order accuracy away from disconti-

nuities but we will focus on two in this thesis: the RK-WENO method and the ADER-

WENO method. These two methods are well known in the literature for the numerical

solution of hyperbolic conservations laws and are usually based on specially designed

polynomial reconstruction methods.

In this work, our goal is to use polyharmonic splines, a class of Radial Basis Functions

(RBFs), as an alternative basis for reconstruction in order to achieve high order in

space in the WENO reconstruction algorithm. We will particularly focus on the use

of the popular thin plate splines which are the two-dimensional analogue of the one

dimensional cubic spline. The use of radial basis functions is motivated by the fact that

it is suitable for reconstruction on both structured and unstructured meshes. Radial

basis functions can also be effectively implemented on complex computational domains

and are suitable for interpolation and reconstruction in arbitrary dimensions. Moreover

due to its radial nature, if a basis function is suitable for reconstruction in d dimensions,

it can generally be used in any dimension less than d [36]. This allows theory and

algorithms to be implemented in low space dimensions with straight forward extensions

to problems in higher space dimensions. To this end, even though the methods we

develop and implement in this work are in two space dimensions, we believe they can be

used for the numerical solution of conservation laws in higher space dimensions. Another

motivation for using RBFs lies in the fact that the linear systems associated with RBF

interpolation are guaranteed to be invertible under very mild conditions on the location

of the data points or geometry of the grid. RBF interpolants also possess a number of

optimality properties in their associated native spaces. More specifically, polyharmonic

spline reconstruction technique is numerically stable, flexible and of arbitrary high local

approximation order [63]. Moreover, due to the theory of polyharmonic splines, optimal

reconstructions are obtained in the associated native spaces, the Beppo-Levi spaces.

We will also seek to design adaptive algorithms using the RK-WENO and ADER-

WENO methods to harness the benefits of adaptivity: the reduction of computational

cost coupled with improved accuracy. We will implement three types of adaptive strate-

gies: stencil adaptivity, mesh adaptivity, and mesh & order adaptivity. We also wish

to show that our methods provide competitive results when used in solving both linear

and nonlinear conservation laws that arise in a number of applications.

1.3.2 Main results

The main results of this thesis are detailed below.
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1. Approximation order and numerical stability of local reconstruction by

polyharmonic splines.

• Convergence rates for local interpolation from cell averages using polyhar-

monic splines are presented. A relationship between the derivatives of the

Lagrange basis functions for polyharmonic spline interpolation is established.

This extends the earlier results in [63]. An algorithm for the stable evaluation

of the derivatives of the polyharmonic spline interpolant is provided.

2. The RK-WENO method based on polyharmonic spline reconstruction.

• The RK-WENO method where the local reconstruction step is performed

using polyharmonic splines is proposed and implemented in combination with

SSP Runge-Kutta time stepping. Numerical results and convergence rates are

provided which agree with expected theoretical results.

• Numerical investigations and recommendations on suitable stencil sizes for

polyharmonic spline reconstruction are provided.

• The suitability of the Beppo-Levi norm as an oscillation indicator for poly-

harmonic spline reconstruction is also established.

3. The ADER-WENO method using the polyharmonic spline reconstruc-

tion.

• The WENO reconstruction based on polyharmonic splines is used in the re-

construction step of the ADER-WENO method.

• The high order flux evaluation of the ADER-WENO method is achieved using

the polyharmonic spline interpolant and its derivatives as the piecewise initial

data of a set of Generalised Riemann Problems.

• The ADER-WENO method with this new RBF reconstruction technique is

implemented and supporting numerical results are provided.

4. Adaptivity.

• A simple stencil adaptivity strategy is implemented to reduce computational

effort. This is based on the flexibility in the choice of stencil sizes in radial

basis function reconstruction. This stencil adaptivity strategy is also imple-

mented in combination with mesh adaptivity.

• Mesh adaptivity is successfully coupled with the RK-WENO and ADER-

WENO methods using a suitable a posteriori error indicator.
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• Some results on mesh & order adaptivity are presented. This reveals a re-

duction in the number of degrees of freedom used in the computations while

delivering results of good accuracy. To the best of our knowledge, these are

the first multidimensional mesh and order adaptive computations for finite

volume methods available in the literature.

1.3.3 Outline of the thesis

The rest of the thesis is structured as follows.

• In Chapter 2 we will begin by giving a survey of the definition and properties of

radial basis functions which are powerful tools for scattered data approximation.

This class of functions are the main tool we will use in designing the numerical

methods in this thesis. Next, we will introduce the concept of generalised interpo-

lation and focus on the situation where our functionals are cell average operators

which is the relevant kind of interpolation for our purposes. We will provide an

error estimate for reconstruction from cell averages with thin plate splines in par-

ticular and for polyharmonic splines in general.

Since the finite volume methods we are going to implement are based on local

reconstruction methods, we will present some existing results on the approximation

order and numerical stability of local generalized interpolation by polyharmonic

splines. We will provide new results on the stable evaluation of the derivatives of

the polyharmonic spline interpolant.

• In Chapter 3 we will give a detailed algorithmic description of the RK-WENO

method. We describe the polyharmonic spline WENO reconstruction method and

discuss other key ingredients of the method like time stepping and stencil selection.

We will show numerical results for standard test cases. We will also apply the RK-

WENO method to Doswell’s frontogenesis, a challenging problem with a velocity

field that is a steady circular vortex which leads to a solution with multiscale

behaviour.

• In Chapter 4 we describe the ADER-WENO method and present the formulation

of the method using the polyharmonic spline WENO reconstruction of Chapter 3.

We will also present several numerical results to validate our proposed ADER-

WENO method using standard test problems. The robustness of the method will

be verified using Smolarkiewicz’s deformational test.

• In Chapter 5 we consider adaptive algorithms using the methods developed in

Chapters 3 and 4 as a technique for improving accuracy and reducing computa-

tional cost. We present several numerical examples of problems solved with the
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adaptive versions of the RK-WENO method and ADER-WENO method. Results

of the application of the adaptive methods to a problem with time dependent

velocity fields and to the simulation of two-phase flow in porous media will be

included.

• In Chapter 6, mesh & order adaptivity which combines mesh refinement with order

variation procedures is investigated and preliminary results are presented.

• The final chapter draws some conclusions and gives an outlook of further research

directions.



Chapter 2

Radial Basis Functions

2.1 Radial Basis Function Interpolation

In certain applications, a function u may not be given as a formula but as a set of

function values. These data may take the form of exact or approximate values of u at

some scattered points in the domain Ω ∈ Rd of definition of u. In general, a recovery

problem involves the reconstruction of u as a formula from the given set of function

values. The recovery of u may be done either by interpolation, which tries to match

the data exactly, or by approximation, which allows u to miss some or all of the data

in some way. The decision on whether to use interpolation or approximation usually

depends on the application, the choice of the function spaces and what properties the

recovery process is required to satisfy [101].

Radial Basis Functions (RBFs) are well-established and efficient tools for the multi-

variate interpolation of scattered data. They are the primary tool used in this work in

the reconstruction step of the spatial discretisation of the finite volume method. In the

past two decades, radial basis functions have been used extensively in the numerical so-

lution of partial differential equations. In particular, RBFs have been used in collocation

methods for elliptic equations [37], transport equations [82] and the equations of fluid

dynamics [69]. RBFs have also been used in the theory of meshfree Galerkin methods

by Wendland [142], in semi-Lagrangian methods for advection problems by Behrens &

Iske [12], in meshfree methods for advection-dominated diffusion problems in the thesis

of Hunt [61], and also in the recovery step of finite volume ENO schemes [67, 115].

In this work, we employ local interpolation with RBFs in the WENO reconstruction

step of finite volume discretisations. This yields numerical methods that are of high

order, stable, flexible, easy to implement and suitable on both structured and unstruc-

tured grids. We also provide a clear analysis of the approximation order and numerical

stability of the reconstruction method.

In this section, we present a brief survey of the commonly used radial basis functions

16
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and some of their important properties. Further details on RBF interpolation can be

found in [19, 64, 95, 144].

2.1.1 The interpolation problem

Given a vector u
∣∣
X

= (u(x1), . . . , u(xn))T ∈ Rn of function values, obtained from an

unknown function u : Rd → R at a finite scattered point set X = {x1, . . . ,xn} ⊂
Rd, d ≥ 1, scattered data interpolation requires computing an appropriate interpolant

s : Rd → R satisfying s
∣∣
X

= u
∣∣
X

, i.e.

s(xj) = u(xj) for all 1 ≤ j ≤ n. (2.1)

The radial basis function interpolation method utilises a fixed radial function φ : [0,∞) →
R, so that the interpolant s in (2.1) has the form

s(x) =
n∑

j=1

cjφ(‖x− xj‖) + p(x), p ∈ Pd
m, (2.2)

where ‖·‖ is the Euclidean norm on Rd and Pd
m denotes the vector space of all real-valued

polynomials in d variables of degree at most m − 1, where m ≡ m(φ) is known as the

order of the basis function φ. Possible choices for φ are, along with their order m, shown

in Table 2.1.

RBF φ(r) Parameters Order

Polyharmonic Splines r2k−d for d odd k ∈ N, k > d/2 k
r2k−d log(r) for d even k ∈ N, k > d/2 k

Gaussians exp(−r2) 0

Multiquadrics (1 + r2)ν ν > 0, ν 6∈ N dνe
Inverse Multiquadrics (1 + r2)ν ν < 0 0

Table 2.1: Radial basis functions (RBFs) and their orders.

Radial basis function interpolants have the nice property of being invariant under all

Euclidean transformations (i.e. translations, rotations and reflections). This is because

Euclidean transformations are characterized by orthogonal transformation matrices and

are therefore Euclidean-norm-invariant [36].

Radial basis functions, like Gaussians, (inverse) multiquadrics, and polyharmonic

splines are all globally supported on Rd. More recently, a class of compactly supported

radial basis functions of order 0 (p(x) ≡ 0 in (2.2)) have been constructed, see [18, 141,
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146]. While the RBFs in Table 2.1 can be used in any space dimension, the suitability

of the compactly supported RBFs depends on the space dimension d.

2.1.2 Solving the interpolation problem

All the basis functions in Table 2.1 (and several others not mentioned here) can be

classified using the concept of (conditionally) positive definite functions which can be

used in analyzing the existence and uniqueness of the solution of interpolation problems.

Definition 2.1 A continuous radial function φ : [0,∞) → R is said to be positive

definite on Rd, if and only if for any finite set X = {x1, . . . ,xn}, X ⊂ Rd, the n × n

matrix

A = ((φ(‖xi − xj‖))1≤i,j≤n ∈ Rn×n

is positive definite.

Definition 2.2 A continuous radial function φ : [0,∞) → R is said to be conditionally

positive definite of order m on Rd, if and only if for any finite set X = {x1, . . . ,xn},
X ⊂ Rd, and all c ∈ Rn \ {0} satisfying

n∑
j=1

cjp(xj) = 0 (2.3)

for all p ∈ Pd
m the quadratic form

n∑
j=1

n∑

k=1

cjckφ(‖xj − xk‖) (2.4)

is positive. The function φ is positive definite if it is conditionally positive definite of

order m = 0.

When m = 0, the interpolant s in (2.2) has the form

s(x) =
n∑

j=1

cjφ(‖x− xj‖). (2.5)

Using the interpolation conditions (2.1), the coefficients c = (c1, . . . , cn)T ∈ Rn of s

in (2.5) can be obtained by solving the linear system

Ac = u
∣∣
X

, (2.6)

where A = ((φ(‖xi − xj‖))1≤i,j≤n ∈ Rn×n. From Definition 2.1, the matrix A is positive

definite provided φ is positive definite. An important property of positive definite ma-
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trices is that all their eigenvalues are positive, and therefore a positive definite matrix

is non-singular. Hence, the system (2.6) has a unique solution provided φ is positive

definite. Moreover, for m = 0, the interpolation problem has a unique solution s of the

form (2.5) if φ is positive definite [64].

For m > 0, φ is conditionally positive definite of order m and the interpolant s

in (2.2) contains a nonzero polynomial part, yielding q additional degree of freedom,

where q =
(

m−1+d
d

)
is the dimension of the polynomial space Pd

m. These additional

degrees of freedom are usually eliminated using the q vanishing moment conditions

n∑
j=1

cjp(xj) = 0, for all p ∈ Pd
m. (2.7)

In total, this amounts to solving the (n + q)× (n + q) linear system

[
A P

P T 0

][
c

d

]
=

[
u
∣∣
X

0

]
, (2.8)

where A = ((φ(‖xi − xj‖))1≤i,j≤n ∈ Rn×n, P = ((xj)
α)1≤j≤n;|α|<m ∈ Rn×q, and d =

(dα)|α|<m ∈ Rq for the coefficients of the polynomial part in (2.2).

The linear system (2.8) has a unique solution for the unknown coefficients c ∈ Rn

and d ∈ Rq, provided the set of interpolation points X = {x1, . . . ,xn} is Pd
m-unisolvent,

i.e., for p ∈ Pd
m we have

p(xj) = 0 for 1 ≤ j ≤ n ⇒ p ≡ 0.

In this case, any polynomial in Pd
m can uniquely be reconstructed from its function values

sampled at the points in X.

The following theorem summarizes the connection between conditional positive def-

initeness and the existence of a unique solution for the interpolation problem.

Theorem 2.3 ([144]) Suppose φ is conditionally positive definite of order m on Rd.

Suppose further that the set X = {x1, . . . ,xn}, X ⊂ Rd is Pd
m unisolvent. Then there is

exactly one function s of the form (2.2) such that

s(xj) = u(xj), 1 ≤ j ≤ n and
n∑

j=1

cjp(xj) = 0, for all p ∈ Pd
m.
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2.1.3 Characterization of conditionally positive definite func-

tions

It is clear that interpolation with radial basis functions relies on the conditional positive

definiteness of the chosen basis function φ. To this end, we briefly review the char-

acterisation of conditionally positive definite functions using the concept of completely

monotone functions.

The question of whether or not φ is conditionally positive definite of some order m

on Rd was answered by Schoenberg [103] for positive definite functions (i.e. m = 0) in

terms of completely monotone functions. The sufficient part of Schoenberg’s result was

extended to conditionally positive definite functions by Micchelli [85] who also conjec-

tured the necessity of this criterion. This conjecture was proved some years later by

Guo, Hu and Sun [46].

Definition 2.4 (Completely monotone function) A function f is said to be com-

pletely monotone on (0,∞) if f ∈ C∞(0,∞) and (−1)kf (k) is non-negative for all k ∈ N0.

Theorem 2.5 (Micchelli [85]) Given a function φ ∈ C∞(0,∞), define f = φ(
√·). If

there exists an m ∈ N0 such that (−1)mf (m) is well-defined and completely monotone

but not identically constant on (0,∞), then φ is conditionally positive definite of order

m on Rd for all d ≥ 1.

Theorem 2.5 allows us to show that any φ in Table 2.1 is conditionally positive

definite of order m. We illustrate this using two examples from [144].

Example 2.1 The functions φ(r) = (−1)dk/2erk, where k is an odd number, are condi-

tionally positive definite of order m ≥ dk/2e on Rd for all d ≥ 1.

Define fk(r) = (−1)dk/2er
k
2 to get

f
(`)
k (r) = (−1)dk/2ek

2

(
k

2
− 1

)
· · ·

(
k

2
− ` + 1

)
r

k
2
−`.

This shows that (−1)dk/2ef dk/2e
k (r) is completely monotone and m = dk

2
e is the smallest

possible choice.

Example 2.2 The functions φ(r) = (−1)k+1r2k log(r) are conditionally positive definite

of order m = k + 1 on Rd.

Since 2φ(r) = (−1)k+1r2k log(r2) we set fk(r) = (−1)k+1rk log(r). Then

f
(`)
k (r) = (−1)k+1k(k − 1) · · · (k − ` + 1)rk−` log(r) + p`(r), 1 ≤ ` ≤ k,
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where p` is a polynomial of degree k − `. This then means

f
(k)
k (r) = (−1)k+1k! log(r) + c,

and finally f
(k+1)
k (r) = (−1)k+1k!r−1 which is completely monotone on (0,∞) and so φ

is conditionally positive-definite of order k + 1.

2.1.4 Lagrange form of the interpolant

Sometimes it is more convenient to work with the Lagrange form

s(x) =
n∑

j=1

`j(x)u(xj) (2.9)

of the interpolant s in (2.2), where the Lagrange basis functions (also known as the

cardinal basis functions) `1(x), . . . , `n(x) satisfy

`j(xk) =

{
1, for j = k,

0, for j 6= k,
1 ≤ j, k ≤ n, (2.10)

and so s(xj) = u(xj), j = 1, . . . , n. For radial basis function approximation, this idea

is due to Wu & Schaback [147]. Moreover, this representation exists for all condi-

tionally positive definite functions, see [36, 144]. For a point x ∈ Rd, the vectors

`(x) = (`1(x), . . . , `n(x))T and υ(x) = (υ1(x), . . . , υq(x))T , q = dim(Pd
m), are the unique

solution of the linear system

Aν(x) = β(x) (2.11)

where

A =

[
A P

P T 0

]
, ν(x) =

[
`(x)

υ(x)

]
, β(x) =

[
R(x)

S(x)

]

and

A = ((φ(‖xi − xj‖))1≤i,j≤n ∈ Rn×n, R(x) = φ(‖x − xj‖)1≤j≤n, S(x) = (xα)|α|<m ∈ Rq.

Combining the representations of s in (2.2) and (2.9) yields

s(x) = 〈`(x), u
∣∣
X
〉 = 〈ν(x), uX〉

= 〈A−1β(x), uX〉 = 〈β(x),A−1uX〉
= 〈β(x),b〉,

(2.12)
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where 〈·, ·〉 denotes the inner product of the Euclidean space Rd, and where we have set

uX =

[
u
∣∣
X

0

]
∈ Rn+q and b =

[
c

d

]
∈ Rn+q

for the right hand side and the solution of the linear system (2.8).

2.1.5 The optimality of RBF interpolation

Each conditionally positive definite function φ is associated with a native Hilbert space

Nφ equipped with a semi-norm | · |φ in which it solves an optimal recovery problem. This

means that for any u ∈ Nφ and X = {x1, . . . ,xn}, the unique RBF interpolant s of the

form (2.2) lies in the native space Nφ and satisfies:

|s|φ = min{|s̃|φ : s̃ ∈ Nφ with s̃(xj) = u(xj), 1 ≤ j ≤ n}. (2.13)

The theory of optimal recovery of interpolants was first described in the late 1950s by

Golomb & Weinberger [42] and later studied in detail by Micchelli & Rivlin [86].

2.1.6 Numerical stability

To proceed with our discussion, we first of all need to define two important quantities.

Definition 2.6 Given a finite set X = {x1, . . . ,xn} ⊂ Ω of pairwise distinct points, the

fill distance of X is given as

hX,Ω = sup
y∈Ω

min
x∈X

‖x− y‖, (2.14)

while the separation distance or packing radius of X is defined as

qX = min
x,y∈X,x6=y

‖x− y‖. (2.15)

Numerical stability is usually a very important aspect of any interpolation scheme.

We particularly need to be sure that, as we refine a set of interpolation points (i.e. as

the fill distance hX,Ω tends to zero), the method does not become numerically unstable.

A standard criterion for measuring the numerical stability of an interpolation process is

the condition number of the interpolation matrix. In particular, for radial basis function

interpolation, we need to examine the condition number of the matrix on the left hand

side of the linear system (2.8). The condition number of any matrix is given by κmax/κmin

where κmax and κmin are the maximum and minimum eigenvalues of the matrix and so

numerical stability requires that we keep this ratio small. For the RBF interpolation
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matrix, there are several upper bounds for κmax in the literature, and numerical tests

show that it indeed causes no problem [100, 102, 144]. However, κmin is a function of

the separation distance of the set X and tends to zero and so may generally spoil the

stability of the interpolation process. Thus, the results on numerical stability in the

literature focus on lower bounds for κmin.

Indeed, for every basis function φ, there is a function Gφ such that

κmin ≥ Gφ(qX).

Gφ : [0,∞) → [0,∞) is a continuous and monotonically increasing function with Gφ(0) =

0. The form of Gφ for various RBFs can be found in [100, 102, 144]. For example, when

φ(r) = rk, Gφ(q) = qk and when φ(r) = r2k log(r), Gφ(q) = q2k. In both cases, the lower

bound goes to zero with decreasing separation distance.

In general, the matrices arising from RBF interpolation may become very ill-conditioned

as the minimal separation distance qX of X is reduced. Thus, to prevent numerical insta-

bility in the practical implementation of an RBF interpolation scheme, a preconditioner

may be required particularly as the separation distance gets smaller. To this end, in

Chapter 3, we will implement a preconditioner for local interpolation with polyharmonic

splines, which will indeed be proven to be very relevant in practice.

2.1.7 Polyharmonic splines

Polyharmonic splines, also referred to as surface splines, are a special family of radial

basis functions. They are particularly useful because of the explicit knowledge of the

native space where they solve the optimal recovery problem and the fact that their con-

ditioning is invariant under scalings. The theory of polyharmonic splines as a powerful

tool for multivariate interpolation was developed by Duchon [34] in the 1970s. A few

years later, Meinguet [83] established a clear framework for using polyharmonic splines

as a practical tool for multivariate interpolation. The polyharmonic spline interpolation

scheme uses the fixed radial function

φd,k(r) =

{
r2k−d log(r), for d even;

r2k−d, for d odd,
(2.16)

where k is required to satisfy 2k > d and the order is m = k. The interpolant then has

the form

s(x) =
n∑

j=1

cjφd,k(‖x− xj‖) + p(x), p ∈ Pd
k . (2.17)

The polyharmonic splines can be seen as a generalisation of the univariate cubic splines to

a multidimensional setting and φd,k is the fundamental solution to the iterated Laplacian,
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i.e.

∆kφd,k(‖x‖) = cδx,

in the sense of distributions. For k = d = 2, we have the thin plate spline φ2,2(r) =

r2 log(r) which is the fundamental solution of the biharmonic equation, i.e.,

∆2φ2,2(‖x‖) = cδx.

The native space of the polyharmonic splines are the Beppo-Levi spaces which are defined

as follows.

Definition 2.7 For k > d/2, the linear space

BLk(Rd) := {u ∈ C(Rd) : Dαu ∈ L2(Rd) for all |α| = k}

equipped with the inner product

(u, v)BLk(Rd) :=
∑

|α|=k

k!

α!
(Dαu, Dαv)L2(Rd)

is called the Beppo-Levi space on Rd of order k.

This means that for a fixed finite point set X ⊂ Rd, an interpolant s in (2.17) minimises

|u|2BLk(Rd) =

∫

Rd

∑

|α|=k

(
k

α

)
(Dαu)2 dx, (2.18)

among all the functions u of the Beppo-Levi space satisfying u
∣∣
X

= s
∣∣
X

. For thin plate

splines we have

|u|2BL2(R2) =

∫

R2

(
∂2u

∂x2
1

)2

+2

(
∂2u

∂x1∂x2

)2

+

(
∂2u

∂x2
2

)2

dx1 dx2, for u ∈ BL2(R2), (2.19)

where we let x1 and x2 denote the two coordinates of x = (x1, x2)
T ∈ R2.

The Beppo-Levi spaces are related to the Sobolev spaces [3]. In fact, the intersection

of all Beppo-Levi spaces BLk(Rd) of order k ≤ m yields the Sobolev space Wm
2 (Rd). The

Beppo-Levi spaces are sometimes referred to as homogeneous Sobolev spaces of order k.

2.2 Generalized Interpolation

In certain applications, like the numerical solution of partial differential equations and

financial engineering, it is sometimes necessary to recover a function from other types of
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data associated with the function rather than point evaluations. For example, the value

of the derivatives of the function at certain points may be known, but not the values

of the function itself. Fortunately, the RBF ansatz can be extended to several other

more general observation functionals. This also fits into the setting of minimum norm

generalized interpolation.

We present this in the framework of Hilbert spaces as follows. Let H be a Hilbert

space and denote its dual byH′. If Ξ = {λ1, . . . , λn} ⊆ H′ is a set of linearly independent

functionals on H and u1, . . . , un ∈ R are certain given values associated with u, then a

generalized interpolation problem seeks to find a function s ∈ H such that

λi(s) = λi(u), i = 1, . . . , n where λi(u) = ui, i = 1, . . . , n.

The interpolant s is referred to as the generalized interpolant and the optimal recovery

problem in this setting searches for an interpolant s ∈ H such that

‖s‖H = min{‖s̃‖H : s̃ ∈ H, λi(s̃) = ui, i = 1, . . . , n}.

In particular, the generalized RBF interpolant has the form

s(x) =
n∑

j=1

cjλ
y
jφ(‖x− y‖) + p(x), x ∈ Rd and p ∈ Pd

m

where the notation λy
j indicates the action of the functional λj on φ viewed as a function

of the argument y. We require the interpolant to satisfy

λx
i (s) = λx

i (u), i = 1, . . . , n, (2.20)

where λx
i indicates the action of the functional λi on s and u which are treated as

functions of x. To eliminate any additional degrees of freedom, the additional constraints

n∑
j=1

cjλ
x
j (p) = 0 for all p ∈ Pd

m,

need to be satisfied. This results in the linear system

[
A P

P T 0

][
c

d

]
=

[
u
∣∣
Ξ

0

]
, (2.21)

where A = (λx
i λ

y
jφ(‖x − y‖))1≤i,j≤n ∈ Rn×n, P = (λx

j (x
α))1≤j≤q,0≤|α|<m ∈ Rn×q, q =

dim(Pd
m), and u

∣∣
Ξ

= (λx
i (u))1≤i≤n ∈ Rn.
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The functionals also allow a Lagrange-type representation

s(x) =
n∑

j=1

`j(x)λx
j (u),

with certain cardinal functions `j(x).

Furthermore, to guarantee that the interpolation problem (2.20) has a unique solution

s, we need to generalize the notion of the Pd
m-unisolvency of an interpolation set. To

this end, we insist that the set of linear functionals in Ξ satisfy the following condition

λx
i (p) = 0 for i = 1, . . . , n ⇒ p ≡ 0

i.e. any polynomial from Pd
m can be uniquely reconstructed from its values {λx

i (p)}n
i=1.

Thus, we can say that the set of functionals Ξ is Pd
m-unisolvent.

In generalized interpolation, the functionals in Ξ may, for instance, be differential

operators as in the case of Hermite-Birkhoff interpolation [62], local integrals as in the

case of integral interpolation [11], or cell average operators [115].

2.2.1 Error estimates for reconstruction from cell averages

We now turn to the case where the linearly independent functionals in Ξ are cell average

operators. This situation arises in the recovery step of finite volume methods where point

values of the unknown solution of a PDE have to be reconstructed from cell average data,

e.g. [67, 115]. This is one of the main themes of this work.

If we divide a region Ω ∈ R2 into non-overlapping subregions T = {Vj}, then for

some integrable function u, the cell average operators are defined as

λx
j (u) := ūj =

1

|Vj|
∫

Vj

u(x) dx.

We first focus on a pointwise error estimate of thin plate spline reconstruction on

triangular meshes. Based on the earlier work of Powell [96] and Gutzmer [47], we present

a pointwise error estimate for thin plate spline interpolation for situations where inter-

polation data are cell averages on a triangular mesh. In [96], the results were provided

for interpolation of scattered point values while Gutzmer [47] treated the instance where

the interpolation data were cell averages on Cartesian grids.

Let u : R2 → R be an integrable function. Then the thin plate spline interpolant s

subject to the conditions λx
i (s) = λx

i (u), i = 1, . . . , n, has the form

s(x) =
n∑

i=1

ciλ
y
i

(‖x− y‖2 log(‖x− y‖)) + d1 + d2x1 + d3x2, (2.22)
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where x = (x1, x2)
T and y = (y1, y2)

T .

We first of all state without proof the following lemma.

Lemma 2.8 ([96, 47]) Let λx
i , i = 0, . . . , n be a set of n > 3 functionals with compact

support and unisolvent on P2
2 . If

n∑
i=0

β̂i = 0 and
n∑

i=0

β̂iλ
x
i (p) = 0 for all p ∈ P2

2 , (2.23)

then the functional L̂ =
∑n

i=0 β̂iλ
x
i can be bounded as follows

|L̂g| ≤
[
8π‖g‖2

BL2

n∑
i=0

n∑
j=0

β̂iβ̂jλ
x
i λ

y
jφ2,2(‖x− y‖)

]1/2

, (2.24)

for any g ∈ BL2(R2), x = (x1, x2)
T , y = (y1, y2)

T and φ2,2(r) = r2 log(r), r ≥ 0.

This lemma enables us to estimate the error at a given point x̃, if the interpolation data

are cell averages.

Theorem 2.9 Let the triangles Ti, i = 1, . . . , n with vertices ai1, ai2, ai3 and centres

aic = (ai1 + ai2 + ai3)/3 be assigned to the functionals (cell average operators) λx
i ,

i = 1, . . . , n defined by

λx
i (u) :=

1

|Ti|
∫

Ti

u(x) dx, i = 1, . . . , n.

Let λx
0 = δx̃ be the point evaluation at x̃ and let β̂i, i = 1, . . . , n be given by

β̂0 = −1, (2.25)

β̂i = βi, βi > 0, i = 1, . . . , n, and
n∑

i=1

βi = 1, (2.26)

such that

x̃ =
n∑

i=1

βiaic.

Then we obtain

|u(x̃)− s(x̃)| ≤ [
8π‖u‖2

BL2
Φ(β)

]1/2
(2.27)

for all u ∈ BL2(R2), where β = {βi}n
i=1 and Φ is given by

Φ(β) =
n∑

i=1

n∑
j=1

βiβjλ
x
i λ

y
jφ2,2(‖x− y‖)− 2

n∑
i=1

βiλ
y
i φ2,2(‖x̃− y‖), (2.28)
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and s denotes the thin plate spline interpolant with respect to the data λx
i (u) = λx

i (s),

i = 1, . . . , n.

Proof. Let g = u− s so that

L̂g =
n∑

i=0

β̂iλ
x
i g = s(x̃)− u(x̃).

To be able to use the result (2.24) in Lemma 2.8 in the proof of this theorem, we need

to make sure that the two conditions on the β̂i’s in (2.23) are satisfied. Clearly, with

our choices of β̂i, i = 0, 1, . . . , n in (2.25) and (2.26), the first condition is satisfied.

To show that the second condition is satisfied, we need to evaluate

n∑
i=0

β̂iλ
x
i x =

n∑
i=0

β̂iλ
x
i

(
x1

x2

)
.

We do this by mapping each triangle Ti with vertices ai1 = (x1
1i, x

1
2i), ai2 = (x2

1i, x
2
2i),

ai3 = (x3
1i, x

3
2i) to a canonical reference triangle K with vertices â1 = (0, 0), â2 = (1, 0),

â3 = (0, 1) by a unique invertible affine mapping Fi such that

x = Fi(v) = Biv + ai1, (2.29)

where x = (x1, x2) ∈ Ti, v = (v1, v2) ∈ K, Bi is an invertible 2× 2 matrix and

Fi(â`) = ai`, ` = 1, 2, 3.

The matrix Bi is given as

Bi =

(
x2

1i − x1
1i x3

1i − x1
1i

x2
2i − x1

2i x3
2i − x1

2i

)
. (2.30)

Hence, we have the relations

x1 = x1
1i + (x2

1i − x1
1i)v1 + (x3

1i − x1
1i)v2,

x2 = x1
2i + (x2

2i − x1
2i)v1 + (x3

2i − x1
2i)v2.

If we invert this relationship, we find that

v1 =
(x1 − x1

1i)(x
3
2i − x1

2i)− (x2 − x1
2i)(x

3
1i − x1

1i)

Ji

v2 =
(x2 − x1

2i)(x
2
1i − x1

1i)− (x1 − x1
1i)(x

2
2i − x1

2i)

Ji

,
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where the Jacobian Ji of the mapping is given by

Ji = det(Bi).

Now, |Ti| = Ji|K|, |K| = 1
2

and dx1dx2 = Ji dv1dv2; therefore,

∫

Ti

x1 dx1 dx2 =
1

6
Ji

(
x1

1i + x2
1i + x3

1i

)
and

∫

Ti

x2 dx1 dx2 =
1

6
Ji

(
x1

2i + x2
2i + x3

2i

)
.

All this means that

n∑
i=0

β̂iλ
x
i

(
x1

x2

)
= −x̃ +

n∑
i=1

βi

|Ti|

(
1
6
Ji(x

1
1i + x2

1i + x3
1i)

1
6
Ji(x

1
2i + x2

2i + x3
2i)

)

= −x̃ +
n∑

i=1

βi

Ji|K|
1

2
Jiaic

= −x̃ +
n∑

i=1

βiaic

= 0,

(2.31)

showing that the second condition is also satisfied. We then conclude by Lemma 2.8

that

|u(x̃)− s(x̃)| ≤ [
8π‖g‖2

BL2
Φ(β)

]1/2
. (2.32)

Since the interpolant s minimises the energy | · |BL2(R2) among all interpolants f ∈
BL2(R2) satisfying

λx
i f = λx

i u, i = 1, . . . , n

we obtain

‖g‖2
BL2(R2) = ‖u− s‖2

BL2(R2) = (u− s, u− s)BL2(R2)

= (u, u)BL2(R2) − (u, s)BL2(R2) − 2(s, u− s)BL2(R2) + (s, u− s)BL2(R2)

= (u, u)BL2(R2) − 2(s, u− s)BL2(R2) − (s, s)BL2(R2)

= ‖u‖2
BL2(R2) − 2 (s, u− s)BL2(R2)︸ ︷︷ ︸

=0

−‖s‖2
BL2(R2)

≤ ‖u‖2
BL2(R2).

(2.33)

This concludes the proof. 2

A more precise form of the error bound (2.27) can be obtained by finding an estimate

of the quadratic form Φ(β). However, it is not clear to us at the moment how to obtain

this estimate for unstructured triangular meshes.
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Fortunately, Wendland [143] provides general convergence results for reconstruction

processes from cell averages using conditionally positive definite functions. We present

a summary of his results concerning polyharmonic splines below.

Theorem 2.10 Suppose Ω is bounded and satisfies an interior cone condition. Suppose

further k > d/2 and 1 ≤ q ≤ ∞. If Ω is covered by volumes {Vj} such that every ball

B ⊆ Ω of radius h contains at least one volume Vj. Then, the error between u ∈ W 2
k

and its optimal recovery s from cell averages using the polyharmonic spline φd,k has the

error estimate

‖u− s‖Lq(Ω) ≤ Chk−d(1/2−1/q)+ |u|BLk(Ω).

where (x)+ = max{x, 0}.

Proof. See Wendland [143], Theorem 5.2 and Corollary 6.1. 2

For the case where q = ∞, this yields

‖u− s‖L∞(Ω) ≤ Chk−d/2|u|BLk(Ω).

Hence, when k = d = 2, using the thin plate splines leads to a first order scheme. He

further showed that under additional assumptions on the function u, improved error

estimates can be obtained.

Theorem 2.11 ([143]) Under the assumptions of Theorem 2.10, we assume that u ∈
W 2k

2 (Ω) has support in Ω. Then the error between u and its optimal recovery s can be

bounded by

‖u− s‖Lq(Ω) ≤ Ch2k−d(1/2−1/q)+‖∆ku‖L2(Ω).

Proof. See Wendland [143], Theorem 6.2. 2

Furthermore, for the conditionally positive define function φ(r) = r in R2 which

we use in Chapters 3 and 6, we note that there is a general result in [144] on optimal

recovery from cell averages with conditionally positive definite functions but no specific

result for φ(r) = r in R2. However, in [36, 143], there is a result on interpolation with

φ(r) = rβ, β 6= 2N. It asserts that there exists constants h0, C such that

|u− s| ≤ Chβ/2|u|Nφ
,

provided h ≤ h0.

We will denote φ(r) = r as φ1(r) in the rest of this work.

All the finite volume methods that will be designed and implemented in this work
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are based on local reconstruction methods. To this end, the next section is concerned

with the analysis of local reconstruction by polyharmonic splines which is based on a

scaled interpolation problem. This formulation allows us to construct a numerically

stable algorithm for the evaluation of polyharmonic spline interpolants.

2.3 Generalized Local Interpolation by Polyharmonic

Splines

As regards the discussion in this section, for some fixed point x0 ∈ Rd and any h > 0,

we seek to solve the scaled interpolation problem

λx
j s

h(x0 + hx) = λx
j u(x0 + hx), 1 ≤ j ≤ n, (2.34)

where Ξ = {λx
1 , . . . , λ

x
n} is a Pd

k -unisolvent set of functionals which we take to be cell

average operators in Rd. If we let x0 = 0, then the unique generalized polyharmonic

spline interpolant sh is of the form

sh(hx) =
n∑

j=1

ch
j λ

y
jφd,k(‖hx− hy‖) + p(hx), p ∈ Pd

k , (2.35)

satisfying (2.34) and the coefficients ch
1 , . . . , c

h
n satisfy the constraints

n∑
j=1

ch
j λ

x
j p(hx) = 0, for all p ∈ Pd

k . (2.36)

The coefficients of the interpolant sh in (2.35) are obtained by solving the linear system

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
ch

dh

]

︸ ︷︷ ︸
bh

=

[
u
∣∣
hΞ

0

]

︸ ︷︷ ︸
uh

, (2.37)

where Ah = (λx
i λ

y
j (φd,k(‖hx− hy‖))1≤i,j≤n ∈ Rn×n, Ph =

(
λx

j (x)α
)
1≤j≤n;|α|<k

∈ Rn×q,

u
∣∣
hΞ

= (λx
1u(hx), . . . , λx

nu(hx))T , ch = (ch
1 , . . . , c

h
n)T , and dh = (dh

α)|α|<k ∈ Rq for the

coefficients of the polynomial part in (2.35).

The Lagrange-type representation of sh in (2.35) is given by

sh(hx) =
n∑

j=1

`h
j (hx)λx

j u(hx) (2.38)
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where

p(hx) =
n∑

j=1

`h
j (hx)λx

j p(hx) for all p ∈ Pd
k , (2.39)

and the cardinal functions `h
1(hx), . . . , `h

n(hx) satisfy

λx
j (`

h
i (hx)) =

{
1, for i = j,

0, for i 6= j,
1 ≤ i, j ≤ n. (2.40)

Moreover, for a point hx ∈ Rd, the vectors `h(hx) = (`h
1(hx), . . . , `h

n(hx))T and υh(hx) =

(υ1(hx), . . . , υq(hx))T are the unique solution of the linear system

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
`h(hx)

υh(hx)

]

︸ ︷︷ ︸
νh(hx)

=

[
Rh(hx)

Sh(hx)

]

︸ ︷︷ ︸
βh(hx)

, (2.41)

where Rh(hx) = (λy
jφd,k(‖hx− hy‖))1≤j≤n and Sh(hx) = ((hx)α)|α|<k ∈ Rq.

We will now show that this Lagrange-type representation does exist. Following [117]

and using the vectors Rh(hx) and Sh(hx), the polyharmonic spline interpolant (2.35)

can be re-written in the form

sh(hx) = (ch)T Rh(hx) + (dh)T Sh(hx) = ((ch)T , (dh)T )

(
Rh(hx)

Sh(hx)

)

= ((ch)T , (dh)T )Ah

(
`h(hx)

υh(hx)

)

= ((ch)T Ah + (dh)T P T
h )`h(hx) + (ch)T Phυ

h(hx).

Using (2.37) and due to the symmetry Ah,

Ahc
h + Phd

h =
[
(ch)T Ah + (dh)T P T

h

]T
= u

∣∣
hΞ

,

and

P T
h ch =

[
(ch)T Ph

]T
= 0.

Therefore,

sh(hx) =
(
u
∣∣
hΞ

)T
`h(hx) =

n∑
i=1

`h
i (hx)λx

i u(hx).
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In conclusion, starting with the Lagrange representation of sh in (2.38), we obtain

sh(hx) = 〈`h(hx), u
∣∣
hΞ
〉 = 〈νh(hx), uh〉

= 〈A−1
h βh(hx), uh〉 = 〈βh(hx),A−1

h uh〉
= 〈βh(hx),bh〉

where uh is defined in (2.37). This expression uses the two representations of sh in (2.35)

and (2.38).

2.3.1 Local approximation order and numerical stability

Definition 2.12 Let n ∈ N be a fixed number of Pd
k -unisolvent functionals λi, i =

1, . . . , n, which are independent of h and let sh denote the polyharmonic spline interpolant

satisfying (2.34). We say that the approximation order of the local polyharmonic spline

interpolation at x0 ∈ Rd with respect to the function space F is p, iff for f ∈ F the

asymptotic bound

|u(x0 + hx)− sh(x0 + hx)| = O(hp), h → 0, (2.42)

holds for any x ∈ Rd.

We now state and prove an important lemma which will be used in our subsequent

discussions.

Lemma 2.13 ([63]) For any h > 0, let `h(hx) be the solution in (2.41). Then,

`h(hx) = `1(x), for every x ∈ Rd. (2.43)

The proof we present below is completely analogous to the one presented in [63].

It is modified here for the case of generalized interpolation with cell average operators

rather than the point evaluations considered in [63].

Proof. Let

Sh =

{
n∑

j=1

ch
j λ

y
jφd,k(‖ · −hy‖) + p : p ∈ Pd

k ,

n∑
j=1

ch
j λ

x
j q(x) = 0 for all q ∈ Pd

k

}

be the space of all possible generalized polyharmonic spline interpolants of the form (2.35)

satisfying (2.34) for a Pd
k -unisolvent set of functionals Ξ = {λx

1 , . . . , λ
x
n}.
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We need to show that Sh is a scaled version of S1, so that

Sh = {σh(s) : s ∈ S1} (2.44)

where we define the dilation operator as σh(s) = s(·/h), h > 0. Thus, due to the

unicity of the interpolation in Sh or S1, their Lagrange basis functions must coincide by

satisfying `h = σh(`
1). Therefore, we need to show that Sh = σh(S1).

When d is odd, Sh = σh(S1) follows from the homogeneity of φd,k, where

φd,k(hr) = h2k−dφd,k(r).

When d is even,

φd,k(hr) = h2k−d(φd,k(r) + r2k−d log(h)),

and so any function sh ∈ Sh has, for some p ∈ Pd
k , the form

sh(hx) =
n∑

j=1

ch
j λ

y
jφd,k(‖hx− hy‖) + p(x),

=
n∑

j=1

ch
j λ

y
j

{
h2k−dφd,k(‖x− y‖) + h2k−d‖x− y‖2k−d log(h)

}
+ p(x),

= h2k−d

(
n∑

j=1

ch
j λ

y
jφd,k(‖x− y‖) + log(h)g(x)

)
+ p(x),

where

g(x) =
n∑

j=1

ch
j λ

y
j‖x− y‖2k−d.

To establish that sh is in σh(S1), we need to show that the g is a polynomial of degree

at most k − 1. We therefore write g as

g(x) =
n∑

j=1

ch
j λ

y
j


 ∑

|α|+|β|=2k−d

cα,β · xαyβ


 ,

=
∑

|α|+|β|=2k−d

cα,β · xα

n∑
j=1

ch
j λ

y
jy

β,

for some coefficients cα,β ∈ R with |α|+ |β| = 2k−d. Now due to the vanishing moment

conditions
n∑

j=1

ch
j λ

x
j p(hx) = 0, for all p ∈ Pd

k

for the coefficients ch
1 , . . . , c

h
n, this means that the degree of g is at most 2k − d − k =
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k − d < k. Therefore, sh ∈ σh(S1), and so Sh ⊂ σh(S1). Similarly, S1 ⊂ σ−1
h (Sh). We

then conclude that Sh = σh(S1) for any d and this completes the proof. 2

The following theorem summarizes the result on local approximation order.

Theorem 2.14 Let u ∈ Ck in a region containing x0. Then the local approximation

order of polyharmonic splines φd,k is k, i.e.

|u(x0 + hx)− sh(x0 + hx)| = O(hk), h → 0 (2.45)

where sh denotes the polyharmonic spline interpolant satisfying (2.34).

Proof. We assume x0 = 0 without loss of generality and we use the representation (2.38)

for sh. For any u ∈ Ck, any x ∈ Rd, and h > 0, we define the k-th order Taylor

polynomial

Tk(y) =
∑

|α|<k

1

α!
Dαu(hx)(y − hx)α (2.46)

of u around hx. This then means that

u(hx) = Tk(y)−
∑

0<|α|<k

1

α!
Dαu(hx)(y − hx)α

and thus by the polynomial reproduction property (2.39) we have

u(hx) = Tk(hx) =
n∑

j=1

`h
j (hx)λx

j (Tk(hx)). (2.47)

From (2.38) and (2.47) we obtain

u(hx)− sh(hx) =
n∑

j=1

`h
j (hx)

[
λx

j (Tk(hx))− λx
j (u(hx))

]
. (2.48)

Due to Lemma 2.13, the Lebesgue constant

Λ = sup
h>0

n∑
j=1

|`h
j (hx)| =

n∑
j=1

|`1
j(x)|, (2.49)

is bounded locally around the origin x0 = 0. We conclude that

|u(hx)− sh(hx)| = O(hk), h → 0.

2
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Remark 2.15 When we use local reconstruction, we observe that the local approxima-

tion order of the polyharmonic spline reconstruction method is arbitrarily high. More

precisely, when working with φ ≡ φd,k the local approximation order is k, and so the

smoothness parameter k in φd,k can be used to obtain a desired target approximation

order k.

It is well known that the stability of an interpolation scheme depends on the condi-

tioning of the given problem. This is a key issue in the design and implementation of

any useful interpolation or reconstruction scheme. To discuss the conditioning of the re-

construction by polyharmonic splines, suppose Ω ∈ Rd is a finite computational domain

and Ξ = {λx
1 , . . . , λ

x
n} is a Pd

k -unisolvent set of functionals. The interpolation operator

Rd,k : C(Ω) 7→ C(Ω), yields for any function u ∈ C(Ω) the polyharmonic spline recovery

function Rd,ku = s ∈ C(Ω) of the form

s(x) =
n∑

j=1

cjλ
y
jφd,k(‖x− y‖) + p(x), p ∈ Pd

k , (2.50)

satisfying λx
i (s) = λx

i (u), i = 1, . . . , n.

Definition 2.16 The condition number of an interpolation operator R : C(Ω) 7→ C(Ω),

Ω ∈ Rd with respect to the L∞-norm is the smallest number κ∞ satisfying

‖Ru‖L∞(Ω) ≤ κ∞ · ‖u‖L∞(Ω) for all u ∈ C(Ω).

Moreover, κ∞ is the operator norm of R with respect to the L∞-norm.

The following results in [64] are necessary for the discussion on the stable evaluation

of polyharmonic splines.

Theorem 2.17 The condition number κ∞ of interpolation by polyharmonic spline is

given by the Lebesgue constant

Λ(Ω, Ξ) = max
x∈Ω

n∑
j=1

|`j(x)|. (2.51)

Moreover, Lemma 2.13 and Theorem 2.17, yield the following result on the stability of

interpolation by polyharmonic splines.

Theorem 2.18 The absolute condition number of polyharmonic spline interpolation is

invariant under rotations, translations and uniform scalings.
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Theorem 2.18 implies that the conditioning of the interpolation scheme depends on

the geometry of the cells assigned to the functionals λx
i with respect to the center x0, but

not on the scale h. But since the spectral condition number of the matrix Ah in (2.37)

depends on h, a simple re-scaling can be implemented as a way of preconditioning the

matrix Ah for very small h, see [63, 64]. To this end, we evaluate the polyharmonic

spline interpolant sh as follows

sh(hx) = 〈`h(hx), u
∣∣
hΞ
〉 = 〈`1(x), u

∣∣
hΞ
〉

= 〈ν1(x), uh〉 = 〈A−1
1 β1(x), uh〉

= 〈β1(x),A−1
1 uh〉

(2.52)

where u
∣∣
hΞ

= (λx
1(u(hx)), . . . , λx

n(u(hx)))T and the last expression in (2.52) is the stable

form we prefer to work with. From (2.52), we can evaluate sh at hx by solving the linear

system

A1α = uh. (2.53)

The solution α ∈ Rn+q in (2.53) then yields the coefficients of sh(hx) with respect to

the basis functions in β1(x).

2.3.2 Derivatives of polyharmonic splines

Our motivation for analyzing the computation, approximation order and stable evalua-

tion of derivatives of local polyharmonic spline interpolant comes from their application

in the construction of the ADER-WENO schemes which are the subject of Chapter 4. A

recovery function and its derivatives are used for the initial data of the Generalized Rie-

mann Problem which is the basis of the high order flux evaluation of the ADER-WENO

method. Unlike previous ADER-WENO methods that rely on polynomial reconstruction

methods, the ADER-WENO method in this work uses a WENO reconstruction based

on polyharmonic splines for its spatial discretisation. We note that the derivatives of

polyharmonic splines are not as straightforward to compute as those of polynomials and

for the sake of numerical stability care must be taken in evaluating them.

Now, suppose we have the polyharmonic spline interpolant

s(x) =
n∑

j=1

cjλ
y
jφd,k(‖x− y‖) + p(x), p ∈ Pd

k , (2.54)

then

Dγs(x) =
n∑

i=1

cjλ
y
jD

γφd,k(‖x− y‖) + Dγp(x), p ∈ Pd
k . (2.55)
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We note that for x = (x1, . . . , xd)
T ∈ Rd and γ = (γ1, . . . , γd)

T ∈ Nd

Dγ :=

(
∂

∂x1

)γ1

. . .

(
∂

∂xd

)γd

,

where ∂
∂xi

denotes the partial derivative with respect to xi, i = 1, . . . , d and |γ| =

γ1 + . . . + γd. Dγ is the identity operator when γ = 0. Alternatively, if we use the

Lagrange-type representation

s(x) =
n∑

j=1

`j(x)λx
j u(x), (2.56)

then

Dγs(x) =
n∑

j=1

Dγ`j(x)λx
j u(x), (2.57)

where the vectors Dγ`(x) = (Dγ`1(x), . . . , Dγ`n(x))T and Dγυ(x) = (Dγυ1(x), . . . , Dγυq(x))T

are the unique solution of the linear system

[
A P

P T 0

][
Dγ`(x)

Dγυ(x)

]
=

[
DγR(x)

DγS(x)

]
, (2.58)

where

DγR(x) = (λy
jD

γφd,k(‖x− y‖))1≤j≤n ∈ Rn, and DγS(x) = (Dγ(xα))|α|<k ∈ Rq.

(2.59)

The system (2.58) is obtained by the formal differentiation of (2.11) [144].

It is clear from (2.55) and (2.59) that in computing the derivative of s(x), we first

need to compute Dγφd,k(‖x − y‖). Computing the derivatives of the polynomial part

p(x) or S(x) is trivial.

Derivatives of the radial function φd,k(‖x− y‖)

For the sake of the numerical examples in Chapter 4, we first of all write out clearly the

following derivatives for d = 2. Let

Φ2,k(x− y) = φ2,k(‖x− y‖) = ‖x− y‖2k−2 log ‖x− y‖,
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where x = (x1, x2)
T, y = (y1, y2)

T and for notational simplicity let ∆ = ‖x − y‖. The

first derivatives (for k ≥ 2) of Φ2,k are given by

∂Φ2,k

∂τ
= (2k − 2)(τ − θ)∆2k−4 log ∆ + (τ − θ)∆2k−4

= ((τ − θ) + (2k − 2)(τ − θ) log ∆) ∆2k−4

where when τ = x1, θ = y1 and when τ = x2, θ = y2. The second derivatives (for k ≥ 3)

are given by

∂2Φ2,k

∂τ1∂τ2

= (2k − 2)(2k − 4)(τ1 − θ1)(τ2 − θ2)∆
2k−6 log ∆

+2(2k − 3)(τ1 − θ1)(τ2 − θ2)∆
2k−6 + δ(2k − 2)∆2k−4 log ∆

+δ∆2k−4

=
{

(2(2k − 3)(τ1 − θ1)(τ2 − θ2) + δ∆2)

+((2k − 2)(2k − 4)(τ1 − θ1)(τ2 − θ2) + δ(2k − 2)∆2) log ∆
}

∆2k−6

where both τ1 and τ2 are equal to either x1 or x2. Furthermore, when τ1 = x1, θ1 = y1,

when τ1 = x2, θ1 = y2, when τ2 = x1, θ2 = y1, and when τ2 = x2, θ2 = y2. In addition,

δ ≡ δτ1τ2 =

{
1, τ1 = τ2;

0, τ1 6= τ2.

We now state and prove the following results in [144] modified here for the derivatives

of φd,k(‖x− y‖).

Lemma 2.19 Let Φd,k(x − y) = φd,k(∆) = ∆2k−d log ∆, (∆ = ‖x − y‖) with k ∈ N,

d ∈ 2N, 2k > d, x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd. For every γ ∈ Nd
0,

there exists homogenous polynomials qγ,k ≡ qγ,k(x− y), rγ,k ≡ rγ,k(x− y) ∈ Pd
|γ|+1 such

that

DγΦd,k(x− y) = (qγ,k + rγ,k log ∆) ∆2k−d−2|γ| (2.60)

for x− y 6= 0.

Proof. The proof is by induction about the length of γ. For |γ| = 0, there is nothing

to show. Now assume |γ| > 0. Without loss of restriction we assume γ1 ≥ 1. Define

ν = (γ1 − 1, . . . , γd)
T . Then there exists homogenous polynomials qν,k, rν,k of degree |ν|

such that

DγΦd,k(x− y) =
∂

∂x1

DνΦd,k(x− y)

=
∂

∂x1

{
(qν,k + rν,k log ∆)∆2k−d−2|ν|} .
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Using the product rule and factorising we obtain

DγΦd,k(x− y) =

[(
∂qν,k

∂x1

∆2 + qν,k · (x1 − y1) + 2

(
k − d

2
− |ν|

)
rν,k · (x1 − y1)

)

+

(
∂rν,k

∂x1

∆2 + 2

(
k − d

2
− |ν|

)
rν,k · (x1 − y1)

)
log ∆

]
∆2k−d−2|γ|

= (qγ,k + rγ,k log ∆) ∆2k−d−2|γ|.

The polynomials qγ,k and rγ,k are indeed homogenous polynomials of degree |γ|, because

the derivative of a homogenous polynomial of degree l is a homogenous polynomial of

degree l − 1 and the product of two homogenous polynomials of degree l and k is a

homogenous polynomial of degree l + k. 2

Lemma 2.20 Let Φ(x − y) = φ(∆) = ∆2k−d (∆ = ‖x − y‖) with k, d ∈ N, 2k > d,

x = (x1, . . . , xd) ∈ Rd and y = (y1, . . . , yd) ∈ Rd. For every γ ∈ Nd
0, there exists a

homogenous polynomials r̃γ,k ≡ r̃γ,k(x− y) ∈ Pd
|γ|+1 such that

DγΦ(x− y) = r̃γ,k∆
2k−d−2|γ| (2.61)

for x− y 6= 0.

Proof. Once again the proof is by induction about the length of γ. For |γ| = 0, there is

nothing to show. Now assume |γ| > 0. Without loss of restriction we assume γ1 ≥ 1.

Define ν = (γ1 − 1, . . . , γd)
T . Then there exists homogenous polynomials r̃ν,k of degree

|ν| such that

DγΦ(x− y) =
∂

∂x1

DνΦ(x− y)

=
∂

∂x1

{
r̃ν,k∆

2k−d−2|ν|}

=

(
∂r̃ν,k

∂x1

∆2 + (2k − d− 2|ν|)r̃ν,k · (x1 − y1)

)
∆2k−d−2|ν|−2

= r̃γ,k∆
2k−d−2|γ|.

As in the proof of Lemma 2.19, the polynomial r̃γ,k is a homogenous polynomial of de-

gree |γ|. 2

Remark 2.21 If d is even, then r̃γ,k ≡ rγ,k with rγ,k defined in (2.60).

The discussion that follows is based on local generalized interpolation using the scaled

interpolation problem (2.34) and the unique interpolant of the form (2.35) and (2.38).
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We first of all state and prove a lemma concerning the derivatives of the Lagrange

basis function which will serve as a basis for our discussion on the stable evaluation of

derivatives of polyharmonic splines and local approximation order.

Lemma 2.22 For any h > 0, let `h(hx) be the solution in (2.41). Then,

Dγ`h(hx) = h−|γ|Dγ`1(x) for every x ∈ Rd and |γ| < k.

Proof. We use the form (2.38) of the interpolant in this proof. The evaluation of each

`h
i (hx), i = 1, . . . , n at hx in (2.38) is given by the solution of the linear system (2.41).

Moreover, the derivative of sh in (2.38) is given

Dγsh(hx) =
n∑

i=1

Dγ`h
i (hx)λx

i u(hx) (2.62)

where Dγ`h(hx) and Dγυh(hx) are the unique solution of the linear system

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
Dγ`h(hx)

Dγυh(hx)

]

︸ ︷︷ ︸
Dγνh(hx)

=

[
DγRh(hx)

DγSh(hx)

]

︸ ︷︷ ︸
Dγβh(hx)

. (2.63)

For the purpose of this proof, we write Sh(hx) in the form Sh(hx) = (p1(hx), . . . , pq(hx))T ,

q = dim(Pd
k ). We let h = 1 for the moment and expand for an index j = 1, . . . , n, the

j-th row of the system (2.63).

When d is odd, this gives

n∑
j=1

(Dγ`1
j(x))λx

i λ
y
j∆

2k−d +

q∑

l=1

(Dγυ1
l (x))λx

i pl(x) = λy
i

(
r̃γ,k∆

2k−d−2|γ|) . (2.64)

Multiplying (2.64) by h2k−d gives

n∑
j=1

(Dγ`1
j(x))λx

i λ
y
j (h

2k−d∆2k−d) + h2k−d

q∑

l=1

(Dγυ1
l (x))λx

i pl(x)

= λy
i

(
h2k−dr̃γ,k∆

2k−d−2|γ|) (2.65)

which can be written as

h|γ|
{

n∑
j=1

(h−|γ|Dγ`1
j(x))λx

i λ
y
jφd,k(∆̂) + h2k−d−|γ|

q∑

l=1

(Dγυ1
l (x))λx

i pl(x)

}

= h|γ|λy
i

(
h2k−d−|γ|r̃γ,k∆

2k−d−2|γ|) , (2.66)
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where ∆̂ = h∆. Thus

n∑
j=1

(h−|γ|Dγ`1
j(x))λx

i λ
y
jφd,k(∆̂) + h2k−d−|γ|

q∑

l=1

(Dγυ1
l (x))λx

i pl(x) = λy
i

(
Dγφd,k(∆̂)

)
.

(2.67)

If we let

υ̃hγ
l (x) = h2k−d−|γ|Dγυ1

l (x), l = 1, . . . , q,

then the vector [
h−|γ|Dγ`1(x)

υ̃hγ(x)

]

solves the linear system (2.63) for any h > 0. Since the solution of (2.63) is unique, we

conclude

Dγ`h(hx) = h−|γ|Dγ`1(x).

When d is even, the i-th row of (2.63), for h = 1, is given as

n∑
j=1

(Dγ`1
j(x))λx

i λ
y
j (∆

2k−d log ∆)+

q∑

l=1

(Dγυ1
l (x))λx

i pl(x) = λy
i

(
(qγ,k + rγ,k log ∆) ∆2k−d−2|γ|) .

(2.68)

Furthermore, if we take t̃i(x) as the solution of

n∑
j=1

(Dγ`1
j(x))λx

i λ
y
j∆

2k−d + t̃i(x) = λy
i D

γ∆2k−d, (2.69)

then combining h2k−d×(2.68) with h2k−d log(h)×(2.69) we have

n∑
j=1

(Dγ`1
j(x))

(
h2k−dλx

i λ
y
j (∆

2k−d log ∆) + h2k−d log(h)λx
i λ

y
j∆

2k−d
)

+ h2k−d

q∑

l=1

(Dγυ1
l (x))λx

i pl(x) + h2k−d log(h)t̃i(x)

= h2k−dλy
i

(
(qγ,k + rγ,k log ∆) ∆2k−d−2|γ|) + h2k−d log(h)λy

i

(
rγ,k∆

2k−d−2|γ|) . (2.70)
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Further simplification gives

n∑
j=1

(Dγ`1
j(x))

(
λx

i λ
y
j

{
h2k−d∆2k−d(log(h) + log ∆)

})

+ h2k−d

q∑

l=1

(Dγυ1
l (x))λx

i pl(x) + h2k−d log(h)t̃i(x)

= λy
i

(
h2k−d (qγ,k + rγ,k log ∆) ∆2k−d−2|γ| + h2k−d log(h)rγ,k∆

2k−d−2|γ|)

= h|γ|λy
i

(
h2k−d−|γ| {(qγ,k + rγ,k log ∆) ∆2k−d−2|γ| + log(h)rγ,k∆

2k−d−2|γ|})
(2.71)

which we can write as

n∑
j=1

(h−|γ|Dγ`1
j(x))λx

i λ
y
jφd,k(∆̂) + h2k−d−|γ|

q∑

l=1

(Dγυ1
l (x))λx

i pl(x)

+ h2k−d−|γ| log(h)t̃i(x) = λy
i

(
Dγφd,k(∆̂)

)
. (2.72)

If we set

υ̃hγ
1 = h2k−d−|γ|Dγυ1

1(x) + h2k−d−|γ| log(h)t̃i(x) and

υ̃hγ
l = h2k−d−|γ|Dγυ1

l (x), l = 2, . . . , q,

then the vector [
h−|γ|Dγ`1(x)

υ̃hγ(x)

]

solves the linear system (2.63) for any h > 0. Once again, since the solution of (2.63) is

unique, we conclude

Dγ`h(hx) = h−|γ|Dγ`1(x).

2

A note on local approximation order

We now make a generalization of the approximation order of the local polyharmonic

spline interpolant and its derivatives with respect to Ck. This generalises the result in

Subsection 2.3.1.

For u ∈ Ck, the k-th order Taylor polynomial of u around hx is given as

Tk(y) =
∑

|α|<k

1

α!
Dαu(hx)(y − hx)α (2.73)
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which yields

u(hx) = Tk(y)−
∑

0<|α|<k

1

α!
Dαu(hx)(y − hx)α. (2.74)

By using the representation (2.62) for sh and the polynomial reproduction property of

the Lagrange basis functions, we obtain

Dγ(u(hx)− sh(hx)) =
n∑

i=1

Dγ`h
i (hx)[

=O(hk)︷ ︸︸ ︷
λx

i Tk(hx)− λx
i u(hx)]. (2.75)

By Lemma 2.22

Dγ`h(hx) = h−|γ|Dγ`1(x), for 0 ≤ |γ| ≤ k,

and we conclude that

|Dγu(hx)−Dγsh(hx)| = O(hk−|γ|), h → 0. (2.76)

Stable evaluation of derivatives

In Subsection 2.3.1, we presented a stable algorithm for the evaluation of polyharmonic

splines. Since the ADER-WENO scheme in Chapter 4 involves the derivatives of the

polyharmonic splines, we propose a stable way of evaluating the derivatives using the

same arguments found in Subsection 2.3.1. Starting with the Lagrange representation

of Dγsh in (2.62), we obtain

Dγsh(hx) = 〈Dγ`h(hx), u
∣∣
hΞ
〉 = 〈h−|γ|Dγ`1(x), uhΞ〉

= h−|γ|〈Dγν1(x), uh〉 = h−|γ|〈A−1
1 Dγβ1(x), uh〉

= h−|γ|〈Dγβ1(x),A−1
1 uh〉.

(2.77)

The last expression gives a stable evaluation of the derivative of a polyharmonic spline

interpolant, which has proven essential in practical computations, as the interpolation

matrices can be ill-conditioned in certain cases.

We remark that we do not present any stable evaluation of the RBF interpolant

with φ1(r) = r which we will use later because we did not experience any serious ill-

conditioning of its interpolation matrix.

The computations in this thesis revealed that the smoother the RBF, the worse the

conditioning of the interpolation matrix and the greater the need for preconditioning.

This agrees with the uncertainty principle of Schaback [100] which states that there is

no commonly used radial basis function which combines good approximation behaviour

with a small condition number of the interpolation matrix.



Chapter 3

The RK-WENO Method

The RK-WENO scheme is a high order finite volume method designed for problems

with piecewise smooth solutions containing discontinuities. The RK-WENO methods

in [38, 59, 79, 81, 97, 107, 126, 139, 149] and many other related papers are based

on polynomial reconstruction methods. Despite the fact that polynomial recovery has

the important advantage of being simple to implement and easy to compute, there are

some difficulties that arise with this kind of recovery. It is well known from numeri-

cal experiments that polynomial reconstruction may lead to numerical instabilities [1].

Although several alternative reconstructions have been proposed [1, 6, 115, 124], both

lack of numerical stability and high computational complexity are still critical points for

the WENO reconstruction technique, especially for unstructured meshes. Furthermore,

when higher degree polynomials are used for reconstruction, the number of coefficients

increases significantly. Thus on unstructured grids, finding an admissible stencil of the

required size for interpolation may become a difficult task. Moreover, the size of the

stencils used for polynomial reconstruction is not always flexible but usually determined

by the dimension of the space it belongs to. In fact, to the best of our knowledge, there

is no known simple geometrical property that determines the admissibility of a stencil

for polynomials of degree greater than one.

In this chapter, we propose an RK-WENO finite volume method on conforming un-

structured triangulations where the reconstruction is implemented using radial basis

functions (particularly polyharmonic splines), rather than polynomials. The method is

based on the theory of optimal recovery [86], whereby polyharmonic splines are iden-

tified as optimal recovery functions in Beppo-Levi spaces and yield stable and flexible

reconstructions. The necessary oscillation indicators required in the WENO method

can be defined naturally using the native Beppo-Levi norms. The RBF reconstruction

method admits flexible stencil sizes which makes it easier to obtain admissible stencils.

The RBF method is suitable for reconstruction on unstructured grids and is generally

not sensitive to the geometry of the grid. Although, the RBF reconstruction also has

45
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the advantage of being suitable in any space dimension, for the sake of simplicity, we

will only implement the RBF reconstruction in two space dimensions in this thesis.

3.1 An Introduction to the Finite Volume Method

The finite volume method is based on the integral form of a conservation law (1.3) -

(1.4) instead of the differential equation. The method takes full advantage of an arbi-

trary mesh where there are several options available for the definition of control volumes

around which the conservation law can be solved. The method has considerable flexibil-

ity, since it allows the modification of the shape and location of the control volumes, as

well as variation of the rules for flux evaluation [74, 84].

In the finite volume method, the spatial domain, Ω ⊂ Rd, is first divided into a

collection of control volumes that completely cover the domain. We shall refer to the

control volumes as cells, elements or triangles at various points in this work. If we let T
denote a tessellation of a domain Ω with control volumes T ∈ T such that ∪T∈T T̄ = Ω̄,

then in each control volume, the integral form of the conservation law is defined as

d

dt

∫

T

udx +

∫

∂T

F (u) · n ds = 0. (3.1)

The integral conservation law is readily obtained upon the spatial integration of (1.3)

on T and application of the divergence theorem.

Central to the finite volume method is the definition of the cell average for each

control volume T ∈ T
ūT =

1

|T |
∫

T

u dx. (3.2)

The flux integral in (3.1) can be approximated by

∫

∂T

F (u) · n ds ≈
∑

ΓTR∈∂T

F(ūT , ūR;n), (3.3)

where F is the numerical flux and R is the neighbouring control volume sharing the

edge ΓTR with T with outer normal n.

The semi-discrete finite volume method is then obtained by dividing (3.1) by |T |,
yielding the numerical method

d

dt
ū(t) = − 1

|T |
∑

ΓTR∈∂T

FTR(ūn
T , ūn

R;n), ū0
T =

1

|T |
∫

T

u0(x) dx, for all T ∈ T ,

(3.4)
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where for all F , we assume that for any L > 0 and for all u, v, u′, v′ ∈ BL(0) we have

|F(u, v;n)−F(u′, v′;n)| ≤ c(L)h(|u− u′|+ |v − v′|), h = sup
T∈T

diam(T ), (3.5)

F(u, v;n) = −F(v, u;n), (3.6)

F(u, u;n) =

∫

ΓTR

F (u) · n ds. (3.7)

The condition (3.5) is a local Lipschitz condition, (3.6) is the conservation property

and (3.7) consistency. The set of ordinary differential equations (3.4) can be advanced

in time using a number of implicit or explicit multi-step or Runge-Kutta methods. For

instance, a simple time-stepping method is the forward Euler method which produces

the fully discrete method

ūn+1
T = ūn

T −
∆t

|T |
∑

ΓTR∈∂T

F(ūn
T , ūn

R;n), for all T ∈ T . (3.8)

High order finite volume methods are constructed by using piecewise recovery functions

that are not constant on each cell instead of the cell averages (which are piecewise

constant) in computing the numerical fluxes. These recovery functions are obtained

from the cell averages using a suitable reconstruction technique.

3.1.1 Numerical fluxes

Numerical fluxes play a key role in the design of finite volume methods. Unfortunately,

the numerical flux conditions (3.5) - (3.7) do not necessarily guarantee convergence

to entropy satisfying weak solutions and additional numerical flux restrictions may be

necessary [9, 74]. The best-known examples of numerical fluxes F that satisfy proper-

ties (3.5), (3.6), (3.7) and guarantee convergence are

(i) The Engquist-Osher flux:

FEO(ul, ur;n) =
F (ul) + F (ur)

2
· n +

1

2

∫ ul

ur

|F ′(u) · n|du;

(ii) The Lax-Friedrichs flux:

FLF (ul, ur;n) =
1

2
[F (ul) + F (ur)− σ(ur − ul)] ,

σ = max
inf u0(x)≤u≤sup u0(x)

|F ′(u) · n|;
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(iii) The local Lax-Friedrichs flux:

FLLF (ul, ur;n) =
1

2
[F (ul) + F (ur)− σ(ur − ul)] ,

σ = max
min(ul,ur)≤u≤max(ul,ur)

|F ′(u) · n|;

(iv) The Roe flux with entropy:

FROE(ul, ur;n) =
F (ul) + F (ur)

2
· n + |A(ul, ur)|ul − ur

2
;

where

A(ul, ur) =

{
F ′(u) · n, ul = ur = u;
F (ul)−F (ur)

ul−ur
· n, ul 6= ur.

Numerical experiments have shown that as the degree of the approximation increases

the choice of the numerical flux does not have any significant effect on the quality of

approximation [10].

3.2 Finite Volume Formulation on Triangular Meshes

In the rest of this thesis, we will be solving numerically the two dimensional conservation

law
∂u

∂t
+∇ · F (u) = 0, (3.9)

by using a finite volume discretisation on a computational domain Ω ∈ R2 with polygonal

boundary, and for a compact time interval, subject to appropriate initial and boundary

conditions.

We begin by making the above discussion more precise.

3.2.1 Conforming triangulations

Definition 3.1 ([84]) A triangulation T of Ω is the finitely many subsets Ti ⊂ T , i =

1, . . . , #T , such that the following conditions are satisfied:

• Ω =
⋃

i∈{1,...,#T } Ti.

• Every Ti ∈ T is closed and the interior of Ti is not empty.

• For any two Ti, Tj ∈ T with i 6= j, Ti ∩ Tj is of empty interior.

• The boundary of every Ti ∈ T is Lipschitz continuous.

Furthermore, a triangulation is called conforming, if
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• Every one-dimensional edge of any Ti ∈ T is either a subset of the boundary ∂Ω

or the edge of another Tj, j 6= i.

Conformity ensures that no hanging nodes occur in the triangulation. Definition 3.1

does not necessarily require that the Ti’s be triangles. Fortunately, finite volume dis-

cretisations are quite flexible and can be implemented on several types of triangulations

and even on hybrid meshes. In this work, we shall implement our finite volume methods

only on conforming triangular grids.

Definition 3.2 Any set of control volumes

S(Ti) := {Ti1 , Ti2 , . . . , TiN}

of size N is called a stencil for Ti, if i1 ≡ i and Tij 6= Tik for j 6= k holds.

3.2.2 Semi-discrete formulation on triangular meshes

For any triangle T ∈ T , the semi-discrete scheme, based on the integral form of (3.9),

has the form
d

dt
ūT +

1

|T |
∫

∂T

F (u) · n ds = 0, for T ∈ T , (3.10)

where

ūT ≡ ūT (t) =
1

|T |
∫

T

u(t,x) dx, for T ∈ T , t ∈ I, (3.11)

denotes the cell average of u over triangle T ∈ T at time t ∈ I, n is the outward unit

normal vector of the triangle’s boundary ∂T and |T | is the area of triangle T .

The boundary ∂T of triangle T ∈ T is given by the union of three edges, say Γ1, Γ2, Γ3,

in the triangulation T , i.e.

∂T =
3⋃

j=1

Γj,

so that the line integral in (3.10) can be represented as

∫

∂T

F · n ds =
3∑

j=1

∫

Γj

F (u(t, s)) · nj ds, (3.12)

where nj is the outward unit normal vector for edge Γj. We discretise the integral on

the right hand side of (3.12) by using a q-point Gaussian integration formula, for some

specific q ∈ N which determines the order of the resulting quadrature rule.

Let G1, . . . , Gq and w1, . . . , wq denote the Gaussian points and weights for the trian-
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gle’s edge Γj. Then, the Gaussian quadrature formula

∫

Γj

F (u(t, s)) · nj ds ≈ |Γj|
q∑

`=1

w`F (u(t, G`)) · nj, j = 1, 2, 3,

yields an order 2q−1 approximation to the line integral (3.12), and so (3.10) is replaced

by

d

dt
ūT (t) +

1

|T |
3∑

j=1

|Γj|
q∑

`=1

w`F (u(t, G`)) · nj = 0. (3.13)

Finally, we replace the terms F (u(t, G`)) ·nj, 1 ≤ ` ≤ q, by a numerical flux function

to approximate the flux across the boundary of neighbouring triangles to T ∈ T . In this

work, we use the Lax-Friedrichs flux, given by

F (u(t, G`)) · n ≈ F(uin(t, G`), uout(t, G`);n) =
1

2
[(F (uin(t, G`)) + F (uout(t, G`))) · n− σ(uin(t, G`)− uout(t, G`))] , (3.14)

where σ is an upper bound for the eigenvalues of the flux function’s Jacobian matrix in

the normal direction n. Moreover, for time t ∈ I, uin(t, G`) in (3.14) is the function value

of the solution’s representation over triangle T , and uout(t, G`) is the function value of

the corresponding representation over the neighbouring triangle that shares the edge Γj

with T .

Thus (3.13) is replaced by

d

dt
ūT (t) = LT (ūT (t)), for T ∈ T , (3.15)

where

LT (ūT (t)) = − 1

|T |
3∑

j=1

|Γj|
q∑

`=1

w`F(uin(t, G`), uout(t, G`)) · nj, (3.16)

for some specific univariate function LT .

The remaining steps are the time discretisation and reconstruction from cell aver-

ages. The reconstruction enables us obtain uin and uout that are used in computing the

numerical flux (3.14). We will first of all describe the time stepping algorithm before

proceeding with the reconstruction technique which is the main theme of this chapter.

3.3 Time Discretisation

Equation (3.15) is a finite set of ordinary differential equations (ODEs) which has to be

discretised by a suitable ODE solver. Due to the nature of hyperbolic conservation laws,
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it is important to select the appropriate time discretisation to use. Our choice of time

discretisations for (3.15) is the class of high-order Strong Stability Preserving Runge-

Kutta (SSPRK) methods which first appeared in the work of Shu & Osher [108, 110] and

were referred to as TVD (Total Variation Diminishing) Runge-Kutta methods. They

have been further investigated and tested in [43, 44, 98, 119, 140]. The use of this class

of methods is important because numerical experiments in [44, 45] show that oscillations

may occur when high order time discretisation methods that lack the strong stability

preserving property are used in solving (3.15).

The idea of the SSP methods is to assume that the first order forward Euler time

discretisation of the set of ODEs (3.15) is strongly stable under a certain norm when

the time step ∆t is suitably restricted, and then to try to find a higher order time

discretisation (Runge-Kutta or multistep) that maintains strong stability for the same

norm, perhaps under a different time size restriction [44]. In [108, 110], the relevant norm

was the total variation norm. The infinity norm can also be another natural possibility.

3.3.1 The CFL condition

It is well known that explicit time stepping methods have to satisfy a restriction on the

time step ∆t due to the Courant-Friedrichs-Lewy (CFL) condition. This condition, in

general, requires that during one step, information from one control volume must not

interact with information coming from other control volumes.

The CFL condition we use in all our numerical experiments is the same one used

in [73] which is similar to the CFL condition proposed in [84]. If we let rT to be radius

of the inscribed circle of triangular cell T ∈ T and if

ζ
(max)
T = max

1≤j≤3q
|f ′1,j(u)n1,j + f ′2,j(u)n2,j|

denotes the maximum normal characteristic speed at the 3q Gaussian integration points

of the three cell edges, then the time step ∆t on an unstructured triangular mesh T is

restricted by the CFL condition

∆t ≤ c ·min
T∈T

rT

ζ
(max)
T

with a CFL constant c.

3.3.2 Optimal SSP Runge-Kutta methods

In [44, 110], optimal (in the sense of CFL coefficient and the cost incurred by additional

operator computations) SSP Runge-Kutta methods were developed and analysed. In



3.3 Time Discretisation 52

this thesis, we advance the cell averages from tn to tn+1 by solving (3.15) using the

SSPRK(2, 2) and the SSPRK(3, 3) methods, where the notation SSPRK(s, p) is used to

denote an s-stage and p-th order method. If we let ūn
T and ūn+1

T denote the finite volume

approximations at t = tn and t = tn+1 respectively for any T ∈ T , then the optimal

SSPRK(2, 2), according to Shu & Gottlieb [44], is given as

ū
(1)
T = ūn

T + ∆tLT (ūn
T ),

ūn+1
T =

1

2
ūn

T +
1

2
ū

(2)
T +

1

2
∆tLT (ū

(2)
T ),

(3.17)

while the optimal SSPRK(3, 3) is given as

ū
(1)
T = ūn

T + ∆tLT (ūn
T ),

ū
(2)
T =

3

4
ūn

T +
1

4
ū

(1)
T +

1

4
∆tLT (ū

(1)
T ),

ūn+1
T =

1

3
ūn

T +
2

3
ū

(2)
T +

2

3
∆tLT (ū

(2)
T ).

(3.18)

We note that the function LT is recomputed for each time step and the SSPRK method

only advances the solution from one time step to another; the superscripts in parenthesis

denote the stage number of the scheme.

The SSPRK(3, 3) is probably the most commonly used SSP Runge-Kutta method.

Despite the fact that it is only third order accurate, it is used even when the spatial

accuracy is much larger than three. Higher order in time is then achieved by using

a smaller time step that is an appropriate power of the mesh size, e.g. [59]. This en-

sures that the order of the time discretisation, if lower than the order of the spatial

discretisation, does not dominate the overall convergence rate of the method. For ex-

ample, when SSPRK(3, 3) is used with a fourth order spatial reconstruction, one can

use ∆t = (∆x)4/3 to get a method that is of fourth order accuracy. The popularity of

SSPRK(3, 3) is a result of its simplicity, its classical stability analysis and the fact that

finding a suitable fourth or fifth order SSP Runge-Kutta method has proved to be a

very difficult task [43, 44, 45]. Moreover, fourth and fifth order methods require extra

operator computations and have more severe CFL restrictions.

In Chapter 4, we will implement an alternative time stepping strategy with the

ADER-WENO method. It is based on Taylor series in time in combination with a

Cauchy-Kowalewski (Lax-Wendroff) procedure and the solution of generalized Riemann

problems.
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3.4 Reconstruction of Polyharmonic Splines from Cell

Averages

We will first of all look at the general case of reconstruction with radial basis functions,

before looking at the specific instance of reconstruction with polyharmonic splines con-

sidered in this work. Other choices of RBFs could be used in the algorithms described

in this thesis, so we prefer to keep the discussion general whenever possible.

3.4.1 Reconstruction by radial basis functions

Given a conforming triangulation T = {T}T∈T and a triangle T ∈ T , consider a stencil

S = {T1, T2, . . . , Tn} ⊂ T

of size #S = n, containing T , i.e. T ∈ S. Suppose the triangles in stencil S are

associated with the linearly independent functionals {λT}T∈S ,

λT (u) =
1

|T |
∫

T

u(x) dx, for T ∈ T and u(x) ≡ u(t,x),

i.e. the cell average operator for triangle T .

Given the cell averages {λT (u)}T∈S for any stencil S ⊂ T , we consider solving the

reconstruction problem

λT (u) = λT (s), for all T ∈ S, (3.19)

where

s(x) =
∑
T∈S

cT λy
T φ(‖x− y‖) + p(x), p ∈ Pd

m, (3.20)

is the form of the reconstruction s with φ : [0,∞) → R is a fixed radial basis function

and ‖ · ‖ is the Euclidean norm on Rd and where Pd
m is defined as the vector space of

all d-variate polynomials of degree at most m − 1. Recall that the dimension of Pd
m

is q = dim(Pd
m) =

(
m−1+d

d

)
. Moreover, λy

T in (3.20) denotes the action of the linear

functional λT with respect to the variable y, i.e.

λy
T φ(‖x− y‖) =

1

|T |
∫

T

φ(‖x− y‖) dy.

Possible choices for φ along with their order m are shown in Table 2.1.

Furthermore, the reconstruction s in (3.20) contains n + q parameters, (n for its

major part and q for its polynomial part) but at only n = #S interpolation conditions
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in (3.19). To eliminate the additional q degrees of freedom, we need to solve (3.19) under

linear constraints ∑
T∈S

cT λT (p) = 0, for all p ∈ Pd
m, (3.21)

where λT is the cell average operator of triangle T . This leads us to the (n+ q)× (n+ q)

linear system [
A P

P T 0

][
c

d

]
=

[
u
∣∣
S

0

]
, (3.22)

where

A = (λx
T λy

Rφ(‖x− y‖))T,R∈S ∈ Rn×n and P = (λT (xα))T∈S,0≤|α|<m ∈ Rn×q,

and u
∣∣
S = (λT (u))T∈S ∈ Rn.

The linear system (3.22) has for any radial basis function φ in Table 2.1 a unique

solution for the unknown coefficients c ∈ Rn (for the major part of s) and d ∈ Rq (for

the polynomial part of s), provided that the set {λT}T∈S of cell average operators is

Pd
m-unisolvent, i.e., for p ∈ Pd

m we have

λT (p) = 0 for all T ∈ T =⇒ p ≡ 0,

in which case any polynomial from Pd
m can uniquely be reconstructed from its values

{λT (p)}T∈S . This standard result dates back to the seminal work of Micchelli [85].

3.4.2 Reconstruction by polyharmonic splines

In the polyharmonic spline reconstruction method, the radial function φd,k is given

in (2.16) with order m = k. An important example which we will use extensively

in this thesis is the case d = k = 2 which is the thin plate spline with φ2,2(r) = r2 log(r).

In this case, the reconstruction s in (3.20) has the form

s(x) =
∑
T∈S

cT λy
T

(‖x− y‖2 log(‖x− y‖)) + d1 + d2x1 + d3x2,

where we let x1 and x2 denote the two coordinates of x = (x1, x2)
T ∈ R2.

As stated in Chapter 2, φd,k possesses an optimal reconstruction property in the

Beppo-Levi space. This variational property, due to Duchon [34], says that for φ ≡ φd,k

the reconstruction s ∈ BLk(Rd) in (3.20) minimises the energy | · |BLk(Rd) among all

elements in BLk(Rd) satisfying (3.19). This implies that for any u ∈ BLk(Rd), we have

|s|BLk(Rd) ≤ |u|BLk(Rd), with u
∣∣
S = s

∣∣
S , (3.23)
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where s ∈ BLk(Rd) is the reconstruction of u from data {λT (u)}T∈S , i.e. s satisfies (3.19).

3.5 Local Lagrange Reconstruction by Polyharmonic

Splines

It was shown in the paper of Iske [63] that the implementation of a polyharmonic spline

interpolation scheme requires carefully handling due to issues relating to numerical sta-

bility. This is mainly because a direct solution of (3.19), (3.21) may lead to coefficient

matrices in (3.22), whose spectral condition number is very large in situations when the

barycentres of two distinct triangles in stencil S ⊂ T are very close. This important ob-

servation, due to Narcowich & Ward [88], motivated the construction of a preconditioner

for the linear system (3.22) in [63] which we described in Subsection 2.3.1. Other tech-

niques for preconditioning the RBF interpolation scheme can be found in the literature,

e.g. [36, 144]. A detailed treatment of the stability of radial basis function interpolants

can be found in the papers of Schaback [100, 102].

In order to use the results in Subsection 2.3.1 on the stable evaluation of the poly-

harmonic spline interpolant, we will work with a scaled reconstruction problem based

on a local Lagrange-type reconstruction. This is appropriate because when constructing

high order finite volume methods, one is concerned with local approximation schemes.

For the sake of our discussion in this section and in Subsection 4.1.3, we will denote

our polyharmonic spline interpolant as sh instead of s, where we take the parameter h

to be the local mesh size of a triangulation T h. We also use the superscript h on the

triangles and stencils in T h. The description of the interpolation problem we present in

this section is the same as in Subsection 2.3.1 but using different notations .

Suppose we have a triangle T h ∈ T h with stencil Sh = {T h
1 , T h

2 , . . . , T h
n } ⊂ T h, i.e.

T h ∈ Sh. Then for some fixed point x0 ∈ R2 and any h > 0, x0 + hx ∈ T h and the

scaled reconstruction problem is

λT hu(x0 + hx) = λT hsh(x0 + hx), T h ∈ Sh, (3.24)

where the set of cell averages operators {λT h}T h∈Sh is P2
k -unisolvent and of moderate

size. In addition, sh denotes the unique polyharmonic spline interpolant of the form

sh(hx) =
∑

T h∈Sh

ch
T hλ

y
T hφ2,k(‖hx− hy‖) + p(hx), p ∈ P2

k , (3.25)

satisfying (3.24) and where we assume, without loss of generality, that x0 = 0.

The coefficients ch ∈ Rn, dh = (dh
α)|α|<k ∈ Rq of the interpolant sh in (3.25) are
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obtained by solving [
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
ch

dh

]

︸ ︷︷ ︸
bh

=

[
u
∣∣
Sh

0

]

︸ ︷︷ ︸
uh

, (3.26)

where

Ah = (λx
T hλ

y
Rhφ2,k(‖hx−hy‖))T h,Rh∈Sh ∈ Rn×n and Ph = (λT h(hx)α))T h∈Sh, 0≤|α|<k ∈ Rn×q,

and u
∣∣
Sh = (λT h(u))T h∈Sh ∈ Rn.

The Lagrange-type representation of the sh is given as

sh(hx) =
∑

T h∈Sh

`h
T h(hx)λT hu(hx) (3.27)

with the Lagrange basis functions `h
T h satisfying

λRh(`h
T h(hx)) =

{
1, for T h = Rh;

0, for T h 6= Rh,
T h, Rh ∈ Sh. (3.28)

Furthermore, `h
T h is defined in such a way that it reproduces polynomials, i.e.

∑

T h∈Sh

`h
T h(hx)λT hp(hx) = p(hx), p ∈ P2

k .

Moreover, since φd,k is conditionally positive definite and if Sh allows polynomial recovery

of degree q, the matrix Ah is regular and thus for all hx ∈ R2, the vector `h(hx) =

(`h
T h(hx))T h∈Sh ∈ Rn together with υh(hx) = (υh

1 (hx), . . . , υh
q (hx))T are the unique

solution of the linear system

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
`h(hx)

υh(hx)

]

︸ ︷︷ ︸
νh(hx)

=

[
Rh(hx)

Sh(hx)

]

︸ ︷︷ ︸
βh(hx)

, (3.29)

where

Rh(hx) = (λy
T hφ2,k(‖hx− hy‖))T h∈Sh ∈ Rn,

Sh(hx) = ((hx)α)|α|<k ∈ Rq.
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From Lemma 2.13, we know that

`h(hx) = `1(x), for every x ∈ Rd. (3.30)

Hence, from (3.30) and using the preconditioning that yielded (2.52) in Chapter 2, the

stable evaluation of sh is given as

sh(hx) = 〈`h(hx), u
∣∣
Sh〉 = 〈`1(x), u

∣∣
Sh〉

= 〈ν1(x), uh〉 = 〈A−1
1 β1(x), uh〉

= 〈β1(x),A−1
1 uh〉

(3.31)

where ν1, A1, `1, β1 are obtained when we set h = 1 in νh, Ah, `h, βh. We note

that the use of (3.31) is not just a theoretical exercise but is actually required in the

computation of a stable reconstruction, especially when the mesh gets finer. For thin

plate spline reconstruction, the form (3.31), while not essential, did improve the quality of

our numerical computations. However, when implementing reconstruction with φ2,3(r) =

r4 log(r), this preconditioning was essential for obtaining any useful numerical results.

3.6 Stencil Selection

The WENO reconstruction method requires construction on a number of admissible

stencils for each triangle T ∈ T . The selection strategy for admissible stencils for

control volumes on an unstructured grid is an important but difficult task, especially as

the stencil size increases. There are usually many possible approaches but care must be

taken in which one is used. To this end, some important considerations for selecting n

suitable stencils Si, i = 1, . . . , n, around a control volume T ∈ Si ⊂ T were proposed

in [38, 72, 116]:

• every stencil should be local (relative to its corresponding center T );

• the number of stencils, n, should be small in order to keep the required computa-

tional cost small;

• in smooth regions of the solution the stencils should, for the sake of good approx-

imation quality, be well-centered (i.e. isotropic);

• in non-smooth (i.e. discontinuous) regions of the solution, one-sided (i.e. anisotropic)

stencils should be preferred in order to avoid interpolation across discontinuities,

which may lead to undesired oscillations.

When the stencil size is not too large, the stencils can be constructed on the basis of

two neighbourhoods of triangles.
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Definition 3.3 ([116]) For triangle T ∈ T the set

Nv(T ) := {R ∈ T : R ∩ T is an edge of T and T 6= R}

is called the von Neumann neighbourhood (there are at most three von Neumann

neighbours) of T . The set

NM(T ) := {R ∈ T : R ∩ T is an edge of T or a node of T}

is called a Moore neighbourhood of T .

(a) von Neumann neighbourhood (b) Moore neighbourhood

Figure 3.1: Two neighbourhoods of the triangle T (marked red).
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Figure 3.2: The three forward sectors of triangle T .

These two neighbourhoods will be inadequate if larger stencils are required. To this

end, in [38], three centred stencils for T were constructed by extending its von Neumann

neighbourhood. This was achieved by adding some of the von Neumann neighbours of

the original von Neumann neighbours of T to the stencil until the desired stencil size

was achieved. Additional stencils can be found by using a sectoral search algorithm
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Figure 3.3: The three backward sectors of triangle T .

as proposed by Harten & Chakravarthy [51]. This is particularly useful in the non-

smooth regions of the solution. The idea in [51] is to include the extended von Neumann

neighbours of a triangle T ∈ T , whose barycentres lie in one of the three forward sectors

Fj, j = 1, 2, 3 (defined below) of T .

Definition 3.4 ([116]) Let T ∈ T be a triangle with vertices v1, v2, v3. The sets

Fj = {x = vj + α1fj1 + α2fj2 : α1, α2 ≥ 0}, j = 1, 2, 3

defined by the vector pairs (f11 = v2 − v1, f12 = v3 − v1), (f21 = v3 − v2, f22 = v1 − v2)

and (f31 = v1 − v3, f32 = v2 − v3) are called the forward sectors of T , see Figure 3.2.

The resulting one-sided stencils are known as forward stencils. In [72], further improve-

ment was made in the construction of one-sided stencils by using additional sectors,

called backward sectors. These additional sectors cover regions around a triangle that

are not covered by the centred stencils or the forward sectors. For any triangle T , its

three backward sectors Bj, j = 1, 2, 3, are obtained by using the three midpoints m1,

m2, m3 of the edges of T . Each backward sector has its origin at one midpoint and its

boundary edges passing through the other two midpoints as shown in Figure 3.3. The

three backward stencils then include the extended von Neumann neighbours of T that

lie in the corresponding backward sector. For any triangle T ∈ T , each of its three back-

ward sectors, Bj, corresponds to an opposite forward sector Fj, j = 1, 2, 3. The geometry

of the complementary six sectors, Fj and Bj, j = 1, 2, 3, allow us to obtain preference

directions of the solution around triangle T , which in turn improves the quality of the

reconstruction on T .

Figures 3.4, 3.5 and 3.6 show three centred stencils, three forward stencils and three

backward stencils of size five for the triangle T (marked red).
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Figure 3.4: Three centred stencils of size five for the triangle T (marked red).

Figure 3.5: Three forward stencils of size five for the triangle T (marked red).

Figure 3.6: Three backward stencils of size five for the triangle T (marked red).
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3.6.1 Enhanced flexibility in stencil selection for polyharmonic

splines

Note that the solution of (3.22) consists of n + q conditions, where we merely require

n > q for the well-posedness of the reconstruction problem (3.20), (3.21). But otherwise,

there is no further restriction on the number n = #S of given data {λT (u)}T∈S . This

makes up a main difference to polynomial reconstruction, where we require n = q, in

which case the number of given data (i.e. number of cell averages) is for any individual

stencil dictated by the chosen degree of the polynomial space. In fact, this restriction

is considered as a major drawback of the polynomial reconstruction scheme as it may

be hard to find the exact degrees of freedom in unstructured grids. In contrast, the

polyharmonic spline reconstruction scheme is much less restrictive when it comes to the

selection of the individual stencils and their sizes. Indeed, the additional freedom allows

for more flexible construction strategies for the stencil selection.

After extensive numerical tests, we observed that for reconstruction with thin plate

splines, seven stencils of size four were most suitable and gave very good approximations

for problems where the solution was smooth everywhere at all times. This required us

to solve a 7 × 7 linear system for each stencil. On the other hand, when we treated

problems with discontinuities or steep slopes in the solution, seven stencils of size seven

were preferred because we were able to get stencils where the interpolant was non-

oscillatory. The seven stencils used in both cases consisted of one centered stencil, three

stencils in the forward sector and three backward stencils. For φ2,3(r) = r4 log(r), we

found that using nine stencils of size nine gave a stable reconstruction in all cases.

The flexibility in stencil sizes also allows us to vary the size of the stencil used for

reconstruction on different cells on the basis of the behaviour of the solution around the

cell. We implement this simple stencil adaptivity strategy in Chapter 5.

3.7 The WENO Reconstruction

As mentioned in Chapter 1, the main idea of the ENO reconstruction method is to

construct several candidate recovery functions si on the stencils Si for a cell T and to

choose the one with the least oscillation. The level of oscillation is computed using

some indicator that assesses the smoothness of si. However, as was observed in [9, 38],

this free adaptation of stencils is definitely not necessary in smooth regions and may

cause loss of accuracy. In addition, the stencils selected cover a large number of cells

and using one stencil means that only a limited number of cells (i.e. limited amount of

information) are used in forming the reconstruction. If all the cells are used, it may be

possible to obtain greater accuracy in smooth regions since all the relevant information
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is used. In one space dimension, the ENO stencil selection procedure also involves many

logical ’if’ structures which may not always be efficient to implement.

The WENO technique is an attempt to improve on ENO with regards to the points

mentioned above. In the WENO reconstruction method, instead of digitally selecting

the least oscillatory recovery function we use a weighted sum:

s :=
∑

i

ωisi

of the recovery functions. The positive weights ωi with
∑

i ωi = 1 are chosen in such

a way that ωi is small if the oscillation of si is high, reflecting the fact that the stencil

lies in a region where the solution is subject to strong variation, and ωi is larger for less

oscillating si, i.e. the stencil Si lies in regions where the solution is smooth.

The method can be summarised in the algorithm below:

Algorithm 3.1 (WENO Reconstruction)

Input: triangle T ∈ T , stencils S = {Si}i satisfying T ∈ Si ⊂ T for all i.

(1) FOR each stencil Si DO

(1a) Compute reconstruction si from {λT (u)}T∈Si
satisfying s

∣∣
Si

= u
∣∣
Si

;

(1b) Compute oscillation I(si) of si according to oscillation indicator I;

(2) Compute non-negative weights ωi satisfying
∑

i ωi = 1 from values I(si).

Output: WENO reconstruction

s(x) =
∑

i

ωisi(x). (3.32)

We remark here that the WENO reconstruction method we implement in this work

follows the construction of Friedrich [38] which has also been used in [10, 73, 145].

A slightly different formulation was proposed by Hu & Shu [59] who computed a set

of so-called optimal linear weights. These linear weights, which are embedded in the

WENO weights, are obtained by expressing a higher degree polynomial as a convex

combination of lower degree polynomials. With this technique, they were able to get

an extra order of convergence using the RK-WENO method on triangular meshes. The

WENO reconstruction we use only provides better accuracy over the corresponding

ENO schemes using the same stencils. We also observed some extra convergence for the

linear advection equation due to the improved accuracy of the WENO reconstruction

method. However, our primary aim is to show the suitability and advantages of using

polyharmonic splines in the WENO framework.
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3.7.1 The oscillation indicator and weights

The WENO reconstruction scheme requires an oscillation indicator I which measures

for any stencil Si the smoothness of the corresponding reconstruction si. To this end,

the Beppo Levi spaces BLk(Rd), the optimal recovery spaces for polyharmonic splines,

defines the oscillation indicator I as

I(s) = |s|2BLk(Rd), for s ∈ BLk(Rd).

Following Powell [95], the semi-norm |s|2
BLk(Rd)

can be computed simply by using the

following formula

|s|2BLk(Rd) = cT Ac, (3.33)

where c and A are defined in (3.22). When using the stable evaluation of sh given

in (3.31), the vector c in (3.33) will consist of the first n elements of the vector α where

A1α = uh.

In addition, A will be the matrix A1 in A1. The ease of computing the oscillation indica-

tor using (3.33) makes the WENO reconstruction with polyharmonic splines particularly

attractive.

Thus, for each triangle T ∈ T we use the oscillation indicator I to compute for

any polyharmonic spline reconstruction si its corresponding weight ωi. We first of all

compute the intermediate values

ω̃i =
1

(ε + I(si))ρ
for some ε, ρ > 0, (3.34)

where the parameter ε is chosen to avoid division by zero, and ρ is a measure of the

sensitivity of the weights to the oscillation indicator. In our numerical experiments,

following [59], we set ε = 10−6 and ρ = 2. The computations are generally not very

sensitive to the values of these parameters.

The non-negative weights for the polyharmonic spline WENO reconstruction s in (3.32)

are then, for any i, given by

ωi =
ω̃i∑
j ω̃j

.

Note that the weights ωi form a partition of unity, i.e.
∑

i ωi = 1.

For any reference triangle T ∈ T , the resulting approximation s ≡ sT to u over T is

used to replace u in the numerical flux (3.14), where in particular uin is replaced by sin

and uout is replaced by sout.
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3.8 Numerical Experiments

3.8.1 Numerical implementation

Let Ωh be a computational domain with a conforming triangulation T h defined on it. Let

Sh be a stencil from the triangulation T h for a triangle T h and let x0 be the barycentre

of T h ∈ Sh ⊂ T h. If x0 +hx ∈ Sh, then x0 +x ∈ S1 where we take h to be the diameter

of the inscribed circle of T h. More precisely, we define T 1 ∈ S1 as

T 1 = {x0 + x : x0 + hx ∈ T h, x0 is the barycentre of T h ∈ Sh}

and x0 is also the barycentre of T 1. The stencil S1 can therefore be defined for T 1

by scaling all the triangles T h ∈ Sh. We use the scaled stencil, the stability result in

Section 3.5 and numerical quadrature to solve the reconstruction problem (3.25).

3.8.2 Linear advection

In this section we solve the two-dimensional linear advection equation

ut + ux1 + ux2 = 0, for u ≡ u(t,x) with x = (x1, x2) ∈ R2, (3.35)

with the following initial condition [84]

u0(x) = u(0,x) = sin2

(
π(x1 +

1

2
)

)
sin2

(
π(x2 +

1

2
)

)
(3.36)

on the computational domain Ω = [−0.5, 0.5]× [−0.5, 0.5] ⊂ R2, by using our proposed

RK-WENO method. We use periodic boundary conditions and carry out the computa-

tion for the time interval I = [0, 1] so that the reference solution û(t,x) coincides at final

time t = 1 with the initial condition u0 in (3.36), so that û(t,x) ≡ u0(x). The velocity

field and initial condition for this problem are shown in Figure 3.7.

For the WENO reconstruction, we use φ1(r) = r, the thin plate spline φ2,2(r) =

r2 log(r) and φ2,3(r) = r4 log(r) and we perform our numerical experiments on a sequence

of triangular meshes of sizes h = 1
8
, 1

16
, 1

32
, 1

64
, 1

128
. The meshes for h = 1

8
to 1

64
are shown

in Figure 3.8. We use a CFL coefficient c = 0.5 in all computations. We remark that

although φ1(r) = r is not a polyharmonic spline in R2, it is a conditionally positive

definite function and thus is associated with a native Hilbert space in which it solves an

optimal recovery problem. We are interested φ1(r) = r because it is an RBF of low order

which will be utilise in the implementation of mesh & order adaptivity in Chapter 6.

For the time stepping, we use SSPRK(2,2) for the WENO reconstruction with φ1(r) =

r while for φ2,2(r) = r2 log(r) and φ2,3(r) = r4 log(r) we use SSPRK(3,3).
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Figure 3.7: (a) Velocity field and (b) initial condition for linear advection equation.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.6482 · 10−1 − 2.0307 · 10−1 − 5.4104 · 10−1 −
1/16 8.5745 · 10−2 0.94 1.0664 · 10−1 0.93 3.0339 · 10−1 0.83
1/32 4.6552 · 10−2 0.88 5.8503 · 10−2 0.86 1.7330 · 10−1 0.81
1/64 2.3901 · 10−2 0.97 3.0283 · 10−2 0.95 8.8660 · 10−2 0.97
1/128 1.1870 · 10−2 1.01 1.5675 · 10−2 1.02 4.4638 · 10−2 0.99

Table 3.1: Linear advection. Results by RK-WENO method using φ1(r) = r.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.8217 · 10−2 − 8.8569 · 10−2 − 2.5821 · 10−1 −
1/16 1.2539 · 10−2 2.44 1.5934 · 10−2 2.47 4.7370 · 10−2 2.44
1/32 2.9192 · 10−3 2.10 3.9512 · 10−3 2.01 1.4845 · 10−2 1.68
1/64 6.1218 · 10−4 2.25 8.4849 · 10−4 2.22 3.5419 · 10−3 2.07
1/128 1.2348 · 10−4 2.31 1.7230 · 10−4 2.30 7.4449 · 10−4 2.21

Table 3.2: Linear advection. Results by RK-WENO method using φ2,2(r) = r2 log(r).

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.1235 · 10−2 − 7.8624 · 10−2 − 2.3586 · 10−1 −
1/16 6.8985 · 10−3 3.15 8.7355 · 10−2 3.17 3.0102 · 10−2 2.97
1/32 9.1148 · 10−3 2.92 1.2630 · 10−3 2.79 4.6647 · 10−3 2.69
1/64 1.1159 · 10−4 3.03 1.5040 · 10−4 3.07 6.7914 · 10−4 2.78
1/128 1.3196 · 10−5 3.08 1.8670 · 10−5 3.01 8.4306 · 10−5 3.01

Table 3.3: Linear advection. Results by RK-WENO method using φ2,3(r) = r4 log(r).

We denote the numerical solution by uh and the errors and the corresponding con-



3.8 Numerical Experiments 66

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(a) h = 1/8

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(b) h = 1/16

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(c) h = 1/32

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

x
1

x
2

(d) h = 1/64

Figure 3.8: Sequence of four meshes with their mesh sizes.
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vergence rates are computed as

Ep(h) = ‖uh − û‖p and kp =
log[Ep(h)/Ep(h/2)]

log(2)
, for p = 1, 2,∞,

for the norms ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞. The results are presented in Tables 3.1 − 3.3.
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Figure 3.9: Solution of (3.35), (3.36) at times t = 0, 0.25, 0.5, and 1 using thin plate
spline reconstruction.

The scheme with φ1(r) = r is implemented with four stencils of size four where we

use one centred stencil, one forward stencil and two backward stencils. For thin plate

splines we use seven stencils of size four, including one centred stencil, three forward

stencils and three backward stencils. Finally, for φ2,3(r) = r4 log(r), we use nine stencils

of size nine corresponding to three centred stencils, three forward stencils and three

backward stencils. We see that the RK-WENO scheme with φ1(r) = r yields almost

first order convergence while the thin plate splines give at least second order convergence.

In fact, we observe some extra convergence in this case particularly in the L1- and L2-

norms. We also observe third order convergence for φ2,3(r) = r4 log(r). This agrees with

what we expect, since our WENO reconstruction scheme is based on local Lagrange
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reconstruction with order p = 2 for φ2,2(r) = r2 log(r) and p = 3 for φ2,3(r) = r4 log(r).

We also observe that the accuracy improves as the order of reconstruction increases.

3.8.3 Burgers’ equation

We further test the accuracy of the RK-WENO method on the two-dimensional nonlinear

Burgers’ equation

ut +

(
1

2
u2

)

x1

+

(
1

2
u2

)

x2

= 0, (3.37)

with the following initial condition

u0(x) = u(0,x) =
1

4
+

1

2
sin(π(x1 + x2)), (3.38)

on the computational domain Ω = [−1, 1] × [−1, 1] ⊂ R2, with periodic boundary

conditions. We carry out the computations to time t = 0.1 where the solution is still

smooth but we have to use Newton’s method to solve the implicit characteristic relation

u =
1

4
+

1

2
sin(π((x1 − ut) + (x2 − ut))),

to obtain it.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 1.2241 · 10−1 − 8.0217 · 10−2 − 1.2673 · 10−1 −
1/16 6.3361 · 10−2 0.95 4.1812 · 10−2 0.94 6.7913 · 10−2 0.83
1/32 3.2207 · 10−2 0.98 2.0638 · 10−2 1.02 3.8495 · 10−2 0.81
1/64 1.5676 · 10−2 1.04 9.9286 · 10−3 1.06 2.1822 · 10−2 0.97
1/128 7.5710 · 10−3 1.05 4.8286 · 10−3 1.04 1.0761 · 10−2 1.01

Table 3.4: Burgers’ equation. Results by RK-WENO method using φ1(r) = r.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 7.9604 · 10−2 − 6.2258 · 10−2 − 1.3799 · 10−1 −
1/16 1.8440 · 10−2 2.11 1.4125 · 10−2 2.14 3.5223 · 10−2 1.97
1/32 5.3053 · 10−3 1.80 4.3031 · 10−3 1.72 9.9759 · 10−3 1.82
1/64 1.3533 · 10−3 1.97 1.3173 · 10−3 1.71 3.2681 · 10−3 1.61
1/128 2.9864 · 10−4 2.18 2.9680 · 10−4 2.15 8.8788 · 10−4 1.88

Table 3.5: Burgers’ equation. Results by RK-WENO method using φ2,2(r) = r2 log(r).

The results are shown in Tables 3.4 − 3.6. Once again we observe the expected order

of convergence.
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h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 5.9812 · 10−2 − 4.3381 · 10−2 − 1.7325 · 10−1 −
1/16 8.8297 · 10−3 2.76 6.5841 · 10−3 2.72 2.8771 · 10−2 2.59
1/32 1.3035 · 10−3 3.01 8.0051 · 10−4 3.04 3.5720 · 10−3 3.01
1/64 1.6407 · 10−4 2.99 1.0217 · 10−4 2.97 4.9199 · 10−4 2.86
1/128 1.9948 · 10−5 3.04 1.2595 · 10−5 3.02 6.5458 · 10−5 2.91

Table 3.6: Burgers’ equation. Results by RK-WENO method using φ2,3(r) = r4 log(r).

We further studied the Burgers’ equation with the initial condition [39]

u0(x) =

{
exp

(
‖x−c‖2

‖x−c‖2−R2

)
, ‖x− c‖ < R;

0, otherwise,
(3.39)

with R = 0.15, c = (−0.2,−0.2)T on the computational domain Ω = [−0.5, 0.5] ×
[−0.5, 0.5] ⊂ R2. We solved this problem using the RK-WENO method with thin plate

spline reconstruction. This was done with stencils of various sizes on a mesh with width
1
64

.
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Figure 3.10: Solution of (3.37), (3.39) on stencils of size four and seven at time t =
1.49514 using the RK-WENO method with thin plate spline reconstruction.

We observed the presence of unwanted oscillations in the solution when we used

stencils of size four as in Figure 3.10(a). The oscillations reduced when we use stencils

of size five and six but were completely absent when we used stencils of size seven, see

Figure 3.10(b).
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3.9 Treatment of Boundary Conditions

Boundary conditions are required in order to apply the finite volume method to update

the boundary cells of a triangulation to the next time level. The proper treatment of

boundary conditions is usually an essential ingredient in the design of efficient numerical

schemes for conservation laws.

The finite volume method has the advantage over other methods in that it allows

boundary conditions to be applied noninvasively. This is because the values of the

variables are located within the control volume, and not at nodes.

For problems with periodic boundary conditions, or problems with compact support

for the entire simulation, the implementation of the boundary conditions requires simply

setting as many ghost cells (also known as fictitious cells) as needed, using either the

periodicity condition or the compactness of the solution. The number of required ghost

cells would usually depend on the stencil size [10]. Furthermore, when implementing

periodic boundary conditions on unstructured grids, the same number of cell edges must

occur on opposite sides of the computational domain [72].

There are several other types of boundary conditions which are all treated differently.

For reflective or symmetric boundary conditions, one would set as many ghost cells as

needed and then use the symmetry/antisymmetry properties to prescribe cell averages

at those ghost cells [10]. For inflow boundary conditions on unstructured meshes, we use

the exact physical inflow boundary condition at the Gaussian points on the boundary,

i.e. for the boundary condition

u(t, %) = g(t, %), % is the boundary of the computational domain,

we evaluate the function g at the Gaussian integration points along the inflow boundary

% and compute the numerical flux as

F(u(t, G`)) = F (g(t, G`)).

Outflow or transmissive boundaries (also known as open-end, transmission, far-field or

nonreflecting boundaries) may occur when implementing finite volume methods on finite

computational domains. This type of boundary condition is regarded as a numerical

attempt to create boundaries that allow the passage of waves without any effect on

them. In the one-dimensional case, techniques for treating outflow boundaries have been

well developed. However, in multidimensions, this is still an area of ongoing research.

Following Toro [128] and Käser [72], we first look for all the Gaussian integration points

G` on the outflow boundary and set uin = uout where uout is the boundary extrapolated

value from the outside of the cell and uin is the boundary extrapolated value from the
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inside of the cell. We then use this to compute the Lax-Friedrich flux (3.14); this does

not affect the flow inside the computational domain.

To illustrate the implementation of inflow and outflow boundary conditions, we con-

sider the problem [94]

ut + x1ux1 − x2ux2 = 0; 1 ≤ x1, x2 ≤ 2, t ≥ 0, (3.40)

in which the velocity field is divergence free. On the two inflow boundaries we have the

following boundary conditions

u(1, x2, t) = 1 + x2
2, 1 ≤ x2 ≤ 2, t ≥ 0,

u(x1, 2, t) = 1 + 4x2
1, 1 ≤ x1 ≤ 2, t ≥ 0.

(3.41)

The initial condition is

u(0,x) = 0, 1 < x1 ≤ 2, 1 ≤ x2 < 2. (3.42)

The steady state solution of this problem is

u(x) = 1 + (x1x2)
2. (3.43)

The RK-WENO method is terminated when

‖un+1 − un‖∞ ≤ 10−5 (3.44)

where un is the RK-WENO solution at time t = tn.
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Figure 3.11: (a) Velocity field and (b) steady state solution for (3.40) - (3.42).

The results are presented in Table 3.7 and show the expected second order conver-

gence.
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h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 3.3589 · 10−2 − 4.3030 · 10−2 − 1.1516 · 10−1 −
1/16 8.6934 · 10−3 1.95 1.1137 · 10−2 1.95 4.1284 · 10−2 1.48
1/32 1.6471 · 10−3 2.40 2.2458 · 10−3 2.31 1.1531 · 10−2 1.84
1/64 3.0564 · 10−4 2.43 4.2257 · 10−4 2.41 2.6712 · 10−3 2.10

Table 3.7: Solution of (3.40) - (3.42) by the RK-WENO method using thin plate spline
reconstruction.

3.10 Doswell’s Frontogenesis

We have so far shown the performance of our RK-WENO method for standard test

problems and we now proceed to use the method to solve a more challenging numerical

test. In this section, we present a simulation of Doswell’s frontogenesis problem [33]. His

idealized kinematic frontogenesis models the interaction of a nondivergent vortex with

a frontal zone that was initially straight. It is now a popular but challenging test case

for advection schemes as it is able to test numerically the ability of a scheme to treat

discontinuities that move with respect to each other, see [55, 122].

We solve the linear equation

ut + σ1(x)ux1 + σ2(x)ux2 = 0, (3.45)

where the velocity field is a steady circular vortex with tangential velocity

vt(r) =
1

vmax

· tanh(r)

cosh2(r)
. (3.46)

This means that

σ1(x) = −x2 − c1

r
vt(r) and σ2(x) =

x1 − c2

r
vt(r),

where (c1, c2) is the center of the rotation and r is the distance of any point in the

domain from the center of rotation i.e. r =
√

(x1 − c1)2 + (x2 − c2)2. The variable

angular velocity is given as ω = vt/r.

In this test case, the initial condition is defined on a square domain [−5, 5]2 as

u(0,x) = u0(x2) = tanh

(
x2 − c2

δ

)
, (3.47)

where δ expresses the characteristic width of the front zone. The exact solution is given

as

u(t,x) = tanh

(
x2 − c2

δ
cos(ωt)− x1 − c1

δ
sin(ωt)

)
. (3.48)
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This solution is a spiral-like structure that starts at the vortex center.

We solve the problem for δ = 10−6 and vmax = 0.3849001 with the vortex centered

at the origin, i.e. (c1, c2) = (0, 0), using the RK-WENO method with thin plate spline

reconstruction. Figure 3.12 shows the velocity field and initial condition for Doswell’s

frontogenesis problem. The method was implemented on a specially created fixed mesh

(Figure 3.13) and also on two other meshes of widths h = 1
40

(Figure 3.14(a)) and h = 1
80

(Figure 3.14(b)).

We first of all performed the WENO reconstruction with seven stencils of size seven

on the specially created mesh. The simulation was run for time t = 4 and we observe that

the solution becomes increasingly multi-scaled in time, with small scale features near

the origin where the vortex flow is strongest. Our computational mesh in Figure 3.13 is

increasing refined towards the origin due to the fact that the essentially non-oscillatory

reconstruction we use may not be able to find a smooth stencil when a coarse mesh is

used near the center of the vortex. If the simulation continues to advance in time, it

may go beyond the resolution of the computational grid. We display the solution at

times t = 1, t = 2, t = 3 and t = 4 in Figure 3.15. By the time t = 4, we notice that the

solution has become a discontinuous rolling surface.
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Figure 3.12: (a) Velocity field and (b) initial condition for Doswell’s frontogenesis.

The simulation results are clearly in agreement with the analytic solution. For in-

stance, we know that in the exact solution (3.48), the maximum deformation of the

frontal zone is near the region where the wind is maximum, see Figure 3.12(a), and this

is accurately reflected in our RK-WENO solution. Moreover, the solutions from our

RK-WENO method are sharp and confirm the essentially non-oscillatory nature of the

reconstruction technique.

We also solve this problem on the specially created mesh (Figure 3.13) where the

WENO reconstruction is implemented with seven stencils of size four. We observe that
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Figure 3.13: Specially created computational mesh for Doswell’s frontogenesis.
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(a) h = 1/40
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(b) h = 1/80

Figure 3.14: Two meshes used for the solution of Doswell’s frontogenesis.
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(a) t = 1 (b) t = 2

(c) t = 3 (d) t = 4

Figure 3.15: Solution of Doswell’s frontogenesis problem at (a) t = 1; (b) t = 2; (c)
t = 3; (d) t = 4.
Results obtained by RK-WENO method on the specially created mesh and with seven
stencils of size seven.
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(a) Cut for solution computed on specially cre-
ated mesh with stencils of size seven.
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(b) Cut for solution computed on specially cre-
ated mesh with stencils of size four.
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(c) Cut for solution on mesh h = 1/40.
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(d) Cut for solution on mesh h = 1/80.

Figure 3.16: Cuts along the x2-axis at time t = 4 for different solutions .

Figure 3.17: Solution of Doswell’s frontogenesis problem by RK-WENO method on
specially created mesh with stencils of size four at t = 4.



3.10 Doswell’s Frontogenesis 77

(a) Solution on h = 1/40 (b) Soltuion on h = 1/80

Figure 3.18: Solution of Doswell’s frontogenesis at t = 4 on meshes with widths (a)
h = 1/40 and (b) h = 1/80.

although there is little numerical diffusion, there are some oscillations near the vortex.

The solution for this instance at time t = 4 is shown in Figure 3.17. In fact, when using

the stencils of size seven there are virtually no oscillations while when using the stencils

of size four we have overshoots of up to 0.260808 and undershoots of up to 0.302022 at

time t = 4. This again confirms that for problems with steep gradients or discontinuities

it is preferable to use seven stencils of size seven for thin plate spline reconstruction.

Finally, we solve the problem on two uniform meshes of widths h = 1
40

and h = 1
80

with the WENO reconstruction done with stencils of size seven. The mesh of width

h = 1
40

yields poor results with great numerical diffusion as seen in Figure 3.18(a). This

is because of the inability of the mesh to resolve the fine scales of the problem as the

solution advances in time. Furthermore, the solution on the mesh with size h = 1
80

has less diffusion but still produces overshoots of up to 0.354603 and undershoots of

up to 0.194495 at t = 4. The results at time t = 4 is shown in Figure 3.18(b). This

mesh has 12800 triangles while our specially created mesh contains 13176 triangles. We

therefore observe that although there is no great difference in the number of triangles,

the mesh that is increasingly refined towards the origin produces far superior results.

Nevertheless, we observe in Figures 3.18(a) and 3.18(b) that even when the solution is

not well resolved, the method remains stable, i.e. the oscillations do not get out of hand.

Further illustration is provided in Figure 3.16 where we show one-dimensional cuts

through the solution at time t = 4 along the x2-axis (x1 = 0) for −2.5 ≤ x2 ≤ 2.5. The

solid lines correspond to the exact solution while the symbol ’·’ corresponds to the numer-

ical solution obtained from the reconstruction with stencils of size seven (Figure 3.16(a))

and four (Figure 3.16(b)) on our specially created mesh as well as the solution obtained

on the meshes of widths h = 1
40

(Figure 3.16(c)) and h = 1
80

(Figure 3.16(d)). These

cuts show the essentially non-oscillatory nature of the method when the reconstruction
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was done with seven stencils of size seven although there is slight numerical diffusion.



Chapter 4

The ADER-WENO method

There are currently several numerical schemes for hyperbolic conservation laws that

yield high order in space. These include the ENO & RK-WENO schemes described

in the previous chapters, spectral methods [10] and the discontinuous Galerkin finite

element methods [23]. Although all these schemes are of high order in space, they are

typically discretised in time with Runge-Kutta methods. To avoid unwanted oscillations,

the Runge-Kutta methods usually need to be SSP (see Section 3.3). However, Ruuth &

Spiteri [98] have shown that the accuracy of the SSP Runge-Kutta methods is essentially

limited, and may consequently place a restriction on the order of the entire scheme. It has

also been proven that all explicit Runge-Kutta methods of order higher than four need

more stages than their order, i.e. s > p [44]. Moreover, as noted in Chapter 3, fourth

and fifth order SSP methods are quite complicated, require extra operator computations

and have a reduced region of absolute stability. Thus, in many practical applications,

a third order SSP Runge-Kutta method is used even for methods with higher order

discretisations in space.

The ADER-WENO method is a recent Godunov-type non-oscillatory finite volume

scheme for hyperbolic conservation laws which can be viewed as a generalization of

the classical first order Godunov method to arbitrary high orders. It was designed to

yield arbitrary high order of accuracy in both space and time for smooth solutions by

combining high order WENO polynomial reconstruction from cell averages with high

order time integration of the numerical flux using the Cauchy-Kowalewski procedure

and the solution of generalized Riemann problems.

The ADER-WENO method was first developed in 2001 for linear advection prob-

lems with constant coefficients by Toro et al [129, 130]. It was initially designed as

an extension of the Modified Generalized Riemann Problem of Toro [128], which is a

simplification of the Generalized Riemann Problem (GRP)-type scheme of Ben-Artzi

and Falcovitz [13]. The successful extension of the ADER-WENO approach to non-

linear problems, systems of conservation laws and other convection dominated problems

79
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relies on the solution of the Generalized Riemann Problem [131, 133]. Titarev and

Toro [125, 127, 132] extended the ADER-WENO schemes to the solution of scalar non-

linear problems while Schwartzkopff et al [105] applied the method to two-dimensional

systems of conservation laws on Cartesian grids. Furthermore, Käser and Iske [73] de-

veloped a version of ADER-WENO finite volume schemes for unstructured triangular

meshes. Dumbser and Munz [35] have also used the ADER methodology for the temporal

discretisation of the discontinuous Galerkin method.

In this chapter, we present an extension of the ADER-WENO schemes in order to

solve conservation laws on unstructured triangulations. We propose a numerical method

that combines high order local polyharmonic spline reconstruction with a high order

flux evaluation method to update cell averages through fluxes across the cell interfaces.

Thus, the main difference between our formulation of the ADER-WENO method and the

previous ADER-WENO schemes in the literature lies in the reconstruction technique.

Unlike the previous schemes that usually rely on WENO polynomial reconstruction

method, we will employ the polyharmonic spline WENO reconstruction. In addition,

because the flux evaluation in the ADER-WENO method is based on the solution of a

set of GRPs at the cell interfaces, the initial data for the GRPs in this chapter will be

the polyharmonic spline interpolant and its derivatives evaluated at the cell interfaces.

In this work, we will implement the ADER-WENO method with second and third

order polyharmonic spline reconstructions only. We use these reconstructions to validate

the proposed method and also as a basis for future higher order reconstructions.

4.1 The ADER-WENO Finite Volume Scheme

In this chapter, we will use the ADER-WENO finite volume method to solve the two

dimensional scalar conservation law

∂u

∂t
+∇ · F (u) = 0, (4.1)

where F (u) = (f1(u), f2(u))T . Integrating (4.1) over a space-time control volume T ×
[tn, tn+1], T ∈ T , we obtain:

ūT (tn+1) = ūT (tn)− 1

|T |

(
3∑

j=1

∫ tn+1

tn

∫

∂Tj

F (u) · nj ds dt

)
, (4.2)

where ūT (tn) is the cell average of the solution in triangle T ∈ T at time t = tn, |∂Tj|,
j = 1, 2, 3 denote the length of the three edges of the triangle and nj in (4.2) is the outer

normal vector of the edge ∂Tj. We approximate (4.2) by the following one-step finite
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Figure 4.1: Flux evaluation across the edge of a triangle from tn to tn+1 using two
Gaussian integration points in space and time.

volume scheme:

ūn+1
T = ūn

T −
∆t

|T |
3∑

j=1

F̃ n
T,j, (4.3)

where ∆t = tn+1 − tn and ūn
T is an approximation to ūT (tn). The numerical flux F̃ n

T,j

across each boundary ∂Tj, j = 1, 2, 3, of the control volume T ∈ T during the time

interval [tn, tn+1] is an approximation to the time-average of the physical flux:

F̂T,j =
1

∆t

∫ tn+1

tn

(∫

∂Tj

F (u) · nj ds

)
dt. (4.4)

Thus, if we discretise the spatial integral over the face of the control volumes and the

time integral in (4.4) using suitable Gaussian numerical quadrature, the numerical flux

will be given by

F̃ n
T,j =

qt∑
α=1

Kα|∂Tj|
qx∑

β=1

LβF (u(tGα ,xGβ
)) · nj, (4.5)

where qt and qx are the number of integration points in time and space respectively. The

weights Kα, Lβ, and the integration points (tGα ,xGβ
) of the time and space discretisation

are determined by an appropriate Gaussian quadrature. Figure 4.1 illustrates the situa-

tion where we have two Gaussian integration points in space and time, i.e. qx = qt = 2.

Since we are constructing schemes only up to third order accuracy, two Gaussian points

will be sufficient for all our computations, c.f. [72, 73, 59].

According to Titarev & Toro [125], the ADER approach consists of three basic steps

• reconstruction of pointwise values of the solution and its derivatives from cell
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averages at the cell interface,

• solution of the Generalized Riemann Problem (GRP) at the cell interface,

• computation of the fluxes at the cell interface to update the solution to the next

time step using the conservative scheme (4.3).

There are several possible reconstruction techniques that can be employed. For in-

stance, we can use a single stencil for reconstruction to obtain a linear ADER scheme.

However, to avoid spurious oscillations near steep gradients and discontinuities, it is

pertinent to use a non-oscillatory reconstruction method. To this end, we use the poly-

harmonic spline WENO reconstruction proposed in Chapter 3, which leads us to a

nonlinear scheme.

4.1.1 The Generalized Riemann Problem at the cell interface

Let us first formulate the GRP which is the basis of the high order flux evaluation of the

ADER-WENO method. Recall that based on the WENO reconstruction technique, the

solution u at time t = tn is represented by a recovery function on each triangular cell

T ∈ T . The recovery functions can be used to define a Generalized Riemann Problem

at each cell interface.

Conventionally, the Riemann problem for a conservation law is defined as a Cauchy

problem with initial conditions consisting of two constant states separated by a dis-

continuity at the origin. A Generalized Riemann Problem, however, involves solving a

Cauchy problem with piecewise smooth but not constant initial data. In the numerical

solution of conservation laws, the cell interface can be treated as a local origin for a

Riemann problem or GRP while the cell averages or recovery functions on both sides of

the cell interface constitute the states.

The GRP was first implemented on unstructured meshes by Käser & Iske [73]. In [73],

at each Gaussian point xGβ
on a cell interface, the multidimensional problem was reduced

to a series of one-dimensional GRPs oriented in the normal direction to the interface.

Thus, the resulting one dimensional Cauchy problem is given as

ut + ∂nF (u) = 0, (4.6)

u(0, xn) =

{
sL(xn), xn < 0,

sR(xn), xn > 0,
(4.7)

where xn is a local spatial coordinate oriented along the outer normal with the origin xGβ

as shown in Figure 4.2 and the partial derivative ∂n is the derivative in the direction

normal to the interface. Moreover, sL is the recovery function (polyharmonic spline
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Figure 4.2: The GRP along the outward pointing unit vector with polyharmonic spline
reconstructions sL(x) and sR(x) approximating the solution u.

interpolant in our case) on the actual cell and sR is the recovery function on the adjacent

cell.

4.1.2 Flux evaluation

One of the main goals of the ADER-WENO method is to compute an approximation

to the function values u(tGα ,xGβ
), 1 ≤ α ≤ qt, 1 ≤ β ≤ qx at the Gaussian integration

points (tGα ,xGβ
). These function values, sometimes referred to as the states of the

solution at the cell interface, are used in the approximation of flux function F in (4.5).

These approximate values of F are in turn used in evaluating the numerical flux F̃ .

In the ADER methodology, an approximation to the interface state u(τ,xGβ
) at the

Gaussian point (τ,xGβ
) is computed in the form of a Taylor series in time, where τ is

the local time τ = t− tn. Working in a local coordinate system xn for xGβ
, the interface

state u(τ, 0) (i.e. the state at xn = 0) is computed by the Taylor series expansion around

local time τ = 0, so that

u(τ, 0) ≈ uk(τ, 0) := u(0, 0) +
k−1∑
m=1

τm

m!
∂

(m)
t u(0, 0), (4.8)

where we take k to be the local approximation order of the polyharmonic spline inter-

polant used in the WENO reconstruction. Equation (4.8) is used in computing uk at an

intermediate time tGα ∈ [tn, tn+1].

We now turn to the computation of each term on the right hand side of (4.8).
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The leading term

The leading term u(0, 0) in the expansion (4.8) represents the initial interaction of the

initial data via the conservation law, and it is the solution of the following Riemann

problem [133, 73]

ut + ∂nF (u) = 0, (4.9)

u(0, xn) =





uL = limx→x−Gβ

sL(x), xn < 0,

uR = limx→x+
Gβ

sR(x), xn > 0,
(4.10)

where the boundary extrapolated values uL and uR are obtained by evaluating the poly-

harmonic spline interpolant inside and outside the actual cell interface at the Gaussian

point xGβ
. We will refer to uL and uR as the left and right states, respectively. The

term u(0, 0), sometimes denoted u∗, is commonly known as the Godunov state. We note

that the use of u∗ alone in approximation u(τ, 0) will result in a first order upwind finite

volume method like the Godunov method.

The higher order derivatives

The next step in the formulation of the ADER-WENO method is to compute the coef-

ficients of the higher order terms in (4.8) in time, i.e. we need to compute ∂
(m)
t u(t,x),

m = 1, . . . , k − 1 at the local interface (0, 0). The ADER-WENO method relies on

replacing all the time derivatives with the spatial derivatives by repeated use of the gov-

erning differential equation via a technique known as the Cauchy-Kowalewski procedure,

or Lax-Wendroff procedure [76]. Hence,

∂
(m)
t u(t,x) = Hm(D(0)u,D(1)u, . . . , D(m)u), m = 1, . . . , k − 1,

where D(j)u is the set of all jth spatial derivatives of u.

To demonstrate the Cauchy-Kowalewski procedure, we need to re-write the governing

PDE (4.1) as

ut + f ′1(u)ux1 + f ′2(u)ux2 = 0, (4.11)

where f ′i(u) = ∂fi(u)
∂u

, i = 1, 2. Thus, the first time derivative is obtained from (4.11) as

ut = −f ′1(u)ux1 − f ′2(u)ux2 . (4.12)

We see that the first derivatives in time can be expressed in terms of the first derivatives

in space. The higher order time derivatives of u can be expressed as spatial derivatives

by successive partial differentiation of (4.12) with respect to t. In this work, we use

splines of order at most k = 3 and thus require only the first and second order time
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derivatives. To this end, we further compute the second derivative

utt = −f ′′1 (u)utux1 − f ′1(u)utx1 − f ′′2 (u)utux2 − f ′2(u)utx2 (4.13)

only. The mixed derivatives utx1 and utx2 in (4.13) are obtained by differentiating (4.12)

with respect x1 and x2. This yields

utx1 = −f ′′1 (u)u2
x1
− f ′1(u)ux1x1 − f ′′2 (u)ux1ux2 − f ′2(u)ux1x2 , (4.14)

utx2 = −f ′′1 (u)ux1ux2 − f ′1(u)ux1x2 − f ′′2 (u)u2
x2
− f ′2(u)ux2x2 . (4.15)

We remark that the time derivatives, when converted to spatial derivatives, involve terms

like f ′(u), f ′′(u), . . . which could become laborious to compute especially for nonlinear

conservation laws. However, using Cauchy-Kowalewski procedure to express the time

derivatives in terms of the space derivatives is necessary for the effective implementation

and accuracy of the ADER-WENO scheme.

We now need to determine the unknown spatial derivatives ux1 , ux2 , . . ., (instead of

the time derivatives) at the quadrature points on the cell interfaces. Before we do this,

we first of all note that by successive differentiation of the governing equation (4.11)

with respect to x1 and/or x2, we can obtain the evolution equations for each of the

spatial derivatives, see [129]. Moreover, the linearized form of (4.11) holds for all the

space derivatives ϕγ = Dγu, 0 < |γ| ≤ k − 1 where Dγ = ∂|γ|
∂x

γ1
1 ∂x

γ2
2

is the γ-th partial

derivative operator. In [130, 73], the Godunov state u∗ was used in the linearization

of (4.11). Hence, the linearized evolution equations for the derivatives are of the form

ϕγ
t + f ′1(u

∗)ϕγ
x1

+ f ′2(u
∗)ϕγ

x2
= 0, 0 < |γ| ≤ k − 1. (4.16)

Equation (4.16) can be re-written as

ϕγ
t +∇ · F γ(u) = 0, (4.17)

where F γ(u) = (f ′1(u
∗)ϕγ, f ′2(u

∗)ϕγ)T .

Following Toro & Titarev [133], the spatial derivatives at xGβ
are obtained by solving

a set of linearized conventional Riemann problems. Now, if the boundary extrapolated

values for the derivatives are given as

ϕγ
L = lim

x→x−Gβ

DγsL(x),

ϕγ
R = lim

x→x+
Gβ

DγsR(x),
(4.18)
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then the linearized Riemann problems for the spatial derivatives are of the form

ϕγ
t + ∂nF γ(u) = 0, (4.19)

ϕγ(0, xn) =

{
ϕγ

L, xn < 0,

ϕγ
R, xn > 0.

(4.20)

The solution ϕγ = Dγu of the linear Riemann problem (4.19), (4.20) obviously ex-

ists since (4.19) is a linear advection equation with constant coefficients with piecewise

smooth initial conditions. Hence all the spatial derivatives at the interface xn = 0 (i.e.

at xGβ
) can be computed locally. We use these values to obtain the form of the time

derivatives and define the value of uk(τ,xGβ
) as

uk(τ,xGβ
) = c0 + c1τ + c2τ

2 + . . . + ck−1τ
k−1 (4.21)

where the coefficients are

ck =
∂

(k)
t u(0, 0)

k!
.

The numerical flux F̃ in (4.3) is then evaluated as

F̃ n
T,j ≈

qt∑
α=1

Kα|∂Tj|
qx∑

β=1

LβF (uk(tGα ,xGβ
)) · nj. (4.22)

Thus, we solve one Riemann problem, which may be linear or nonlinear depending

on the nature of the governing equation, and then solve a sequence of 1
2
k(k + 1) − 1

linear Riemann problems at each Gaussian point. It is therefore clear that using the

leading term alone will give rise to the Godunov method, while using the higher order

terms enables us to compute the flux (4.5) at the desired order of accuracy.

4.1.3 Computing the derivatives

From (4.18) and (4.20), we observe that the derivatives of the recovery function play

a key role in the implementation of the ADER-WENO scheme. More specifically, the

derivatives evaluated at the cell interface serve as the initial data for a set of GRPs. We

stress that care must be taken in the implementation of the derivatives of polyharmonic

spline interpolant in a numerically stable fashion as was the case when we implemented

the polyharmonic spline reconstruction in Section 3.5.

The need for a strategy for the stable and efficient evaluation of derivative of the

polyharmonic spline interpolant motivated the analysis in Subsection 2.3.2. The pro-

posed method of evaluation is an extension of the earlier results of Iske [63, 64] on

approximation order and numerical stability of local polyharmonic spline interpolation.
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In fact, our numerical experiments reveal that this strategy is particularly important as

the mesh becomes finer and when φ2,3(r) = r4 log(r) was used for reconstruction. We

believe our results will be relevant in any future implementation of the ADER-WENO

method with higher order splines.

In the discussion that follows, as in Section 3.5, we will denote the polyharmonic

spline interpolant as sh and we will use the superscript h on triangles, on the triangu-

lation and on stencils. We will be working in R2 for now. Once again, the description

of the interpolation problem and the derivatives of the interpolant in this section is the

same as in Subsection 2.3.2 but with the notation used in Section 3.5.

Now, suppose we have a triangle T h ∈ T h with stencil Sh = {T h
1 , T h

2 , . . . , T h
n } ⊂ T h,

i.e. T h ∈ Sh, then for some fixed point x0 ∈ R2 and any h > 0, we recall that the scaled

reconstruction problem is

λT hu(x0 + hx) = λT hsh(x0 + hx), T h ∈ Sh, (4.23)

where the set of cell averages operators {λT h}T h∈Sh is P2
k -unisolvent and of moderate

size. Moreover, sh denotes the unique polyharmonic spline interpolant of the form

sh(hx) =
∑

T h∈Sh

ch
T hλ

y
T hφ2,k(‖hx− hy‖) + p(hx), p ∈ P2

k , (4.24)

satisfying (4.23) and where we assume, without loss of generality, that x0 = 0. The

derivative of the polyharmonic spline interpolant is given by

Dγsh(hx) =
∑

T h∈Sh

ch
T hλ

y
T hD

γφ2,k(‖hx− hy‖) + Dγp(hx). (4.25)

The coefficients ch = {cT h}T h∈Sh ∈ Rn, dh = (dh
α)|α|<k ∈ Rq of sh in (4.24) and Dγsh

in (4.25) are obtained by solving

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
ch

dh

]

︸ ︷︷ ︸
bh

=

[
u
∣∣
Sh

0

]

︸ ︷︷ ︸
uh

, (4.26)

where

Ah = (λx
T hλ

y
Rhφ2,k(‖hx− hy‖))T h,Rh∈Sh ∈ Rn×n,

Ph = (λT h(hx)α))T h∈Sh,0≤|α|<k ∈ Rn×q,

and u
∣∣
Sh = (λT h(u))T h∈Sh ∈ Rn.
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Suppose the Lagrange-type representation of the sh is given as

sh(hx) =
∑

T h∈Sh

`h
T h(hx)λT hu(hx) (4.27)

with the Lagrange basis functions `h
T h satisfying

λRh(`h
T h(hx)) =

{
1, for T h = Rh;

0, for T h 6= Rh,
T h, Rh ∈ Sh, (4.28)

then

Dγsh(hx) =
∑

T h∈Sh

Dγ`h
T h(hx)λT hu(hx). (4.29)

The vector

Dγ`h(hx) = (Dγ`h
T h(hx))T h∈Sh ∈ Rn,

together with

Dγυh(hx) = (Dγυh
1 (hx), . . . , Dγυh

q (hx))T ,

are the unique solution of the linear system

[
Ah Ph

P T
h 0

]

︸ ︷︷ ︸
Ah

[
Dγ`h(hx)

Dγυh(hx)

]

︸ ︷︷ ︸
Dγνh(hx)

=

[
DγRh(hx)

DγSh(hx)

]

︸ ︷︷ ︸
Dγβh(hx)

, (4.30)

where

DγRh(hx) = (λy
T hD

γφ2,k(‖hx− hy‖))T h∈Sh ∈ Rn

DγSh(hx) = (Dγ(hx)α)|α|<k ∈ Rq.

The system (4.30) is obtained by the differentiation of (3.29), see [144].

We recall from Lemma 2.22 that

Dγ`h(hx) = h−|γ|Dγ`1(x) for every x ∈ R2 and |γ| < k,
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and so in line with Subsection 2.3.2, the stable evaluation of Dγsh is given as

Dγsh(hx) = 〈Dγ`h(hx), u
∣∣
Sh〉

= 〈h−|γ|Dγ`1(x), u
∣∣
Sh〉

= h−|γ|〈Dγν1(x), uh〉
= h−|γ|〈A−1

1 Dγβ1(x), uh〉
= h−|γ|〈Dγβ1(x),A−1

1 uh〉.

(4.31)

We will use the final expression in (4.31) for the evaluation of the derivative of the

polyharmonic spline interpolant at the cell interface.

4.1.4 Algorithm for the ADER-WENO method

Once an approximation for u(tGα ,xGβ
) is obtained using (4.21), the flux can then be

computed via (4.5) and the cell averages can be updated via the two-level explicit

scheme (4.3). In summary, the ADER-WENO algorithm for advancing one step in

time from tn to tn+1 is given as follows.

Algorithm 4.1 (The ADER-WENO method)

Input: Triangulation T with cell averages ūn
T , T ∈ T , time step ∆t > 0 and the order k.

• Compute the polyharmonic splines of order k from cell averages ūn
T using the

WENO reconstruction in Algorithm 3.1.

• FOR each T ∈ T DO

(1) Use the Cauchy-Kowalewski procedure to express the time derivatives in terms

of the space derivatives.

(2) Solve the one-dimensional GRPs at the Gaussian integration points xGβ
at

the cell interface.

(3) Obtain the solution u at the time Gaussian integration points tGα via (4.8).

(4) Compute the numerical fluxes F̃T,j, j = 1, 2, 3 using (4.5).
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(5) Update cell average values ūn+1
T using (4.3).

Output: Updated cell average values ūn+1
T for all T ∈ T .

4.2 Numerical Examples

In this section, we consider the same numerical examples as treated in Section 3.8. To

this end, we once again consider the linear advection equation

ut + ux1 + ux2 = 0, for u ≡ u(t,x) with x = (x1, x2) ∈ R2 (4.32)

with the initial condition

u0(x) = u(0,x) = sin2

(
π(x1 +

1

2
)

)
sin2

(
π(x2 +

1

2
)

)
(4.33)

on the computational domain Ω = [−0.5, 0.5] × [−0.5, 0.5] ⊂ R2 and the time interval

I = [0, 1]. We also consider the Burgers equation

ut +

(
1

2
u2

)

x1

+

(
1

2
u2

)

x2

= 0, (4.34)

with the initial condition

u0(x) = u(0,x) =
1

4
+

1

2
sin(π(x1 + x2)) (4.35)

on the computational domain Ω = [−1, 1]× [−1, 1] ⊂ R2. The computations for Burgers’

equation are carried out on the time interval [0, 0.1].

We solve both problems using the ADER-WENO method for which the WENO re-

construction is performed with φ2,2(r) = r2 log(r) (thin plate splines) and φ2,3(r) =

r4 log(r) only. We use the same stencil sizes as in Chapter 3, i.e we use seven stencils of

size four for thin plate spline reconstruction and nine stencils of size nine for reconstruc-

tion with φ2,3(r) = r4 log(r). We use the CFL number c = 0.5 in all our computations.

We record the errors Ep(h) together with the convergence rates kp for p = 1, 2,∞.

For both the linear advection equation and Burgers’ equation we observe second

and third order convergence for the ADER-WENO method with reconstruction using

φ2,2(r) = r2 log(r) and φ2,3(r) = r4 log(r) respectively as shown in Tables 4.1, 4.2, 4.3

and 4.4. Moreover, the error decreases by an order of magnitude when the formal

order of accuracy increases. We therefore advocate higher order implementations of the

ADER-WENO method, as they can be a contender for very high order time stepping
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h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 5.3421 · 10−2 − 6.9206 · 10−2 − 1.9900 · 10−1 −
1/16 9.9088 · 10−3 2.44 1.3099 · 10−2 2.40 4.2914 · 10−2 2.21
1/32 2.1862 · 10−3 2.17 3.0085 · 10−3 2.12 1.1495 · 10−2 1.90
1/64 5.3530 · 10−4 2.03 7.3156 · 10−4 2.04 3.1629 · 10−3 1.86
1/128 1.2837 · 10−4 2.06 1.7544 · 10−4 2.07 8.3581 · 10−4 1.92

Table 4.1: Linear advection. Results by ADER-WENO method using φ2,2(r) = r2 log(r)
reconstruction.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.1728 · 10−2 − 7.3862 · 10−2 − 1.8427 · 10−1 −
1/16 7.6627 · 10−3 3.01 9.3616 · 10−3 2.98 2.5205 · 10−2 2.87
1/32 1.0337 · 10−3 2.89 1.2984 · 10−3 2.85 3.5693 · 10−2 2.82
1/64 1.3658 · 10−4 2.92 1.6920 · 10−4 2.94 5.1608 · 10−4 2.80
1/128 1.7192 · 10−5 2.99 2.2355 · 10−5 2.92 7.0106 · 10−5 2.88

Table 4.2: Linear advection. Results by ADER-WENO method using φ2,3(r) = r4 log(r)
reconstruction.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 8.1771 · 10−2 − 6.2890 · 10−2 − 1.8409 · 10−1 −
1/16 1.8045 · 10−2 2.18 1.4170 · 10−2 2.15 4.3240 · 10−2 2.09
1/32 4.4844 · 10−3 2.00 3.4782 · 10−3 1.92 1.2590 · 10−2 1.78
1/64 1.0862 · 10−3 2.04 1.1468 · 10−3 1.78 3.4926 · 10−3 1.85
1/128 2.6412 · 10−4 2.04 2.8472 · 10−4 2.01 9.4887 · 10−4 1.88

Table 4.3: Burgers’ equation. Results by ADER-WENO method using φ2,2(r) = r2 log(r)
reconstruction.

h E1(h) k1 E2(h) k2 E∞(h) k∞
1/8 6.3527 · 10−2 − 4.8526 · 10−2 − 1.5243 · 10−1 −
1/16 9.9128 · 10−3 2.68 7.3650 · 10−3 2.72 2.4624 · 10−2 2.63
1/32 1.3373 · 10−3 2.89 1.0215 · 10−3 2.85 3.4390 · 10−3 2.84
1/64 1.8292 · 10−4 2.87 1.3497 · 10−4 2.92 4.6394 · 10−4 2.89
1/128 2.3672 · 10−5 2.95 1.7106 · 10−5 2.98 8.6155 · 10−5 2.81

Table 4.4: Burgers’ equation. Results by ADER-WENO method using φ2,3(r) = r4 log(r)
reconstruction.

methods.
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4.3 Smolarkiewicz’s Deformational Flow Test

We test the robustness of the ADER-WENO method by applying it to a variable-

coefficient linear advection equation of the form (3.45) that possesses a multiscale be-

haviour. The problem we wish to solve here is known as Smolarkiewicz’s deformational

flow test [113] and is often used for a qualitative evaluation of advection schemes for

atmospheric flow simulations. According to Smolarkiewicz [113], the deformational flow

test is a convenient tool for studying a solution’s accuracy on the resolved scales and for

addressing the questions of nonlinear stability due to the existence of unresolved scales.

The highly deformational velocity field of this test specifies symmetrical counter-rotating

vortices and is given by

σ1(x) = Ak sin(kx1) sin(kx2) and σ2(x) = Ak cos(kx1) cos(kx2),

where k = 4π/L, A = 8 and L = 100 units. The computational domain is a square of

side L = 100 units. The initial condition is a cone of height 1 unit and radius 15 units

and it is initialised in the centre of the computational domain. The initial condition can

be written as

u0(x) =

{
1− r

15
, r ≤ 15;

0, otherwise,
(4.36)

where r =
√

(x1 − 50)2 + (x2 − 50)2. The radius of the base of the cone is slightly

greater than the radius of the vortices, so at initial time, the cone belongs to the area of

six vortices, but its main part belongs to the area of the two central ones. Figure 4.3(a)

0 50 100
0

50

100

x
1

x
2

(a) (b)

Figure 4.3: (a) Velocity field and (b) initial condition for Smolarkiewicz’s deformational
test.

shows the velocity field and the contour plot for the initial condition while Figure 4.3(b)
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is a plot of the initial profile.

The analytical solution which was provided by Staniforth et al [120] consists of

spiral distributions which wind tighter and tighter within the square vortex cells. As

the solution evolves in time, filaments are produced within the distribution which may

become too thin to be resolved by the grid.

We will use the ADER-WENO method with thin plate spline reconstruction to solve

the Smolarkiewicz’s deformational flow test on an unstructured triangular grid. We use

a mesh of size h = 1 and time step ∆t = 0.26376. Figure 4.4 shows the solution at time

3T/200, 3T/100, 9T/200, 3T/50, 4T/50 and T/10 (T = 2637.6 is the final time used

in [113]).

Staniforth et al [120] pointed out that for a mesh of resolution 1, used in [113] and

here, the numerical solution is valid only for time t ≤ T/50. After time t = T/50, the

features of the solution become too fine to be captured by a mesh of width h = 1. In

Figure 4.5, we display cross sections of the computed solution and the exact solution

along the middle of the computational domain. We show this comparison with the exact

solution for times t = T/100 and t = 3T/200 (before t = T/50) and for time 3T/50 and

T/10 (after t = T/50). We notice that the approximate solution is in good agreement

with the exact solution before time t = T/50. Some numerical diffusion is observed at

time 3T/50 and the numerical solution becomes more diffusive at time T/10.

In conclusion, this numerical experiment shows that the ADER-WENO method pro-

vides satisfactory results in the resolution of discontinuities. It is also stable and only a

limited amount of diffusion witnessed even when the simulation had advanced in time

and the solution became increasingly multiscaled.

4.4 Some Comments on the RK-WENO and ADER-

WENO Schemes

The main difference between the RK-WENO method described in Chapter 3 and the

ADER-WENO method lies in the time-stepping and flux evaluation procedures. The

RK-WENO method uses an SSP Runge-Kutta time stepping in combination with the

polyharmonic spline WENO reconstruction technique and the Lax-Friedrich flux while

the ADER-WENO scheme combines the WENO reconstruction algorithm with the

ADER time discretisation and flux evaluation procedure.

The use of a multi-stage Runge-Kutta method in the RK-WENO method means that

we need to do a reconstruction for each of the s stages of the Runge-Kutta method. In

the case of the ADER-WENO method, we do not need these multiple reconstructions:

only one reconstruction is needed for each time step. This may seem to be an advan-
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(a) t = 3T/200 (b) t = 3T/100

(c) t = 9T/200 (d) t = 3T/50

(e) t = 4T/50 (f) t = T/10

Figure 4.4: Solution of Smolarkiewicz’s deformational test using ADER-WENO method
at six different times (a) t = 3T/200, (b) t = 3T/100, (c) t = 9T/200, (d) t = 3T/50, (e)
t = 4T/50 and (f) t = T/10 where T = 2637.6.
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(a) t = T/100
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(b) t = 3T/200
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(c) t = 3T/50
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(d) t = T/10

Figure 4.5: Cuts along the x2-axis for Smolarkiewicz’s deformational flow.
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tage in terms of computational cost for the ADER-WENO method, but our numerical

experiments reveal that a lot of time is spent on computing the derivatives of the poly-

harmonic spline interpolant. To be precise, for a polyharmonic spline of order k, we

need to compute Nd = 1
2
k(k + 1) − 1 derivatives. The time used in computing these

derivatives is comparable to the time used for each reconstruction step and k increases

Nd >> s. Moreover, each of these derivatives must also be carefully processed to ensure

that they do not affect the stability and accuracy of the ADER-WENO scheme. For the

RK-WENO method, we use the same preconditioning technique at all stages.

We still advocate further work on the ADER-WENO scheme because of the pos-

sibility of extending them to arbitrary high order in space and time by adding higher

order terms to (4.8) so that the order may be limited only by the available computing

resources.



Chapter 5

Adaptivity

Over the past few decades, the use of adaptive methods has become an integral part of

many solvers for PDEs. These methods are particularly useful because the PDEs that

model a wide variety of phenomena develop multiscale, dynamically singular or nearly

singular solutions in localized regions. In particular, solutions of conservation laws may

display localized structures like shock waves, contact discontinuities and rarefaction

waves or develop steep gradients. Indeed, to enhance the quality of the numerical ap-

proximation and reduce the computational costs, numerical methods may require the

use of fine resolution over only some portions of the computational domain. Effective

and robust adaptive algorithms are particularly useful in multidimensional problems,

where the complexity increases exponentially with the dimension.

Finite volume methods are often enhanced with local mesh refinement methods to

achieve highly accurate solutions of conservation laws, e.g. [26, 123]. In [12, 99], RBF

methods were successfully combined with adaptive strategies for the solution of time de-

pendent partial differential equations. In addition, Li & Hyman [80] combined adaptive

mesh refinement with the finite difference WENO method, Smit et al [112] implemented

grid adaptation with RK-WENO schemes for one dimensional convection dominated

PDEs while an adaptive ADER-WENO scheme for scalar conservation laws was pro-

vided in [73].

In this chapter, we implement adaptive algorithms using the RK-WENO method of

Chapters 3 and the ADER-WENO method of Chapter 4. We first implement a simple

stencil adaptivity algorithm which relies on the flexibility in the choice of stencil sizes for

polyharmonic spline reconstruction. Next, we will implement mesh adaptation wherein

we adaptively modify the computational mesh during the simulation on the basis of an

error indicator. This enables us to optimize computing time as well as the use of storage.

In Chapter 6, we will implement an adaptive algorithm based on both mesh refine-

ment and reconstruction order variation.

97
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Figure 5.1: A triangle T (marked red) with its Moore neighbours (marked green).

5.1 The Error Indicator

The design and implementation of any adaptive method is usually guided by a suitable

error indicator. An error indicator is normally computed for each cell T ∈ T and used

to detect if a cell lies in a region where the approximation error is large. For elliptic and

parabolic problems, there is a well established theory for error estimation, e.g. [8, 90],

and there are also some theoretical results available for linear systems of conservation

laws [84]. However, there are no standard error estimation results for nonlinear con-

servation laws. Thus, in the literature, regions where the solution possesses shocks or

steep gradients are determined by error indicators which may be more or less heuristic.

Tadmor et al [89] provided an a posteriori error estimate using residuals and the Lip′

convergence theory. However, their results apply only to one dimensional conservation

laws. Löhner et al [56] proposed an error indicator based on limiter functions which are

computed from higher-order differences. Their indicators are suitable for high resolution

schemes that are based on slope limiting because there is usually no additional computa-

tional cost. In [118], Sonar & Süli proposed a dual-graph norm error indicator for finite

volume approximations of the Euler equations, while Kurganov et al [70, 75] used the

weak local truncation error in conjunction with quadratic B-splines to develop a smooth-

ness indicator for identifying ’rough’ solution regions. Hubbard & Nikiforakis [60] used

monitor functions to detect regions of the solution with rich structures like shocks.

In this work, polyharmonic spline interpolation will be used in computing an error

indicator for each triangle of a triangulation T . This is an extension of the indicator

used in [48, 73]. In order to compute this error indicator, we first of all assume that

each cell average value ūT , T ∈ T is assigned to the barycenter bT of the cell T , i.e.

ūT ≡ ū(bT ). We then compute a polyharmonic spline interpolant s of the form
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s(x) =
∑

T ′∈NM(T )

cT ′φ2,k(‖x− bT ′‖) + p(x), p ∈ P2
k , (5.1)

where the barycenters bT ′ of the triangles in the Moore neighbourhood NM(T ) of T

(see Figure 5.1 where T is marked red) are regarded as the interpolation points, i.e. s

satisfies the interpolation condition

s(bT ′) = ū(bT ′) for all T ′ ∈ NM(T ).

Note that the Moore neighbourhood does not include T itself so that ū(bT ′) 6= s(bT ′)

in general. The error indicator is then defined as

εT = |ū(bT )− s(bT )|. (5.2)

Therefore, the error indicator ε : T 7→ R estimates the local approximation behaviour

in the neighbourhood of each triangle in T (t). A large value of εT indicates a large

approximation error around T , while a small value of εT indicates a small approximation

error around T . In our numerical examples, this error indicator was able to effectively

locate discontinuities and sharp gradients in the solution u.

5.2 Stencil Adaptivity

In Subsection 3.6.1, we highlighted the flexibility of the stencil selection algorithm in

the polyharmonic spline reconstruction method. In fact, we only have a lower bound for

the stencil size so as to obtain non-trivial recovery. There is actually no upper bound

for the stencil size, although for the sake of computational cost we generally try to keep

it relatively small. We can use this flexibility in stencil selection to adaptively adjust

the size of the stencil used for recovery on different cells during the simulation. When

using thin plate splines for the WENO reconstruction, we observed that stencils of size

four were suitable for smooth regions of the solution while stencils of size seven were

preferred in regions where the solution has strong variation. To this end, we propose

a simple stencil adaptivity strategy on the basis of the size of the error indicator εT as

follows.

Definition 5.1 Suppose ε∗ = maxT∈T εT , and let ϑ be a threshold value satisfying 0 <

ϑ < 1. On cells with εT > ϑ · ε∗, we use stencils of size seven for the thin plate spline

WENO reconstruction otherwise we use stencils of size four.

In our numerical experiments, we use ϑ = 0.05.
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We will use the stencil adaptivity in the WENO reconstruction of the RK-WENO

method to solve the linear advection equation and Burgers’ equation and compare the

results with those obtained when fixed stencil sizes were used.

5.2.1 Example : Linear advection

We solve the linear advection equation (3.35) with initial data [39]

u0(x) =

{
exp

(
‖x−c‖2

‖x−c‖2−R2

)
, ‖x− c‖ < R;

0, otherwise,
(5.3)

with R = 0.15, c = (−0.2,−0.2)T on the computational domain Ω = [−0.5, 0.5] ×
[−0.5, 0.5] ⊂ R2 using the RK-WENO method. The WENO reconstruction is done with

both stencil adaptivity and fixed stencil sizes and we show the errors in the L1-, L2- and

L∞-norms at time t = 0.25 on meshes of sizes h = 1
16

, h = 1
32

and h = 1
64

with 512, 2048

and 8192 triangles respectively.

(a)

Fixed stencil sizes
h E1 E2 E∞ N4 N7

1/16 2.0122 · 10−2 6.1310 · 10−2 3.6325 · 10−1 − 512
1/32 7.9146 · 10−3 2.6562 · 10−2 1.9183 · 10−1 − 2048
1/64 2.3427 · 10−3 1.0529 · 10−2 8.0493 · 10−2 − 8192

(b)

Adapted stencils
h E1 E2 E∞ N4 N7

1/16 1.9748 · 10−2 6.0187 · 10−2 3.6077 · 10−1 433 79
1/32 7.4548 · 10−3 2.5282 · 10−2 1.5023 · 10−1 1858 190
1/64 1.8588 · 10−3 8.2181 · 10−3 8.0328 · 10−2 7456 736

Table 5.1: Comparing the solution of the linear advection equation on (a) fixed stencil
sizes and on (b) adapted stencils.

We see from Table 5.1, which shows the results at t = 0.25, that there is little

difference in the errors when we use fixed stencil sizes and when we use variable stencil

sizes. In fact, we observed a slight improvement when stencil adaptivity was used.

However, we significantly reduce the computational time by using smaller stencils on a

large number of cells. Note that in Table 5.1 and the rest of the tables in this chapter,

N4 denotes the number of cells where stencils of size four were used for reconstruction

while N7 denotes the number of cells where stencils of size seven were used. E1, E2 and

E∞ denote the errors in the L1-, L2- and L∞-norms respectively.
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5.2.2 Example : Burgers’ equation

We further demonstrate the benefits of stencil adaptivity by solving Burgers’ equa-

tion (3.37) with initial condition (5.3) on the computational domain Ω = [−0.5, 0.5] ×
[−0.5, 0.5] ⊂ R2. We solve this problem using stencil adaptation on fixed meshes with

mesh widths h = 1
16

, h = 1
32

and h = 1
64

and also using fixed stencil sizes. The simulation

is run until time t = 1.2.

(a)

Fixed stencil sizes
h E1 E2 E∞ N4 N7

1/16 1.2415 · 10−2 4.4681 · 10−2 4.2769 · 10−1 − 512
1/32 7.1652 · 10−3 3.3673 · 10−2 2.1775 · 10−1 − 2048
1/64 2.2880 · 10−3 1.6900 · 10−2 8.2838 · 10−2 − 8192

(b)

Adapted stencils
h E1 E2 E∞ N4 N7

1/16 1.2318 · 10−2 4.4558 · 10−2 4.2726 · 10−1 445 67
1/32 7.0508 · 10−3 3.3647 · 10−2 2.1631 · 10−1 1940 108
1/64 1.8733 · 10−3 1.4550 · 10−2 8.2533 · 10−2 7625 567

Table 5.2: Comparing the solution of Burgers’ equation on (a) fixed stencil sizes and
on (b) adapted stencils.

We once again see from Table 5.2 that there is little difference in the errors when

fixed stencil sizes are used and when variable stencil sizes are used. Thus, we see that

for both the linear advection equation and Burgers’ equation, stencil adaptivity does

not affect the accuracy of the solution.

Figure 5.2(a) shows the distribution of the stencil sizes for the various cells at time

t = 1.2 on the mesh of width h = 1
32

. The red cells are those where stencils of size

seven were used for the WENO reconstruction, while the green ones are those where

stencils of size four were used for the reconstruction. From Figure 5.2(b), which shows

the distribution of the stencil sizes throughout the simulation, we notice a slight but

steady increase in the number of cells where the reconstruction was done with stencils of

size seven as the simulation advances in time. This is because of the increasing support

of the solution, which is due to the nonlinearity of the Burgers’ equation. This means

that there is also a growth in the length of the shock front. In any case, throughout

the simulation, the reconstruction of over 80% of the cells was done with stencils of size

four, and this can significantly reduce the simulation time.
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Figure 5.2: (a) Stencil size distribution and (b) number of cells with particular stencil
size.
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5.3 Mesh Adaptivity

Using an appropriate criterion, the error indicator (5.2) enables us to effectively decide

which portions of the computational mesh to refine. Moreover, any practical adaptive

mesh method must also concern itself with the derefinement or coarsening of certain

regions. This is particularly important for time dependent hyperbolic problems where

the shocks or steep gradients necessitating refinement of cells can travel through the

whole computational domain leaving a large number of refined elements in their trail as

the simulation advances in time which in turn may slow down the computation greatly.

Thus, we also need a criterion to decide which cells to coarsen.

The strategy we use in marking cells for refining or coarsening is summarized in the

definition below.

Definition 5.2 Let ε∗ = maxT∈T εT , and let ϑr, ϑd be two threshold values satisfying

0 < ϑd < ϑr < 1. We say that a cell T ∈ T is to be refined if and only if εT > ϑr · ε∗,
and T is coarsened or derefined if and only if εT < ϑd · ε∗.

In our numerical experiments, we use ϑr = 0.05 and ϑd = 0.01.

Other methods used in the literature for marking of cells in a triangulation T for

refining or coarsening include the fixed fraction strategy e.g. [40] and the bulking strategy

e.g. [22].

Following [73], a triangular cell T ∈ T is refined by inserting its barycenter bT as a

new node of the triangulation T . A cell T ∈ T is derefined by removing its nodes from

the triangulation T . This means that all cells sharing a node have to be marked for

derefinement for the node to be successfully removed from the triangulation. At each

time step, after all the new nodes have been inserted and the nodes of the triangles to be

coarsened have been removed, the triangulation T is then updated by a local Delaunay

re-triangulation. This enables an adaptive modification of the current triangulation T (t)

yielding a modified triangulation T (t + ∆t) at the next time step.

In contrast to computations on a fixed mesh, we have a new mesh at each time step

and so we need to compute a new set of Gaussian points. The WENO reconstruction

is then performed only after the mesh adaptation has been performed. Therefore, when

using the RK-WENO method, if the q Gaussian points for the edge Γj of the triangle

T ∈ T (tn) are Gn
1 , . . . , G

n
q , then LT (ūT (t)) in (3.15) is defined as

LT (ūT (t)) = − 1

|T |
3∑

j=1

|Γj|
q∑

`=1

w`F(uin(t, G
n
` ), uout(t, G

n
` )) · nj, (5.4)

where uin is the recovery function on T and uout is the recovery function on the adjacent

cell after the mesh has been modified. The reconstruction and the computation of
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LT for the all the stages of the Runge-Kutta method are performed on the modified

triangulation to advance the solution from tn to tn+1. Similarly, in the ADER-WENO

method, the reconstruction step and the implementation of the GRP are performed on

the modified triangulation. We use the CFL number c = 1 in all our computations on

mesh adaptivity.

5.3.1 Initial mesh adaptation

Initial mesh adaptation modifies the base mesh so that it conforms to the structure

of the initial conditions. It uses the same error indicator and refinement/derefinement

strategy that is used during the rest of the simulation. This ensures that the rest of the

computation is based on a valid and representative mesh. The major difference, though,

is that upon refinement of a mesh, the finer grid is initialized again with newly sampled

initial conditions, thus representing it with higher accuracy. The initial mesh refinement

procedure is usually applied to the new mesh until either the maximum number of cycles

N is reached or until all the error indicators are smaller than some threshold value. In

all our computations, we perform the initial mesh refinement till N = 5.

We illustrate this with the initial data for the swirling deformation flow problem

which is the subject of Subsection 5.4.2. The initial condition is a three-body structure

on the computational domain [0, 1]2 and it consists of a smooth hump, a cone and a

slotted cylinder.
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Figure 5.3: (a) A coarse base mesh and (b) the same mesh adapted to the initial
condition of the swirling deformation flow problem with 5 refinement cycles.
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5.3.2 Conservative interpolation

On any adapted grid, fine meshes appear in certain regions of the domain and so the

solution in the fine cells of a grid must be determined from the previous coarser level

through an appropriate interpolation method. In addition, mesh derefinement means

that some fine grid cells are eliminated and must be averaged in some way to determine

the cell averages of the underlying coarser cells. In short, we need to successfully transfer

the cell average data on a triangulation T (tn) onto a modified output triangulation

T (tn+1). It is therefore essential that any interpolation and averaging strategies used do

not destroy the essential features of the underlying finite volume method. In particular,

our methods are conservative and so we must require that any interpolation and/or

averaging maintain numerical conservation whenever possible. In addition, it is necessary

to ensure that interpolation does not generate oscillations near discontinuities.

To transfer the cell average data from T (tn) to T (tn+1), we use a strategy similar to

the one used in [65]. To this end, we first need to compute the intersection of a triangle

T ∈ T (tn+1) and the triangles that it overlaps in T (tn). The area which T ∈ T (tn+1)

overlaps a triangle in T (tn) is known as a tile. These intersection tiles are computed

by the chasing algorithm of O’Rourke [91]. We also need to compute the area of the

intersection tiles and the mass contained in the tiles.

The mass of a function in a cell T at time t is given as

mT =

∫

T

uh(t,x) dx (5.5)

where uh is an approximation to the solution of the governing conservation law.

Now, suppose T ∈ T (tn+1) overlaps l cells in T (tn) which we call T1, . . . , Tl, then

T =
⋃

Ti∈T (tn), i=1,...,l

T ∩ Ti,

where T ∩ Ti are the intersection tiles. The mass on each tile is then computed as

mT∩Ti
=

∫

T∩Ti

uh(t,x) dx, i = 1, . . . , l (5.6)

where uh is the restriction of approximate solution at time tn on T ∩ Ti. We integrate a

non-oscillatory interpolant on Ti ∈ T (tn) over T ∩Ti to compute mT∩Ti
. The total mass

of T ∈ T (tn+1) is then given as

mT =
∑

Ti∈T (tn), i=1,...,l

mT∩Ti
. (5.7)
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We now define the cell average of T ∈ T (tn+1) as

ūT =
1

|T |mT , for all T ∈ T (tn+1). (5.8)

5.3.3 Algorithm

We now provide an algorithm for advancing one step in time from tn to tn+1 using either

the adaptive RK-WENO method or the adaptive ADER-WENO method.

Algorithm 5.1 (The adaptive methods)

Input: Triangulation T with cell averages ūn
T , T ∈ T (tn), threshold values ϑr and ϑd,

the order k of the polyharmonic spline and the method of choice, i.e. RK-WENO or

ADER-WENO.

• Compute the error indicators for each cell T ∈ T (tn).

• Mark cells to be refined or coarsened and perform adaptive modification of trian-

gulation T (tn) to produce T (tn+1) using Definition 5.2.

• Compute the polyharmonic spline interpolant of order k from cell averages using

the WENO reconstruction in Algorithm 3.1.

FOR each T ∈ T DO

- IF method == RK-WENO DO

(1) Compute the numerical flux using (3.14).

(2) Form the numerical scheme (3.15).

(3) Update cell average values ūn+1
T using the SSP Runge-Kutta method (3.17)

or (3.18).

- ELSEIF method == ADER-WENO DO

(1) Use the Cauchy-Kowalewski procedure to express the time derivatives in terms

of the space derivatives.
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(2) Solve the one-dimensional GRPs at the Gaussian integration points xGβ
at

the cell interface.

(3) Obtain the approximation to u at the time Gaussian integration points tGα

via (4.8).

(4) Compute the numerical fluxes F̃T,j, j = 1, 2, 3 using (4.5).

(5) Update cell average values ūn+1
T using (4.3).

Output: Updated cell average values ūn+1
T and a new triangulation T (tn+1).

5.4 Numerical Examples on Mesh Adaptivity

5.4.1 Burgers’ equation

We now look at the adaptive solution of the Burgers’ equation (3.37) with initial condi-

tion (5.3) which is a standard test problem. We note that even for smooth initial data,

the solution of Burgers’ equation typically develops discontinuities in finite time. We

solve this problem with the adaptive RK-WENO method where the reconstruction is

performed with φ1(r) = r, φ2,2(r) = r2 log(r) (thin plate splines) and φ2,3(r) = r4 log(r).

We also obtain the numerical solution using the adaptive ADER-WENO scheme for the

purpose of comparing with the results from the adaptive RK-WENO method.

In all cases, we start our simulation on a base mesh of 288 triangles and use the

strategy in Subsection 5.3.1 to adapt it to the initial condition. The plots for the nu-

merical solution obtained using the RK-WENO method and the ADER-WENO method

with the thin plate spline reconstruction, are shown in Figures 5.4 and 5.6 respectively.

They are displayed for four different times: t = 0, t = 0.4, t = 0.8 and t = 1.2. The

corresponding adapted meshes on which the numerical solution by the RK-WENO and

ADER-WENO methods were computed are shown in Figures 5.5 and 5.7 respectively.

We notice that the initial condition, which is a Gaussian-shaped function deforms, as

the simulation advances in time because of the nonlinearity of the Burgers’ equation. The

shock is propagated throughout the simulation along the diagonal of the computational

domain, and by t = 0.8 a very strong shock is present. The shock is however well resolved

by the adaptive mesh and in regions where the solution becomes smooth, the mesh is de-

refined. This confirms the effectiveness of our adaptive strategy. Figure 5.8(a) shows that

for φ2,2(r) = r2 log(r) and φ2,3(r) = r4 log(r), there is a steady increase in the number
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Figure 5.4: Solution of Burgers’ equation at times (a) t = 0, (b) t = 0.4, (c) t = 0.8,
and (d) t = 1.2 using the RK-WENO method.
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Figure 5.5: Adapted mesh for the solution of Burgers’ equation at times (a) t = 0, (b)
t = 0.4, (c) t = 0.8, and (d) t = 1.2 using the RK-WENO method.
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Figure 5.6: Solution of Burgers’ equation at times (a) t = 0, (b) t = 0.4, (c) t = 0.8,
and (d) t = 1.2 using the ADER-WENO method.
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Figure 5.7: Adapted mesh for the solution of Burgers’ equation at times (a) t = 0, (b)
t = 0.4, (c) t = 0.8, and (d) t = 1.2 using the ADER-WENO method.
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of cells after some time. This is because the support of the solution grows with time

and this leads to a growth in the length of the shock front. However, φ2,3(r) = r4 log(r)

uses fewer cells, which may be a case for the use of higher order methods. We notice

that for the RK-WENO method with φ1(r) = r reconstruction, there is initially a very

large increase in the number of cells. We think this is because during the early stages of

the simulation it does not coarsen the mesh effectively in the regions of the rarefaction

wave. Furthermore, since it is a low order method, the use of coarser meshes will lead

to a decrease in accuracy.
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Figure 5.8: (a) Number of cells for different WENO reconstructions and (b) the num-
ber of cells used in the RK-WENO and ADER-WENO methods with thin plate spline
reconstruction.

Figure 5.8(b) is a comparison of the number of cells when the simulation is done by

the RK-WENO and ADER-WENO methods with thin plate spline reconstruction and

the same number of initial mesh refinement cycles. We observe that throughout the

simulation, the RK-WENO and ADER-WENO methods use approximately the same

number of cells.

5.4.2 Time dependent velocity fields: The swirling deformation

problem

While it is important to study the adaptive solution of nonlinear conservation laws where

shocks may develop in finite time, the resolution of discontinuities for variable-coefficient

linear conservation laws is sometimes a numerically challenging task.

Consider the linear model problem in which the advection of the scalar function

u(t,x) in a specified time dependent velocity field σ(t,x) = (σ1(t,x), σ2(t,x)) is modelled

by the conservation law:

ut + (σ1(t,x)u)x1
+ (σ2(t,x)u)x2

= 0, (5.9)
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with initial condition

u(0,x) = u0(x), x ∈ R2. (5.10)

If we assume that the flow is divergence-free, so that

(σ1(t,x))x1
+ (σ2(t,x))x2

= 0,

everywhere, then (5.9), (5.10) can be written equivalently as a variable coefficient ad-

vection equation

ut + σ1(t,x)ux1 + σ2(t,x)ux2 = 0, (5.11)

u(0,x) = u0(x), x ∈ R2. (5.12)

In this subsection, we look at a useful numerical test due to Leveque [77] for (5.11). It

uses a swirling deformation flow of the form

σ1(t,x) = sin2(πx1) sin(2πx2)q(t) and σ2(t,x) = − sin2(πx2) sin(2πx1)q(t)

on the unit square [0, 1]2. This velocity field satisfies σ1(x) = σ2(x) = 0 on the bound-

aries of the unit square. The time dependence is introduced into the velocity field by

using the function q(t) which we define as

q(t) = cos

(
πt

T

)

on the time interval [0, T ]. The initial condition is a three-body structure on the unit

square as shown in Figure 5.9. It consists of a smooth hump, a cone and a slotted

cylinder like the one used by Zalesak [148]. The smooth hump has the form

g(x) =
1

2
(1 + cos(πr(x))),

where

r(x) = min
(√

(x1 − c1)2 + (x2 − c2)2, r0

)
/r0.

In this test case, c1 = 0.25, c2 = 0.5, and r0 = 0.15. The slotted cylinder and cone have

radii 0.15 and centres at (0.5, 0.75) and (0.5, 0.25) respectively. The cylinder has a slot

of width 0.06 and length 0.22.

When solving this problem with many advection schemes, the steep gradients may be

poorly resolved from initially well-resolved fields due to the stretching and deformation

caused by the velocity field. Figure 5.10(a) shows the velocity field for time 0 ≤ t ≤ T/2

while Figure 5.10(b) shows the velocity field for time T/2 < t ≤ T . Thus, the initially

well-resolved initial condition deforms into three narrow crescents before reversing di-
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rection and returning back to its original shape and position. During simulation, the

flow slows down and reverses direction in such a way that the initial shape should be

recovered at time T , i.e. u(T,x) = u(0,x). This is a very practical test problem since

we know the true solution at time T even though the flow field has quite a complicated

structure.

To ensure that the solution is well resolved throughout the simulation we solve this

problem with an adaptive RK-WENO method with thin plate spline reconstruction.

Here we use T = 1.5 and so at time T/2 the initial data is most deformed. Fig-

ures 5.11, 5.12 and 5.13 show the adapted meshes, the filled contour plots and the 3D

plots respectively of the solution at time t = 0.375, t = 0.75, t = 1.125, and t = 1.5.
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Figure 5.9: (a) The 3D plot and (b) the filled contour plot for initial condition for the
swirling deformation problem.

We observe that the initial shapes have been recovered fairly successfully. Our nu-

merical solution is nonoscillatory but some numerical diffusion is witnessed. We also

observe the shape-preserving property of the method, cf. Figures 5.9(b) and 5.12(d) or

Figures 5.9(a) and 5.13(d). Finally, from Figure 5.14, we see that the number of cells

increases as the initial condition becomes more deformed. We observe the maximum

number of cells at about T/2, where the initial profile is most deformed after which the

number of cells decreases steadily. By the end of the simulation, it reduces to nearly the

level it was after the initial mesh refinement. This example again confirms the robustness

of the adaptive algorithm.

5.4.3 Two-phase flow in porous media

The mathematical modelling of two-phase flow has applications in several branches of

science and engineering. For example, in petroleum engineering, one may wish to look

at the modelling of an oil reservoir: one technique involves modelling an enhanced oil
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Figure 5.10: (a) Velocity field for time 0 ≤ t ≤ T/2 and (b) for time T/2 < t ≤ T for
the swirling deformation problem.

recovery process where a wetting fluid, say water, is injected into an oil-saturated porous

medium in order to displace the oil (the non-wetting fluid) so that it can be collected.

In this subsection, we are interested in oil-water simulations within a homogeneous

porous medium. We provide a detailed description of the model used here in Appendix C.

It is based on the book of Peaceman [93] and on [64, 66].

The two-phase flow of two immiscible, incompressible fluids through a homogeneous

porous medium in the absence of capillary pressure and gravitational effects is modelled

by the following three equations:

• The Buckley-Leverett equation [17]

∂u

∂t
+ v · ∇F (u) = 0, (5.13)

with

F (u) =
u2

u2 + m(1− u)2
(5.14)

where v is the velocity field and m is the ratio of the viscosities of the two fluids.

This means m = µw/µn where µw and µn are the water and oil phase viscosities.

• The incompressibility relation

∇ · v(t,x) = 0. (5.15)
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Figure 5.11: Adapted mesh for the solution of the swirling deformation problem at
times (a) t = 0.375, (b) t = 0.75, (c) t = 1.125, and (d) t = 1.5.
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Figure 5.12: Filled contour plots of the solution of the swirling deformation problem at
times (a) t = 0.375, (b) t = 0.75, (c) t = 1.125, and (d) t = 1.5.
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Figure 5.13: 3D plots of the solution of the swirling deformation problem at times (a)
t = 0.375, (b) t = 0.75, (c) t = 1.125, and (d) t = 1.5.
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Figure 5.14: Number of cells during the simulation of the swirling deformation problem.
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• Darcy’s law

v = −Mt(u)∇p(t,x), (5.16)

where p denotes the pressure and the total mobility

Mt(u) =
u2

µw

+
(1− u)2

µn

(5.17)

depends on the permeability of the medium and on the viscosity ratio m.

The solution u of (5.13), (5.15), (5.16) is the saturation of the wetting fluid (water)

in the non-wetting fluid (oil). Therefore, the value u(t,x) is, at a point x and time t,

the fraction of available volume filled with water.

The five-spot problem

The five-spot problem is a classical model problem from oil reservoir engineering. The

design of the model is such that the reservoir is a square, in which water is injected at

the centre and oil recovered at the corners.
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Figure 5.15: (a) Velocity field and (b) filled contours of the pressure field for the five
spot problem.

In this section, we assume our computational domain Ω = [−0.5, 0.5]2 is a bounded

oil reservoir. The pores of the oil reservoir are filled with the non-wetting fluid (oil,

u ≡ 0), before the wetting fluid (water, u ≡ 1) is injected through a single injection

well, placed at the centre α = (0, 0) of the computational domain Ω. As the simulation

advances in time, the oil is displaced by the water towards the four corner points

C = {(−0.5,−0.5), (−0.5, 0.5), (0.5,−0.5), (0.5, 0.5)}
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of the computational domain Ω.

We solve the five-spot problem by computing a numerical solution of (5.13), (5.15),

and (5.16) on Ω with initial data

u0(x) =

{
1, ‖x− α‖ < R;

0, otherwise,
(5.18)

where R = 0.02 is the radius of the injection well at the centre α ∈ Ω for t ∈ [0, T ].

This initial condition illustrates a situation of pure water being injected into an initially

saturated oil reservoir.

A few assumptions can be made to simplify the five-spot problem. We first assume

unit mobility, Mt ≡ 1, so that the elliptic equations (5.15) and (5.16) decouple from

the Buckley-Leverett equation, which is hyperbolic. Furthermore, we use a stationary

pressure field, i.e.

p(x) ≡ p(t,x) =
∑

β∈C
log(‖x− β‖)− log(‖x− α‖), for all x ∈ Ω, t ∈ [0, T ]

which altogether gives us, from (5.16), a steady velocity field

v = −∇p, (5.19)

which satisfies (5.15). These assumptions mean that we can solve the five spot problem

by a numerical simulation of (5.13).

Figure 5.15 shows the velocity vectors and the filled contour plot of the pressure field

p. We note that the pressure p has singularities at the four corner of Ω and at the centre

α. This leads to high velocity near the five wells, but small velocity between the wells

as reflected in Figure 5.15(b).

The nature and location of the shock front at the interface of the two phases is of

great importance in the simulation of oil reservoirs. Therefore, the accurate resolution of

the shock front must be treated with care. To this end, we will use the adaptive ADER-

WENO method with thin plate spline reconstruction to solve the simplified version of

the five-spot problem. The adaptive mesh on which the solution was computed, and

the advancement of the displacement of oil by water are shown in Figures 5.16 and 5.17

respectively for the ADER-WENO method. The plots are shown at six different times:

t0, t490, t980, t1470, t1960 and t2450.

We note that the water saturation u lies between zero and one; u ≡ 1 means we have

pure water and u ≡ 0 means we have pure oil. We use m = 0.5 as a water-oil viscosity

ratio in our simulation. We also permit outflow boundaries so that the oil can leave the

computational domain.
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(b) t = t490
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Figure 5.16: Adapted mesh for the solution of the five spot problem by the ADER-
WENO method at six different times (a) t = t0, (b) t = t490, (c) t = t980, (d) t = t1470, (e)
t = t1960, and (f) t = t2450.
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(a) t = t0 (b) t = t490

(c) t = t980 (d) t = t1470

(e) t = t1960 (f) t = t2450

Figure 5.17: Colour plots showing the water saturation u of the five spot problem at six
different times (a) t = t0, (b) t = t490, (c) t = t980, (d) t = t1470, (e) t = t1960, and (f)
t = t2450.
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Figure 5.18: Number of cells during the simulation of the five spot problem.

Immediately water is pumped into the well, a shock is formed as we can see in

Figure 5.17(a). This shock, which is at the interface of the pure oil and a mixture of oil

and water, moves from the centre of our model reservoir towards the four production

wells at the corners C of the computational domain Ω. This means that during the

simulation, the oil is displaced by the water. Note that the time at which the shock

front arrives at the production well is known as the breakthrough time.

Due to the adaptive mesh refinement, (see Figures 5.16), the shock front propagation

of the solution is captured very well. We also notice that the mesh stays refined in the

neighbourhood of the injection well. Furthermore, once the shock passes a particular

location, our adaptive strategy coarsens/derefines the mesh behind it to its original

level. This indeed reduces the computational cost while at the same time improving the

accuracy of the method. This again confirms the utility of the adaptive strategy used

in this work.

Figure 5.17 demonstrates how the diameter of the shock front increases linearly with

time and we observe from Figure 5.18 that the number of triangles is approximately

directly proportional to the diameter of the shock front.

In conclusion, we see that our adaptive method with thin plate spline WENO recon-

struction is able to effectively resolve the moving sharp shock fronts with the help of

local mesh refinement. We also see the non-oscillatory nature of the scheme: no spuri-

ous oscillations are observed. Furthermore, the adaptive methods allow us to reduce the

number of required cells, and hence the computational cost, as compared to any method

that uses a fixed computational mesh.
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5.5 Mesh & Stencil Adaptivity

We seek further reduction in computational cost by combining mesh adaptivity with

stencil adaptivity for the RK-WENO method using thin plate spline reconstruction. To

accomplish this, we use the same indicator (5.2) for both mesh adaptivity and stencil

adaptivity. Given the threshold values ϑ, ϑr and ϑd, we will use stencils of size four for

reconstruction on a cell T if εT ≤ ϑ · ε∗ and stencils of size seven if εT > ϑ · ε∗ where we

set ϑ = 0.035. We will employ Definition 5.2 for mesh adaptivity where we set ϑr = 0.05

and ϑd = 0.01. From our numerical tests, we observed that using ϑ < ϑr gave better

results. We demonstrate the benefits of this combination by solving the linear advection

method E1 E2 E∞ N4 N7

mesh adaptivity 2.9060 · 10−3 1.0821 · 10−2 8.3975 · 10−2 - 1480
mesh & stencil adaptivity 2.8926 · 10−3 1.0618 · 10−2 8.2410 · 10−2 1018 474

Table 5.3: Comparing mesh adaptivity and mesh & stencil adaptivity for the linear
advection equation.

equation (3.35) with initial data (5.3) and show the results at t = 0.25 for both mesh

adaptivity and mesh & stencil adaptivity in Table 5.3. At the end of our simulation,

1480 cells were used for mesh adaptivity and 1492 cells were used for mesh & stencil

adaptivity. We noticed a reduction in computational time for mesh & stencil adaptivity

because reconstruction with stencils of size seven was only applied to 474 cells. The
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Figure 5.19: (a) Number of cells for mesh adaptivity and (b) number of cells and stencil
size distribution for mesh & stencil adaptivity for the linear advection equation.

number of cells used in the simulation along with the distribution of stencil sizes for

mesh & stencil adaptivity are shown in Figure 5.19(b).

We will also use the mesh & stencil adaptivity to solve Burgers’ equation (3.37) with

initial data (5.3) and display the results at t = 1.2 for both mesh adaptivity and mesh
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& stencil adaptivity in Table 5.4.

method E1 E2 E∞ N4 N7

mesh adaptivity 1.6848 · 10−3 1.1745 · 10−2 7.8050 · 10−2 - 1762
mesh & stencil adaptivity 1.6702 · 10−3 1.1152 · 10−2 7.7832 · 10−2 1112 574

Table 5.4: Comparing mesh adaptivity and mesh & stencil adaptivity for Burgers’ equa-
tion.
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Figure 5.20: (a) Number of cells for mesh adaptivity and (b) number of cells and stencil
size distribution for mesh & stencil adaptivity for Burgers’ equation.

The number of cells used in the simulation along with the distribution of stencil sizes

for mesh & stencil adaptivity are shown in Figure 5.20(b).

At the end of the simulation, 1762 cells were used for mesh adaptivity while just 1686

cells were used for mesh & stencil adaptivity. We noticed a reduction in computational

time when mesh & stencil adaptivity is implemented because reconstruction with stencils

of size seven was only applied to 574 cells. A significant advantage of the mesh & stencil

adaptivity lies in the fact that the stencil adaptivity step does not require any extra

computation of the error indicators since the same error indicator is used for both the

mesh adaptivity and stencil adaptivity steps. Finally, as displayed in Table 5.4, there is

little difference in the errors and so for the sake of computational cost, we believe that

coupling mesh adaptivity and stencil adaptivity is very useful in practice.



Chapter 6

Mesh & Order Adaptivity

Most adaptive methods for PDEs, including the methods presented in Chapter 5, simply

refine the mesh in regions where the error indicator is large and coarsen the mesh where

the error indicator is small while keeping the order of the recovery function used in the

spatial discretisation fixed.

However, if the solution of the governing PDE is smooth in large portions of the

computational domain (as is usually the case in many physically relevant situations),

then using a mesh-only adaptive strategy in combination with a fixed low order recovery

function may not be very efficient.

Moreover, since high order methods usually degenerate to low order across discon-

tinuities, the use of high order recovery functions, which are computationally more

expensive, may not be the optimal choice near discontinuities. This observation mo-

tivated the design and analysis hp-finite element methods which combine mesh refine-

ment/derefinement with order variation procedures. The theory and implementation of

hp-methods have been treated in several books including Karniadakis & Sherwin [71],

Schwab [104], and Szabo & Babuška [121]. Generally speaking, p-refinement (order vari-

ation) is more efficient in regions where the solution of the governing equation is smooth

while h-refinement (mesh adaptivity) is more suitable near singularities and non-resolved

steep gradients.

The utility of hp-FEMs has been well established for elliptic and parabolic PDEs,

see [4, 58]. They are generally known to offer greater flexibility and improved efficiency

when compared to mesh refinement methods. The application of hp-FEMs to hyperbolic

problems is less standard although some work has been done in this direction. In the

thesis of Bey [14] and in the work of Houston et al [40, 57, 71], the hp-FEM was

used to solve steady hyperbolic problems. Results for time dependent conservation

laws combined with Runge-Kutta time stepping can be found in the work of Devine &

Flaherty [31] and Dedner & Ohlberger [30]. All the work on hp-FEMs for steady and

unsteady conservation laws show their suitability and effectiveness for the numerical

126
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solution of this class of problems. A good reason for using hp-methods in the numerical

solution of hyperbolic problems lies in the fact that although the solution may exhibit

local discontinuities, in large parts of the computational domain, the solution is smooth.

To the best of our knowledge, almost all of the adaptive strategies for finite vol-

ume methods have been based on either mesh movement (r -refinement), e.g. Tang &

Tang [123] and Baines et al [7], or mesh refinement/coarsening (h-refinement) e.g. Smit

et al [112] and Käser & Iske [73]. On the other hand, Kurganov et al [75] implemented a

scheme adaptation algorithm in combination with central finite volume schemes. They

used a low order slope limiting method in regions where the solution is rough and a

high order reconstruction (like the fifth order WENO reconstruction) where the solution

is smooth. Thus, they performed a sort of p-adaptivity with just two possible choices

of recovery functions. The local smoothness was determined by a smoothness indicator

computed from the weak local truncation error in conjunction with cubic B-splines. The

same smoothness indicator was also used to separately implement a mesh adaptation

procedure.

Our main goal in this chapter is to see if the desirable properties of hp-adaptivity

in FEMs can be used as a basis to construct an adaptive finite volume method that

incorporates both mesh refinement and order variation procedures: we call this mesh

& order adaptivity. The method we seek to develop is based primarily on the error

indicator (5.2), the paper of Devine & Flaherty [31] and the work of Houston et al [40, 57].

The order variation procedure used here is not based on changing the degree of the

polynomial as in hp-FEMs, but on varying the order of the radial recovery function. We

have three basis functions available to us: the RBF interpolants with (i) φ1(r) = r, (ii)

φ2,2(r) = r2 log(r) and (iii) φ2,3(r) = r4 log(r).

For mesh refinement/coarsening, we use the newest vertex bisection method which

was first proposed by Sewell [106]. The version of the method we use here is based on the

work of Chen & Zhang [20, 21, 22] who implemented the newest vertex bisection for the

refinement and coarsening on triangular meshes in MATLAB. We present a summary

of the work of Chen & Zhang in Appendix B. We use this mesh refinement strategy,

which is different from the one in Chapter 5, because we need to have control of the

cells in the mesh and the associated data structures as well as keep a record of the

history of subdivisions. The aim of this strategy is to refine conforming triangulations

by dividing triangles into subtriangles, the so-called children of a common father, and to

coarsen such triangulations by unifying the children of a common father, the so-called

brothers. The father is restored by the unification of the children. It is therefore possible

to coarsen a refined triangulation up to its initial state.
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6.1 The Refinement Strategy

In recent years, there has been an explosion of research on the theory, design and im-

plementation of hp-methods. In particular, it has been shown that with a proper com-

bination of local h and p refinement, exponential convergence could be achieved even in

the presence of singularities [104].

A key feature in any hp-algorithm is the decision on each element T ∈ T as to which

strategy (i.e. mesh refinement/derefinement or order variation) to use in order to achieve

the greatest reduction in error in relation to computational cost.

In contrast to mesh-only adaptive methods, a mesh & order adaptive strategy must

have two essential ingredients [57]:

1. an error estimation procedure,

2. a steering criterion for deciding whether to refine or coarsen an element or to

increase or decrease the order of reconstruction.

Based on the size of the local error indicator (5.2), for each triangle T ∈ T , our

algorithm uses an appropriate criterion to determine elements in high error regions

which are to be refined and those in low error regions which are to be derefined. In this

chapter, we still use the strategy presented in Definition 5.2.

Once an element T ∈ T has been marked for refinement or derefinement, a deci-

sion has to be made whether the local mesh size h or the order of the reconstruction

RBF should be varied accordingly. The choice of whether to perform either mesh refine-

ment/coarsening or order refinement/coarsening usually depends on the local smooth-

ness of the solution [5, 57]. The method we propose for determining the local smoothness

of the solution is described in the next section.

We first treat the case where an element has been marked for refinement. If u is locally

smooth, then order enrichment will be more effective than mesh refinement, since the

error is supposed to reduce rapidly within the current element T as the order is increased.

In this way, we benefit from the higher convergence rate of high-order methods. On the

other hand, if u has low regularity within an element T , then mesh refinement will be

performed to improve accuracy. In regions where the solution is non-smooth, raising the

order of reconstruction usually yields no benefit.

If an element has been marked for derefinement, then the strategy is to coarsen the

mesh where the solution u is smooth and decrease the order of the reconstruction RBF

if u is not smooth [4, 40].
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6.2 Estimation of Smoothness

In this section, we are concerned with determining whether the solution is locally smooth

on each element T ∈ T . To address this issue, we first of all recall the theorem of

Wendland [143] which we presented in Section 2.2. The theorem implied that for the

interpolant with the polyharmonic spline φd,k, we have

‖u− s‖Lq(Ω) ≤ Chk−d(1/2−1/q)+ |u|BLk(Ω).

In addition, for interpolation with φ1(r) = r, we recall from Theorem ?? that

|u− s| ≤ Chβ/2|u|Nφ
.

Now, suppose s1, s2 and s3 denote the WENO interpolants corresponding to the

basis functions φ1(r) = r, φ2,2(r) = r2 log(r) and φ2,3(r) = r4 log(r) respectively on a

cell T , then we propose the following measure of smoothness.

If ‖u− s2‖L2

‖u− s1‖L2

≥ c1h

then we expect the solution to be smooth on the basis of the known approximation

theory. Thus, if the element is marked for refinement, we increase the order. Moreover,

if ‖u− s3‖L2

‖u− s2‖L2

≥ c2h

we further increase the order of the reconstruction. If the solution is non-smooth, we

will subdivide the cell.

On the other hand, in low error regions, if

‖u− s2‖L2

‖u− s1‖L2

≥ c1h,

we expect the solution to be smooth and if the element is marked for derefinement, we

coarsen the mesh. If the element that is marked for derefinement lies in a non-smooth

region of the solution; we decrease the order of reconstruction.

6.3 The Algorithm

The mesh & order adaptive algorithm is described below. When enrichment is necessary,

we first enrich the order of approximation on high-error cells in smooth regions by

replacing φ1(r) = r by φ2,2(r) = r2 log(r). Enrichment is repeated until no further order

enrichment can be done. For higher order cells in non-smooth regions, we subdivide
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the triangles. In low error regions, we either coarsen the mesh or reduce the order of

reconstruction depending on the local smoothness. At each time step, several mesh and

order refinement cycles can be performed.

In summary, the mesh & order algorithm for advancing one step in time from tn to

tn+1 is given as follows.

Algorithm 6.1 (Mesh & Order adaptivity)

Input: Triangulation T with cell averages ūn
T , T ∈ T , time step ∆t > 0 and threshold

values ϑr and ϑd.

• Calculate the RK-WENO solution based on an initially refined mesh and φ1(r) = r.

• FOR each T ∈ T DO

(1) Calculate the error indicators εT for each element T ∈ T and compute

ε∗ = maxT∈T εT .

(2) If εT ≥ ϑr · ε∗, mark T for refinement and if εT ≤ ϑd · ε∗, mark T for de-

refinement.

(3) If T is marked for refinement, decide whether to perform mesh refinement or

order enrichment. If the solution is smooth, increase the order and if non-

smooth, refine T and keep the RBF the same on the resulting sub-elements.

(4) If T is marked for coarsening, decide whether to perform mesh de-refinement

or order reduction. If the solution is smooth, coarsen the element and if non-

smooth, reduce the order of reconstruction.

(5) Compute the numerical flux using (3.14).

(6) Form the numerical scheme (3.15).

Output: Updated cell average values ūn+1
T for all T ∈ T .

Other hp-adaptive strategies for hyperbolic problems include the 3-step strategy used

in the thesis of Bey [14]. The goal of this method is to deliver a solution with a specified
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error in only three steps. The first step involves the construction of an initial hp-mesh

as well as setting the required parameters. In the second step, the polynomial degree

is kept fixed while the mesh is refined until the error is reduced to a specified level. In

the third step, the mesh is kept fixed while the polynomial degree is increased until the

error is further reduced to a specified level. Dedner and Ohlberger [30] use a projection

operator for p-adaptivity and an error indicator based on element, projection and jump

residuals for the mesh adaptivity.

There are other methods used in the literature for determining which elements are to

be marked for refinement/derefinement on the basis of the error indicator. For example,

in [40] and [58], the fixed fraction strategy was used with refinement and derefinement

fractions set to 20% and 10% respectively. Devine & Flaherty [31] mark the elements

where the error indicator is greater than a user specified tolerance for refinement and

those less than a specified tolerance for derefinement.

For determining the local smoothness, Houston et al [57] extended the method of

Ainsworth and Senior [5] to hyperbolic problems. The idea in [57] is to approximate the

local Sobolev regularity of the unknown analytical solution on each element in the mesh

and then use it as a basis to decide whether to perform p-refinement or h-refinement.

The decay rates of the Legendre series coefficients were used in [40, 57, 58] to determine

the local smoothness. In Devine & Flaherty [31], a p-refinement-based spatial error

estimate where the local error is taken to be the difference between two approximations

of differing degrees was used.

6.4 Numerical Examples

In this section, the mesh & order adaptive WENO method is used to solve a number

of numerical examples. The performance of the method is verified by comparing the

results with those obtained from mesh-only adaptive methods. We compare the L1-,

L2- and L∞-norm errors as well as the degrees of freedom. Using our computational

experience in Chapter 3, we perform the WENO reconstruction for φ1(r) = r with four

stencils of size four. A constant is added to this interpolant resulting in five degrees

of freedom (dof) in this case. Similarly, for reconstruction with φ2,2(r) = r2 log(r) we

utilise seven stencils of size seven and thus have ten degrees of freedom per stencil while

for reconstruction with φ2,3(r) = r4 log(r) we use nine stencils of size nine and as such

we have 15 degrees of freedom per stencil. We use c1 = c2 = 0.5 in all our computations.

The results in this chapter, especially for Burgers’ equation, are preliminary.
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φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 3106 − − 15530 4.9233 · 10−3 1.4188 · 10−2 3.2784 · 10−1

φ2,2 m-o − 1948 − 19480 3.5932 · 10−3 8.9724 · 10−3 7.9720 · 10−2

φ2,3 m-o − − 1786 26790 2.2741 · 10−3 6.5481 · 10−3 5.8612 · 10−2

m & o 1231 455 264 14665 1.9057 · 10−3 5.6922 · 10−3 4.5337 · 10−2

Table 6.1: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the linear advection equation. Two refinement cycles for each time step.

φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 3308 − − 16540 5.2775 · 10−2 1.7619 · 10−2 9.7894 · 10−2

φ2,2 m-o − 2026 − 20260 3.3717 · 10−3 7.7156 · 10−3 7.3035 · 10−2

φ2,3 m-o − − 1882 28230 1.8462 · 10−3 5.8325 · 10−3 6.1822 · 10−2

m & o 1405 488 283 16150 1.8825 · 10−3 5.3236 · 10−3 4.7781 · 10−2

Table 6.2: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the linear advection equation. Three refinement cycles for each time step.

6.4.1 Example 1: Linear advection

We solve the linear advection equation (3.35) with initial data

u0(x) =

{
exp

(
‖x−c‖2

‖x−c‖2−R2

)
, ‖x− c‖ < R;

0, otherwise,
(6.1)

with R = 0.15, c = (0.4, 0.4)T on the computational domain Ω = [0, 1] × [0, 1] ⊂ R2.

The simulation is run till time t = 0.25. The Gaussian shaped initial profile is advected

along the diagonal of the computational domain without essentially changing shape. The

centre of the base of the Gaussian-shaped function is initially at (0.4, 0.4) and moves to

(0.65, 0.65) by the end of the simulation.

We solve this problem on a base mesh of 512 elements which we subject to five

initial mesh refinement cycles. We compute the solution first of all with a WENO

reconstruction using φ1(r) = r before applying the mesh refinement and order variation.

We ensure in all our computations that the order of neighbouring elements differs by at

most one. In Tables 6.1 and 6.2, we demonstrate the performance of the mesh & order

adaptive algorithm as compared to the mesh-only adaptive methods of Chapter 5 with

two and three refinement cycles per time step.

We see a significant reduction in the degrees of freedom while providing errors similar

to the highest order of reconstruction. In Figures 6.1 and 6.2, we present the mesh &

order mesh showing the different orders of reconstruction for different cells generated

at t = 0.25 after two and three refinement cycles respectively. The red, green and blue

cells indicate cells where the reconstruction is performed with φ1(r), φ2,2(r) and φ2,3(r)

respectively. We observe that the reconstruction around the discontinuity is performed
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Figure 6.1: Mesh & order adaptivity mesh for linear advection problem. The red, green
and blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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Figure 6.2: Mesh & Order adaptivity mesh for linear advection problem. The red, green
and blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 2856 − − 14280 5.5145 · 10−4 2.6087 · 10−3 8.2692 · 10−3

φ2,2 m-o − 2294 − 22940 4.0455 · 10−4 1.7554 · 10−3 6.0136 · 10−3

φ2,3 m-o − − 2018 30270 2.7332 · 10−4 1.0061 · 10−3 4.0947 · 10−3

m & o 1470 528 204 15690 2.5218 · 10−4 1.0237 · 10−3 3.9813 · 10−3

Table 6.3: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the kinematic wave equation. Two refinement cycles for each time step.

φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 3082 − − 15410 4.5331 · 10−4 1.9881 · 10−3 7.4802 · 10−3

φ2,2 m-o − 2410 − 24100 3.4011 · 10−4 8.3914 · 10−4 5.6018 · 10−3

φ2,3 m-o − − 2216 33240 1.9752 · 10−4 6.2371 · 10−4 3.8806 · 10−3

mesh & order 1783 432 249 16970 2.0418 · 10−4 6.9186 · 10−4 4.0344 · 10−3

Table 6.4: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the kinematic wave equation. Three refinement cycles for each time step.

with very small low order elements while away from the discontinuity, larger higher order

elements are used. Where the solution is zero (i.e. outside the support of the solution

and its vicinity), there is no benefit using a high order reconstruction and so a low order

recovery function is used.

6.4.2 Example 2: Kinematic wave equation

In this example, we consider the kinematic wave equation [16]

ut + 2ux1 + 2ux2 = 0, 0 < x1, x2 < 1, t > 0, (6.2)

with the initial and Dirichlet boundary conditions specified so that the exact solution is

the very steep but smooth wave

u(t,x) =
1

2
(1− tanh(100x1 − 10x2 − 180t + 5)), (6.3)

inclined at an angle of approximately 84 degrees with the positive x1 direction that

moves from left to right at an angle of 45 degrees across the square domain as the

time progresses. We solve this problem using both mesh adaptivity and mesh & order

adaptivity for 0 < t ≤ 0.10.

Once again, we solve this problem on a base mesh of 512 elements which we subject to

five initial mesh refinement cycles. In Tables 6.3 and 6.4, we compare the performance of

the mesh & order adaptive algorithm and the mesh-only adaptive methods with two and

three refinement cycles per time step. We once again see a significant reduction in the

degrees of freedom while providing errors similar to the highest order of reconstruction.
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Figure 6.3: Mesh & Order adaptive mesh for kinematic wave equation. The red, green
and blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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Figure 6.4: Mesh & Order adaptive mesh for kinematic wave equation. The red, green
and blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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Figure 6.5: (a) Initial condition and (b) solution at t = 0.1 of the kinematic wave
equation.

φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 2436 − − 12180 5.2811 · 10−3 3.9832 · 10−2 8.1573 · 10−2

φ2,2 m-o − 1848 − 18480 3.0155 · 10−3 2.4811 · 10−2 7.5725 · 10−2

φ2,3 m-o − − 1792 26880 2.3709 · 10−3 1.3494 · 10−2 6.3697 · 10−2

m & o 1135 467 218 13615 2.7682 · 10−3 1.5214 · 10−2 6.5002 · 10−2

Table 6.5: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the Burgers’ equation. Two refinement cycles for each time step.

In Figures 6.3 and 6.4, we present the mesh & order mesh showing the different orders

of reconstruction for different cells generated at t = 0.1 for two and three refinement

cycles respectively. The initial condition and the solution at time t = 0.1 are shown in

Figure 6.5. We see that the steep wave is well resolved and there are also no unwanted

oscillations.

6.4.3 Example 3: Burgers’ equation

Finally, we consider the Burgers’ equation (3.37) with initial condition (5.3) on the

computational domain Ω = [−0.5, 0.5] × [−0.5, 0.5] ⊂ R2 and on the time interval

I = [0, 0.6].

In Figures 6.6 and 6.7, we present the mesh & order mesh showing the different orders

φ1 φ2,2 φ2,3 dof E1 E2 E∞
φ1 m-o 2580 − − 12900 4.8246 · 10−3 3.7335 · 10−2 7.6023 · 10−2

φ2,2 m-o − 1910 − 19100 2.5049 · 10−3 2.1843 · 10−2 6.5741 · 10−2

φ2,3 m-o − − 1856 27840 1.8667 · 10−3 1.2694 · 10−2 5.8862 · 10−2

mesh & order 1628 474 206 15970 1.9653 · 10−3 1.4175 · 10−2 6.1239 · 10−2

Table 6.6: Error comparison for mesh-only (m-o) and mesh & order (m & o) adaptivity
for the Burgers’ equation. Three refinement cycles for each time step.
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Figure 6.6: Mesh & Order adaptive mesh for Burgers’ equation. The red, green and
blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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Figure 6.7: Mesh & Order adaptive mesh for Burgers’ equation. The red, green and
blue cells are for reconstruction with φ1(r), φ2,2(r), φ2,3(r) respectively.
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of reconstruction for different cells generated at t = 0.6 for two and three refinement

cycles respectively. We see again from both figures that the reconstruction around

the discontinuity is performed with very small low order elements while away from

the discontinuity but either near or within the support of the solution, larger higher

order elements are used. Moreover, outside the support of the function, we perform the

reconstruction with φ1(r) as we derive no benefit from using high order elements. The

numerical results are shown in Tables 6.5 and 6.6.



Chapter 7

Conclusion and Outlook

7.1 Conclusion

The main goal of this thesis has been the coupling of the power of radial basis function

interpolation with non-oscillatory finite volume methods for the numerical solution of

the hyperbolic conservation laws. Radial basis functions are known to be suitable for

reconstruction on both structured and unstructured grids and can also be effectively

implemented on complex computational domains. We have also shown in this work

that adaptivity can be a very useful attribute of a numerical scheme for hyperbolic

conservation laws. Since the solutions of conservation laws may develop discontinuities

in finite time, adaptive methods can effectively capture these critical features with high

resolution and accuracy.

In Chapter 2, we introduced the concept of interpolation with radial basis functions.

We provided the necessary theoretical background and looked at the conditions for the

existence of the solution of the interpolation problem. We proceeded to concentrate on

generalized interpolation where the interpolatory data does not consist of point evalua-

tions but more general observation functionals. For the purposes of this work, we were

specifically interested in the case where the functionals are cell average operators.

The finite volume methods in this thesis are based on local reconstruction methods

using polyharmonic splines. To this end, we restated existing results concerning local

Lagrange interpolation by polyharmonic splines in terms of cell average operators instead

of point evaluations. We thereafter proved new results concerning the Lagrange basis

functions, approximation order and numerical stability of derivatives of the polyharmonic

spline interpolant. These results are essential in the implementation of the numerical

methods in Chapter 4.

Chapter 3 was a reformulation of the RK-WENO method where the reconstruc-

tion step of the spatial discretisation was done using polyharmonic splines rather than

polynomials. The implementation of this reconstruction method relies on the results

139
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in Chapter 2 on the stable evaluation of polyharmonic splines. We provided a detailed

treatment of all issues relating to the RK-WENO method such as time stepping and ef-

ficient stencil selection strategies. The polyharmonic spline reconstruction was found to

be useful because of its flexibility, its optimality properties and because its native space

provides a natural choice for the oscillation indicator of the WENO reconstruction. Our

implementation of the RK-WENO method yielded the expected order of convergence for

standard test problems. To further test the robustness of the RK-WENO method, we

used it to solve Doswell’s frontogenesis problem which exhibits a multiscale behaviour.

We further sought to combine our stable and essentially non-oscillatory polyharmonic

spline reconstruction with a different time stepping and flux evaluation strategy. To this

end, in Chapter 4, we combine the ADER time discretisation with the polyharmonic

spline WENO reconstruction method. First, we expressed the numerical solution at all

the spatial Gaussian integration points as a truncated Taylor series in time. The time

derivatives were then replaced by space derivatives by the successive differentiation of

the governing equation using the Cauchy-Kowalewski procedure. The approximate value

of the solution and its space derivatives at cell interfaces are obtained by solving a set of

Generalized Riemann Problems where the polyharmonic spline WENO interpolant and

its derivatives are used for initial data. The solution of the GRPs forms the basis of

the high order flux evaluation of the ADER-WENO method. We obtained second order

convergence for reconstruction with φ2,2(r) = r2 log(r) and third order convergence for

φ2,3(r) = r4 log(r) when the method was used to solve the linear advection equation and

Burgers’ equation. We also showed the good performance of the method when used in

the numerical simulation of Smolarkiewicz’s deformational flow test.

In Chapters 5 and 6, we demonstrated the utility of adaptivity as a tool for improving

the quality of numerical schemes for conservation laws. We examined three types of

adaptivity.

1. Stencil adaptivity : Here we used the flexibility in the choice of stencil sizes for poly-

harmonic spline reconstruction to use larger stencils for reconstruction in regions

where the solution has steep gradients or discontinuities and used smaller stencils

in regions of the computational domain where the solution is smooth. We showed

that this was an effective way of reducing computational cost without reducing the

quality of our numerical computations.

2. Mesh adaptivity : Using a suitable error indicator, the quality of the numerical ap-

proximation using the RK-WENO and ADER-WENO methods is enhanced and

the computational costs reduced by refining and coarsening the computational

mesh over some portions of the computational domain on the basis of an appro-

priate criterion. The performance of mesh adaptivity was validated with several
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numerical examples. We also looked at the application of adaptive methods in the

simulation of two-phase flow through porous media. Further enhancements were

provided by coupling mesh adaptivity and stencil adaptivity.

3. Mesh & Order adaptivity : We presented some results on the design and imple-

mentation of an RK-WENO method that combined mesh adaptivity and order

variation. The idea of mesh & order adaptivity was motivated by hp-adaptivity in

finite element methods. We simultaneously adjusted the local grid resolution and

the order of the recovery functions on the basis of suitable error estimates. In the

end, we were able to achieve good accuracy along with a reduction in the degrees

of freedom. To the best of our knowledge, this is the first instance of mesh & order

adaptivity for finite volume methods.

7.2 Outlook

This thesis has focused mainly on the use of polyharmonic splines in the WENO re-

construction method. We have shown the suitability of using this class of RBFs in the

development of finite volume methods. One possible area of further study is to use other

radial basis functions in the WENO reconstruction method. We note however that one

of the main reasons we worked with polyharmonic splines is the explicit knowledge of its

native space which also provides a natural choice for the oscillation indicator. In most

other cases of interest, the native spaces of the conditionally positive definite functions

are usually characterizable via properties of the Fourier transform. This characterization

is therefore quite implicit and does not allow for functions on bounded domains explic-

itly. Therefore, the suitable choice of oscillation indicator will need to be investigated

for any other radial recovery function one may wish to use.

The computation of optimal weights for polyharmonic spline WENO reconstruction

along the lines of Hu & Shu [59] needs to be investigated.

As concerning the ADER-WENO method, further investigation is needed on the ap-

propriate oscillation indicators and weights for the derivatives of the polyharmonic spline

WENO reconstruction. This may possibly improve the overall quality of the ADER-

WENO method. At the moment we use the same oscillation indicator and weights for

both the WENO reconstruction and all its weights. It will also be desirable to extend

the ADER-WENO method to higher order polyharmonic splines (k ≥ 4). Successful

implementation of the ADER-WENO method with higher order polyharmonic splines

will make it a contender for very high order time stepping.

There is also a need to extend the numerical methods in this thesis to conservation

laws in higher space dimensions especially R3 where there may be several useful applica-
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tions. Extension to nonlinear hyperbolic systems as well as problems with source terms

may be a useful research direction to pursue.

One area of further research could be the coupling the mesh adaptivity with time

adaptivity in order to use small time steps only for small cells and allow for larger time

steps in larger cells in order to reduce numerical diffusion. In the implementation of

mesh adaptivity in Chapter 5, the smallest cell was used in determining the time step

and this yielded an increase in the simulation time.

We have shown that the finite volume methods with RBF reconstruction can be

implemented with several adaptive techniques. It will therefore be useful to see how

mesh movement (r -refinement) can be combined with our RBF based finite volume

methods.



Appendix A

Notations and Abbreviations

A.1 Notations

[L∞(Rd)] Space of measurable functions on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

[L∞(R+ × Rd)] Space of measurable functions on Rd and R+ . . . . . . . . . . . . . . . . . . . . . . . 3

[C∞
0 ([0,∞)× Rd)] Space of smooth functions on Rd and R+ with compact support . 3

[C1(R)] Space of continuous functions on R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

[L1(Rd)] Space of integrable functions on Rd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

[BV (Rd)] Space of functions with bounded variation on Rd . . . . . . . . . . . . . . . . . . . . . . . . . 4

[Pd
m] Space of all real-valued polynomials in d variables of degree at most m− 1 . . . 17

[C∞] Space of smooth functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

[Nφ] Native Hilbert space for conditionally positive definite function φ . . . . . . . . . . . . . 22

[φd,k] Polyharmonic spline in dimension d and of order k . . . . . . . . . . . . . . . . . . . . . . . . . . .23
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Appendix B

Newest Vertex Bisection

In this appendix, we briefly describe the mesh adaptation strategy used in Chapter 6

for mesh & order adaptivity. The method, known as newest vertex bisection, was first

proposed by Sewell [106] in 1972. However, the description of the newest vertex bisection

method presented in this appendix is based on the work of Chen & Zhang [20, 21, 22].

In this series of papers, they provide a MATLAB implementation of the newest vertex

bisection for the refinement and coarsening of triangular meshes.

Suppose we have a polygonal domain Ω ⊂ R2 with a conforming triangulation T .

We denote the set of vertices of the triangulation by V(T ) and the set of all edges by

E(T ). For a vertex x and an edge e ∈ E(T ), we define the first rings of x and e as

Rx = {T ∈ T |x ∈ T}, Re = {T ∈ T | e ∈ T},

and we define the local patches for x and e as

ωx =
⋃

T∈Rx

T, ωe =
⋃

T∈Re

T.

We observe that ωx and ωe are subdomains of Ω whileRx andRe are the set of triangles.

For each x ∈ V(T ), the valence of x is defined as the number of elements in Rx, i.e.

#Rx.

B.1 Bisection of Triangles

The refinement of marked triangles of a triangular mesh (on the basis of an error indi-

cator) by the newest vertex bisection starts with the labeling of the triangulation T . To

this end, for each element T ∈ T , we label one vertex of T as the newest vertex and we
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v(T)

E(T)

T

(a)

T
1

T
2

(b)

T

T
c

(c) (d)

(e) (f)

Figure B.1: Newest vertex bisection. (a) Labeled triangle T , (b) children of T , (c)
marking for conformity, (d) bisection for conformity, (e) left child bisection and (f) right
child bisection.
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call it v(T ) while the opposite edge of v(T ) is called the refinement edge and denoted

E(T ), see Figure B.1(a). Once this labeling is completed, the refinement of the marked

triangles follows the next two steps:

• A triangle (the father) is bisected to generate two elements (the children) by

connecting its newest vertex with the midpoint of its refinement edge. Children

with the same father are called brothers to each other. T1 and T2 in Figure B.1(b),

are the children of T in Figure B.1(a).

• The new vertex created at the midpoint of the refinement edge is then labeled as the

newest vertex of each child. Thus, they can be bisected as shown in Figure B.1(e)

and Figure B.1(f).

Given an initial labeled triangulation T0, we can define

F(T0) := {T | T is obtained from T0 by the newest vertex bisection}.

F(T0) is not necessarily conforming. In order ensure conformity, which is necessary for

both refinement and coarsening, we introduce the concept of compatible bisection.

Given a labeled initial mesh T0, we define

T(T0) := {T ∈ F(T0) | T is conforming}.

Let T be a labeled conforming triangulation. Then, for any T ∈ T , we define a map

F (T ) =

{
T ′, E(T ) ⊂ T ′ ∈ T ;

∅, E(T ) ∈ ∂Ω.

This means that T ′ ∈ T is an element (if it exists) which has the refinement edge of T

as its own edge. Although, E(T ) ⊂ T ′, the refinement edge of T ′ could be different from

E(T ), the refinement edge of T .

An element T is said to be compatible if F (T ) = ∅ or F (F (T )) = T , i.e. E(T ) =

E(T ′). The refinement edge E(T ) of a compatible element is called a compatible edge and

ωE is called a compatible patch. Thus, the first ring RE is a pair of triangles sharing the

same refinement edge or a triangle whose refinement edge is on the boundary. Bisecting

every element in the first ring RE gives a new conforming triangulation. This is what

is known as a compatible bisection. For example, in Figures B.1(c) T and Tc share the

same refinement edge and B.1(d) shows their compatible bisection.

A compatible bisection can therefore be defined as a map

b : RE 7→ Rx̃
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where x̃ is the midpoint of the refinement (i.e. the new node).

B.2 Coarsening Algorithm

In [22], coarsening can only be done by the removal of good-for-coarsening points or good

points for short, that is, the removal of these points will not destroy the conformity of

the triangulation.

Definition B.1 (Good-for-coarsening nodes) For a triangulation T ∈ T(T0), a

node x ∈ V(T ) is called a good-for-coarsening node or a good node, if there exists a

compatible bisection b and compatible patch Re such that Rx = b(Re). The set of all

good nodes in the grid T will be denoted by G(T ).

The following theorem of Chen & Zhang [21, 22] provides a characterization of good

nodes.

Theorem B.2 Let T0 be a compatible labeled conforming triangulation. For any T ∈
T(T0) and T 6= T0, the set of nodes G(T ) is not empty. Furthermore, x ∈ G(T ) if and

only if

1. it is not a node of the initial triangulation T0;

2. it is the newest vertex of all elements in Rx;

3. its valence is 4 (for an interior node) or 2 (for a boundary node).

After all the good nodes have been obtained, we traverse all the triangles in the

triangulation and find those that are marked for coarsening and also contain good points.

If T is one such element, we need to find its brother T ′. Thus, when the good node is

removed, the father of T and T ′ is restored. In other words, if we define the set

Gc(T ) = {x ∈ G |x is a vertex of a triangle marked for coarsening},

then for x ∈ Gc(T ), we perform the coarsening by replacing Rx by b−1(Rx) where b is

a compatible bisection.

It was also proved in [22] that the initial grid can be obtained by using the coarsening

algorithm recursively and the grid obtained from this type of coarsening is conforming.



Appendix C

Modelling Two-Phase Flow in

Porous Media

C.1 Introduction

The mathematical modelling of two-phase flow has applications in several branches of

science and engineering. We are particularly interested in modelling an enhanced oil

recovery process where a wetting fluid, say water, is injected into an oil-saturated porous

medium in order to displace the oil (the non-wetting fluid) so that it can be collected.

By a porous medium, we mean a solid with many small connected pores through which

fluid may flow. We will assume that there is no mass transfer between the fluids although

this could occur if some kind of chemical reaction takes place between them.

The flow of two immiscible fluid phases in a porous medium is modelled by the

equations of conservation of mass and the generalized Darcy’s law. In our discussion,

we denote the wetting phase (water) by w and the non-wetting phase (oil) by n.

C.2 The Governing Equations

If we take a control volume in the porous media, with porosity φ̄(x), the equation of

mass conservation of water is

∂

∂t
φ̄(x)uw(t,x) +∇ · vw(t,x) = Sw, (C.1)

while the equation of mass conservation of oil is

∂

∂t
φ̄(x)un(t,x) +∇ · vn(t,x) = Sn. (C.2)
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For any homogeneous medium the porosity φ̄ is a constant. The terms Sw and Sn

represent the sources or sinks which we assume to be zero. In (C.1) and (C.2), vw(t,x)

and vn(t,x) are the velocities of the wetting and non-wetting phases and uw(t,x) and

un(t,x) are the saturations of the two phases. The saturation of a phase is the fraction

of the pores of the porous medium filled by that phase. If we assume the void space in

the medium is filled by only those two fluids, we have

uw(t,x) + un(t,x) = 1. (C.3)

The pressure of the non-wetting fluid is usually greater than the pressure of the wetting

fluid and the difference between the two pressures is known as the capillary pressure,

pc = pn − pw, (C.4)

which is a unique function of the saturation [93].

The phase velocities vw(t,x) and vn(t,x) are modelled using Darcy’s law. For a

single-phase flow, Darcy’s law relates the phase velocity v to the pressure p, the viscosity

µ, the density ρ, the permeability K and the depth of the fluid D via

v = −K

µ
(∇p− ρg∇D), (C.5)

where g is the gravitational constant. Darcy’s law can then be extended to two-phase

flow as follows:

vw = −Kw

µw

(∇pw − ρwg∇D), (C.6)

vn = −Kn

µn

(∇pn − ρng∇D), (C.7)

where Kw and Kn are the effective permeabilities of the two phases. These must be

less than or equal to the single fluid permeability K since the concurrent flow of two

fluids causes each to affect the flow of the other. If K is the permeability of the porous

medium, then the relative permeabilities of each phase are defined as

kw =
Kw

K
≤ 1, (C.8)

kn =
Kn

K
≤ 1, (C.9)

and are regarded as functions of the saturations uw(t,x) and un(t,x) respectively. We

can use the relative permeabilities and the explicit dependence of the quantities on t, x,
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uw and un to re-write (C.6) as

vw(t,x) = −K(x)
kw(uw)

µw

(∇pw(t,x)− ρw(t,x)g∇D),

vn(t,x) = −K(x)
kn(un)

µn

(∇pn(t,x)− ρn(t,x)g∇D),

(C.10)

where µw and µn are the phase viscosities. Furthermore, we define the phase mobilities,

Mw and Mn, which will be functions of the saturations, by the ratios

Mw(uw) =
kw(uw)

µw

and Mn(un) =
kn(un)

µn

.

and the total mobility Mt is defined as Mt = Mw + Mn. We can also define an average

pressure p by

p =
pw + pn

2
.

To this end, the pressure of the two fluids can be expressed in terms of the average

pressure and capillary pressure as

pw = p− 1

2
pc,

pn = p +
1

2
pc.

C.3 The Simplified Mathematical Model

We can simplify the model by assuming that:

1. the porosity φ̄ is constant throughout the medium i.e. the medium is homogeneous,

2. the capillary effects can be ignored (pc = 0),

3. the gravitational effects can be ignored (g = 0).

Therefore, if vw + vn = v, then using (C.1), (C.2) and (C.3) we obtain the incompress-

ibility relation

∇ · v(t,x) = 0, (C.11)

which means that the total fluid velocity v(t,x) is divergence-free. Using Darcy’s

law (C.10), we obtain

v = −K(x)Mt(u)∇p(t,x). (C.12)

Finally, the velocity of the wetting phase is given as

vw(t,x) = v(t,x) · Fw(uw), (C.13)
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where Fw(uw) is the flux and is given as

Fw(uw) =
Mw

Mt

.

For the sake of notational simplicity, we take u to be the saturation of the wetting phase,

i.e. u ≡ uw, and so un = 1−u. Furthermore, we let F (u) = Fw(uw). Generally the form

of k and F are determined by experiment. However, for two-phase flows, the relative

permeabilities kw and kn given by the quadratic functions

kw = u2 and kn = (1− u)2

offer a reliable and widely used model [93]. This implies that

Mt(u) =
u2

µw

+
(1− u)2

µn

(C.14)

and the fractional flow function F in (C.13) is given by

F (u) =
u2

u2 + m(1− u)2

where m = µw/µn is the ratio of the viscosities of the two fluids. Suppose we assume

φ̄ ≡ 1, then from (C.1) we obtain

∂u

∂t
+ v · ∇F (u) = 0. (C.15)

The saturation equation (C.15) is referred to as the Buckley-Leverett equation [17].

Thus, assuming the absence of capillary and gravitational effects, (C.11), (C.12)

and (C.15) model the flow of two fluids, water and oil, through a porous homogeneous

medium with φ̄ = 1.
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