
– 1 –

A Formal Approach to Service Component Architecture†

José Luiz Fiadeiro1, Antónia Lopes2 and Laura Bocchi1

1 Department of Computer Science, University of Leicester
University Road, Leicester LE1 7RH, UK

{bocchi,jose}@mcs.le.ac.uk

2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, PORTUGAL
mal@di.fc.ul.pt

Abstract. We report on a formal framework being developed within the SEN-
SORIA project for supporting service-oriented modelling at high levels of ab-
straction, i.e. independently of the hosting middleware and hardware platforms,
and the languages in which services are programmed. More specifically, we
give an account of the concepts and techniques that support the composition
model of SENSORIA, i.e. the mechanisms through which complex applications
can be put together from simpler components, including modelling primitives
for the orchestration of components and the definition of external interfaces.

1 Introduction

One of the goals of SENSORIA – an IST-FET Integrated Project on Software Engi-
neering for Service-Oriented Overlay Computers – is to define a formal framework
that can support a Reference Modelling Language (SRML) that operates at the higher
levels of abstraction of “business” or “domain” architectures. The term “service-
oriented” is taken within SENSORIA in a broad sense that encompasses the general
principles and techniques either available or envisioned for Web Services [1], as well
as other manifestations such as Grid Computing [11]. The aim is to develop concepts
and techniques that are independent of what are sometimes called “global computers”,
i.e. the technologies that provide the middleware infrastructure over which services
can be deployed, published and discovered. In this sense, our aims are in tune with
the goal of the industrial consortium that is developing the Service Component Archi-
tecture (SCA) [14]. Like in SCA, we are aiming to support ways through which

[…] relatively coarse-grained business components can be exposed as serv-
ices, with well-defined interfaces and contracts, removing or abstracting mid-
dleware programming model dependencies from business logic.

† This work was partially supported through the IST-2005-16004 Integrated Project SENSORIA: Software

Engineering for Service-Oriented Overlay Computers, and the Marie-Curie TOK-IAP MTK1-CT-2004-
003169 Leg2Net: From Legacy Systems to Services in the Net.

– 2 –

The main concern of SCA in developing this middleware-independent layer is to
provide an open specification “allowing multiple vendors to implement support for
SCA in their development tools and runtimes”. This is why SCA offers specific sup-
port for a variety of component implementation and interface types such as BPEL
processes with WSDL interfaces, and Java classes with corresponding interfaces. Our
work explores a complementary direction: our research aims for a mathematical se-
mantics of a Service Component Architecture that can provide a uniform model of
service behaviour in a way that is independent of the languages and technologies used
for programming and deploying services. Besides SCA, we also take into account
recent advances on Web Services such as [1,6], and stay as close as possible to the
terminology that is being adopted in the area.

More specifically, we develop a minimalist formal framework based on a core set
of primitives and a language that is “small” enough to be formalised relatively easily
and yet “powerful” enough to capture the essence of a new modelling paradigm cen-
tred on services. In this paper, we report on some of the efforts made so far in the
development of this language by presenting fragments of its composition model, what
we call SRML-P: the techniques through which one can model individual business
components and interconnect them to build complex applications in a service-oriented
way. A more detailed account of our approach is available in [9]. Issues related with
dynamic configuration, such as service discovery and binding, are also being ad-
dressed over the model that we outline here.

In Section 2, we provide an overview of the composition model that we support in
SRML-P. In Section 3, we present the primitives that we use for describing interac-
tions. In Section 4, we discuss the modelling of components as orchestrations of
interactions maintained with other parties. In Section 5, we show how external inter-
faces can be described in terms of sentences of a formal logic that model conversa-
tions. In Section 6, we discuss the way components can be wired to each other and to
external interfaces in order to produce modules. In the concluding remarks, we point
to other aspects that are being investigated and discuss the way we are taking this
programme forwards. For illustration, we use a typical procurement business process
involving a supplier, a warehouse and a local stock.

2 The Composition Model

SRML-P provides a language for modelling composite services, understood as serv-
ices whose business logic involves a number of interactions among more elementary
service components as well the invocation of services provided by other parties. As
in SCA, interactions are supported on the basis of service interfaces defined in a way
that is “independent of the hardware platform, the operating system, hosting middle-
ware and the programming language used to implement the service” [14].

Central to the composition model is the notion of service component, or component
for short. In SRML-P, a component is a computational unit that is modelled by means
of an execution pattern involving a number of interactions that it can maintain with

– 3 –

other parties. We refer to the execution pattern of a component as an orchestration
element, or orchestration for short. The W3C Web Services Glossary1 defines or-
chestration as

[…] the sequence and conditions in which one Web service invokes other Web
services in order to realize some useful function.

In our context, the orchestration of the service provided by a module is the compo-
sition of the orchestrations defined within the components and the way they are wired
together.

Each orchestration element is defined independently of the language in which the
component is programmed and the platform in which it is deployed; it may be a BPEL
process, a Java program, a wrapped-up legacy system, inter alia. In addition, the
orchestration is independent of the specific parties that are actually interconnected
with the component in any given run-time configuration; a component is totally inde-
pendent in the sense that it does not invoke services of any specific co-party (i.e. an
external service or another component) – it just offers an interface of two-way interac-
tions in which it can participate.

As such, service components do not provide any business logic: the units of busi-
ness logic are modules that use such components to provide services when they are
interconnected with a number of other parties offering a number of required services.
In a SRML-P module, both the provided services and those required from other par-
ties are modelled as external interfaces, or interfaces for short. Each such interface
specifies a stateful interaction between a service component and the corresponding
party, i.e. SRML-P supports both “syntactic” and “behavioural” interfaces.

The external interface offered by a module to be used by clients, what in SCA cor-
responds to an “entry point”, specifies constraints on the interactions that the module
supports as a service provider such as the order in which it expects invocations or
deadlines for the user to commit; it is the responsibility of the clients to adhere to
these protocols, meaning that the provider may not be ready to engage in interactions
that are not according to the specified constraints. Other properties are specified that
any client may expect such as pledges on given parameters of the delivered services.
The external interfaces to services required from other parties, what in SCA corre-
sponds to “external services”, specify the conversations that the module expects rela-
tive to each party.

Service components and external interfaces are connected to each other within
modules through internal wires that bind the interactions that both parties declare to
support. In SRML-P, all names are local, which implies that any interconnection
needs to be made explicit through a wire that binds the names used locally in each
party. The idea is to support reuse of both service components and external inter-
faces, thus facilitating the process of designing business applications. The coupling
of service components within modules can be seen to be tight and performed at design
time, reflecting the fact that they offer an (atomic) unit of business logic.

The table below establishes a relationship between the terminology that we use in
SRML-P and the W3C Web Services Glossary. However, as already mentioned, in

1 http://www.w3.org/TR/ws-gloss/

– 4 –

SRML-P we are aiming for higher-levels of abstraction in service-oriented modelling,
which explains why this relationship is not a one-to-one mapping.

W3C SRML-P Relationship

Service Module
A module defines how a certain service is provided
through the coordination of a set of internal components
and external services.

Service
Description

External Interface
(Provides/Requires)

External Interfaces correspond to service descriptions
that include the interface and the interactive behaviour
of the services provided/required by a module.

Orchestration Orchestration In SRML-P, orchestration is spread among all the
components within a module.

In order to illustrate how applications are modelled in SRML-P, we use a typical
procurement business process involving a supplier, a warehouse, a local stock, and a
price look-up facility. The decision to make the local stock a component of the mod-
ule reflects the tight coupling that exists with the supplier in business terms. The
choice of warehouse should probably be made at run-time, for instance taking into
account properties of the customer like its location, which justifies that it is repre-
sented in the module as an external interface. The price look-up facility is also a good
example of an external service that may be shared among several suppliers.

This module declares two components: SP and LS. Components are typed by what

we call business roles, which are discussed in Section 4; in this case, SP plays the
business role of Supplier and LS of Stock. Three external interfaces are declared: one
provides-interface – CR – and two requires-interfaces – WR and CT. Each such inter-
face is typed by what we call a business protocol as discussed in Section 5; in the
example, the business protocols are Customer, Warehouse and Costs, respectively.
Finally, four wires connect components and interfaces: CS, SS, SW and SC. Each
wire is labelled by an interaction protocol as discussed in Section 6; the labelling of
wires is not easily depicted in figures such as above and is normally given in the tex-
tual definition of the module only. More details on the notion of module, including an
algebraic semantics, can be found in [9].

– 5 –

3 The Language of Interactions

In this section, we provide a short account of the primitives that are being defined for
describing interactions, taking into account proposals that have been made for Web-
Services [4], in orchestration languages such as ORC [13], and in calculi such as
Sagas [5]. However, because our aim is to support an abstract and declarative style of
specification, our language will use some of these concepts (e.g. compensations,
pledges, locking-properties, deadlines and timeouts) in a somewhat different way.

In SRML, we distinguish several types of interactions as shown in the table below.
Interactions involve two parties and can be in both directions, i.e. they can be conver-
sational. Interactions are described from the point of view of the party in which they
are declared, i.e. “receive” means invocations received by the party and sent by the
co-party, and “send” means invocations made by the party. Interactions can be syn-
chronous, implying that the party waits for the co-party to reply or complete, or asyn-
chronous, in which case the party does not block. The reason for choosing to have
non-blocking asynchronous interactions is that we can leave it to the orchestration of
the components to engage or not in other interactions while waiting for a reply.

r&s The interaction is initiated by the co-party, which expects a reply. The co-party
does not block while waiting for the reply.

s&r The interaction is initiated by the party and expects a reply from its co-party.
While waiting for the reply, the party does not block.

rcv The co-party initiates the interaction and does not expect a reply.
snd The party initiates the interaction and does not expect a reply.
ask The party synchronises with the co-party to obtain data.
rpl The party synchronises with the co-party to transmit data.
tll The party requests the co-party to perform an operation and blocks.
prf The party performs an operation and frees the co-party that requested it.

Notice that r&s and s&r interactions are durative/conversational. We distinguish
several events that can occur during such interactions:

interaction The event of initiating interaction.
interaction The reply-event of interaction.
interaction The commit-event of interaction.
interaction The cancel-event of interaction.
interaction The deadline-event of interaction.
interaction The revoke-event of interaction.

Further to these events, each such interaction may have an associated pledge – a
condition that is guaranteed to hold from the moment a positive reply-event occurs
until either the commit, the cancel or the deadline-event happens, whichever comes
first. We denote this condition by interaction. A reply-event interaction is posi-
tive iff the distinguished Boolean parameter Reply is true.

The sequence diagrams below illustrate the intuitive semantics of these primitives
when a pledge is offered. In the case on the left, the initiator commits to the pledge; a
revoke may occur later on compensating the effects of interaction. In the case in the

– 6 –

middle, there is a cancellation; in this situation, a revoke is not available. In the case
on the right, the deadline-event occurs without a commit or cancel having occurred;
this implies that no further events for that interaction will occur. In Section 4, we
give examples of the usage of these primitives.

Events can be referred to from the point of view of the party that initiate them, in
which case we use the notation event!, or the party that receives them, in which case
we use event?. Events occur during state transitions in both parties involved in the
interaction and require that the parties are available to perform the event; in other
words, events are blocking in the sense that a party wishing to issue event! needs to
wait for its co-party to be able to perform event?.

Interactions can have parameters for transmitting data when they are initiated, de-

clared as , and for carrying a reply, declared as . Notice that the boolean -
parameter Reply is always available, indicating if the reply is positive Only the addi-
tional parameters required for carrying data associated with the reply need to be de-
clared. Key parameters, marked as , can also be declared which are used for gener-
ating different instances of a given class of events.

We assume that there are a number of “global” interactions provided by “the envi-
ronment” such as time-related activities. This is necessary for parties to have some
common understanding of issues like deadlines. In this paper, we will make use of
the interaction alertDate, which is initiated by a party with a -parameter – Ref of
type string, and a -parameter – Interval of type date. The agreed meaning is that
the environment publishes alertDate when Interval units of time have elapsed.
Any party can subscribe to that event.

We make use of a number of connectives to formulate behavioural properties, ex-
amples of which are given throughout the paper. The following table summarises the
intuitive meaning and the way some of them can be formulated in a branching time
logic with linear past (see [12]).

a before b If b holds then a must have been true. AG(b ⊃ Pa)
b exceptif a b can occur iff b and a have never occurred. AG(¬Pa∧H(¬b) ≡ Eb)
a enables b b can occur iff a has already occurred but

not b.
AG(Pa∧H(¬b) ≡ Eb)

a ensures b b will occur after a occurs, but b cannot
occur without a having occurred.

AG(b⊃Pa ∧ a⊃Fb)

– 7 –

The syntax and semantics of the logic supporting the specification of behavioural
properties are currently being developed. In this logic, some properties of the under-
lying computational and interaction model will be fixed, such as:

• The initiation of an r&s interaction enables and ensures that a reply will be
issued; we are working on an extension of the language that will provide
primitives for assigning quality-of-service attributes such as the delay in
which the reply is sent.

• A positive reply sets the pledge, which holds until the deadline, the commit
or the deadline event occurs; the commit and the deadline events are enabled
until either of them or the deadline occurs.

• Events occur only once during each “session”, i.e. during each lifetime of an
instance of a party.

We should point out that the style of specification that we adopt is quite different
from recent proposals in the area of Semantic Web-Services (METEOR-S, OWL-S,
SWSL, WSMF), which go little beyond a black-box, transformational approach based
on concepts like pre- and post-conditions. These contribute to some extent towards a
behavioural description of services but are confined to static/transformational aspects
of black-box behaviour that only takes into account initial and final states of service
execution. Therefore, they are not suitable for reasoning about conversational and
stateful interactions as modelled in SRML-P. An exception is [15], which adopts an
assumption/commitment style of specification as used for concurrent processes.

4 Components and Business Roles

In SRML-P, components instantiate business roles, which are specified by declaring a
set of interactions and the way they are orchestrated. As an example, consider the
business role of a supplier. A supplier can be involved in the following interactions:

 INTERACTIONS
 r&s requestQuote
  which:product

  cost:money
 r&s orderGoods
  many:nat
  much:money
 s&r checkShipAvail
  which:product, many:nat
 rcv confirmShip
 rcv makePayment
 snd shipOrder
 ask how(product):money
 ask checkStock(product,nat):bool
 tll incStock(product,nat)

 tll decStock(product,nat)

Notice that the co-parties of the supplier in these interactions are not named; the
specification models the business role played by the component independently of the

– 8 –

way it is instantiated within any given system. Components are linked to their co-
parties within modules through explicit wires as described in Section 6.

The way the declared interactions are orchestrated is specified through a set of
variables that provide an abstract view of the state of the component, and a set of
transitions that model the activities performed by the component, including the way it
interacts with its co-parties.

A transition has an optional name and a number of possible features. For instance:
 transition TQuote
 triggeredBy requestQuote?

 guardedBy s=0
 effects which’=requestQuote.which
 ∧ much’=how(requestQuote.which)*1.2
 ∧ inStock’=false

 ∧ timeoutQuote’=false
 ∧ s’=1
 sends requestQuote!
 ∧ requestQuote.cost=much’
 ∧ requestQuote.Reply=true
 ∧ alertDate!
 ∧ alertDate.Ref=”quote”
 ∧ alertDate.Interval=7

• A trigger is a condition: typically, the occurrence of a receive-event.
• A guard is a condition that identifies the states in which the transition can

take place – in TQuote, the state in which s=0. If the guard is false, a com-
ponent that plays the specified role will not engage in the interaction.

• A sentence specifies the effects of the transition in the local state. We use
var’ to denote the value that a state variable var has after the transition. In
the case above, we store business data and initialise the state variables much,
inStock and timeoutQuote. Notice that, in the example, we use the synchro-
nous interaction how to compute the cost that is going to be quoted. We will
see that the co-party in this interaction is an external service that lists the cur-
rent prices of goods.

• Another sentence specifies the events that are sent, including the values
taken by their parameters. In this sentence, we use variables and primed
variables as in the “effects”-section; the separation between the two sections
is just logical and there are no dependencies between them. In the example,
this consists in issuing the reply quoting the costs computed as mentioned
and setting an alertDate with a 7-day interval – the period during which the
quoted price is guaranteed.

Notice that, even if it is relatively easy to model a state machine in SRML-P, the
way we model control flow is much more flexible because transitions are decoupled
from interactions and changes to state variables. For instance, the transition TAlert
can occur in any state after the request was issued:

 transition TAlert
 triggeredBy alertDate?

 guardedBy
 effects alertDate.Ref=”quote” ⊃ timeoutQuote’=true
 ∧ alert.Ref=“goods” ∧ s=2 ⊃ s’=8

– 9 –

 sends alertDate.Ref=”quote” ∧ s=1 ⊃ requestQuote!
 ∧ alert.Ref=“goods” ∧ s=2 ⊃ orderGoods!
 ∧ incStock(which,many)

This transition is triggered when the supplier receives a notification from an alert-
Date; if the alert is concerned with the quote, it simply sets an internal timeout state
variable so that the supplier knows how to calculate the costs of a subsequent order
and it alerts its co-party that the timeout has occurred; if the alert is concerned with
the goods and no commitment has been received, the supplier notifies its co-party and
replenishes the local stock – incStock(which,many). Notice that the latter is a syn-
chronous interaction.

5 External Interfaces and Business Protocols

Besides components, a module in SRML-P may declare a number of (external) inter-
faces. These provide abstractions (types) of parties that can be interconnected with
the components declared in the module either to provide or request services; this is
what, in SCA, corresponds to “Entry Points” and “External Services”.

External interfaces are specified through business protocols. Like orchestrations,
protocols declare the interactions in which the external entities can be involved as
parties. The difference is that, instead of an orchestration, we provide a set of proper-
ties that model the protocol that the co-party is expected to adhere to. For instance,
the behaviour that a supplier expects from a warehouse is as follows:

BUSINESS PROTOCOL Warehouse is

 INTERACTIONS
 r&s check&lock
  which:product, many:nat
 snd confirm
 BEHAVIOUR
 check&lock? exceptif true
 check&lock! ∧ check&lock.Reply ⊃
 alertDate! ∧ alertDate.Interval=3 ∧
 alertDate.Ref=”goods”
 check&lock! ⊃ alertDate? ∧ alertDate.Ref=”goods”
 check&lock ⊃ (check&lock? ensures confirm!)

 check&lock? ⊃ (check&lock? exceptif confirm!)

Notice that the interactions are again named from the point of view of the party
concerned – the warehouse in the case at hand. The properties require the following:

• In the initial state the warehouse is ready to engage in check&lock.
• The deadline associated with check&lock is a timeout of 3 days with refer-

ence “goods” set when the reply is issued.
• A positive reply sets the pledge associated with check&lock, which ensures

that confirm will be issued upon but not before receiving the commit.
• After the commit, check&lock can be revoked until confirm has been issued.

Protocols are also used for modelling the behaviour that users can expect from a
service. This subsumes what, in [2], are called external specifications:

– 10 –

In particular, a trend that is gathering momentum is that of including,
as part of the service description, not only the service interface, but
also the business protocol supported by the service, i.e., the specifica-
tion of which message exchange sequences are supported by the serv-
ice, for example expressed in terms of constraints on the order in which
service operations should be invoked.

This is the case of customers:
BUSINESS PROTOCOL Customer is

 INTERACTIONS
 s&r howMuch
  which:product
  cost:money
 s&r buy
  many:nat
  much:money
 snd pay

 rcv ackShip
 BEHAVIOUR
 howMuch? exceptif true
 howMuch? enables buy!
 howMuch? ⊃ alertDate! ∧ alertDate.Interval=7
 ∧ alertDate.Ref=”quote”
 howMuch? ⊃ alertDate? ∧ alertDate.Ref=”quote”
 howMuch? ⊃ howMuch.Reply
 howMuch ⊃ (buy! ensures
 (buy? ∧ buy.Reply ⊃ buy.much=buy.many*howMuch.much))
 buy? ∧ buy.Reply ⊃ alertDate! ∧ alertDate.Interval=3
 ∧ alertDate.Ref=”goods”
 buy? ⊃ alertDate? ∧ alertDate.Ref=”goods”
 buy ⊃ (pay! ensures ackShip?)
 pay! ≡ buy!
 buy! ⊃ buy! exceptif ackShip?

The properties offer the following behaviour:
• A request for howMuch is enabled at the start.
• A request for buy will be accepted after and only after a reply to howMuch.
• The deadline associated with howMuch is a timeout of 7 days set when the

reply is received.
• A reply to howMuch is always positive; the corresponding pledge ensures

that the cost associated with a subsequent order placed before the deadline
will be the quoted one.

• The deadline associated with buy is a timeout of 3 days. This is why the
warehouse is being requested to provide the same timeout.

• The pledge associated with buy ensures that ackShip will be issued upon and
never before payment is issued.

• Payment is a commit to buy.
• buy can be revoked until ackShip has been issued.

– 11 –

Notice again that components and external interfaces are independent entities in
the sense that they do not name the co-parties involved in the interactions that they
support. These entities become connected in modules through internal wires.

6 Wires and Interaction Protocols

A module consists of a number of components and external interfaces (pro-
vides/requires) wired to one another. Wires are labelled by connectors that coordinate
the interactions in which the parties are jointly involved. In SRML-P, we model the
interaction protocols involved in these connectors as separate, reusable entities.

Just like business roles and protocols, an interaction protocol is specified in terms
of a number of interactions. The “semantics” of the protocol is provided through a
collection of sentences that establish how the interactions are coordinated, which may
include routing events and transforming sent data to the format expected by the re-
ceiver. As an example, consider the following protocol:

INTERACTION PROTOCOL Custom1 is

 INTERACTIONS
 ask S1(product,nat):bool
 tll S2(product,nat)
 tll S3(product,nat)
 rpl R1(product):nat

 prf R2(product,nat)
 COORDINATION

 S1(p,n) = R1(p)≥n
 S2(p,n) ⊃ R2(p,R1(p)+n)
 R1(p)≥n ∧ S3(p,n) ⊃ R2(p,R1(p)–n)
 R1(p)<n ⊃ ¬S3(p,n)

This protocol is used by the wire SS that connects Supplier and Stock as follows:
SP

Supplier SS LS
Stock

ask checkStock
tll incStock
tll decStock

S1

S2
S3

Custom1
R1

R2

rpl get
prf set

The name bindings thus declared establish the following protocol:
 checkStock(p,n)=(get(p)≥n)
 incStock(p,n) ⊃ set(p,get(p)+n)
 get(p)≥n ∧ decStock(p,n) ⊃ set(p,get(p)–n)
 get(p)<n ⊃ ¬decStock(p,n)

That is, the boolean value returned by checkStock(p,n) as invoked by the supplier is
computed by the local stock by checking if the value returned by get(p) is greater or
equal to n. Notice that these are synchronous interactions. The protocol also stipu-
lates that to a request from the supplier for incStock(p,n) the local stock executes
set(p,get(p)+n). Likewise, to a request from the supplier for decStock(p,n) the local
stock executes set(p,get(p)–n) only if get(p) returns a value greater than or equal to n;
otherwise, the request is not accepted.

– 12 –

The names used in interaction protocols are generic to facilitate reuse. In fact,
families of protocols may be defined by parameterising the specification with the data
sorts involved in the interactions. For instance, the following protocol is used be-
tween Supplier and Customer:

INTERACTION PROTOCOL Straight.I(d1)O(d2) is

 INTERACTIONS
 s&r S1

  i1:d1
  o1:d2

 r&s R1

  i1:d1
  o1:d2

 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.o1=R1.o1

This is a “standard” protocol that connects directly two entities over two interac-
tions with one – and one -parameter. This protocol is used twice in the following
wire to connect different interactions between Supplier and Customer:

SP
Supplier CS CR

Customer
r&s requestQuote
  which
  cost

R1

i1
o1

Straight
S1

i1
o1

s&r howMuch
  which
  cost

r&s orderGoods
  which
  cost

R1

i1
o1

Straight
S1

i1
o1

s&r buy
  which
  cost

rcv makePayment R1 Straight S1 snd pay

snd shipOrder S1 Straight R1 rcv ackShip

The other protocol used in this wire is an even simpler version involves no parame-
ters:

INTERACTION PROTOCOL Straight is

 INTERACTIONS
 snd S1

 rcv R1
 COORDINATION

 S1 ≡ R1

The name bindings establish straightforward connections such as:
 howMuch ≡ requestQuote
 howMuch.which = requestQuote.which
 howMuch.cost = requestQuote.cost
 buy ≡ orderGoods
 buy.which = orderGoods.which
 buy.much = orderGoods.much
 pay ≡ makePayment
 ackShip ≡ shipOrder

Interaction protocols are considered as first-class objects because we want to use
them to assign properties to wires that reflect constraints on the underlying run-time

– 13 –

environment. These may concern data transmission, synchronous/asynchronous con-
nectivity, distribution, and other non-functional properties such as security.

7 Concluding Remarks and Further Work

In this paper, we have described some of the primitives that are being proposed for
the SENSORIA Reference Modelling Language in order to support building systems
in service-oriented architectures using “technology agnostic” terms. More specifi-
cally, we have focused on the language that supports the underlying composition
model. This is a minimalist language that follows a recent proposal for a Service
Component Architecture [14] that “builds on emerging best practices of removing or
abstracting middleware programming model dependencies from business logic”.
However, whereas the SCA-consortium concentrates on the definition of an open
specification that supports a variety of component implementation and interface types,
and on the deployment, administration and configuration of SCA-based applications,
our goal is to development a mathematical framework in which service-modelling
primitives can be formally defined and application models can be reasoned about.

This is why we are developing a logic for specifying and reasoning about interac-
tions in the conversational mode that characterises services. The primitives that we
are proposing take into account proposals that have been made for Web-Service Con-
versation [4], in other modelling languages such as ORC [13], and in calculi such as
Sagas [5]; they take into account that interactions are stateful and provide first-class
notions such as reply, commit, compensation and pledge.

The core of our paper focused on the notion of module, which we adapted from
SCA. Modules in SRML-P are the basic units of composition. They include external
interfaces for required and provided services, and a number of components whose
orchestrations ensure that the properties offered on the provides-external interfaces
are guaranteed by the connections established by the wires assuming that the services
requested satisfy the properties declared on the requires-external interfaces. An alge-
braic formalisation of this notion of module can be found in [9], which includes the
correctness condition. We have also added a notion of parameter through which we
can configure chosen aspects of a module such as timeouts; such parameters can be
instantiated at run-time as part of a negotiation process.

Modules can be assembled together to make complex systems in a way that is simi-
lar to SCA, i.e. by linking requires-external interfaces of a module with provides-
external interfaces of other modules via external wires. External wires carry a proof-
obligation to ensure that the properties offered by the provides-interface imply those
declared by the requires-interface.

– 14 –

An assembly of modules defining a SRML-P system; EW–external wire

SRML-P also supports a way of offering a system as a module, i.e. of turning an
assembly of services into a composite service that can be published and discovered on
its own. This can be useful, for instance, when one wants to put together a number of
services that, individually, offer only partial matches for a given required external
interface but, in a suitable configuration, can provide a suitable match. The operation
that collapses a system into a module internalises the external wires and forgets the
external specifications. An algebraic semantics of module interconnection and com-
position can be found in [9] based on categorical constructions similar to those used
in algebraic specification [7] and software architecture [10].

Finally, we are also developing a notion of configuration for SRML-P. A configu-
ration is a collection of components wired together that models a run-time composi-
tion of service components. A configuration results from having one or more clients
using the services provided by a given module, possibly resulting from a complex
system, with no external interfaces, i.e. with all required external interfaces wired-in.
It is at the level of configurations that we address run-time aspects of service compo-
sition such as sessions, as well as notions of persistence. Research is under way to
provide primitives for managing configurations with a semantics based on graph-
transformations [7], as used, for instance, in [3,16].

 Acknowledgments

J. Fiadeiro was partially supported by a grant from the Royal Society (UK) and A.
Lopes by the Foundation for Science and Technology (Portugal) during an extended
stay at the University of Pisa during April and May 2006. We wish to thank our hosts
for the facilities and opportunities for discussion. We would like to thank Luís An-
drade, Roberto Bruni, Rocco de Nicola, Giorgios Koutsoukos, Ugo Montanari and
Martin Wirsing for their comments on previous versions of this paper.

– 15 –

References

 1. G. Alonso, F. Casati, H. Kuno, V. Machiraju (2004) Web Services. Springer, Berlin Hei-
delberg New York

 2. K. Baïna, B. Benatallah, F. Casati, F. Toumani (2004) Model-driven web service develop-
ment. In A. Persson, J. Stirna (eds): CAiSE’05. LNCS, vol 3084. Springer, Berlin Heidel-
berg New York, pp 290–306

 3. L. Baresi, R. Heckel, S, Thöne, D. Varró (2003) Modeling and validation of service-
oriented architectures: Application vs style. In A. Persson, J. Stirna (eds): ESEC’03. LNCS,
vol 3084. Springer, Berlin Heidelberg New York, pp 290–306

 4. B. Benatallah, F. Casati, F. Toumani (2004) Web service conversation modelling. IEEE
Internet Computing 8(1):46–54

 5. R. Bruni, H. Melgratti, U. Montanari (2005) Theoretical foundations for compensations
in flow composition languages. In POPL’05. ACM Press, New York, pp 209-220

 6. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, S. Weerawarana (2003) The next step in web
services. CACM 46(10):29–34

 7. H. Ehrig, K. Ehrig, U. Prange, G. Taentzer (2006) Fundamentals of Algebraic Graph
Transformation. EATCS Monographs on Theoretical Computer Science. Springer, Berlin
Heidelberg New York

 8. H. Ehrig, B. Mahr (2005) Fundamentals of Algebraic Specification 2: Module Specifica-
tions and Constraints. EATCS Monographs on Theoretical Computer Science, vol 21.
Springer, Berlin Heidelberg New York

 9. J. L. Fiadeiro, A. Lopes, L. Bocchi (2006) The SENSORIA Reference Modelling Lan-
guage: Primitives for Service Description. Available from www.sensoria-ist.eu

10. J. L. Fiadeiro, A. Lopes, M. Wermelinger (2003) A mathematical semantics for architec-
tural connectors. In: R. Backhouse, J. Gibbons (eds) Generic Programming. LNCS, vol
2793. Springer, Berlin Heidelberg New York, pp 190–234

11. I. Foster, C. Kesselman (eds) (2004) The Grid 2: Blueprint for a New Computing
Infrastructure. Morgan Kaufmann, San Francisco, CA

12. R. Goldblatt (1987) Logics of Time and Computation. CSLI, Stanford
13. J. Misra, W. Cook (2006) Computation orchestration: A basis for wide-area computing.

Journal of Software and Systems Modelling. To appear
14. SCA Consortium (2005) Building Systems using a Service Oriented Architecture. White-

paper available from www-128.ibm.com/developerworks/library/specification/ws-sca/
15. M. Solanki, A. Cau and H. Zedan (2004) Augmenting semantic web service description

with compositional specification. In WWW’04. ACM Press, New York, pp 544–552
16. M. Wermelinger, A. Lopes, J. L. Fiadeiro (2001) A graph-based architectural (re)-

configuration language. In V.Gruhn (ed): ESEC/FSE’01. ACM Press, New York, pp 21–
32

– 16 –

Appendix – The procurement service

In this appendix, we model the procurement business process used in the paper, in-
volving a supplier, a warehouse, a local stock, and a price look-up facility.

PROCUREMENT consists of:
• CR – the external interface of the service provided by the module, of type Cus-

tomer;
• WR – the external interface of a service required for shipping the product if it

is not available locally, of type Warehouse;
• CT – the external interface of a service required for quoting the current market

costs of products, of type Costs;
• SP – a component that coordinates the business process, of type Supplier;
• LS – a component that provides local storage of products, of type Stock
• CS, SS, SW, SC – four internal wires that make explicit the partner relationship

between CR and SP, SP and LS, SP and WR, and SP and CT, respectively.

The components, external interfaces and protocols required for the definition of PRO-
CUREMENT are collected at the end of the appendix.

MODULE Procurement is

COMPONENTS

 SP: Supplier
 LS: Stock

PROVIDES

 CR: Customer

REQUIRES

 WR: Warehouse
 CT: Costs

– 17 –

WIRES

SP

Supplier SS LS
Stock

ask checkStock
tll incStock
tll decStock

S1

S2
S3

Custom1
R1

R2

rpl get
prf set

SP

Supplier SC CT
Costs

ask how S1 AskTll R1 tll much

SP

Supplier
 SW WH

Warehouse
s&r checkShipAvail
  which
 many

S1

i1
i2

Straight

R1

i1
i2

r&s check&lock
  which
 many

rcv confirmShip

R1 Straight S1 snd confirm

SP

Supplier CS CR
Customer

r&s requestQuote
  which
  cost

R1

i1
o1

Straight
S1

i1
o1

s&r howMuch
  which
  cost

r&s orderGoods
  which
  cost

R1

i1
o1

Straight
S1

i1
o1

s&r buy
  which
  cost

rcv makePayment R1 Straight S1 snd pay

snd shipOrder S1 Straight R1 rcv ackShip

END MODULE

SPECIFICATIONS

BUSINESS ROLE Stock is

 INTERACTIONS
 rpl get(product):nat

 prf set(product,nat)

 ORCHESTRATION
 local qoh:product→nat

 transition
 triggeredBy get(p)

 sends qoh(p)
 transition
 triggeredBy set(p,n)

 effects qoh(p)’=n

– 18 –

BUSINESS ROLE Supplier is

 INTERACTIONS
 r&s requestQuote
  which:product
  cost:money

 r&s orderGoods
  many:nat
  much:money
 rcv makePayment
 snd shipOrder
 s&r checkShipAvail
  which:product, many:nat
 rcv confirmShip
 ask how(product):money
 ask checkStock(product,nat):bool
 tll incStock(product,nat)

 tll decStock(product,nat)

 ORCHESTRATION
 local s:[0..8], inStock:bool, which:product, many:nat,

 much:money, timeoutQuote:bool
 initialisation

 s=0
 termination

 s=8

 transition TQuote
triggeredBy requestQuote?
guardedBy s=0
effects which’=requestQuote.which
 ∧ much’=how(requestQuote.which)*1.2
 ∧ inStock’=false
 ∧ timeoutQuote’=false
 ∧ s’=1
sends requestQuote!
 ∧ requestQuote.cost=much’
 ∧ requestQuote.Reply=true
 ∧ alertDate!
 ∧ alertDate.Ref=”quote”
 ∧ alertDate.Interval=7

 transition TAlert
triggeredBy alertDate?
guardedBy
effects alert.Ref=”quote” ∧ s=1 ⊃ timeoutQuote’=true
 ∧ alert.Ref=“goods” ∧ s=2 ⊃ s’=8
sends alert.Ref=”quote” ∧ s=1 ⊃ requestQuote!
 ∧ alert.Ref=“goods” ∧ s=2 ⊃ orderGoods!
 ∧ incStock(which,many)

 transition TimeoutOrder
triggeredBy checkShipAvail?
guardedBy
effects s=4 ⊃ s’=8
sends s=4 ⊃ orderGoods!

– 19 –

transition TOrder
triggeredBy orderGoods?
guardedBy s=1
effects many’=orderGoods.many
 ∧ timeoutQuote ⊃
 much’=orderGoods.many*how(requestQuote.which)*1.2
 ∧ ¬timeoutQuote ⊃ much’=orderGoods.many*much
 ∧ checkStock(which,orderGoods.many) ⊃ s’=2
 ∧ inStock’=true
 ∧ ¬checkStock(which,orderGoods.many) ⊃ s’=3
 ∧ inStock’=false
sends inStock’ ⊃ decStock(which,many)
 ∧ orderGoods!
 ∧ orderGoods.much=much’
 ∧ orderGoods.Reply=true
 ∧ alertDate!
 ∧ alertDate.Ref=”goods”
 ∧ alertDate.Interval=3
 ∧ ¬inStock’ ⊃ checkShipAvail!
 ∧ checkShipAvail.which=which
 ∧ checkShipAvail.many=many’

 transition TWare
triggeredBy checkShipAvail?
guardedBy s=3
effects checkShipAvail.Reply ⊃ s’=4
 ∧ ¬checkShipAvail.Reply ⊃ s’=8
sends checkShipAvail.Reply ⊃ orderGoods!
 ∧ orderGoods.Reply=true
 ∧ orderGoods.much=much
 ∧ ¬checkShipAvail.Reply ⊃ orderGoods!
 ∧ orderGoods.Reply=false

 transition TPay
triggeredBy makePayment?
guardedBy (s=2 ∨ s=4)
effects s=2 ⊃ s’=5
 ∧ s=4 ⊃ s’=6
sends s=4 ⊃ checkShipAvail!

 transition TConfirm
triggeredBy confirmShip?
guardedBy s=6
effects s’=7

 transition TShip
triggeredBy
guardedBy s=5 ∨ s=7
effects s’=8
sends shipOrder!

 transition TAbort
triggeredBy orderGoods?
guardedBy (s=5 ∨ s=6)
effects s’=8
sends s=5 ⊃ incStock(which,many)
 ∧ s=6 ⊃ checkShipAvail!

– 20 –

BUSINESS PROTOCOL Warehouse is

 INTERACTIONS
 r&s check&lock
  which:product, many:nat
 snd confirm
 BEHAVIOUR
 check&lock? exceptif true
 check&lock! ∧ check&lock.Reply ⊃
 alertDate! ∧ alertDate.Interval=3 ∧
 alertDate.Ref=”goods”
 check&lock! ⊃ alertDate? ∧ alertDate.Ref=”goods”
 check&lock ⊃ (check&lock? ensures confirm!)

 check&lock? ⊃ (check&lock? exceptif confirm!)

BUSINESS PROTOCOL Costs is

 INTERACTIONS
 rpl much(product):money

BUSINESS PROTOCOL Customer is

 INTERACTIONS
 s&r howMuch
  which:product
  cost:money
 s&r buy
  many:nat
  much:money
 snd pay

 rcv ackShip
 BEHAVIOUR
 howMuch? exceptif true
 howMuch? enables buy!
 howMuch? ⊃ alertDate! ∧ alertDate.Interval=7
 ∧ alertDate.Ref=”quote”
 howMuch? ⊃ alertDate? ∧ alertDate.Ref=”quote”
 howMuch? ⊃ howMuch.Reply
 howMuch ⊃ (buy! ensures
 (buy? ∧ buy.Reply ⊃ buy.much=buy.many*howMuch.much))
 buy? ∧ buy.Reply ⊃ alertDate! ∧ alertDate.Interval=3
 ∧ alertDate.Ref=”goods”
 buy? ⊃ alertDate? ∧ alertDate.Ref=”goods”
 buy ⊃ (pay! ensures ackShip?)
 pay! ≡ buy!
 buy! ⊃ buy! exceptif ackShip?

– 21 –

INTERACTION PROTOCOL Straight is

 INTERACTIONS
 snd S1

 rcv R1
 COORDINATION

 S1 ≡ R1

INTERACTION PROTOCOL Straight.I(d1)O(d2) is

 INTERACTIONS
 s&r S1

  i1:d1
  o1:d2

 r&s R1

  i1:d1
  o1:d2

 COORDINATION
 S1 ≡ R1
 S1.i1=R1.i1
 S1.o1=R1.o1

INTERACTION PROTOCOL Straight.I(d1,d2) is

 INTERACTIONS
 s&r S1

  i1:d1, i2:d2
 r&s R1

  i1:d1, i2:d2
 COORDINATION

 S1 ≡ R1
 S1.i1=R1.i1
 S1.i2=R1.i2

INTERACTION PROTOCOL Custom1 is

 INTERACTIONS
 ask S1(product,nat):bool
 tll S2(product,nat)
 tll S3(product,nat)
 rpl R1(product):nat

 prf R2(product,nat)
 COORDINATION

 S1(p,n) = R1(p)≥n
 S2(p,n) ⊃ R2(p,R1(p)+n)
 R1(p)≥n ∧ S3(p,n) ⊃ R2(p,R1(p)–n)
 R1(p)<n ⊃ ¬S3(p,n)

INTERACTION PROTOCOL AskTll(d1,d2) is

 INTERACTIONS
 ask S1(d1):d2

 tll R1(d1):d2
 COORDINATION

 S1(x) = R1(x)

