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Abstract

In this paper we use data from the 1994 and 1996 British Crime

Surveys (BCS) to examine the in‡uence of socio-economic factors on

the reporting of crime. Through probit estimation, we …nd that the

probability of a burglary being reported is signi…cantly reduced if the

individual is currently unemployed or has been engaged in illicit activ-

ity over the past year. We also …nd that, as anticipated, the reporting

likelihood is much increased if the incident involves a positively valued

loss. Using decomposition techniques, we also show that this result is

not driven by di¤erences in mean sample characteristics. Our results

suggest that the di¤erence between the recorded crime rate and the

true crime rate is not constant through the economic cycle. This may

have implications for models of crime and economic activity that make

use of recorded crime …gures..
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Keywords: Reported crime; microeconometric model, decomposi-

tion
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1 Introduction

There is a vast theoretical and empirical literature on the possible relation-

ship between the economic cycle and the reported crime rate. This literature

is comprehensively reviewed in Ehrlich (1996) and Allen (1996). Signi…cant

contributions to the debate on the general crime-economy nexus include Ste-

vans (1988), Field (1990), Pyle and Deadman (1994), Hale (1997), and Os-

born (1995). It comes as no surprise that the debate on crime, which has

been in‡uenced by this work, is fuelled by much controversy. Some of the

con‡ict in the empirical literature is driven by the variety of theoretical foun-

dations underpinning the models estimated. For example, there is consid-

erable debate (typically between economists and criminologists) concerning

the relationship between unemployment and property crime, and the results

given in the literature are far from unequivocal (Young, 1993). This debate

concerns two con‡icting theories about the relationship: opportunity theo-

ries and motivational theories (Cantor and Land, 1985). Those advocating

motivational theories (perhaps the majority view) tend to argue that unem-

ployment or economic hardship, by generating relative poverty, stimulates

criminal activity (see for example Phillips et al., 1972; Sjoquist, 1973; Myers,

1993), The opposing view, driven by opportunity theories, suggests that the

crime rate falls with increasing unemployment . This might be because of

the ‘guardianship e¤ect’: as unemployment increases there are more people

at home to deter criminals (Cohen et al., 1981; Cohen and Felson, 1979), or

it could be because unemployment reduces the wealth of victims (Cohen et

al., 1980).

There are several other areas of controversy in this debate. Not with-

standing the current controversy on econometric technique, one area that

has received attention is the use of o¢cial recorded crime …gures in empirical

models. The frequently cited concern is that o¢cial …gures may be seriously

‡awed due to under-reporting. Given the importance of this issue there is

surprising little attempt to address the problem in the applied literature.

Notable exceptions include Carr-Hill and Stern (1979), and more recently

Pudney et al. (1997, 1998). Pudney et al. attempt to overcome the problem

by developing a simulated maximum likelihood procedure to simultaneously

estimate the crime rate and the reporting rate. However, even this small

literature on the e¤ect of under-reporting dwarfs the applied work that has

considered the factors that in‡uence this behaviour. Although Goldberg

and Nold (1980) include a model of reporting probability in order to deter-

mine whether reporting deters burglars, it is di¢cult to …nd any literature

on in‡uences of crime reporting. This is surprising given the importance of

under-reporting from a public policy perspective. To illustrate this, consider
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the following example. Let us assume that the true crime rate is an increasing

function of unemployment as this hypothesis receives the greatest support

in the literature (see Pyle, 1998). We are not able to observe the true crime

rate as o¢cial …gures are based on reported crimes. Rather, we observe mea-

sured crime, which is likely to su¤er from reporting bias. Now, let us suppose

that the micro-foundations of under-reporting suggest a negative relationship

between the reporting rate and unemployment, perhaps a result of social ex-

clusion or marginalisation. If this is the case, then this would imply that

the di¤erence between the actual crime rate and the measured rate is not

constant over the economic cycle. As the unemployment rate increases, the

crime rate increases but the measured rates increases at a slower pace (i.e.

the measured rate of crime will diverge increasingly from the actual rate).

Here we illustrate just one possible consequence of under-reporting, but one

can easily conceive of other micro-foundations that in‡uence this behaviour,

for example, attitudes to the police; the distribution of household insurance

and loss, and cultural di¤erences.

To consider these issues further we explore the foundations of under-

reporting using microeconometric analysis. There are many aspects to con-

sider in this analysis. Intuitively, one might expect that individuals will fail

to report a crime if they perceive the outcome of reporting as negligible. This

might be because of previous experience of the criminal justice system, or

through personal prejudice, but it may be linked to the insurance status of

any items stolen. If the household has no contents insurance then why bother

to report the incident? Similarly, if the individual perceives the response of

the police as likely to be ine¤ectual (as may be the case in high property

crime rate areas), then that individual is less likely to report the incident.

Similarly, are cultural and racial di¤erences likely to a¤ect reporting rates

given the varying perceptions of the police and o¢cialdom across communi-

ties? In order to explore these issues the balance of this paper is as follows.

In the next section we discuss the data set and sample properties. Following

this we present the empirical methodology, outlining the method of probit

estimation and decomposition techniques. In section 4 we present our results

and discussion. The paper is summarised in section 5.

2 Data and sample

In order to investigate the discrepancy between the measured rate of crime

and the true rate, we can make use of survey data that provides information

about the reporting of crimes. In the UK there are two sources that have been

used to explore the extent of measurement error in reported crime statistics:
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the British Crime Survey (BCS) and the General Household Survey (GHS).

The GHS only considers the reporting of burglary o¤ences and provides little

additional detail about the nature and circumstances of the incidents. The

BCS, however, is a more extensive victim survey that provides victimisation

rates for a large number of categories of o¤ence (the notable exclusions being

fraud, drug o¤ences and theft from businesses). The BCS was …rst admin-

istered in 1982 and has been repeated in 1984, 1988, 1992, 1994, and 1996.

The initial surveys were administered to around 10,000 households, but the

sample size was increased to 15,000 for the 1994 and 1996 surveys. In addi-

tion, surveys prior to 1994 were conducted using the electoral register as a

sampling frame. From 1994 the method was changed to using the Postcode

Address File, bringing the BCS into line with the main household surveys

and increasing the representativeness of the possible sample. Other changes

in the survey method include the move to Computer-Assisted Personal In-

terviewing in 1994. Given these changes in sampling methodology, interview

technique and sample size, we restrict our analysis to just the pooled 1994

and 1996 sweeps of the BCS. With respect to the sample size, the 1994 survey

yields a core sample of 14,500 adults, and the 1996 survey 16,350 adults. Both

samples are increased by an ethnic minority booster sample of approximately

2000 black and Asian adults. For more details of the sampling procedure for

the 1994 survey see White and Malbon (1995), and for the 1996 survey see

Hales and Stratford (1997).

2.1 Current sample

For our analysis we are only interested in those individuals who have ex-

perienced some form of property crime over the year preceding the survey.

Following Pudney et al. (1997), and in order to be consistent with the liter-

ature on under-reporting and predictive crime models, we focus on incidents

of residential burglary. This major o¤ence is suitable for analysis as we are

less likely to su¤er from recall bias in our estimates (compared to other of-

fences, respondents are very likely to have a good recall of when a burglary

occurred and the circumstances of the crime). Furthermore, with these data

we are unlikely to su¤er problems with evasion bias. Whereas there are well-

documented problems of misreporting in surveys of a sensitive nature (for

example see Jones and Forrest, 1992; Fendrich and Vaughn, 1994), there is

little reason to believe that survey respondents will misreport their experi-

ence of burglary. Although the reduced likelihood of recall or evasion bias

give us some con…dence in the measure of ‘true’ crime and the reporting rates

the BCS provides, the focus on just burglary o¤ences does reduce our sample

size dramatically. However, we are able to include observations on repeat
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burglary incidents as the BCS allows respondents to complete Victim Forms

for up to 3 main incidents (a further 2 incidents are recorded but in much

less detail). For our sample we use a modi…ed version of the BCS de…nition

of burglary: “entering the respondent’s dwelling as a trespasser with the in-

tention of committing theft, rape, grievous bodily harm or unlawful damage

[whether the intention is carried through or not]” (White and Malbon, 1995,

p. 260). In our sample, a burglary occurs if the respondent answers yes to

one of the following questions:

1. Has anyone got into this house/‡at without permission and stolen or

tried to steal anything?

2. Did anyone get into your house/‡at without permission and cause dam-

age?

3. Have you had any evidence that someone has tried to get in without

permission to steal or to cause damage?

We could limit our sample to just those reporting yes to the …rst question,

but question 3 allows us to include attempted burglary in our de…nition,

but given the way the question is posed we must therefore include question

21. Thus our remaining pooled data set, after losses for non-response and

restriction to just burglary incidents, consists of 4168 observations, of which

2149 relate to 1994 and 2019 to 1996.

2.2 Core characteristics

The BCS asks respondents numerous questions about the nature and circum-

stances of each crime they have experienced over the year prior to the survey.

They are then asked if the police came to know about the matter. This pro-

vides the basis of our reporting rates. There are, of course, many follow-ups

to this primary question, depending on the interviewee’s initial response. For

example, if the incident was not reported, the respondent is asked to explain

why not, and if the police were informed of the incident, the survey asks

how it was reported and who contacted the police. One di¢culty we have

1Our use of these questions also excludes the part of the BCS de…nition of burglary

that mentions rape or grievous bodily harm. We do this so as to be consistent with the

literature, but partially because of inconsistencies in the way these o¤ences are recorded in

the BCS. For example, if a rape takes place during an incident of burglary, it is classi…ed

as a sexual o¤ence, not a burglary. Furthermore, on inspection of the BCS data, where

we are able to observe incidents that fall outside of the property crime element of the

de…nition, the numbers are negligible.
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is in knowing whether the incident was actually recorded by the police (i.e.

whether or not the incident actually appears in the recorded crime …gures).

We do know if the initial report of the incident was the only contact with the

police concerning the matter, and whether the police caught the o¤ender,

but as we do not know whether a crime number is issued by the police, we

have to con…ne our analysis to reported crime as opposed to recorded crime.

However, for the purpose of our investigation, this de…nition is acceptable as

we are only interested in the micro-foundations of crime reporting.

In our sample of 4168 observations, 2099 (50.36%) incidents were reported

to the police. De…ning an incident that involves loss as one where the respon-

dent places a positive value on any items stolen or damaged, 2668 (64.1%)

of our observations involve a loss. Of those incidents that involve loss, 1590

(59.6%) were reported to the police, compared to a rate of 33.93% for those

incidents that did not involve a loss. In terms of economic prosperity, loss-

involving incidents are fairly evenly distributed between victims who are in

work and those who are currently unemployed. For those incidents involv-

ing a loss, 78.37% of the incidents were experienced by respondents in work,

whereas the …gure is 75.27% for those incidents involving no loss.

3 Methodology

In Goldberg and Nold (1980) the household’s probability of reporting a crime

is modelled as a function of the loss involved, property damage, and the cost

of reporting2. Whether or not a crime is reported, however, will also depend

on a variety of individual attributes, experiences and personal circumstances

speci…c to that incident. For example, an individual’s propensity to report

a crime may vary between age and ethnic groups, may be a¤ected by the

individual’s past experience of burglary, their attitudes to the police, and, of

course, may be a¤ected if some …nancial loss is involved, particularly if an

insurance claim is to made. These likely in‡uences are easily summarised as:

Pr(reporting) = f(incident involves loss; socioeconomicfactors;

incident specific factors; attitudes to the police) (1)

This function can then be estimated empirically to determine the factors

that are signi…cantly associated with the reporting of an incident.

2Like the BCS, their data set does not provide adequate information to include a cost

of reporting variable in the empirical model but the authors do include some very simple

socioeconomic variables.
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3.1 Estimation technique

We do not directly observe an individual’s tendency to report a crime. Rather,

we observe the reporting outcome for each speci…c incident, which is a bi-

nary outcome: either reported or not. This suggests that we can estimate

our model through either a logistic or probit mechanism. As such, we begin

our model by de…ning a latent variable r¤i that represents an individual’s
propensity to report a crime. This drives the observed binary indicator of

whether a crime was reported, ri, through the usual probit mechanism:

r¤i = li® + xi¯ + "i (2)

ri = »(r¤i > 0) (3)

where »(:) is the indicator function, equal to 1 if the individual reports a given
crime and 0 otherwise, xi is a row vector of personal and demographic at-
tributes, ¯ is the corresponding vector of parameters, and "i is a disturbance
term, normally distributed with mean zero and variance one, conditional on

x. The term li is a binary variable capturing whether the incident involves
a loss. We include this as a separate term to highlight that …nancial loss

is likely to be a particularly signi…cant explanatory variable for reporting

through its relationship with insurance. Estimation of (2) through a pro-

bit regression is straightforward, and provides us with direct measures of the

impact of the various micro-factors on the likelihood of reporting an incident.

3.2 Decomposition

Given that we suspect that incidents involving some form of loss are more

likely to be reported, a worthwhile line of inquiry is to explore whether those

incidents involving a loss would be reported in the absence of that loss. In

other words, we need to determine whether it is the loss itself that drives the

reporting di¤erential, or whether the di¤erential is due to di¤erences in un-

derlying characteristics between those people who experience loss and those

who do not (i.e. are those people who report losses are signi…cantly di¤er-

ent in terms of their characteristics than those who report incidents without

loss?). To do this we can use an Oaxaca-type decomposition (Oaxaca, 1973),

a technique widely used in the labour economics literature to explore wage

di¤erentials. This is achieved by splitting our sample into those incidents

involving a loss and those which do not. We then re-estimate equation (2)

separately for each group, but exclude the loss term in the regression, re-

writing it as:
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r¤i = xi¯ + "i (4)

where ri, ¯, xi, and "i are speci…ed as above. Following Gomulka and Stern
(1990), the separate estimates of (4) are used to determine the predicted

di¤erential in reporting rates via two alternative decompositions3:

r̂L ¡ r̂N = [ ¹P (^̄
L
;XL)¡ ¹P (^̄

N
; XL)] + [ ¹P (^̄

N
; XL)¡ ¹P (^̄

N
; XN )] (5)

r̂L ¡ r̂N = [ ¹P (^̄
L
;XN)¡ ¹P (^̄

N
; XN)] + [ ¹P (^̄

L
; XL)¡ ¹P (^̄

L
; XN )] (6)

where ¯ is the estimate of the coe¢cients from the probit equation (4), vary-
ing according to which group is used (superscript L for incidents involving

loss, superscript N for those with no loss). The terms r̂L and r̂N are the

respective average of the predicted reporting probabilities for incidents with

loss and incidents without. The expression ¹P (^̄
L
; XL) is the average across

the sample of the predicted probabilities using the estimated coe¢cients for

the sample of incidents with loss and the corresponding mean characteristics,

and the other expressions vary according to whether coe¢cients and charac-

teristics are used for incidents with or without loss. Thus in equation (5), the

left hand square-bracketed expression provides an estimate of the di¤erence

in predicted reporting probability due to di¤erences in regression coe¢cients,

and the second term gives the di¤erence attributable to di¤erences in the un-

derlying characteristics of the sample. The expressions in equation (6) yield

the same estimates but with the non-loss involving incidents as the base

group.

4 Results and discussion

4.1 Probit estimates

Our probit estimates of the probability of reporting a burglary incident are

given in Table 1. We provide estimates for the whole sample alongside sep-

arate estimates for incidents involving a loss and those which do not. The

3We specify two decomposition equations due to uncertainty in indexing our base group.

Ordinarily we might be certain that one group is the base (i.e. if we were considering the

impact of a new treatment then our base case would be those who had not had the

treatment), but we are not 100% certain as to whether incidents involving a loss are our

base. Whether or not this presents a problem becomes evident if the two equations provide

radically di¤erent estimates of the predicted reporting di¤erential.
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model is speci…ed simply with the set of covariates discussed above. We do

not include an insurance variable due to the way questions are asked in the

BCS (respondents are only asked about insurance coverage if they experience

loss or damage that is valued positively - we deal with this later). For a de-

scription of all the covariates reported here, and their descriptive statistics,

see Table A1 in the Appendix. The base characteristics for the regressions

are: white, married male, unskilled occupation with no formal quali…cations,

currently resident in the West Midlands, with no reported drug use. Rather

than presenting the estimated coe¢cients we give the marginal e¤ects (dF/dx

in Table 2), although the coe¢cients are used later for the decompositions.

We do this because probit (or logit) estimated coe¢cients cannot be inter-

preted directly as the impact on the dependent variable of a one unit change

in the independent variable, particularly when the explanatory variables are

predominately 0-1 dummies4.

4E¤ectively the marginal e¤ects show by how much the predicted probability of report-

ing an incident changes (at the means of all other variables) when the dummy variable in

question becomes true (i.e. equals 1). In order to do this for a probit, one has to deter-

mine Pr(ri 6= 0jxi) = ©(xi¯) when the dummy variable = 0 and for when it equals 1, and
calculate the di¤erence in this predicted probability (where © is the standard cumulative
normal distribution, and xi¯ is the probit index).
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Table 1.

The probability of reporting a burglary: probit estimates5

Full Sample No loss Loss

Covariate dF/dx jtj dF/dx jtj dF/dx jtj
AGE/10 -.004 1.060 -.005 .430 -.005 1.150

MAR0MALE -.017 .760 -.003 .090 -.024 .860

MAR0FMAL .006 .260 .001 .040 .009 .350

MAR1FMAL .061*** 2.750 .054 1.480 .059** 2.230

BLACK .054* 1.780 .069 1.410 .049 1.320

ASIAN .019 .660 .057 1.130 .002 .060

OTHER -.055 1.180 .002 .030 -.077 1.380

UNEMPL -.094** 2.380 -.059 1.020 -.112** 2.250

SOC1 -.056 1.400 -.050 .840 -.059 1.190

SOC2 -.030 .770 .017 .290 -.056 1.170

SOC3 -.067 1.580 -.066 1.040 -.060 1.140

EDU1 -.005 .170 -.029 .650 .013 .390

EDU26 -.038** 1.910 -.042 1.290 -.033 1.390

ANYYEAR -.096*** 4.040 -.085** 2.400 -.102*** 3.380

MEMBNWS .054** 1.940 .082* 1.810 .041 1.250

BADPOLIC -.014 .670 -.001 .020 -.022 .850

PREVINCD -.018** 2.090 .026** 2.370 -.075*** 6.040

PCNAME -.005 .240 .007 .240 -.013 .520

LOSS .249*** 15.050 - - - -

WEEKEND .033** 1.930 .027 1.030 .051*** 2.480

NIGHTIME .041*** 2.540 .063** 2.450 .047** 2.380

NORTH .094*** 2.450 .097 1.520 .093** 2.060

YORKS .061* 1.780 .041 .710 .068* 1.730

NWEST -.016 .480 -.018 .340 -.010 .240

EASTM .062 1.540 .027 .410 .083* 1.760

EASTA -.032 .540 -.045 .520 -.017 .240

SEAST .044 1.270 .071 1.200 .031 .740

SWEST .058 1.300 .163** 2.100 .006 .120

WALES .023 .450 .056 .700 .010 .160

LOND .048 1.510 .047 .870 .046 1.250

observations 4168 1500 2668

Â2 (d.f.) 356.58 (31) 48.84 (30) 107.53 (30)

Log Likelihood -2710.64 -936.47 -1746.12

Note: *** = signi…cant at 1% level, ** = signi…cant at 5% level,

* = signi…cant at 10% level

5The estimates include a survey year dummy that is not reported here.
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The results given in Table 1 suggest that there is some variation in the

probability of reporting across various socioeconomic groups. Compared to

the base, married females are signi…cantly more likely to report an incident,

unless it involves no loss. Individuals who are currently unemployed are

less likely to report incidents compared to the base (making the probability

of reporting lower by 10%), as are those with non-degree quali…cations (but

neither are signi…cant if the incident involves no loss). An interesting result is

the e¤ect of self-reported drug use. We included a variable to capture whether

the individual had reported any drug use in the past year (ANYYEAR) as

it is quite conceivable that such individuals are less likely to want to have

contact with the police. Our results support this hypothesis, with the drug

use variable being negative and highly signi…cant across all samples.

The impact of the variables capturing the individual’ previous contact

with police and experience of burglary are quite predictable, although there

appears to be no link between reporting and dissatisfaction with the police.

This result holds however we de…ne this relationship with the police, even

if the relationship is positive (i.e. if the respondent knows or is related to

someone in the police). Other in‡uential factors include being part of a

neighbourhood watch scheme, which has a positive in‡uence on the proba-

bility of reporting (although it is not signi…cant for the sample of incidents

involving loss). Interestingly, if the incident is not the …rst in the past year

(variable PREVINCD) then this has a signi…cant negative in‡uence on the

likelihood of the incident being reported, (unless the current incident involves

no loss, in which case it is more likely to be reported). This result is di¢cult

to explain. The PREVINCD variable may be capturing some of the e¤ects

of previous exposure to the police, or could simply re‡ect an individual’s

change in attitude to burglary if the incident occurs more than once in the

year.

The …nal group of in‡uences are incident speci…c. Not surprisingly, if

the incident involves a loss then this has a highly signi…cant (absolute t

value = 15.05) impact on the probability of the incident being reported6.

The results suggest that if the incident involves a loss the this adds 0.249

(i.e.25%) to the probability of the incident being reported. In addition,

where incidents occur at the weekend or at night, this signi…cantly in‡uences

the likelihood of reporting (although weekend is not signi…cant for incidents

involving no loss). We also observe some regional a¤ects, with the likelihood

6Following Goldberg and Nold (1980), a second model was estimated that included a

number of dummy variables representing incremental bands of loss (i.e. 0-£49, £50-£99,

£100-£199, etc.). These results, available on request, are very similar to those presented

in Table 2. The main di¤erence is that all the loss dummies are positive and signi…cant,

but their coe¢cients increase with the size of the loss.
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of the incident being reported increasing if it occurs in the North of England

or in Yorks/Humberside, compared to the base region (West Midlands).

4.1.1 Decompositions

Concentrating on our reporting di¤erentials, the results of our decomposi-

tions are presented in Table 2. The …rst …gure in Table 2 shows the di¤er-

ence in reporting probability between incidents involving a loss and those

which do not. The …gures following this are the proportions of this di¤erence

explained by di¤erences in coe¢cients and characteristics respectively.

Table 2.

Claimers/non-claimers reporting probit decompositions

Di¤erence in means

r̂L ¡ r̂N 0.264

Di¤erence in coe¢cients

f ¹P (^̄L;XL)¡ P (^̄N ; XL)g 0.250 (94.9%)

f ¹P (^̄L;XN)¡ P (^̄N ; XN)g 0.247 (93.6%)

Di¤erence in characteristics

f ¹P (^̄N ; XL)¡ P (^̄N ; XN)g 0.014 (5.1%)

f ¹P (^̄L;XL)¡ P (^̄L; XN)g 0.017 (6.4%)

The …rst observation about the …gures in Table 3 is that there is a 26.4%

di¤erence in reporting probability when an incident involves a loss, all other

things being equal (and regardless of which group we use as the base). Thus,

calculating the probability of an incident being reported at the means of all

variables, there is a 33.5% chance of an incident being reported if it involves

no loss, but a 59.9% chance if it does involve loss. In terms of what drives

this reporting di¤erential, Table 3 provides us with two alternative measures

according to which we consider the base group. If we consider incidents

involving no loss as the base, 94.9% of the reporting di¤erential is caused by

di¤erences in estimated coe¢cients, with the remaining 5.1% di¤erence being

due to di¤erences in mean characteristics. The components of the reporting

di¤erential are similar when incidents involving loss are considered the base

(93.6% and 6.4% respectively). These results tell us that around 95% of the

reporting di¤erential can be primarily attributable to the impact of loss. The

(much smaller) remainder of the di¤erential is therefore due to the di¤erences

in mean characteristics between the two sub-samples.

The decomposition results are important, particularly if the link between

loss and reporting is related to insurance purchase and economic prosperity.
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To illustrate this we split our full sample into two groups. Group 1 consisted

of those in either managerial/professional or skilled professions (59.9%) and

group 2 consisted of those in partly or unskilled occupations and those who

were currently unemployed (40.1%). The distribution of incidents involving

loss was evenly spread between group 1 and group 2. For group 1, 65.4%

experienced incidents involving loss, whereas the rate for group 2 was 62.0%.

If we consider just the incidents involving loss, we expect the reporting rate

to be very similar for both groups given the results presented above (we have

observed that reporting di¤erentials are not much a¤ected by di¤erences in

characteristics). Indeed, the reporting rate for group 1 where the incidents

involve loss is 61.6%, with the rate for group 2 only slightly lower at 57.5%.

What is illuminating, however, is the large di¤erence in insurance coverage

between the two groups. For the …rst group, who are economically more

prosperous, 61.6% of the incidents involving loss are covered by insurance,

whereas for group 2, the rate is much reduced at 37.9%. This …nding is

consistent with other surveys and is particularly worrying. As we are certain

that those on lower income are much less likely to insure their contents (e.g.

Lewis, 1989), then as crime rates increases as the economy slows down, the

redistributive e¤ect of insurance is increased.

5 Concluding remarks

One of the purposes of this paper has been to add more fuel to the con-

troversial debate on the whole crime/economy nexus. We present the …rst

attempt to model the under-reporting of crime using UK data. To do this

we use the British Crime Survey, which yields a rich environment in which to

test the micro-foundations of the propensity to report crime. We began our

analysis by hypothesising that the reporting of crime, particularly burglary,

is likely to be related to a number of socioeconomic factors, once we con-

trol for individual attributes and incident speci…c factors. Using maximum

likelihood estimation techniques, we have found that the probability of an

incident being reported is signi…cantly decreased if the victim is currently

unemployed. This supports our suggestion that the di¤erence between the

true rate of crime and the measured rate of crime varies as economic activity

varies.

Linked to the economic cycle is the relationship between loss, insurance

and the probability of reporting a crime. We have found that incidents in-

volving a positively valued loss are fairly evenly distributed between those

in work and respondents who are currently unemployed. This implies that

as the crime rate increases, the increase in burglaries involving loss will be
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more or less spread evenly across the two groups. However, the distribu-

tion of insurance coverage is not evenly distributed between the groups, with

those on higher incomes having a much higher tendency to insure household

contents. What is more, we have shown that incidents involving loss have a

much higher probability of being reported than incidents that do not involve

loss. This generates two causes of concern. We know that the level of insur-

ance coverage increases with income (Lewis, 1989), thus, during a downturn

in the economic cycle we anticipate insurance coverage to decrease as rela-

tive prosperity worsens. This implies that individuals who are a¤ected by

economic downturn su¤er considerably, as the incidence of burglary will in-

crease but less of the incidents are covered by insurance. Our second concern

is that this relationship will have a further impact on the disparity between

measured crime and actual crime that was illustrated above.

Finally, we highlight a particularly interesting result concerning criminal

activity and reporting. We found that there is a signi…cant negative asso-

ciation between involvement in drug use and reporting of crimes. Clearly

individuals who have some illegal behaviour to hide from the authorities are

much less likely to report incidents to police. This raises another question

mark over the relationship between measured crime and actual crime, par-

ticularly during periods of economic downturn when illegal activity is likely

to increase.
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Appendix - Table A1: Variable descriptions and descriptive statistics

Variable Description Mean Std. Dev.

Personal characteristics

AGE/10 Respondent’s age/10 3.751 2.434

MAR0MALE 1 = single male 0.227 0.419

MAR1MALE 1 = married male 0.320 0.466

MAR0FMAL 1 = single female 0.229 0.420

MAR1FMAL 1 = married female 0.225 0.417

WHITE 1 = white 0.784 0.412

BLACK 1 = Black (African, Caribbean, other) 0.090 0.287

ASIAN 1 = Asian (Indian, Pakistani, Bangladeshi) 0.094 0.292

OTHER 1 = Chinese, other ethnic origin, or none 0.031 0.174

UNEMPL 1 = currently unemployed 0.227 0.419

SOC1 1 = managerial/professional occupation 0.292 0.455

SOC2 1 = skilled occupation 0.306 0.461

SOC3 1 = partly skilled occupation 0.124 0.329

SOC4 1 = unskilled occupation 0.037 0.189

EDU1 1 = degree or higher quali…cation 0.173 0.378

EDU26 1 = non-degree quali…cation 0.570 0.495

EDU7 1 = no formal quali…cations 0.257 0.437

ANYYEAR 1 = has taken any drug in past year 0.150 0.358

Attitudes and exposure to police

MEMBNWS 1 = part of neighbourhood watch scheme 0.098 0.297

PREVINCD number of previous incidents in past year 0.801 0.954

BADPOLIC 1 = previously dissatis…ed with police 0.191 0.393

PCNAME 1 = know someone in police 0.224 0.417

Incident speci…c attributes

LOSS 1 = incident involves loss 0.640 0.480

WEEKEND 1 = incident occurred at weekend 0.650 0.477

NIGHTIME 1 = incident occurred at night 0.518 0.500

NORTH 1 = resident in North of England 0.081 0.273

YORKS 1 = resident in Yorks/Humberside 0.132 0.338

NWEST 1 = resident in North West England 0.162 0.369

EASTM 1 = resident in East Midlands 0.069 0.254

WESTM 1 = resident in West Midlands 0.094 0.292

EASTA 1 = resident in East Anglia 0.024 0.153

SEAST 1 = resident in South East England 0.124 0.330

SWEST 1 = resident in South West England 0.050 0.217

WALES 1 = resident in Wales 0.036 0.186

LOND 1 = resident in London 0.228 0.419
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