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ABSTRACT 

Computer simulation using the Discrete Element Method (DEM) has emerged as a 

powerful tool in studying the behaviour of particulate systems during powder flow 

and compaction. Contact law between particles is the most important input to the 

Discrete Element simulation. However, most of the present simulations employ over-

simplistic contact laws which cannot capture the real behaviour of particulate systems. 

For example, plastic yielding, material brittleness, sophisticated particle geometry, 

surface roughness, and particle adhesion are all vitally important factors affecting the 

behaviour of particle interactions, but have been largely ignored in most of the DEM 

simulations. This is because it is very difficult to consider these factors in an 

analytical contact law which has been the characteristic approach in DEM simulations. 

This thesis presents a strategy for obtaining the contact laws numerically and a 

comprehensive study of all these factors using the numerical approach.  

 

A numerical method, named as the Material Point Method (MPM) in the literature, is 

selected and shown to be ideal to study the particle interactions. The method is further 

developed in this work in order to take into account all the factors listed above. For 

example, to study the brittle failure during particle impact, Weibull’s theory is 

incorporated into the material point method; to study the effect of particle adhesion, 

inter-atomic forces are borrowed from the Molecular Dynamic model and 

incorporated into the method. These developments themselves represent a major 

progress in the numerical technique, enabling the method to be applied to a much 

wider range of problems. The focus of the thesis is however on the contact laws 

between extremely fine particles. Using the numerical technique as a tool, the entire 

existing theoretical framework for particle contact is re-examined. It is shown that, 

whilst the analytical framework is difficult to capture the real particle behaviour, 

numerical contact laws should be used in its place.  

 

Key words: contact law; material point method; fine particles; discrete element 

method 
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CHAPTER 1                                              

INTRODUCTION 

 

The theme of this thesis is to study the interaction between extremely fine 

particles using modern numerical techniques. This chapter provides the general 

background of the problem and outlines the existing theories which are relevant 

to this study.   

 

1.1 PARTICULATE SYSTEMS   

Fine particles, other than defined in physics as dots with degrees-of-freedom, merely 

holding space and positions, are practically of many complicated features. The 

behaviour of particles is relevant to modern chemical/drug/powder-metallurgy 

industries. These industries have to work with various kinds of properties of their 

particles. For example, the industry of powder-metallurgy is an area that the 

properties of particles play an important role (e.g. Rajiv et al., 2006). The technique of 

powder-metallurgy is to convert an assembly of particles, i.e. powders into an 

integrated component with desired shape. This technique is now used extensively in 

the fabrication of ceramic and metal parts. Concisely speaking, there are several 

processing steps to convert powders into a solid part, including powder production, 

transfer, mixing, compaction, sintering, and etc. All these processing steps are 

utilizing the properties of particles. Specifically, the powders can be produced from 

either solidification of melted materials or milling of cold materials, where large 

particles are crushed into finer particles. During powder transfer and mixing, the 

flowability of particles makes it easy to control the shape and properties of the parts. 

Compared to conventional fabrication methods such as machining or casting, this 

appealing flowability of powders enables complex part shapes with less waste of 

materials. The particles are deformed under external pressure during the compaction 

process. The deformations of individual particles create stresses inside while the 

particulate systems can be densified. One of the most appealing features of the 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bAsthana%2C+Rajiv%7d&section1=AU&database=131075&yearselect=yearrange&sort=yr
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powder-metallurgy is that, due to the extremely large surface area of the powders, the 

particles can be bonded together into a whole component by solid state diffusions 

between particles at temperatures far below the melting temperature. This sintering 

process enables the manufacture of parts from difficult-to-melt materials. Other 

examples of properties of particles include, electrostatic controllable, such as in the 

depositing of carbon powders in the printing and photocopying industry; the ability of 

forming liquid dispersion such as colloid production in the industry of pastes and gels. 

 

Generally speaking, most people who are dealing with particles are actually dealing 

with a whole particulate system. Normally formed by highly self-similar individual 

particles with various properties, one whole particulate system behaves either 

discretely (e.g. particle flow) or continuously (e.g. compacted powders). It is 

important to control the final output of the processing of the particulate systems (e.g. 

the quality of the parts after sintering). However, a whole particulate system can be so 

complex that the desired output is sometimes hard to obtain. For example, some well 

known problems in the metallurgy industry include the geometry inaccuracy and 

shape distortion, the density inhomogeneity, and the inter-particle cracking or inner-

particle cracking when subjected to excessive external force. In order to solve such 

problems and improve the final output of the product, a full understanding of the 

particulate systems is an essential requirement. In fact, in the recent years, the demand 

for the modelling of the particulate systems has been increasing intensively.  

 

Unfortunately, one whole particulate system is too complicate to model by 

conventional methods. On the one hand, an entire particulate system is able to flow 

freely, therefore cannot be treated as a continuous solid. On the other hand, the 

particulate system consists of individual deformable particles, which have to be 

treated as continuous solids. A multi-scale approach has been used with the help by 

the expanding use of modern computers and numerical techniques. Firstly, the 

properties of an individual particle are comprehensively modelled. Secondly, all 

particles of a particulate system are abstracted into space occupying dots with the 

dominant property. The whole particulate system is simulated by governing the 
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particles with the interaction rules obtained in the first step. In the past decades, the 

Discrete Element Method (DEM) has been used to simulate the particulate systems. 

First applied by Cundall (1971) to study granular materials such as rock, the DEM is 

becoming more and more popular in geophysics. Recently, the DEM is proved to be 

useful in simulating the other particulate systems, especially for the particle flow (e.g. 

Sitharam, 2000). The main idea of DEM is to assume that the interaction between two 

particles is the dominant mechanism in a particulate system. The particle motion can 

be simulated by solving the equations of motion based on the knowledge of the 

interactions between a single pair of particles.   

 

 

1.2 THE DISCRETE ELEMENT METHOD 

In the Discrete Element Method (DEM), typically, all particles in the particulate 

system are simplified to be identical spheres (space occupying dots). An example of 

two dimensional DEM is shown in Fig. 1.1(a). Two particles only interact when they 

are in contact. When two particles are in contact and further approach each other, they 

are allowed to have overlapping, the thickness of which is equal to the relative 

displacement between the two particles. In DEM, the force acting on the i th particle 

iF  is determined completely by the relative displacement between the two particles 

ijδ  such that 

 

( )i ij ij

j i

F F δ  ,         (1.1) 

where j  denotes the j th particle. The motions of the particles at time t  are obtained 

by solving the equations of motion:  

 

i i im v F ,          (1.2) 

t t t

i i i t   v v v ,         (1.3) 

and 
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t t t t t

i i i t   δ δ v ,         (1.4) 

where 
im  is the mass of the i th particle, t  is the length of a short time interval 

(incremental time), 
iv , 

iv , and 
iδ  are the acceleration, velocity, displacement of the 

i th particle respectively. We use the notation that the bold letters denote vectors or 

tensors, and dot denotes the time derivative. The displacement, velocity, acceleration 

and force are written in bold because they are vectors consisting of a normal 

component and a tangential component that 

 

 

 

 

(a) 

 

 

                       (b) 

 

Fig. 1.1 DEM simulations. (a) Illustration of a typical DEM particle pairs. (b) Typical 

numerical scheme of a DEM simulation. 
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If rotation is considered in DEM, a set of equations of motion similar to Eqs. (1.2)-

(1.4) can be obtained such that  

 
tangential

i
i

i

F R

I



 ,         (1.6) 

t t t

i i i t      ,         (1.7) 

t t t t

i i t     .         (1.8) 

A modification to Eq. (1.1) is needed such that  

 
normal normal ( )i ij ij

j i

F F


 δ ,        (1.9) 

tangential tangential ( , )i ij ij i

j i

F F 


  δ .               (1.10) 

In Eqs. (1.6)-(1.8) 
iI  is the moment of the inertia of the particle, 

i , 
i , and 

i  are 

the angular acceleration, angular velocity, and the incremental rotation respectively. 

Obtaining the acceleration 
iv  and 

i  will produce further updating of the relative 

displacement 
iδ  and incremental rotation 

i . By iterating Eqs. (1.1)-(1.4), and Eqs. 

(1.6)-(1.10) on all particles in a particulate system, the movements of all particles are 

obtained . The typical numerical scheme of a DEM simulation is shown in Fig. 1.1(b). 

 

 

1.3 CONTACT BETWEEN A PAIR OF PARTICLES 

Equation (1.1), or more rigorously speaking, Eqs. (1.9) and (1.10), are known as the 

contact law, where Eq. (1.9) is normally regarded as the normal contact law while Eq. 

(1.10) is normally regarded as the tangential contact law. Figure 1.1(b) clearly shows 

that the contact law is the core of the DEM simulation. The accuracy of the contact 

law will determine the accuracy of the whole DEM solutions.  
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A contact law is a relationship between the contact force F  and relative displacement 

δ  between two particles. The normal contact law is of the most interest because: (a) 

the tangential contact law can be related to the normal contact law; (b) the normal 

contact law varies a lot from one kind of particle to another. Throughout this thesis, 

we are focusing on the normal contact law and therefore do not distinguish F  from 

normalF , and   from normal .  

 

Contact mechanics, such as the method developed by Hertz in the 1881 (see Johnson, 

1985 for example), has provided a natural analytical framework for obtaining the 

contact laws. As shown in Fig. 1.2, in the analyses of contact mechanics, a particle is 

generally assumed to be a sphere with a radius R . The contact between a pair of 

identical particles can be simplified as a spherical particle contacting against a rigid 

wall. According to the Hertz theory, the spherical particle is assumed to be completely 

elastic, with a Young’s modulus E  and a Poisson’s ratio  . The deformation of the 

particle is small therefore the profile of the particle near the contact area can be 

simplified to be a parabolic function such that 

 
2a

R
  ,                (1.11) 

where a  is the radius of the contact area   is the approach displacement in the 

normal direction of the contact.  

 

As shown in Fig. 1.2, the normal displacement 
zu  at an arbitrary position r  within the 

contact area must follow the constraint that 

 
2 /zu r R   .                  (1.12) 

An important finding by Hertz is that the pressure distribution within the contact area 

follows  
1/ 2

2

Hertz 0 1 ( / )ep P r a    ,                 (1.13) 
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which satisfies Eq. (1.12). 
0

eP  is the value of the elastic pressure at the centre of the 

contact area. The normal displacement at an arbitrary position within the contact area 

can be obtained from Eq. (1.13) using the elastic theory for half space as 

 

 

 

 

 

 

Fig. 1.2 A spherical particle contacting with the rigid wall, the Hertz theory. 

 

 

 

2 2 20

*
(2 ) /

4

e

z

P
u a r r R

aE


    ,                (1.14) 

where *E  is the effective elastic modulus that  

 
* 2/(1 )E E   .                  (1.15) 
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By letting 0r   in Eq. (1.14) and using Eq. (1.11), the radius of the contact area can 

be solved as 

 
*

0 / 2ea P R E .                  (1.16) 

On the other hand, the contact force is the integration of the pressure over the contact 

area given by  

 

2

Hertz 0
0

2
( )2

3

a
eF p r rdr P a   .                (1.17) 

The contact force can be therefore obtained by eliminating 
0

eP  from Eq. (1.16) and Eq. 

(1.17) as that 

 
3 *

Hertz

4

3

a E
F

R
  .                  (1.18)  

By eliminating the radius of the contact area a  from Eq. (1.11) and Eq. (1.18), the 

Hertz contact law is obtained as 

 

* 2/3 1/ 2

Hertz

4

3
F E R .                  (1.19) 

Most of the current DEM solutions use Hertz theory. However the over-simplified 

contact law is potentially inadequate when plasticity, large deformation, material 

heterogeneity or non-spherical geometry is involved. These situations are quite 

common in practical particulate systems. Extensive research and discussions of such 

issues are presented in CHAPTER 3.  

 

There are also other kinds of interactions between particles besides the contact 

mechanics. For example, brittle particles tend to fail rather than deform; small, 

smooth particles tend to stick together by tensile force. In order to simulate the 

particulate systems accurately, interactions between particles have to be considered as 

accurately as possible. Two important interactions between a pair of particles will be 

introduced in the next section. 
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1.4 PARTICLE INTERACTIONS BESIDES CONTACT LAWS  

1.4.1 The failure of brittle particles 

Many practical particulate systems are consisted of brittle particles. For example, one 

field in which the DEM has been applied frequently is the processing of rock and 

minerals, which are rather brittle materials. Furthermore brittle powders, such as glass 

and ceramic powders are widely used in material and chemical processing. Although 

the above powder materials have various different material properties, they share a 

common feature, which is the relative low fracture toughness of these brittle powders. 

This important feature affects, sometimes controls, the processing of the powders. 

Therefore, the failure behaviour is an important property for brittle particles. When 

simulating the behaviour of particulate systems, it is important to bear in mind that the 

particles may break even when the deformation is still small. 

 

Stress analyses are required in dealing with brittle failures. Classical fracture 

mechanics always assumes that there exist microcracks in, or on the surface of, brittle 

materials. As shown in Fig. 1.3, the crack tips are where the stress field is singular and 

further crack growth occurs. It is well known that, the crack generation and growth 

require energy in forming new surfaces. In metals, large amount of energy is also 

absorbed by plastic deformation and it is difficult for a crack to grow. However, in 

brittle materials, there are very few mechanisms to stop the cracks from growing, 

leading to low fracture toughness. It was illustrated by Ashby and Jones (1986) that 

the main mechanism of causing brittle failure is the tensile stress. As shown in Fig. 

1.3(a), under a tensile stress, a crack can propagate unstably and the tensile strength of 

a brittle material depends on the length of the longest microcrack such that 

 

[ ]
ˆ

IC
TS

m

K

a



  ,                  (1.20) 

where 
ICK  is the fracture toughness and ˆ

ma  is the half length of the longest micro- 

crack. In contrast, as shown Fig. 1.3(b), under compression, the cracks will propagate 

in a stable manner and the compressive strength is given by 
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[ ] [ ]
ˆ

IC
C

K
C

a



 ,                   (1.21) 

where [ ]C  is a constant of about 15, and â  is the average length of the microcracks. 

Obviously, the compressive strength given by Eq. (1.21) is much larger than the 

tensile strength given by Eq. (1.20). In a particulate system, no particle is in a uniform 

stress state. The tensile stress inside a particle is believed to be the dominant cause of 

its brittle failure.  

 

 

 

 

 

 

 

 

 

          (a) 

 

 

 

 

 

 

 

 

           (b) 

 

 

 

Fig. 1.3 The growth of microcrack inside a particle under uniform stress state. (a) In 

tensile stress the largest microcrack grows unstably. (b) In compressive stress, many 

microcracks propagate stably. 
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Another important issue due to the existing of microcracks is the strength variability 

of brittle particles. The microcracks are randomly distributed inside a brittle material. 

For example, comparing two spherical particles of the same volume and made of the 

same material, the first particle may contain a larger microcrack than the second one 

does. Due to Eq. (1.20), the first particle is therefore relatively easier to break and of 

lower strength. Generally, the strength varies significantly between individual 

particles, and different places in a single particle. This variability is often represented 

by a statistic strength model, such as Weibull’s law (e.g. Ashby and Jones, 1986), 

which is described below.  

 

Given a number of samples of the same standard volume 
refV , of the same brittle 

material, no sample will fail under zero stress. As the stress level increases, more and 

more samples fail and the survival probability of a standard volume sample is given 

by 

 

ref

ref

( ) exp

m

sP V




   
   

   



,                 (1.22) 

where   is the uniaxial applied stress, 
ref  is a reference stress at 

ref( ) exp[ 1]sP V   , 

and m  is referred to as the Weibull’s modulus. As shown in Fig. 1.4, the Weibull’s 

modulus m  reflects how rapidly the survival probability decreases as the applied 

stress increases.  

 

Statistically, if a specimen has a larger volume, it is more likely for the specimen to 

contain a larger microcrack. Given the fact that a large specimen can be regarded as 

an assembly of several small specimens, the survival probability of a large material 

body can be calculated as  

 

material ref/

material ref( ) ( ( ))
V V

s sP V P V .                (1.23)  

 

 



CHAPTER 1 INTRODUCTION  - 12 - 

 

 

 

 

 

Fig. 1.4 The Weibull’s distribution, the survival probability for different Weibull’s 

modulus m .  

 

 

in which 
materialV  is the volume of the large material body. The Weibull’s statistic law 

is very useful and will be implemented to model the strength variability of brittle 

particles in CHAPTER 4. 

 

1.4.2 Adhesion between particles 

It is well known that the flowability of a particulate system decreases significantly as 

the size of the particles gets smaller. The particles can become so ‘sticky’ that it is 

very difficult to separate them. The force which adheres particles together is referred 

to as the adhesion force. The adhesion force is an integration of adhesive surface 

traction, defined as adhesion force per unit area. The adhesion force arises from the 

surface energy released by the disappearing of the surface as two particles form a 

contact neck between them. The energy per unit area that can be released by a 

material surface is generally called specific surface energy. Particle adhesion has 

already been studied for decades. In the final years of the last century when the Atom 

Force Microscope (AFM) first became available (e.g. Kendall, 2001), the ability of 

ref( )sP V

ref


exp[ 1]

m
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measuring the local properties of materials triggered further interest in the adhesive 

contact between solids. It is now well accepted that the surface energy is generated by 

the potential energy of atoms near the surface of a material. As shown in Fig. 1.5, the 

famous Lennard-Jones (L-J) potential (e.g. Rapaport, 1995) is a typical potential 

between atoms. In the L-J potential, atoms are simplified to be mechanical dots with 

mass. The L-J potential is believed to act between each pair of atoms and depend only 

on the distance between the two atoms such that 

 
12 6

0 0( ) 4L JU s e
s s

 


    
     

     

 ,                (1.24) 

where 
0  is the distance when the L-J potential is zero, s  is the distance between two 

atoms, and e  is a constant representing the minimum of the potential well. The inter-

atomic force is the distance derivative of the inter-atomic potential given by 

 
14 8

0 0

2

0

48 1
( )

2
L J

e
s

s s

 




    
     

     

f s


.               (1.25) 

where s  is the vector connecting the two atoms under consideration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.5 Lennard-Jones potential depending on the distance between two atoms. 

-e
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As one can see from Fig. 1.5, The equilibrium inter-atomic distance is the distance 

when the L-J potential reaches its minimum e , i.e. when 1/6

02s  . If the distance 

between two atoms is equal to the equilibrium distance, the force between the two 

atoms is zero. If the inter-atomic distance is larger than the equilibrium distance, the 

inter-atomic force is negative, indicating that there is a force between two atoms 

which draws the two atoms close. If the distance between two atoms is smaller than 

the equilibrium distance, the inter-atomic force is positive, which means there is a 

strong repulsion between atoms preventing the two atoms to approach each other. A 

cut-off distance of the L-J potential is usually used. If the distance between the atoms 

is larger than the cut-off distance, the inter-atomic potential is very small and 

ignorable. A typical cut-off distance value is 
02.5 . The inter-atomic potential will be 

discussed extensively in CHAPTER 5.  

 

As early as in the 1930s, Bradley (1932) published his understanding about the 

adhesion between rigid spherical particles. Bradley (1932) assumed that the adhesion 

force always tries to pull two surfaces together to an equilibrium position. Similar to 

Eq. (1.11) the profile of the particle is assumed to be parabolic. For a particle of radius 

R , the gap between a particle and a rigid wall in Fig. 1.6 can be represented by  

 
2r

h
R

  .                   (1.26) 

where r  is the same with that used in Eq. (1.12), i.e. radial distance in the contact 

plane. The adhesive surface traction 
a  is assumed to depend on the distance between 

the two contacting surfaces (generally decreasing as the distance increases), i.e. we 

have 

 

( )a a h  .                   (1.27) 

Regarding to the surface energy when studying the contact between two identical 

particles, a simplification can be always made. Since the contact between two 

identical particles can be represented by the contact between one particle and a rigid 
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wall, the rigid wall is assumed to have zero surface energy, and the interface energy 

between the particle and the rigid wall is also assumed to be zero.  

 

When a rigid particle comes into contact with a rigid wall as shown in Fig. 1.6, the 

specific surface energy   is assumed to be a material constant which is the integration 

of the adhesive surface traction over the gap  

 

( )a h dh 


 0 .                  (1.28) 

 

 

 

Fig. 1.6 The illustration of the effect of adhesion and the solution of adhesion force. 

 

 

The total adhesion force is the integration of the adhesive surface traction over the 

whole surface area such that 

 

Bradley
0

2 ( )
R

aF r h dr   .                 (1.29)  
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By using Eqs. (1.26) and (1.28) in Eq (1.29) and noticing that ( )R h dh rdr   and 

h R , we have 

 

Bradley
0 0

2 ( ) 2 ( ) 2
R

a aF r h dr R h dh R     


    .              (1.30) 

Bradley (1932) assumed the particle is rigid and therefore the adhesion force can be 

obtained in the straightforward manner. The problem becomes more complicated if 

the mechanical properties of the solid particles are taken into account. For example, 

nano-sized particles may deform remarkably by the adhesion force during contact. 

Many theories about elastic adhesive contact between spherical particles have been 

proposed. The simplest theory was the one proposed by Derjaguin et al. (1975), 

known as the DMT theory. A strong assumption in the DMT theory is that the surface 

energy does not affect the elastic deformation of the contacting particles so that the 

Hertz contact force and the Bradley adhesion force are simply added together to give 

 

DMT Hertz 2F F R                                         (1.31) 

As one can see from Eq. (1.31), the DMT theory predicts a maximum tensile force 

when the particle is just at the point contact. The maximum tensile force is regarded 

as the pull-off force, representing the force required to separate the particle from the 

rigid wall which is given by  

 

DMT 2cF R  .                 (1.32) 

The particle deformation follows the solution of Hertz theory given by Eq. (1.19). 

Therefore, the adhesion interaction can be combined with the contact mechanics to 

represent the relationship between the force and the displacement. The adhesive 

interaction between deformable particles can be also identified as contact law and 

referred to as adhesive contact law between particles. One problem about the relative 

displacement between particles arises if the adhesion is taken into account. For 

contact mechanics neglecting adhesion, the relative displacement is the approaching 

distance between the centre of the particle and the wall, which is equal to the 
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compressive deformation of the particle in the normal direction to the contact. If 

adhesion is taken into account, the tensile force firstly attracts the particle when it 

comes into the cut-off distance. The approaching distance between the centre of the 

particle and the wall is no longer equal to the compressive deformation because the 

deformation of the particle can be elongation (negative compression) due to the 

tensile adhesion force between the particle and the wall. In this thesis, we follow the 

convention that the compressive deformation of a particle is used as relative 

displacement because it is more analytically explicit.  

 

One important conclusion may be drawn if we compare the adhesion force given by 

Eq. (1.32) with the elastic contact force given by Eq. (1.19). The mechanical force 

HertzF  is proportional to the square of the particle size, 2R , while the force required to 

separate the particle, 
DMT

cF , is proportional to the particle size, R . A size effect can be 

expected since the two forces vary differently with the particle size. One may also 

expect that the effect of surface energy becomes more significant as the particle size 

decreases. The size effect is an important issue when simulating the behaviour of 

particulate systems. More details about the size effect as well as the effect of other 

factors like the surface roughness and the mechanical properties on the adhesive 

contact law are discussed in CHAPTER 5. 

 

 

1.5 NUMERICAL APPROACH TO THE PARTICLE INTERACTIONS  

1.5.1 Continuum approach — the Finite Element Method (FEM) 

To simulate a particulate system efficiently, the Discrete Element Method (DEM) 

prefers to use analytical contact laws, with the form of Eq. (1.19). As the demand for 

accuracy in the simulation is increasing, more and more DEMs are able to readily 

implement a numerical contact law, i.e. the force-displacement curve, as their input. 

The Finite Element Method (FEM) is usually used as an accurate and robust tool to 

solve the problem of particle interactions (e.g. Belytschko et al., 2000). The FEM is a 

numerical technique for finding approximate solutions of partial differential equations 

http://en.wikipedia.org/wiki/Numerical_analysis
http://en.wikipedia.org/wiki/Partial_differential_equation
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(PDE). Since the particle impact is a dynamic process, the PDE describing the 

deformation of the material can be derived as following. As shown in Fig. 1.7, a 

material body with the initial domain 
0 , boundary 

0 , initial position 
0x , initial 

velocity 
0v , deforms with the displacement field u . At any time t , a material body 

occupies a domain   with a surface area  . The total force applied on the material is 

given by  

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Fig. 1.7 Configurations of a deformed material body. The domain of the material body 

is  , with boundary  , position x  and velocity v  at an arbitrary time instant. 

 

 

( ) ( , ) ( , )t t d t d
 

   f b x η x ,               (1.33) 

where f  is the force,   is the density, b  is the body force, x  is the position 

representing any point in the material, and η  is the surface traction. The linear 

momentum of the material body ( )tp  can be represented by the velocity of the 

material ( , )tv x  through 

 

( ) ( , )t t d


 p v x .                  (1.34) 
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By momentum conservation, we have  

 

( , ) ( , ) ( , )
d d

t d t d t d
dt dt

 
  

       
p

f v x b x η x
  .             (1.35) 

Using the material time derivative (Reynold’s theorem, see APPENDIX I), the time 

derivative in Eq. (1.35) is  

 

( ( , ))
( , ) ( , ) ( ( , ))       

d d t
t d t t d

dt dt


 

 

 
     

 
 

v x
v x v x v x    

              
( ( , ))

 ( , ) ( ( , ))
d t d

t t d
dt dt


 



  
      

  


v x
v x v x ,          (1.36) 

in which  

 

( ( , )) 0
d

t
dt


  v x                  (1.37) 

is a statement of mass conservation. From Eqs. (1.35)-(1.37), we obtain 

 

( ( , ))
( , ) ( , )

d t
t d t d d

dt
 

  
     

v x
b x η x .              (1.38) 

The gauss theorem dictates that 

 

d d d
  

        η n ζ ζ                 (1.39) 

where ζ  is the Cauchy stress tensor and n  is the unit surface normal. Equation (1.38) 

then becomes  

 

( ( , ))
( , ) ( , )

d t
t d t d d

dt
 

  
      

v x
b x ζ x              (1.40) 

or 

 

  b ζ v ,                  (1.41) 
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Equation (1.39) is subject to the boundary condition that  

 
( , ) ( , ),t t n ζ x η x  on  .                (1.42) 

Equation (1.41) cannot be conveniently solved numerically since it requires spatial 

derivative of the stress field, and is normally referred to as the strong form. A weak 

form can be obtained using the virtual power principle. Given a displacement 

admissible virtual velocity v  in an admissible space  

 

 1

0 0( ) ,    | ( ),   0 on i i i iv v v H v          x .                  (1.43) 

1( )H   denotes the Hilbert space of functions being square integrable with their 

derivatives. The strong form (Eq. (1.41)) becomes 

 

( ) 0d 

     v b ζ v                  (1.44) 

or 

 

( )
ji

i i i i i

j

v d v b v v d
x


 

 


     

   ,               (1.45) 

where i , j  denote the components of the vectors. Although i , j  also denote the 

indices of the particles in section 1.1, there is no need to distinguish them since the 

physical meaning is rather clear. The left hand side of Eq. (1.45) can be rewritten as 

 

( )
ji i

i i ji ji

j j j

v
v d v d d

x x x


 

  

    
               

   .            (1.46) 

By applying the Gauss theorem on the first term of the right hand side of Eq. (1.46), 

we obtain 

 

ji i
i i i ji

j j

v
v d v d d

x x


 

  

  
         

   .              (1.47) 
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Substitute Eq. (1.47) into Eq. (1.45), the weak form of the governing equation is 

obtained: 

 
 

0i
ji i i i i i i

j

v
d v d v b d v v d

x
   

   

 
          

     .            (1.48) 

The weak form Eq. (1.48) does not require the continuity of the stress field, and can 

be therefore readily used for the FE discretization. The weak form Eq. (1.48) can be 

solved in a Lagrangian frame on a finite element mesh. Finite elements are used to 

represent the deformation of the material body, through the so called shape functions 

such that 

 

( , ) ( ) ( )I Iv t N v tx x ,  
( )( , )

( ) I
I

dv tdv t
N

dt dt


x
x ,  and 

( )( , )
( )I

I

dNdv t
v t

d d


xx

x x
,       (1.49)  

where v  is an arbitrary velocity, ( )IN x  is the shape function, ( )Iv t  is the value of v  

at the nodes of elements and I  is the nodal index. Figure 1.8 shows a triangular three-

noded element used in 2-dimensional FEM.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.8 Shape function of a Cauchy triangular element and the spatial discretization 

of an arbitrary point inside the element.  

 

1 2 3 1

1 2 3 2

3

{ ,  1} { ,  ,  1}

1 1 1

T T

x x x N

x y y y y N

N

   
  

    
     

x



CHAPTER 1 INTRODUCTION  - 22 - 

 

Applying Eq. (1.49) in Eq. (1.48), the discretization of the weak form is obtained as  

 

( ) ( )iI I i iI I iv N x v N x d

           

( )
( ) ( ) I i

i I I i i iI I i i i I ji

j

N x
v N x d v N x b d v d

x
  

  

 
          
   .           (1.50) 

Eliminating 
iIv  from Eq. (1.50) results in 

 

( ) ( )I i iI I iN x v N x d


    

( )
( ) ( )   I i

I i i I i i ji

j

N x
N x d N x b d d

x
  

  

 
       
    (1.51) 

or  

 
ext int mv f f ,                  (1.52) 

where  

 
T

I IN N d


 m                   (1.53) 

int ( )I i
Ij

j

N x
d B d

x 


   

 f ζ ζ                 (1.54) 

and 

 
ext ( ) ( )I i i I i iN x d N x b d 

 
   f .                          (1.55) 

In FEM, a material body is represented by a collection of finite elements. At each time 

step, the displacements of the nodes are obtained by solving Eq. (1.52) and the 

equations of motion, giving deformation of the material. The stress can be calculated 

from the strain inside each element and the constitutive law reflecting the property of 

the material. Hooke’s law is the simplest form of the constitutive law given by 
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:ζ C ε                   (1.56) 

or in a rate form 

 

:ζ C D ,                 (1.57) 

where ε  is the strain tensor, D  is the tensor of the rate of deformation, and C  is the 

tensor of material property given by 

 

2   C Ι Ι Ι , where 
1 ˆ ˆ ˆ ˆ( )
2

i jkl ik j l i l jkI      ,                       (1.58) 

and  

 

,
(1 )(1 2 ) 2(1 )

E E
 

  
 

  
                 (1.59) 

are Lamé constants. Here ˆ
i j  is the Kronecker delta ( ˆ 1i j   if i j , and ˆ 0i j   if 

i j ). The strain can be calculated directly from the deformation gradient  

 

/  ε u x , or 
1

( )
2

ji
ij

j i

uu

x x



 

 
,                 (1.60) 

and the rate of deformation can be calculated from the velocity gradient by 

 

/  D v x , or 
1

( )
2

ji
ij

j i

vv
D

x x


 

 
.                       (1.61) 

It can be seen from Eqs. (1.60) and (1.61) that ε  and D  are symmetric tensors. 

Generally, there exist / /i j j iu x u x     , and / /i j j iv x v x     . However, if the 

deformation is large, we can have / /i j j iu x u x     , and / /i j j iv x v x      in Eqs. 

(1.60) and (1.61), when i j , and the rotation has to be taken into account. As shown 

by Belytschko et al. (2000), the rotation in large deformation makes Eq. (1.56) or Eq. 

(1.57) inappropriate as a measure of the material deformation. Figure 1.9 shows an 

extreme situation where a bar under an initial stress rotates about its one end. From 
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the position shown in Fig. 1.9(a) to that shown in Fig. 1.9(b), the stress in the x  

direction has changed from   to 0 , while the stress in the y  direction has change 

from 0  to  . However, the bar simply experienced a rigid body motion and the 

strain is still zero, showing that something represented by Eq. (1.56) or Eq. (1.57) are 

inappropriate if large deformation is involved.  

 

 

 

 

  (a)                                                   (b) 

 

Fig. 1.9 Rotation of a bar, representing an extreme situation that the change of stress 

state but no change of deformation when rotation plays a role.  

 

 

The objective stress rates are therefore introduced. The Jaumann rate is used 

throughout this thesis, which is defined by 

 
J T     ζ ζ W ζ ζ W ,                 (1.62) 

where W  is the spin tensor given by 

 

1
( )

2

ji
ij

j i

vv
W

x x


 

 
.                  (1.63) 

  0x y    
0  x y    
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The elastic constitutive law given by Eq. (1.56) is no longer valid. The rate form of Eq. 

(1.57) becomes  

 
 

:J ζ C D                    (1.64) 

The stress rate can be calculated using 

 

: T    ζ C D W ζ ζ W .                 (1.65) 

Other constitutive laws such as plastic flow rule are described in CHAPTER 3. The 

FEM is widely used to obtain contact laws (e.g. Li. et al., 2000) and will be 

extensively discussed in CHAPTER 3. The FEM is also used to simulate the failure of 

brittle materials (e.g. Camacho and Ortiz, 1996). This topic will be discussed in 

CHAPTER 4. 

 

1.5.2 Discrete approach — Molecular Dynamics (MD) 

Molecular Dynamics is now an established approach to model material behaviours at 

the atomic scale. As mentioned in section 1.3.2, at the atomic level the motion of 

atoms in a material is governed by the inter-atomic potentials such as the Lennard-

Jones potential function shown in Eq. (1.24). The Lennard-Jones type inter-atomic 

force acting between two atoms is given by Eq. (1.25). Atoms are abstracted into 

mathematical dots with mass. The equations of motion are given by  

 

1

( ) ( )
Nm

i i L J i L J ij

i
i j

m  




 v f f                  (1.66) 

where 
im  and 

iv  are the mass and acceleration of the i th atom, Nm  is the total 

number of atoms. The displacement 
iu  and the velocity 

iv  of the i th atom can be 

therefore updated using the Verlet leapfrog time integration scheme (see e.g. 

Rapaport , 1995) that 

 
1/ 2 1/ 2t t t t

i i it    v v v                            (1.67) 
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1/ 2t t t t t

i i it   u u v ,                  (1.68) 

where 

 

1/ 2 1
( )
2

t t t

i i it    v v v  .                 (1.69) 

The leapfrog scheme shown in Eqs. (1.67)-(1.69) requires the velocity calculated at 

the middle of each time step while the displacement calculated at the full time step. 

This scheme is proved to be efficient in reducing the numerical error due to the time 

integration. At each time step, the distance dependent inter-atomic force is 

recalculated from Eq. (1.25) to enable the iteration. The numerical procedure of MD 

simulation is very similar to that for the DEM simulation introduced in section 1.1. 

The only difference in the iteration loop is that the DEM contact law is derived from 

the potential functions such as the L-J potential function in MD. In DEM, only 

particles in contact are considered to interact with each other. In MD, all the atoms 

within a cut-off distance interact with each other. Calculating all the distances 

between all atom pairs demands high computational capability. A general technique is 

to divide the domain into square cells, the side length of which is slightly larger than 

the cut-off distance. Therefore, only atom pairs belonging to the present cell and the 

neighbour cells have to be considered. Details of this subcell method and other 

numerical techniques in MD can be found in the publication by Rapaport (1995). 

Various material properties including surface energies have been successfully 

simulated using MD, giving some significant insight about the atomistic world. MD 

has also been used to simulate the interactions between particles, especially to study 

the effect of surface energy (e.g. Kendall et al., 2004). However, the MD simulation 

requires very small time steps to maintain the numerical stability. A typical value of 

the time step is 
1410

s. Limited by the current computational capability, all present 

MD simulations are restricted to very small material size ( 100 nm) and very short 

deformation period (typically 
1110 s). A popular approach is to combine the MD 

with the FEM to develop a multi-scale model. The general idea is to use FEM to 

simulate the large part of the material while MD is used where details are required. 

Various techniques have been proposed to couple the two methods which have large 
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spatial and temporal differences. Details of the MD-FEM combination are to be 

discussed in CHAPTER 5. 

 

 

1.6 RESEARCH ISSUES IN MODELLING PARTICLE INTERACTIONS 

The purpose of this thesis is to provide a comprehensive understanding about 

interactions between fine particles taking advantage of the recent development in 

numerical techniques. This will lay a solid foundation for computer simulation of 

particulate systems using the DEM. The particle interaction in real systems is much 

more complicated than what the existing contact laws suggest. The central idea here is 

to use numerical method, instead of the analytical approach, to obtain the contact laws. 

As mentioned above, the most important issues when considering particle interactions 

between particles are:  

 

1. The contact laws between particles.  

2. The failure of brittle particles.  

3. The effect of surface energy on contact laws. 

 

Firstly, most DEM simulations currently use over-simplified contact laws, such as 

Hertz contact law, which are inadequate for realistic particulate systems. Plasticity, 

large deformation, non-spherical geometry and material heterogeneity are some of the 

issues that require urgent attention. For soft particles, large deformation and plasticity 

occur even at low impact velocities. There has been very little work on particles that 

possess strain hardening or softening during impact although some simple analytical 

results exist (Li et al., 2000; Adams et al., 2004; Storakers, 1997). However, 

conventional finite element analysis often fails to converge due to numerical problems. 

Therefore, a new accurate and robust numerical method is required when solving 

problems involving plasticity, large deformation, strain hardening/softening, irregular 

particle shape, and heterogeneous materials. 
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Secondly, for brittle particles the particle break is inevitable and has a profound effect 

on the behaviour of the particulate systems. A popular treatment of brittle failure in 

DEM is to bond a collection of small particles together to represent a large particle, 

which could break into small ones (Potapov and Campbell, 1994; Kadono and 

Arakawa, 2002; Cheong and Reynolds, 2004). Such treatment is inconsistent with 

fracture mechanics because no stress analysis is involved in the DEM. On the other 

hand the conventional Finite Element Method (FEM) is ill-equipped to deal with 

multi-cracking. Although many attempts have been made to use FEM to model brittle 

failure (e.g. Xu and Needleman, 1994; Camacho and Ortiz, 1996), they are difficult to 

apply to practical problems because of the complexity in remeshing after crack occurs. 

Again a more reliable and simple numerical method is required to model the brittle 

failure of particles. 

 

Thirdly, as the size of the particles gets smaller, the effect of surface energy becomes 

important. The present DEM can take this into account by using simple elastic 

analytical solutions such as the DMT model (Derjaguin et al., 1975). However, such 

analytical models are based on even more strong assumptions than that in the Hertz 

theory. According to experimental observations, (e.g. Johnson et al., 1971; Rimai et 

al., 2000), the effect of surface energy is much more complicated than that has been 

predicted analytically. Factors including plasticity, surface roughness and surface 

energy interplay with each other as the size of particles is small (e.g. German, 2003). 

Until now, there is very little understanding about the effect of surface energy for very 

fine particles. As mentioned above, the origin of surface energy is the inter-atomic 

potential. Therefore, a multi-scale model based on the macroscopic solid mechanics 

model and the atomistic Molecular Dynamics (MD) model is required in order to 

understand the interactions between very fine particles. 

 

 

1.7 THE STRUCTURE OF THIS THESIS 

This thesis is organized in the following structure. The present chapter outlines the 

motivation of the research, the theoretical background, as well as the important issues 
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that are studied in this thesis. Some fundamentals on numerical simulations are also 

introduced as a starting point for our new numerical method. The major numerical 

tool employed in this thesis, known as the Material Point Method (MPM), is to be 

introduced in CHAPTER 2. The implementation and the validation of the method are 

also extensively reported, giving confidence for the results presented in this thesis. In 

CHAPTER 3, the contact laws of particles are studied using this numerical method. 

The effects of large deformation, material plasticity and heterogeneity, as well as 

particles of irregular shapes, are comprehensively studied. It is shown in CHAPTER 3 

that the existing contact laws are far from adequate and numerical simulations are 

necessary in obtaining contact laws. In CHAPTER 4, the failure of brittle particles is 

studied by extending the MPM to model multi-cracking. The new method is proved to 

be very simple and powerful when simulating brittle failure of particles. CHAPTER 5 

attempts to further extend the MPM using the concepts from MD in order to study 

very fine particles. A new scheme of incorporating inter-atomic forces into MPM is 

developed which proves to be efficient and reliable. Some important issues such as 

the size effect, adhesive contact laws between fine particles, as well as the interplay 

between the surface energy, surface roughness and material plasticity are studied. The 

final chapter, CHAPTER 6 provides overall conclusions of the PhD research. Some 

remarks and comments, as well as the future work, are summarized in the concluding 

chapter.  
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CHAPTER 2                                                                   

THE MATERIAL POINT METHOD 

 

The Material Point Method is a numerical method developed from the Finite 

Element Method. This method is the major numerical tool employed in this 

thesis to study the interactions between fine particles. This chapter is to 

introduce Material Point Method and to show the advantages of this method.  

 

 

2.1 REASONS OF SEEKING A NEW NUMERICAL METHOD 

Contact laws in practical particulate systems are often too complicated to obtain 

analytically. Therefore a numerical approach is to be used as modern computers 

become more and more powerful. The numerical method has to be able to efficiently 

solve either a static contact problem or a dynamic impact problem. In this thesis, we 

always treat the particle interaction as a transient dynamic problem. The static contact 

law, which is also used in the DEM is treated as a special quasi-static case of the 

transient impact problem, with relatively low impact velocity. Therefore in the 

following discussions, we do not distinguish the contact problem from an impact 

problem.  

 

In conventional FEM, there are several methods to simulate the contact problem. 

Some pioneer works were done by Hughes et al. (1974, 1976) in UC Berkeley. There 

developed numerical schemes of contact, such as the penalty method, which are 

widely used today in the contact element of commercial software. The basic ideas of 

contact mechanics are described below. As introduced in section 1.5.1, a dynamic 

FEM requires the updating of the nodal forces in order to calculate the deformation of 

the material. Force and displacement boundary conditions are required when contact 

takes place. Consider two bodies occupying domain 
I  and 

II  as shown in Fig. 2.1 

in contact at a surface ΓC
. The contact surface ΓC

 is a part of the solution to the 
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contact problem, i.e. it is unknown before the problem is solved. Two contact 

conditions have to be met:  

 

(a) The two contacting bodies do not penetrate into each other i.e.  

 

0I II   .          (2.1) 

 

 

 

 

 

 

Fig. 2.1 The contacting of two material bodies, representing some general ideas of 

solving a contact problem. 

 

 

 

(b) The normal traction on the contact surface ΓC
 must be compressive, i.e. 

 
normal 0I  , on ΓC

 of 
I ,        (2.2) 

where normal

I  is the surface traction on the normal direction of the contact surface ΓC
 

of the material body 
I , as shown in Fig. 2.1. Equations (2.1) and (2.2) can be 

understood as displacement and force boundary conditions during contact. These two 

conditions have to be transformed into some other forms before being used in a 

I
II

normal

II
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contact algorithm in FEM. Details can be found in the publication of Belytschko et al. 

(2000). 

 

The penalty method can be used in order to meet the two conditions. A penalty force 

Penf  is a virtual force applied on the two contacting bodies, enforcing the contact 

boundary conditions. A simple modification to Eq. (1.52) for contact problems in the 

conventional FEM is given by 

 
ext int

Pen

ext int

Pen

I I I I

II II II II

   


  

m v f f f

m v f f f




        (2.3) 

in which I and II denote variables in 
I  and 

II , respectively. At each time step, 

iterations are required to determine a suitable penalty force, making the contact 

problem rather time consuming to solve using the conventional FEM. Apart from the 

penalty method, there are also other methods of solving the contact problems using 

FEM, all of which require iterations. Precisely speaking, the FEM is originally 

derived to deal with continuous problems, while the contact problem is a problem 

involving discontinuities due to changes in the contact area. Therefore, there is no 

straightforward method of solving the contact problems using the conventional FEM. 

 

Another problem of using the conventional FEM is mesh distortion and tangling. 

Conventional FEM in solid mechanics employs Lagrangian mesh, which deforms 

with the material. At large deformation, the mesh can be distorted severely and the 

accuracy of interpolation loses quickly. Sometimes mesh tangling happens in large 

deformation. This can be fatal for an FEM simulation because the tangled mesh will 

lead to an ill conditioned stiffness matrix. Remeshing techniques are invented to solve 

such problems at large deformation. However, remeshing requires both the accuracy 

in mapping variables from the old mesh to the new one and an adaptive algorithm to 

decide when to remesh. These complications have greatly restricted the application of 

the Finite Element Method on practical problems. Therefore, in order to model the 

interactions between particles, a simple but robust numerical method is necessary. 
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In recent years a number of generalized Finite Element Methods have been developed. 

An important breakthrough is to use the Eulerian mesh when solving large 

deformation problems, such as the Arbitrary Eulerian Lagrangian (ALE) mesh 

(Belytschko and Liu, 1985; Liu et al., 1988), level set boundary tracking method (e.g. 

Hettich and Ramm, 2006) and etc. This thesis employs a recently developed method 

named as the Material Point Method (MPM). 

 

 

2.2 FORMULATION OF THE MATERIAL POINT METHOD 

2.2.1 Basic ideas  

Material Point Method (MPM) was firstly introduced in fluid dynamics by Harlow 

(1964) known as the particle-in-cell (PIC) method. Later it was successfully applied to 

solid mechanics by Burgess et al. (1995) and Sulsky et al. (1994, 1995). The general 

formula and algorithm of MPM was systematically discussed in the publications by 

Wiezckowski et al. (1999) and Wiezckowski (2004). The MPM has been used to 

study impact problems (Sulsky and Schreyer, 1996; Li et al., 2008), granular flows 

(Wiezckowski et al., 1999; Bardenhagen and Brackbill, 1998, 2000; Bardenhagen, et 

al., 2000) and material fractures (Sulsky and Schreyer, 2004; Li et al. 2008).  

 

The basic idea of MPM is to represent a material body using discrete points named as 

material points. The mass of the material is concentrated onto these material points. 

The deformation of the material body is determined by a background mesh named as 

computational mesh. As shown in Fig. 2.2, the computational mesh has to cover the 

possible motion domain of the material body. All the state variables, such as velocity 

and stress, are traced on the material points and can be mapped onto the 

computational mesh. The computational mesh is used to determine the acceleration 

and stress rate. After the acceleration and stress rate are determined at a time step, the 

computational mesh can be discarded and a new computational mesh can be used at 

the next time step. The point method basically means that it does not have the 

problems of mesh tangling or distortion. Furthermore the use of a computational mesh 

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7bBrackbill%2C+J.U.%7d&section1=AU&database=131075&yearselect=yearrange&sort=yr
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makes it straightforward to satisfy the contact boundary conditions (impenetrability 

and contact force). The MPM is therefore a convenient method to solve large 

deformation contact/impact problems. This chapter introduces the MPM in details. 

Some examples are also provided to show the accuracy and capability of the method. 

 

 

 

 

 

 

Fig. 2.2 The discretization in Material Point Method. A material body is first divided 

into small elements. The mass of each element is concentrated onto a material point. 

A background computational mesh is introduced to cover the whole domain of motion. 

 

 

2.2.2 Governing equations 

In the MPM, a solid body is discretized into a collection of material points by 

applying a density concentration function (Dirac delta function)   

 

1

( )
pN

p p

p

M 


 x - X                                                                                         (2.4) 

on the standard FE weak form, where  
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1,   if   
( )

0,   if   

p

p

p




 


x X
x - X

x X
 .        (2.5) 

The standard FE weak form, Eq. (1.48), is rewritten here in the following tensor 

notation on material domain   with boundary        

       

( )d d d d 
   
            v v v ζ vη v b  .                                        (2.6) 

In Eq. (2.4),   is the density, 
pN  the total number of material points, 

pM  the mass of 

a material point,   the Dirac delta function, x  the vector of spatial coordinate, and 

pX  the vector of the material point position ( p  in subscript denotes variables on 

material points). In Eq. (2.6), v  is the velocity vector, v  an arbitrary admissible test 

function of the velocity given by Eq. (1.43), v  the acceleration (dot denotes time 

derivative), ζ  the Cauchy stress tensor, η  and b  are the vectors of surface traction 

and body force, respectively. Using the property of Dirac delta function, 

 

0 0( ) ( ) ( )x x f x d f x

    ,        (2.7) 

(where f  is an arbitrary function) on Eq. (2.6) the discretized form of MPM is 

obtained as  

       

 1

1

( ) ( ) [ ( )]
pN

p p p p p

p

M 



    v X v X ζ v X  

1

( ) ( )
pN

p p p

p

M d




     b X v X vη ,       (2.8) 

where p  is the density of the material points and pN  is the number of material 

points. The second term on the left hand side of Eq. (2.8) includes a density variable 

1

p


, which is different from the conventional FEM. Next, a background 

computational mesh is used to determine the velocity of the material points. In MPM, 

Eulerian shape function ( )IN x  is used ( I denotes the nodal index of the 



CHAPTER 2 MATERIAL POINT METHOD  - 36 - 

 

computational mesh) such that, ( ) ( )I IN tv x v , and ( ) ( )I IN t  v x v . Equation (2.8) 

becomes  

 

1

( ) ( )
pN

T

p I p I p I

p

M N N


 X X v   

1

1 1

( ) ( ) ( ) ( ) ( )
p pN N

T

p I p p p p I p p I p

p p

M B M N N d


 

      X ζ X X b X X η    (2.9) 

or 

 
ext intmv = f f ,                    (2.10) 

which is exactly the same form as the conventional FEM given by Eq. (1.52). In Eq. 

(2.9), B  is the spatial gradient of the shape function N  defined as  

 

( )
( )

I p

I p

N
B






X
X

x
.                  (2.11) 

In Eq. (2.10), m , int
f , and ext

f  are the consistent mass matrix, internal nodal forces, 

and external nodal forces on the computational mesh, respectively. We follow the 

procedure that the bold lower case letters denote the spatial/nodal tensor variables of 

the computational mesh while the bold upper case letters denote the tensor variables 

of the material points. In the MPM, a lumped mass matrix is employed in explicit time 

integration instead of the consistent mass matrix on the left hand side of Eq. (2.9) such 

that 

 

1

( )
pN

p I p

p

M N


m X .                  (2.12) 

In Eq. (2.12), m  is a diagonal matrix, therefore, each node on the computational mesh 

is actually treated individually. The stresses are traced at the material points. 

Therefore, the material points are used as numerical volume integration points to 

calculate the volume integration (compared to Gauss points in conventional FEM), 

hence the first term on the right hand side of Eq. (2.9) is the internal force given by  
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int 1

1

( ) ( )
pN

T

p I p p p

p

M B 



f X ζ X .                (2.13) 

In order to account for large deformation, the Jaumann rate of stress measurement 

introduced in section 1.5.1 is used in Eq. (2.13). The density of each material point in 

Eq. (2.13) has to be updated at each time step to calculate the volume integration. At 

each time step, the density of the material point is updated according to  

 
1( )t t t t t

p t pJ    ,                  (2.14) 

where t t

tJ   is the determinant of the deformation gradient from the present time step 

t  to the next time step t t ( t  is the length of the time step). Practically, the 

computational mesh is virtually deformed (the nodal coordinates of the computational 

mesh is updated) in order to calculate Eq. (2.14) that 

 

 det ( )t t t t t

t pJ B  X x .                 (2.15) 

The external forces including surface tractions and body forces in Eq. (2.9) are given 

by  

 

ext

1

( ) ( ) ( )
pN

p I p p I p

p

M N N d




   f X b X X η .              (2.16) 

 

2.2.3 Mapping procedure 

The mapping procedure is important in the MPM. State variables such as velocity, and 

acceleration, etc. are kept mapping forward and backward between the material points 

and the computational mesh. The idea is to use the spatial shape functions in order to 

gather information of the required position from those of the nearby points. During 

the mapping process, it must be bear in mind that the state variables are traced at the 

material points, the number of which is much larger than the number of nodes of the 

computational mesh. One basic step is to map the mass of a material point to the 

nodes of the computational mesh, i.e. to calculate the lumped mass matrix 



CHAPTER 2 MATERIAL POINT METHOD  - 38 - 

 

 

1

( )
pN

I p I p

p

m M N


 X .                   (2.17) 

The velocities of the material points are mapped onto the nodes of the computational 

mesh in two steps. Firstly, the momentum of the material points are mapped onto the 

nodes of the computational mesh by momentum conservation such that  

 

1

( )
pN

I I p p I p

p

m M N


v V X .                 (2.18) 

Then the nodal velocity is calculated by dividing the nodal momentum by the nodal 

mass. The mapping from the nodes of the computational mesh to the material points 

follows the standard interpolation procedure that 

 

( )p I I p

I

NV v X                               (2.19) 

and 

 

( )p I I p

I

NV v X .                  (2.20) 

Accelerations are not mapped from the material points to the computational mesh 

because the equation of motion, Eq. (2.10), is solved at the computational mesh. 

 

The shape function 
IN  is generally the shape function of a cell of the computational 

mesh. Sometimes the nodal mass 
Im  can be very small if the cell is at the boundary of 

the material body. For example, as shown in Fig. 2.3, two material points lie near the 

two sides of a four noded cell. The mass on node 'I  is very small or even equal to 

zero. A small nodal mass may produce a large error because the nodal mass of the 

computational mesh is used as the denominator in Eq. (2.10) and Eq. (2.18). 

Therefore, in the boundary cells, special care of the mapping procedure is required, 

which is discussed in the next section.  
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Fig. 2.3 Special care for boundary cells. The nodal mass of node 'I  is very small in 

the lumped mass matrix. 

 

 

 

2.2.4 Time integration of the dynamic equations  

The time integration of the dynamic equations of MPM begins from the material 

points, where all the state variables are traced. At the beginning of each time step t , 

the nodal mass t

Im  and the nodal velocities t

Iv  are firstly calculated through the 

mapping procedure defined in Eq. (2.17) and Eq. (2.18) such that 

 

 
1

( )
pN

t t

I p I p

p

m M N


 X                   (2.21) 

and 

 

1

1
( )

pN

t t t

I p p I pt
pI

M N
m 

 v V X .                 (2.22) 
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Since the stress ( )t t

pζ X  is traced by the material points, the internal force int
f  can be 

calculated from Eq. (2.13) as 

 

int

1

1
( ) ( ) ( )

pN

t T t t t

I p I p pt
p p

M B


f X ζ X .                (2.23) 

Similarly, the external force ext
f  can be obtained from Eq. (2.16) 

 

ext

1

( ) ( ) ( ) ( )
pN

t t t t t t

I p I p p I p

p

M N N d




   f X b X X η               (2.24) 

The equation of motion of Eq. (2.10) can be used to obtain the nodal acceleration of 

the next time step t t  as following 

 

int ext1
( ) ( )t t t t

I I It

Im

    v f f .                (2.25) 

The material point velocities are updated by using the mapping equation Eq. (2.19) 

such that 

 

( )t t t t t t

p p I I p

I

t N   V V v X .                (2.26) 

The nodal velocities of computational mesh can be updated either from the equation 

of motion: 

 

 t t t t t

I I It  v v v                   (2.27) 

or from Eq. (2.18), i.e. mapped from the updated velocities of the material points 

t t

p


V  as following 

 

1

1
( )

pN

t t t t t

I p p I pt
pI

M N
m

 



 v V X .                (2.28) 

The rate of deformation can be therefore calculated from the updated nodal velocity as  
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( ) ( )t t t t t t

p I p IB D X X v .                 (2.29) 

The stress rate t t
ζ  can be calculated according to the constitutive law, and the stress 

ζ  is updated by 

 
t t t t tt  ζ ζ ζ .                  (2.30) 

The density can be updated using Eq. (2.14) such that 

 
1 1

det ( ) det ( )( )t t t t t t t t t t t

p p p I p p I IB B t  
 

          X x X x v .            (2.31) 

And finally, the positions of the material points are updated by mapping the nodal 

velocities to the material points using Eq. (2.20): 

 

( )t t t t t t

p p I p I

I

t N   X X X v .               (2.32) 

It is important to point out that during the above procedure, the nodal velocity vector 

t t

I


v  can be calculated using either Eq. (2.27) or Eq. (2.28). The nodal velocities of 

the computational mesh, 
t t

v , are important as they are used in updating both the 

stresses and material point positons. In our numerical simulations, both equations are 

used as explained in the following. If a direct calculation using Eq. (2.27) is employed, 

then some material points located near the free boundary may separate from the rest 

of the body. As illustrated in Fig. 2.3, this is possible when the number of material 

points in one computational cell is very small, e.g. near the free boundary. The mass 

on some nodes t

Im  calculated from Eq. (2.21) tends to zero while the corresponding 

nodal internal forces int( )t

If  calculated from Eq. (2.23) do not. This could lead to 

excessive nodal accelerations, resulting unrealistic separations of the material points 

from the free boundary. A smoothing technique of Eq. (2.28) was suggested by 

Sulsky et al. (1995) to overcome this problem. However, we have observed that, Eq. 

(2.28) may introduce additional numerical error which leads to numerical oscillations. 

While Sulsky and Schreyer (1996) still employed Eq. (2.27) in their later publications, 

our approach is to use Eq. (2.28) only at the boundary cells of the computational mesh. 
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At each time step, the material boundary is searched to decide whether it is necessary 

to use Eq. (2.28). It is proved that such procedure has effectively avoided the problem 

of the material point separation and neutralized the numerical problem. 

 

 

2.3 VALIDATION OF THE COMPUTER CODE 

The above numerical procedure is implemented into a computer program. A flow 

chart of the programming is provided in APPENDIX II. As suggested by Sulsky and 

Schreyer (1996), an elastic spherical particle undergoing free vibration is used as a 

benchmark test for our MPM code. As shown in Fig. 2.4, a spherical particle is 

discretized into a collection of material points. A square computational mesh is used 

covering the possible domain of the moving particle. The material points and the 

computational mesh are constructed uniformly. The axisymmetric formulation of the 

MPM is used so that the particle in Fig. 2.4 represents a three dimensional sphere. 

Only half of the sphere is modelled due to symmetry. The particle has a radius 

0.6R  m, Young’s modulus 150E   GPa, Poisson’s ratio 0.3  , and density of 

37 10    kg/m
3
. The deformation is assumed to be pure elastic. The centre of the 

spherical particle is initially located at the position 0r   m, and 1z   m. The domain 

represented by the computational mesh is 1 m   2 m, which covers the possible 

domain of the particle motion. To satisfy the axisymmetry condition, the r -direction 

of the nodal forces and velocities on the axisymmetric axis of the computational mesh 

are set as zero. In order to model the free vibration, each material point is initially 

assigned a radial velocity given by 

 

vibration 2 2 ˆ( , ) 0.02 ( 1)p r z r z  V R ,                          (2.33)  

where R̂  is the unit radial vector. Equation (2.33) implies the initial condition of a 

spherical particle vibrating in its fundamental mode. The analytical solution of the 

angular frequency 
vibration  can be obtained by  

 
vibration

1 / Lx R C ,                  (2.34) 
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where 
LC  is the longitudinal wave speed given by 

 

2/ (1 )LC E                      (2.35) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Construction of an axisymmetric spherical particle in MPM. Half of the 

particle is discretized and is put into a square background computational mesh. 

 

 

 

 

and 
1x  is the smallest root of equation  

 

0 1

4
( ) ( ) 0

(2 )
j x j x

x



 
 


 


.                            (2.36) 

In Eq. (2.36),   and   are Lamé constants, which can be calculated form E  and   

as 57.69  GPa, 38.46  GPa, 
0( )j x and 

1( )j x  are spherical Bessel functions of 

order zero and one. From Eqs. (2.34)-(2.36), we have 4852LC  m/s, 
1 2.67x   and 

the value of the angular frequency of the vibrating particle can be calculated as 

R 

r 

z 
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vibration 21.4   KHz. In order to validate our computer program, as well as testing the 

convergence of the MPM, several numerical simulations using different mesh 

constructions are performed. Due to the two kinds of discretizations employed by the 

Material Point Method, the convergence behaviours are more complicated than the 

conventional FEMs. The number of material points and the number of cells of the 

computational mesh are two parameters in MPM. Alternatively, the number of 

material points per unit cell (material point density) can be used as a mesh parameter 

along with the total number of material points. The results of the numerical simulation 

using different mesh statuses are shown in Table 2.1. The size of the computational 

mesh is chosen to be smaller than the wavelength of the vibration. The kinetic energy 

of the particle from mesh status 1 is plotted against time in Fig. 2.5. For mesh status 1, 

the time step is 50 ns, consuming about 0.002 cpu seconds on one 2.2Ghz AMD 

Opteron 848 Processor. Smaller time step is used while consuming longer cpu 

seconds as the mesh is refined. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.5 The kinetic energy of a particle under free vibration is plotted against time. 

The angular frequency of the particle is half of that of the kinetic energy. The period 

of the energy oscillation is therefore equal to 
vibration/  . 

 

 

 

It is noticed that the frequency of vibration 
vibration  can be observed from the 

variation of kinetic energy in Fig. 2.5. At the same time, a discernable amount of 

0   1 2 3
0

0.05

0.1

0.15

0.2

Time (ms)

E
n

e
rg

y
 (

J
)



CHAPTER 2 MATERIAL POINT METHOD  - 45 - 

 

energy is dissipated after several periods. The measurement of the energy dissipation 

follows the method used by Sulsky and Schreyer (1996). Energy dissipates 

exponentially and can be described using a function of vibration

0 exp( / 2 )E t  , 

where
0E  is the initial kinetic energy and   is the measurement of the energy 

dissipation. Numerical results of different mesh statuses are shown in Table 2.1. For 

the free vibration test of a particle, Table 2.1 shows that the numerical results of the 

angular frequency vibration  using all mesh statuses agree reasonably well with the 

analytical prediction. The MPM programme is therefore validated. Some interesting 

numerical properties of MPM can also be observed from Table 2.1. As the mesh is 

refined, the numerical result of vibration  is approaching the analytical solution. The 

energy dissipation is also reduced by refining of the mesh. System energy dissipates 

due to either numerical error or the dynamic wave propagation of the particle. 

Considering the fact that much smaller time step is required for a finer mesh, it can be 

concluded that all the mesh statuses in Table 2.1 converge in the test of the free 

vibration problem.  

 

The mesh convergence and the accuracy tests will be performed throughout the thesis 

before solving each practical problem.  

 

 

Table 2.1 Numerical results of the angular frequency and energy dissipation of the 

spherical particle, as the mesh of MPM is refined. 

 

 
 

Study  

case  

index 
 

 

Number of  

Material 

points 

 

Number of  

cells  (in 1m 

2m square) 

 

Material  

points 

density  

 

vibration  

(KHz) 

 

Energy  

dissipation  

parameter   

 

1 
 

5551 
 

 

20 40  22.93 19.552 0.0386 

 

2 
 

21901 
 

 

32 64  35.55 19.676 0.0320 

 

3 
 

87001 
 

 

50 100  59.38 19.688 0.0294 

 

3 
 

 

346801 
 

 

80 160  94.01 19.691 0.0215 
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2.4 CAPABILITY DEMONSTRATION 

As introduced in section 2.2, the MPM was initially developed to deal with large 

deformation problems. Here we consider a soft particle being penetrated by a hard rod 

as a demonstration example. While the MPM can simulate the problem without 

remeshing, the problem is very difficult to deal with using the conventional FEM due 

to mesh distortion. Snapshots of the simulated penetration are shown in Fig. 2.6. A 

soft particle with Young’s modulus as low as 15MPa is penetrated by an infinite long 

rigid rod, with a normal initial velocity of 8  m/s. The mesh status 1 in Table 2.1 is 

used. The material is assumed to be elastic perfectly plastic with a yield strength of 

0.14 MPa. Frictionless contact boundary conditions are assumed between the 

penetrating rod and the particle. The initial status is shown in Fig. 2.6(a), when the rod 

is just in point contact with the particle. For simplicity, the rod is not shown in the 

following snapshots. In Fig. 2.6(b), the contact begins between the particle and the rod. 

The particle is flattened inside the contact area, while the remaining part of the 

particle is still undeformed. Figures 2.6(c)-(d) show the rod is penetrating into the 

particle. The material of the particle in front of the rod is compressed severely and 

forced to move aside. The shape of the outer boundary of the particle is considerably 

changed. When the rod penetrates about 1/ 3  into the particle, as shown in Fig. 2.6(e) 

the particle has experienced a very large deformation. The deformation is however 

localised around the penetrating rod, where the distances between material points are 

very small. The final status is shown in Fig. 2.6(f), when the kinetic energy of the rod 

is fully converted to the deformation energy and the relative motion between the rod 

and the particle stops. The flow of the materials can be clearly observed in Figs. 

2.6(a)-2.6(f). As the rod penetrates, material is extruded near the free boundary at the 

bottom of the particle due to incompressibility of the material. The simulation shown 

in Fig. 2.6 requires no special treatment of mesh distortion in the programme. Neither 

any iteration is required to deal with the contact boundary condition.  
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Fig. 2.6 Snapshots of the simulation of a soft particle penetrated by a rigid rod. In 

order to demonstrate the capability of solving large deformation problems of MPM. 

(a) 0t 

(d) 310t s

(e) 620t s (f) Final

(c) 155t s

(c) 31t s
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2.5 SUMMARY OF THIS CHAPTER 

In this chapter, the major numerical tool of the thesis, the Material Point Method 

(MPM), is introduced in details. It is shown that the MPM can be used to solve the 

problem of particle interaction taking large deformation and contact boundary 

conditions into account in a straightforward manner. The major advantage of the 

MPM is it does not require extra computer programming effort to deal with mesh 

distortion and contact boundary conditions, which is a major difficulty when using a 

conventional Finite Element Method. Numerical methods employing two kinds of 

discretization are often referred to as the FE
2 

method, which usually require more 

computational time because of the mapping between the two meshes. In our 

observations, the computational cost of MPM is reasonable. The mesh refinement in 

Material Point Method is also affordable. For example, considering a model with 1M  

material points and 2M  cells in computational mesh, if the material point number is 

increased by 1A  times, and the cell number of the computational mesh is increased by 

2A  times, because the mappings forward and backward between material points and 

computational mesh are implemented independently, the computational complexity 

increases by ( 1 1 2 2)  A M A M /( 1 2)M M times. Comparing to the usual 

increasing by 1 2A A  time in some other FE
2
 methods, mesh refinement in the MPM 

is reasonably affordable. Another appealing feature of the MPM is that the problem 

construction is fairly easy. The difficulty in mesh construction lies in the complicated 

graphic algorithms which usually require a commercial mesh generator. The situation 

is much easier when only dealing with material points. One can construct a very large 

collection of material points in a three dimensional space, from which any shape of a 

material body can be cut out by knowing the boundary profile of the object. 

 

In the following chapters, the MPM is used to study a range of important issues when 

studying the interaction between particles.  
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CHAPTER 3                                                                     

THE CONTACT LAW BETWEEN PARTICLES 

 

This chapter is focusing on the study the contact mechanics of particles using the 

Material Point Method. Providing numerical contact laws of different kinds of 

particles is the goal of this chapter.  

 

 

3.1 THEORETICAL BACKGROUND 

3.1.1 Force-displacement contact law 

In this chapter, the mechanical contact law is studied. Plasticity is an important 

mechanism during the impact between particles. For soft materials, the particles first 

deform elastically and then quickly plastic deformation takes place, which is generally 

referred to as elastoplastic deformation. Figure 3.1(a) shows a spherical particle of 

radius R  impacting on a rigid wall, which also represents the symmetry conditions of 

two identical particles coming into contact. At the beginning of the impact, the force 

between the particle and the rigid wall, F , and the displacement of the centre of the 

particle,  , increase forming a circular contact area with radius a . Both F and   will 

reach their maximum values but not necessarily at the same time during the impact. 

Then the particle rebounds and finally separates from the wall. The relation between F 

and   is referred to as the contact law.  

 

Although there are various theories addressing the contact law, the basic procedure is 

always the same. On the one hand, the contact force is an integration of the contact 

pressure distributed over the contact area. This integration provides a connection 

between the contact force F  and the radius of the contact area, a . On the other hand, 

the profile of the sphere near the contact area is represented by a relatively simple 

function such that a connection is made between   and a . The contact law is then 
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determined by eliminating the contact radius a  from the two connections. As 

introduced in section 1.3, the simplest example of the contact law is the Hertz theory, 

some of which is to be rewritten here as a starting point. The elastic contact pressure 

distribution 
Hertzp  at any point r  within the contact area is explicitly given by (e.g. 

Johnson, 1985) 

 
1/ 2

2

Hertz 0( ) 1 ( / )ep r P r a            (3.1) 

where 
0

eP  denotes the maximum pressure at the centre of the contact area. Equation 

(3.1) is shown by curve 'ACA  in Fig. 3.1(b). The particle shape near the contact area 

is assumed to be parabolic, i.e. we have  

 
2 /a R              (3.2) 

where R  is the curvature of the particle surface near the contact area as shown in Fig. 

3.1(a). For small and elastic deformation, Hertz suggested that R R . The Hertz 

contact law is then given by 

 
1/2 * 3/2(4/3)F R E           (3.3) 

which is shown by curve OA  in Fig. 3.1(c), for which the loading and unloading 

curves are identical.  

 

For elastoplastic impact, obtaining the expressions for the contact pressure and the 

particle profile becomes more difficult. The loading and unloading curves are 

different due to plastic deformation as shown by curve 
resOB  in Fig. 3.1(c), where 

res represents the permanent residual displacement. The particle profile near the 

contact area keeps changing during the impact due to irreversible piling-up and 

sinking-in effects. Therefore, the connections between   and a  is no longer easy to 

obtain. For elastic perfectly plastic spherical particles, Johnson (1985) found that 

plastic deformation starts beneath the contact area when the maximum contact 

pressure reaches 1.6  times of the uniaxial yield stress. By equating this value of 
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elastic limit with the Hertz elastic theory, Johnson (1985) derived a velocity 
yV , 

which is the velocity required for the onset of plastic deformation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.1 Contact between a sphere and a rigid wall. (a) Initial and deformed spheres, 

(b) pressure distribution within the contact area, and (c) force-displacement 

relationships.  

 

 
2

* 426( / )
yV

Y E
Y


           (3.4) 

in which   is the density, Y  is the uniaxial yield stress, and *E  is the effective 

elastic modulus defined as * 2/(1 )E E    with E  and   are Young’s modulus and 

Poisson’s ratio. At the onset of plastic deformation, the radius of the contact area ya , 

the contact force yF  and the displacement y  are given by 

 (a) 

 

      (b)             (c) 
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15
y yF a Y ,          (3.6) 

and 

 
2

y

y

a

R
            (3.7) 

respectively. During plastic impact the contact pressure is more uniform within the 

contact area compared to that given by Eq. (3.1). Johnson (1985) suggested using the 

mean pressure 
mP , which varies from 1.6Y  at the onset of plastic deformation to 

Y when full plasticity is reached. At full plasticity, the mean contact pressure 
mP  

remains constant as Y . The value of   was found to be 3.0  by Johnson (1985) and 

Storakers (1997), and between 2.7  and 3.0  by Mesarovic and Fleck (2000). Thornton 

(1997) and Li et al. (2002) assumed the pressure distribution marked by ' 'ABDB A  as 

shown in Fig. 3.1(b) and suggested that the maximum pressure 
0P  varies from 1.6Y  at 

the onset of plastic deformation to 2.85Y  at full plasticity. In order to fully describe 

the variation of 
mP  or 

0P , various fitting functions for the pressure distribution have 

been proposed. Vu-Quoc and Zhang (1999) decomposed the radius of the contact area 

a  into an elastic part 
elastica  and a plastic part 

plastica  and assumed a linear relation 

between the contact force F  and the plastic contact radius 
plastica . Li et al. (2002) 

used an exponential function between the maximum contact pressure 
0P  and the 

radius of the contact area a . Mesarovic and Fleck (2000) performed a comprehensive 

numerical study which outlined the validity conditions for 3.0mP Y  at full plasticity 

as suggested by Johnson (1985) and Storakers (1997). The theories of full plasticity 

break down if the deformation becomes large as observed numerically by Mesarovic 

and Fleck (2000), and experimentally by Chaudhri et al. (1984) and Timothy et al. 

(1987). It is found that if deformation is large enough, the mean contact pressure 
mP  

will first increase to its peak value, hold for a while, and then start to decrease before 

the particle rebounds (Mesarovic and Fleck, 2000).  
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Almost all the theories assume that the profile of the sphere near the contact area can 

be represented by the parabolic Eq. (3.2). During the elastoplastic loading and the 

elastic unloading, a variation of R  in Fig. 3.1(a) is expected. In Johnson’s (1985) and 

Thornton’s (1997) theories, R  remains constant during loading, and is modified 

during unloading to account for the permanent deformation. In fact the particle 

curvature R  as shown in Fig. 3.1(a) varies with time. Mesarovic and Fleck (2000) 

found that R  varies between R  at the start of contact and 2.8R . Vu-Quoc and Zhang 

(1999) and Li et al. (2002) used empirical fitting functions to account for the variation 

of R  during contact.  

 

In the above analyses, it is worth noticing that 
mP  is approaching 

0P  along with the 

increasing amount of plastic deformation. The elastic part is getting smaller and can 

be ignored after the full plasticity is reached. 
mP  is experimentally and numerically 

convenient while 
0P  is physically explicit to understand. In most existing theories, the 

shape of the force-displacement curve of the impact between an elastic perfectly 

plastic spherical particle and a rigid wall is similar to the curve 
resOBδ  shown in Fig. 

3.1(c). Comparing to the elastic force-displacement curve in Hertz theory, the loading 

curve is less stiff while the unloading curve is slightly stiffer because R  is larger than 

R  during the unloading.  

 

3.1.2 The coefficient of restitution  

Practically there are seldom impacts between particles are purely kinetic energy 

conservative. Coefficient of restitution is therefore introduced to represent the kinetic 

energy dissipation during the impact. The coefficient of restitution e  is defined as the 

ratio between the impact velocity 
0V  and rebound velocity 

rV , which represents the 

kinetic energy dissipation during the impact. Compared with the contact law, e  is 

relatively easy to obtain theoretically (Johnson, 1985; Thornton, 1997), numerically 

(Li et al., 2002; Wu et al., 2003, 2005) or experimentally (Mangwandi et al., 2007). 

When the contact law is unavailable or a reduction in the complexity of the problem is 



CHAPTER 3 CONTACT LAW BETWEEN PARTICLES - 54 - 

 

 

necessary, the coefficient of restitution can be used to simulate the particulate systems 

(e.g. Hoomans, 2000). 

 

Even in the elastic regime, kinetic energy can be dissipated by the propagation of 

elastic waves. Hunter (1957) showed theoretically that this energy loss is less than 1% 

of the initial kinetic energy. Hutchings (1979) showed that the energy loss due to 

elastic waves in a plastic impact is less than 3% of the total kinetic energy. In a 

particulate system, Wu et al. (2005) showed that if the duration of the impact is large 

enough and the elastic waves can be reflected back by particle interfaces, the energy 

dissipation due to elastic waves will be much smaller. In elastoplastic impact, the 

dominant mechanism for the loss of kinetic energy is plastic deformation. This loss of 

kinetic energy is represented by the area under the force-displacement curve 

(area
resOB  in Fig. 3.1(c)). Generally, for identical particles, the coefficient of 

restitution will be always less than 1  and decrease with the increasing of impact 

velocity. For elastic perfectly plastic spherical particles, Johnson (1985) related the 

coefficient of restitution to the mean contact pressure 
mP  such that 

 
1/ 4

2 25/ 4 3/ 4
2 0 0

2 * 3

0.53 4
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


  
    

  
,      (3.8) 

in which m  is the mass of the particle. Alternatively, Thornton (1997) related the 

coefficient of restitution to the maximum contact pressure 
0P  such that 
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    (3.9) 

in which  

 
1/ 2

5

0
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E 

 
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 
.                   (3.10)                                                       
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Equations (3.8) and (3.9) become identical after full plasticity is reached when 
mP  is 

very close to 
0P . Wu et al. (2003) indicated that yV  defined by Eq. (3.10) is equal to 

yV  defined by Eq. (3.4) at the onset of yield, and increases until
0P  reaches 2.85Y . As 

one can see from Eqs. (3.8)-(3.10), the coefficient of restitution follows a power law 

dependence with the exponent of 1/ 4 , after full plasticity is reached. At large 

deformation, the decrease in e  as the impact velocity 
0V  increases is faster than that 

predicted by Eq. (3.8) or (3.9) and cannot be uniquely determined from 
0 / yV V  . Wu et 

al. (2003, 2005) suggested the following empirical relation:  

 
0.49

0

*

/
0.58

/

yV V
e

E Y



 
  

 
                 (3.11) 

for large deformation impact, in which 
yV  is defined by Eq. (3.4).  

 

 

3.2 THE NUMERICAL MODEL AND ITS VALIDATION 

3.2.1 The plasticity model 

The Material Point Method (MPM) introduced in CHAPTER 2 is employed here to 

simulate the impact of particles. Figure 3.2 shows the material point model and 

computational mesh used in the study. Axisymmetric conditions are assumed. The 

rigid wall is represented by setting zero vertical velocity and acceleration for all the 

nodes at the bottom line of the computational mesh. The bottom row of the 

computational mesh is thinner than others to represent a rigid wall. The boundary 

condition at the contact is assumed to be frictionless. However if the model is viewed 

as impact between two identical particles, then the same boundary condition 

represents a no-slip contact. Although any elastoplastic constitutive law is 

conveniently employed in MPM, for research purposes, isotropic linear hardening or 

softening is employed here. Compared with elastic perfect plasticity, isotropic linear 

hardening/softening introduces one additional hardening parameter H . Typically, in 

uniaxial situation, the stress-strain relationship is described by 
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Y H    ,                   (3.12) 

where   and   are the uniaxial stress and strain. 0H   corresponds to elastic 

perfectly plastic material, 0H   to linear strain hardening, while 0H   to linear 

strain softening. The radial return mapping method for 
2J  flow theory and objective 

stress rate (Belytschko et al., 2000) are used. According to the theory of objective 

stress for large deformation, the tensor of Jaumann stress rate J
ζ  defined in Eq. 

(1.62) is rewritten here as  

 

 

Fig. 3.2 The impact model between a spherical particle and a rigid wall. The particle 

is discretized into material points, embedded in the background computational mesh. 

The rigid wall is represented by fixed boundary conditions at the bottom of the 

computational mesh.  

 

 

 
J T     ζ ζ W ζ ζ W ,               (3.13) 

where ζ  is the time derivative of the normal Cauchy stress tensor ζ , and W  is the 

spin tensor which is given by 

 

V0 
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.                 (3.14) 

Here 
iv , 

jv  are the components of velocity vector and 
ix , 

jx  are the components of 

spatial coordinate. Due to the existence of the spin tensor W , at time step t  the stress 

tensor ζ  is updated by  

 

( ) ( )t t t t t t t T J t tt       ζ Q ζ Q ζ                                   (3.15) 

where t  is the time increment, and Q  is the incremental rotation tensor associated 

with the spin tensor W  such that  

 

exp[ ]t Q W .                (3.16) 

At each time step, the return mapping algorithm firstly projects the stress elastically 

(trial stress) beyond the yield surface and then uses a plastic corrector to return the 

trial stress onto the updated yield surface along a specified direction. The elastic trial 

stress, (0)( )t t
ζ , is calculated by 

 
(0)( ) ( ) :t t t t t t t T t     ζ Q ζ Q C D                (3.17) 

where C  is the elastic modulus tensor given by Eq. (1.58) and D  is the deformation 

rate tensor which is given by  
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 

 
.                 (3.18) 

The direction vector of the plastic corrector for the radial return is calculated by  

 

(0) (0)

dev dev
ˆ /n ζ ζ                   (3.19) 

where (0)

devζ  is the deviatoric part of the trial stress (0)( )t t
ζ . The standard small 

deformation radial return mapping iteration is then performed to locate the yield 

surface. Details of the iteration procedure can be found in APPENDIX III. 
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3.2.2 Convergence test  

A convergence test is carried before studying the contact laws. As introduced in 

section 2.3, three kinds of mesh factors are possibly to affect the convergence: the 

number of material points, the number of cells of computational mesh, and the 

material point density, which is the average number of material points per unit cell of 

computational mesh. The mesh dependence of the Material Point Method in 

elastoplastic impact problems can be summarized below. 

 

In our study, it is observed that the material point density, i.e. the average number of 

material points per cell of computational mesh, is the key factor that controls the 

convergence. Figure 3.3 shows the coefficient of restitution for an elastic perfectly 

plastic particle obtained using the MPM with different densities of material points. 

From point A  to E  in Fig. 3.3, the computational mesh is either maintained or 

refined. A faster refinement is used to increase the material point density. For the 

points A , B , C , D , and E  in Fig. 3.3, the number of material points used are 5551, 

21901, 87001, 346801, and 1384801, respectively. Convergence is achieved at the 

point D  where about 94 material points are used in each computational cell to obtain 

the theoretical value of e=0.698. All of our following simulations in this chapter use 

this set of computational mesh and material points.  

 

3.2.3 Accuracy test 

According to Johnson (1985), for an elastic spherical particle at small deformation, 

the force-displacement relationship is given by Eq. (3.3). The displacement   is 

related to time t  by 

 
* *

1/ 2
* 5/ 2

0

d( / )

1 ( / )
t

V

  

 


  
                  (3.20) 

in which 
*  is the maximum   given by  
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Fig. 3.3 Convergence test of the Material Point Method. Coefficient of restitution of 

elastic perfectly plastic impact obtained using MPM with different material point 

densities. For points A , B , C , D , and E , the number of material points used are 

5551, 21901, 87001, 346801, and 1384801, respectively. 

  

 

The corresponding maximum impact force *F  can be obtained from Eqs. (3.3) and 

(3.21). The total impact duration *T  is given by  

 
* 2 *2 1/5

02.87( / )T m RE V .                 (3.22) 

These analytical equations are used to further test the material point model. The 

following parameters are used: particle radius 10R  mm, Young’s modulus 

208E  GPa, Poisson’s ratio 0.29  , density 7850  kg/m
3
. The impact velocity 

is selected to be 
0 1V  m/s to meet the Hertz assumption of small deformation. 

Contact force F  is computed by the sum of total nodal forces at the computational 

mesh excluding the nodes at the contact boundary. The displacement of the particle   

is defined as the displacement of the initial centre of the particle. The contact time t  

----  Eq. (3.9) 
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starts when the kinetic energy of the particle starts to reduce and the total contact time 

*T  is the value of t  when the kinetic energy recovers to its maximum. Figure 3.4 

shows the comparison between the analytical and numerical results for */F F  and 

*/   as functions of */t T . The discrete symbols are the numerical results. The 

analytical values of * , *F , and *T  calculated from Eqs. (3.21), (3.3), and (3.22) are 

0.0179 mm, 2293.17 N, and 52.74 µs respectively, which can be compared with our 

numerical values of 0.0174 mm, 2350 N, and 51.32 µs obtained using the material 

point model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 The normalised contact force, 
*/F F , and displacement, 

*/  , as functions 

of the normalised time, 
*/t T , obtained from the analytical solution due to Johnson 

(1985) and numerically using the Material Point Method respectively. The discrete 

symbols are the numerical results.  

 

In the numerical simulations, the energy dissipation due to both elastic waves and 

numerical dissipation was found to be 2.3% of the total initial kinetic energy, which is 

consistent with the findings by Hutchings (1979) that kinetic energy loss is less than 

3% due to elastic waves. It is interesting to point out that the differences between the 

numerical and analytical values of 
* , *F , and *T  are 2.9%, 2.4%, 2.7% respectively, 

which are approximately the same as the total amount of energy dissipation. These 

*
F/F

*
δ/δ
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good agreements between the numerical and analytical results show the good 

accuracy of the material point model.  

 

 

3.3 FORCE-DISPLACEMENT RELATION FOR SPHERICAL PARTICLES 

This section presents the numerically obtained relation between the contact force and 

displacement for spherical particles. It is convenient to discuss the numerical results 

using non-dimensionalised forms. All the length scales are normalised by the initial 

radius, R, of the particle. All the velocities are normalised by 
yV  defined through Eq. 

(3.4) and the contact force is normalised by 
yF  defined by Eq. (3.6).  

 

3.3.1 Spherical particles of elastic perfectly plastic material 

Simulations of particle impact were carried out on an elastic, perfectly plastic solid 

using three different impact velocities of 
0 / yV V  = 40, 1200, 4000 for particles with 

*E  = 227MPa, 321MPa, 227GPa, 321GPa, and 
* /E Y = 168, 238, 336. The contact 

force-displacement curves are shown in the left column of Fig. 3.5. The right column 

of Fig. 3.5 gives examples of the particle at maximum deformation for the 

corresponding impact velocity. The hollow symbols represent cases with low values 

of Young’s modulus while the solid symbols represent cases with high values of 

Young’s modulus. An immediate observation from all the cases is that the normalised 

contact law depends on the ratio of 
* /E Y  rather than on *E  and Y independently. 

Despite the large difference in Young’s modulus, the normalised contact law remains 

the same as long as the ratio of 
* /E Y  and the impact velocity, 0 / yV V , remain 

constant. This can be understood through dimensional analysis. The area under the 

elastoplastic loading curve is always equal to the initial kinetic energy such that 

 

max2

0
0

1

2
mV Fd



                    (3.23) 

in which 
max  is the maximum displacement. For the velocity required for the onset of 

yielding yV , there is 
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The force-displacement curve of an elastoplastic impact contains an elastic part before 

  reaches 
y . Subtracting Eq. (3.23) by Eq. (3.24) leads 
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Using the definitions of 
yV , 

yF  and 
y  through Eqs. (3.4)-(3.7), Eq. (3.25) is 

equivalent to 
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The non-dimensional groups are 0 / yV V , 
* /E Y , / yF F , and / R . For a force-

displacement curve, given a value of displacement  , there is only one corresponding 

force F . Therefore, it is can be seen from Eq. (3.26), 0 / yV V  and 
* /E Y  completely 

determine the relationship between / R  and / yF F , which is consistent to Fig. 3.5.  

 

In Fig. 3.5(a) where the relative impact velocity 0 / yV V  is set as 40 , the deformations 

are very small and the contact force-displacement behaviour falls into the scope of the 

theories due to Thornton (1997) and Li et al. (2002). The loading curves are firstly 

elastic and then become more linear but slightly concave after yield. The elastic 

unloading curves still follow Eq. (3.3) but with a different value of R . It is interesting 

to observe that the normalised maximum contact force, max / yF F , remains constant for 

all the cases. On the other hand, both loading and unloading curves become stiffer 

with the increasing of
* /E Y . This indicates that the maximum displacement 

max / R , 

the residual displacement, 
res / R , and the relative recovering displacement during 

unloading, 
max res( ) / R  , all decrease as 

*E / Y  increases.  
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Fig. 3.5 Impact of elastic perfectly plastic spherical particles for different impact 

velocities and material properties. (a) 0 / 40yV V  , (b) 0 / 1200yV V  and (c) 0 / yV V   

4000 . The left column shows the normalized force-displacement curves, where solid 

symbols show cases with high Young’s modulus and hollow symbols show cases with 

low Young’s modulus. Different shapes of the symbols indicate different ratios of 
* /E Y . The right column shows examples of the particle at the maximum possible 

deformation for the three impact velocities.  
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In Fig. 3.5(b) where the relative impact velocity 
0 / yV V  is set as 1200 , the 

deformations are much larger than those in Fig. 3.5(a). During the loading, the 

loading curves continue ascending but much more slowly comparing to those in Fig. 

3.5(a). The loading curves are still roughly linear but become slightly convex. The 

unloading curves are still elastic but much stiffer than those in small deformations. 

Unlike small deformations, a clear descending trend is observed for the maximum 

normalised contact force, 
max / yF F , as the ratio of * /E Y  decreases. In Fig. 3.5(c) 

where the relative impact velocity
0 / yV V  is set as 4000 , the deformations are very 

large. The loading curves are clearly convex. For the cases with * /E Y  = 168, the 

contact force remains almost constant for a long period as the particle centre continues 

to approach the wall. It reaches its maximum at / 0.3R   and starts to decrease 

gently long before the particle rebounds. From all our simulations which are not 

presented here, it seems to be a general conclusion that the contact force would drop 

before the particle rebounds as long as the impact deformation is larger than 

/ 0.3R  . Similar behaviours were observed by Adams et al. (2004). Another 

interesting observation in our numerical results is that if the impact deformation is 

larger than / 0.3R  , the total contact time increases with increasing impact velocity, 

which is shown in Fig. 3.6. These numerical findings are somehow against our 

common sense and may be caused by the drop in the contact pressure at large 

deformation (Mesarovic and Fleck 2000). 

 

A general observation of the numerical results is that the normalized contact law can 

be uniquely determined from 
* /E Y  and 0 / yV V  at all levels of deformations. Two 

points on the force-displacement curve are of importance: the loading-unloading 

turning point and the end point of unloading curve. The force and displacement values 

at these two points are plotted against 
* /E Y  and 0 / yV V  in Fig. 3.7. Figure 3.7(a) 

shows the normalized maximum contact force max / yF F  as a function of the relative 

impact velocity, 0 / yV V , for different values of 
* /E Y . It can be observed from the 

figure that max / yF F  increases linearly with 0 / yV V  for large values of 
* /E Y , which 

correspond to small deformations. The relationship becomes non-linear as 
* /E Y  gets 

smaller. If 0 / 100yV V  , then max / yF F  becomes independent of 
* /E Y , which is 
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consistent with that shown in Fig. 3.5(a). If the value of 
0 / yV V  is high, then 

max / yF F  

increases with * /E Y . This can be interpreted by the level of deformation. For a large 

* /E Y , very small deformation is obtained even at large values of 
0 / yV V . Therefore, 

the normalized maximum force behaves more elastically, showing a more linear 

relationship between 
max / yF F  and 

0 / yV V .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.6 Normalised total contact time * *

0/t T  as a function of relative impact velocity 

0 / yV V  for the spherical particle shown in Fig. 3.5 with 
* / 168E Y  . Total contact 

time is normalized by the total contact time *

0T  at 0 yV V  . 

 

 

 

Figure 3.7(b) shows the normalized maximum displacement, 
max / R , and normalized 

residual displacement, 
res / R , as functions of the relative impact velocity, 0 / yV V , for 

different values of 
* /E Y . The results are shown in groups of two lines. Each group 

corresponds to a different value of 
* /E Y . In each group, the upper line is 

max / R  and 

the lower one is 
res / R . Figure 3.7(c) shows a zoom-in for large values of 

* /E Y . A 

striking linear relationship between the characteristic displacements and the impact 

velocity is observed. In details, the difference between 
max / R  and 

res / R  increases 

very slowly along with the increasing of 0 / yV V . For a same relative velocity value 

t*
 /

 T
0
* 

V0/Vy  
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0 / yV V , the value of 
max res( ) / R   is the largest in the a medium * /E Y . This is 

because the elastic recovery unloading displacement 
max res( ) / R   is determined by 

the elastic component of the deformation history. For a small * /E Y , the elastic 

component is relatively small and therefore 
max res( ) / R  is small. For a large * /E Y , 

although the elastic component is relatively large and the ratio between elastic 

recovery unloading displacement and the total displacement is large. However, the 

value of 
max res( ) / R   is still small because the value of the total displacement is 

very small.  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

 

 
 

 
 

 

 
 

 
 

 
 

 

Fig. 3.7 Characteristic points of contact law for elastic perfectly plastic impact of 

spherical particles. (a) Normalized maximum contact force as a function of the 

relative impact velocity 0 / yV V  for different values of 
* /E Y , (b) normalized 

maximum and residual displacements as functions of 0 / yV V  for different values of 
* /E Y . For each value of 

* /E Y , the upper line shows the normalized maximum 

displacement and lower line shows the normalized residual displacement, and (c) a 

zoom-in of the small deformation part of Fig. 3.7 (b). 
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3.3.2 Effect of strain hardening and softening  

A large number of particles undergo strain hardening/softening in the plastic impact. 

In this section, the strain hardening/softening effect is taken into account. For 

simplicity and research purpose, the linear isotropic hardening/softening described by 

Eq. (3.12) is employed here. Figure 3.8 shows the contact force-displacement curves 

at three different impact velocities for different values of H . Similar to Fig. 3.5, the 

numerical results are presented in a normalised form. In order to focus on the effect of 

H, the value of * /E Y  is fixed at 168. At the low relative impact velocity of 
0 / yV V = 

40 (hence small deformation), it can be observed from Fig. 3.8(a) that the effect of 

strain hardening or softening on the contact law is relatively small. Similar to Fig. 

3.5(a), the loading curves can be well approximated as straight lines but slightly 

concave. As the deformation is increased, the force-displacement curves are affected 

significantly by the value of H  as shown in Fig. 3.8(b). The maximum contact force 

decreases and the maximum displacement increases as /H Y  decreases. However the 

loading curves can still be roughly approximated by straight lines (but slightly 

convex). At very large deformation as shown in Fig. 3.8(c), the contact law becomes 

strongly non-linear and H  has a major effect on the contact force-displacement curve. 

If the normalized displacement / R  exceeds 0.3  then the particle continues to 

deform toward the rigid wall after the contact force has reached its maximum value.  

 

To summarise, for small deformation impact with significant plasticity which covers 

a wide range of applications, the loading curves can be regarded as linear while the 

unloading curves are elastic. The effect of strain hardening or softening can be 

ignored and the contact law assuming elastic perfectly plastic material can be used. 

As the deformation reaches intermediate level, the contact law is significantly 

affected by both the strain hardening and the ratio of the effective Young’s modulus 

to yield strength. The loading curves can however still be roughly approximated as 

linear. As the deformation gets larger, the loading curves become strongly non-linear 

and at very large deformation ( / 0.3R  ), the contact law behaves like the stress-

strain curve for elastoplastic solid. 
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Fig. 3.8 Normalized force-displacement curves for the impact of plastic isotropic 

linear hardening spherical particles. 
* / 168E Y  . (a) 0 / 40yV V  , (b) 0 / 1200yV V  , 

and (c) 0 / 4000yV V  . Elastic contact law is also shown for comparison. 
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3.4 COEFFICIENT OF RESTITUTION FOR SPHERICAL PARTICLES 

3.4.1 Elastic perfectly plastic particles 

As introduced in section 3.1.2, several theoretical and numerical models of the 

coefficient of restitution are developed for the impact of elastic perfectly plastic 

particles. Wu et al. (2003) showed that the coefficient of restitution can be uniquely 

determined from 
0 / yV V  for small deformation impact, and from 

0 / yV V  and * /E Y  for 

large deformation impact. The boundary between the small and large deformations is 

defined by  

 

 
008.0

/

/
2*

0


YE

VV y
.                            (3.27) 

The coefficient of restitution reflects the area between the loading and unloading 

curves. Our numerical results in section 3.3 show that the loading and unloading 

curves can be uniquely determined from 
0 / yV V  and * /E Y  for all levels of 

deformations. These numerical results are therefore in general agreement with the 

conclusion by Wu et al. (2003). The discrete symbols in Fig. 3.9 shows our 

numerically obtained coefficient of restitution, e , as a function of the relative impact 

velocity 
0 / yV V  for elastic perfectly plastic particles. It can be observed from the 

figure that there are three zones of different behaviours. In Zone I, the deformation is 

small. The contact pressure increases as the particles approach each other and the e -

0 / yV V  curve follows the power law with a varying exponent. In Zone II, full plasticity 

is reached during the impact when the maximum contact pressure 
0P  remains as 

2.85Y , the e - 0 / yV V  curve follows the power law with a fixed exponent of 1/ 4 . In 

Zone III, the e - 0 / yV V  curve also follows the power law with a fixed but greater 

exponent. In this zone e also depends on 
* /E Y  in addition to 0 / yV V  (the results 

shown in the figure are for 
* /E Y = 168).  
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Fig. 3.9 The coefficient of restitution as a function of the relative impact velocity for 

impact between spherical particles of elastic perfectly plastic materials. Square 

symbols: numerically obtained by Material Pointed Method. Solid lines: analytical 

expressions. Dashed lines: boundaries between different zones. 

 

These results are consistent with previous understandings. For Zone II, using 

0 2.85P Y  in Eq. (3.10) gives  

 

4.23y yV V ,                    (3.28) 

which is substituted into Eq. (3.9) and plotted in Fig. 3.9 (the solid line in Zone II). 

For Zone III, Eq. (3.11) is plotted in the figure (the solid line in Zone III). The 

boundary between Zone II and Zone III is given by Eq. (3.27) and also shown in the 

figure. It can be seen that the analytical expressions agree with our numerical results 

very well.  

 

The author is not aware of any significant discussion about Zone I in the literature. In 

fact this is an important zone because most of the applications fall into this zone of 

small impact velocity and localised plasticity. In this zone, the maximum contact 

pressure 
0P  in Eq. (3.10) increases as the particle deforms into the rigid wall. 
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Mestrovic and Fleck (2000) showed that the boundary between the elastic-plastic and 

full plastic impacts is given by  

 
* / 50aE RY   .                  (3.29) 

Unfortunately, Eq. (3.29) contains an intermediate variable - the radius of the contact 

area a , and is therefore rather inconvenient to use. Thornton (1997) suggested the 

following relationship between the maximum contact force 
maxF  and the coefficient of 

restitution e : 

 

 
2

2 max

* 2

0

3

5

F
e

E amV
 .                  (3.30) 

However the force-displacement curve suggested by Thornton (1997) is too soft (Vu-

Quoc and Zhang, 1999) because the maximum contact pressure, 
0P , was taken as 

1.6Y  at the onset of yielding. On full plasticity, Eq. (3.30) can be modified by taking 

0 2.85P Y  to give 

 
2

2 max

* 2

0

9.51

5

F
e

E amV
 .                             (3.31) 

Our numerical results in Fig. 3.7(a) indicate that when the maximum contact pressure 

0P  just reaches its maximum value 2.85Y , the relative impact velocity 0 / yV V  is still 

relatively small and the normalized maximum force max / yF F  is independent of 
* /E Y . 

Under these conditions, the numerical results can be approximated as  

 

max 02
y y

F V

F V
 .                   (3.32) 

Combining Eqs. (3.29), (3.31) and (3.32) and using Eqs. (3.4)-(3.6), we find that Zone 

I should terminate at  

 
 

0.79e  .                   (3.33) 
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Substituting Eq. (3.33) into Eq. (3.9), and using 
0 2.85P Y in Eq. (3.10), the 

boundary between Zone I and Zone II can be determined as 

 

0 / 20yV V                    (3.34) 

which is shown in Fig. 3.9. When deriving Eqs. (3.31) and (3.34), the mean contact 

pressure 
mP  is used instead of the maximum contact pressure 

0P  because the elastic 

part of the contact pressure can be ignored on full plasticity. In Zone I, yV  in Eq. (3.9) 

varies from slightly less than 
yV  at 0 yV V  to about 4.23 yV  at 

0 20 yV V . We propose 

the following expression for yV  in Zone I: 

 

 00.96 ( / )y y yV V V V                   (3.35) 

which is substituted into Eq. (3.9) and plotted in Fig. 3.9. A complete set of analytical 

expressions for the coefficient of restitution has therefore been obtained.  

 

3.4.2 Effect of strain hardening and softening on coefficient of restitution 

Figure 3.10 shows the coefficient of restitution as a function of the relative impact 

velocity 0 / yV V  for different values of the hardening parameter H  and
* /E Y . The 

results for elastic perfectly plastic particle are also shown in the figure for comparison. 

It can be seen that for small impact velocity, the coefficient of restitution e is 

insensitive to the hardening parameter H . At higher impact velocity however, the 

hardening parameter has a strong effect on e. A higher value of H  represents stronger 

strain hardening and leads to less energy loss during the impact, hence a higher value 

of the coefficient of restitution at the same impact velocity. The numerical results 

shown in Fig. 3.10 therefore follow the common sense. Unlike elastic perfectly plastic 

particles, with strain hardening, the coefficient of restitution cannot be uniquely 

determined from 0 / yV V  even at small impact velocity. A different value of 
* /E Y  

leads to significantly different values of the coefficient of restitution. It is difficult to 

place any analytical framework over the numerical results shown in Fig 3.10.  
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Fig. 3.10 Coefficient of restitution as a function of the relative impact velocity for 

different levels of strain hardening and effective modulus.  

 

 

3.5 PARTICLES OF IRREGULAR SHAPE OR HETEROGENEOUS 

MATERIALS  

In most DEM simulations, spherical particles are often bonded together to represent 

irregular particles. This approach is inappropriate if most of the particles are irregular. 

For example pharmaceutical powder formulations usually consist of a mixture of soft 

and hard particles with irregular shapes. In addition, tablets or pellets can be film 

coated for functional reasons, elegance, as well as to improve mechanical integrity. 

There has been very little work on contact laws for non-spherical particles. The 

Discrete Element Method (DEM) would be very useful if it could be used in 

applications in which the particles are either of irregular shape or made of 

heterogeneous materials. For these problems the contact law can only be obtained 

numerically. The question is how sensitive the contact law is to material and geometry 

details of the particles. 
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Fig. 3.11 Impact of particles of conical shape and heterogeneous materials. All 

particles share the same volume. The impact velocity is 2.88 m/s. 
* / 168E Y  . Other 

parameters are the same as the case shown in Fig 3.4. (a) Force-displacement curves, 

hard coating: the Young’s modulus of the coating is 10 times of the core, the soft 

coating:  the Young’s modulus of the coating is 0.1 times of the core. (b) conical 

particle at its maximum deformation, (c) locations where yield is initialized in coated 

particle, and (d, e) hard and soft coated particles at their maximum deformation.  
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Figure 3.11 compares the contact laws for particles of different geometries and 

materials. All the particles have the same impact velocity and volume. The solid 

triangle symbols in Fig. 3.11(a) show the force-displacement curve of a conical 

particle made of elastic perfectly plastic material (shown at its maximum deformation 

in Fig. 3.11(b)). It can be compared to the small hollow circles which represent the 

force-displacement curve of a spherical particle of the same material. It can be clearly 

seen that the contact law of the conical particle is very different from that of the 

spherical one. In fact the two contact laws are very different even at small 

deformation as suggested by Johnson (1985). The onset of yield for a conical particle 

occurs at the tip of the cone rather than inside the particle and the curvature of the 

conical particle near the contact area is always negative as shown in Fig. 3.11(b). It is 

difficult to obtain the contact law analytically for all the possible geometries. 

Furthermore non-normal impact is very common in irregular particulate systems, 

which is impossible to deal with analytically. Figure 3.11(a) also shows contact laws 

for a particle containing an outer layer which has a different material property, i.e. a 

coated pellet. The thickness of the coating layer is one tenth of the particle radius. The 

core and the coated layer share the same value of 
* / 168E Y  . In the hard coating 

case, the Young’s modulus of the coating is 10 times that of the core material. In the 

soft coating case, the Young’s modulus of the coating is 0.1 times that of the core 

material. Significant differences can be observed in the force-displacement contact 

laws. For the particle with hard coating, the coating layer dominates the impact 

behaviour as can be seen from the deformation in Fig. 3.11(d). For the particle with 

soft coating however, both the coating and the core play an important role to the 

energy dissipation and the contact law shows a complicated behaviour. 

 

3.6 SUMMARY  

This chapter presents a comprehensive study for the contact laws between solid 

particles taking into account of the effects of plasticity, strain hardening and softening, 

very large deformation, non-spherical geometry and material heterogeneity. The study 

takes advantage of the Material Point Method and demonstrates that the method is 

efficient and reliable when solving impact problems involving all these factors. The 
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numerical studies revealed some new understandings about the frictionless normal 

impact behaviour of particles. For example, it is shown that the contact law for elastic 

perfectly plastic spherical particles can be uniquely determined from the relative 

impact velocity and normalised Young’s modulus. The contact law at very large 

deformation shows a perfectly plastic behaviour. Strain hardening can be ignored for 

small deformation impact. A complete analytical framework is possible to calculate 

the contact law as well as the coefficient of restitution for elastic perfectly plastic 

spherical particles.  

 

In the case of non-spherical particles or particles with strain hardening or softening 

behaviour, it is difficult to develop analytical contact laws. The use of numerical 

contact laws for solving practical problems is discussed in the context of discrete 

element simulation of powder flow, where a two-step approach is proposed, i.e., a 

numerical contact law is calculated using the Material Point Method. The reliability of 

the Material Point Method makes this a routine task. Secondly the numerical contact 

law can be directly fed into the discrete element simulation.  
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CHAPTER 4                                                                    

IMPACT FAILUE OF BRITTLE PARTICLES 

 

The failure of brittle particles through multi-crackings could be very difficult to 

simulate by conventional FE analysis. Based on the Material Point Method, this 

chapter is to develop a simple and robust model in order to study the failure of 

brittle particles. 

 

 

4.1 BACKGROUND 

4.1.1 Experimentally observed failure patterns 

In this chapter, we focus on the brittle failure of a single particle during impact. A 

continuum particle undergoing brittle failure is transformed into a discrete assembly 

because of the development of multiple cracks. Extensive experimental research has 

been conducted during the past decades. Due to the high speed and violent nature of 

the damage and failure process of brittle materials, experiment observations are 

normally restricted to the final states of the particles. In summary the failure patterns 

observed experimentally can be divided into three categories as shown in Fig. 4.1. 

Patten I is a small damage concentrating on a ring of material surrounding the contact 

area. This is normally referred to as Hertzian ring. After impact, as shown in Fig. 

4.1(a), sometimes secondary ring cracks may be formed within the Hertzian ring. If 

the impact velocity increases, a cone crack linking with the meridian cracks, i.e., 

meridian cracks with a missing cone as shown in Fig. 4.1(b), are formed, this is 

referred to as Pattern II. The particle is divided into two or several pieces along the 

meridian planes. Pattern III refers to oblique cracks, as shown in Fig. 4.1(c), which 

divide the particle into small pieces with or without the help of the meridian cracks. 

The left hand side of Fig. 4.1(c) shows the oblique cracks formed at medium impact 

velocities for large particle as observed by Salman and Gorham (2000). The right 
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hand side of Fig. 4.1(c) shows particles at large impact velocities, with firstly 

meridian cracks and then oblique cracks developing and dividing the particle into 

small pieces (Wu et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Three types of experimentally observed failure patterns of brittle particles 

upon impact. (Reproduced from [1] Salman and Gorham, 2000, and [2] Wu et al., 

2004.) 

 

 

 

The patterns shown in Fig. 4.1 are in general agreements with other experimental 

observations. Arbiter et al. (1969) studied the fracture patterns by impact of sand-

cement spheres to the ground and observed Hertzian ring and cone cracks after low 

velocity impact and meridian cracks after higher velocity impact. The Hertzian ring 

and cone crack were also observed after the impact of soda-lime glass spheres 

  (a) Pattern I: Hertzian fracture system ring crack 

   (b)   Pattern II: Meridian plane cracks with missing cone   

 

[1]

[1]

[1]

[2]

[2]

(c) Pattern III: Oblique cracks and small fragments 
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(Salman and Gorham, 2000). For different materials subject to higher impact 

velocities, splitting failures by meridian cracks were observed by Shipway and 

Hutchings (1993) and by Andrews and Kim (1998). Salman and Gorham (2000) 

claimed that the meridian cracks only occur in soda-lime glass particles of very small 

sizes at very high impact velocities while the oblique cracks are induced in large 

particles. Wu et al. (2004) categorised twelve failure patterns in their double impact 

experiment using plaster spheres. Hertzian cone cracks and meridian cracks were 

found in low kinetic energy impact. Small fragments and powders at higher kinetic 

energy impact were considered to occur due to the coalescence of oblique and 

meridian cracks.  

 

4.1.2 Modelling brittle impact failure 

The existing models for brittle failure can be divided into two categories – those based 

on the statistical strength theory and those based on fracture mechanics. Crack 

problems naturally fall into the field of fracture mechanics. Stresses at a crack tip are 

theoretically infinite and they can be handled using the concepts of stress intensity 

factor or energy release rate. A large amount of literature exists on fracture mechanics 

models. However, the fracture mechanics approach can only predict crack 

propagation, not crack initiation. In a numerical model small initial cracks have to be 

placed into a material. The predicted failure pattern strongly depends on the assumed 

pattern of the initial cracks and is often unrealistic. On the other hand models based 

on the strength theory, as adopted in this study, have been shown to be successful in 

various applications. The brittle failure of particles during impact has been modelled 

extensively in the past decades. Most of the previous studies used the Finite Element 

Method (FEM). Many efforts were focussed on the modelling of the fragmentation 

process, which is somewhat inconsistent with the continuum description used in the 

FEM. Tvergaard (1982) developed an element vanishing technique which removes an 

element that meets the failure criterion in the sense that this element no longer 

contributes to the virtual work integral of the FE weak form. The element vanishing 

method has been used in modelling the failure of both brittle materials (Guo, 1995) 
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and porous ductile materials (Needleman and Tvergaard, 1987). Xu and Needleman 

(1994) developed a mesh splitting technique to simulate crack propagation and 

branching. As the failure criterion is reached at a finite element node, the node is 

duplicated and separates according to the cohesive crack constitutive law. Based on 

this method, an elaborate model was built up by Camacho and Ortiz (1996). By 

involving the boundary search and contact search algorithm, the phenomenon of 

fragmentation, including crack opening, growing, and healing, as well as multiple 

crack coalescence and frictional contact between fragments, were simulated by 

Camacho and Ortiz (1996). Espinosa (1998) simplified the model of Camacho and 

Ortiz (1996) in order to account for material microstructures. Such node duplicating 

technique is widely used to model brittle failures (e.g. Batra and Lear, 2004). 

However, as multiple cracks appear, the mesh distortion and separation can be 

excessive and adaptive mesh refinement is required . The complexity in the numerical 

procedure has severely limited the applications of the computer modelling in practical 

problems.  

 

On the other hand, various discrete numerical methods have been used to model 

brittle failure during impact. Molecular Dynamics (MD) is a straightforward and 

reliable method of modelling the failure of materials (e.g. Wagner and Holian, 1992). 

However, it is difficult to model structures of any real size in an MD model because 

of the limitation of computational capability. A generalized MD method was 

suggested by Smith and Srolovitz (1995, 1996), who represented a cluster of atoms as 

a particle and assumed a potential to govern the particle movements. Although the 

impact induced crack initialization and propagation are observed, the validity 

conditions of their inter-particle potential are still uncertain. There are also efforts 

trying to apply the Discrete Element Method (DEM) to model the failure of brittle 

materials. Potapov and Campbell (1994, 1997, and 2001) employed this method and 

studied the failure mechanisms during impact. It is possible to use DEM to study the 

complicated failure patterns and fragmentation (Kadono and Arakawa, 2002; Cheong 

and Reynolds, 2004). However, contact laws and failure criterions used in DEM are 

not always established on solid physical basis and complex material properties cannot 
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be readily modelled. It has been pointed out that the DEM behaves too ‘discrete’ and 

is only useful for modelling the breakage of brittle agglomerates (Thornton et al., 

1996; Moreno et al., 2003; Behera et al., 2005). 

 

4.1.3 The purpose of this chapter 

The purpose of this chapter is to study the performance of the Material Point Method 

(MPM) in modelling brittle failure during impact. The behaviours of brittle particles 

are studied in details in order to provide a better understanding on the simulation of 

particulate systems. The MPM was used to simulate dynamic material failure by 

Sulsky and Shreyer (2004), who adopted a decohesion law following the idea of Xu 

and Needleman (1994). However, only a small number of numerical results have been 

presented so far. In this chapter, a completely new treatment of the failure of brittle 

materials is proposed.  

 

The primary motivation of employing MPM to simulate the impact induced brittle 

failure is its potential advantage in dealing with material fragmentation. In MPM, it is 

straightforward to separate two material points as opposed to mesh splitting in the 

traditional FEM. The accuracy of the stress analysis of MPM is the same as the 

traditional FEM. In addition, various different failure criteria can be used in MPM to 

model different materials and failure conditions. Finally, as discussed in the previous 

chapters, it is very easy to satisfy the contact boundary conditions. In this chapter, the 

Material Point Method is combined with the Weibull’s failure theory (introduced in 

section 1.4.1) to simulate the brittle failure. Details of the numerical methodology are 

described in the next section. Numerical examples are presented in section 4.3. After 

the validation of the model, the impact failure of spherical particles is studied 

comprehensively and the dominating mechanisms in the impact failure are revealed. It 

is shown that, the MPM is very suitable for modelling of brittle failure in particulate 

systems. 
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4.2 DESCRIPTION OF THE MODEL 

4.2.1 Review of the Material Point Method 

The formulation of the Material Point Method (MPM) is described in details in 

CHAPTER 2. Here the discretized form of MPM is briefly outlined in order to 

provide a context for our model of brittle failure. In the MPM, the deformation of a 

solid body is obtained by tracing the motion of the material points, which is calculated 

from the nodal acceleration of the computational mesh using  
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   (4.1) 

or   

           
int extmv = f f .                               (4.2) 

In Eq. (4.1) B  is the spatial gradient of the shape function N . In Eq. (4.2), m , int
f , 

and ext
f  are the consistent mass matrix, internal nodal forces, and external nodal 

forces on the computational mesh respectively. The bold lower case letters denote the 

spatial/nodal tensor variables of computational mesh while bold upper case letters 

denote the tensor variables of the material points. Therefore v  is the nodal 

acceleration and pX , 
pM  are coordinates, mass of the material points, respectively. 

In MPM, a lumped mass matrix is employed in explicit time integration instead of the 

consistent mass matrix on the left hand of Eq. (4.1). The stresses ζ  are traced at the 

material points. The material points are used as numerical integration points to 

calculate the volume integration, hence the first term on the right hand side of Eq. 

(4.1). The density of each material point p  is updated at each time step in order to 

calculate the volume integration. In brittle failure, although the strains generally 

remain small, large deformation and rotation are locally possible. In order to account 

this, the Jaumann rate stress measure (introduced in section 1.5.1) is used in the model. 

The second term of the right hand side of Eq. (4.1) shows how body forces b  such as 
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gravity are applied on the material points. Surface tractions η  are applied on the 

computational mesh according to the third term at the right hand side of Eq. (4.1). 

 

4.2.2 Failure criterion and its implementation in MPM 

As introduced in section 1.4.1, the variability in the strength of brittle materials can be 

modelled using Weibull’s theory (e.g. Ashby and Jones, 1986). The maximum 

principal stress is the dominant factor causing the brittle failure and therefore, it is 

used here as the stress input in Weibull’s theory. The key elements of Weibull’s 

theory is briefly outline as following: the survival probability 
ref( )sP V  of material 

samples of a standard volume 
refV , under a maximum principle stress 

max

principle , can be 

calculated as 

 

max

principle

ref

ref

( ) exp

m

sP V




   
    

   



        (4.3) 

where 
ref  is a reference stress at which the fraction of exp[ 1] 37%   of samples 

survive. m  is the Weibull’s modulus reflecting how rapidly the survival probability 

reduces as 
max

principle  approaches 
ref . For material with a volume of 

materialV , its survival 

probability is given by  

 
material ref/

material ref( ) ( ( ))
V V

s sP V P V  .       (4.4) 

In the present model, the maximum principle stress is calculated at each material point 

at each time step. The survival probability of the material is then calculated using Eqs. 

(4.3) and (4.4). To determine whether a material point actually fails or not in the 

analysis knowing its survival probability, a numerical random test is performed. At 

the beginning of the simulation, each material point is assigned a random value  , 

between 0  and 1. At each time step, the survival probability is compared with the 

random value for each material point. If the survival probability of a material point is 

less than  , then this material point fails.  
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If failure occurs at a material point, then, the stress components of this material point 

will not contribute to the volume integration to int
f  in Eq. (4.2). The material point is 

referred to as a ‘ghost material point’ which is kept in the system with its stress state 

updated. Using k  as the index for the ‘ghost material point’, the first term of the right 

hand side of Eq. (4.1) can be written as  

 

 

 int 1 1 int int
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1
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where 
int

ghostf  is the contribution of nodal force by all the ‘ghost material points’ fall in 

the failure criteria. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2 Nodal force singularity caused by failed material point, in a 2D uniform stress 

plane. 

 

 

The nodal force calculated from Eq. (4.5) for a uniform stress state with one ‘ghost 

material point’ is shown in Fig. 4.2. Because of the piecewise property of the shape 

function, the component of 
int

ghostf  reaches the maximum contribution at node k , which 

is the nearest node on the computational mesh to material point k . Node k  becomes a 

singular node where a crack is formed. In the node duplicating scheme in the 
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traditional FEM (Xu and Needleman, 1994, Camacho and Ortiz, 1996, Espinosa et al., 

1998), the node k  is duplicated and separated in order to generate a crack. The 

convenience when using the MPM is that the singularity is mapped back to the 

material points without losing any information. It is the discrete material points that 

are separated instead of the finite element mesh. The separation process takes place 

automatically through the mapping procedures. On the other hand, if a crack is closed, 

the stress state of the ‘ghost material point’ becomes compressive. The ‘ghost material 

points’ are allowed to be re-introduced back to the volume integration to the nodal 

force. Because all the other state variables of the ‘ghost material point’ are updated, 

the failed material points can still support compression. The stable crack healing 

process is therefore properly described.  

 

4.2.3 Overall algorithm 

The overall algorithm of modelling brittle failure using the Material Point Method is 

described as following. 

1. Construct a collection of material points, and calculate their mass pM  to 

represent a solid body. 

2. Initialize the state variables of the material points, including stresses, 

velocities, and strains, assign the random values of  . 

3. Calculate nodal velocities of the computational mesh 
t

v  by momentum 

conservation (where t  denotes the present time step) 

 

1

( )
pN

t t

p p p

p

N M


mv X V .       (4.6) 

4. Calculate int
f  and ext

f using Eqs. (4.1) and (4.2), by excluding the 

contributions of the ‘ghost material points’. 

5. Calculate nodal acceleration of computational mesh 
t t

v  using Eq. (4.2). 

6. Update material point velocity  

 

( )t t t t t

p p ptN  V V X v .       (4.7)                          
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7. Update nodal velocities of computational mesh, t t
v , either by solving the 

system of equations of 

 

     
1

( )
pN

t t t t

p p p

p

N M 



mv X V  .          (4.8) 

           or by updating from previous nodal velocities  

  

 t t t t tt  v v v .        (4.9) 

8. Calculate strain rate t t
ε  at each material point from velocity vector t t

v . 

Calculate stress rate t t
ζ  using the constitutive law. Update stresses 

according to 

 
t t t t tt  ζ ζ ζ .                   (4.10) 

9. Calculate the maximum principle stress 
max

principle  from t t
ζ . Calculate the 

survival probability using Eqs. (4.3) and (4.4).  

10. Compare the survival probability with the random value of  to check if 

failure has occurred. 

11. If failure has occurred at a material point, this material point is set to be a 

‘ghost material point’. 

12. Update material point density using the determinant of the deformation 

gradient t t

tJ   

 
1( )t t t t t

p p tJ    .                      (4.11) 

13. Update the positions of all the material points 

 

( )t t t t t

p p ptN  X X X v .                (4.12) 

14. t t t  , go back to step 3 if the computation not terminated. 
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The reason for using different update schemes to update nodal velocity in Eq. (4.8) or 

Eq. (4.9) has been explained in section 2.2.4. At each time step, the material boundary 

is searched to decide whether it is necessary to use Eq. (4.8), especially when new 

surfaces are produced by the growth of multiple cracks. It is proved that this 

procedure has effectively avoided the material point separation problems and 

minimized the numerical problems. 

 

 

4.3 MODELLING THE IMPACT INDUCED BRITTLE FAILURE OF 

CIRCULAR PARTICLES 

4.3.1 Convergence test  

In the MPM model for brittle failure, the stress singularity is ignored. It is therefore 

necessary to show that the MPM prediction of the failure pattern ‘converges’ if the 

mesh is fine enough. As shown in Fig. 4.3, a circular disc impact on the rigid wall 

with a relatively high velocity of 
0 16V   m/s. Plane stress conditions are assumed in 

the numerical model. A square computational mesh is used to cover the possible 

domain of the particle motion. The rigid wall is represented by imposing the 

acceleration and velocity constraints at the bottom line of the computational mesh. In 

order to focus on the effect of the mesh size, the material strength is assumed to be 

uniform here, i.e., m  is taken as being infinitely large in Eq. (4.3). Consequently, a 

material point will not fail until the maximum principle stress reaches the failure 

stress, which is assigned to be 50 MPa. Convergence is considered to be achieved if 

further refining the mesh does not change the failure pattern during impact. A range of 

meshes with different numbers of material points are used in the test which are listed 

in Table 4.1. The predicted failure patterns using the different levels of meshes are 

shown in the APPENDIX IV. As shown in Table 4.1, for each level of mesh status, 

either the material point or the computational mesh is refined. From our numerical 

observations, the 2D MPM model for brittle failure is not very sensitive to the 

material point density (this cannot be too low of course). The stress concentration is 

sensitive to the computational mesh. It is the computational mesh which needs to be 
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refined in order to capture the concentrated stress crack tips. In the comparison of the 

failure patterns obtained by different levels of mesh statuses in APPENDIX IV, the 

convergence is found to be achieved at the mesh level 4 in Table 4.1. 

 

 

 

 

 

Fig. 4.3 The computational mesh of the MPM for a 2D plane stress, simulation of a 

circular disc impacting on a rigid wall.  

 

 

 

4.3.2 Computer simulated impact failure using the Material Point Method 

In order to simulate the experimental failure patterns described in section 4.1.1, a 

circular particle with a diameter of 4.7D  mm is projected with different initial 

velocities of 
0V  perpendicularly to a rigid stationary wall. Gravity is neglected 

therefore the starting position of the particle with respect to the wall does not have an 

effect on the impact. The model described in section 4.2 is used.  

 

0V
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Table 4.1 Convergence test for the MPM model of failure patterns during particle 

impact.  

 
 

level of  

mesh status 

 

Number of 

material 

points 

 

Number of 

cells in whole 

domain  

 

 

Same pattern 

predicted using 

finer mesh ?  

 

Same pattern 

predicted using 

much finer mesh ? 
 

1 
 

 

11102 80 80  No No 
 

2 

 

43802 

 

128 128  Yes No 
 

3 
 

174002 

 

200 200  No No 
 

4 

 

693602 

 

320 320  Yes Yes 
 

5 

 

 

693602 400 400  Yes N/A 
 

6 

 

 

2769602 500 500  N/A N/A 

 

 

The material parameters used in the simulations are: initial density 2440   kg/m
3
, 

Young’s modulus 69E   GPa, and Poisson’s ratio 0.22  . The Weibull’s modulus 

m  and reference stress 
ref  in Eq. (4.3) are taken as 20  and 50  MPa, respectively. 

The reference volume 
refV  in Eq. (4.4) is taken as the entire volume of the particle. 

Figure 4.4 shows the kinetic energy as a function of time for four different initial 

velocities. The kinetic energy is normalized by the initial kinetic energy for each case. 

A series of snapshots of the particle are also shown in Fig. 4.4 for the case of impact 

velocity 
0 10V   m/s. Figure 4.5 shows the final failure patterns of the particle for four 

different impact velocities. At impact velocity of 
0 5V   m/s, the brittle particle 

exhibits a typical elastic response. Starting form the point of impact, the kinetic 

energy reduces gradually to zero, which reflects the maximum compression status 

during the impact. The total kinetic energy then increases and fully recovers after 

rebound (excluding the numerical and elastic wave dissipation). No crack is found as 

no material point meets the failure criterion during the impact. 

 

At impact velocity of 
0 6V   m/s, the falling of kinetic energy is slightly faster than 

that of 
0 5V   m/s and the total impact time is shortened. Discernable energy 
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dissipation (about 10%  of initial kinetic energy) is observed after rebound, reflecting 

the total amount of converting kinetic energy into crack formation energy. In the final 

state, the particle shows some damage adjacent to both sides of the contact area. 

Recalling that the simulations assume plane stress conditions, it is reasonable to 

associate Pattern i in Fig. 4.5 with the experimental observation, Pattern I, in Fig. 

4.1(a), Furthermore, inside the ring, two secondary vertical cracks at both sides of the 

central axis can be clearly observed. These details are in good consistency with 

experimental observations shown in Fig. 4.1(a). 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.4 Normalized kinetic energy as a function of time for different impact velocities. 

The horizontal row of particles shows snapshots during impact for the initial impact 

velocity of 
0 10V   m/s. 

 

 

 

If the initial impact velocity of the brittle particle is increased to 
0 7.5V   m/s, there is 

a remarkable reduction in the kinetic energy after rebound. The minimum value of the 

kinetic energy is close but not equal to zero. The non-zero part suggests that some 
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material points have failed and some of the kinetic energy was used for crack 

formation. The reason why the kinetic energy at the bottom is slightly above zero is 

that the failed material points do not move harmonically with the main particle 

anymore. The final failure pattern is that the particle is divided into two halves by a 

main crack along the middle axis, with some small branches also present (Pattern ii in 

Fig. 4.5). This can be directly related to the meridian crack that splits the particle into 

two or several parts, i.e. Fig. 3.1(b), Pattern II observed experimentally. About 20% of 

the initial kinetic energy is converted into crack energy leading to this brittle failure 

pattern. It is noticeable that the crack is not exactly lying on the central axis. This is 

possibly because the strengths between the two sides of the central axis are not the 

same. The long main crack grows from a small crack which is in a weaker side of the 

central axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 4.5 Computer simulated final failure patterns for different impact velocities. 

0V 5 m/s        Unbroken

0V 7.5 m/s       Pattern ii

0V 6 m/s        Pattern i

0V 10 m/s        Pattern iii
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The largest initial impact speed shown in Fig. 4.4 is 
0 10V   m/s. At this velocity, the 

normalized kinetic energy curve (solid line in Fig. 4.4) behaves similarly to the study 

of shock induced cracks, by Wagner and Holian (1992) using molecular dynamics 

simulations. At first, the kinetic energy decreases fast. The bottom of the curve drifts 

upwards from zero by 10% , reflecting that a large part of the material failed during 

the inbound period of impact. During the rebound period, the curve reaches a peak, 

marking the finishing point of the impact. After rebound, the total kinetic energy, 

including the kinetic energy of both failed and unfailed materials, slowly decreases to 

the final stable status. This suggests that the cracks continue to grow gradually after 

the full rebound to reach the final failure pattern - Pattern iii in Fig. 4.5.  

 

The evolution of the failure Pattern for 
0 10V   m/s is also shown in the horizontal 

row of particles in Fig. 4.4. Cracking is firstly initiated beneath the contact area during 

the inbound stage of impact. When compression reaches its peak, this crack grows 

vertically upwards and downwards. Ring cracks are also generated at the bottom of 

the particle while they coalesce with the vertical crack to form a cone crack pattern. 

Cracks are formed and grow very fast during the rebound period of the impact. It is 

important to note that most cracks are generated at this period. As suggested by 

Potapov and Campbell (1997), cracks perpendicular to the vertical crack are formed 

during the rebound period because of bulk bending in the material. Furthermore, the 

secondary cracks could originate not only from the main crack tips but also some 

distance away. Similar findings were reported by Xu and Needleman (1994). After 

full rebound, the inter-perpendicular cracks further grow and divide the material into 

small pieces projecting away from the area of impact. The simulated final failure 

pattern relates well to the experimental observations summarized in Fig. 4.1(c).  

 

4.3.3 Stress field in the particle 

In order to obtain a more fundamental understanding of the failure patterns shown in 

section 4.3.2, it is instructive to examine the distribution of the maximum principle 

stress, which is used in the failure criterion for brittle failure. The stress field at an 
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early stage of the impact when there exists only one main crack is plotted in Fig. 

4.6(a). For comparison purpose, the stress field of an unbroken particle (obtained by 

setting a ultimate high value for the reference stress 
ref  in Eq. (4.3) while keeping all 

other parameters the same) is plotted in Fig. 4.6(b). The maximum principle stress 

contours of the unbroken particle are similar to the force contours found by Potapov 

and Campbell (1997) using the Discrete Element Method. The maximum principle 

stress of an unbroken particle has an azimuthal distribution. The maximum value of 

the maximum principle stress occurs beneath the contact area. This position of 

maximum principle stress coincides with the location of crack initiation. The stress 

decreases upward and downward. Originating in the small zone between the 

maximum location and the contact area, isostress contours surround azimuthally the 

maximum stress zone and spread into the whole particle. The stress field is 

extensively altered by the opening of cracks. In Fig. 4.6(a), in the presence of a crack 

along the central axis, the stresses away from both sides of the crack are severely 

reduced. Stresses near crack tips are intensified and small areas of stress concentration 

near crack tips are formed. These stress concentrations drive the growth of the main 

crack and can lead the current crack to meridian failure of Pattern II in Fig. 4.1(b) and 

Pattern ii in Fig. 4.5. Above the main crack, stress distribution is relatively unchanged. 

The main difference is that all stress contours originate at the upper crack tip rather 

than just above the contact area.  

 

The stress field of a particle when rebounding but still in contact with the wall is 

plotted in Fig. 4.6(c). At this time instance, most stresses in the material body have 

been relaxed, leaving two stress concentration zones on the both sides of the contact 

area, which resemble the Hertzian rings normally occurring at lower impact velocities. 

The stress concentration just before the full rebound is the main mechanism for 

Pattern I in Fig. 4.1(a) and Pattern i in Fig. 4.5. Naturally Hertzian ring cracks can 

occur at other time instances during the high velocity impact history, such as shown in 

the series of snapshots in Fig. 4.4. However, in this case the Hertzian rings may be 

surpassed by other cracks developing during the process. Therefore, the distinct ring 

cracks are unlikely to be present in the final configuration. From the stress analysis 
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point of view, however, the Pattern III in Fig. 4.1(a) and Pattern iii in Fig. 4.5 result 

from the iteration of crack induced stress concentration, which is similar to the stress 

field in Fig. 4.6(a).  

 

 

 

 

Fig. 4.6 Contour lines of the maximum principle stress field at three different 

characteristic impact stages. The numbers refer to the stress values. (a) The stress field 

of a particle with one open crack beneath the contact area, (b) the stress field of a 

particle same with (a) except it is unbroken, and (c) the stress field of an unbroken 

particle at the time instance that the particle is just releasing from the wall. 

  (a) (b) 

(c) legend 

 label     max principle  
number      stress(MPa) 

 

1    5 
 

2   10 
 

3   20 
 

4   30 
 

5   40 
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4.3.4 Threshold velocity 

According to Cheong et al. (2003), and Andrews and Kim (1998), the thresholds of 

impact velocities exist for failure Patterns I and II to occur respectively. The threshold 

velocity was found to follow a power law relation on the particle size with a negative 

exponent. Whilst it is intuitive that the severity of the damage increases with the 

impact velocity, modelling this phenomenon provides a quantitative understanding of 

the velocity effect. In order to focus on the effect of the impact velocity, the parameter 

  is set randomly (as before) but fixed for all particles. The reference volume 
refV  in 

Eq. (4.4) is taken as the volume of the particle of 4.7 mm in diameter. The threshold 

velocities for Pattern I and Pattern II are plotted against the particle diameter (in 

logarithm scale) in Fig. 4.7. 

 

As shown in Fig. 4.7, the threshold velocity of brittle failure Pattern I, i.e. Hertzian 

ring, decreases exponentially with the increasing diameter of the particle, D . The 

relationship can be written as  

 
th

Hertz 1V A D .                   (4.13) 

The threshold velocity of brittle failure Pattern ii, meridian crack, also decreases 

exponentially with the increasing diameter of the particle, i.e.  

 
th

meri 2V A D .                              (4.14) 

In Eq. (4.13) and Eq. (4.14), 
1A , 

2A  are numerical coefficients, and  ,   are 

exponents determined from Fig. 4.7 as 0.074   , 0.094   , respectively. From 

the elastic theory for 2D impact (Potapov and Campbell, 2001), the maximum 

compressive force occurs at the time instance of the largest compression, given by 

 
1.07

max 0 ( / / )F const ED V E  .                (4.15) 
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Fig. 4.7 Threshold velocities against particle diameter. Inset: modified Auerbach’s 

Law of 3D, and 2D plane stress.        

 

 

 

As suggested by Cheong et al. (2003), the impact threshold velocity for Hertzian ring 

can be analysed using the well known Auerbach’s Law, which can be used to infer the 

value of the static loading necessary to produce a Hertzian ring crack. As shown in the 

inset of Fig. 4.8, in the present model the plane stress particle represents a plate. In 

this case it is easier to induce damage as the particle size increases comparing with the 

3D situation, so we have  

 

cri

nF AD .                   (4.16) 

cri

nF AD
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where 
criF  is the force required to create a damage. The exponent n  in Eq. (4.16) as 

well as in the inset of Fig. 4.7 can be found by experiment and is expected to be 

between 0  and 1. To examine the value of n , we equate Eqs. (4.13) and (4.15) with 

the Auerbach’s Law 
max criF F . The threshold velocity for the Hertzian ring crack is 

        
th ( 1) /1.07

Hertz

nV D D  .                 (4.17) 

Equation (4.17) implies that, if 0 1n  ,   is a number between 0  to 1  with a 

small absolute value, which is consistent to our numerical result 0.074   . For the 

meridian cracks, Potapov and Campbell (1997) suggested that the central axis crack 

length parameter *  is given by  

 
2

* 0.14 *0
0

fr

( / / ) ( )
DV

V E f
W


                   (4.18) 

where 
frW is the energy required to produce unit length of crack, and *( )f  is a 

function depending only on Poisson’s ratio  . In order to generate a crack along the 

central axis, the central axis crack length must be proportional to the particle size such 

that 

 
*D                     (4.19) 

Solving Eq. (4.18) and Eq. (4.19) for the particle diameter D  indicates that the 

velocity for generating a central axis crack, referred to as 
meriV , which is independent 

of the particle size D . However, the central axis crack must appear after the cone 

crack which is generated from the Hertzian ring crack. Considering the crack 

formation energy, the threshold velocity of initializing the meridian crack pattern is 

consisted of two parts, i.e.  

 
th 2 th 2 2

meri Hertz meriV V V                      (4.20) 

The first term on the right hand side of Eq. (4.20) denotes the formation energy for 

Hertzian crack while the second term denotes the formation energy for central axis 

crack. Since the velocities are always positive, Eq. (4.20) leads  
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th 2 th 2 th 2 2 th 2

Hertz meri meri Hertz meri Hertz( )V V V V V V                   (4.21) 

Using Eq. (4.13), we obtain 

 
th th th

1 Hertz meri meri Hertz( )D C V V V V D                      (4.22) 

where 
1C  is a positive constant because 

meriV  is independent of D . It is noticed that 

the particle sizes D  shown in Fig. 4.7 are relatively small (see Fig. 2 by Cheong et al. 

2003, and Fig. 3 by Potapov and Campbell, 2001 for details). Approximating the left 

hand side of Eq. (4.22) using an exponential function, Eq. (4.14) and Eq. (4.21) lead 

to 

 

2C                       (4.23) 

where 
2C  is a negative number depending on 

1C . Since the crack energy for cone 

crack and the crack energy for central axis crack are always comparable, th

HertzV  and 

meriV  are comparable. As a consequence, D  and 
1C  are comparable, and   and 

2C  

are also comparable. Therefore, Eq. (4.23) is also consistent with our numerical 

observations in Fig. 4.7 that 0.094    and / 1.27   .  

 

4.3.5 Discussions 

It can be observed that the brittle failure patterns in our numerical simulations shown 

in Fig. 4.5 and the experimental observations shown in Fig. 4.1 are consistent with 

each other despite that the experiment used 3D particles while the numerical models 

assumed plane stress. However, during the modelling of Pattern III, it appears that the 

meridian crack is almost always present. The failure pattern is sensitive to the 

randomly assigned values of  which reflect the material heterogeneity. This is 

consistent with the findings by Xu and Needleman (1994). The process of the crack 

formation can be understood as a competition between the stress field and the strength 

heterogeneity of the material. Due to this competition, amongst our simulations with 

different distributions of  , there are some cases that show only oblique cracks 
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without a meridian crack. Salman and Gorham (2000) showed that all particles in a 

certain velocity and size range fail by forming oblique cracks in their experiments. 

This failure pattern (left hand side in Fig. 4.1(c)) appeared to have a weak dependence 

on the material heterogeneities. More study is needed to fully understand this 

phenomenon. 

 

The azimuthal stress field in Fig. 4.6(b) is inevitably altered by crack formation. 

Unlike the crack patterns predicted by Potapov and Campbell (1997) using the 

Discrete Element Method, the fan like cracks along the paths of the maximum 

principle stress are not observed in our simulations. Meanwhile, the energy trade off 

between cracks generated during inbound process and cracks generated during 

rebound process still holds but not as obvious as that in DEM predictions (Potapov 

and Campbell, 1997). The expanded crack distributions during inbound at a larger 

impact speed could be attributed to the larger contact area. 

 

The threshold velocity study shown in Fig. 4.7 indicates a possible way of obtaining a 

particular crack pattern during an impact. The negative exponential dependence 

means that as the particle size gets smaller, the particle becomes more sensitive to 

impact velocity. For example, in order to eliminate particle damage, there are 

basically two methods: to increase particle size or to reduce impact velocity. Which 

method to choose depends on the level of the impact velocity and the particle size. For 

example, to avoid impact damage, the method of changing particle size is much more 

effective for small particles than for large particles.  

 

 

4.4 CONCLUDING REMARKS 

Understanding the impact failure of brittle particles is an important issue for many 

industrial particles. The Finite Element Method is fundamentally ill-equipped to 

model the brittle failure. In this chapter Weibull’s theory is incorporated into the 

Material Point Method to model the multi-cracking of brittle particle during impact. 

Three particle impact failure patterns observed experimentally are predicted by the 
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model: Hertzian ring cracks, meridian cracks, and fragmentation patterns. The 

observed power law relation between the threshold impact velocity and particle size is 

also confirmed by the numerical study. These comparisons, despite being quantitative, 

give confidence to the numerical model. Detailed stress analysis is carried out in order 

to interpret the experimental observations. It is however difficult to convey the 

numerical and programming simplicity of the MPM in dealing with multiple cracks 

and material fragmentation. Almost no extra programming effort is needed to deal 

with the complicated failure process when implementing the Material Point Method. 

Because the method does not involve any imperial judgement in mesh splitting, the 

computer simulations are rarely terminated prematurely due to numerical issues. The 

Material Point Method is ideal to model to transition from continuum to discreteness.  

 

Modelling multiple cracking and material fragmentation is perhaps one of the most 

challenging tasks in computer simulation. There are still some unresolved issues in 

this topic. The MPM model proposed in this chapter provides a confident and simple 

solution. For the simulation of particulate systems in Discrete Element Method 

(DEM), the MPM model can be used for both the brittle failure checking and the final 

fragment prediction. Furthermore, the contact law between fragments can be also 

calculated using the MPM, as introduced in the previous chapter. The MPM model 

can be therefore performed routinely to obtain the detailed inputs for the DEM 

simulations.  
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CHAPTER 5 ADHESIVE CONTACT BETWEEN FINE 

PARTICLES 

 

This chapter proposes a new model based on the MPM, which is used to study 

the contact laws between fine particles taking into account the effect of surface 

energy. 

 

 

5.1 THEORETICAL BACKGROUND 

As described in section 1.4.2, the influence of adhesion can be important in particulate 

systems. The effect of adhesion becomes more significant during the contact between 

finer particles. In the past decades, the research focused on measuring local 

mechanical properties as well as characterizing the deformation of small particles 

leads to the need of coupling material properties with surface interactions. Moreover, 

the expanding demand for simulating particulate systems generated significant interest 

in the adhesive contact law between two fine particles, since it provides a fundamental 

understanding of how fine particles interact with each other.  

 

The origin of adhesion lies in inter-atomic forces, which form inter-atomic bonds 

when two surfaces are put together. The work done by the inter-atomic forces when 

eliminating the two surfaces macroscopically is termed as surface energy. During the 

contact between two deformable particles, the released surface energy (or free energy) 

is readily converted to deformation strain energy which further deforms the two 

contacting bodies. As a consequence, the deformation changes the status of the 

surfaces and the amount of surface energy, causing further deformation. This 

nonlinearity due to the interplay between the surface energy and the deformation 

strain energy makes the problem of adhesive contact much more complicated than 

contact problems neglecting adhesion (studied in CHAPTER 3).  
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The well known JKR theory (Johnson et al., 1971) is very widely used as an adhesive 

contact law today in the simulations of particulate systems containing fine particles. 

However, as pointed out by Johnson et al. (1971), the JKR theory is only valid if the 

particles are pure elastic and so soft that the surface roughness can be easily flattened 

to smooth the surface. In most practical particulate systems, contacts are controlled by 

the interaction between asperities of the rough surfaces, where plastic deformation 

may dominate and the JKR theory is no longer valid any more. 

 

The purpose of this chapter is to obtain more realistic adhesive contact laws 

numerically. The existing literature is reviewed in the next section, and then a new 

multi-scale model based on the Material Point Method (MPM) and Molecular 

Dynamics (MD) is developed. A range of important factors of adhesive contact are 

studied under realistic situations in order to provide a better understanding of the 

interactions between fine particles. The ultimate goal of this chapter is to provide 

realistic adhesive contact laws which can be used as inputs in discrete element 

simulations of particulate systems. Like other contact laws studied in previous 

chapters, this chapter focuses on the frictionless normal contact between a spherical 

particle and a planar rigid wall, which is equivalent to the none-slip contact between 

two identical spherical particles.  

 

Before we start, the following terminology used in the present chapter is introduced. 

Surface energy is defined as the total energy released by eliminating two free surfaces. 

Specific surface energy is defined as the surface energy per unit area of the surface. 

Adhesion force is defined as the normal force due to surface energy acting on a 

particle surface when two surfaces are interacting. Adhesive surface traction is 

defined as the adhesion force per unit area, which depends on the gap between 

surfaces. Pressure on the surface is the material response due to deformation and can 

be understood as ‘stress on the surface’. 
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5.1.1 Two classical approaches 

As mentioned above, the complexity of the adhesive contact is represented by the 

nonlinear interplay between the surface energy and the deformation strain energy (and 

mechanical potential for static loading or kinetic energy for dynamic problems). Two 

classical approaches are generally used in the past works. The first approach is named 

as the analytical approach, which assumes that contact takes place at an equilibrium 

distance between two surfaces. The distance between two contacting surfaces is 

always a constant  , which is normally comparable to the equilibrium atomic spacing 

0 . The two surfaces attract each other when they are not in contact, i.e., when the 

gap between the two surfaces is larger than  . Therefore, one can use a distance 

dependant adhesive surface traction outside the contact area (Derjaguin et al., 1975; 

Maugis, 1992; Greenwood and Johnson, 1998; Schwarz, 2003). The JKR theory 

(Johnson et al., 1971) can be also considered as a special case of this approach since it 

implicitly assumes an infinite adhesive surface traction at the edge of the contact area. 

The second approach is named as the numerical approach, which uses more ‘realistic’ 

adhesive surface traction between surfaces. The adhesive surface traction with an 

equilibrium distance   includes an attractive part and a repulsive part. Two surfaces 

are attracting each other when the gap is larger than  , while repelling each other 

when the gap is smaller than  . This distance dependent adhesive surface traction is 

regarded as the pressure on the surface through a series of small time steps. By 

solving the equations of elasticity, the interplay between the deformation and the 

surface energy can be studied using an iterative scheme (Parker and Attard, 1992; 

Greenwood, 1997; Feng, 2000). 

 

In the terminology of contact mechanics, most analytical elastic adhesive contact 

theories are based on the well known Hertz theory (e. g. Johnson, 1985), and can be 

distinguished by their unique assumptions (either explicit or implicit) about the 

pressure distribution on the surface. The Hertz theory outlined in section 1.3 is a basis 

for the subsequent review of the theories of adhesive contact. The basic assumptions 

of Hertz theory include: (i) the particle is spherical and purely elastic; (ii) the 

curvature of the particle near the contact area is large compared to the size of contact 
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area; and (iii) the contact is normal, frictionless (or non-slip between two identical 

particles). Figure 5.1(a) shows a typical Hertz contact of an elastic, spherical particle 

with a radius R , in normal contact against a rigid wall, forming a circular contact area 

with radius 
0a . The displacement of the particle   is the change of length of the 

diameter on the central axis of the particle, which is given by Eq. (1.11). As shown in 

Fig. 5.1(a), the Hertz elliptical contact pressure distribution 
Hertz ( )p r at an arbitrary 

radial distance r  on the surface is non-zero only inside the contact area, which is 

explicitly given by Eq. (1.13). The Hertz contact law in the form of F   relation is 

given by Eq. (1.19). 

 

5.1.2 The Analytical approach 

The most widely used adhesive contact law when simulating particulate systems is the 

JRK theory (Johnson et al., 1971). Therefore it is worthy to introduce the JRK theory 

first. Johnson et al. (1971) noticed that the adhesion force between an elastic particle 

and a rigid wall has a tendency to increase the size of the contact area. As shown in 

Fig. 5.1(b) the radius is increased from 
0a  to 

1a  in the presence of adhesion. 

Therefore there must be an adhesive tensile pressure applying to the particle surface in 

addition to the Hertz compressive pressure. On the other hand, if assumption (ii) is 

valid, the profile of the particle near the contacting surface should remain unchanged. 

Johnson et al. (1971) therefore assumed that the additional adhesive pressure 

produces a uniform normal displacement within the contact area and follows the form 

(as shown in Fig. 5.1(b))  

 
1/ 2

2

1 1 1( ) 1 ( / )p r P r a


    .        (5.1)       

Consequently the pressure on the surface only exists inside the contact area and is the 

sum of the compressive Hertz pressure (Eq. (1.13)) and the tensile pressure that 

produces a uniform displacement (Eq. (5.1)), i.e. we have  

 
1/ 2 1/ 2

2 2

JKR 1 Hertz 0 1 1 1( ) ( ) ( ) 1 ( / ) 1 ( / )ep r p r p r P r a P r a


            .              (5.2) 
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(a) 

 

 
(b) 

 

 
(c) 

 

 

Fig. 5.1 Particle profile and distribution of contact pressure. (a) Hertz theory, (b) JKR 

theory, (c) Maugis theory.  
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In Eq. (5.2), *

0 12 /eP E a R , which takes the same form as the Hertz theory but 

applies on the increased contact area 
1a . 

1P  is the value of the tensile pressure at the 

centre of the contact area which can be obtained by balancing the elastic strain energy 

with the total surface energy as 

 
* 1/ 2

1 1(2 / )P E a   .         (5.3) 

In Eq. (5.3),   is the specific surface energy of the surface of the particle. The rigid 

wall is considered to have no surface energy in order to represent the contact between 

two identical particles. Knowledge of the pressure distribution 
JKR ( )p r  is crucial in 

calculating the contact law. For the normal contact, 
JKRF  can be obtained as 

 

JKR JKR
0

2 ( )F rp r dr


  ,        (5.4) 

which leads to 

 
2

* 3
* 31

JKR 1

4
8

3

E a
F E a

R


 
  

 
 .                (5.5) 

The total displacement, 
JKR , is the sum of the displacement produced by Hertz 

contact pressure and the additional adhesive tensile pressure 
1( )p r , given by  

 
*

JKR 1 0 1( / 2 )( 2 )ea E P P   .                                (5.6) 

The JKR contact law can be obtained by eliminating 
1a  from Eq. (5.5) and Eq. (5.6), 

as shown in Fig. 5.2. Furthermore, by minimizing the 
JKRF  in Eq. (5.10) the 

maximum tensile force 
JKR

cF  is found as 

 

JKR 1.5cF R  ,                  (5.7) 

which is the tensile force required to pull a spherical particle off a rigid wall (the pull-

off force). The pull-off force only depends on the size and specific surface energy of 

the particle and does not depend on external loading or any other material parameters. 
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The JKR theory works well in a range of elastic contact problems. However, as shown 

in Fig. 5.1(b), the JKR theory suggested that there is no adhesive tensile pressure 

outside the contact area, but an infinite adhesive tensile pressure at the edge of the 

contact area. This is somehow confusing. According to the concept of surface energy, 

the surfaces attract each other by an adhesive surface traction when the two surfaces 

are not in contact, i.e., an adhesive surface traction should exist outside the contact 

area. Based on this argument, Derjaguin et al. (1975) proposed their DMT theory. 

They assumed that the adhesion between two simple curved surfaces such as spherical 

surfaces can be represented by the adhesion between two planar surfaces such that  

 
 

Derjaguin

adhesion
0 0

2 ( ) 2 ( ) 2
R

a aF r h dr R h dh R    


    ,            (5.8)  

where ( )a h  is the adhesive surface traction depending on the distance due to the 

attraction between the two surfaces, and h  is the size of the gap between the two 

surfaces. This assumption is referred to as the Derjaguin’s approximation, which 

employs a simplification at small deformation rdr Rdh  to derive Eq. (5.8). 

Derjaguin et al. (1975) also assumed that the adhesive surface traction only takes 

place outside the contact area. The adhesive surface traction only changes the total 

contact force but produces no further deformation. Therefore, the normal contact force 

DMTF  is given by 

 
Derjaguin

DMT Hertz adhesion Hertz 2F F F F R    .                       (5.9) 

The radius of the contact area in DMT theory follows the Hertz theory in Eq. (1.17) 

and the displacement 
DMT  follows exactly the Hertz solution (Eq. (1.19)) such that  

 
2/3

1/ 2 *

DMT Hertz3 /(4 )F R E      .                (5.10) 

The DMT theory employs a direct force summation in Eq. (5.9) rather than the 

pressure integration as in the JKR theory. The DMT contact law is therefore rather 

different from the JKR contact law, as shown in Fig. 5.2. Meanwhile, from Eq. (5.9), 
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by simply setting the Hertz force to zero, the pull-off force from DMT theory is 

obtained as 

 

DMT 2cF R  ,                  (5.11) 

which differs from the pull-off force of JKR theory given by Eq. (5.7). 

 

Tabor (1977) pointed out that the JKR theory and the DMT theory are two opposite 

extremes of the elastic adhesive contact, which can be controlled by the Tabor’s 

parameter  

 
 

1/3
2

*2 3

R

E






 
  
 

,                (5.12) 

Equation (5.12) is obtained from the ratio between the elastic displacement produced 

by the maximum tensile (pull-off) force and the distance between the two contacting 

surfaces  . The JKR theory is valid for large values of   which can be achieved in 

large and compliant spheres with relatively large specific surface energy  . The DMT 

theory is valid on the opposite extreme. The transition behaviour between the JKR 

theory and DMT theory was modelled by Maugis (1992). As shown in Fig. 5.1(c), an 

additional adhesive tensile pressure distribution 
2( )p r  is added to the Hertz contact 

pressure. Maugis employed a tensile pressure, 
2( )p r , of the following form  

 

2 2 2
1

0 2 2

2

0

2
( / )cos ,       

( )

,                                                  

a c r
r a

p r c r

a r c

 




   
  

   

  

            (5.13)  

where a is the radius of the contact area. The tensile pressure outside the contact area 

is assumed as a constant adhesive surface traction 
0  acting over the range 

of  a r c  . Typically, the gap between the two surfaces at r c  is equal to the 

critical length 
ch  beyond which the adhesive tensile pressure 

2( )p r  vanishes, and we 

have the following relation: 
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0ch  .                   (5.14) 

The pressure distribution on the surface is therefore the Hertz pressure plus the 

additional adhesive tensile pressure 
2( )p r  

 

Maugis Hertz 2( ) ( ) ( )p r p r p r  .                 (5.15) 

The total contact force is calculated by integrating Eq. (5.15) over the entire particle 

surface  

 

2 2 1 2 2

Maugis Maugis 0 0
0

2 ( ) (2 /3) 2 cos ( / )eF rp r dr P a c a c a c a  


     
  .    (5.16) 

The displacement 
Maugis   is the Hertz displacement plus an additional displacement 

produced by 
2( )p r , i.e. we have 

 

 * * 2 2

Maugis 0 0( / 2 ) (2 / )ea E P E c a     .             (5.17) 

The main contribution of the Maugis theory is that there introduced a non-

dimensional parameter   to characterise the transition between the JKR extreme and 

the DMT extreme, which is given by 

 
1/3

0 *2

9

2

R

E
 



 
  

 
.                  (5.18) 

The gap between the two surfaces at any position outside the contact area can be 

obtained from the pressure Maugis ( )p r . The relationship between a  and c  can be 

obtained by equating the gap between the two surfaces at r c  to 
ch , which leads to 

 

   
2 2

2 1 2 2 14
( 2)sec 1 1sec 1 1

2 3

a a
m m m m m m

          ,           (5.19) 

in which /m c a  and a  is the none-dimensional radius of the contact area 
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 
  

 
.                  (5.20) 

By controlling the value of  , the ratio of /m c a  can be controlled. Therefore the 

effective range of the adhesive tensile pressure outside the contact area can be 

controlled. The non-dimensional variable   acts as a control parameter for the 

transition from the JKR extreme to the DMT extreme. For example, if   is large, 

1m , which means that the effective range of the pressure outside the contact area 

is small, i.e. 0ch   and 
0  , thus the JKR extreme is achieved. Similarly, the 

DMT extreme is achieved when   is small. Using Eqs. (5.16)-(5.20), the adhesive 

contact law of the Maugis theory can be obtained. A more general form of the Maugis 

contact law is given below by using non-dimensional groups that 

 
 

/( )F F R   ,                 (5.21) 

1/3
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2 2

16

9

E

R
 

 

 
  

 
.                 (5.22) 

The contact law relating the normalized contact force F  and the normalized 

displacement    can be obtained using  

 

 3 2 2 2 11 secF a a m m m                     (5.23) 

and 

 

2 2 24
1

3
a a m    .                (5.24) 

Two Maugis contact laws with 0.058   and 0.58   is plotted in Fig. 5.2, where 

the transition between the JKR extreme and the DMT extreme is clearly illustrated.  
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Fig. 5.2 Three representative analytical adhesive contact laws. Two Maugis contact 

laws are plotted using the control parameter 0.058   and  0.58  . 

 

 

 

Theories of the elastic adhesive contact following the Maugis’ work were focusing on 

revising the shape of the adhesive tensile pressure outside the contact area described 

by Eq. (5.13) to more realistic but still analytically explicit forms. For example, 

Greenwood and Johnson (1998) presented a ‘double-Hertz’ approach in order to 

derive a distance dependant adhesive tensile pressure outside the contact area. The 

shape of the adhesive tensile pressure is the subtraction of a Hertz contact pressure 

from another Hertz contact pressure (applied on different contact areas). Schwarz 

(2003) combined the two extremes JKR theory and DMT theory together in order to 

obtain a smooth transition between the JKR theory and DMT theory. Schwarz (2003) 

implicitly assumed that the adhesive pressure outside the contact area is a linear 

combination of the infinitely large JKR pressure at the edge of the contact area and 

 
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*2 2 216 / 9E R  
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the small but longer range DMT adhesive surface traction outside the contact area. An 

important conclusion was drawn by Barthel (1997) as follows. Having tried different 

expressions of the adhesive tensile pressure outside the contact area, Barthel (1997) 

demonstrated that the details of the shape of adhesive tensile pressure distribution 

outside the contact area have little influence on the adhesive contact law. What is 

important for the elastic adhesive contact law is the value of the specific surface 

energy  , the size and the elastic parameters of the spherical particle. Therefore, the 

Maugis theory described by Eqs. (5.13)-(5.24) can be regarded as a representative 

analytical model of the adhesive contact between elastic spherical particles.   

 

5.1.3 The Numerical approach 

One drawback of the analytical approach is that it is unable to address the material 

response of the adhesive surface traction outside the contact area. In all analytical 

models, the values of the adhesive tensile pressure outside the contact area values 

have to be set as the adhesive surface traction. This issue can be resolved by 

numerical iterations of the interplay between the deformation and adhesion. As 

introduced in section 1.4.2, the relatively ‘realistic’ inter-atomic force may be 

calculated though the Lennard-Jones potential:  

 
12 6

0 0( ) 4L JU s e
s s

 


    
     

     

 .                (5.25) 

In Eq. (5.25), s  is the inter-atomic distance, e  is a constant representing the 

minimum of the potential, and 
0  is the inter-atomic distance corresponding to zero 

inter-atomic potential. The adhesion force per unit area between two surfaces can be 

obtained by integrating Eq. (5.25) over the volumes (Argento et al., 1997). 

Specifically, if the two surfaces are infinite planar surfaces, then the resulting 

adhesion force per unit area will only contain a normal component, which is the 

adhesive surface traction given by 
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 ,                (5.26) 

where h  is the gap between the two surfaces, 
1  is the distance corresponding to zero 

adhesive surface traction between two infinite surfaces  

 
1/6

1 0(2 /15)  .                 (5.27) 

The details of derivation for Eq. (5.26) and Eq. (5.27) are presented in APPENDIX V. 

In the numerical approach, the adhesive surface traction between two planar surfaces 

(Eq. (5.26)) can be also applied on spherical particles due to the Derjaguin’s 

approximation in Eq. (5.8). Using the Derjaguin’s approximation, the problem of 

adhesive contact between elastic particles can be solved numerically. The general 

surface displacement on the surface of a half space ( )zu r  under an arbitrary 

axisymmetric pressure distribution ( )p r  is given by elastic analysis as 

 

*

1
ˆ ˆ ˆ ˆ( ) ( ) ( , )zu r p r G r r rdr

E
  ,                 (5.28) 

where 
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                 (5.29) 

and K̂ is an elliptic integral of the first kind. Based on the parabolic profile 

assumption (Eq. (1.11)), the gap h  can be obtained on a arbitrary radial distance r  

that   

 
2

1( ) / 2 ( )zh r r R u r      .                (5.30) 

In Eq. (5.30), the gap between two surfaces ( )h r  is allowed to be smaller than the 

distance 
1  corresponding to zero adhesive surface traction. The adhesive surface 
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traction is allowed to repel the two surfaces, representing the pressure within the 

contact area. 

 

Equations (5.26)-(5.30) can be solved using iterative numerical schemes. Starting 

from an undeformed spherical particle approaching a rigid wall, the adhesive surface 

traction is calculated according to Eq. (5.26). The resulting deformation is then 

calculated from Eq. (5.28). Then the new status of the surface is obtained from Eq. 

(5.30). The interplay between the deformation strain energy and the surface energy is 

therefore determined. However, this numerical approach is in fact an iterative solution 

of the Derjaguin’s approximation used in Eq. (5.8) and the parabolic profile of the 

Hertz theory used in Eq. (5.30), which have to be satisfied in the first place. The 

results of the above numerical procedure are rather similar to those of the analytical 

approaches in section 5.2.2 and are not able to go beyond the scope of the analytical 

solutions. A weakness of the iterative procedure is that the underlying assumptions 

become less appropriate as the deformation becomes large (Parker and Attard, 1992). 

As pointed out by Feng (2000), even when deformation is still small, Eqs. (5.26) and 

(5.30) may break down for particles of small radius R  and large values of Tabor’s 

parameter  , because the large effect of adhesion changes the particle shape near the 

contact area.  

 

An important phenomenon predicted by both the analytical and numerical approach is 

the finite initial contact area, which is known as the jump-into contact (see e.g. Feng, 

2000). As shown in Fig. 5.2, the contact law may have ultimate large tangent at the 

maximum negative displacement (maximum elongation), representing an instability 

during the adhesive contact. As the particle approaches the rigid wall, the adhesion 

force keeps increasing and can be so large that the shape of the particle changes due to 

elastic deformation. The particle surface near the rigid wall becomes unstable and 

jumps into contact within an infinitesimal time period. The contact area is initialized 

in a finite size rather than point contact. Numerically, the curve of the contact law can 

be S-shaped, having several points with infinitively large tangents, which represent 

unstable points where the contact may undergo sudden changes. Similarly, the contact 
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area terminates in a finite size of contact area after the maximum force reaches the 

pull-off force. Due to the multiple unstable regions on the force-displacement curve, 

the maximum tensile force during loading is not necessarily equal to the maximum 

tensile force during unloading. The maximum elongation may be different during 

loading and unloading as well. The loading and unloading curves of elastic adhesive 

contact can be therefore different in terms of the tensile response.  

 

5.1.4 Some vital issues 

In practice, the situation can be even more complicated. The adhesion is intensively 

influenced by the surface roughness and contaminations. That is why most particles 

are able to flow rather than stick together (Kendall, 2001). The contact between 

particles is actually the contact between surface asperities, which are usually in the 

order of nanometers for fine particles. Although the contact of asperities is often 

considered as a collection of DMT-like contacts. However, the DMT theory has been 

proved to be inaccurate at such a small scale. Despite the unrealistic DMT assumption 

that the adhesion will not create any further deformation, the pressure on the surface is 

so large that the contact always deforms plastically rather than elastically (Rimai et al., 

2000; German, 2003). Rimai et al. (2000) reported their experimental discovery that, 

due to the large stress produced by the adhesion, fine particles with submicron size 

will deform plastically merely under gravity. Since there is no established theory on 

the pressure distribution in the adhesive plastic contact, it is difficult to follow the 

analytical approach to solve the adhesive plastic contact problems. A popular 

approach to model the adhesive plastic contact is to apply the JRK pressure (e. g. Gu 

and Li, 2008) or DMT pressure (e.g. Sahoo and Banerjee, 2005) on the classical 

plastic contact theory. However, despite the huge difference between the elastic and 

plastic contacts, the effect of adhesion can be so significant that it is questionable if 

the pressure distribution on the surface will be still the same. Similarly, the elastic 

theory based on the numerical iteration scheme fails for fine particles undergoing 

plasticity. 
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Based on practical observations of the contact between fine particles, three issues are 

worthy of attention. Firstly, as the size of particles decreases, the assumptions of the 

Hertz theory and the Derjaguin’s approximation may break down. Therefore, a full 

numerical method is required to address the size effect of the particles. Secondly, the 

interactions between the plastic deformation and adhesion are unknown. Particularly, 

whether there is any change in the adhesion in presence of plasticity, or if there is any 

change in the plastic behaviour in presence of adhesion. Thirdly, the effect of surface 

roughness is ubiquitous and important for adhesive contact. The goal of the present 

chapter is to investigate (a) if the classical contact laws can still be used for fine 

particles; (b) what is the dominant factor affecting the contact law; and (c) the size 

effect of nano particles on the contact law.  

 

The next section presents a new multi-scale model which based on the continuum 

Material Point Method (MPM) and the atomistic Molecular Dynamics (MD), in order 

to simulate the adhesive contact. Section 5.3 addresses the size effect of the particle 

and explores if the analytical theories outlined above still work for fine particles. 

Section 5.4 focuses on realistic contact laws when plasticity and surface roughness 

play a role. The major conclusion of this study is that it is necessary to use a full 

numerical method to obtain the contact laws for the adhesive contact between fine 

particles.  

 

 

5.2 MATERIAL POINT MODEL WITH INTER-ATOMIC FORCES 

5.2.1 Brief overview 

Considering the nature of adhesion, the adhesive contact between spherical particles is 

a typical problem that couples large scale continuum problems with micro scale inter-

atomic interactions. In recent years, methods combining atomic simulations with 

continuum simulations have been studied intensively in order to introduce detailed 

material information into continuum models. The Finite Element (FE) method is 

generally used to simulate large scale continuum. The Molecular Dynamics (MD) 
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method is preferred to simulate a small region, where details of atomic interactions 

are required. In order to combine the FE region with the MD region, an FE-MD 

transition zone is introduced (see Kohlhoff et al., 1991 for example). Inside the 

transition zone, the FE nodes and MD atoms are coupled using various mapping 

schemes. Various issues arise such as mesh distortions in large deformation problems, 

ghost forces due to the inconsistency between the finite element and the atomistic 

models, and mismatch between the time scales of the two models.  

 

Recently a new FE-MD coupling method was suggested by Lu et al. (2006). Instead 

of using the conventional FE method, Lu et al. (2006) employed the Material Point 

Method (MPM) to couple with the MD method. The material points within the 

interested zone are refined hierarchically until the size of the material points reaches 

the atomic size. Since both the MPM and MD are point based methods, the coupling 

within the MPM-MD transition zone is natural. Within the transition zone, the 

material points are boundary points for both atoms (MD zone) and material points 

(MPM zone). The velocity of these boundary points are determined by MD simulation. 

Then these velocities are used as boundary conditions for the MPM simulation, in 

order to update the positions of all the material points. The updated material points in 

the transition zone are used as boundary points of the MD simulation, causing the 

change of the inter-atomic potential and further velocity change of the MD zone 

(excluding the boundary points). The problem of mesh distortion is automatically 

resolved because the material point method uses a fixed background mesh.   

 

A major problem of the coupled continuum and molecular dynamic model is that the 

time step length is controlled by the atomistic model which has to be extremely small. 

The total physical time that can be achieved in the simulations is in the order of pico-

seconds. Most of the practical events, including the adhesive particle contact studied 

in this thesis, take much longer time and are therefore beyond the capacity of the 

model. The purpose of this work is to develop an alternative approach to the direct 

coupling between the MPM and the MD models. The key idea here is to entirely 

constrain the atoms embedded in the continuum model so that they can only move 

with the continuum solid (elastically or plastically) while the inter-atomic forces are 
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taking into account as in the usual molecular dynamic model. The deformation 

mechanism is therefore assumed through the constitutive law of the continuum 

material rather than computed from the atomic model. The model is therefore unable 

to capture events like dislocation formation and interaction, solid state diffusion and 

etc. However the approach is entirely appropriate to study adhesive particle contact as 

the mechanism of deformation is not the issue. As shown in Fig. 5.3, by refining the 

material points near the contact area, the distances between material points are in the 

range of inter-atomic distance. A virtual mirror particle is used to calculate the 

interaction between the two particles. Only the inter-atomic forces between atoms on 

different particles are considered and are treated as the external forces and applied on 

the material points to simulate the adhesion force. For simplicity, the term ‘MD’ is 

still used in the present model. However, one needs to bear in mind that the full MD 

model is not used in the present model. Instead, only the inter-atomic forces are 

considered while the atoms are constrained to deform with the continuum solid 

obeying the continuum constitutive law. 

 

5.2.2 The Material Point Method 

In order to extend the Material Point Method (MPM) to simulate the adhesive contact 

between fine particles, it is necessary to briefly outline the standard MPM formula. As 

shown in Fig. 5.3, the discretization in MPM is realised by concentrating the material 

density into material points. A background computational mesh is used to determine 

the movements of these material points. The discretized formula of MPM is   given by 

Eqs. (2.9) and (2.10) and will not be repeated here. At each time step, the nodal 

acceleration is solved at the background mesh by Eq. (2.10). Then the computational 

mesh can be discarded and new computational mesh is used for the next time step. 

Problems associated with large deformation are therefore automatically overcome 

because the material points do not connect to any mesh. 
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Fig. 5.3 Illustration of the Material Point Method coupling with the inter-atomic 

forces for adhesive contact problem. 

 

 

 

5.2.3 Inter-atomic forces and Molecular Dynamics  

The Molecular Dynamics (MD) method is introduced in section 1.5.2. The adhesive 

contact between fine particles was studied using MD in the publication of Kendall et 

al. (2004), which assumed that there is an inter-atomic potential between any two 

atoms. The force between two atoms depends on the distance between them, ijs , and 

is expressed through a potential function ( )ijU s , where i , j  represent the atom 

indices. By taking the spatial derivation of the potential function, the inter-atomic 

force ijf  between each pair of atoms can be obtained: 

 

( )ij ijU s f .                             (5.31) 

Similar to the Lennard-Jones potential in Eq. (5.25), the inter-atomic force ijf  in Eq. 

(5.31) is attractive if the distance between the two atoms is larger than the equilibrium 

distance. This attraction decreases when ijs  is increased further, and is often 

considered small enough to be ignored when the distance between two atoms is larger 

V0 
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than the cut-off distance, i.e., when 
ij cs  . If the distance between two atoms is 

smaller than the equilibrium distance, there is a strong repelling force increasing 

rapidly to stop 
ijs  from decreasing further. If a material body is constructed by an 

array of atoms representing a realistic atomic structure, then the force between each 

two atoms can be computed from the inter-atomic distance 
ijs  by Eq. (5.31). The 

acceleration 
iv  of the i th atom is calculated by 

 

1
( )

Nm

i i i ij

j
j i

m



  v f f                   (5.32) 

where Nm  is the number of atoms, 
if  is the sum of the force produced by the 

other 1Nm  atoms and 
im  is the mass of the i th atom. Unfortunately, due to 

computational limitations, only a small number of atoms can be simulated.  

 

5.2.4 Inter-atomic potential functions 

The core of MD simulations is the potential function, which defines the way atoms 

interact with each other. The precision of MD simulations depends on whether the 

potential function is able to accurately describe the inter-atomic interactions. Potential 

functions based on quantum mechanics can be employed if details of the inter-atomic 

potential are required. However, the most frequently used potential functions in the 

simulation of materials are empirical potential functions. By abstracting atoms into 

mechanical dots with mass, these empirical potential functions contain free material 

explicit parameters, such as atomic charge, Van der Waals parameters, the 

equilibrium bond length between atoms, angles between atomic bonds, etc. These 

parameters are obtained by fitting against either the results of quantum mechanics or 

experimental material properties such as elastic constants.  

 

The simplest and most straightforward idea is to use pair potential functions, which 

assumes that the total potential of a collection of atoms can be represented by the 

summation of the potential between each pair of atoms. The Lennard-Jones potential 

function of Eq. (5.25) is a typical pair potential function, which is often used to 
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calculate Van der Waals forces. The interactions between a group of three atoms 

(three body interactions) become important when the number of covalent bonds in the 

material increases. Erkoc (1997) reviewed 35 three body potential functions, in which 

the angle between atomic bonds is an important parameter. Another type of empirical 

potential functions is obtained by using the embedded atom method (EAM). By 

considering the potential when embedding an atom into a background electron field, 

the EAM potentials contain the parameters of electron densities and are often used to 

simulate metallic systems (e.g. Foiles et al., 1986).    

 

5.2.5 Incorporating inter-atomic forces into MPM 

A typical adhesive contact between spherical particles is illustrated in Fig. 5.3. A 

particle of radius R  contacting with a rigid wall is given an initial normal velocity 
0V  

towards the wall. As shown in Fig. 5.3, the problem is analysed using an 

axisymmetric formulation. Therefore, only half of the sphere is discretized into 

material points. The ‘MD’ zone is defined in the area covering the possible contact 

area, with the thickness of 
08 .  The material points inside the ‘MD’ zone are refined 

to the level of atom spacing, the distances between the atoms are set as being equal to 

or smaller than the equilibrium distance 
0 . A square computational mesh is 

employed to cover the domain of motion of the particle during the contact. Ideally, the 

spherical particle can be of any size but in the present research only particles of 

relatively small size are considered given the interest for simulating fine particle 

behaviours. The size range used in the present research is between 100 nm  to 1 μm in 

diameter, which is far beyond the maximum scale of any full MD model. 

 

In order to correctly represent the adhesive contact between two identical spherical 

particles, a mirror image of the particle is used. As shown in Fig. 5.3, at each time 

step, the material points in the mirror image particle are obtained by considering 

symmetrical material points to the original particle with respect to the rigid wall. For 

convenience, the original particle is named as body I and the mirror image is named 

as body II. A pair potential function is employed to represent the inter-atomic 
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interactions between the two particles. In the present research, we use the Erkoc 

potential function (Erkoc, 1993). The potential function between two atoms is 

expressed by  

 

 
21 22

21 22( ) ( ) ( )ij ij ijU s D U s D U s                  (5.33) 

where 

 
ˆ2 2( ) exp , 1,2kk

ij k ij k ijU s A s s    k
       .               (5.34) 

Similar to the Lennard-Jones potential, the Erkoc potential function in Eqs. (5.33) and 

(5.34) depends on the distance between two atoms 
ijs . 21U  represents the repulsive 

part and 22U  represents the attractive part. 
21D  and 

22D  are the coefficients of the 

linear combination of 21U  and 22U . 
kA , 

k , and 
k  are material explicit parameters 

determined from experimental data. Parameters used to simulate copper by Eqs. (5.33) 

and (5.34) are shown in Table 5.1.  The Lamé constants   and  , consistent with the 

Erkoc potential function, the density  , as well as specific surface energy   

(obtained from the publication of Foiles et al., 1986) are also shown in Table 5.1.   

 

 
 

Table 5.1 Parameters of copper for the Erkoc potential function. The distances are in 
o

A  and the energies are in eV . 
 

 

Parameter Value  Parameter  Value 

1  A  
 

110.766008  
 

 
 

 
2A   46.1649783  

1̂  
 

2.09045946  
 

 
 

 
2̂   1.49853083  

1  
 

0.394142248  
 

 

 
 

2   0.2072255507  

21D  
 

0.436092895  
 

 

 

 
22D   0.245082238  

  (GPa) 
 

134.7 
 

 
 

 
  (GPa)  25.3 

   (J/m
2
) 

 

1.17 
 

 

 

 
 (kg/m

3
)  8900 
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The requirement of using the Erkoc potential function Eqs. (5.33) and (5.34) is to use 

the distance between two atoms 
ijs  in the unit of 

o

A , and the resulting potential 

energy in the unit of eV . As shown in Fig. 5.3, the ‘MD’ zone covers the regions near 

the contact between the two particles. In the full MD simulation, the inter-atomic 

potential inside one particle should lead to the continuum constitutive law, which is 

already available in the atom-sized material points. Therefore, the inter-atomic 

potential in the present model is only used to account for the adhesion between the 

two different particles, i.e. the inter-atomic potential only applies between the material 

points on different particles (one from body I and another from the mirror image body 

II). The force acting on one atom-sized material point is calculated as 

 

( body I)       1       1
( body II) ( body II)

( )Nm Nm
ij ij

i ij
i j j ij ij

j j

U s

s s  
 

 
     
 

s
f f ,                          (5.35) 

where 
ijs  is the vector from the i th atom-sized material point to the j th atom-sized 

material point. The use of a cut-off distance can greatly reduce the computational time. 

The resulting force from Eq. (5.35) is then considered as applied external forces of the 

MPM formula Eq. (2.10) and treated as body force in Eq. (2.9). Due to the property of 

the inter-atomic potential function, this external force behaves as a large repulsion if 

two atom-sized material points belonging to different particles get very close to each 

other, i.e. when the particle is contacting with the rigid wall. The vertical velocity and 

acceleration of the contacting material points will reduce to zero. The frictionless 

boundary condition is automatically achieved. Zero velocity and acceleration 

boundary conditions at the bottom nodes on the background mesh are also applied in 

the present model. In fact, such boundary condition is also proved to be useful in 

smoothing the numerical oscillations generated by the huge inter-atomic force.  

 

‘Axisymmetric’ approximation of the atom-sized material points is employed. As 

shown in Fig. 5.4, each material point represents an axisymmetric ring of material. 

Therefore, a ring-to-ring interaction has to be obtained in the present model instead of 

the atom-to-atom interaction used in a full MD models. The approximation is to treat 

the rings consisted by infinitely thin ‘atoms’, which are continuous within each ring. 
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Those infinitely thin ‘atoms’ are represented in Fig. 5.4 as di  and dj , which are 

governed by the distance dependent inter-atomic potential. The ring-to-ring force can 

then be calculated by integrating the force between all pairs of infinitely thin ‘atoms’. 

As shown in Fig. 5.4, the distance between two arbitrary points di  and dj  on the two 

rings is represented by 
didjs . Obviously, 

didjs  is a function of the angles ˆ
i  and ˆ

j , the 

radii of the two rings 0

iR  and 0

jR , and the vertical distance ˆ
ijh  that 

 

 
1/ 2

0 2 0 2 0 0 2ˆˆ( ) ( ) 2 cosdidj i j i j j ijs R R R R h    .                        (5.36) 

 

The force applied on the ring of atom  i  produced by the ring of atom j  is give by 

 

2 2
axisymmetric 0 0

0 0

( )
ˆ ˆdidj ij

ij i j i j

didj ij

U s
R R d d

s s

 

 
 

    
 

s
f ,             (5.37) 

where axisymmetric
f  denotes the ‘axisymmetric inter-atomic force’ used in the present 

axisymmetric model. The total force applied on the  i th atom-sized material point is 

therefore 

 

 
 

Fig. 5.4 The integration scheme used to calculate the ring-to-ring interaction force.  
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axisymmetric axisymmetric

( body I)       1
( body II)

Nm

i ij
i j

j

 


 f f                   (5.38) 

Equations (5.36)-(5.38) are explicit functions of the spatial coordinates and therefore 

Eq. (5.37) can be integrated. This axisymmetric approximation has greatly reduced 

the computational time of the model. However, it requires a modification to the 

potential function in Eqs. (5.33) and (5.34), because neither the sizes nor the 

structures of the atom-sized material points used in the present axisymmetric formula 

are as realistic as those used in full MD simulations. Comparing to the full MD 

simulation, the present model has no problem in simulating material properties since 

the material responses are governed by the continuum constitutive law in the MPM 

formulation. The simulation of adhesion is aided by a pre-test of the specific surface 

energy. By definition, the specific surface energy   is pre-tested by putting two 

surfaces into the equilibrium position using the present axisymmetric approximation. 

Alternatively, for each case, the pre-test of putting two surfaces together is performed 

to obtain the surface energy parameters 
kA  in Eq. (5.34). Practically, only one pre-test 

is required when dealing with one new MPM discretization. With an arbitrary set of 

surface energy parameters 
1A  and 

2A , a trial specific surface energy value trial  is 

obtained. In the subsequent simulations, 
1A  and 

2A  are multiplied by a same factor 

trial/   in order to obtain the required specific surface energy values. In the present 

research, the radius of the particle R  varies between 50 nm to 500 nm. Different 

particle sizes may require different discretization of atom-sized material points. 

Before the simulation, a series of pre-tests is performed in order to obtain the input 

values of the surface energy parameter 
1A  and 

2A , for different particle sizes. 

Characteristic values of 
1A  and 

2A  for trial 1   J/m
2
 are listed in Table 5.2. The 

advantage of the pre-test is that the atom-sized material points do not necessarily to 

conform to the actual atomic structure (nor is this possible in the axisymmetric 

formula) to be accurate enough to capture the specific surface energy between 

particles. However, the pre-test is not accurate enough to capture the change of the 

specific surface energy due to the change of the atomic structures. Although the 

change of specific surface energy after the change of atomic structures is small and 
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always ignored in most simulations, if this detail is required, then a three dimensional 

model using realistic atomic structures has to be used.  

 

The procedure of incorporating the inter-atomic forces into the MPM in order to 

model the adhesive contact problems is summarized below. The material points in the 

‘MD’ zone covering the contact area are refined to become atom-sized material points. 

At each time step, a mirror image body is used to determine the adhesion force 

between the particles. This adhesion force is calculated by considering the inter-

atomic forces produced by each atom pair, one of which must come from the particle 

while another one must come from the mirror image. The inter-atomic forces are 

calculated using the axisymmetric approximation. Then the forces acting on each 

atom-sized material point are incorporated into the standard MPM formula as the 

body force. The standard MPM time step is performed and the adhesive contact 

between fine particles is simulated. 

 

 

 

Table 5.2 Characteristic values of the specific surface energy parameters under a pre-

test, for different kinds of mesh statuses. 

 

 

 

 

Different MPM discretizations for different particle sizes 
 

 

500R   nm 
 

250R   nm 50R   nm 

Number of atom-size 

material points 

 

11980 
 

11910 18800 

1A  for trial 1   J/m
2
 

 

89.753 
 

47.443 0.660 

2A  for trial 1   J/m
2
 

 

-37.407 
 

-19.773 -0.275 

 

 

5.2.6 Model validation 

An elastic spherical particle in normal adhesive contact against a rigid wall, is 

simulated for model validation. The radius of the particle is set as 0.5 μmR  . As 
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analysed in section 5.1, such a small size would possibly lead to break down of the 

analytical solutions. A conservative choice is to use a small Tabor’s parameter   in 

Eq. (5.12) for the particle so that the surface energy will not significantly change the 

profile of the particle, i.e. a DMT-like particle. The surface energy parameters 
kA  in 

Eq. (5.34) are therefore artificially set as small, with 
1 0.727A  , and 

2 0.303A   . 

Other parameters in the inter-atomic potential function are chosen as the same as 

those of the potential function for copper given in Table 1. The typical inter-atomic 

distance is found to be 
0 2.253 nm  . By the pre-test of putting two surfaces together 

into equilibrium position, the specific surface energy value is found to be   0.0081 

J/m
2
. Other parameters are: Young’s modulus 71.9E   GPa, Poisson’s ratio 0.42  , 

and density 8900  kg/m
3
. The elastic constants of the material are obtained from 

the publication of Erkoc (1993) to ensure that they are consistent with the Erkoc 

potential function. Initial velocity is chosen to be 
0 1V  m/s under which the scope of 

small deformation is met. The Tabor’s parameter   in Eq. (5.12) is calculated as . .c a  

0.0722, which is small enough for the case to fall into the scope of the analytical 

solution. 

 

As demonstrated in CHAPTER 3, the convergence of the MPM 2D axisymmetric 

model requires at least 94 material points per unit cell of the computational mesh on 

average. Therefore, the same mesh is employed to represent the main body of the fine 

particle. The material points which fall inside the ‘MD’ zone (with the thickness of 2 

nm) are refined to reach the inter-atomic distance. A total of 358301 material points, 

including 11980 atom-sized material points, are used to represent the whole particle. 

A uniform square computational mesh is employed. The same computational mesh is 

used at every time step throughout the simulation in order to reduce the numerical 

errors.  

 

Other numerical details include the numerical integration in Eq. (5.37). It was found 

that five-Gauss quadrature points are sufficiently accurate. The net force applied to 

the particle is obtained by the sum of the total nodal forces of the computational mesh 

excluding the nodes on contact boundary at each time step. As introduced in section 
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5.1, the particle undergoes elongation, i.e. negative displacement, before the contact. 

Such negative displacement is not captured by the displacement of the mass centre. 

Therefore, the displacement before the particles are in contact is measured by the 

change in the distance between the top and bottom material points on the particle. 

When the particle is in contact, the traditional displacement measure, i.e., the 

displacement of the mass centre of the particle is used. In the present model, Jaumann 

stress rate (introduced in CHAPTER 1) is used as the stress measurement in order to 

simulate large deformation problems. Typical MD cell subdivision techniques are 

used to determine the atom pairs in interactions. The cut-off distance of the inter-

atomic force is chosen as 0.7 c  nm. The time step is about 10  fs and the explicit 

Verlet leapfrog scheme (introduced in CHAPTER 1) is used for the time integration. 

The simulation of the full contact law (after the full rebound of the particle) takes 

about 40000 time steps running for about 10 cpu hours, which is much faster than any 

known MD simulation.  

 

The model is validated by comparing the contact law obtained from the validating 

example with the Maugis theory. The results are normalized as in Eqs. (5.19)-(5.24). 

The early stage of the contact law is plotted in Fig. 5.5 in order to highlight the 

detailed tensile force. The solid line in Fig. 5.5 is the analytical prediction by the 

Maugis theory described by Eqs. (5.19)-(5.24). The numerical result is shown as 

discrete symbols in Fig. 5.5. Negative force denotes the tensile force due to adhesion, 

which produces negative displacement to elongate the particle. Despite small 

differences from either dynamic effect or the simplified adhesive surface traction 

employed by Maugis, the two solutions agree reasonably well with each other. It is 

also shown in Fig. 5.5 that the numerical model captures the force-displacement 

contact law before the contact area has been formed. The maximum tensile force 

(pull-off force) is found to be 
-82.4656 10   N by the present model, while 

-82.4504 10   N by the Maugis theory and -8

DMT 2 2.5447 10cF R    N is the 

DMT pull-off force. The displacement obtained by the numerical model is always 

slightly larger than the analytical prediction. This is consistent with our expectations. 

As pointed out by Greenwood (1997), the maximum tensile pressure on the surface 
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lies slightly outside the contact area, at 'r a , where 'a a . In contrast, the 

analytical solutions always assume that the maximum tensile pressure lies on the edge 

of the contact area. i.e. ( ')F F a , indicating the analytically predicted displacement 

is ( ')a  . While the true profile of the surface is ( )a  , the analytically 

predicted displacement should be always slightly larger than the numerical results. 

Similar findings were also published by Attard and Parker (1992). The present model 

is therefore confidently validated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

 

Fig. 5.5 The comparison of the normalized contact law between the Maugis theory 

(solid line) with the numerical results (circular symbols), in order to validate the 

present model. Only the early stage of the loading curve is shown to highlight the 

details of the tensile force. 

 

 

 

5.3 SIZE EFFECT DURING ADHESIVE CONTACT BETWEEN ELASTIC 

SPHERICAL PARTICLES WITH SMOOTH SURFACES 

The adhesive contact law is dependent on the particle size. In this section we consider 

particles that are spherical, pure elastic, and have atomically smooth surfaces. The 

specific surface energy is assigned as 0.11   J/m
2
, which is much larger than that 
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used in the validation example. Other material parameters are chosen as those 

corresponding to copper as used in the validation. The radius of the particles is varied 

from 500R   nm, 250R   nm, to 50R   nm. The aim is to explore if the classical 

solutions are still valid for such small particles. It is expected that the effect of 

adhesion becomes more and more significant as the size of the particle get smaller and 

smaller. The contact laws of such particles are plotted in Fig. 5.6. All particles have 

the same initial normal velocity of 
0 1V   m/s. The results presented are normalized 

into non-dimensional formats. Specifically, the force and displacement are normalised 

following Eqs. (5.21) and (5.22) as 

 

/( )F F R                    (5.39) 

and     

 
1

*2 3

2 2

16

9

E

R
 

 

 
  

 
.                         (5.40) 

The contact time t  is normalised by the total contact time of the Hertz contact such 

that 

 
2 *2 1/5

0/ 2.87( / )t t m RE V                     (5.41) 

where m  is the mass of the particle. Consequently the normalized total time of an 

adhesionless elastic contact is always equal to 1.  

 

In Fig. 5.6(a), the column on the left hand side shows the normalized force-

displacement curves for particles with different sizes. Analytical solutions are 

superimposed in the figure using the dash lines. The column on the right hand side 

shows the curves of the normalized force, which is the controlling variable in the 

contact law, against the normalized contact time. The normalized force-time curves 

for adhesionless particles are also superimposed. Figure 5.6(a) shows the contact 

curves for the particle of the largest size considered, 500R  nm. Here the 

compressive force and displacement are taken as positive while tensile force and 
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displacement are taken as negative. It can be seen from Fig. 5.6(a) that the analytical 

solution is generally valid for large particles such as in the case of 500R   nm. 

However, for a transient contact problem there is no analytical solution for the 

maximum contact force, which is one of the most important characteristics of the 

contact law. At the beginning of the contact, when the particle has not yet in contact 

with the wall, there is a tensile force trying to attract the particle to the wall. The 

tensile force increases as the elongation increases. In Fig. 5.6(a), the elongation 

reaches its maximum value before the tensile force does, indicating the beginning of 

the actual contact. Afterwards the tensile force continues to increase. From the right 

hand side of Fig. 5.6(a), it can be seen that the tensile force increases very slowly at 

the beginning and suddenly jumps to a maximum value. The value of the maximum 

tensile force is 1.81 R  , which is consistent with the analytical prediction in the 

interval of 1.5 R   to 2 R  . After the maximum tensile force is reached, the 

contact force starts to increase and the curve starts to ascend. Zero displacement is 

reached before zero force does, when the particle is compressed with a displacement 

value of  
1/3

*2 2 216 / 9E R  


 . After the force and displacement all become 

compressive, the contact law behaves similarly to the elastic Hertz contact law. It can 

be also observed that the maximum force value of the adhesion contact is slightly 

larger than that of the elastic Hertz contact (recalling that the specific surface energy 

is set as 0.11  ). The unloading curve is almost the same as the loading curve, 

except for a slightly larger maximum elongation when the particle is pulled off the 

wall. The major difference between the numerical contact law and the analytical one 

is their deviations on both tensile and compressive sides of the force curve. These 

sudden changes result from the unstable increase in the contact area during loading 

and unstable decrease in contact area during unloading. As introduced in section 5.1, 

the adhesion contact jumps-into and jumps-off contact within an infinitesimal time 

period in an unstable manner. As shown in Fig. 5.6(a), the gain and reduction in the 

contact area are also unstable. Each turning point represents a sudden drop or increase 

in the force, within an infinitesimal time period. Therefore, the jump-to-gain and 

jump-to-lose contact have been captured by the present numerical model for fine 

particles.  
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Fig. 5.6 Normalized contact curves for elastic spherical particles with specific surface 

energy 0.11   J/m
2
, and initial velocity 

0 1V   m/s. (a) 500R   nm, (b) 250R  nm, 

and (c) 50R  nm. Left column: force-displacement curves comparing to analytical 

solutions. Right column: force-time curves comparing to adhesionless contacts. 
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Figure 5.6(b) shows the contact curves for the particle size of 250R   nm. The 

curves are similar to the curves in Fig. 5.6(a) and the analytical prediction is relatively 

accurate. Analytically, a small particle has a small Tabor’s parameter, defined as 

2 *2 3 1/3( / )R E   , and should be more DMT like, i.e., the value of the maximum 

tensile force should be closer to 2 R   for the particle of 250R   nm than that for 

the particle of 500R   nm. However, the maximum tensile force is 1.69 R   and is 

more JKR like than in Fig. 5.6(a). The numerical results therefore reflect the 

limitations of the analytical solution for small particles. The gap between the 

contacting surfaces is compressed and results in a repelling force, in opposite 

direction to the tensile force. Therefore, the maximum tensile force is always smaller 

than that predicted by the analytical solution. As the size of particle decreases, the 

effect of the compression on the gap becomes more significant and cannot be ignored. 

That is why in Fig. 5.6(b) shows a more JKR like behaviour for a more DMT like 

particle. As seen on the right hand side of Fig. 5.6(b), the maximum compression 

force is much larger than that for adhesionless contact, indicating an increase in the 

contact area when adhesion is present. The ratio between the maximum tensile force 

and the maximum compressive force is larger than that in Fig. 5.6(a), indicating a 

more significant effect of adhesion as the size of particle decreases. Unstable jumps 

are also observed in the contact curves of the particle of 250R   nm.  

 

Figure 5.6(c) shows the contact curves for the particle size of 50R   nm. It can be 

seen that the contact law has shifted upwards from the analytical predictions but still 

follow a similar trend. This is because the compression of the gap between contacting 

surfaces plays a more important role for a smaller particle size. The maximum tensile 

force is 1.46 R  , which is even smaller than the JKR extreme of 1.5 R  . The 

ratio between the maximum tensile force and the maximum compressive force is large. 

The maximum force is also much larger than that of the adhesionless contact. The 

effect of adhesion is therefore very significant at such a small scale, even the specific 

surface energy has been set as much smaller than most real materials. Unlike the 

contact curves shown in Fig. 5.6(a) and Fig. 5.6(b), there is only one jump on the 

loading and unloading curve each representing the jumps-into and jumps-off contact. 
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The processes of further gaining and losing contact are stable. This is because it is 

easier for a smaller particle to maintain its shape against the adhesive surface traction.  

 

According to the above results and analyses, it may conclude that the classical 

approaches introduced in section 5.1 may be still useful for fine particles, except for 

some inaccuracies. However, for most metals such as copper, the value of specific 

surface energy is about 1   J/m
2
, which is much larger than the specific surface 

energy in the present section, that 0.11   J/m
2
. Moreover, plastic deformation and 

surface roughness are two important factors in the contact between fine particles. In 

order to simulate more realistic fine particles and obtain more representative contact 

laws, the next section focuses on particles of 50R  nm, with surface roughness and 

plastic deformation. The adhesion contact for elastic spherical particle with realistic 

specific surface energy is studied in Fig. 5.7; the adhesion contact for elastoplastic 

spherical particle with realistic specific surface energy is studied in Figs. 5.8 and 5.9; 

the contact profiles at the maximum compression of different particles are plotted in 

Fig. 5.10, which also contains the profiles of the surface for a small specific surface 

energy particle ( 0.11   J/m
2
) and an adhesionless contacting particle. Comparing to 

the 0.11   J/m
2
 particle studied in the present section with the adhesionless particle, 

it can be observed from Fig. 5.10 that the contact area has been increased by the 

existing of adhesion. The shape near the contact area is not changed significantly 

comparing to that of the adhesionless particle. This is possibly why the analytical 

solutions are roughly applicable for a fine particle with small specific surface energy, 

as shown in Fig. 5.6. 

 

 

5.4 ADHESIVE CONTACT BETWEEN PARTICLES WITH REALISTIC 

FACTORS 

5.4.1 Elastic spherical particles 

Firstly, an elastic spherical particle with realistic specific surface energy is studied. 

The value of the specific surface energy is set as 1.17   J/m
2
 as for copper. The 
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normalized force-displacement curves and force-time curves are shown on the left 

hand side and right hand side in Fig. 5.7 respectively. The numerical oscillation is 

smoothened by taking an average of contact force value out of every 100 time steps. It 

can be immediately observed in Fig. 5.7 that the unstable jumps are prevailing and 

more intensive than those in Fig. 5.6. These jumps are represented by spikes on the 

curves heading downwards during loading and upwards during unloading. These 

spikes represent the intensive jump-to-gain and jump-to-lose contact and therefore, 

the adhesive contact at this 50  nm scale is a rather discontinuous process. Moreover, 

the displacement curves correspond to the deformation of the central axis of the 

particle, while the intensive instabilities are taking place at the edge of the contact 

area. The displacement-time curves are much smoother than the force-time curves. 

This is the reason why only normalized force-time curves are shown on the right hand 

side of Fig. 5.7. 

 

Compared to the particle studied on the left hand side of Fig. 5.6(c), the difference 

between the particle studied on the left hand side of Fig. 5.7(a) is that the specific 

surface energy is increased by about 10 times. A common sense is that a particle of 

such a small size and large specific surface energy should be further away from the 

analytical solutions than the particle shown in Fig. 5.6(c) does. Interestingly, despite 

the unstable spikes, the loading curve of the contact law is consistent with the 

analytical solutions, except that the maximum elongation is only about half of the 

analytical solution. The maximum tensile force lies between the JKR extreme 

1.5 R   and the DMT extreme 2 R  , however the exact value is difficult to 

determine due to the instabilities. The reason why the large specific surface energy 

reduces the results back to the analytical solution can be explained as following. As 

the specific surface energy is 10 times larger, the gap between the contact surfaces is 

10 times stiffer due to the properties of the inter-atomic potential function of Eqs. 

(5.33) and (5.34). It is more difficult to close the gap and the resulting repulsion to the 

maximum tensile force is relatively weakened. Figure 5.7(a) also shows that the 

unloading curve is no longer identical to the loading curve. At the same displacement, 

the force on the unloading curve is smaller than that on the loading curve, 
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representing a noticeable value of energy dissipation during adhesive elastic contact. 

As pointed out by Greenwood and Johnson (1998), this energy dissipation is due to 

the unstable jumps to gain or lose contact area during the loading and unloading. On 

the right hand side of Fig. 5.7(a), the maximum compressive force is much larger than 

the corresponding adhesionless contact. The contribution of the adhesion is so 

significant that the maximum tensile force is almost equal to the maximum 

compressive force.   

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.7 Normalized contact curves for elastic spherical particles of size 50R  nm 

( 630R  ) and realistic specific surface energy 1.17   J/m
2
, with different initial 

velocities. (a) Initial velocity V0 = 1 m/s, (b) initial velocity V0 = 25 m/s. Left column: 

force-displacement curves comparing to analytical solutions. Right column: force-

time curves comparing to adhesionless contacts. 
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It is then instructive to study Fig. 5.10 for the profile of the particle which is discussed 

in Fig. 5.7(a). At the maximum compression, the profile of the particle is flattened due 

to adhesion. The profile of the particle is much steeper if the contact area is increased 

due to an increasing adhesion force. The shape of the profile near the contact area is 

more like a straight line rather than a parabola. The classical approach is unable to 

capture such a change in the shape of the profile. However, it is noted that the 

analytical solution still roughly predicts the contact law under a situation which 

severely violates the underlying assumptions.  

 

One of the most important features of the contact curves shown Fig. 5.7(a) is that the 

particle does not rebound but sticks to the wall. As shown on the right hand side of 

Fig. 5.7(a), after the unloading, the maximum tensile unloading force is not strong 

enough to separate the particle from the wall. Reloading takes place due to the elastic 

vibrations of the particle. The force oscillates periodically about zero while unstable 

jumps are still taking place. The displacement oscillates smoothly about a 

compressive value,  
1/3

*2 2 20.8 16 / 9E R  


  as shown in Fig. 5.7(a). For clarity, 

the unloading curve on the left hand side of Fig. 5.7(a) has been cut off when the force 

is zero on reloading. Despite the unstable spikes, the following periodical reloading 

and subsequent unloading will be along the unloading curve. This phenomenon of 

particle sticking has a direct consequence to the flowability of particulate systems 

which is dramatically reduced when then size of the particles is decreased. The 

increase in the contact area releases a large amount of surface energy which cancels 

the effect of the initial kinetic energy. This is demonstrated by increasing the initial 

velocity to V0 = 25 m/s, as shown in Fig. 5.7(b). In this case, the effect of initial 

kinetic energy becomes dominant and the adhesive particle rebounds from the wall. 

Comparing with the analytical solution, the contact law shown on the left hand side of 

Fig. 5.7(b) is similar but slightly stiffer. A significant difference from the analytical 

prediction is that the maximum elongation is much smaller during loading while much 

larger during unloading. As one can observe from the right hand side of Fig. 5.7(b) 

where the particle is subjected to a high initial velocity, the maximum tensile force 

during loading is of the same value for low velocity in Fig. 5.7(a). However, the 
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maximum tensile force during unloading is about 1.5 times of that during loading and 

exceeds the DMT extreme 2 R  . Comparing to the force-time curves shown in Fig 

5.7(a) and Fig. 5.6(c), the maximum tensile force is independent of the initial velocity 

during loading but dependent on the initial velocity during unloading. This is because 

the particle pull-off takes place at a finite contact area, which is much larger than the 

jump-in contact area during loading. When the particle is pulled off, this larger 

contact area releases larger surface energy, which increases the curvature near the 

contact area. The maximum elongation is therefore larger during unloading, indicating 

that the particle is stretched more with a larger tensile force, which can exceed the 

DMT extreme 2 R  . The force-time curve on the right hand side of Fig. 5.7(b) is 

very similar to that of the corresponding adhesionless particle. Elastic deformation 

dominates during high velocity impact, which allows the particle to rebound at the 

end of the contact process.  

 

5.4.2 Elastoplastic spherical particles 

A unique advantage for the present model is that it is able to simulate large 

deformation plasticity as the stress is traced at the material points including the atom-

sized material points. In the present research, an elastic perfectly plastic material is 

assumed. The yield strength Y  is the only additional parameter. The details of the 

elastoplastic model using MPM has been presented in CHAPTER 3. In a pure MD 

model, the yield strength Y  of the material is an outcome of the model prediction. 

However, the yield strength also strongly depends on the microstructure of the 

material, for example grain-size, second phase inclusions and etc. In our present 

model, the yield strength is an input parameter to the constitutive law. The classical 

plastic flow rule in conjunction with von Mises yield function is used despite that the 

nano-sized particles may have limited number of dislocation lines. By keeping other 

parameters the same as in section 5.4.1, particles of different yield strengths are 

studied in the present section. Plastic adhesive contact curves are shown in Fig. 5.8. 

Firstly, the particle is assigned a relatively high yield strength of 2Y   GPa and an 

initial velocity of 
0V  = 1 m/s. The contact curves are shown in Fig 5.8(a). Johnson 
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(1985) showed that for an adhesionless particle, the velocity required for plastic 

deformation, 
yV , is given by 

 
2

* 426( / )
yV

Y E
Y


              (5.49) 

      
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.8 Normalized contact curves for elastoplastic spherical particles of size 

50R  nm ( 630R  ), realistic specific surface energy 1.17   J/m
2
, and small initial 

velocity 
0 1V   m/s. (a) Yield strength 2Y   GPa, and (b) yield strength 400Y  MPa. 

Left column: force-displacement curves comparing to analytical solution. Right 

column: force-time curves comparing to elastoplastic adhesionless contacts.  
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The material constants for copper are used and shown in Table 5.1. A yield strength of 

2Y   GPa requires 
yV = 1.27 m/s according to Eq. (5.42). If no adhesion exists, the 

particle with an initial velocity of V0 = 1 m/s will not produce any plasticity during the 

contact, i.e. the contact curves of an elastoplastic particle shown Fig. 5.8(a) should be 

the same as the contact curves of pure elastic particle shown in 5.7(a). However, 

plasticity has taken place because of adhesion. Comparing the left hand side of Fig. 

5.8(a) to that of Fig. 5.7(a), the spikes representing instabilities are more intensive in 

the presence of plasticity. Both the tensile force and the compressive force are 

reduced remarkably by plastic deformation. The loading curve deviates from the 

analytical prediction but still have roughly the same stiffness. The maximum tensile 

force is between R   and 1.5 R  , which is much smaller than any analytical 

prediction. This result is consistent with the argument by Kogut and Etsion (2003) 

that the existence of plasticity diminishes the adhesion force. Unloading takes place 

after the maximum compressive force is reached. The maximum compressive 

displacement is smaller than that of the corresponding pure elastic particle shown in 

Fig. 5.7(a). The unloading curve is completely different from the loading curve. It is 

stiffer than the loading curve and finally oscillates elastically. The area between the 

loading curve and the unloading curve corresponds to dissipated energy, a large part 

of which is the plastic deformation energy. Also, the unloading curve is smoother than 

the loading curve, indicating that the unloading is continuous rather than unstable. 

Similar to the elastic particle shown in Fig. 5.7(a), the elastoplastic particle shown in 

Fig. 5.8(a) sticks to the wall. This is represented by the periodical force oscillation 

shown in the right hand side of Fig. 5.8(a). Comparing to the elastic adhesive contact 

shown in Fig. 5.7(a), although the tensile force is reduced, the compressive force is 

reduced even more. The particle is therefore ‘stickier’ and requires more initial kinetic 

energy to rebound. This is consistent to the experimental discoveries by Rimai et al. 

(2000). In addition, it can be observed in Fig. 5.8(a) that when the particle is still 

elongated under the tensile force, the contact law is already different from that in Fig. 

5.7(a). This suggests that plastic deformation had already taken place before the 

particle is compressed. Because the elongation during loading is independent to the 

initial velocity, it can be stated that plasticity can be initialized by adhesion alone.  
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Next we study a case of a particle with more realistic yield strength of 400Y   MPa 

as shown in Fig. 5.8(b). The maximum tensile force and the maximum compressive 

force are significantly reduced by plasticity. The particle undergoes large plastic 

deformation at the beginning of the contact process under the tensile force. The more 

extensive spikes during the loading represent more unstable jumps-to-gain contact 

area. The stiffness of the loading curve is different from the analytical prediction. The 

unloading curve descends smoothly and rapidly, leaving a large area between the 

loading curve and the unloading curve. Due to the low yield strength, the particle 

undergoes much larger compressive deformation than that in Fig. 5.8(a). More surface 

energy is therefore released. While the lower yield strength results in more plastic 

energy dissipation, the particle sticks on the wall at the end of the contact. From the 

right hand side of Fig. 5.8 it can be seen that the plastic adhesive contact is dissimilar 

to either plastic adhesionless contact or elastic adhesive contact. Numerical contact 

law is therefore necessary as no analytical predictions can be used for such 

complicated cases. 

 

Figure 5.10 shows the surface profiles of the particles at the maximum compression 

discussed in Fig. 5.8. For the particle of yield strength of 2Y   GPa, the contact area 

is smaller than the elastic particle with the same specific surface energy. This is 

because the adhesion force is diminished by the existence of plasticity. The contact 

area is therefore diminished. For the particle of yield strength 400Y   MPa, the 

contact area is much larger than the elastic particle. The surface energy released from 

such a large contact area consumes much more kinetic energy of the particle. The 

particle is therefore much ‘stickier’ than that in the elastic contact. For the particle 

shapes shown in Fig. 5.10, the largest contact area is obtained under the plastic 

adhesive contact, where the curvature near the contact area is almost negative. 

 

The ‘stickier’ elastoplastic adhesive contact can be demonstrated clearly by the fact 

that an elastic adhesive particle rebounds while the corresponding elastoplastic 

particle does not, as shown in Fig. 5.9(a). For the particle discussed in Fig. 5.9(a), all 

parameters are the same as those for the particle discussed in 5.7(b) except for the 
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elastoplasticity. The elastoplastic particle with an initial velocity 
0 25V   m/s and a 

yield strength 2Y   GPa sticks on the wall after the contact. Compared with the 

elastic adhesive contact in Fig. 5.7(b), the maximum tensile force during unloading is 

increased rather than diminished by the plasticity. An interpretation is due to effect of 

permanent plastic deformation, which makes the curvature near the contact area much 

larger than that shown in Fig. 5.7(b). Therefore, it is the much larger unloading 

curvature that increases the adhesion during unloading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 5.9 Normalized contact curves for elastoplastic spherical particles of 

size 50R  nm ( 630R  ), realistic specific surface energy 1.17   J/m
2
, and large 

initial velocity 
0 25V   m/s. (a) Yield strength 2Y   GPa, and (b) yield strength 

5Y  GPa. Left column: force-displacement curves comparing to analytical solution. 

Right column: force-time curves comparing to elastoplastic adhesionless contacts. 
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Fig. 5.10 Normalized surface profiles near the contact area, for the adhesive contact of 

spherical particles. All particles are of radius 50R   nm and initial velocity 
0 1V   

m/s. Terms shown in the legend: small specific surface energy: 0.11   J/m
2
, 

realistic specific surface energy: 1.17   J/m
2
, high yield strength: 2Y   GPa, low 

yield strength: 400Y  MPa.  

 

 

 

A way to reduce sticking is to further increase the yield strength of the elastoplastic 

particle. As shown in Fig. 5.9(b), if the yield strength is increased to 5Y   GPa, the 

particle will behaves more elastically and rebounds. The contact curves in Fig. 5.9(b) 

are rather similar to the particle discussed in Fig. 5.7(b). The effect of plasticity is so 

minor in the contact shown in Fig. 5.9(b) that elastic deformation dominates over 

plastic deformation and adhesion. Only small plastic energy dissipation is observed 

and the particle rebounds with a small permanent plastic deformation. During loading, 

the maximum tensile force and the maximum compressive force are similar to those in 
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Fig. 5.7(b). The analytical elastic prediction is also relatively accurate. The maximum 

tensile force during unloading is increased by the increase in the curvature due to 

permanent plastic deformation. This larger maximum tensile force during unloading is 

further evidence that the elastoplastic adhesive contact is ‘stickier’ than the pure 

elastic contact.  

 

To summarize, for nano-sized particles plastic deformation is universal. Plastic 

deformation intensifies the instability during the inbound as the contact area increases 

but reduces the instability during rebound as the contact area decreases. Plastic 

deformation reduces both the compressive and tensile forces during loading while 

either increase or decrease the tensile force during unloading. Plastic deformation 

diminished the effect of adhesion but requires less compressive force to achieve a 

large contact area. The deformation of the particle can be therefore either decreased 

by the diminished adhesive tensile force or increased by the less requirement for the 

compressive force. The plastic adhesive contact is always ‘stickier’ than elastic 

contact due to the energy dissipation during the plastic deformation. 

 

5.4.3 Elastic particles with surface roughness 

Particle surface is never atomically smooth. It is therefore questionable to use a 

contact law derived assuming ideal smooth surface to simulate a real particulate 

system. In fact, the existence of surface roughness on the surface of a fine particle is 

ubiquitous and always considered as a key factor in the adhesive contact. Contact 

between rough surfaces is actually the contact between asperities of the rough 

surfaces. These asperities are of much smaller sizes than the particle and the effect of 

adhesion is more significant for each individual asperity. Due to the random nature of 

the surface roughness, only simple profile of a rough surface is considered in the 

present research. As suggested by Manners (1998), the profile of the particle can be 

characterized by periodic sinusoidal waves. The rough surface only occupies a very 

small part of the particle therefore the particle can still be considered as roughly 

spherical. The largest distance from the particle centre to the rough surface is set as 50 

nm, representing a 50 nm radius for a spherical particle with a characteristic rough 
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surface. Only elastic particles are considered in the present section. Elastoplastic 

particles will be studied in the next section. 

 

The contact curves of particles with two different surface roughnesses are plotted in 

Fig. 5.11. The material constants used here are the same as the smooth elastic particle 

discussed in Fig. 5.8(a), and the same initial velocity of 
0 1V   m/s is used. Figure 

5.11(a) shows the contact curves for a particle with a less rough surface comparing to 

that shown in Fig. 5.11(b). It can be observed that a rougher surface reduces both the 

maximum compressive force and the maximum tensile force during the contact. The 

maximum compressive displacement and maximum elongation are also reduced. The 

analytical solutions are not shown here because they are significantly different from 

the numerical results. As shown on the left hand of Fig. 5.11(a), there are several 

intensive jumps during loading. Each jump is associated with the jump-into contact of 

one asperity of the surface shown in the middle inset of Fig. 5.11(a). In fact, as shown 

in Fig. 5.11(a), the behaviour of the contact force can be further complicated by the 

randomly distributed surface roughness.  

 

Although the effect of adhesion is significant for each individual asperity, the surface 

roughness makes the particles less ‘sticky’ globally. This is demonstrated by Fig. 

5.11(b). The particle with a rougher surface behaves rather similar to a particle with 

small specific surface energy shown in Fig. 5.6. The loading curve and unloading 

curve are indiscernible and the particle can fully rebound after the contact. Only small 

unstable turnings are observed in the contact curve shown in Fig. 5.11(b). Almost no 

energy is dissipated. Generally, the universal existence of surface roughness of a fine 

particle is so important that the contact law may be fundamentally changed. The effect 

of surface roughness is to reduce the effect of surface energy, in all aspects. However, 

due to the random nature of surface roughness, it is difficult to predict the dependence 

of the contact law on surface roughness analytically. A numerical contact law is 

therefore necessary.  
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Fig. 5.11 Normalized contact curves for elastic particles of size 50R  nm ( 648R  ), 

and specific surface energy 1.17   J/m
2
, with rough surface and small initial 

velocity 
0 1V   m/s. Profile: (a) 5cos(120 ) /12 , and (b) 5cos(240 ) /12 , where 

lengths are in the unit of nm. Left column: force-displacement curves. Right column: 

force-time curves comparing to adhesionless contacts of smooth surface. Middle 

insets: profiles of the contact areas at the configuration of the maximum compression. 

(a) Profile = 5cos(120 ) /12  
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5.4.4 Elastoplastic particles with surface roughness 

The above studies have considered all the key factors during particle contact. The 

effect of adhesion, the interplay between plasticity and adhesion, and the effect of 

surface roughness have all been investigated separately. This section brings all the 

three factors together to obtain a more ‘realistic’ contact law for fine particles. A 

numerical example of such a ‘realistic’ contact law is shown in Fig. 5.12. The 

difference between the particle discussed in Fig. 5.12 and the particle discussed in Fig. 

5.11(b) is the yield strength of the former particle is set at a more realistic value of 

400Y   MPa. Comparing to the contact law shown in Fig. 5.11(b), the elastic particle 

which can rebound now sticks to the wall because of plasticity. The existence of 

plasticity reduces both the tensile force and the compressive force. The maximum 

displacement is almost the same as the corresponding elastic particle, which means 

most of the plastic deformation occurs on the asperities of the rough surface. There is 

little plasticity found in the main body of the particle. The unstable jumps during the 

loading are significant and difficult to ignore. The maximum tensile force during 

unloading is much larger than the maximum tensile force during loading. All such 

complexities make the analytical solutions questionable to use in predicting the 

interactions between fine particles.   

 

 

5.5 CONCLUDING REMARKS 

The effect of adhesion on contact laws between fine particles is significant. In the 

present chapter, a new model for the adhesive contact is proposed by incorporating 

the inter-atomic forces into the Material Point Method. The model is used to study the 

interplay between surface adhesion, large deformation plasticity and surface 

roughness during particle contact. The size effect revealed numerically is consistent 

with the analytical solution for large particles. However the analytical solutions are 

shown to be less appropriate if the size of particles is small. It is shown that unstable 

jumps occur frequently during the loading and unloading of the contact. The smooth 

particles are found to stick especially when plasticity is considered. It is found that 
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plastic deformation can be initiated by adhesion under zero initial velocity (zero 

external loading).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      

 

Fig. 5.12 A relatively ‘realistic’ contact law between fine copper particles with 

specific surface energy 1.17  J/m
2
, yield strength 400Y  MPa, and a rough surface 

with profile 5cos(240 ) /12  (units in nm). 

 

 

 

 

The existence of surface roughness has a profound effect on the contact law, making 

analytical solutions far from adequate in realistic problems. It is found that the 

classical analytical solutions can predict the adhesive contact law only in some ideal 
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cases. The classical solutions are unable to accurately predict the maximum forces and 

capture the inability of the unstable jump-to-gain and jump-to-lose contact areas. The 

assumptions in ‘ideal particle’ by the analytical solutions are far less appropriate for 

fine particles than for large particles. The adhesion plays an important role in the 

contact between fine particles, making the plasticity and the surface roughness key 

factors. It is shown that the contact law can be completely different from the classical 

solutions if either plasticity or surface roughness exists. All these leads to that a 

numerical contact law is highly desirable for fine particles. It has been shown that the 

present model developed in this study is capable of obtaining numerical contact laws 

between fine particles. An illustration of what a numerical contact law looks like is 

given in Fig 5.12.  

 

The numerical results also call for re-examination of some of the classical concepts 

frequently used when studying contact laws. For example, it is shown that a more 

DMT like fine particle actually behaves more JKR like. The pull-off force for fine 

particles depends on the initial velocity rather than only on the specific surface energy 

and particle size. Sticking is a common phenomenon during the contact between fine 

particles which has to be considered when simulating the behaviour of a particulate 

system. 
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CHAPTER 6                                                                

MAIN CONCLUSION OF THE THESIS 

 

 

The numerical studies presented in this thesis provide a comprehensive understanding 

on how fine particles interact with each other. The Material Point Method (MPM) is 

further developed to model particle fragmentation and adhesion. The newly developed 

numerical technique then enables us to study particle interactions taking into account 

the effects of particle size, shape, surface roughness, brittleness, adhesion and large 

deformation. It is shown that these factors have a profound influence on the particle 

interactions which have been largely ignored previously when studying powder flow 

or compaction using the discrete element simulations.   

 

It is shown that the MPM has two major advantages over the conventional finite 

element method:  

1. The MPM requires neither remeshing nor iterative contact algorithms when 

solving problems involving (a) contact boundary conditions, (b) large 

deformation, and (c) multi-cracking; 

2. The inter-atomic forces can be easily incorporated into the scheme so that the 

continuum model can have an atomistic input.  

 

Throughout this thesis, the Material Point Method is validated using analytical 

solutions when it is applied to a new class of problems. The reliability of the method 

is therefore solidly demonstrated and the numerical results are of high confidence. An 

appealing feature of the MPM is its robustness and simplicity. The computer 

programme seldom crashes due to numerical problems and the computer 

implementation of the MPM is relatively simple because the method does not require 

remeshing or iterative schemes. The requirement on computational resource is also 
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reasonable. All these advantages make the method a powerful tool in solving 

problems far beyond the scope of particle contact studied here.  

 

The focus of this thesis is, however, on the contact laws between a pair of particles in 

the context of the Discrete Element simulations. CHAPTER 3 presents studies on 

relatively large particles, for which mechanical response dominates the contact law. It 

is shown that an analytical framework is possible for the elastoplastic contact law if 

the particle is spherical and elastic perfectly plastic. It is also shown that such contact 

laws are sensitive to the impact velocity, details of material properties, as well as the 

shapes of the particles. The applicability of the analytical contact laws is therefore 

limited.  

 

In CHAPTER 5 the inter-atomic forces are incorporated into the Material Point 

Method in order to study contact laws for nano-sized particles. The effect of surface 

energy is important for such contact laws (referred to as adhesive contact laws). The 

validity of the existing analytical solutions is examined. It is shown that the adhesive 

contact laws are complicated by the particle size, surface roughness, and plasticity, 

which show a sophisticated interplay. The analytical solutions are based on over-

simplistic assumptions and invalid for most practical circumstances. Some new 

understandings on behaviour of nano-particles are also revealed.  

 

Brittle failure is another important phenomenon during the impact between particles, 

which is studied in CHAPTER 4. Weibull’s theory is incorporated into the MPM. It is 

shown that such a MPM scheme can conveniently simulate the initiation and 

propagation of multi-cracks during the brittle failure of particles. The experimentally 

observed failure patterns and threshold velocities are reproduced by the MPM 

simulations.  

 

There are certainly some aspects of the work that can be improved immediately if 

extra time is available to the project. For examples, all the current models assume 

either plane stress or axisymmetric conditions while a full 3 dimensional model is 
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desirable for particles of irregular shape; the tangent contact law has been ignored in 

the current study; for nano-particles the plasticity theory for limited slide planes 

should be used.   

 

Contact laws between fine particles are the vital input to discrete element simulations. 

At present, most DEM simulations are still using the over-simplest analytical contact 

laws, such as the Hertz contact law (e. g. Johnson, 1985) for adhesionless particles 

and the JKR theory (Johnson et al., 1971) for adhesive contact laws. The DEM can 

readily use numerical contact laws as its input. The reliability and the robustness of 

the MPM make it a routine task to obtain the contact laws numerically. The studies 

presented in this thesis have laid a solid foundation for further research on 

incorporating the Material Point Method directly into the discrete element simulations 

for a wide range of applications in material and chemical processing.  

 

Part of the work was presented at the 9th U.S. National Congress on Computational 

Mechanics, San Francisco, USA. The following papers have been accepted or 

submitted:  

 

 The contact law between solid particles, accepted by Journal of the Mechanics 

and Physics of Solids. 

 

 The impact induced brittle failure, submitted to International Journal of Solids 

and Structures. 

 

Details, other conference presentations and Journal papers related to this work are 

listed in APPENDICES.  
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APPENDIX I 

Reynold’s theorem of material time derivative 

 

Define a material deformation gradient that 

 

( , ) i

j

ut

x


 

 

u x
F

x
                  (A1.1) 

where u  is the displacement, x  is the coordinate system. The determinant of the 

deformation gradient is  

 

det( )J  F .                  (A1.2) 

Equation (A.12) can be used to link the current deformation with the initial 

configuration that 

 

0
0( , ) ( , )f t d f t Jd

 
   x x                (A1.3) 

in which f  is an arbitrary function,   is the deformed material domain and 
0  is 

the initial material domain. The time derivative of Eq. (A1.2) gives  

 

( )i

i

vdJ
J J

dt x


  


v                   (A1.4) 

where v  is the velocity vector and Einstein summation is used. Now apply the 

material time derivative on the current deformed configuration (Eq. (A1.3)) such that 

 

0
0( , ) ( , )

d d
f t d f t Jd

dt dt 
   x x .               (A1.5) 

Because the initial configuration is time independent, Eq. (A1.5) implies 

 

0 0 0
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 
        

  
x x

x x  
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APPENDIX II 

Flow char of Material Point Method 
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APPENDIX III 

Radial return mapping Algorithm 

 

Within one time step, define the index of return mapping step k , the effective strain 

 , the plasticity parameter  , the increment of the plasticity parameter  , the 

function of yield surface f . The radial return mapping algorithm is described below. 

 

1. Initialization  

 

0k  , (0) t   , (0) 0  , (0) (0)( )t tζ ζ              (A3.1) 

where t  is the effective strain at the present time step. 

 

2. Calculate the function of yield surface 

 
( ) ( ) ( ) (0) ( ) ( )( ) ( 3 ) ( )k k k k kf                            (A3.2) 

where 
(0)  is the uniaxial effective stress calculated from 

(0)
ζ ,  is the 

uniaxial effective stress calculated from Y H    . H  is the hardening 

modulus,   is shear modulus and given by 

 

2(1 )

E






,                 (A3.3) 

where E  is the unixial elastic modulus and   is the Poisson’s ratio. 

 

If: ( )

1

kf TOL  then converged, where 
1TOL  is a small number.  

Else, go to step 3. 

 

3. Compute increment in plasticity parameter  

 

 

 



APPENDICES — APPENDIX III  - 166 - 

 

 
(0) ( ) ( )

( ) ( 3 ) ( )

3

k k
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    




  
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


              (A3.4) 

4. Update plastic strain and internal variables 

 

( 1) ( ) 3
ˆ2

2

k k k  ζ ζ n                (A3.5) 

( 1) ( ) ( )k k k                      (A3.6) 

( 1) ( ) ( )k k k                      (A3.7) 

1k k                              (A3.8) 

Go to step 2. 

 

After the condition of convergence in step 2 is met, the stress tensor ( 1)k
ζ  is the 

correctly updated stress tensor t t
ζ .   

 

Remark: Eq. (3.16) is the matrix exponent and is difficult to calculate. However, for 

the axisymmtric formula, the problem is much simplified since there is only one 

rotation axis and the skew-symmetric matrix W  has the form of  

 

0

0

w

w

 
 
 

 ,                  (A3.9) 

and  Q  is therefore calculated to be orthogonal that 

 

cos( ) sin( )

sin( ) cos( )

w t w t

w t w t

  
 
   

.               (A3.10) 
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APPENDIX IV 

The decisions of the failure pattern under different levels of mesh status. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The failure pattern at a time instance during the impact of a circular disc on a rigid 

wall, for difference levels of mesh status in Table. 4.1. The simple failure patterns are 

found at the same time, 0.602 μs after the initial contact between the particle and the 

wall, while before the particle starts to rebound and the complicated failure patterns 

are formed. 

level 1 level 2

level 3

level 6level 5

level 4
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APPENDIX V 

The deriving of Eq. (5.31) and Eq. (5.32) 

 

Starting from the inter-atomic potential of the power-law form that 

 
12 6

0 0( ) 4L JU s e
s s

 


    
     

     

 .               (A5.1) 

Consider two planar infinite surfaces as shown in a 2D formula in the figure below, 

when surface 1 ( 1S ) is approaching surface 2 ( 2S ). 

 

 

 

 

For one atom on surface 2, the inter-atomic potential created by surface 1 is the 

volume integration of the pairs consisted of the atom in surface 2 and every atom in 

surface 1 that  

 

1

1

( ) ( ) 1L J

S

u s U s dS                            (A5.2) 

where 
1  is the number of atoms in the domain 1S  per unit volume. By using the 

formula  

 

2 2s x z  .                          (A5.3) 

The volume integration Eq. (A5.2) over surface 1 is therefore  
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Integrating u  over surface 2 will obtain the specific surface energy produced by the 

two surfaces that  
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  (A5.5) 

where 
2  is the number of atoms in the domain 2S  per unit volume. The adhesive 

surface traction between two planar surfaces 
a  is the spatial derivative of the 

specific surface energy such that 
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Introducing the Hamaker constant  
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0 1 24AH e     .                       (A5.7) 

in Eq. (A5.6) gives 
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Introducing 1/6

1 0(2 /15)   which is Eq. (5.29), the adhesive surface traction 
a  in 

Eq. (A5.8) becomes 
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The specific surface energy can be represented by the Harmaker constant that 
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Substituting Eq. (A5.10) into Eq. (A5.9), the adhesive surface traction between two 

planar surfaces is  
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 ,                                  (A5.11) 

which is Eq. (5.30). 

 

 


