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Abstract

This thesis addresses three current issues in maritime economics by the application
of semi-parametric estimations within a generalized additive model framework.
First, this thesis shows that there are vessel and contract specific differences in
time charter rates for dry bulk vessels. The literature on microeconomic factors of
time charter rates could show the emergence of a two-tier tanker market during the
post-OPA90 period. However, previous results do not allow for any safe conclusions
about the existence of a two-tier dry bulk market. This thesis extends the results
of previous research by showing that a good part of the variation in physical time
charter rates is due to microeconomic factors. It empirically proves the existence of
a two-tier dry-bulk market. Controlling for a variety of contract specific effects as
well as vessel specific factors the presented model quantifies quality induced differ-
ences in physical dry bulk charter rates.
Second, the literature on the formation of ship prices focuses exclusively on rather
homogeneous shipping segments, such as tankers and dry bulk carriers. Due to the
comparatively low number of sales and the complexity of the ships, vessel valuation
in highly specialised and small sectors, such as chemical tankers, is a much more
challenging task. The empirical results of this thesis confirm the findings in recent
literature that ship valuation is a non-linear function of size, age and market condi-
tions, whilst other parameters that are particular to the chemicals market also play
a significant role.
The third topic addresses the recent increase in operational expenses of merchant
vessels (opex). The available literature cannot explain the development nor provides
information on vessel individual level. This thesis considers a quantitative model of
opex that is particularly successful in explaining the variation in opex across vessels
of different type, size, age and specification. The results confirm that differences in
opex are due to the behaviour of a vessel’s operator and to regulatory requirements.
Furthermore, it shows that there are significant differences in opex due to earnings
and employment status of a vessel.
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Wie das Kind die Worte nur in ständigem Wechselspiel von Handeln, Sprechen
und Erfahren lernen kann, so entwickelt sich die Wissenschaft in unmittelbarem

Zusammenhang mit der praktischen Anwendung, und diese bleibt letzten Endes der
eigentliche Maßstab für die Richtigkeit der gewonnenen Erkenntnis.

Heisenberg (1942)
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1 Introduction

As one of the key factors to the globalization, the shipping industry has changed

the shape of the world economy. Planned industrial shipping and highly competitive

markets have made this segment of the world economy to one of the exponents of the

perfect competition model. Maritime shipping is the most important mean of inter-

national transport activity. Hence, it is of utter importance for international trade

of all kinds of commodities and products. At the same time the market depends

and affects industrial production and international trade. Due to its cyclicality it is

characterized by a high degree of uncertainty. Large distances and increasing cargo

volumes demand for very large ships e.g. Emma Maersk, Jahre Viking or Berge

Stahl as the largest representatives for the container, tanker and bulker markets,

respectively. Due to the necessarily large assets, shipping is a very capital intensive

business. This puts an enormous pressure for positive cash flows onto operators and

owners. The cyclical pattern of the shipping markets, depends on whether shocks

to demand are anticipated or not. In most cases shocks are unexpected, having a

fixed fleet size in the short/mid term and only limited possibilities to reduce sup-

ply through low steaming and/or early dry-docking, results in strong short/mid

term impacts on freight markets and subsequently on second-hand, shipbuilding

and demolition markets. The demand for hedging opportunities to protect against

any imponderabilities has strongly increased during the last couple of years. Thus,

informational advantages can be of crucial importance for the success of any invest-

ment into merchant vessels. As a natural result the maritime business has developed

an information industry which provides data, analyses and forecasts to the ”real”
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industry, generating considerable profits. Scientific research delivers much of the

knowledge to this branch of the shipping industry. Unfortunately, in most cases

this knowledge finds its way into the practice rather later than sooner, resulting in

suboptimal decision making, and hence, a large amount of avoidable costs and losses

to the entire economy.

To sum up, freight and asset markets can be characterized as capital intensive,

very volatile and competitive, resulting in a need for rather complex contractual

agreements, valuation and modelling tools with respect to financing and operation

of vessels. This thesis addresses the above issues within two of the four classical

shipping markets which are the freight and the second-hand market. Additionally,

it analyses one of the most neglected segments which can be considered as the buy-

ing market where operators obtain all they need to operate a vessel e.g. manning

or insurance service.

1.1 Shipping economics and quantitative methods

Shipping economic theory distinguishes between four shipping markets. First, the

freight market where operators and charterers trade transportation service as spot,

time charter or forward contracts. Second, asset trading takes place on the second

hand market. Third and forth, the shipbuilding and the scrapping market are the

cradle and the grave for any merchant vessel. The major external factor, among

steel price, exchange & interest rates, to this structure is the demand for transport

services driven by the volume of trade and the status of the world economy. At the

same time supply of transportation service is the bottle neck for international trade

and economic growth during times of full fleet utilization. The main indicators for

the general status of the market are freight rates and second hand prices, i.e. the

11



first two shipping markets. Hence, those variables have been the subject of most

scientific investigations and academic publications in shipping economics. However,

ideas to extend this basic four-market theory to five, six or even seven basic ship-

ping markets e.g. the shipping finance market or the shipping buying market, for

all supplies necessary for the operation of a vessel or the shipping labour market,

directly affecting the operating costs, have been proposed.

Determining freight rates as a function of supply and demand dates back to Koop-

mans (1939) and Zannetos (1966). Excellent information on the current size of the

fleet and the order book available today, makes it relatively easy to forecast supply

on a short to mid term basis depending on the length of the order book1. How-

ever, detailed predictions for demand for transportation on specific trade routes is

a very difficult task and rather a problem of commodity research. Most models

implemented in practice, bypass the difficulty of demand prediction by assuming it

being exogenous. They are focused on the prediction of earnings in form of spot

and charter rates given certain demand scenarios.

Following Glen (2006) the recent history of quantitative modelling of the shipping

markets can be characterized through four trends.

1. Reduced form rather than structural modelling

2. Greater focus on modelling the volatility rather than the levels of freight rates

3. Introduction of models of financial derivatives and their application to shipping

markets

4. The use of segmented models of different ship types and higher frequency data.

1Length of the order book refers to the quantity of vessels on order and the average delivery lag.
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Building up on the work of Shimojo (1979) and Charemza & Gronicki (1981), Been-

stock & Vergottis (1989b, 1992, 1993) present a fully specified integrated (wet and

dry bulk) structural econometric model of the shipping market. However, despite

its importance, this is the last appearance of a full structural model in the maritime

literature. What follows is the development of the new econometric technique of co-

integration analysis as the second important event for quantitative work in shipping

economics. Thereafter, the unifying theme of many empirical studies is reduced form

and vector autoregressive (VAR) modelling, see for instance Glen (1997), Veenstra

(1999), Kavussanos & Alizadeh (2002a) or Wright (2003). This can be interpreted

as the rejection of structural models as published in Beenstock & Vergottis (1993).

The second mainstream of research is the use of GARCH and EGARCH models to

examine price dynamics with respect to its volatility e.g. Kavussanos (1996a, 1996b,

1997), Glen & Martin (1998) or Chen & Wang (2004). The introduction of models

of financial derivatives has been pushed forward through the work of Koekebakker

& Adland (2004) and Adland, Jia & Koekebakker (2004). Due to improved data

availability, mostly through commercial channels which have been made available to

academics, a trend towards segmented models and high frequency data can be ob-

served. Prominent examples for this development among many others are Tsolakis,

Cridland & Haralambides (2003) and Adland & Koekebakker (2007).

Maritime policy research is largely concerned with solving problems in the mar-

itime industry and advancement of industry specific knowledge. Despite all success

and advances made in the scientific modelling of the shipping markets and its prac-

tical implications and solutions to ”real world” problems, there is s strong feeling

between those involved in shipping business that any sort of formal analysis plays a

secondary or even tertiary role compared to other qualities such as the gut feeling
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for the market. Many quantitative models seem obscure and too theoretical for the

industry. On the contrary one might also suspect some lack of literacy and interest

with respect to quantitative methods. If the use of quantitative methods would

become more widespread, for instance, among shipping banks as a mean for the

estimation of default probabilities as currently enforced through the introduction of

the Basel II framework for capital adequacy, it would find (or even force) its way to

owners, operators and charterers. Decision making and investment based on inter-

related factors, thus defining future supply, must be based on a sound information

basis taking into account all individual characteristics an investment might have.

This necessarily leads to a certain degree of complexity of the methods and models

applied. Selection and application of the appropriate methodology is an integral

part of scientific progress. As Panayides (2006) put it: ”The selection and adoption

of appropriate methodology and methods for empirical investigation is the linchpin

for success...”. The academic scene aims for a more concerted effort towards more

empirical investigations, including increase in the application of quantitative meth-

ods simultaneous to an increased recognition of maritime research on a higher level

of acceptance of research implications in practice.

Having those issues in mind, in much of the work of the younger history and recent

papers the authors themselves put forward the argument of practical relevance as

a parameter for justifying the significance of their work, whereas special sections of

the papers or entire papers are devoted to practitioner implications and recommen-

dations for solutions to investigated problems. Despite this applied nature of the

academic research in maritime economics, a lowering of the standards of the appli-

cation of scientific methods cannot be observed. Practical implications and problem

solving is based on valid and generalizable scientific methodology.
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To conclude this section I like to quote Goss (2002) who analysed the future of

maritime economics with respect to the use of quantitative methods and its accep-

tance among practitioners and policy makers in the shipping industry:

”Some good work has already been done...but there is a rich field waiting for

econometricians. ...

...there are many opportunities for good research in this field, probably more by way

of practical application, comparison and examples of ’best practices’ than by the

development of new theory. A good deal of future effort may well turn out to

consist of gaining acceptance amongst those who operate maritime services, in

ships and ports, for ideas which are already common ground within the profession.”

1.2 Motivation and objectives of this thesis

From the above it becomes clear that macroeconomic and time series properties have

been extensively analysed. However, from an microeconomic perspective it is very

important how a specific vessel will perform in under general market conditions.

Moreover, the question of whether general market conditions are representative for

any given vessel is raised. It can be shown that with respect to forecasting per-

formance we do not need to expect major and significant differences. However, we

experience a complex of problems related to any individual value to be assigned to

a given vessel on the microeconomic level.

Specifically, the following hypotheses are going to be empirically tested.

1. There are vessel individual differences in physical time charter rates. Especially

the quality of a vessel does affect its earnings potential, i.e. there is a two-tier2

2Charter markets which are split into a sub-market for quality vessels and another sub-market
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Panamax dry bulk market. (Chapter 3)

2. The financial incentives implied by the two-tier market are sufficient for the

renewal of the fleet and additional investments in security and safety of vessels.

(Chapter 3)

3. The functional form of second hand chemical tanker prices are non-linear with

respect to vessel individual characteristics such as size and age as well as

market factors such as charter rates and newbuilding prices. (Chapter 4)

4. Cargo- and cargo handling diversity do have larger effects on second hand

prices of chemical tankers than specialisation. (Chapter 4)

5. Apart from the fact that operational expenses (opex) function as lower bound-

ary for physical charter rates there is no independence of earnings and opex

as assumed in most extant research (see Section 5.3). Moreover, the employ-

ment status does affect the level of maintenance and hence operating costs.

(Chapter 5)

6. In addition to regulatory requirements as a source for differences in opex, the

operators economic behaviour and operating policies are a significant factor to

differences in opex. (Chapter 5)

While the evaluation of the hypotheses is primarily of theoretical interest, the quan-

titative results are important for the modelling and valuation of any cash flow driven

monetary claim. Moreover, they are relevant to practical decision making. As can be

shown, the application of semi-parametric methods are of large potential in commer-

cial and academic sense. The exact evaluation of rates and prices and the influence

of opex predictions do affect practical decisions and theoretical implications.

for non-quality vessels are known as ”two-tier markets”.
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1.3 Non- and semi-parametric methods in

shipping economics

Thinking about the issues discussed above, it does not surprise that there are (liter-

ally) only a handful of published papers applying non- and semi-parametric methods

to model the shipping markets or to test shipping specific hypotheses. A first at-

tempt to introduce non-parametric methods in shipping economics can be found in

Adland (2003). In his PhD thesis Adland builds a non-parametric one-factor model

of freight rates and a non-parametric non-Markovian discrete-time model of freight

rates. Using kernel regressions it can be shown that, consistent with maritime eco-

nomic theory, spot rates are mean reverting and exhibit a stochastic trend i.e. are

integrated of order one. Additionally, through an extension of this model to a non-

Markovian model which captures lag effects in the conditional mean and volatility

it can be shown that with respect to magnitude and dynamics of the volatility there

are significant differences among the bulk shipping sectors. This research has subse-

quently been extended to the tanker markets and similar results have been published

in Adland & Cullinane (2006).

Another branch of non-parametric modelling has been applied to shipping economics

and published in 2004. Two papers using artificial neural networks (ANNs) anal-

ysed Suez canal traffic and the tanker market, respectively. Lyridis, Zacharioudakis,

Mitrou & Mylonas (2004) aim to show the benefits of artificial neural networks in

forecasting VLCC spot freight rates. Identifying a set of explanatory factors they

predict 1, 3, 6, and 12 month periods. Those forecasts are then compared to a model

in which forecasts are simply the last observed spot rate. Using spot rates for the

route Ras Tanura - Rotterdam for the period 1979 to 2003 they find that short term
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forecasts do not outperform the simple model. Increased forecast horizons show a

better performance. However, the chosen benchmark can be questioned since time

charter rates of respective length are readily available and represent a much more

realistic benchmark when interpreted as the markets expectation of the level of av-

erage spot rates. Despite the fact that artificial neural networks seem to show some

advantages the presented results are not entirely convincing.

A second attempt to establish the use of artificial neural networks in shipping

economics is Mostafa (2004). Comparing the performance of ANNs and a simple

ARIMA process in forecasting the Suez canal traffic flow he finds that the appro-

priate selection of network inputs and architecture are crucial to the forecasting

performance. Despite using the model with the best fit which does introduce a good

amount of subjectivity to the model selection process, he concludes that small ad-

vantages of ANNs are insignificant and do not justify the efforts compared to those

involved in ARIMA modelling.

Adland & Strandenes (2006) revise the efficiency hypothesis in the wet bulk freight

market. Using a kernel smoothing of the spot freight rate history they are able to

show that it would be possible to archive significant profits from trading information

on identified peaks and troughs in the freight market cycle. Hence they reject the

efficient market hypothesis.

As the most recent and promising application of non-parametric modelling in the

context of shipping economics Adland & Koekebakker (2007) depart from the use

of time series analysis and static econometric market models and propose to model

ship prices in a cross sectional framework using actual ship sales data. They use a
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cross sectional dataset of sales and purchases of Handysize dry bulk vessels for the

period 1993-2003. Applying a multivariate density estimation approach they esti-

mate a two- and a three-factor model of second hand prices. They propose to use

non-parametric multi-factor models of generic pricing variables (ship size, age and

freight rate) and find that the resulting value surfaces can be non-linear. However,

they note that, despite the relative homogeneity of Handysize dry bulk vessels, a

three factor model is not capable of sufficiently explaining the observed vessel prices

in the market. This is due to the remaining factors that an experienced ship broker

will take into account, e.g. engine make, fuel consumption building yard or cargo

gear. Their non-parametric approach suffers from being data intensive and unable

to cater for the multitude of ship-specific technical specifications that may affect

ship values, in particular for highly specialised and sophisticated ships.

1.4 Generalized additive models

This thesis comes as the natural extension of the above string of research in two

ways. First, it focuses on the microeconomic aspects in shipping economics using

high density cross sectional data rather than the macroeconomic aspects of time se-

ries properties of the market. Secondly, it broadens the range of econometrics tools

applied in shipping economics in a systematic way to non- and semi-parametric

approaches. Generalized additive models are applied to a set of issues relevant to

academics and practitioners of the maritime sector.

Generalized Additive Models (GAMs) provide enough flexibility to take non-linear

relationships into account without making any specific assumptions about the func-

tional form of these relations. At the same time it is possible to combine non-

parametric components with parametric components such as in our case dummy
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variables for vessel types and other vessel specific factors. Another positive aspect

of using a semi-parametric framework instead of a fully non-parametric is that it

provides reliable results in samples of moderate size. This, so called, curse of di-

mensionality in the context of ship valuation is discussed in Adland & Koekebakker

(2007).

A generalized additive model is the extension of a generalized linear model to a

combination of a linear predictor and the sum of smooth functions of explanatory

variables. The flexibility of those models allows the user to incorporate variables

that are suspected to have a non-linear relationship to the respective dependent

variable. However, this flexibility comes at the cost of two necessities. The ques-

tion of how to represent the smooth terms needs to be answered and the degree of

smoothing has to be chosen.

The bases for our estimations are thin plate regression splines (TPRS) in combina-

tion with a general cross validation procedure (GCV). Standard bases for regression

splines such as cubic splines, cyclic cubic splines or p-splines require the user to

choose knot locations, i.e. the basis dimension. Furthermore, they allow only for

the representation of the smooth of one predictor variable and it is not clear to what

extent these bases are better or worse than others. TPRS surmount these prob-

lems and are in a limited sense optimal with respect to these problems. A detailed

explanation of GAMs its advantages and disadvantages can be found in Chapter 2.
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1.5 Summary of contributions

1.5.1 Chapter 3: Evaluation of physical dry bulk time

charter rates

The literature on microeconomic factors of time charter rates could show the emer-

gence of a two-tier3 tanker market during the post-OPA90 period. Being a main

indicator for the quality of a vessel, the age of a tanker seems to make a significant

difference for physical time charter rates, i.e. the older a vessel the more likely are

accidents and a loss of reputation for the charterer. The idea of a two-tier charter

market has subsequently been extended to the dry bulk segment. Those risks should

require a discount on the charter rate to establish the necessary financial incentives

for improved safety and environmental security. However, previous results do not

allow for any safe conclusions about the existence of a two-tier dry bulk market.

Chapter 3 extends the results of previous research by using generalized additive

models to explain vessel and contract specific differences in time charter rates. This

way, it can be shown that a good part of the variation in physical time charter rates

is due to microeconomic factors. Moreover, it empirically proves the existence of

a two-tier dry bulk market (Hypothesis 1). Controlling for contract specific effects

such as place of delivery, charter length and number of days forward to delivery as

well as vessel specific factors such as size and consumption, the chapter quantifies

quality induced differences in physical dry bulk charter rates. However, the financial

incentives implied by the two-tier market do not seem to be sufficient for the renewal

of the fleet and additional investments in security and safety of vessels (Hypothesis

2).

3Charter markets which are split into a sub-market for quality vessels and another sub-market
for non-quality vessels are known as ”two-tier markets”.
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1.5.2 Chapter 4: Second hand chemical tanker price

determination

The literature on the formation of ship prices focuses exclusively on shipping seg-

ments such as tankers and dry bulk carriers, that are fairly liquid and homogeneous

with respect to technical specifications of the vessels. Vessel valuation in the highly

specialised and small sectors such as chemicals, gas or reefers, is a much more chal-

lenging task but no less important for the market players and financial institutions

involved. This challenge arises because of the comparatively low number of sales and

the complexity of the ships, where certain technical features may be critical for a

ship’s attractiveness in an illiquid second-hand market. In Chapter 4 we sidestep the

lack of time series price data in these sectors and adapt a semi-parametric approach

to the cross-sectional ”desktop” valuation of chemical carriers. The empirical results

of this chapter confirm the findings of the recent literature that ship valuation is

a non-linear function of main drivers such as ship size, age, and market conditions

(Hypothesis 3), whilst other parameters that are particular to the chemicals mar-

ket such as IMO grade and cargo diversity also play a significant role (Hypothesis 4).

The contributions from Chapter 4 are twofold. Firstly, it applies, for the first time, a

semi-parametric generalized additive model to the task of ship valuation. Secondly,

it extends research outside of the comfort zone of tankers and bulkers and analyses

ship price formation in what is probably the most sophisticated of shipping sectors,

that is, chemical carriers. This enables us to draw conclusions on the, possibly non-

linear, impact of pricing variables that are not necessarily easy to quantify a priori,

such as the effect of cargo diversification through the number of cargo tanks and

pumps.
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1.5.3 Chapter 5: The economic determinants of opex

The recent increase in operational expenses of merchant vessels (opex) has stim-

ulated interest in explaining its determinants. However, the available literature

cannot explain the development nor provides information on a level of necessary de-

tail. Chapter 5 considers a quantitative model of opex that is particularly successful

in explaining the variation in opex across vessels of different type, size, age and

specification. Using a generalized additive model framework to analyse the determi-

nants of opex, the results confirm that differences in opex are due to the behaviour

of a vessel’s operator and to regulatory requirements (Hypothesis 6). Furthermore,

it can be shown that there are significant differences in opex due to earnings and

employment status of a vessel (Hypothesis 5).

1.6 Structure of the thesis

This thesis consists of three separately written articles which are presented in Chap-

ters 3, 4 and 5 preceded by a comprehensive explanation of the methodology in

Chapter 2. Chapter 6 provides a summary of the results and connects the conclu-

sions of each chapter and their interrelating implications.
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2 Generalized additive models

2.1 Introduction to GAMs

A generalized additive model4 is the extension of a generalized linear model to a

combination of a linear predictor and the sum of smooth functions of explanatory

variables. In general a model may look like

g(µi) = X∗iθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ... (2.1)

where µi ≡ E(Yi), Yi is the response variable, Yi follows some exponential family

distribution, X∗i is a vector of explanatory variables that enter the model paramet-

rically, θ is a corresponding parameter vector and the fj are smooth functions of

the variables that are modelled non-parametrically. Assuming εi ∼ i.i.d. N(0, σ2)

normal errors and g(µi) = µi, Equation 2.1 could be written as

Yi = X∗iθ + f1(x1i) + f2(x2i) + f3(x3i, x4i) + ...+ εi

This framework allows for a very flexible model specification. Instead of determining

detailed parametric relationships we specify the model in terms of smooth functions.

This flexibility allows for the incorporation of non-parametric components for all ex-

planatory variables that are expected to have a non-linear relation to the dependent

variable. However, this flexibility comes at the cost of two necessities. First, we

4The foundations of generalized additive models can be found in Hastie & Tibshirani (1990, 1993).
An introduction to GAMs can be found in Wood (2006b).
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need to answer the question of how to represent the smooth terms. Secondly, we

need to choose the degree of smoothing.

The remainder of this section will show how to estimate GAMs by penalized re-

gression splines, and how to use cross validation to determine an appropriate degree

of smoothing for fj. The following section will provide the necessary details on the

theory of GAMs. Section 2.3 will summarize the advantages and shed critical light

on the assumptions and shortcomings of GAMs.

2.1.1 The cubic regression spline

Considering a simplified version of (2.1) with one smooth function of one regressor

yi = f(xi) + εi, i = 1...n (2.2)

where yi is a response variable, xi a regressor, f a smooth function and εi ∼ i.i.d.

N(0, σ2). Moreover, suppose the xi to lie in [0, 1]5. Estimating f by standard esti-

mation techniques (e.g. OLS or Maximum Likelihood) requires f to be represented

such that (2.2) becomes a linear model. To achieve this we need to choose a space

of functions from which f shall be an element, so called ”spline-basis”.

f(x) =

q∑
j=1

bj(x)βj (2.3)

Equation 2.3 shows the representation of f where bj(x) is the jth basis function with

unknown parameters βj. Substituting (2.3) into (2.2) yields a linear model which

can be estimated easily.

5We will come back to this in Section 2.2.1.
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A cubic spline is a continuous curve constructed from sections of cubic polyno-

mials such that the curve is continuous in first and second derivatives. The points

at which the polynomials join are known as knots. For regression splines, other

than for conventional splines, the knot locations {x∗i : i = 1, ., q − 2} must be cho-

sen. Knots may be placed at quantiles of the distribution of the x values or can be

evenly spaced through the interval of observed x values.

Given the knot locations there are many ways of writing down a basis for a cu-

bic spline. However, all possible alternatives are equivalent with respect to the

spline estimation. Wahba (1990) and Gu (2002) provide a very general approach to

splines. A simple spline basis which has been derived in Gu (2002, p.37) is shown in

(2.4). For this basis b1(x) = 1, b2(x) = x and bi+2 = R(x, x∗i ) for i = 1...q − 2 where

R(x, z) =
[(z − 1

2
)2 − 1

12
][(x− 1

2
)2 − 1

12
]

4
−

[(|x− z| − 1
2
)4 − 1

2
(|x− z| − 1

2
)2 + 7

240
]
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(2.4)

Using this spline basis f becomes y = Xβ+ε, where the ith row of the model matrix

is Xi = [1, xi, R(xi, x
∗
1), R(xi, x

∗
2), ..., R(xi, x

∗
q−2)]. The model can then be estimated

by OLS.

2.1.2 Degree of smoothing - penalized regression spline

The basis dimension q is crucial for the degree of smoothing of any regression spline.

However, simply choosing the basis dimension through backward-selection and hy-

pothesis testing is problematic. First, a model based on k−1 knots is not necessarily

nested within a model based on k knots. Secondly, the estimation results depend

strongly on the knot locations since uneven knot spacing can lead to poor model

performance (see Wood (2006b), p.128).
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There are alternatives to controlling the smoothness by changing the basis dimen-

sion. One possibility is to fix the basis dimension at a size which is slightly larger

than it would reasonably be necessary and control the smoothness by adding a ”wig-

gliness” penalty. Instead of fitting the model by minimizing ||y−Xβ||2, one would

minimize

||y −Xβ||2 + λ

∫ 1

0

[f ′′(x)]2dx

where λ
∫ 1

0
[f ′′(x)]2dx penalizes models which are too ”wiggly”. Between model

fit and smoothness is a trade off that now can be controlled through smoothing

parameter λ. Obviously, λ = ∞ results in a straight line estimate whereas λ = 0

leads to an un-penalised estimate. Since f is linear in parameters βi the integral

can be calculated as βTSβ. Gu (2002, p.34) shows that S0,0 = S1,1 = 0 and

Si+2,j+2 = R(x∗i , x
∗
j). Therefore, we have to minimize

||y −Xβ||2 + λβTSβ (2.5)

and the penalized least squares estimator is given by

β̂ = (XTX + λS)−1XTy (2.6)

Neither the exact choice of basis dimension q nor the precise selection of knot lo-

cations has a lot of influence on the model fit as long as q has been chosen larger

than necessary to represent the complexity of f(x). Now, the choice of smoothing

parameter λ is of crucial importance to the flexibility and the estimated shape of

f̂(x). The problem of determining the smoothness has now become the problem of

estimating the smoothing parameter λ.
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2.1.3 Smoothing parameter λ - cross validation

If λ has been chosen too large or too small, the data will be under- or over-smoothed.

In any case the spline estimate f̂ will not show the desired approximation to f . This

can be expressed in the following criterion

M =
1

n

n∑
i=1

(f̂i − fi)2

where f̂i ≡ f̂(xi) and fi ≡ f(xi). Since f is unknown M cannot be calculated

directly. Nonetheless, it is possible to derive an estimate, E(M) + σ2 which is the

expected mean square error while predicting a new variable.

Let f̂ [i−] be the model fitted to all data except yi and define the ordinary cross

validation score as

Vo =
1

n

n∑
i=1

(f̂
[−i]
i − yi)2. (2.7)

To obtain this score we leave out each datum in turn, estimate the spline with the

remaining data and calculate the squared difference between the missing datum and

its predicted value then we average over all single scores.

Substituting yi = fi + εi in (2.7) gives

Vo =
1

n

n∑
i=1

(f̂
[−i]
i − fi − εi)2

=
1

n

n∑
i=1

(f̂
[−i]
i − fi)2 − (f̂

[−i]
i − fi)εi + ε2i
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Since E(εi) = 0 and εi and f̂
[−i]
i are independent, taking expectations results in

E(Vo) =
1

n
E

(
n∑
i=1

(f̂
[−i]
i − fi)2

)
+ σ2

Given f̂ [−i] ≈ f̂ it holds that, E(Vo) ≈ E(M) + σ2 with equality in the large sample

limit. Thus, if it would be desirable to minimize M in order to choose an optimal λ

it is reasonable to minimize Vo. Choosing λ by minimizing Vo is known as ordinary

cross validation (OCV).

Choosing a model in order to maximize the ability to predict data to which the

model was not fitted, does not suffer from the problem that will be experienced in

estimations where the data to be predicted is included in the fitting data sample.

More complicated models will always be preferred over simpler ones. This is not the

case with OCV. It can be shown that

Vo =
1

n

n∑
i=1

(yi − f̂i)2

(1− Aii)2

where A ≡ (XTX + λS)−1XT, the influence matrix from (2.6). Using this set-up

has computational advantages over the calculation of Vo by leaving out one datum

at a time.

The weights 1−Aii can be replaced by the mean weight, tr(I−A)/n without altering

the large sample properties. This leads us to the generalized cross validation(GCV)

score

Vg =
n
∑n

i=1(yi − f̂i)2

[tr(I−A)]2
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Clearly this simplification results in further computational advantages. However,

even more important are the invariance properties (Wahba 1990, p.53) which will

be explained in Section 2.2.8.

2.1.4 Penalized regression spline basis for a generalized

additive model

Assume that a dependent variable y can be sufficiently well described by two ex-

planatory variables x and z by a simple additive model of the following form

yi = f1(xi) + f2(zi) + εi (2.8)

where f1 and f2 are smooth functions and the εi are i.i.d.N(0, σ2).

Please note that the assumption of additive effects, f1(xi) +f2(zi), is a quite restric-

tive special case of the general smooth function of two variables, f(x, z). Moreover,

since the model contains more than one function, this introduces an identifiability

problem. The fi are each only estimable within an additive constant. Any constant

could be simultaneously added to f1 and subtracted from f2 without changing the

model outcome. Thus, identifiability constraints have to be imposed on the model.

Once the identifiability problem has been solved the model can be fitted with penal-

ized least squares and the smoothing parameter can be chosen by cross validation

as explained above.

Each function in (2.8) can be represented by a penalized regression spline basis.
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Using the spline basis given in (2.4) we obtain,

f1(x) = δ1 + xδ2 +

q1−2∑
j=1

R(x, x∗j)δj+2

f2(z) = γ1 + xγ2 +

q2−2∑
j=1

R(z, z∗j )γj+2

where δj and γj are the unknown parameters, q1 and q2 are the number of unknown

parameters and x∗j and z∗j are the knot locations for f1 and f2 respectively.

The identifiability constraint in this set-up is defined so that the two constants

δ1 and γ1 are confounded. However, restricting one of them to zero resolves the

issue. Let γ1 = 0 allows us to write the model in linear form y = Xβ + ε where the

ith row of the model matrix now is

Xi = [1, xi, R(xi, x
∗
1), R(xi, x

∗
2), ..., R(xi, x

∗
q1−2), zi, R(zi, z

∗
1), R(zi, z

∗
2), ..., R(zi, z

∗
q2−2)]

and β = [δ1, δ2, ..., δq1 , γ1, γ2, ..., γq2 ]
T.

The penalty functions can now be written exactly as for the univariate case ex-

plained above

∫ 1

0

[f ′′1 (x)]2dx = βTS1β and

∫ 1

0

[f ′′2 (z)]2dz = βTS2β

where S1 and S2 are equal to zero except for S1i+2,j+2 = R(x∗i , x
∗
j) for i, j =

1, ..., q1 − 2 and S2i+q1+1,j+q1+1 = R(z∗i , z
∗
j ) for i, j = 1, ..., q2 − 2. The above holds

independent of the basis. Once a basis has been chosen, model and penalty matrices

can be obtained immediately. The parameter estimates of (2.8) are calculated by
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minimizing the penalized least squares objective function

||y −Xβ||2 + λ1β
TS1β + λ2β

TS1β (2.9)

where λ1 and λ2 are the smoothing parameters chosen by GCV to control the

smoothness of the fi.

Defining S ≡ λ1S1 + λ2S2, the OLS estimator is eventually given by

β̂ = (XTX + S)−1XTy.

2.2 Theory of GAMs

The purpose of this section is to theoretically justify the methods introduced in the

previous section. Moreover, distribution theory will be added to facilitate confidence

interval calculation and hypothesis testing.

The methods discussed in this chapter build up on penalized regression smoothers

based on splines as introduced by Wahba (1980) and Parker & Rics (1985). Hastie &

Tibshirani (1990) suggested to represent GAMs by penalized regression smoothers

similar to splines. This work has been extended by Marx & Eilers (1998).

2.2.1 Cubic regression splines

We want to smooth the data rather than interpolating it. Thus, instead of setting

g(xi) = yi we could treat g(xi) as n free parameters of the cubic spline in order to
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estimate them by minimizing

n∑
i=1

{yi − g(xi)}2 + λ

∫
g′′(x)2dx

where λ controls the conflicting goals of matching the data and smoothness of the

fitted curve g. For all functions f that are continuous on [x1, xn], g(x) is the function

minimizing
n∑
i=1

{yi − f(xi)}2 + λ

∫
f ′′(x)2dx. (2.10)

Given some other function f ∗(x) that minimizes (2.10) we could interpolate {xi, f ∗(xi)}

using a cubic spline g(x). By the properties of interpolating splines, first, the sum

of squares of g(x) and f ∗(x) must be equal and secondly, the integrated squared

second derivative of g(x) must be smaller than for f ∗(x). Thus, g(x) results in a

lower value for (2.10) which is a contradiction unless g(x) = f ∗(x).

The basis used in the previous section was one way of defining a cubic regression

spline basis. However, there are different ways of defining cubic regression spline

bases. The following definition of a cubic spline basis can be found in Lancaster &

Salkauskas (1986).

Let f(x) be a cubic spline function with k knots x1, ...xk. In addition let βj = f(xj)

and δj = f ′′(xj). The spline can then be written as

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)δj + c+

j (x)δj+1 if xj ≤ x ≤ xj+1 (2.11)

where a−j (x) = (xj+1 − x)/hj, a
+
j (x) = (x − xj)/hj, c

−
j (x) = [(xj+1 − x)3/hj −

hj(xj+1 − x)]/6, c+
j (x) = [(x− xj)3/hj − hj(x− xj)]/6 and hj = (xj+1 − xj) are the

basis functions. Since the spline is continuous up to the second derivative at xj and
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has zero second derivatives at x1 and xk it can be shown that

Bδ− = Dβ (2.12)

where δ− = (δ2, ..., δk−1)T, δ1 = δk = 0 and B and D are defined as Di,i = 1/hi,

Di,i+1 = −1/hi − 1/hi+1, D1,1+2 = 1/h1+1, Bi,i = (hi − hi+1)/3 for i = 1...k − 2 and

Bi,i+1 = hi,i+1/6, Bi+1,i = hi+1,i/6 for i = 1...k − 3.

Let F− = B−1D and F = [0,F−,0]T it follows that δ = Fβ. Thus, the spline

can be entirely expressed in terms of β

f(x) = a−j (x)βj + a+
j (x)βj+1 + c−j (x)Fjβ + c+

j (x)Fj+1β if xj ≤ x ≤ xj+1

which can, implicitly defining new basis functions bi(x), be further simplified to

f(x) =
k∑
i=1

bi(x)βi.

Moreover, Lancaster & Salkauskas (1986) show that

∫ x2

x1

f ′′(x)2dx = βtDTB−1Dβ,

i.e. S ≡ DTB−1D is the penalty matrix.

Please note that this basis does not require to re-scale the regressors to [0, 1]. How-

ever, it is still necessary to choose knot locations.
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2.2.2 P-splines

P-splines have been developed by Eilers & Marx (1996) building up on B-splines

(see de Boor, (1978)). P-splines are low rank smoothers using a B-spline basis, com-

monly defined on evenly spaced knots. To control the wiggliness a difference penalty

is directly applied to the parameters βi.

The B-spline basis can be used to represent cubic splines. The B-spline basis func-

tions are strictly local, i.e. each basis function is only non-zero over the intervals

between m+ 3 adjacent knots, where m+ 1 is the order of the basis. A k parameter

spline basis is defined by k+m+ 1 knots x1 < x2 < ... < xk+m+1 where the spline is

evaluated over the interval [xm+2, xk]. Thus, the first and last m+ 1 knot locations

are arbitrary. A spline of order m+ 1 can be written as

f(x) =
k∑
i=1

Bm
i (x)βi

where the basis functions are recursively defined

Bm
i (x) =

x− xi
xi+m+1 − xi

Bm−1
i (x) +

xi+m+2 − x
xi+m+2 − xi+1

Bm−1
i+1 (x), i = 1, ..., k

and

B−1
i (x) =


1 xi ≤ x ≤ xi+1

0 otherwise.

The penalty function is then defined as the squared difference between adjacent βi

values

P =
k−1∑
i=1

(βi+1 − bi)2.
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P-splines are easy to set up and allow for a decent amount of flexibility by the ability

to combine any order of penalty with any order of B-spline basis. However, when

using uneven knot spacing this advantage diminishes. Furthermore, the penalties

are less easy to interpret than other penalties, in terms of the properties of the fitted

smooth.

2.2.3 Thin plate regression splines

Given the problem of estimating g(x) such that yi = g(xi) + ε, thin plate regression

spline smoothing estimates g(x) by finding the function f̂ minimizing

||y − f ||2 + λJmd(f) (2.13)

where y is the vector of yi data, f = [f(x1, f(x2), ..., f(xn)], Jmd(f) is a penalty

function measuring the ”wiggliness” of f and λ is a penalization parameter. The

wiggliness penalty is defined as

Jmd =

∫
...

∫
<d

∑
ν1+...νd=m

m!

ν1!...νd!

(
δmf

δxν11 ...δx
νd
d

)2

dx1...dxd (2.14)

If 2m > d, it can be shown that (2.13) has the form

f̂(x) =
n∑
i=1

δiηmd(||x− xi||) +
M∑
j=1

αjθj(x) (2.15)

where δ and α have to be estimated subject to the constraint TTδ = 0 (Tij = θj(xi))

and

ηmd(r) =


(−1)m+1+d/2

22m−1πd/2(m−1)!(m−d/2)!
r2m−dlog(r) d even

Γ(d/2−m)

22mπd/2(m−1)!
r2m−d d odd.
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Defining E by Eij ≡ ηmd(||xi−xj||), the thin plate spline fitting problem reduces to

minimize ||y − Eδ −Tα||2 + λδTEδ subject to TTδ = 0, (2.16)

with respect to δ and α.

The idea of thin plate regression splines is to truncate the space of the compo-

nents with parameters δ of the thin plate spline. Given that E = UDUT is the

eigen-decomposition of E, where D is a diagonal matrix of eigenvalues of E with

|Di,i| ≥ |Di−1,i−1| and columns of U are the corresponding eigenvectors. Define Uk

being a matrix consisting of the first k columns of U and let Dk denote the top

right k × k sub-matrix of D. Restricting δ to the column space of Uk by writing

δ = Ukδk implies that (2.16) becomes

minimize||y −UkDkδk −Tα||2 + λδT
k Dkδk subject to TTUkδk = 0 (2.17)

w.r.t δk and α. Incorporating the constraints yields the unconstrained minimization

problem:

minimize||y −UkDkZkδ̃k −Tα||2 + λδT
k ZT

kDkZkδ̃k (2.18)

w.r.t δ̃k and α.

2.2.4 Choosing the basis dimension

As mentioned above, the basis dimension needs to be chosen when using penalized

regression splines. This, in relation to full spline methods, reduces the computa-

tional effort substantially. Moreover, it underlines the fact that something must be

seriously wrong if a statistical model requires as many coefficients as there is data.

At the cost of a slightly artificial assumption that the ”truth” is in the spanned

37



space, it eases the demonstration of large sample properties of smoothing methods.

Based on simulation Kim & Gu (2004) have shown that, given a sample size of

n the size of the spline basis dimension should be approx. n2/9. Wood (2006a)

suggests also to include the number of regressors in addition to the sample size.

However, how can one really know what the constant proportionality is as long as

you don’t know the truth to be estimated?

In practice the choice of the basis dimension is a part of the model specification.

However, it is important to keep in mind that the exact size of the basis dimension

is not of critical importance. It only sets an upper limit to the flexibility of any

smooth term. The smoothing parameter is actually controlling the effective degrees

of freedom. Thus, the model to be fitted is insensitive to the basis dimension as long

as it is not too small.

2.2.5 Variable coefficient models

A variable coefficient model, as introduced by Hastie & Tibshirani (1993) may look

like

g(µi) = X∗iθ + f1(x1i)x2i + f2(x3i)x4i + f3(x5i, x6i)x7i + ...

This kind of model can include interaction terms of smooth terms with other re-

gressors. The only modification to the GAM framework presented in this section,

is that the formal expression for the model matrix for the term f1(x1i)x2i becomes

diag(x2)X1 where X1 is the model matrix for f1(x1i) and diag(x2) is a diagonal

matrix with x2i at the ith position on its diagonal.
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2.2.6 P-IRLS

To estimate a model as given by Equation 2.1 we specify a basis for the smooth

components and define a term to control the wiggliness. Each function can then be

represented as

fj(xj) =

qj∑
i=1

βjibji(xj)

where xj may be a vector and the bji are the coefficients of the smooth to be

estimated. Having chosen a basis one can write down the model matrix X̃j, for

each smooth function. If fj is a vector with elements fji = fj(xji) and β̃j =

[βj1, βj2, ..., βjqj ]
T then

fj = X̃jβ̃j

where X̃jik = bjk(xji), and in case the regressor xj may be a vector. Unless each

smooth is subject to a centering constraint, (2.1) is an unidentifiable model in most

cases. One possible remedy is to constrain the elements of fj to sum up to zero

which can be written as

1TX̃jβj = 0.

This constraint can be incorporated by re-parameterization. Defining matrix Z of

which qj − 1 columns are orthogonal and it holds that

1TX̃jZ = 0.

Re-parameterizing the smooth components in term of qj−1 new parameters βj such

that β̃j = Zβj we obtain a new model matrix for the jth term Xj = X̃jZ such that

fj = Xjβj.
6

6Z is never formed explicitly since it can be represented by a single Householder matrix
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Given the new model matrices for the smooth terms, (2.1) can now be written

as

g(µi) = Xiβ

where X = [X∗ : X1 : X2 : ...] and βT = [θT,βT
1 ,β

T
2 , ...].

It is now easy to write down the likelihood lp(β) and to estimate the model. How-

ever, given a large number of knots and estimating the parameters by ordinary

maximum likelihood we run into overfitting issues. Therefore GAMs are estimated

by penalized likelihood maximization.

The penalties can be expressed in quadratic form of the smooth functions param-

eters. The wiggliness of the jth function can be measured β̃T
j S̃jβ̃j where S̃j is

a matrix of known coefficients. The re-parameterization would transform this to

βT
j Sjβj where Sj = ZTS̃jZ. For notational convenience we write the penalty in

terms of the full coefficient vector βTSjβ where Sj is Sj filled up with zeros. Thus,

Sj ≡ Sj.

The penalized likelihood function is then given by

lp(β) = l(β)− 1

2

∑
j

λjβ
TSjβ (2.19)

where λj are the smoothing parameters. However, finding β̂ by maximization of lp

requires us to estimate λj first. Practically, the GAM penalized likelihood (2.19) can

be maximized by penalized iteratively re-weighted least squares. Let S =
∑

j λjSj
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and assume λj are known. We can rewrite (2.19)

lp(β) = l(β)− 1

2
βTSβ.

To maximize lp we set the derivatives w.r.t. βj to zero

δlp
δβj

=
δl

δβj
− [Sβ]j =

1

φ

n∑
i=1

yi − µi
V (µi)

δµi
δβj
− [Sβ]j = 0

where [.]j denotes the jth row of a vector. These equations are the same that would

have to be solved to maximize the penalized non-linear least squares problem

Sp =
n∑
i=1

(yi − µi)2

var(Yi)
+ βTSβ

assuming the var(Yi) terms are known, Wood (2006b, pp.169) shows that in the

neighbourhood of some parameter vector β̂[k]

Sp '
∣∣∣∣∣∣√W[k]

(
z[k] −Xβ

)∣∣∣∣∣∣2 + βTSβ. (2.20)

Given a model’s link function g, z[k] is a vector of pseudo-data and W[k] is a diagonal

matrix with diagonal elements ω
[k]
i , then

ω
[k]
i =

1

V (µ
[k]
i )g′(µ

[k]
i )2

and zi = g′(µ
[k]
i )(yi − µ[k]

i ) + Xiβ̂
[k].

Thus, given smoothing parameters, the maximum likelihood estimates, β̂, can be

estimated by iterating the following two steps to convergence

1. Given the current µ̂[k], calculate z[k] and ω
[k]
i

2. Minimize (2.20) w.r.t. β, to find β̂[k+1]. Calculate the linear predictor η[k+1]Xβ̂[k+1],
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and fitted values µ
[k+1]
i = g−1(η

[k−1]
i ). Repeat from step 1.

The iteratively re-weighted least squares method has been introduced by Nelder &

Wedderburn (1972) in the context of generalized linear models. Building up on this

work, O’Sullivan, Yandall & Raynor (1986) developed penalized likelihood maxi-

mization for smooth models. An introduction to the method of penalized iteratively

re-weighted least squares (P-IRLS) in the context of GAMs can be found in Wood

(2006b).

2.2.7 EDF and residual variance

The question to be answered in this section is: How many degrees of freedom does

a fitted GAM have? To this end define the effective degrees of freedom as tr(A)

where A is the influence matrix (µ̂ = Ay). It can be shown that the maximum of

tr(A) is the number of parameters less the number of constraints. The minimum

is rank(
∑

i Si) less the maximum. Given that the smoothing parameters vary from

zero to infinity the effective degrees of freedom vary continuously between these

limits.

Since the effective degrees of freedom are reduced by the application of penalties

and the penalties are different for each smooth term we want to calculate the effec-

tive degrees of freedom for each smooth term. Since each element of β̂ is penalized

differently, one might even want to break the effective degrees of freedom down into

effective degrees of freedom for each element β̂i of β̂.

Let P ≡ (XTX + S)−1XT. Thus, β̂ = Py and tr(A) = tr(XP). Define P0
i to

be P with all rows except the ith set to zero. Therefore P0
iy has β̂i as ith element
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and is zero for the rest. Thus,

tr(A) =

p∑
i=1

tr(XP0
i ).

Hence, tr(XP0
i ) can be interpreted as effective degrees of freedom for the ith pa-

rameter. Since tr(XP0
i ) = (PX)i,i, the vector of effective degrees of freedom for all

model parameters is given by the leading diagonal of

F = PX = (XTX + S)−1XTX.

In case of normal errors and identity link function, σ2 can be estimated by the

residual sum of squares divided by the residual degrees of freedom

σ̂2 =
||y −Ay||2

n− tr(A)
. (2.21)

For the generalized additive model the error variance is estimated by

φ̂ =

∑
i V (µ̂i)

−1(yi − µ̂i)2

n− tr(A)
.

It can be shown that (2.21) is biased since

E
(
||y −Ay||2

)
= σ2[n− 2tr(A) + tr(ATA)] + bTb (2.22)

where b = µ −Aµ represents the smoothing bias. Thus, an alternative estimator

for σ̂ can be easily derived. However, b still needs to be estimated, hence even the

new estimator is still biased. Due to this and the complexity of (2.22) Wood (2006b,

pp.172) suggests to work with (2.21).
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2.2.8 Smoothing parameter selection - UBRE, CV & GCV

As explained above, P-IRLS estimates model coefficients β given smoothing param-

eters λ. This section introduces different criteria of smoothing parameter selection

and theoretically justifies the use of generalized cross validation as introduced in

Section 2.1.3.

One way of selecting smoothing parameters would be to choose them in order to

minimize the mean square error of the model, i.e. to keep µ̂ as close as possible to

the true µ ≡ E(y).

Wood (2006b, pp.51) shows that

E(M) = E
(
||µ−Xβ̂||2/n

)
= E

(
||y −Ay||2

)
/n− σ2 + 2tr(A)σ2/n (2.23)

where M is the mean square error of the fitted model and the right hand side depends

on λ through A. Thus, a reasonable approach would be to minimize the unbiased

risk estimator (UBRE) of the mean square error w.r.t. λ. The UBRE approach

has been developed by Craven & Wahba (1979). An equivalent to this is Mallow’s

Cp as introduced by Mallows (1973). As long as σ2 is known, selecting λ through

minimizing Vu(λ)

Vu(λ) = ||y −Ay||2/n− σ2 + 2tr(A)σ2/n (2.24)

works well. However, since in our case σ2 has to be estimated we do experience

problems. Substituting (2.21) into (2.23)

M̂ = E
(
||µ−Xβ̂||2/n

)
= tr(A)σ̂2/n (2.25)
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shows that a 2-parameter model has to reduce σ̂2 to less than half the value of the

1-parameter model before being identified as a better model. Thus, in our case

UBRE is not suitable for the selection of λ.

To surmount this problem we could use the mean square prediction error, P = σ2+M

(MSPE), instead of the mean square error.

As explained in Section 2.1.3, the MSPE is obtained by fitting the data omitting one

data-point at a time. In doing so, we arrive at the ordinary least squares estimate

of P

Vo =
1

n

n∑
i=1

(yi − µ̂[−i]
i )2

where µ̂− i[−i] is the prediction error of E(yi) obtained form the model fitted to the

data excluding yi.

However, it is not necessary to perform n model fits to calculate Vo. Given the

penalized least squares objective which could be minimized to find the ith term in

the OVC score
n∑

j=1,∀j 6=i

(yi − µ̂[−i]
i )2 + penalties.

Adding (µ̂− i[−i] − µ̂− i[−i])2 yields

n∑
j=1

(y∗i − µ̂
[−i]
i )2 + penalties. (2.26)

Minimizing this, we obtain the ith prediction µ̂ − i[−i] and the influence matrix A.

Let y∗ = y− y[i] + µ[i] and y[i] & µ[i] are zero except for their ith element it follows
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that

µ̂
[−i]
i = Aiy

∗ = Aiy − Aiiyi + Aiiµ̂
[−i]
i = µ̂i − Aiiyi + Aiiµ̂

[−i]
i

where µi is from the model fitted to the whole dataset. Subtracting of yi and

rearranging shows

yi − µ̂[−i]
i =

y−µ̂i
1− Aii

.

As result the OCV score becomes

Vo =
1

n

n∑
i=1

(y−µ̂i)
2

(1− Aii)2
(2.27)

which can be obtained from the initial model fit to the full dataset. Interestingly

it can be shown (see Stone, (1977)) that asymptotically OCV is equivalent to the

Akaike Information Criteria.

OCV seems to be a reasonable approach to smoothing parameter selection. However,

there are two problems with this approach. First, it is computationally expensive in

the additive model case. Secondly, Golub, Heath & Wahba (1979) show that OCV

is not invariant to transformation of y −Xβ.

Consider the additive model fitting objective. Given λ all inferences about β are

made on the basis of minimizing

||y −Xβ||2 +
m∑
i=1

λiβ
TSiβ.

Given any orthogonal matrix Q of appropriate dimension. Since pre-multiplication

with an orthogonal matrix is merely a matrix rotation, i.e. all angles and vector
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length stay the same, y −Xβ = Qy −QXβ. Hence, inferences based on

||Qy −QXβ||2 +
m∑
i=1

λiβ
TSiβ

are not different from those made from the previous set-up.

Despite the invariance of parameter estimates, effective degrees of freedom and ex-

pected prediction error to rotation of y − Xβ, those problems arise from the fact

that the diagonal elements Aii of the influence matrix A change with rotation of

y −Xβ. Thus, (2.27) changes.

The concept of generalized cross validation solves this problem by choosing a Q

to make all Aii equal. Thus rotation does not affect the validation score. Given A

as the influence matrix of the initial problem, the influence matrix of the rotated

problem is

AQ = QAQT.

Let B be a matrix such that BTB = A we can write the influence matrix as

AQ = QBBTQT

If Q has been chosen such that each row of QB has the same euclidean length

all elements on the leading diagonal of AQ have the same value. Since tr(AQ) =

tr(QAQT) = tr(AQTQ) = tr(A), Aii = tr(A)/n; ∀i. Thus, (2.27) can be written

as

Vg =
n||y − µ̂||2

[n− tr(A)]2
. (2.28)
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This generalized cross validation score (GCV) has been developed by Golub et al.

(1979).

To apply this to the generalized additive model, the fitting objective can be written

in terms of the model deviance, which is minimized w.r.t. β

D(β) +
m∑
j=1

λjβ
TSjβ.

Wood (2006b) shows that this objective can be quadratically approximated by

∣∣∣∣∣∣√W(z−Xβ)
∣∣∣∣∣∣2 +

m∑
j=1

λjβ
TSjβ (2.29)

which is essentially the same as (2.9) for the two-variable case.

Th GCV score for the smoothing parameter selection now becomes

Vωg =
n
∣∣∣∣∣∣√W(z−Xβ)

∣∣∣∣∣∣2
[n− tr(A)]2

(2.30)

Only locally to the λ used to find z and W this is a good approximation. However,

Hastie & Tibshirani (1990) show that a globally applicable approximation is given

by

Vg =
nD(β̂)

[n− tr(A)]2
. (2.31)

2.2.9 Distributional results and the Bayesian model

Given that the parameter estimates can be represented by

β̂ = (XTWX + S)−1XTWy
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where the data have covariance matrix W−1
φ , it follows that

Ve = (XTWX + S)−1XTWX(XTWX + S)−1φ

is the covariance matrix of the estimators β̂ and approximately β̂ ∼ N(E(β̂),Ve). If

β = 0 then E(β̂) = 0 the results can be used for testing model terms for equality to

zero. However, since E(β̂) 6= β generally, there are problems calculating confidence

intervals.

Using a Bayesian approach has been shown to be a good alternative to parame-

ter uncertainty estimation. The Bayesian posterior covariance matrix is given by

Vβ = (XTWX + S)−1φ

with corresponding posterior distribution

β ∼ N(β̂,Vβ).

A very good introduction to Bayesian econometrics can be found in Koop (2003).

A more theoretical framework is presented in Poirier (1995).

Prior

Having selected smoothing bases and penalties a model can be written as

Y = Xβ + ε, with ε ∼ N(0,W−1σ2). (2.32)
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Assuming the model has been re-parameterized to eliminate identifiability con-

straints, it can be estimated by minimization of the penalized least squares objective

||W1/2(y −Xβ)||2 +
m∑
i=1

λiβ
TSiβ. (2.33)

Define the prior for β as

fβ(β) ∝ e−
1
2
βT
∑

Si/τiβ

where τi are parameters to control the dispersion of the prior. Following Wahba

(1983) and Silverman (1985) this prior explicitly presents our belief that smooth

models are more likely than wiggly ones but gives same odds to all models of similar

smoothness.

From the initial model specification the conditional distribution of y given β is

f(y|β) ∝ e−
1
2

(y−Xβ)TW(y−Xβ)/σ2

.

Applying Bayes rule this can be rearranged to

f(y|β) ∝ e−
1
2

(yTWy/σ2−2βTXTWy/σ2+βT(XTWX/σ2+
∑

Si/τi)β)

∝ e−
1
2

(−2βTXTWy/σ2+βT(XTWX/σ2+
∑

Si/τi)β).

Defining α ∼ N([XTWX +
∑
λiSi]

−1XTWy, [XTWX +
∑
λiSi]

−1σ2), the proba-

bility density function for α is

fα(α) ∝ e−
1
2

(α−(XTWX+
∑
λiSi)

−1XTWy)T(XTWX+
∑
λiSi)(α−(XTWX+

∑
λiSi)

−1XTWy/)σ2

∝ e−
1
2

(−2αTXTWy/σ2+αT(XTWX/σ2+
∑
λiSi/σ

2)α).
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Comparing Fα(α) and f(β|y), and choosing τi = σ2/λi it follows that

β|y ∼ N([XTWX +
∑

λiSi]
−1XTWy, [XTWX +

∑
λiSi]

−1σ2)

β|y ∼ N(β̂, (XTWX +
∑

λiSi)
−1σ2)

The prior on β has been chosen to give a convenient form for the distribution of

β|y. Please note that the prior is equivalent to the assumption that each wiggliness

component of the model βTSiβ is an i.i.d random variable with E(βTSiβ) = τi.

In the case of the GAMs used in this thesis, it holds that
∑

Si is block-diagonal.

Therefore, the assumption of independence comes quite naturally from the non-

overlapping nature of the penalties.

Posterior

Consider a GAM g(µi) = Xiβ, µi ≡ E(Yi), Yi ∼ some exponential family where g is

a known link function, and it is estimated by the minimization of

− l(β) +
1

2

m∑
i=1

λiβ
TSiβ (2.34)

with respect to β where l(β) is the log-likelihood of the model. Problem (2.34) is

minimized by solving

minimize
∣∣∣∣∣∣√W[k]

(
Xβ − z[k]

)∣∣∣∣∣∣+
m∑
i=1

λiβ
TSiβ

where k is the iteration index, z[k] = Xβ[k] +G[k](y−µ)[k], µ
[k]
i is the current model

estimate of E(Yi), G[k] is a diagonal matrix such that G
[k]
ii = g′(µ

[k]
i ) and W is a

diagonal matrix where Wii =
[
G

[k]2
ii V

(
µ

[k]
i

)]−1

.
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Working in terms of the random vector as suggested by the iterative least squares

approach

z = Xβ + G(y − µ)

shows that E(z|β) = Xβ and W−1φ is the covariance matrix of z|β. Now let

v = XTWz. Therefore, E(v|β) = XTWXβ and XTWXφ is the covariance matrix

of v|β. Furthermore, it can be shown (Wood (2006b, p. 193) that asymptotically

v|β ∼ N(XTWXβ,XTWXφ). (2.35)

Using this large sample approximation the posterior can be written as

β|v ∼ N([XTWX +
∑

λiSi]
−1v, [XTWX +

∑
λiSi]

−1φ) (2.36)

where the φ can be estimated as φ̂ = ||W1/2(y − µ̂)||2/tr(I−A)´.

Bayesian confidence intervals

For non-linear functions of parameters Bayesian confidence intervals can be obtained

though simulation of the posterior distribution of β. If G(β) is the approximate

posterior cumulative distribution function, F̂ (g) for G can be calculated by sampling

random vectors {β∗ : i = 1, ..., N} from the multivariate normal posterior for β, thus

F̂ (g) =
1

N

N∑
i=1

H(g −G(β∗i ))

where H is the Heaviside function which is 1 for values ≥ g and 0 for values < g.

From the quantiles of this distribution, Bayesian confidence intervals can be obtained

easily. Interestingly, in cases where the evaluation of G is computationally cheaper,

the costs of calculating confidence intervals this way will be about the same as the
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cost of performing one bootstrap replicate (see Wood, 2006b).

P-values

The question of significance of one smooth term of an estimated GAM is the ques-

tion of significance of a subset βj of β. Thus, if βj = 0 then E(β̂j) ≈ 0. If the

covariates of a given smooth are uncorrelated with those of other smooths of the

model it even holds that E(β̂j) = 0.

Separating the covariance matrix of β̂j, Vβ̂j
from Ve it holds that under the null

hypothesis βj = 0, and hence,

β̂j∼̇N(0,Vβ̂j
).

It follows that if Vβ̂j
is of full rank that under the null hypothesis

β̂T
j V−1

β̂j
β̂j∼̇χ2

d

where d = dim(βj). However, usually penalization suppresses some dimensions of

the parameter space. Hence, Vβ̂j
is not of full rank. Therefore, testing is performed

using

β̂T
j Vr−

β̂j
β̂j∼̇χ2

r

where r = rank(Vβ̂j
) and Vr−

β̂j
is the rank r pseudoinverse of the covariance matrix.

The p-value for the test βj = 0 is Pr[X > β̂T
j Vr−

β̂j
β̂j] where X ∼ χ2

r and r is

determined numerically or with reference to the effective degrees of freedom of the

smooth term.
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If Ve and therefore Vβ̂j
include an unknown scale parameter φ p-value calculations

can be based on the approximate result

β̂T
j Vr−

β̂j
β̂j/r

φ̂/(n− edf)
∼ Fr,edf .

2.3 Summary and concluding remarks

From the above it becomes clear that there are various possibilities to make use of

generalized additive models in combination with a spline basis. However, the choice

of the basis is crucial. Standard bases for regression splines such as cubic splines,

cyclic cubic splines or p-splines require the user to choose knot locations, i.e. the

basis dimension. Furthermore, they allow only for the representation of the smooth

of one predictor variable. Given the fact that splines are the smoothest interpolators

(see Green & Silverman (1994)) it can be shown that cubic splines (see Section 2.2.1)

turn out to be an ideal basis for statistical regressions. The only drawback is that

there are as many free parameters as there are data. Dealing with more than one

regressor this becomes very expensive with respect to computational efficiency. We

can overcome those issues by using penalized regression splines. However, the prob-

lem of choosing the basis dimension remains (see Lancaster & Salkauskas (1986)).

P-splines overcome those issues for the price of less easy interpretation of the proper-

ties of the fitted smooth (see Section 2.2.2). Therefore, the bases for our estimations

are thin plate regression splines (TPRS) in combination with a GCV procedure.

TPRS surmount the mentioned problems and are in a limited sense ’optimal’ with

respect to these problems. TPRS avoid the problem of knot-placement and are rel-

atively cheap to compute.

One disadvantage of using GAMs with any spline basis is that hypothesis testing
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is only approximate and that satisfactory interval estimation requires a Bayesian

approach. Using the Bayesian posterior covariance matrix and a corresponding pos-

terior distribution allows us to calculate p-values and confidence intervals. Typically

the p-values calculated this way will be somewhat too low, because they are condi-

tional on the smoothing parameter, which is usually uncertain. Therefore, we will

be quite restrictive while interpreting the data and talking about significance.
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3 Evaluation of physical dry bulk
time charter rates

3.1 Introduction

This chapter aims to identify vessel and contract specific determinants of physical

dry bulk time charter rates. Furthermore, in quantifying the effect of the quality

of any given vessel on period rates it seeks to prove the hypothesis of a two-tier7

Panamax dry bulk market. These questions arise due to, first, increased interest in

modern financial instruments for hedging purposes such as FFAs and forward pricing

options. These instruments require a sound validation of the underlying fundamen-

tals, i.e. freight and time charter rates. Second, increased public perception about

environmental issues and seafarer safety have been the reason for the introduction

of stricter maritime legislation in Australia during early 90’s which nowadays af-

fect almost the entire Pacific region (see HORSCOTCI (1992) and BTCE (1994)).

Differences in allocation of quality vessels in the Atlantic and Pacific require the cre-

ation of incentives to renew the fleet and increased standards of vessel maintenance

(Timmermann & McConville (1996) and Rowlinson (1996)). Hence, we raise the

question of whether the financial incentives are sufficient for owners and operators

to increase standards of safety and security in the Panamax dry bulk segment.

The objectives of this chapter are achieved by applying semi-parametric estima-

tion techniques, which are capable of describing all non-linear relations between

7Charter markets which are split into a sub-market for quality vessels and another sub-market
for non-quality vessels are known as ”two-tier markets”.
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time charter rates and the factors. For the first time, this chapter applies the

semi-parametric class of generalized additive models (GAM) to a dataset of actual

Panamax dry bulk fixtures over the period 2003-2007. Previous studies on the exis-

tence of two-tier markets required to make crucial assumptions about how to define

quality. For instance, the questions of whether the cut-off point8 for quality vessels

is 10, 15 or even 20 years of age had to be subjectively answered in all studies of

this kind. This is because other measures of quality like flag or classification society

proved to be bad approximations or entirely irrelevant. Semi-parametric models in

general allow for a very flexible model specification which sidesteps those issues.

GAMs in particular do not require to choose any functional form apart form addi-

tivity of the factors under consideration.

The existing literature addressing the first issue offers insight into most macroe-

conomic relations and a variety of volatility, risk and time series related analyses

of different markets (see for instance, Kavussanos & Alizadeh (2002b) or Koeke-

bakker, Adland & Sodal (2007)). However, on the microeconomic level freight and

charter rates did not receive much attention. Regarding the existence of two-tier

markets one can find studies analysing the post OPA90 tanker markets presenting

ambiguous results (Tamvakis (1995) or Strandenes (1999)). With respect to the dry

bulk segment, however, studies mostly concentrate on factors of casualties than de-

terminants of individual time charter rates, despite the intersection to be expected

(Tamvakis & Thanopoulou (2000) and Roberts & Marlow (2002)).

This chapter extends the results of previous research by using generalized addi-

tive models to explain vessel and contract specific differences in time charter rates.

8The ”cut-off point” is an artificially chosen threshold which divides two-tier markets according
to the age of the vessels into the quality and non-quality segment for the purpose of statistical
investigations.
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This way, it can be shown that a good part of the variation in physical time charter

rates is due to microeconomic factors. Controlling for contract specific effects such

as place of delivery, charter length and number of days forward to delivery as well

as vessel specific factors such as size and fuel consumption this chapter quantifies

quality induced differences in physical dry bulk charter rates. The results of this

chapter are important in two different aspects. First, it extends previous research

with respect to the microeconomic modelling of time charter rates on the contract

and vessel specific level. It underlines the importance of vessel and contract spe-

cific factors to time charter rates. Secondly, it empirically proves the existence of a

two-tier Panamax dry bulk market and thus, leads to important insights and impli-

cations for environmental safety and the security of cargo and seafarers.

The remainder of this chapter is structured as follows. Section 3.2 reviews the

related literature on spot and time charter rates with a focus on vessel and con-

tract specific factors. Section 3.3 provides an introduction to the Panamax dry bulk

freight and charter market. A description of the identified factors and the available

data can be found in Section 3.4. The presentation of the different models and a

discussion of the results can be found in Section 3.5. Finally, Section 3.6 summarizes

and concludes.

3.2 Literature review

As the main indicators of the shipping market condition spot9 and time charter rates

have attracted a lot of academic attention on the macroeconomic level. Starting

with the classical work of Koopmans (1939) and Tinbergen (1959), continuing with

9Please note that the words ”spot rate” are used as synonym for ”voyage rate” throughout the
thesis
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the extensive structural integrated market models of Charemza & Gronicki (1981),

Beenstock & Vergottis(1989a, 1989b, 1989c, 1992, 1993) and Veenstra (1999) find-

ing its latest results in option pricing and research on FFAs, e.g. Kavussanos &

Alizadeh (2002b), Koekebakker & Adland (2004) and Koekebakker et al. (2007).

However, on a microeconomic level charter rates have not been analysed in great

detail. One can find two strings of research. First studies on the volatility of charter

rates with respect to the size of a vessel, see Kavussanos (1996a) and second, papers

investigating the vessel-quality and age effect on charter rates as in Tamvakis (1995),

Strandenes (1999) and Tamvakis & Thanopoulou (2000).

Kavussanos (1996a) concentrates on charter rates with respect to volatility as a

central element of business decision-making. The paper describes spot freight rates

as a function of industrial production, price of bunkers and size of the existing fleet.

Using an ARCH-model and monthly data from 1973 to 1992 for Handysize, Pana-

max and Capesize vessels the analysis shows that risks in the charter market vary

over time and those risks differ dependent on vessel size. Comparing time vs. spot

charter it can be shown that with respect to the risks involved the spot market has

to be preferred. The paper argues that due to the element of changing expectations

in time charter rates they tend to show a higher risk as reflected by a relatively

high variation. With respect to vessel size the paper can show that generally the

variation of rates decreases with vessel size, i.e. operating smaller vessel tends to be

a less risky business. According to the author the economic reasoning behind this

is the higher flexibility of smaller vessels in terms of cargo and port restrictions.

The first paper to investigate vessel specific differences in charter rates is Tam-

vakis (1995). Following the introduction of the Oil Pollution Act in 1990 (OPA90)
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the paper addresses the question whether there is a two-tier spot freight market

for crude oil carriers, i.e. does the market pay a premium for employing younger,

high quality vessels? The study uses two-sample t-tests to compare a variety of

sub-samples from a dataset of approximately 12,000 fixtures from 1989 to 1993.

Sub-samples are differentiated with respect to US-bound fixtures, size in dwt, hull,

age and pre-or post-OPA90 period. The results of the analysis do somewhat vary.

On one hand a difference between non-US-bound and US-bound fixtures can be

shown. On the other hand, apart from some cases, there is no consistent difference

between younger, double-hull and older single-hull vessels. As some of the flaws of

the study the author mentions weak market conditions which disfavour freight rate

discrimination. Moreover, due to the lack of data, not all relevant vessel character-

istics could be included into the study.

Strandenes (1999) builds upon the Tamvakis (1995) idea of a two tier tanker mar-

ket. The paper develops a computable equilibrium model which is used to simulate

freight determination in tanker markets segmented with respect to quality restric-

tions. The model is calibrated to the market conditions in the second half of 1991.

Four different scenarios are simulated: (a) rise in US-imports, (b) reduction in qual-

ity tanker tonnage, (c) restrictions on the use of old tankers in European ports, (d)

replacement of low quality tankers in the case of restrictions on the use of low quality

tankers in Europe. The main results of this study are that it requires substantial

changes in the markets to induce two-tier freight rates. Moreover, increasing de-

mand must come at the cost of demand for standard tankers. Furthermore, it can

be shown that a situation with a two-tier market is not a lasting one. The paper

concludes that given the difficulties of assessing the quality of a vessel it is possi-

ble that quality tankers may obtain marginally higher returns due to the greater
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flexibility. This in combination with the assumption of a preference of high quality

vessels indicates shorter idle periods i.e. a higher utilization of quality vessels.

One of the most recent papers analysing vessel specific differences in charter rates is

Tamvakis & Thanopoulou (2000). After Strandenes (1999) having established the

the idea of a two-tier tanker market theoretically, Tamvakis & Thanopoulou (2000)

extended the 1995-idea to the Panamax and Capesize dry bulk market. Theory

suggests that due to new environmental requirements and due to the loss of image,

also dry bulk charterers prefer to employ younger and high quality vessels and are

willing to pay a higher price for this increased environmental safety. Grouping the

available data on voyage fixtures into fixtures for vessels younger and older than 15

years the paper finds empirical evidence for the two-tier market hypothesis during

the recent history for the Panamax segment. However, without controlling for other

relevant vessel and contract specific factors, there seems to be no evidence in the

Capesize segment for a two-tier market in the older history.

3.3 The formation of time charter rates

The Panamax dry bulk freight market is said to be an almost perfect market in

the sense that there is a huge number of buyers and sellers, and prices i.e. freight

rates are purely determined by supply and demand for transportation. From an

economists point of view this is a very desirable condition since it eases the mod-

elling and forecasting of the market. The freight market is split up into two parts

defined by the type of transaction traded. Under voyage charter contract the shipper

buys transport from the shipowner at a fixed rate per ton of cargo to be transported.

Under the time charter contract a ship is hired for a fixed rate per day and the char-

terer gets full operational control over the vessel.
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A time charter contract involves risk for both parties. Whereas the shipowner pays

the operational costs, the charterer has to pay for all voyage costs. Hiring a vessel

can be a somewhat difficult thing since any problems that are likely to happen have

to be considered to save the costly process of arguing about the financial responsibil-

ity in case something unusual happens. The details of a time charter contact are set

out in the charter-party. A thought-through charter-party will provide clear agree-

ments on the legal responsibility in any event. In the charter-party the shipowner

states the vessels speed, consumption and cargo capacity. Additionally, the charter

party contains information on the conditions of lay-up and off-hire and any kind of

termination agreement. The terms of hire will be adjusted if the vessel does not

perform according to these standards. Those factors are expected to influence the

charter rate, i.e. an increasing charter rate with speed and capacity and a decreasing

rate with respect to consumption. Under time charter contract the charterer takes

the risk of changes in bunker costs. Hence, any charterer might not be willing to pay

as much for a vessel with high consumption. Moreover, it needs to be considered

that consumption and speed are highly correlated.

Charter rates are freely negotiable. However, since the starting point for the char-

ter negotiations is the ”last done”, i.e. the last fixture, there is a strong interest

in reports of recent transactions. A typical dry cargo market report as nowadays

available through a variety of sources, includes a commentary on the general market

conditions followed by a listing of all recent transactions which are typically divided

into the different dry bulk cargoes and period charter fixtures. A unifying measure

for the current and past market conditions is the Baltic Freight Index (BFI). The

BFI is a statistical index set up in 1985, covering freight rates for eleven trade routes
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of which four are grain routes, three coal routes, one iron ore and three time charter

routes. The index is calculated as a weighted average of actual rates on the different

trade routes. If no fixtures are available, a panel of brokers independently estimates

what the charter rate would have been.

Figure 3.1: The dry bulk Panamax market, source: Clarksons Research

Figure 3.1 shows the development of the Panamax dry bulk market for the period

from October 2003 to August 2007. The bars reflect the level of market activity

as number of fixtures on the primary axis. The line shows the average of the four

Panamax TC routes of the Baltic Panamax Index measured in USD/day on the

secondary axis10. As can be seen the level of market activity is positively correlated

to the level of time charter rates. The period under consideration covers a full cy-

cle beginning with the market peaks in 2003/04 through the market downturn of

2005/06 reaching another peak in 2007.

Another important factor to the determination of time charter rates is the element

10Clarkson Research Ltd.: Monthly time series number 43444.
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of expectations in time charter and forward contracts. An owner closes a time char-

ter contract if he is not willing to bear the risk of varying spot rates. The rate on

which the owner and the charterer agree, can therefore be interpreted as the average

markets expectations for the charter period. Any shipowner closing a time charter

contract does not expect the market to show higher average spot rates (incl. risk

adjustment). Otherwise he would expect to be better off in the spot market. How-

ever, the charterer expects the market to show higher average spot rates than the

rate agreed upon. Another important point to be considered with respect to market

expectations is, how many days or month in advance the contract has been closed.

Since the market rate will change until the transportation service is provided, some

adjustment to the rate agreed upon compared to fixtures with immediate delivery

have to be expected. Since the term structure is typically backward-dated, deliveries

further into the future will have a lower period rate11.

However, in practice things get more complex. Due to environmental safety legisla-

tion the charterer bears the costs of having an unsafe and/or old vessel employed. In

case of damage the operator faces e.g. the loss of the cargo, costs of re-establishing

the environment, a loss of corporate image and increased operating cost due to

higher insurance premiums. Therefore, one might expect a charterer be willing to

pay higher rates for vessels which do not bear those risks. Given such preferences

the market exhibits necessary incentives for operators to aim for more environmental

safety while operating their vessels.

11For more details on the time-varying risk premium and forward freight rate dynamics see Kavus-
sanos (1997), Adland (2002) and Koekebakker & Adland (2004).

64



3.4 Determinants of physical dry bulk time

charter rates

Factors influencing physical time charter rates can be divided into three factor

groups. First, there are macroeconomic measures reflecting the general state of

the market. Second, there are microeconomic factors accounting for contract and,

third, vessel specific effects. To capture the general market movements we use the

Baltic Panamax Index, which is the average of the four Panamax routes from the

Baltic Freight Index. Moreover, due to the speculative element of forward and time

charter contracts we need to consider the timing of the contracts in terms of how

many days forward to delivery has the contract been closed and for what time period.

Together with the place of delivery these factors account for the contract specific

effects on period rates. Vessel specific but somewhat unsurprising the size is the

most crucial individual factor which influences the charter rate. However, much of

the size effect is redundant since we analyse Panamax bulker. Hence, we will observe

relatively small size differences only, which do not necessarily make a difference with

respect to cargo and port flexibility. If the hypothesis of the two-tier market stands,

age as the most important indicator of a vessels quality, has a significant impact on

rates. Other vessel specific factors expected to affect time charter rates are speed,

consumption, horsepower, flag and classification society.

The dataset used in this analysis has been provided by Clarksons Research. It

contains 2,328 observations on Panamax dry bulk TC-fixtures from October 2003 to

August 2007. Full information is available for the time charter rate, Baltic Panamax

Index, and the size of the vessels contracted. For the charter length, the number of

days forward, age and fuel consumption only limited information is available.
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Table 3.1: Summary statistics

Variable Unit N Mean Std.Dev. Min Max

Charter rate USD/day 2,328 32,629 11,203 10,000 72,500
Baltic Panamax Index USD/day 2,328 34,764 11,576 15,055 59,490
No. of days forward Days 1,754 8.83 9.86 0 59
Charter length Days 1,597 244.72 169.49 30 730
Size dwt 2,328 70,393 7,677 50,149 79,900
Age years 1,824 6.28 5.38 0 25
Consumption tonnes/day 637 32.50 2.77 25.50 39.90

Table 3.1 shows the summary statistics of the dataset after 5% from the bound-

aries of the sample have been dropped12. It can already be seen that minimum

and maximum charter rates for individual fixtures deviate by several thousand USD

per day from the market average, 10,000 USD/day and 72,500 USD/day vs. 15,055

USD/day and 59,490 USD/day, respectively. This is more than we would expect

those differences to be from simple arbitrage. On average, fixtures are closed about

9 days prior to delivery with a natural minimum of 0 and a maximum of about

2 month. The charter length varies between 1 month and 2 years.13 The vessel

size ranges from about 50’ dwt to 80’ dwt having an age between 0 and 25 years.14

Information about fuel consumption given in metric tonnes per day is only available

for 637 observations in the dataset.15

In addition to the variables presented in Table 3.1 the dataset includes informa-

tion about the place of delivery (PoD) for each fixture. Place of delivery, especially

12Low data-density in the boundaries of the sample leads to broad confidence intervals and in-
conclusive results in the regression to come in Section 3.5. Therefore we dropped 5% of the
observations from each variables low data density regions.

13Please note that the dataset includes longer charter periods of up to 5 years. However, those
have been dropped due to low data density.

14Please note here that it is necessary to bear in mind that younger vessels tend to be larger. This
issue and the correlation of the dependent variables in general will be addressed below.

15The following regressions have been carried out with different numbers of observations and
general model comparison can only be of limited scope.
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Atlantic or Pacific delivery are expected to make a difference to the charter rates

since market equilibria in these two basins can deviate by several thousand USD per

day (see Timmermann & McConville (1996) and Rowlinson (1996) for more details

on the issue of allocation of quality tonnage). All delivery places have therefore

been grouped into Atlantic, Pacific and worldwide delivery according to geographic

vicinity. As a result, 29.1% of the dataset are Atlantic deliveries, 63.7% Pacific

deliveries and 7.2% unspecified worldwide deliveries.

Figure 3.2: Timecharter rates - market, contract and vessel-factors

Figure 3.2 presents an graphical overview of the data. The upper left panel presents

the obviously linear relation of single fixture rates to the general market level. Of
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same obviousness is the large and increasing variation around the market average, in-

dicating heteroscedasticity with respect to the Baltic Panamax Index. The top-right

panel shows the time charter rate against the number of days forward to delivery

a contract has been fixed. The data density decreases with forward days and there

seems to be no visible nexus to charter rates. By contrast, the charter length in

the mid-left panel shows a negative relation with time charter rates and cluster

points at around 6, 12 and 24 month, which on one hand shows the habitualness

of those charter length and on the other hand that there are many fixtures with

”non-standard” charter length. The mid-right and the bottom-left panel show the

scatterplot of charter rate against size and age respectively. The first shows two size

clusters at around 49’ to 56’ dwt and 67’ to 78’ dwt, corresponding to the small and

large standard Panamax sizes. Moreover, the low density data area at around 57’

dwt to 67’ dwt indicates that non-standard sized vessels seem to receive lower time

charter rates than the former standard sized vessels. The later of the two panels

shows a slight negative nexus to charter rates from the age of about 10 to 15 years16.

As mentioned above and confirmed through the correlation analysis below, size and

age are negatively correlated. Thus, while analysing any age specific effect to rates

we necessarily need to control for size. The last panel shows that consumption seems

to be completely unrelated to time charter rates.

To complement the graphical analysis Table 3.2 presents the pairwise correlations

between all factors of physical time charter rates under consideration. Following

the graphical analysis above we can identify relevant correlations17 (highlighted in

bold numbers). The number of days forward and charter length are negatively cor-

related to charter rates with an insignificant correlation coefficient for days forward.

16As age is measured in years as integer we do observe a peculiar shape of the scatterplot.
17Please keep in mind that correlation coefficients as a measure for any linear nexus lack the ability

to detect most multivariate and/or non-linear relations between two or more variables.
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Table 3.2: Correlation

Charter
rate

BPI No. of
days

forward

Charter
length,
days

PoD
Pacific

PoD
At-

lantic

PoD
world-
wide

Size,
dwt

Age,
years

Con-
sumption,
t/day

Charter rate 1
BPI 0.7828 1
Days forward -0.0614 0.0843 1
Charter length -

0.2271
0.1831 0.2906 1

PoD Pacific -0.0736 -0.0983 -0.0932 -0.0787 1
PoD Atlantic 0.1080 0.0811 -0.0717 -0.0304 - 1
PoD worldwide -0.0619 0.0430 0.3359 0.2238 - - 1
Size 0.1620 -0.0562 0.0394 -0.0401 -0.0532 0.0536 0.0039 1
Age -

0.2112
0.0487 -0.0167 0.0036 -

0.1075
0.1024 0.0198 -

0.1941
1

Consumption -0.0758 0.0479 0.0285 -0.0045 0.0030 0.0080 -0.0221 0.0489 0.1575 1

The dummy for Atlantic delivery is positively correlated to the dependent variable.

Same holds for the size of a vessel. Age is negatively correlated to charter rate with

a correlation coefficient of -0.21. Supporting the graphical analysis, consumption

shows a very low correlation coefficient of -0.08. As expected age and size are neg-

atively correlated. Age is also negatively related to Pacific delivery and positively

correlated to Atlantic delivery. Thus, following the argument of Timmermann &

McConville (1996) there seems to be some preference for younger Panamax vessels

in the Pacific basin. Charter length is also positively correlated to BPI and number

of days forward, i.e. in a strong market, participants seem to prefer longer fixture

periods which in turn reflects increased time charter market activity during strong

market periods as shown in Figure 3.1. At the same time number of days forward

and charter length seem to be positively related. Unsurprisingly, worldwide delivery

and the number of days forward and charter length are positively correlated. This

is due to the fact that long-term contracts are usually fixed long before the actual

place of delivery is known.
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3.5 Quantitative models of time charter rates

In Section 3.4 all factors to physical time charter rates have been divided into three

factor groups. First, there are measures of the general state of the market. Secondly,

there are factors which can describe the specific contract that has been closed and

third, there are vessel specific factors. According to those factors group we classified

”market models”, ”market-contract models”, ”market-vessel models” and ”market-

contract-vessel models.

3.5.1 The market factor model

The market model shown in Equation 3.1 tries to explain any contract specific time

charter rate merely by the general state of the market. Where RATEi is the time

charter rate of fixture i, the state of the Panamax market is measured by the average

of the four Panamax TC routes of the Baltic Panamax Index measured in USD/day,

BPI as explained above and g(.) is the link function18.

g(E(RATEi|.)) = γ0 + s(BPIi) (3.1)

Table 3.3 presents the regression results for Model 3.1. The upper panel shows

the results for the parametric terms which, in this case, is just the constant term

of the regression. The lower panel presents the results for the smooth component

s(BalticPanamaxIndex). The effective degrees of freedom of 8.4 indicate a clear

non-linearity (see Section 2.2.7). Moreover, the smooth term is highly significant.

The R2 is 78.9%. Thus about 79% of the variation in charter rate fixture is due to

the general market level. More interestingly, it follows that 21% of the differences

are due to other sources of charter rate determination.

18The natural logarithm, ln(.) has been used as link function for all models.
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Table 3.3: Results for the market factor model

Parametric terms
Estimate p sig.

Intercept 10.333 0.000 ***

Smooth terms
Effective DF p sig.

s(Baltic Panamax Index) 8.422 0.000 ***

R2 78.9%
GCV score 0.026214
N 2328

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1

Figure 3.3: Smooth of Baltic Panamax Index
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Looking at Figure 3.3 shows that despite the technically high non-linearity, as ex-

pected the dependence of individual fixtures to the general market level is almost

linear and semi-parametric modelling should not make much of a difference for the

analysis. However, extending the framework justifies the use of non-linear estimation

techniques.

3.5.2 The market-contract model

Equation 3.2 presents the model setup including the contract specific factors, number

of days forward FORWARDi, charter length LENGTHi and place of delivery Ipodi

as dummy variables.

g(E(RATEi|.)) = γ0 + s(BPIi) + s(FORWARDi)

+ s(LENGTHi) +
∑
pod

γpodI
pod
i (3.2)

Supporting the results of the correlation analysis, Pacific delivery tends to lead to

a lower charter rate than Atlantic delivery while the worldwide delivery dummy is

insignificantly negative. Compared to the pure market factor model the effective

degrees of freedom of the smooth for BPI slightly decreased. The number of days

forward to delivery and the charter length are highly significant with 3.5 and 5.6

effective degrees of freedom, respectively.

Please note that the number of observations used to estimate this model is 1,597

compared to 2,328 observation in the previous model. Thus, the increased R2 of

82.8% is not necessarily due to increased explanatory power of the model including

contract specific factors.

The upper right panel of Figure 3.4 presents the smooth of FORWARD. The

number of days forward to delivery seem not to make a difference between 0 and 20

72



Table 3.4: Results for the market-contract model

Parametric terms
Estimate p sig.

Intercept 10.264 0.000 ***
PoD Pacific -0.019 0.005 **
PoD worldwide -0.016 0.398

Smooth terms
Effective DF p sig.

s(Baltic Panamax Index) 5.317 0.000 ***
s(No. of days forward) 3.451 0.000 ***
s(Charter length) 5.571 0.000 ***

R2 82.8%
GCV score 0.015229
N 1597

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1

Figure 3.4: Smooths and partials of market-contract model
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days. However, for 20 and more days forward to delivery charter rates seem to receive

a discount. Same holds for the charter length presented in the bottom-left panel of

Figure 3.4. Due to the data density the confidence band shows very narrow parts

at 6, 12, and 24 month as expected. Furthermore, we observe decreasing charter

rates with increasing contract periods. The bottom-right panel shows the partials of

g(E(RATEi|.)) with respect to the PoD dummy variables. Pacific delivery results in

a lower period charter compared to Atlantic delivery with worldwide delivery being

insignificant.

3.5.3 The market-vessel model

Equation 3.3 presents the market-vessel model which, contrary to the above, assumes

independence of contract specific factors and aims to explain time charter rates by

vessel specific factors age, size and consumption.19

g(E(RATEi|.)) = γ0 + s(BPIi) + s(SIZEi) + s(AGEi)

+ s(CONSUMPTIONi) (3.3)

As can be seen from Table 3.5, size, age and consumption are significant factors

to Panamax dry bulk charter rates. However, they exhibit different degrees of

non-linearity as expressed through effective degrees of freedom of 2.6 and 2.2 for

SIZE and AGE as well as 5.8 for CONSUMPTION . The number of observations

included in the regression further reduced due to only 637 observations for the

vessels’ consumption (see Table 3.1). Despite this theR2 did not change significantly.

19In addition to the factors included in (3.3) we also ran regressions considering flag, grain ca-
pacity, draft, speed, horsepower and engine type. None of those variables turned out to be
significant or altered the estimation results of the above model setup significantly. Contrary to
our expectation flag as indicator for quality and the design speed did not add additional power.
Substituting consumption by speed did show the expected significant effect. However, adding
consumption to this model design made the speed variable redundant.
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Table 3.5: Results for the market-vessel model

Parametric terms
Estimate p sig.

Intercept 10.237 0.000 ***

Smooth terms
Effective DF p sig.

s(Baltic Panamax Index) 5.472 0.000 ***
s(Size) 2.642 0.000 ***
s(Age) 2.199 0.000 ***
s(Consumption) 5.846 0.000 ***

R2 82.6%
GCV score 0.015015
N 637

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1

Figure 3.5 shows that, compared to Model 3.1 and 3.2, the behaviour of the BPI

smooth does not change significantly. The smooth of size exhibits a slight s-shaped

nexus to charter rates. Age and consumption are monotonic negatively related to

charter rates. From the age of 10 years vessels seem to achieve lower period rates.

Consumption does not seem to have any effect in the range of 30 mt/day to 35

mt/day. However, vessels with a very low or clearly sub-standard consumption

receive a premium/discount, respectively. We observe a negative slope between

26 mt/day & 30 mt/day and an even more pronounced negative slope between 35

mt/day & 40 mt/day.

3.5.4 The market-contract-vessel model

Given the above results and as natural extension of the simple market factor model

we set up the market-contract-vessel model. This comprehensive model version aims

to accommodate all relevant factors of physical Panamax dry bulk charter rates as

identified above. Moreover, given the GAM model structure it includes all relevant
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Figure 3.5: Smooths of market-vessel model

information without making specific assumptions about the functional form of any

of those relations apart from additivity of the model terms.

g(E(RATEi|.)) = γ0 + s(BPIi) + s(FORWARDi) + s(LENGTHi)

+
∑
pod

γpodI
pod
i + s(SIZE) + s(CONSUMPTIONi) + s(AGEi) (3.4)

Table 3.6 presents the results of Model 3.4. Compared to the market-contract

model the parametric components did not change. Pacific delivery can be expected

to result in a 2% lower period rate than Atlantic delivery. Worldwide delivery does

not make a difference. The smooth term of BPI is still significant with an EDF

of 8.4. Number of days forward and charter length show the same significant and

non-linear effect as in the market-contract model. Contrary to Model 3.3 the smooth

of size shows a significant and almost linear behaviour with EDF of 1.5. The effect

of consumption to charter rates also is less pronouced than in the previous model.
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Table 3.6: Results for the market-contract-vessel model

Parametric terms
Estimate p sig.

Intercept 10.250 0.000 ***
PoD Pacific -0.020 0.010 *
PoD worldwide -0.001 0.9649

Smooth terms
Effective DF p sig.

s(Baltic Panamax Index) 8.350 0.000 ***
s(No. of days forward) 2.799 0.002 **
s(Charter length) 4.820 0.000 ***
s(Size) 1.532 0.000 ***
s(Consumption) 3.807 0.009 **
s(Age) 8.871 0.000 ***

R2 90.9%
GCV score 0.0083034
N 637

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1

However, we still observe a non-linear and significant smooth of consumption. The

most interesting effect can be observed for the smooth of age which now has 8.9

EDF compared to 2.2 EDF in Model 3.3 on a highly significant level. The full

model shows high explanatory power with an R2 of 91%.

Figure 3.6 shows the smooths and partials of the market-contract-vessel model.

Compared to previous model setups the smooth of all but one variable did not

change significantly despite the use of sub-samples of significantly different size.

Therefore, all effects seem to be reasonably robust against the inclusion of additional

variables and alternation of model setup. Furthermore, there are no indications of

model over-fitting which could have resulted in unexpected and drastic changes in

the functional form of the single smooths. Most interesting is the resulting shape of

the smooth of age.
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Figure 3.6: Smooths and partials of market-contract-vessel model

78



Figure 3.7: Smooths of age from market-contract-vessel model

Comparing Figure 3.7 to the lower left panel of 3.5 where charter rates seemed to

decrease almost linear from the age of 7 years, the smooth now shows a straight

and constant line until the age of 15 years. Starting almost exactly at the age of

15 years, vessels seem to receive a discount in charter rates until the age of 25 with

a plateau at around 20 to 22 years. However, despite 5% truncation of low data

density areas, the confidence bands get considerably large at the right hand side.

The confidence band is large enough to allow for a monotonic shape of the smooth

of age. Additionally, as there is not theoretical justification, we conclude that the

plateau must be data driven.

To sum up, there seems to be a very pronounced two-tier market where the first tier

is relevant for vessel being 15 years or younger. All vessels in the second tier being

older than 15 years do not just receive a fixed discount, the charter rates rather

seem to be discounted depending on the actual age, 15 + x.
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3.6 Summary and concluding remarks

In evaluating vessel and contract specific effects to physical dry bulk charter rates the

contributions of this chapter are twofold. While applying semi-parametric GAMs to

a cross sectional dataset of actual Panamax dry bulk fixtures it can present strong

empirical evidence for the existence of a two-tier dry bulk time charter market. Sec-

ondly, this chapter presents a quantitative model which is of potentially great use

and importance for the valuation of FFAs and freight rate options. Controlling for

all relevant effects it is capable of quantifying differences due to the quality of any

given vessel.

Other than in the tanker markets where a couple of prime charterers have strong

influence on the markets, in the bulk segment there are hardly any to the end con-

sumer known brand names which could experience a loss of corporate image. Thus

it is questionable if there are incentives to renew the fleet. Differences in rates for

old and modern vessels, not just in depressed markets as opposed to the results of

Tamvakis & Thanopoulou (2000), turn out to be significant. However, the ques-

tions of whether those differences are big enough remains unanswered, since they

would need to compensate for higher capital costs and cash flow risks in volatile

markets. Moreover, any new investment runs a risk of appropriate timing, thus run-

ning an older fleet might still seem more profitable to the operator/investor. The

risk-adjusted incentives to demonstrate more than the minimum required sensitivity

for safety issues do not seem to exist in the markets.

Despite this and contrary to the expectations of Tamvakis & Thanopoulou (2000)

that a two-tier market is unlikely in the near future, the results of this chapter indi-

cate the existence of a trend towards a stronger differentiation of quality tonnage in
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the dry bulk segment. Therefore, it is very well possible to create a two-tier market

which provides the necessary incentives to increased safety. However, for the time

being the given financial incentives do not seem to fulfil the condition of sufficiency

to show the effects in desired extent to dry bulk safety.

For future research it would be interesting to find out whether the trend towards

stronger discrimination of ”risky” tonnage is persistent. The existence of a three-tier

or even n-tier market would extend the validity of the two-tier market theory and

its implications.
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4 Second hand chemical tanker
price determination

The contents of this chapter are based on ”A multivariate semi-parametric approach
to chemical tanker desktop valuations” resubmitted to Transportation Research Part
E written in co-authorship with Dr Roar Adland.

4.1 Introduction

The second hand market, also known as the sale and purchase or S&P market, fa-

cilitates easy entry and exit of investors from the shipping industry but also allows

investors to switch between the various sub-sectors of the market. The volume of

ships transacted varies substantially, both with the state of the relevant freight mar-

ket and between segments, but is of course largely proportional to fleet size. This

means that activity is focused in the large and homogeneous tanker and bulk carrier

sectors, where price discovery functions sufficiently well in the presence of a large

number of buyers and sellers. For shipping sub-sectors with smaller fleets and a

higher degree of specialisation, which typically leads to a wider variation in techni-

cal ship specifications, the market is much less liquid and deals may be concluded

privately. The resulting lack of price transparency and difficulties in comparing

transactions can render time series of vessel values either impossible to compile or

of dubious quality, which creates challenges for both researchers and financial insti-

tutions that attempt to manage the risk in ship mortgage portfolios.

According to Stopford (1997), there are four main factors driving second hand prices

in shipping: freight rates, age, inflation, and expectations. Peaks and troughs in the
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freight market tend to quickly work their way through into the S&P market, and

freight rates are relatively highly correlated with vessel values. As far as the effect

of aging goes, brokers who value ships tend to assume linear depreciation down to

scrap value over the expected economic life of the vessel (around 20 - 25 years for

bulk ships). However, in addition to these generic factors that influence ship values,

there are several important ship-specific factors that will influence the actual price

a vessel will obtain in the market. These typically include the yard and country of

build, the ship’s cargo capacity relative to its peer group, hull type (single versus

double hull for tankers), the ship’s cargo-handling gear (e.g. the number of cargo

pumps and their capacity), and its speed and fuel consumption. Such ship-specific

characteristics generally become more important in the small and highly specialised

sectors of the shipping industry such as the reefer, chemical carrier and gas carrier

markets.

Research into the formation of second hand ship prices has hitherto been based

on time series of values for generic vessels in the tanker or dry bulk sectors (see,

for instance, Tsolakis et al., 2003; Veenstra, 1999; Glen, 1997; Kavussanos, 1996a,

1996b, 1997). This chapter proposes an extension of the work of Adland & Koeke-

bakker (2007) who propose a non-parametric ship valuation model that is based on

data from actual vessel sales in the bulk carrier market. By using the raw sales data

directly, they sidestep the potential empirical problems induced in the literature

by the use of time series based on shipbrokers’ estimates. However, a pure non-

parametric model allows only a limited number of dimensions and, thus, Adland &

Koekebakker are unable to incorporate factors other than the size and age of the

ship and the state of the relevant freight market.
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This chapter extends this research and sidesteps the data-issue by using a semi-

parametric generalized additive model which, under the assumption of separable

factors, allows for a much greater number of pricing variables. By applying this

methodology to the chemical tanker second hand market it can be shown that the

effects of several variables which have been expected to influence second hand prices

can be correctly quantified. This is the first academic work to use semi-parametric

models for vessel valuations, thereby facilitating the study of vessel valuation at

the microeconomic (vessel-specific) level. The methodology of generalized additive

models (GAM) is relatively new to maritime economics and, while it has been suc-

cessfully applied in the modelling of operational expenses of merchant vessels (see

Koehn, (2008)), this is the first academic work to model the prices of physical assets

in a GAM framework.

A vessel valuation model that can account for generic market factors as well as

vessel-specific characteristics is of potentially great use and importance for shipown-

ers, brokers and shipping banks alike, in particular when performing ”desktop valu-

ations”20 of specialised ships where reliable brokers estimates are costly or perhaps

not available. Additionally, it could be a tool in producing forecasts of vessel values

conditional on freight rate forecasts, and could be used for the pricing of derivatives

based on second hand values.

The remainder of this chapter is structured as follows. Section 4.2 provides a review

on the existing literature on the modelling of second hand ship prices. Section 4.3 ex-

amines the determinants of second hand prices for chemical tankers. A description

of the dataset and the methodology can be found in Section 4.4 and 4.5, respec-

20Valuations are referred to as ”desktop-valuations” if the price assessment does not include a phys-
ical inspection of the ship. Most brokers’ valuations are desktop valuations, with inspections
being the responsibility of the buyer prior to contact signing.
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tively. The estimation results are presented in Section 4.6. Section 4.7 summarizes

and contains concluding remarks.

4.2 Literature review

There are two distinct lines of research on the formation of second hand values in

shipping. The recent literature, starting with Hale & Vanags (1992), focuses on the

analysis of the time series properties of vessel prices. Glen (1997) tests for efficiency

in the second hand market for bulk ships using the Johanssen cointegration ap-

proach. He concludes that the existence of cointegration does not necessarily imply

market inefficiency, if the factors that create the common trends are stochastic in

nature, and argues that the empirical evidence is consistent with market efficiency in

the long run. Kavussanos (1996a, 1996b, 1997) uses ARCH models to describe the

dynamics of volatilities in the second hand market for bulkers and tankers. He finds

that the nature and magnitude of the volatility varies across vessel sizes. Veenstra

(1999) finds that second hand values are integrated I(1) and seeks to find a co-

integrating relationship between the second hand price, the newbuilding price, the

time charter rate, and the scrap value. Veenstra distinguishes between replacement

sales and speculative sales by the age of the vessel.

The second line of research focuses on econometric models of the market struc-

ture in shipping. Charemza & Gronicki (1981) propose equations where ship prices

are determined by freight rates and activity rates. Beenstock (1985) argues that

supply and demand analysis is not sufficient for the modelling of ship prices and

that ships should be considered as just another capital asset available to the global

investor. Based on traditional portfolio theory, Beenstock proposes a framework

where the share of ships in the world’s total wealth varies directly with the ex-
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pected return on ships as capital assets and is inversely related with the expected

return on alternative investments. This implies that asset prices depend on expec-

tations. Beenstock & Vergottis (1989a, 1989b, 1992, 1993) develop this idea further

in subsequent papers. Strandenes (1984, 1986) regards second hand values as a

weighted average of short and long-term profits, adjusted for the real rate of depre-

ciation. The short-term profit is determined by the current time charter equivalent

(TCE) spot freight rate, while long-term profits depend on the expected long-run

equilibrium TCE. In Strandenes (1986) the second hand market is integrated with

the newbuilding market by relating the long-run equilibrium rate to the newbuild-

ing price. For analytical convenience, Strandenes assumes infinite economic life.

However, Kavussanos & Alizadeh (2002a) show that this assumption can have a

significant impact on the empirical results. Tsolakis et al. (2003) attempt to bridge

the gap between the structural and time series approach to second hand price mod-

elling. They develop a vector error correction model(VECM) with a structure that

is based in maritime economic theory. Their main finding is that the second hand

prices in different subsectors react differently to the underlying fundamental factors.

Adland & Koekebakker (2007) depart from the use of time series analysis and static

econometric market models and propose to model ship prices in a cross sectional

framework using actual ship sales data. They use a cross sectional dataset of sales

and purchases of Handysize dry bulk vessels for the period 1993-2003. Applying a

multivariate density estimation approach they estimate a two- and a three-factor

model of second hand prices. They propose to use non-parametric multi-factor

models of generic pricing variables (ship size, age and freight rate) and find that

the resulting value surfaces can be non linear. However, they note that despite the

relative homogeneity of Handysize dry bulk vessels a three factor model is not ca-
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pable of sufficiently explaining the observed vessel prices in the market. This is due

to the remaining factors that an experienced shipbroker will take into account e.g.

engine make, fuel consumption building yard or cargo gear. Their non-parametric

approach suffers from being data intensive and unable to cater for the multitude

of ship-specific technical specifications that may affect ship values, in particular for

highly specialised and sophisticated ships. In light of the literature reviewed here,

the contribution from the present chapter is primarily twofold. First, we apply,

for the first time, a semi-parametric generalised additive model to the task of ship

valuation. Second, we step outside of the comfort zone of tankers and bulkers and

analyse ship price formation in what is probably the most sophisticated of shipping

sectors, that is, chemical carriers. This enables us to draw conclusions on the, possi-

bly non-linear, impact of pricing variables that are not necessarily easy to quantify a

priori, such as the effect of cargo diversification through the number of cargo tanks

and pumps.

4.3 Determinants of chemical tanker second hand

prices

There is a broad range of factors that might influence the second hand price of a

vessel and chemical tankers in particular. Among them are measures for the current

state of the market and the market participants’ expectations, specifications of the

vessel such as size, hull, tanks coatings, measures for the quality of a vessel like for

instance yard and country of build, as well as regulatory factors like for instance

the IMO class. This section compiles a variety of factors and shows the different

effects that have to be expected. It does not claim to be complete but includes the

most important specifications and configurations of chemical tankers. The first and
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most important factor to the formation of second hand prices for any type of vessel

is the current state of the market in terms of current and expected earnings. As

mentioned above there have been a couple of papers which use investment theory to

explain this relationship. The nexus is intuitively clear, empirically well established

and widely accepted among theorists and practitioners.

The literature on the formation of second hand prices for generic vessels could es-

tablish an intuitively correct and empirically robust relation between newbuilding

and second hand prices, see for instance Tsolakis et al. (2003). Another naturally

important factor is the size of the vessel. However, there is the question of which

measure is the best to use. For chemical tankers we can choose between dead weight

tonnes, cubic meters or gross registered tonnes or a combination of these. Of the

same natural importance for the formation of second hand prices for any given vessel

is the age. Given a vessels life expectancy any buyer is willing to pay a price which

enables the investor to gain some given desired profit over the rest of the vessels

lifetime. Clearly this also relates to the buyers expectations with respect to the

earnings for this period, as explained above. Especially for tankers and therefore

for chemical tankers, the hull type is another important price determinant. Since

international safety regulations restrict the transport of certain goods with single

hull, double sides and double bottom vessels, any potential buyer is willing to pay

more for a full double hull tanker.

The carriage of chemicals can be a somewhat complicated affair. Different chemicals

require different tanks and coatings. Since the cargo lots are smaller than in dry

bulk or crude oil transportation, it is often necessary to carry different chemicals

on one trip to make it economically worthwhile. It is, however, very difficult to
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say which coating is worth more than another since some chemicals require epoxy

coating and some might require steel or zinc coatings.

Table 4.1: Suitability of coatings, Source HSH Nordbank AG

Coating Suitability Comments

Epoxy Alkalis, glycols, seawater, ani-
mal fats, vegetable oils

Can pick up product traces.
Unsuitable for benzene,
toluene, ethanol and methanol.

Stainless steel Sulphuric acids, nitric acids,
Phosphoric acid, caustic soda,
wine

Corrosion has to be monitored.
Seawater is especially corro-
sive.

Polyethane Alkalis, glycols, seawater, ani-
mal fats, vegetable oils

Cleans easier than epoxy.

Zinc Aromatic hydrocarbon, ben-
zene, toluene, alcohols, ketones

Moisture in tank can result in
some halogenated compounds
reacting with cargo to produce
acids which damage coating.
Unsuitable for acids, seawater,
most vegetable oils and animal
fats.

Table 4.1 gives an overview of different coatings and their compatibility with dif-

ferent chemicals. However, not having any coatings or the wrong coatings should

decrease any vessels value, and vice versa. The same holds for the number of tanks

and cargo separations. Ideally any vessel should have an optimal number of cargo

tanks and separations with different coatings. A certain degree of diversification

among coatings and number of tanks and cargo separations should make the ves-

sel worth more since it is more flexible with respect to the cargoes which can be

transported. The same holds for the ability of any vessel to handle the cargo i.e. to

loading and unloading. For a chemical tanker the most important means of cargo

handling are the pumps. However, having one powerful pump on-board enables the

operator to load and unload only one cargo type at a time. Having many but not

so powerful pumps enables the operator to load and unload different cargoes but
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it’ll need more time. As will be shown below it is possible to quantify this effect by

using the idea of diversification and an optimal combination of number of pumps

and pump capacity. Apart from the ability of a vessel to carry certain chemicals

there are a different number of safety regulations which may apply to the transport

of certain chemicals. The IBC code defines three types of chemical tankers called

IMO1, IMO2 and IMO3. These codes relate to the ability of vessels of a given size to

survive an assumed damage in certain parts of their length and to the location of the

cargo tanks for the most dangerous goods to be carried. IMO1 type vessels must be

able to survive assumed damage anywhere their length and cargo tanks for the most

dangerous goods should be outside the extent of the assumed damage and at least

760mm from the vessels shell. Other cargoes which present a lesser hazard can be

carried in tanks next to the hull. The same holds for IMO2 type vessels larger than

150m with one exception, vessels less than 150m should survive an assumed damage

anywhere their length except when it involves the bulkheads bounding machinery

spaces located aft. IMO3 type vessels larger than 125m should survive an assumed

damage anywhere their length except it involves the bulkheads bounding machinery

spaces. Vessels smaller than 125m should be able to survive an assumed damage

anywhere their length, except it involves machinery spaces. There is no requirement

for cargo tank location for IMO3 type vessels. Regarding the physical quality and

status of maintenance of any vessel the country of build and the classification society

may provide some information with respect to the second hand price which may be

achieved during a sale. Potential buyers are willing to pay more for vessels built at

yards in countries which are known to deliver good quality. Not just for subjective

reasons but for the expectation of lower operating costs during the time of operation

(see Chapter 5). Similar the classification society may provide information on the

status of maintenance since some classification societies are stricter with respect to

90



the current physical state of any vessel. Comparably high standards are set out by

the International Association of Classification Societies (IACS). Getting the classi-

fication for a vessel from a non-IACS classification society not complying to IACS

rules might be easier than getting the class for the same vessel from an IACS so-

ciety. Other factors that will influence the economic efficiency or attractiveness of

a chemical carrier could include engine make, engine horsepower, vessel speed, ice

notation and the availability of cargo heating coils or an inert gas indicator. Espe-

cially for chemical tankers, these factors are almost countless. This chapter uses all

information the dataset provided without claiming to be complete but taking the

most important factors into account.

4.4 Sale & purchase data for chemical tankers

The dataset obtained from Clarkson Research includes 842 observations of chemical

tanker sales between October 1990 and March 2005. It provides information on

price achieved in the sale, a variety of vessel characteristics such as age, size mea-

sured as dwt, grt and cubic meters, number of cargo separations, tanks and pumps,

the pump capacity, engine type, speed and horsepower, hull type, IMO type, ice

class, classification society, country of build and coatings. Furthermore, the current

newbuilding prices measured in USD/cgt and the earnings at the date of sale have

been included. From the list of 842 we removed vessels that were sold under un-

usual circumstances. This included damaged vessels, vessels sold at auction, and

judicial sales. In addition we excluded transactions of vessels sold with attached

time charter commitments as this is known to influence the price obtained in the

market. We also excluded en-bloc transactions as it is difficult to attribute a price

to the individual vessel in the sale. This leaves us with 736 observations.

Table 4.2 provides a first overview of the data available. We observe prices between
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Table 4.2: Data overview

Variable Min Average Max

Price (Mio. USD) 0.25 11.09 100.00
NB Price (USD/cgt) 829 1,012 1,315
Earnings (USD/day) 6,054 17,205 40,984
Age 0 12 25
Size (dwt) 1,032 17,485 50,600
No. tanks 4 17 43
No. pumps 2 12 43
Pump capacity 150 2,890 8,670
Speed 10.5 13.5 17.0
Horsepower 600 6,719 17,400

0.25 Mio. USD and 100 Mio. USD with an average of 11.09 Mio. USD. The data set

includes all kind of prices from scrapping to resale value. The newbuilding prices and

earnings range from 829 USD/cgt to 1,315 USD/cgt and 6,054 USD/day to 40,984

USD/day with an average of 1,012 USD/cgt and 17,205 USD/day, respectively. The

size of the vessels ranges from 1,032 to 50,600 dwt with an average of 17,485. The

average age is 12 years ranging from 0 to 25 years. The number of tanks, pumps,

pump capacity, speed and horsepower reflect the market average and show a large

variance. Overall the continuous variables in the dataset seem to provide enough

variation to provide good explanatory power to the model of prices.

Table 4.3 shows the data distribution for country of build, classification society and

engine type. Almost half of the chemical tankers sold between October 1990 and

March 2005 were built in Japan (44.9%) followed by South Korea (10.7%) and Croa-

tia (7.9%). The majority of vessels have been classed by Det Norske Veritas with

24.9%. Second and third most important classification societies are Nippon Kaiji

Kyokai (18.8%) and Lloyds Register (17.7%). B.&W., Mitsubishi and Sulzer are the

three most used engine types on chemical tanker vessels. They make 67.2% of the

whole sample.

92



Table 4.3: Data distribution - country of build, class and engine type

Country % Classification society % Engine type %

Belgium 1.0 American Bureau of Ship. 3.3 Akasaka 3.3
China P.R. 0.6 Bureau Veritas 9.3 B. & W. 35.5
Croatia 1.3 China Classification Soc. 1.8 Deutz 1.9
Denmark 4.3 Det Norske Veritas 24.9 Hanshin 5.8
Finland 1.3 Germanischer Lloyd 5.6 M.a.K. 7.5
France 1.7 Korean Register 7.0 M.A.N. 3.0
Germany 3.8 Lloyds Register 17.7 misc. 7.2
Italy 1.7 Nippon Kaiji Kyokai 18.8 Mitsubishi 20.6
Japan 44.9 Polski Rejestr Statkow 0.8 Pielstick 1.4
Netherlands 2.7 Register Italiano 3.2 Sulzer 11.1
Norway 5.6 Russian Maritime Register 1.8 Wartsila 2.7
Poland 0.9 misc. 6.0
South Korea 10.7
Spain 2.4
Sweden 3.0
Turkey 2.3
United Kingdom 1.3
misc. 2.2

Table 4.4: Data distribution - coating, hull and IMO

Coating % Hull % IMO %

Epoxy 46.5 D/Bottom 46.3 IMO1 29.2
S.Steel 6.4 D/Hull 29.4 IMO2 46.6
S.Steel, Epoxy 6.0 D/Sides 2.7 IMO3 3.9
S.Steel, Epoxy, Zinc 6.4 S/Skin 8.0 na 20.2
S.Steel, Poly 11.1 na 13.7
S.Steel, Zinc 7.1
Zinc 4.1
misc. 12.6
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Table 4.4 presents the data distribution with respect to coating, hull and IMO type.

Most of the vessels in the sample have tanks with epoxy coating which reflects the

compatibility of epoxy coating with many chemicals in seaborne trade. Almost half

of the vessels in the sample have a double bottom hull, 29.4% are full double hulled.

Single skin and double sided vessels represent 10.7% of the dataset.

Table 4.5 shows the correlation of the variables in the dataset. The correlation

measures the degree of any linear relation between two variables. Therefore, the

purpose of the correlation analysis in this section is twofold. First, it is thought to

give a first indication of possible relations between our variables and second, in the

later analysis the importance of non-linear modelling will be shown as some of the

variables which despite showing a low correlation to the second hand price have a

significant impact on prices. All correlations above and equal to 0.39 are shown in

bold numbers. Looking at the first column of Table 4.5 we can see that, as expected,

there is a strong negative correlation of prices and age. Moreover, size, pump ca-

pacity, horsepower and the double hull dummy variable are positively correlated to

the second hand price. The strongest correlation exists between horsepower and size

which is not surprising since the bigger a vessel the more engine power is required

for a given design speed. The number of tanks and pumps are also positively cor-

related. The same holds for different measures which relate to size as speed and

horsepower. Interestingly, we also observe some positive correlation between the

IMO2 notation, zinc- and steel dummy variables and number of tanks & pumps.

Furthermore, there is some positive correlation between the IMO2 notation, Zinc-

and steel dummy variables, while negative correlation can be observed between the

epoxy- and the steel dummy variables. This analysis gives us a first hint as to the

relation among the variables. However, there are existing relations which cannot be

found by a simple correlation analysis as will be seen later.
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4.5 Methodology

Equation 4.1 shows the basic setup. It includes the intuitively most important

variables: newbuilding price (NB), earnings (EARN), size (measured in dwt) and

age.

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi) (4.1)

Equation 4.2 extends the base-model by hull-type. For tankers of any kind the

hull-type is expected to have an important impact on the second hand price. It is

included as a dummy variables indicating double hull, double bottom, double sides

and single hull.

g(E(PRICEi|.))γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i (4.2)

In addition to the hull, the coating and the number of tanks are expected to influence

the price a potential buyer is willing to pay. This is shown in Equations 4.3 and

4.4. Coating is included as dummy variables for epoxy-, polyurethane-, zinc-, and

stainless steel-coating. The number of tanks is given by NOTANK.

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i +

∑
coat

γcoatI
coat
i (4.3)
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g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i +

∑
coat

γcoatI
coat
i + s(NOTANKi) (4.4)

Following the argument of the advantage of versatility in the chemical tanker busi-

ness, as explained above, Equation 4.5 shows a model including the interaction term

CARGODIV as product of number of different coatings available and number of

tanks instead of coating and NOTANK.

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i + s(CARGODIVi) (4.5)

The same argument of versatility is then used to further augment the model to

include a measure for the ability and flexibility of any vessel to handle the cargo.

This is done by including the interaction term between number of pumps and pump

capacity, PUMPDIV as shown in Equation 4.6.

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i + s(CARGODIVi) + s(PUMPDIVi) (4.6)

As mentioned above its not just the ability of a vessel to carry certain chemicals

but also security aspects have to be taken into account. Not every vessel which is

able to carry a cargo is also allowed to do so. The allowance is achieved by having

an appropriate IMO type vessel. Equation 4.7 includes the IMO type of any given

vessel as dummy variables.
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g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i +

∑
coat

γcoatI
coat
i + s(CARGODIVi)

+ s(PUMPDIVi) +
∑
imo

γimoI
imo
i (4.7)

In addition to the variables introduced. We want to add some measures for the

efficiency and quality of any given vessels. Therefore, we include speed as smooth

variable and country of build as dummy variables. This is shown in Equations 4.8

and 4.9 below.

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i +

∑
coat

γcoatI
coat
i + s(CARGODIVi)

+ s(PUMPDIVi) +
∑
imo

γimoI
imo
i + s(SPEEDi) (4.8)

g(E(PRICEi|.)) = γ0 + s(NBi) + s(EARNi) + s(SIZEi) + s(AGEi)

+
∑
hull

γhullI
hull
i +

∑
coat

γcoatI
coat
i + s(CARGODIVi)

+ s(PUMPDIVi) +
∑
imo

γimoI
imo
i + s(SPEEDi) +

∑
country

γcountryI
country
i (4.9)

All regressions are carried out using g(.) = log(.) as link-function and assumes that

second hand prices follow a Gamma distribution, PRICEi ∼ G(α, β).21

21As this model of second hand prices is rather data-driven than from a theoretical background
with respect to these parameters, experiments with different specifications (Normal distribution
and different link-functions) suggested this setup. These specifications showed the best fit and
model performance.
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4.6 Results

The regression results for Equation 4.1 to 4.8 are shown in Table 4.6. Since we esti-

mated models which consist of parametric and non-parametric components Table 4.6

is divided in two panels. The upper panel shows the results for the non-parametric

components as effective degrees of freedom (edf) which reflects the degree of non-

linearity present the regressors nexus to second hand prices and the significance of

this explanatory factor. Since the effect of any non-parametric component differs

with respect to the magnitude we do not include measures for the slope coefficient.

The lower panel provides information on the parametric components given as point

estimate and its significance which can be interpreted directly.

Table 4.6: Regression results for Model 4.1 to 4.8

Model (4.1) (4.2) (4.3) (4.4) (4.5) (4.6) (4.7) (4.8)

edf Sig edf Sig edf Sig edf Sig edf Sig edf Sig edf Sig edf Sig
NB Price 6.102 *** 6.060 *** 6.270 *** 6.107 *** 5.871 *** 5.865 *** 5.566 *** 5.438 ***
Earnings 5.454 *** 5.519 *** 5.411 *** 5.934 *** 5.383 *** 5.872 *** 3.197 * 3.019 *
Size 8.373 *** 8.649 *** 8.619 *** 8.225 *** 8.110 *** 8.272 *** 7.607 *** 6.701 ***
Age 7.413 *** 7.743 *** 7.690 *** 6.109 *** 3.258 *** 6.875 *** 6.723 *** 6.962 ***
No. tanks — — — 8.356 ** — — — —
Cargo
diversity — — — — 7.856 *** 8.198 *** 8.230 *** 7.884 ***
Pump
diversity — — — — — 1.001 *** 1.000 *** 1.000 ***
Speed — — — — — — — 7.228 ***

Hull pe Sig pe Sig pe Sig pe Sig pe Sig pe Sig pe Sig pe Sig
D/Bottom — -0.252 *** -0.244 *** -0.260 *** -0.313 *** -0.268 *** -0.217 *** -0.164 ***
D/Sides — -0.386 *** -0.317 ** -0.418 *** -0.352 ** -0.274 * -0.181 * -0.207 *
D/Skin — -0.471 *** -0.395 *** -0.427 *** -0.410 *** -0.371 *** -0.298 *** -0.244 ***

Coating
Steel — — 0.145 0.131 — — — —
Poly — — 0.076 0.042 — — — —
Epoxy — — 0.162 0.261 — — — —
Zinc — — 0.054 0.062 * — — — —

IMO
IMO2 — — — — — — 0.254 *** 0.257 ***
IMO3 — — — — — — 0.299 ** 0.303 ***
Intercept 2.049 *** 2.263 *** 2.092 *** 2.041 *** 2.266 *** 2.252 *** 2.066 *** 2.04 ***

N 736 736 736 736 736 736 736 736
Adj. R2 81,9% 83,7% 84,0% 84,7% 85,2% 85,2% 85,7% 86.3%

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1
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The results for the base Model 4.1 show that the relationships are of non-linear

nature and are highly significant. As expected, second hand prices vary with new-

building prices and earnings. Furthermore, prices increase with size and decrease

with age. Model 4.2 which in addition to Model 4.1 includes the hull type shows

that vessels not having a double hull achieve a lower price at sale. The highest dis-

count has to be expected with single skin vessels (approx. -47%) followed by double

sides and double bottom vessels with around -39% and -25% respectively. Taking

the coating into account as shown by Model 4.3 gives a surprising result at first

sight. All kind of coatings under consideration show a positive sign. However, none

of the coefficients is significantly positive. The same holds for Model 4.4 which also

includes the number of tanks. The number of cargo tanks is a significant factor while

explaining the second hand price. Nevertheless, coatings are still of low significance.

Using the idea of versatility and diversity with respect to the possible cargoes a

vessel can take aboard leads to Model 4.5. Including the interaction term between

number of cargo tanks and number of different available coatings gives a significant

and highly non-linear explanatory factor to second hand prices of chemical vessels.

Moreover, all variables from the base model (4.1) stay significant and do not change

with respect to non-linearity. At the same time the R2 increases from 81.9% (Model

4.1) to 85.2% (Model 4.5). Model 4.6 extends Model 4.5 by additionally including

a measure of cargo handling versatility, pump diversity. This factor seems to be

related to the price significantly. However, using a non-linear model seems not to

be necessary with this factor since its effective degrees of freedom are near one in-

dicating a linear nexus. Apart from its ability a vessel needs to have a certain IMO

type to be allowed to carry a given cargo. Including the IMO type dummies leads to

an unexpected result as shown by Model 4.7. Despite IMO1 type vessels being the

vessels which are allowed to carry the most dangerous cargoes, they seem not to be
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the vessels which archive the highest prices in the second hand market. Compared

to IMO1 type vessels, IMO2 and IMO3 vessels receive a premium of around 25% and

30% respectively. A possible explanation that has been suggested on this point is

the importance given to quality by charterers in the higher tier of the market - and

consequently by prospective buyers of tonnage - to the age of the vessel as a proxy

of quality, as charterers are in need to secure quality warranties due to the nature of

cargoes transported in this tier (see Chapter 3). The last column of Table 4.6 shows

the regression results for Model 4.8 which extends Model 4.7 by including speed as

a smooth component. As expected, speed is a significant factor while explaining the

second hand price.

Table 4.7: Regression results for Model 4.9

Model 4.9

edf sig pe sig
NB Price 5.902 *** Country of Build
Earnings 3.514 ***
Size 4.114 *** Belgium 0.342 *
Age 5.871 *** China 0.134
No. tanks — Croatia 0.045
Cargo diversity 7.412 *** Denmark 0.448 ***
Pump diversity 1.001 ** Finland 0.282 *
Speed 7.785 *** France -0.130

Germany 0.402 ***
Hull pe sig Italy 0.227 *
D/Bottom -0.113 * Netherlands 0.232 *
D/Size -0.413 *** Norway 0.307 ***
S/Skin -0.200 ** Poland -0.114
IMO South Korea -0.054
IMO2 0.166 *** Spain 0.172 *
IMO3 0.218 * Sweden 0.149 *

Turkey 0.232 *
Intercept 1.938 *** Ukraine -0.381 **

UK 0.056
N 736 other 0.039
Adj. R2 88,0%

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1
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Table 4.7 presents the regression results for the final model setup (4.9). Including

country of build to measure the quality of any given vessel increases the explanatory

power of the model to 88%. In comparison to Japan built chemical tankers 11 of

17 countries show a significant difference. Most of the countries with a positive sign

are Western-European countries whereas vessels from Ukraine seem to have a lower

quality reflected by second hand prices. Vessels from other Asian countries such as

South Korea and China as well as vessels from France, Croatia, Poland and the UK

do not differ significantly in second hand prices. Figure 4.1 presents the smooth of

Figure 4.1: NB price, earnings, size and age

newbuilding prices, earnings, size and age to second hand prices. The top left panel

shows the relationship of newbuilding to second hand prices. Between 850 USD/cgt

and 1,000 USD/cgt the smooth shows a positive slope. Between 1,050 USD/cgt and
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1,200 USD/cgt the smooth shows a slight negative slope. However, the confidence

bands allow for the conclusion that second hand prices might not react to changes in

newbuilding prices between 1,050 USD/cgt and 1,200 USD/cgt. The top right panel

of 4.1 shows the relationship between earnings and second hand prices. Within the

range of 5,000 USD/day and about 17,000 USD/day second hand prices increase

with earnings. Above 20,000 USD/day the effect to second hand prices becomes

somewhat undefined. The confidence band in this area is too large to draw any safe

conclusions. The lower two panels show the effect of size and age to second hand

prices. As expected, second hand prices increase with size and decrease with age.

The confidence bands are satisfactory small. As can be seen from the graph the

relationships of the different factors are strongly non-linear, which underlines the

importance of non-linear modelling of second hand prices. Therefore, we conclude

that linear modelling of second hand prices with respect to these factors cannot be

appropriate. The relationship of second hand prices of chemical tankers to vessel

Figure 4.2: Pump- and cargo diversity

characteristics such as number of pumps, pump capacity, number of cargo tanks

and coatings is shown in Figure 4.2. As mentioned above we chose to measure the

versatility of any given vessel with respect to its ability to carry and handle different

cargoes given as interaction terms between number of pumps & pump capacity and
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number of cargo tanks & number of available coatings. The relationship between

second hand prices and pump diversity seems to be of a linear nature. The smooth

shows a significantly positive slope for the whole interval of pump diversity. The

nexus between cargo diversity and the second hand price is non-linear. Overall,

second hand prices seem to increase with cargo diversity. However, between 20 and

30 the smooth shows a negative slope with a broad confidence interval. Since there

is no theoretical reason for this we conclude that this is due to the data used. In ad-

Figure 4.3: Hull type and IMO vessel type

dition to the non-parametric terms, the model includes different explanatory factors

as parametric components. Figure 4.3 shows the partials of hull- and IMO vessel

types. As expected single hull type vessels show a negative effect to second hand

prices. Surprisingly IMO2 and IMO3 type vessels are significantly more expensive

than IMO1 type vessels. Figure 4.4 is thought to give an overview of the behaviour

of second hand prices with respect to size and age. It is important to note the

non-linear behaviour of prices with respect to these two variables, which actually

belong to the ”easy to quantify”-factors. These findings support the conclusion in

Adland & Koekebakker (2007) that non-linearity is an important feature of vessel

valuation. Coming back to the correlation analysis it can be seen that some of the

explanatory variables seemed to have little or no influence on second hand prices.
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Figure 4.4: 3D plot of second hand prices against size and age

As can be seen now, it is important to consider non-linear connections between the

variables to come up with some reasonable results. Correlation analysis gave a good

hint but did not show all important factors.

4.7 Summary

Vessel valuation in the highly specialised and small sectors such as chemicals, gas or

reefers, is challenging task but is perhaps even more important in the face of lower

liquidity. This challenge arises because of the comparatively low number of sales and

the complexity of the ships, where certain esoteric technical features may be critical

for a ship’s attractiveness in the second hand market. This chapter developed a com-

prehensive multivariate semi-parametric framework for the estimation of chemical

tanker second hand prices. Previous attempts at ship valuation using purely non-

parametric models have shown that non-linear modelling is an appropriate method

to estimate second hand prices. However, those studies suffered from the curse of
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dimensionality in non-parametric estimations. The model presented here surmounts

these issues and extends the existing literature by applying semi-parametric GAMs

to a cross sectional dataset of actual sale and purchase transactions of chemical

tankers. Even the heterogeneous nature of chemical tankers and the high variation

in chemical tanker second hand prices could be modelled with this framework. It

has been shown that ship specific factors which have not been included in previous

models have a significant impact on prices and the explanatory power of this model

appears to outperform linear methods of estimation. Most of the factors turned out

to show the expected effects on prices. However, IMO1 type vessels seem to achieve

lower prices than IMO2 type vessels due to quality related considerations during the

price determination. Furthermore, classification society and ice class do not have

any significant effect on the prices of chemical tankers. In addition it could be shown

that factors reflecting the degree of flexibility of the vessel with respect to cargo-

and cargo handling diversity have a larger effect on second hand prices as opposed to

measures of specialisation. To sum up, semi-parametric methods - especially GAMs

- seem to provide an appropriate framework to model second hand prices even in

a very heterogeneous segment of the shipping industry. The major implication is

that, from an investors point of view the application of non-linear models for asset

valuation allows for a more efficient capital allocation through a much more precise

price estimation. This, in turn, reduces the risk of misinvestments and the risk of

overestimation of recovery rates and losses in case of investment defaults.
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5 The economic determinants of
opex

The contents of this chapter are based on: Koehn, S. (2008), ”The economic de-
terminants of vessel operating expenses: a semi-parametric approach”, Maritime
Economics and Logistics 10, 275-294.

5.1 Introduction

”SURVEY REVEALS BOXSHIP COSTS TradeWinds - 13.10.2006 The first ever

mass study of operating costs for German-owned boxships has revealed major fluc-

tuations for smaller units and a 30% increase across the board in 2000-2004”

”INSURANCE SURVEY REVEALS COST LEAP TradeWinds - 20.10.2006 Real

numbers show an average rise of 10% for hull and P&I cover. A big increase

in shipowners’ insurance costs reported by...Moore Stephens is raising market eye-

brows”

It is well known that operational expenses (opex) play an important role for the

financial success of a vessel. Interestingly, over the last couple of years the interest

in opex and opex themselves increased simultaneously. The above mentioned arti-

cles from TradeWinds are just two recent examples on how the industry tries to get

hold of opex and their development. In fact the mentioned surveys do not provide

a lot more than a simple description of the year-on-year development of opex across

certain subtypes of predefined vessels and markets.
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There is an extensive literature on the behaviour of the shipping market in gen-

eral and for certain sub markets such as dry bulk, tanker or container. The second

hand market has received a lot of attention and a huge number of papers applied

investment theory to the shipping markets. Beginning with Koopmans (1939) and

Tinbergen (1959), followed by Hawdon (1978), Charemza & Gronicki (1981), Been-

stock & Vergottis (1993), and more recently Adland (2002), Kavussanos & Alizadeh

(2002a), Adland, Jia & Strandenes (2006) and Adland & Koekebakker (2007), opex

have always been a building block of theoretical and empirical models in shipping

economics. Although, opex are an extremely important factor, in scientific work

they are typically ignored, badly approximated and treated as exogenous. The lack

of sufficient data and the low variation in opex during the past might be reasons for

the fact that opex have never been the subject of a scientific investigation on their

own right, although they play an important role in theoretical models and might

even alter the conclusions of some empirical papers.

This chapter aims to analyse the determinants of opex and the type of relationship

to opex. We use a generalized additive model framework (GAM) to be able to incor-

porate the possible non-linear relationships between opex and their determinants.

The advantage of this method is that we do not need to make assumptions about

the functional form of these relationships. We utilise a panel-dataset which includes

data on aggregated opex, vessel characteristics as type, age and size, as well as infor-

mation about the earnings and employment status for 241 vessel from 2000 to 2005.

The estimation results show that, opex depend on the factors in a non-linear way.

We find several different effects which alter opex significantly in a non-trivial fash-

ion. We show that opex increase with age and size although with a decreasing slope.

In addition, the results suggest different effects due to the behaviour of ship oper-
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ators and regulatory requirements at the boundaries of the sample. Additionally,

we find that opex increase with earnings from time charter contracts during periods

of low to intermediate market levels. As a by-product, the quantitative framework

developed in this chapter can be used to construct customized benchmark opex for a

variety of vessel types with a qualitative level that has not been achieved until today.

The chapter is structured as follows. Section 5.2 provides a detailed explanation

of opex in practice. Section 5.3 discusses the literature where opex have been a

relevant factor to the process of modelling and for the conclusions that were drawn.

Section 5.4 discusses the determinants of opex and the type of relationship between

these factors and opex. Section 5.5 provides an overview of the data used. The mod-

elling and estimation results are presented in Section 5.7 and 5.6. Finally, Section

5.8 concludes.

5.2 Opex in practice

According to Stopford (1997) there are four main factors that determine the total

cost of running a vessel: capital costs and repayments22, voyage costs, periodic main-

tenance and operating costs. Following this definition operating costs are connected

with the day-to-day running of the vessel, excluding voyage costs and major dry

dockings. This study deals with opex according to a slightly different definition. We

explicitly exclude voyage cost of any kind and define opex23 to be the sum of daily

operating costs plus a periodic maintenance provision per day to cover the major

dry docking costs. The operating cost structure depends on the size and nationality

22Strictly speaking, repayments are not costs. However, they account for a large part of the
break-even of any bank-financed vessel.

23Please note that the terms ”operating expenses” and ”operating costs” are used synonymously
throughout this thesis.
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of the crew, maintenance policy and the age and insured value of the vessel, as well

as the administrative efficiency of the operator, i.e. owner or management-company.

In many cases the day to day management is sub-contracted to a management com-

pany for a pre-determined fee, mostly connected to the current charter rates.

Manning costs include all costs incurred by the crewing of the vessel: salaries/wages,

social insurance, pensions, victuals and repatriation costs. The level of manning

costs for a vessel running under a particular flag depends on two factors: the size

of the crew and the employment policies adopted by the operator or the vessels flag

state. According to Stopford (1997) about 50% of the operating costs are man-

ning costs, although it should be noted that this relation changes over time. The

minimum number of crew on a vessel is given by the regulations due to the flag of

registration. These regulations may include rules connected to the nationality of

the captain, the number and nationality of officers and the number of engineers on

board. Under some flags manning scales govern the numbers of personnel required

on the various types and sizes of ships, and any reductions must be agreed between

the operator’s organization and the seamen’s union. Crew wages on merchant ves-

sels are very difficult to handle. Even though there are international guidelines,

e.g. the minimum monthly wages given by the International Transport Workers

Federation ITF, they are not generally accepted and applied. Vessels running under

Liberia or Panama flag can reduce their manning cost by 50% compared to vessels

running under some European flag, especially German flag. Shipowners have the

opportunity to flag out their vessel by choosing a flag different from the one of the

country of their origin. This opens the world labour market to the ship operators.

They can hire their crew in any country of convenience. Crew costs are the sum of

actual wages, travel costs, manning and support, medical insurance and victualling.
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According to Stopford (1997) insurance costs account for 15% to 40% of operat-

ing expenses. The necessary insurances are hull and machinery (H&M), insurances

against war risks and a third-party liability insurance, the so called Protection &

Indemnity (P&I), whereas H&M and P&I are compulsory and the most expensive

insurances. They protect the operator against physical loss or damage and provide

cover against third party liabilities. Price determinants for H&M are the operators

claims record and the value of the ship. The costs for P&I depend on the claims

record, trading route, cargo, flag and nationality of the crew. Additional voluntary

insurances might be taken to protect for instance against war risk, strikes or loss of

earnings.

Costs for maintenance include general maintenance, spares, navigation and com-

munication services. Repairs and maintenance include routine maintenance and

repairs due to unexpected breakdowns/failures. Since classification societies require

a certain standard, the owner has to keep the ship up to these requirements. Rou-

tine maintenance like engine maintenance, steel renewals and painting are carried

out while the ship is at sea. The costs for repairs due to breakdowns are signif-

icantly higher. Usually these repairs have to be carried out at shipyards, which

leads to a substantial loss of trading time. The necessary repair and maintenance

costs increase with age because more spares and staff are needed to handle this work.

General costs include overhead costs, communications, costs for shore based admin-

istrative and management costs as well as additional miscellaneous costs. General

stores include spare parts, deck and engine room equipment. These costs increase

significantly with the age of the ship.
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As mentioned above, to maintain a certain standard (class) for insurance purposes

all vessels must undergo regular surveys. Every ship has to be dry-docked every two

years and has to undergo a special survey to certify the necessary standard24 every

four years. These surveys include inspection of machinery and the thickness of the

steel is measured and compared with the standard requirements. Regular surveys

often lead to substantial repairs. Especially for old ships, these costs can be extraor-

dinarily high. Vessels near their scrapping age might be taken into lay-up because

it’s not worth carrying out these repairs. Costs for periodic maintenance include

dry-dock charges, port charges, charges for tug, agency, general services, hull blast

clean and painting, dry-dock paint, steel replacement, cargo spaces, ballast spaces,

hatch covers, deck fittings, main engine, propulsion, auxiliaries, piping and valves,

navigation and communications, accommodation, surveyors and spare parts.

5.3 Opex in theory

As it is intuitively clear, the financial success of a ship operator depends mainly

on three factors: income in the form of daily charter rates, interest and capital

repayments as well as opex. There is an extensive literature on the behaviour of

the shipping market in general and for certain sub markets, e.g. dry-bulk, tanker

or container. The second hand market was analysed heavily and a huge number of

papers applying investment theory to the shipping markets was published. Koop-

mans (1939) analysed the behaviour of taker freight rates. He assumes that the

ton-miles supply is directly proportional to the fleet size while the supply created

by a unit of capacity depends on the ratio of freight rates to an index of bunker

prices and operating expenses. Thus, the effect of opex was indeed suspected but

24There are regulations that these surveys can be postponed for some time.
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not thoroughly investigated. Tinbergen (1959) investigated the sensitivity of freight

rates to changes in the level of demand and factors affecting supply. Among others,

opex were also specified to influence freight rates but since opex remained more

or less unchanged during the period under investigation they were assumed to be

constant. As will be shown later this assumption does not hold for the period 2000

to 2006. Hawdon (1978) investigates tanker freight rates. He does not include opex

directly but finds that labour costs, which are a major component of opex, are an

insignificant factor to explain freight rates over the period form 1950 to 1973. One

of the first papers to develop an econometric model of the world shipping mar-

ket is Charemza & Gronicki (1981). They constructed a permanent disequilibrium

model to describe and analyse supply and demand balances in the world shipping

and shipbuilding markets. However, their model does not include opex, although

they play a relevant role in determining investment decisions and - consequently

- supply. A more general econometric model developed by Beenstock & Vergottis

(1993) includes opex as an exogenous factor in a variety of relationships, e.g lay-up

ratio and profit in the dry bulk and tanker market. Their aim is similar to the

objective of Charemza & Gronicki (1981) - analysing and describing the behaviour

in world shipping. Additionally, they carried out scenario analyses and forecasts by

simulation. Although opex appear in some of their most important relationships

they were limited by the availability of opex data. Therefore they constructed an

opex index given by the ratio of the ”industrialized countries wholesale price index”

published by IFS25 and the US-Dollar SDR26 exchange rate. More recent studies

also include opex in their theoretical model but use poor indicators of opex due to

the lack of data. For instance, Adland (2002) analyses the expectation hypothesis

of the term structure of freight rates and argues that the risk premium in the freight

25IFS: International Financial Statistics published by the International Monetary Fund, IMF.
26SDR: special drawing right of the International Monetary Fund, IMF.
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market should be time varying and depend on the state of the current spot freight

market. He estimates the risk premium from dry bulk using a non-parametric spot

freight rate model and finds that the risk premium varies around zero and that it

is a decreasing function of the spot freight rate level. One important assumption of

his model is that opex are independent of the ship operators charter policy, i.e. time

charter or spot employment but he suggests that in practice a time charter may

result in better maintenance i.e. higher opex. Therefore, it is possible that future

opex are lower due to the high level of maintenance from previous periods under

time charter contract. This could alter his results. Kavussanos & Alizadeh (2002a)

analyse the efficient market hypothesis in conjunction with rational expectations

in the formation of dry bulk ship prices over the period from 1976 to 1997. They

use a variable called operational profits defined as charter income less repayments,

interests and opex. However, they do not provide any information about the sources

of the data on opex or how they approximated it. Adland et al. (2004) analyse a

stochastic extension of the classical partial equilibrium models of the spot freight

market. In their model, supply is based on the microeconomic analysis of the supply

characteristics of a given fleet and order book as well as stochastic demolition and

ordering behaviour. The model is used to simulate scenarios for the future very large

crude oil carrier (VLCC) spot freight rate. The freight rate is determined by the

marginal costs of any vessel (i.e. opex) that satisfies the demand for transportation.

They conclude that when almost all vessels are employed (that was the case in 2002

to 2005) the only possibility to increase supply are higher speed, reduced port time,

shorter ballast legs and delaying regular maintenance. Therefore, opex change dur-

ing times of full employment. Periods of excess supply will force less cost efficient

vessels to withdraw from the market. As there are switching costs, the threshold

rate must be slightly lower than opex minus daily lay-up costs. For lay-up ever to
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make economic sense, daily lay-up costs must be lower than opex. Therefore, time

charter equivalent spot rates are bounded from below as a function of opex and

lay-up costs. To underpin these theoretical results they estimate a supply function

and simulate a model assuming opex to be 7,000 USD/day increasing by 1.5% per

year of age. Although 1.5% seems to be a reasonable ageing factor for opex, other

factors like the size of a vessel are ignored despite the fact that they use a dataset of

431 vessels with a size of 200,000 dwt and bigger. The biggest VLCC in use in 2003

was 460,000 dwt which suggests a large variation in size and opex in addition to the

variation due to the age. The most recent empirical analysis is Adland et al. (2006).

They investigate the supercycle in the dry bulk market between 2003 and 2005.

The aim of this chapter is to evaluate whether there was a significant deviation of

asset values from their fundamentals in the dry bulk market. Using a vector error

correction model (VECM) they find that there was no asset bubble in the Capesize

dry bulk sector. They assume opex to be constant at 5,500 USD/day, although

it can be seen from the data that this was not the case. Even the fact that their

time series data exhibits a break in terms of the size of the quoted vessels (120,000

dwt and 170,000 dwt) they use the same opex for the whole series even though it

is obvious that bigger ships require more maintenance and manning i.e. higher opex.

From this review it is clear that opex play an important role as input in general

shipping models, testing the expectations hypothesis of the term structure of freight

rates, the freight market equilibrium theory or second hand ship valuations and

investment decisions. Although opex are such an important factor in most of the

economic models for the maritime sector they are often ignored, badly approximated

and treated as exogenous.
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5.4 Determinants of opex

Given the definition of opex, it is clear that opex increase with age and size, and

that considerable differences can be expected due to vessel type and vessel charac-

teristics. In addition, some specific effects due to the behaviour of shipowners have

to be taken into account. During the first two or three years of a vessels lifetime,

opex are considered to be significantly lower compared to vessel ages between 5 to

20 years, even when accounting for the general aging effect on opex. This is due to

the fact that the vessel is brand new and the first regular drydocking, special class

or survey, has to be done after the first two years of operation. Furthermore, these

are not as costly as they are later during the operating span. This leads to the ex-

pectation that opex increase very quickly during the first couple of years compared

to the rest of the lifetime. Another effect is that, given a vessel life expectancy and

that the vessel is near its scrapping age, the owner will not spend much effort in

maintaining the ship nor doing any drydockings. He will simply run the vessel as

long as still profitable while saving money on opex. This process usually takes 3 to 5

years depending on the vessels maintaining status at the end of the last maintaining

period. As we will see later, it might even be the case that, after a period of zero

or low maintenance, the charter rates are overwhelmingly high and far above the

cost of ”catching up”-maintenance plus the costs of a regular classification (25 year

class) owners will decide to take these costs and make the vessel running another

couple of years.

As mentioned above, Adland (2002) suggests that the status of employment, i.e.

spot or time charter, might alter the operator’s behaviour with respect to mainte-

nance. That means that vessels running under a time charter contract might have

higher opex due to the behaviour of the operator. As will be shown later, this sug-
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gestion seems to be valid. Including net earnings as an explanatory factor shows

that higher earnings are associated with higher opex. Using information about the

employment status shows that this effect is even stronger for vessels running under

time charter contract and diminishes for those in the spot market.

In addition to the factors discussed above there are many other factors that might

influence opex. However, the dataset used does not provide information on all of

these. To overcome these problems and to increase the explanatory power, the fol-

lowing model uses the panel structure of the dataset and includes previous years

opex as explanatory factor. The idea is straightforward and similar to estimating

fixed effects in a linear panel data framework.27 If unknown factors alter the level of

opex independent of time, current differences in opex between similar vessels (same

type, age and size) can be explained by past differences in opex in case the model

controls for general time specific effects. For example, Vessel A and B are of same

type, age, size and employment status. Assuming, last year vessel A had higher

opex than vessel B due to a time invariant factor X, Vessel A should have higher

opex than vessel B this year, too. In fact, it can be shown that including last years

opex as an indicator for the unknown factors (X), the explanatory power of the

model increases by approx. 5% including all other opex determinants such as age,

size, employment status and time as control variables.

5.5 Data

The utilized data is provided in anonymous form on confidentiality agreement by

Commerzbank AG Hamburg - Global Shipping Research. The unbalanced panel

contains 783 observations on aggregated opex for 241 vessels over the years 2000 to

27This issue will be adressed in Section 5.6 of this chapter.
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2005. Additionally information on employment status, vessel type, age, earnings,

size (dwt) is provided. Table 5.1 provides an overview of the data. Most of the

Table 5.1: Data distribution over type, year and employment status

Type Share Year Share Status Share

Bulker 25.3% 2000 12.8% Spot 48.0%
Container 23.4% 2001 14.1% TC 52.0%
Tanker 23.4% 2002 14.1%
Chemical 12.5% 2003 16.1%
Product Carrier 4.5% 2004 20.1%
LPG Carrier 4.0% 2005 22.7%
(Other) 6.8%

sample is composed of bulker, container and tanker vessels. These types make 72%

of the whole dataset, whereas the remaining 28% are are due to chemicals, product

carriers, LPG carriers, car carriers and reefer. The density of the data grows with

time. The year 2005 represents 22.7% of the data, i.e. most recent data has a larger

weight in the following analysis. The ratio between spot and time charter employ-

ment is almost 1:1 with 48%:52% respectively. The vessels tracked over time are the

same for the whole period, supplemented by additional vessels over time. Therefore,

the panel dataset is unbalanced. However, there are no significant changes in the

relative composition of vessels with respect to type, age, size and employment sta-

tus. Table 5.2 shows the development of opex and earnings by ship type over time

for bulker, container and tanker. From 2000 to 2005 the average earnings of bulker

increased by 268% and average opex increased by 60%. Similarly, opex and earnings

for container increased by 53% and 77%, respectively. For tankers the increase in

opex is somewhat smaller(32%). This shows that the development of the markets

during the last 6 years is reflected by the dataset in use. At the same time we

already observe some positive correlation between opex and earnings for the vessels

under consideration.
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Table 5.2: Opex and earnings by type and year

Type by year Opex Earnings
Mean Min Max Mean Min Max

Bulker 2000 3,146 2,425 4,500 8,333 3,750 19,200
2001 3,365 2,400 5,200 7,895 4,000 14,950
2002 3,550 2,700 4,850 7,230 5,225 12,200
2003 4,435 3,250 6,400 15,221 7,700 23,650
2004 4,815 3,500 7,400 33,575 12,200 57,000
2005 5,079 4,000 7,000 30,742 12,200 53,750

Container 2000 3,586 2,900 4,200 12,333 6,275 15,800
2001 3,892 3,000 4,700 13,717 8,000 19,500
2002 3,880 2,800 4,750 13,567 4,700 24,300
2003 4,630 3,150 6,100 15,073 6,600 24,300
2004 5,005 3,300 8,500 19,504 11,500 30,500
2005 5,475 3,900 7,200 21,788 13,750 38,500

Tanker 2000 5,496 4,120 9,280 20,322 9,325 37,799
2001 5,384 1,153 8,859 20,382 9,148 30,318
2002 5,638 4,165 8,100 15,899 7,680 37,145
2003 6,502 4,850 9,170 22,993 12,550 37,040
2004 6,742 4,950 9,450 42,933 11,675 95,200
2005 7,250 4,950 11,500 36,910 12,650 69,450

Table 5.3: Size and age by type

Type dwt Age
Mean Min Max Mean Min Max

Bulker 102,355 19,000 210,000 15 0 30
Container 50,280 14,000 80,000 6 0 25
Tanker 146,388 39,000 340,000 13 0 31
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To complete the picture Table 5.3 provides the mean, min and max for tanker, con-

tainer and bulker for the whole time span of the sample. We do observe even more

than the regular life expectancy (25 years) for each vessel type. In addition the

dataset includes observations for newbuildings and a broad spectrum of vessel sizes

ranging from 19,000 dwt to 210,000 dwt for bulker, 14,000 dwt to 80,000 dwt for

container and 39,000 dwt to 340,000 dwt for tanker. The top left panel of Figure 5.5

Figure 5.1: Opex - size, age, earnings and year

shows a scatterplot of opex against the size of the vessel measured in dwt. As can

be seen there seems to be a positive dependence of opex on the size of the vessel.

However the variation due to other factors is very large. Unlike the nexus between

size and opex the relationship between age and opex (ignoring other factors) seems

to be not as obvious. The top right panel of Figure 5.5 shows that the dataset
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contains some observations for vessels younger than 5 years and few for vessels older

than 25. The largest amount of observations lies within the age range of 5 to 24

years. As can be seen from the graph, there is a break in opex around the 16th year

of operation. This break reflects the crucial role of maintenance for vessels with that

age. At this age, the 15-year classification is due and operators which failed to do

good maintenance to keep the vessel up to all security standards have to catch up to

the get the certificate. Due to the tight markets that have been observed during the

period under consideration, the level of maintenance and consequently opex drop

after passing the classification. The relation between earnings and opex as shown in

lower left panel is quite clear. Finally, the lower right panel shows the development

of opex over time. It suggests a general increase of opex during the years 2000 to

2005.

To summarize, the dataset seems to provide relevant information on a variety of

vessel types and all variables appear to be important to explain the variation in

opex.

5.6 Methodology

As the data set under consideration is a panel, one might consider estimating a

dynamic fixed effects or random effects model of the form

OPEXit = γ0 + γ1SIZEit + γ2AGEit + γ3OPEXi,t−1 + ...+ εit + υi

However, given the large number of vessels in the dataset the fixed/random effects

model would require too many dummy variables for the model specification. More-

over, the error terms might be correlated with the individual effects. Assuming group
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effects being uncorrelated with the regressors, even in a parametric framework, it is

better to employ a more parsimonious model (see Greene (2003) or Baltagi (2001)).

Thus, we expect no significant advantages from linear or quasi-linear fixed/random

effects modelling. In addition to this, the unbalancedness of the dataset would need

special treatment as for instance proposed by Bruno (2005). Most importantly, we

do want to show the non-linear behaviour of opex with respect to its determinants

without making too strict assumptions about the functional form as for instance

through quasi-linear modelling with monotonically transformed variables. As men-

tioned above, there are many factors influencing opex and many reasons suggesting

a non-linear nexus between opex and their determinants. To be able to correctly

account for the possible non-linearities we use semi-parametric methods for our em-

pirical model of opex. Having the advantages of GAM in mind and given the above

issues this chapter also makes use of a GAM framework. However, we do not want

to leave the panel properties unconsidered as will be explained below.

Unlike other attempts in the past, we try to explain the huge variation in opex across

and within the existing submarkets and vessel-types represented by the dataset in

use. To be able to extract the general effects of the determinants of opex indepen-

dently of vessel type and time of observation, and to increase the explanatory power

of the model by increasing the number of observations while using the dataset as

a pooled panel in one regression framework, we need to take the differences due to

vessel types and years into account.28 At the same time the consideration of tempo-

ral effects by inclusion of year-dummies rules out any effects from general inflation.

This is done by using the ability to incorporate parametric terms into the model by

28Please note that it is quite unconventional to talk about opex in aggregated form and to use ob-
servations from different vessel types in one regression framework. However, this chapter follows
a different approach to show the general behaviour of opex with respect to the determinants
that are relevant to all different types of vessels.
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introducing dummy variables according to type and year. Furthermore, we include

three smooth terms depending on size, age and earnings, respectively. This setup is

shown in Model 5.1.

g(E(OPEXit|.)) = γ0 +
∑
type

γtypeI
type
i +

∑
year

γyearI
year
it + f(SIZEi)

+ f(AGEit) + f(EARNit) (5.1)

To show the specific effect of time charter earnings we employ a variable-coefficient-

model (see Hastie & Tibshirani (1993)). Model 5.1 is extended by an interaction

term of the smooth of earnings and a employment status dummy which equals 1 if

the vessel was under time charter contract during the year or 0 if it was employed

in the spot market.

g(E(OPEXit|.)) = γ0 +
∑
type

γtypeI
type
i +

∑
year

γyearI
year
it + f(SIZEi)

+ f(AGEit) + f(EARNit) + f(EARNit)I
Status
it (5.2)

As mentioned above, there are unknown factors which have effect on opex. Using

the idea of indicating time invariant unknown factors by last periods opex, leads to

the last model extension.29 Model 5.3 shows the final regression setup.

g(E(OPEXit|.)) = γ0 +
∑
type

γtypeI
type
i +

∑
year

γyearI
year
it + f(SIZEi)

+ f(AGEit) + f(EARNit) + f(EARNit)I
Status
it + f(OPEXi,t−1) (5.3)

29Please note that we do not introduce lagged opex to capture variation over time. Time effects
are captured by year dummies. In connection with these year dummies it is possible to extract
time invariant effects of unknown factors on opex.

123



All regressions are carried out using g(.) = log(.) as link-function and assumes that

opex follow a Gamma distribution, OPEXit ∼ G(α, β).

5.7 Results

The following regression analysis was done, using a subset of the existing dataset.

First, we had to exclude all observations for which we did not have information on all

of the explanatory variables. Secondly, to achieve a necessary degree of confidence

for the estimation results we trimmed the dataset by excluding 5% of all observations

from the low density data regions. And thirdly, to be able to compare the different

models with respect to the explanatory power we run all regression on the data from

2001 onwards.

Table 5.4: Regression results for Model 5.1, 5.2 and 5.3

(5.1) (5.2) (5.3)

Estimate
Std.

Error Sig. Estimate
Std.

Error Sig. Estimate
Std.

Error Sig.

Intercept 8.04 0.02 *** 8.04 0.02 *** 8.14 0.02 ***
Car Carrier 0.29 0.04 *** 0.29 0.04 *** 0.16 0.04 ***
Chemical 0.51 0.02 *** 0.51 0.02 *** 0.38 0.03 ***
Container 0.27 0.02 *** 0.26 0.02 *** 0.21 0.02 ***
LPG Carrier 0.42 0.03 *** 0.43 0.03 *** 0.31 0.03 ***
Product C. 0.34 0.03 *** 0.35 0.03 *** 0.27 0.03 ***
Reefer 0.28 0.04 *** 0.31 0.04 *** 0.23 0.04 ***
Tanker 0.36 0.02 *** 0.36 0.02 *** 0.27 0.02 ***
2002 0.06 0.02 *** 0.06 0.02 *** 0.05 0.02 ***
2003 0.15 0.02 *** 0.15 0.02 *** 0.12 0.02 ***
2004 0.19 0.02 *** 0.19 0.02 *** 0.14 0.02 ***
2005 0.25 0.02 *** 0.25 0.02 *** 0.19 0.02 ***

AD edf p-value Sig AD edf p-value Sig AD edf p-value Sig

s(Size) 0.01 7.33 0.00 *** 0.01 7.18 0.00 *** 0.01 6.91 0.00 ***
s(Age) 62.86 8.56 0.00 *** 60.00 8.61 0.00 *** 44.37 8.55 0.00 ***
s(Earnings) 0.01 1.55 0.01 ** 0.01 1.00 0.33 0.01 1.57 0.27
s(Earn.)*TC — — — 0.03 1.76 0.00 *** 0.02 2.57 0.00 ***
s(Opex(t-1)) — — — — — — 0.24 1.00 0.00 ***

adj. R2 81,4% 84,3% 86,3%
GCV 0.0116 0.0104 0.0098
n 454 454 454

Signif. codes: 0’***’0.001’**’0.01’*’0.05’.’0.1”1

Table 5.4 presents the regression results for Equations 5.1, 5.2 and 5.3. The upper

panel shows the coefficient estimates and the standard errors for the parametric
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part of each model. The lower panel presents average marginal effects (AD)30,

effective degrees of freedom (edf) and p-values for the non-parametric components

of the models. The results for Model 5.1 show that there are considerable differences

between the different vessel types. All coefficients on the type-dummy variables differ

positively from the base type bulk. The time specific effects show the development

of opex during the last couple of years. On average opex in 2005 have been approx.

25% higher than in 2001. The positive differences between opex in 2001 and the

following years are highly significant. The smooth term of size is highly significant

and shows a large degree of non-linearity. The number of effective degrees of freedom

is 7.3. Furthermore, the AD has a positive sign, indicating an increase in opex of

about 0.01 USD/day per additional dwt on average. Similarly, the smooth term of

age exhibits 8.6 effective degrees of freedom and a highly significant AD of about

63 USD/day per year, i.e. if any vessel gets one year older, opex increase by 63

USD/day on average, in case all other factors are assumed to be constant. The

effect of earnings on opex is still strong with significance on a 1% level, an AD

of 0.01 and 1.5 effective degrees of freedom. Model 5.2 has the same setup as

Model 5.1 but in addition it incorporates an interaction term of earnings and the

TC-contract dummy. The parametric components and the smooth terms for size

and age show the same behaviour as in Model 5.1 but interestingly the general

smooth term for earnings gets insignificant and the earnings-TC interaction smooth

becomes significant below the 1% level. Thus, we can conclude that the general

effect of earnings that was suggested by Model (5.1) disappears, while the effect of

earnings seems to be due to vessels which ran under TC-contract during 2001 to

2005. Furthermore the adj. R2 increased from 81.4% to 84.3%. Introducing lagged

30AD is the shortcut for ”average derivative”. Since we cannot present slope coefficients for every
point of interest we calculated the linear slope coefficient of the fitted values, i.e. the average
marginal effect. For interpretational convenience we present them in terms of the response
variable, USD/day.
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opex (opext-1) into this regression as shown by Model 5.3 increases the adj. R2

to 86.3%. All parametric terms are significant below the 0.1% level apart from the

coefficient on the 2002 dummy which is significant on the 1% level. The smooth

terms for size and age are still highly significant. The general smooth for earnings

is left being insignificant on all relevant levels with 1.6 effective degrees of freedom.

Figure 5.2: Smooth of size in dwt

Figure 5.2 presents the estimate smooth component of size in dwt and the Bayesian

confidence band on a 95% level. As expected, opex increase with size. In addition

we observe a steeper increase of opex for smaller vessel sizes between approx. 10,000

dwt and 50,000 dwt. As shown in the graph, the confidence intervals for these sizes

are satisfactory small. For sizes larger than 50,000 dwt the average increase in

126



opex due to size develops with a smaller positive slope and with growing confidence

intervals. One reason for the wave-like behaviour is that certain vessel types are

built near standard sizes, e.g. 170,000 dwt for Capesize bulk vessels. These vessels

near standard size might have lower opex due to the routine that these vessels can

be handled with. This can explain the slight downward slope between 160,000 dwt

and 170,000 dwt. Although we trimmed the data, the confidence interval at the

right boundary of the sample gets considerably large. Thus, we conclude that the

downward slope at this end is due to the sample and does not necessarily represent

the actual behaviour.

Figure 5.3: Smooth of age

Figure 5.3 shows the regression smooth of opex on age. Similarly to size we observe

increasing opex due to age. As expected, vessels between 0 and 3 years of age
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exhibit a considerably larger positive slope than vessels between 4 and 20 years of

age. Between the age of 4 to 20 years of age the slope seems to be constant and

the confidence intervals are satisfactory small. At the age of approx. 20-21 years

we observe the ”near-scapping-age” effect. Reaching that age the operator might

decide that its not worth investing any more on maintenance since the vessel is

going to be scrapped in 3 to 4 years anyway. Thus, the operator tries to make

as much profit as possible during the last couple of years while reducing costs to

a minimum. This drops the opex of vessels between 21 to 25 years considerably.

Interestingly, we do observe another effect for old vessels. If earnings for certain

vessel-types are unexpectedly high above opex the operator might find that spending

some extra money on maintenance and making the vessel running another 4 to 5

years makes economic sense. Therefore, during times of very high demand for specific

vessels the operator spends money on ”catching-up” maintenance, and indeed our

sample includes a period of very high demand for tank-vessels which lead to these

observations. Due to the low number of such observations in the data sample, the

confidence band of the regression at this end might be too large to draw any safe

conclusions. However, it should be noted that they also exhibit a positive slope.

Figure 5.4 shows the smooth function of earnings when interacted with the time

charter dummy. As can be seen, there is a large and significant dependency between

opex and the earnings of vessels running under time charter contract during times of

low to intermediate earnings. Thus, during times of low earnings or vessels operating

near break even, operators are able to save money by spending less on opex. This is

interesting because this effect was, as mentioned above, suspected by Adland (2002).

However, looking at times of high earnings there seems to be no significant effect

of TC-earnings on opex, i.e. operators can reduce opex during times of near break

even operation but do not spend more during times of unexpectedly high earnings.
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Figure 5.4: Smooth of interaction of earnings and time charter contract dummy
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Figure 5.5: Dummy coefficients for the parametric terms
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Figure 5.5 presents a graphical overview of the dummy coefficients for the parametric

terms of Model 5.3. As expected it can be seen that there are large differences

between the different vessel types with chemicals being the most expensive with

respect to opex. The lower panel shows the development of opex over time with the

biggest difference between 2002 and 2003.

Figure 5.6: Graph of estimation grid

Figure 5.6 provides a graphical overview of an estimation grid of Model 5.3. This

shows the complexity of opex just with respect to age and size holding the other

factors constant. Opex for vessels of the same type with different age and size can

differ by more than 200% depending on age and size with a strongly non-linear

behaviour between the boundaries.

5.8 Summary and concluding remarks

The objective of this chapter is to investigate the economic determinants of opex and

to construct a quantitative model which is capable of explaining the differences and
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the huge variation in opex that has been observed in the recent past. To get insights

into the determinants of opex we provide a detailed introduction into the practical

factors of opex and the role of opex in empirical and theoretical work in shipping

economics. The used GAM framework enables us to appropriately incorporate all

relevant factors of opex such as type, time, age and size effects as well as effects due to

the behaviour of ship operators and effects implied by regulatory infrastructure. In

addition, we get as much information from the data as possible without making any

strict assumption about the functional form of the relationship that exists between

opex and its determinants. The results confirm the expectations on how opex depend

on the factors. The explanatory power is satisfactory high, although there is still a

some variation left which could not be explained. Opex do not linearly depend on

age and size, i.e. assumptions like ”opex increase by 1,5% per year of age” or linear

or log-linear regressions to estimate size specific effects are misleading. Indeed, the

dependency is of non-linear nature, i.e. opex increase with respect to age with a

decreasing slope. Additionally, we observe a ”near-scrapping-age” effect which is

explained by the behaviour of the vessels operator. Furthermore, there seem to

be ”standard size” effects which can reduce opex for standard-size vessels as for

example approx. 170,000 dwt bulk vessels. This chapter could show that there is a

dependency of opex on earnings for vessels running under TC-contract during times

of low to intermediate earnings or vessels operating near break even, as suggested

by Adland (2002). While making investment decisions this effect should be taken

into account. In a dynamic model of specific shipping markets the ”TC-earnings”

effect could lead to interesting results. Specially talking about business cycles this

could give new insights. Due to the short time period covered by the dataset we

could not thoroughly investigate the macroeconomic reasons for the sharp increase

in opex over this time span. However, there are signs that these increases are due
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to excess demand for manning and increased insurance premiums as cost factors of

opex. Although, in this analysis unobserved factors of opex and its effects have been

approximated by last periods opex, almost 14% of the variation in opex could not

be explained. For future research it would be interesting to investigate opex on a

disaggregated level including vessel and operator specific effects which have not been

available in our dataset. From a practical point of view the developed model allows

the user to generate customized opex benchmark tables/grids which can incorporate

age, size, vessel and owner specific effects up to a certain extent.
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6 Summary and concluding
remarks

This section summarizes the results, recapitulates the implications and shows paths

for future research. As mentioned in the introduction, the evaluation of Hypothe-

ses 1-6 has primarily been of theoretical interest while the quantitative results are

important for the modelling and valuation of any cash flow driven monetary claim.

The application of semi-parametric methods is of potentially large interest from an

academic perspective. Moreover, the results are relevant to practical decision mak-

ing which is mainly concerned with earnings (Hypotheses 1, 2, 5 and 6) and asset

values (Hypotheses 3 and 4).

Hypotheses 1 and 2

Chapter 3 addressed the questions of whether there are vessel individual differences

in physical time charter rates. Specifically, Hypothesis 1 stated that the quality of

a vessel does affect its earnings potential, i.e. there is a two-tier Panamax dry bulk

market. As a consequence it is interesting if the financial incentives are sufficient

for a renewal of the fleet and additional investments in security and safety of vessels.

The quantitative model presented in Chapter 3 shows that, considering vessel and

contract specific effects leads to much more precise charter rate estimates. Moreover,

taking all relevant factors into account the model delivers empirical evidence for the

two-tier dry bulk market hypothesis. While showing the significant effects of charter

length, days forward, consumption and size, it is possible to extract quality induced
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differences to charter rates through the age of the vessel. Previous research, applying

parametric estimation techniques had to define quality tonnage. This was mostly

done through the assumption of quality tonnage being younger than 15 years. The

visual inspection of the estimated non-parametric smooth of age presented in this

research supports this hypothesis. Despite this, the question of sufficiency of the

given financial incentives remains open. The results do not allow for safe conclusions

and this question remains for future research. As this is the first pice of research

presenting empirical evidence in favour of the two-tier dry bulk market hypothesis,

further research using extended datasets and alternative estimation techniques is

necessary.

Hypotheses 3 and 4

Objectives of Chapter 4 were to show that the functional form of second hand chemi-

cal tanker prices are non-linear with respect to vessel individual characteristics such

as size and age as well as market factors such as charter rates and newbuilding

prices. Moreover, Chapter 4 aimed to show that cargo- and cargo handling diver-

sity have larger effects on second hand prices of chemical tankers than specialisation.

Ship specific factors which have not been included in previous studies are shown

to have a significant impact on prices and the explanatory power of the presented

model appears to outperform linear methods of estimation. The empirical results

confirm the findings in recent literature that ship valuation is a non-linear func-

tion of the main drivers such as ship size, age and market conditions. In terms

of cargo- and cargo handling diversity it could be shown that with respect to the

second hand price of vessels a larger set of available coating has to be preferred over

having a limited number of coatings which suit more different chemicals. Capturing

this effect of versatility enables us to obtain much more accurate second hand price
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estimates than merely accounting for coatings through different dummy variables.

The major implication is that, from an investors point of view the application of

non-linear models for asset valuation allows for a more efficient capital allocation

through a much more precise price estimation. This, in turn, reduces the risk of

misinvestments and the risk of overestimation of recovery rates and losses in case of

investment defaults.

Hypotheses 5 and 6

Previous research showed that opex function as lower boundary for physical charter

rates. In addition to this it has been assumed that earnings and opex are indepen-

dent. The objective of Chapter 5 was to test this assumption and to show that the

employment status does affect the level of maintenance and hence operating costs.

Moreover, it raised the question of whether regulatory requirements explain differ-

ences in opex, and/or if the operators economic behaviour and operating policies

are a significant factor to differences in opex.

The empirical results provide evidence for the hypothesis that opex depend on

the current market level. Moreover, this nexus is non-linear. Additionally, opex

vary with the status of employment, i.e. time charter and spot delivery. Other

factors that significantly influence opex relate to regulatory requirements and oper-

ating policies. From an investors point of view those differences are important while

analysing cash flow performances and determining the probability of default of a

given investment since ignoring the relation of opex to the charter market does lead

to overestimation of the risks involved. This becomes clear when considering a cash

flow scenario assuming worst case charter rates and, at the same time, escalating

opex by any given percentage rate. Projected profits as difference between earnings

and costs appear to be lower and in some cases lead to potential losses. This analy-
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sis being part of any investment decision must result in suboptimal decision-making

and hence suboptimal capital allocation.

Methodological issues and future research

Despite its very straightforward theory, i.e. the four shipping markets, many effects

of the shipping market are difficult to quantify and require non-trivial modelling

techniques capable to approximate non-linear effects. All models suggested in this

thesis are capable of explaining important variables of shipping economics through

their non-linear nature. Keeping the advantages, disadvantages of semi-parametric

modelling in mind, GAMs seem to be a very promising way of quantitative mod-

elling in shipping economics. Further topics which could be studied within a GAM

framework are for instance the newbuilding and the scrapping market. As those

markets are demand-driven and have impact onto the supply side, semi-parametric

modelling of those sub-markets might lead to new insights. A fully integrated model

of the shipping markets, estimated with GAMs could be used to investigate the ef-

fects of speculation and asset play.

The limitations of the research presented in this thesis are mostly concerned with

methodological assumptions made and issues surrounding inference made after semi-

parametric estimation (see Section 2.3). Given those methodological issues, for fu-

ture research it seems worthwhile to utilize other non-linear estimation techniques

from the given variety of non- and semi-parametric techniques available today.

The development and application of a semi-parametric VAR framework or semi-

parametric dynamic panel data estimation techniques would significantly enhance

our knowledge about shipping markets as the major facilitator of economic growth

and globalization.
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