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ABSTRACT 
 

The complex nature of turbomachinery flows and the scale of associated flow phenomena 

such as shock waves and vortex shedding, apply constraints to the methods by which the flow 

can be analysed experimentally. Computational techniques have quite successfully been 

applied to the flow around turbine blades, but the transient and periodic phenomena observed 

in experimental studies have not been fully investigated. In this work an original working 

computational code is presented for time-resolved flows around turbine cascades. The code 

has been verified using test cases relevant to transonic flow. Some of the problems associated 

with computational techniques have been highlighted; these include the large number of 

schemes that are available, each with its own advantages and disadvantages. The code has 

been applied to a geometry representing highly loaded turbine blading currently under study 

at the National Research Council of Canada; this was also used extensively in previous 

computational and experimental investigations. The blading chosen has a relatively thick 

trailing edge, necessitated by cooling considerations. A distribution of the flow properties on 

the surface of the blade has been determined, from which an equivalent water table model has 

been designed based on the principle of the hydraulic analogy. The water table model thus 

generated represents a further method for experimentally investigating flow phenomena 

without the complexity of analysing very high frequency oscillations in situ. The time-

resolved flow field has been computed showing unsteady phenomena. The unsteady 

phenomena have been shown to compare favourably with the unsteady features observed in 

preliminary experimental results. In the process, energy separation has been predicted to 

occur not only in the coupled wake region, but also for the first time within Kelvin-Helmholtz 

instabilities present in the trailing edge shear layers. 
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1 INTRODUCTION 
 

It has been known for many decades that the flow within turbomachines, such as steam and 

gas turbines, is highly complex in nature. Two phenomena that present themselves are shock 

waves, and energy separation in the trailing edge region of turbine blades. Through research 

and development over the years, turbines have become increasingly more efficient. This was 

originally due to parametric studies, but later, advancements in flow measurement techniques 

such as Schlieren, LDA (Laser Doppler Anemometry) and more recently PIV (Particle Image 

Velocimetry) have been utilised. These have been successfully combined with CFD 

(computational fluid dynamics), a numerical method for modelling fluid flow, to produce 

increasingly accurate results. In fact, since its development in the 1930s, the gas turbine has 

increased in power by a factor of 50, accompanied by a reduction in fuel consumption of 

75%. The gas turbine industry has now become a dominant force in world markets, and the 

emphasis on producing efficient and cost effective turbomachinery is very high. Although 

turbine blading is reaching the limits of its efficiency in terms of current technology, there is 

still the potential for a few percent increase and the benefits of research into realising this 

increase are still viable. Furthermore, the cost and weight benefits of higher loading, and the 

accompanying reduction in blade count have become increasingly important. 

Turbine blading1 is the mechanism by which gas flow is redirected through a turbomachine; it 

is therefore important that the phenomena associated with the flow behind each blade are 

fully understood. 

Two principal features are shock waves, discontinuities that form when supersonic airflow is 

reduced to subsonic velocities, and energy separation. Energy separation is the re-distribution 

of total temperature in the trailing edge of turbine blading, resulting in a cold region along the 

centre-line of the wake; this discovery was based on work originally conceived by Eckert 

(1943). Ryan (1951) postulated that the process of energy separation was associated with 

vortex shedding, the most common form of which is the Von Karman vortex street - where a 

series of vortices are alternately shed from either side of a blunt trailing edge. This was later 

to be proven by Kurosaka et al. (1987). 

                                                 
1 Turbine blading: a series of identical turbine blades arranged radially about a central hub. 
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Due the tight confines of turbomachinery, physical analysis of these phenomena in situ, is 

usually very difficult. As a result, alternative methods for the investigation of trailing edge 

phenomena have recently been developed. Over the past few decades, as the power of 

computers has increased, the application of numerical solutions to the flow around turbine 

blades has increased. The complications described above make turbine blading an ideal case 

for modelling computationally. In recent years, computational work has been used quite 

successfully in the simulation of flow around turbomachinery, including the modelling of 

unsteady phenomena such as of vortex shedding.  

 

1.1 Aims and Objectives 

The aim of the thesis was to develop and verify a working numerical code, and use this to 

model a known turbine blade. The Mach number distribution for the turbine blade can then be 

used to design a water-table model based on the hydraulic analogy that will exhibit the same 

characteristics, but at a much lower shedding frequency. The water table model can then be 

used for more detailed analysis of the above mentioned flow phenomena. 

For this research, a highly loaded turbine blade tested by the CNRC (Le Conseil National de 

Recherches du Canada - National Research Council of Canada) has been chosen. This 

particular blade has been used extensively in previous computational and experimental 

investigations, mainly due to its thick trailing edge. The purpose of the thick trailing edge was 

to allow for blade cooling; the cooling has not been taken into consideration for the current 

study. The flow region of interest is the transonic region defined by an inlet Mach number of 

0.112, and an inlet to outlet pressure ratio of 2.3. This gives an exit Mach number of 1.16. 

The flow at the trailing edge of the blade is transonic giving the required periodic phenomena 

associated with the interaction of the shock waves and the vortex shedding. Computational 

work to date has already produced excellent predictions of Von Karman vortex shedding, 

Arnone & Pacciani (1997), and Carscallen et al (1998), but so far none has simulated periodic 

features associated with transonic flow in which various permutations of the traditional vortex 

shedding present themselves. 

The first aim of the research is to develop a working numerical code to generate accurate 

Mach number distributions around the turbine blade. From these distributions, a water-table 

model can be designed according to the hydraulic analogy. The water table model is similar to 

a model presented by Roberts & Denton (1996), although the present model is designed for a 

supersonic exit Mach number. The water-table model can be seen in Figure 1.2, compared to 
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the equivalent turbine blading in Figure 1.1. The water table model exhibits advantages over 

the original turbine blade in that to give analogous characteristics to the turbine blade, flow of 

a much lower velocity is required. The flow velocities are now in the region of 0.44ms-1 as 

opposed to 300ms-1 for the turbine blade, thus the associated phenomena will be clearly 

visible to the naked eye; shock waves will be visible as stationary waves on the surface of the 

water and vortices will be present as small ‘whirlpools’ convecting downstream. Information 

may now be captured through simple techniques such as the use of video cameras and float 

gauges. 

A RANS (Reynolds Averaged Navier-Stokes) finite volume code was developed for this 

study. Due to the very high Reynolds number of the flow under investigation, it was deemed 

that only the Euler solver would be required; the flow is predominantly Euler in the 

mainstream, with only a narrow boundary layer. The narrow boundary layer would have a 

minimal effect on the Mach number distributions around the turbine blade and the subsequent 

Mach number distributions around the water table model. This is justified by the work of 

Denton & Xu (1989). For complete accuracy, however, viscous computations would be 

required. These would have the added complication that minor discrepancies in the base 

pressure computations would affect the positioning of the shock waves in the trailing edge 

region, and the pressures over the back half of the turbine blade; Gostelow (1984). 

The second aim of the research was to perform unsteady flow field calculations using the 

same numerical code and determine whether these calculations compare with previous 

experimental results, and preliminary experiments performed on the water table model.  

 

The thesis is divided into the following chapters:  

Chapter two: an introduction to turbine blading and previous computational and experimental 

work that has been performed.  

Chapter three: an introduction to the computational fluid dynamics.  

Chapters four through to nine: a description of the current solver that has been used for this 

study, including all the methods that have been tested.  

Chapter ten: numerical validation of the solver.  

Chapter eleven: a detailed description of the turbine blade under test.  

Chapters twelve and thirteen: the hydraulic analogy and its application to the turbine blade 

and the water table geometry.  

Chapter fourteen: conclusions and further work.  
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Figure 1.1: Turbine Blading 
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Figure 1.2: The Water Table Model 
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2 TURBINE BLADING 
 

In turbomachinery, it is the turbine stage that is responsible for the conversion of thermal 

energy into mechanical energy. Examples of turbomachinery include the gas turbine, the jet 

engine and the steam turbine. The efficiency of the engine is limited by the need for very high 

temperatures in the combustion chamber and the early stages of the turbine. Continuous 

advances in heat-resistant materials, protective coatings such as ceramics, and cooling 

arrangements have made possible very high internal temperatures resulting in highly efficient 

turbomachinery. Improving the aerodynamic properties of the blades can further increase the 

efficiency. Better aerodynamic performance ensures that more energy is transferred into 

increasing the pressure through the compressor for example, rather than being expended in 

overcoming drag. Although these increases in performance will be in the order of a few 

percent or less, the economics of air transport and power generation ensure that research into 

these areas is still viable. 

Due to physical constraints associated with turbomachinery, analysis of the flow conditions in 

situ can be very difficult. The gaps between consecutive rows of blades would be in the order 

of millimetres, and in the turbine stage, pressures and temperatures may be high enough to 

destroy most experimental probes. In fact, the gas temperatures in the turbine may be in the 

order of a thousand degrees, and it is only through effective cooling and design that the 

melting point of the blades is not exceeded. Other methods of investigating the flow through 

turbomachinery must therefore be developed that are not constrained by the factors described 

above. 

  

2.1 The Turbine Cascade 

The usual method of analysing turbine blades is with a turbine cascade. This is a series of 

blades, Figure 2.1, representing a small section of a circular turbine configuration - effectively 

unwrapping the blades to lie on a two-dimensional plane; Gostelow (1984) gives a highly in-

depth study of this technique. Although the method has been used for the last seventy years, it 

is still a primary tool for the study of turbomachinery, and has by no means reached the end of 

its useful life. It is important to realise that the turbine cascade is merely a model and is a 
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method of simplification to result in a deeper understanding of the fundamental operation of 

the actual turbine blading. 

 

 
Flow Inlet 

Flow Outlet  

Figure 2.1: Turbine Cascade 

 

Some approximations have to be made in the process of reducing the turbine disk to a turbine 

cascade; the turbine blade is a three-dimensional object as can be seen in Figure 2.2(a). As the 

tip of the rotor has a higher axial velocity, the blade needs to be twisted to ensure that the 

correct angle of incidence of the inlet flow is maintained along the leading edge. 

Consequently, the cross-section and camber at the tip of the blade do not match those at the 

root, Figure 2.2(b); the mean cross section or the cross-section at the midpoint is usually 

taken. 

 

 

 Tip Profile 

Mean Profile 

Root Profile 

 
(a) Actual Turbine Blade (b) Blade Cross-Sections 

Figure 2.2: Details of Turbine Blade 
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The turbine cascade can now be integrated into an experimental rig that allows experimental 

probes and techniques to be used to their full potential. Techniques such as Schlieren, LDA 

(Laser Doppler Anemometry), PIV (Particle Image Velocimetry), and interferometry are just 

a few for which a great deal of information is available in current literature. Additionally, as 

the blade is not constrained to the limits of the turbine, it can be scaled to a size suitable for 

the analysis in question. This can be done confidently if the Reynolds number of the model 

matches that of the original. 

 

2.2 Mach Number 

Many phenomena that are present within turbomachines and the degree to which they interact 

are dependent on the Mach number of the flow. There are five main Mach number regimes 

into which the flow can be separated depending on the predominant flow characteristics, these 

can be seen in Table 2.1.  

 

Ma < 0.3 Incompressible Flow 

Mach number effects are negligible. Viscous effects can now 

dominate the flow, particularly at very low Reynolds numbers. 

0.3 < Ma < 0.7 Subsonic Flow 

Density effects are now present 

No shock waves within the flow 

0.7 < Ma < 1.2 Transonic Flow 

Shock waves now begin to appear, mainly at the trailing edge of 

supersonic patches but as the Mach number increases to 

supersonic flow, weak shock waves also begin to appear. 

1.2 < Ma < 3.0 Supersonic Flow 

There are now no subsonic regions within the flow. 

Ma > 3.0 Hypersonic Flow 

Flow begins to depart from ideal gas theory with dissociation of 

molecules. 

Table 2.1: Mach Number Regimes 
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2.3 Vortex Shedding 

Numerous studies have been performed on a series of blade geometries exhibiting vortex-

shedding characteristics. Figure 2.3 shows six blades that have been investigated under 

various loading conditions by: Heinemann & Butefish (1977), testing blades A-1 and A-2, 

Bryanston-Cross & Camus (1982), testing blades B-1 and B-2, a pair of high turning blades 

with slightly different rear suction surfaces, Sieverding & Heinemann (1989), testing blade C, 

and Carscallen & Gostelow (1994), testing blade D. Early tests by Carscallen & Oosthuizen 

(1989) in the trailing edge region of blade D indicated a very high redistribution of total 

temperature. Moustapha et al. (1993) compared experiment pressure profiles around the same 

blade, over a range of exit Mach numbers into the supersonic regime. Their work compared 

favourably with the computational work of Ni & Bogoian (1989), but no analysis of the wake 

flow was performed. The work does however provide good documentation for total pressure 

losses in the downstream flow field. Cicatelli & Sieverding (1996) performed low subsonic 

experiments at an exit Mach number of 0.4. The work showed vortex shedding in the wake 

with a distinct difference between the vortices shed from each side with the pressure side 

vortex being the more concentrated. This was also shown to be the case in the work of 

Roberts & Denton (1996). Although this was performed behind a flat plate, unequal pressures 

were generated on either side of the plate to simulate turbine blade trailing edge conditions. 

The figure shows the range of Strouhal numbers observed for each of the blades depending on 

the exit Mach number. The Strouhal number is used to determine the vortex-shedding 

frequency and is defined as: 

∞

=
U
fDSt  (2.1) 

 

where f is the shedding frequency, D is the trailing edge diameter and U∞ the freestream 

velocity.  A particular trend can be seen in Figure 2.3; in the subsonic region the Strouhal 

number decreases fairly uniformly followed by a large jump as the flow crosses into the 

transonic region. 
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Figure 2.3: Strouhal Number Based on Exit Mach Number, Cicatelli & Sieverding (1996) 

 

Following the work of Sieverding & Heinemann (1989), three boundary layer conditions can 

be defined based on the Strouhal number: 0.2<St<0.23 indicates that the boundary layers are 

both turbulent, St>0.35 indicates the boundary layers are both laminar, and intermediate 

values of St indicates that a transitional boundary layer state is present on one or both sides of 

the blade. 

For the current study, blade D is being used. This particular blade has been used extensively 

in previous computational and experimental investigations mainly due its thick trailing edge, 

and is currently being investigated experimentally at the CNRC. The flow region of interest is 

the transonic region defined by an inlet Mach number of 0.112, and an inlet to outlet pressure 

ratio of 2.3. This gives an exit Mach number of 1.16. From Figure 2.3, this gives a Strouhal 

number of about 0.28. 

 

2.4 Supersonic Flow Structure 

The flow structure in the trailing edge region of the turbine blade changes radically when the 

flow crosses into the transonic regime. The wake structure no longer stems from the actual 

edge of the blade, but from a new point further downstream. This particular flow structure can 

be seen in Figure 2.4(a). 
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(a) Supersonic Trailing Edge (b) Transonic Trailing Edge 

Figure 2.4: Flow Structure for Trailing Edge 

 

This flow structure is now well understood, Denton & Xu (1989). The upstream flow on 

either side of the blade is supersonic. The base region is roughly triangular in shape, bounded 

by two upper and lower shear layers. The shear layers start where the supersonic flow 

separates from the body of the blade at the first point of curvature. The resulting change in 

flow direction generates expansion waves that propagate into the main flow. The amount of 

turning is related to the pressure in the base region. The flows from either side of the blade 

meet at a point downstream, termed the confluence point. The flows turn to a common 

direction at this point and a compression shock is formed. One side of this shock propagates 

downstream away from the blades, and the other impinges on the suction surface of the 

adjacent lower blade. The flow downstream of this trailing edge shock is supersonic. 

There is also an intermediate transonic state in which the triangular base region is not fully 

developed, Figure 2.4(b). The triangular region is effectively truncated with no defined 

confluence point. Vortices are shed from the trailing edge of the blade as with the subsonic 

case, but are now confined to the channel defined by the shock waves that are formed where 

the flow is redirected by the vortices. 

 



Chapter 2  Turbine Blading 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 11 

2.5 Computational Investigations 

Over the past few years several studies have been performed on the flow through turbines. Xu 

& Denton (1987) compared experimental and computation work for four blades including 

blades B1 and B2 over a range of Mach numbers. Their work was Euler in nature, and 

generated good results, with a base pressure coefficients from the time marching code closely 

matching the experimental results. No details however were recorded with reference to the 

presence of vortex shedding. They concluded that the base pressure loss was proportional to 

the trailing edge thickness. However their later work, Xu & Denton (1990) gave more 

accurate base pressure predictions and implied that an Euler solver may be more confidently 

used for supersonic computations. Later work by Furukawa et al. (1992) on blade A-2 used a 

fully viscous implicit code. Their work showed a good agreement between numerical and 

experiment surface pressure distributions for an exit Mach number of 0.975. Vortex shedding 

was present although not very well resolved, and the Strouhal number was underestimated. 

This is probably due to the low density of the grid, with only sixteen points around the trailing 

edge of the blade. Arnone & Pacciani (1997) performed a computational study at an exit 

Mach number of 0.4, based on the blade tested at the VKI, as investigated by Cicatelli & 

Sieverding, (1996). Their work was of a very high standard clearly showing vortex shedding 

in the trailing edge region. The frequency of the vortex shedding was found to agree with the 

experimental work but overpredicted pressure oscillations. Carscallen et al. (1999) performed 

numerical and experimental work over a range of exit Mach numbers on blade D. Again they 

showed vortex shedding in the wake region, with a maximum reduction in wake temperature 

at an exit Mach number of 0.95. Both this work and the work of Arnone & Pacciani (1997) 

showed the effect the different boundary layer thicknesses had on the vortices being shed 

from either side of the blade. In particular, the vortex shed from the pressure surface is shown 

to be the more concentrated vortex with a more smeared vortex emanating from the suction 

surface. This corroborates well with the experimental work described previously. The 

computational work of Gehrer et al. (2000) was performed at exit Mach numbers of 0.62 and 

0.7. The calculations were of a high quality and vortex shedding was clearly evident. This 

was performed with the VKI blade and computational results were in good agreement with 

their experimental work  

Of particular interest is the work of Currie & Carscallen (1998), again on blade D. Results 

were generated for exit Mach numbers of 1.0 and 1.16, the latter matching the current study. 

Their computational results were in excellent agreement with experiment work clearly 
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showing vortex shedding and the shock waves forming at the confluence of the two shear 

layers. The numerical vortex shedding was in the form of the standard von Karman vortex 

street, the dominant shedding mode for this Mach number. Other vortex shedding modes are 

described in more detail in section 2.8. 

 

2.6 Energy Separation 

Energy Separation is defined as the rearrangement of total temperature in the wake of a bluff 

body into regions of higher and lower total temperature. In 1943, Eckert performed 

experiments measuring the surface temperature of thermally insulated cylinders in a cross 

flow of air, primarily at Mach 0.685. His findings were that the temperature at the upstream 

stagnation point was the expected temperature but at the trailing edge stagnation point 

temperatures as much as 20°C lower than expected values were measured. In terms of a 

recovery factor, defined as: 

∞

∞

−
−

=
TT

TTR
0

)(θ  (2.2) 

 

where T∞ is the upstream static temperature, T0 is the upstream total temperature and T(θ) is 

the total temperature at an angle of θ around the cylinder measured from the leading 

stagnation point (θ=0°), this gave negative values. For the leading edge R would be 1, and for 

the rear stagnation point (θ=180°), a value of about –0.1 was measured, in contrast to 

expected values of about 0.84-0.9 that had been measured in flat-plate experiments. The 

lower the value of R, the lower the temperature. These experiments were performed with a 

thermocouple embedded in a hollow rubber cylinder. 

This startling discovery was later to be known as the ‘Eckert-Weiss Effect’. It should be noted 

that the experiments were performed using a thermocouple, which only measured time-

averaged temperature, so the ‘Eckert-Weiss Effect’ should be recognised as the time-averaged 

total temperature loss on the trailing edge of a cylinder. Although originally ridiculed by 

Prandtl, who stated that this temperature loss was due to experimental errors, Eckert’s work 

was subsequently corroborated by Ryan in 1951. Ryan also extended this with the observation 

that the temperature loss was also present in the wake flow behind the cylinder, as can be seen 

in Figure 2.5, and not just on the surface. 
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Figure 2.5: Time Averaged Total Temperature2 

 

These results are particularly interesting in that they seem to contradict the law of 

conservation of total energy. In a steady state system, for adiabatic, isentropic flow, total 

enthalpy is conserved along a streamline: 

constant
2

2

00 =+==
UTCTCh pp  (2.3) 

 

As a consequence there should be no redistribution of total temperature. The above findings 

would imply that there was an unsteady effect performing work in the system. If the flow is 

indeed unsteady then the rate of change of total enthalpy along a streamline can be defined 

by: 

t
p

dt
dh

∂
∂

=
ρ
10  (2.4) 

 

This can be interpreted as pressure changes in the system perform work on a streamline 

resulting in a change in total enthalpy. 

Ryan also noted that a particular whistling sound could be heard that coincided with the drop 

in the recovery factor. The sound heard was at a frequency matching that of the vortices being 

shed from the cylinder. He therefore posited that vortex shedding was the unsteady 

                                                 
2 Courtesy: William Paul Bennett, University of Leicester. 

Non-dimensional T0 
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mechanism responsible for the lower recovery factor. Thomann (1959) added further to this 

by his finding that suppressing the creation of the vortex shedding led to an increase in the 

recovery factor. 

 

At around the same time another interesting discovery was made by G.J.Ranque, this effect 

became more widely known in the United States of America after 1947 through a small 

device now called the Hilsch Tube (Eckert, 1986). The tube consists of an inlet nozzle A, and 

a small orifice at C to let the central air travel through to the right. Compressed air is injected 

through the small nozzle at the tube wall A and tangential to the wall. Part of the flow then 

leaves through the orifice at C and the rest leaves through the peripheral opening at B. The 

interesting observation that can be made is that the total temperature at the cold outlet is 

significantly less than the total temperature of the inlet air, and the total temperature at the hot 

outlet is higher than the inlet air. 

 
 

B 

A 
C 

Cold gas outlet Hot gas outlet 

Compressed air inlet 

Smooth cylindrical tube 

 

Figure 2.6: Counter-Flow Hilsch Tube 

 

This effective separation of the inlet air into hot and cold streams is called the Ranque Effect. 

The flow inside the Hilsch tube is complex but well documented, Gutsol (1997), although the 

exact mechanisms of the temperature separation are not fully understood.  

 

The flow can be described as similar to that found inside a cyclonic dust separator. This can 

be seen in Figure 2.7; compressed air enters through the inlet at A and forms a vortex around 

the periphery of the tube. The swirling flow progresses to the left hand end of the tube where 

the outer hot gas can exit through the ring orifice at a high pressure. The inner layers of fluid 

are redirected back to the cold outlet and form an inner vortex flowing to the right. To ensure 

that fluid does exit from the cold outlet, the ring orifice at the hot outlet to the left must be 
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closed sufficiently to give enough back-pressure. The flow in the Hilsch tube is known to be 

turbulent and particularly noisy during operation. 

 

Hot gas outlet Cold gas outlet 

Compressed air inlet 

 

Figure 2.7: Flow Pattern through Counter-Flow Hilsch Tube 

 

Recent theories posit that there are three effects responsible for the temperature separation: 

1) Centrifugal forces; in the rotating column of fluid, centrifugal forces generate a pressure 

distribution across the tube from low pressure at the centre to high pressure at the outer edge. 

The lower pressure results in a lower temperature. 2) Shear stresses within the fluid; for 

angular momentum to be conserved, the inner layers of fluid must rotate faster, however, 

viscous forces between layers act to decrease the velocity of inner layers and increase the 

velocity of the outer layers. Consequently heat is transferred from the inner layer to the outer 

layer. 3) Turbulent mixing; particles of fluid move between adjacent layers and in doing so 

move into areas of lower or higher pressure. A particle moving towards the centre moves into 

a region of lower pressure, it can be considered to undergo adiabatic expansion with an 

associated decrease in temperature, and can now absorb heat from the surrounding medium. 

Conversely, a particle moving into a region of higher pressure can be considered to undergo 

adiabatic compression with an associated increase in temperature, and heat can be expelled to 

the surrounding medium. 

With Eckert having renewed interest in this phenomena, Kurosaka et al (1987), began 

investigating the flow behind cylinders both experimentally and computationally. His 

experiments employed a technique of acoustic resonance to establish the extent to which 

vortex shedding was responsible for the energy separation. Defining the base pressure 

coefficient as: 
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where p∞ is the upstream static pressure, ρ∞ the upstream static density, U∞ the inlet velocity, 

and pb the pressure measured at the base of the cylinder; θ=180°. Kurosaka et al, measured 

simultaneous drops in Cpb and R. His conclusions were indeed that the Eckert-Weiss effect 

was a consequence of vortex shedding. Furthermore, his computational work also noted the 

temporary presence of hot and cold spots within the wake. He provided the following 

explanation for the mechanism by considering a fictitious particle moving along a streamline 

into the wake of the cylinder.  The path of the particle will follow a trochoidal streamline. An 

easy way to visualize this is to imagine the locus that a point in the rim of a bicycle wheel will 

follow as it moves along the ground. The figure below shows a cycloidal streamline, the 

particular case where Uv = Uθ 

 

 

Uv 

Uθ 

P(x,y) y 

x  

Figure 2.8: Cycloidal Locus of Particle P, Uv/Uθ = 1 

 

The above diagram shows a particle following a cycloidal streamline on a vortex being 

convected to the right. Now, from equation (2.4), for a constant Cp, the unsteady flow 

equation becomes: 

t
p

dt
dT

C p ∂
∂

=
ρ
10  (2.6) 

 

It can be seen that the total temperature of a particle changes with tp ∂∂ . As the particle 

moves from the top of the vortex to the bottom, the vortex centre is approaching the particle 

resulting in tp ∂∂ <0, and so the total temperature must also drop. As the particle then moves 
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back to the top on the left of the vortex, tp ∂∂ >0 as the vortex centre recedes, and the total 

temperature increases. The net effect is that of a heat pump with heat being absorbed from the 

lower fluid and redistributed to the upper fluid. Near the centre of the vortex, tp ∂∂  is 

greatest, the largest temperature differences can be seen. As vortices are shed from either side 

of the cylinder, the vortex spans from the outer point of the cylinder to the midpoint, the 

centreline of the wake would then be the coolest being affected by both the upper and lower 

vortices. Figure 2.9 shows one of the computational results generated by Kurosaka et al. 

(1987), showing the cool wake and the warmer outer region. Although the cold spots are not 

immediately obvious, the hot spot stands out very clearly. 

These results were further verified by Ng et al (1990) performing experiments in the wake of 

a cylinder with a high frequency aspirating probe. These experiments were performed at 

particular Mach numbers of the flow around a cylinder. Fox et al (1993) performed 

experiments investigating the temperature separation found in structures occuring at the 

interface between a jet and the surrounding fluid. Kurosaka (1992), working with 

O’Callaghan, measured a similar effect in the shear layer in a channel and also concluding 

that the magnitude of the temperature separation was approximately proportional to the 

square of the difference in Mach numbers of the two fluids. Carscallen & Oosthuizen (1989) 

obtained time-averaged total temperature and pressure downstream of a transonic turbine 

blade observing similar effects to those described above; in addition to the decreased total 

temperature in the centre of the wake there was an increase in the total temperature at the 

edges of the wake. 

 

Hot Spot 

Cold Spots 

 

Figure 2.9: Instantaneous Total Temperature, Kurosaka et al. (1987) 
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Similarities can be seen between the flow in the Hilsch tube and a vortex at the point at which 

it is being shed from the trailing edge of  a turbine blade. Both exhibit similar flow patterns 

and heat transfer characteristics. 

 

2.7 Shock Waves 

Weak pressure disturbances in a fluid are propagated through the fluid at a velocity defined 

by its speed of sound, a function of the properties of the fluid.  Thus for stationary flow, 

pressure disturbances will radiate outward from a body in concentric circles, Figure 2.10(a). If 

the disturbance occurs at time t, then the figure shows the position of the wave at times t+1, 

t+2, and t+3, with the distance between waves being uniform. Shock waves are features 

formed in a fluid associated with the superimposition of weak pressure waves propagating 

through the fluid. For a body moving slower than the velocity of propagation, no shock waves 

are formed, as the pressure waves radiate from the body in all directions; this flow is termed 

subsonic, and is similar to the stationary case. For a body moving at the velocity of 

propagation, termed sonic or transonic, a normal shock wave is formed at the upstream point 

of the body as the leading edge of the waves coincide. If the body is moving faster that the 

velocity of wave propagation, then an oblique shock wave is formed and the velocity of the 

body is termed supersonic, and a Mach cone is formed.  

 

 

Flow 

t+2 
t+1 

t+3 

 

 

t+2 t+1 t+3 

Normal Shock Wave 
 

t+2 

t+1 

t+3 

Mach Cone  
(a) Subsonic U = 0 (b) Sonic U = a (c) Supersonic U > a 

Figure 2.10: Formation of Shock Waves 

 

Shock waves are one of the main causes for inefficiencies and energy loss within 

turbomachinery, Xu & Denton (1989). Energy losses that are associated with shock waves are 

due to heat conduction and viscous effects causing an increase in entropy. 
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2.8 Transient Vortex Shedding 

Carscallen & Gostelow (1994), and Carscallen et al. (1996) performed experiments over a 

wide range of Mach numbers in order to demonstrate the existence of vortex shedding behind 

turbine blades. Their results showed this to be true, with vortex shedding occuring over an 

exit Mach number range of 0.5 to 1.17. Their experiments were performed using high-speed 

Schlieren. In the low Mach number range, the shedding was seen to follow the traditional Von 

Karman vortex street, but at transonic and supersonic exit Mach numbers, the vortex street 

became unstable and a series of transient features presented themselves. Several different 

patterns were observed and labelled, and for an exit Mach number of 1.16, they measured the 

percentage occurance for each pattern. 

 

Shedding Pattern Visual representation Percentage occurance 

No definable pattern n/a 35.5 

Classic Von Karman street 
 

30.5 

Leaning Von Karman street 
 

16.0 

No coherent structure n/a 9.0 

Doublets 
 

4.0 

Couples 
 

3.5 

Hybrid 
 

1.5 

Table 2.2: Vortex Shedding Patterns 

 

The above shedding patterns are intermittent, interspersed with regions in which there is no 

structure to the wake flow. This change in structure is accompanied by a change in base 

pressure, and is attributed to the relocation of the vortex shedding from the trailing edge to the 

point of interaction between the shear layers as described in section 2.4. 
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2.9 Concluding Remarks 

A review of the present state of experimental and computational work around turbine blades 

has been presented in this chapter. This work is justified by the physical constraints of 

turbomachinery. The interaction between vortex shedding and shock waves in the trailing 

edge region of turbine blades has only been adequately explored in the last few years, and it is 

in the transonic regime that the unsteady phenomena and interaction are most dominant. The 

computational work investigated has shown that results of sufficient accuracy can be 

obtained, and can be used quantitatively in conjunction with experimental work. The work 

presented in this thesis offers an extension to this research. 

It can be concluded from the work of Xu & Denton (1987,1990) that only an Euler 

computational solver is necessary for the calculation of accurate pressure distributions around 

turbine blades. The turbine blade in the current study is being tested at a high Reynolds 

number, making the flow predominantly Euler in nature. The areas in which viscosity 

becomes important are the boundary layers, the trailing edge region and the region of vortex 

shedding. The mechanism of vortex shedding is also predominantly Euler; the effect of 

viscosity is to smear the vortices. The Euler equations are well defined and non-problematic 

in their implementation, whereas the Navier-Stokes equations are more complex, requiring 

additional terms and equations to accommodate a relevant turbulence model. For the current 

test case, the solution to the numerical equations is very sensitive to the state of the boundary 

layers; the pressure surface boundary layer is assumed to be laminar, and the suction surface 

ranges from laminar to transitional, and then to turbulent towards the trailing edge. The 

turbulence model must be able to cope with these states otherwise accuracy no greater than 

the Euler equations can be achieved. Furthermore, correct representation of the base pressure 

requires extreme accuracy in the computation of the triangular base region; a highly accurate 

turbulence model would be required, but the results would be very sensitive to the turbulence 

model in question; Gostelow (1984). Consequently, viscous calculations are unlikely to 

produce a more accurate flow-field prediction: Furukawa et al (1992), and Cicatelli & 

Sieverding (1996). Extension to the Navier-Stokes equations would also require the definition 

of very dense meshes, particularly in the boundary layer regions, if the boundary layer 

structure is to be correctly captured this would increase the requirements for memory and 

processing. 
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3 COMPUTATIONAL FLUID DYNAMICS 
 

With the advent of increased computer resources, Computational Fluid Dynamics techniques 

have become more accessible for the solution of non-linear differential equations such as the 

Euler and Navier-Stokes equations. Algorithms are now available that can solve the equations 

to machine accuracy and various acceleration techniques are available so that solutions can be 

generated within acceptable time frames. Such algorithms are now becoming a standard part 

of the design procedure for many engineering applications such as those of the turbine blade 

industry. Before any such calculations can be performed, an appropriate grid must be 

generated which represents the computational domain of interest. In past years numerical 

methods utilised Structured meshes. In recent years however, more complex techniques such 

as Body Fitted Co-ordinates and Unstructured meshes have been developed. An in-depth 

study of structured and body-fitted co-ordinate systems can be found in Hoffman & Chiang 

(1993). The most common methods of discretisation for engineering applications are grid 

based methods employing finite element3 or finite volume4 techniques. There are however 

spectral methods that do not require an underlying grid; these are not considered in the scope 

of this thesis. 

 

3.1 Structured Grids 

Structured meshes are comprised of a uniform assembly of polygons, the most common form 

of which is an assembly of regular quadrilaterals. All cells are known to have a fixed number 

of neighbouring cells that are arranged in a Cartesian co-ordinate system. Cells are numbered 

consecutively along the orthogonal axes of the co-ordinate system. Adjacent cells can then be 

immediately identified. The information for the variables can be stored at either the centre of 

the cells or at the vertices. 

                                                 
3 Finite Element: An approximate method for solving partial differential equations by replacing continuous 

functions by piecewise polynomial approximations defined over polygons. This reduces the problem of 

finding the solution at the vertices of the polygons to that of solving a set of linear equations. 
4 Finite Volume: The integral form of the conservative laws is discretised directly over a control volume. 
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3.2 Body Fitted Co-ordinates 

Body Fitted Co-ordinates are an extension of the structured system in which the required co-

ordinates are conformally mapped onto a regular computational domain. This is achieved by 

considering a curvi-linear co-ordinate system (ξ,η) as opposed to a cartesian co-ordinate 

system (x,y). Co-ordinate transformation laws ξ = ξ(x,y) and η = η (x,y) generate a mapping 

from the physical domain (x,y) onto the computational domain (ξ,η). The structured method 

can then be used to generate a solution that is then inversely mapped back onto the physical 

domain to give the required result. 

 
 

x 

y 

ξ 

η 

ξ 

η 

Computational Domain Physical Domain  

Figure 2.1: Mapping of Physical Domain onto Computational Domain, Hirsch (1990) 

 

All of the major discretisation methods available can be performed on the above two methods 

without too much difficulty and such techniques can be implemented in a computationally 

efficient manner. However, a disadvantage of the above two techniques is that they do not 

lend themselves to the solution of highly complex geometries. In other words it may not 

always be possible to generate an acceptable grid. One solution to this is to sub-divide the 

domain into smaller regions and generate a grid for each region, a technique known as multi-

blocking or domain decomposition. The blocks are then re-combined to give the required 

global solution. Structured grids can suffer from highly stretched cells when trying to model 

curved surfaces. The stretched cells have disproportionate dimensions with one axis being 

several times larger than the other. If the stretching occurs perpendicular to the flow direction, 

these cells can introduce numerical inaccuracies into the solution. However, stretching in the 

direction of flow in the boundary layers for example is very desirable. 
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3.3 Unstructured Grids 

An unstructured grid differs from the above two methods in that there is no inherent structure 

based on an underlying co-ordinate system. They generally contain quadrilateral and 

triangular cells in two dimensions, and cuboid or tetrahedral cells in three dimensions, but 

other polygons may be used as required. A feature of such a grid is that each cell does not 

necessarily have a constant number of neighbours. A map of the connectivity of the vertices 

of the triangles is now used to determine adjacent cells. Unstructured grids are typically 

generated using Delaunay triangulation based techniques. 

There is no concept of directionality to the grid; therefore methods applicable to a structured 

grid system cannot be used. Discretisation methods based on integral procedures, such as 

finite element and finite volume are found to be more suitable. 

 

Unstructured grids therefore offer the advantage of discretising complex domains. They do 

however, require far more in terms of computer resources such as processing power and 

memory on a point-for-point basis. For a given number of points available to either the 

structured or the unstructured methods, the increase in resources is outweighed by the fact 

that gridpoints can be placed anywhere in the domain in the unstructured grid to give 

resolution where it is required.  

 

 

  

(a) Structured Grid (b) Body Fitted Grid (c) Unstructured Grid 

Figure 3.2: Grid Types 

 

3.4 Delaunay Triangulation 

Delaunay triangulation is directly related to the Dirichlet Tessellation, Bowyer (1981) of a set 

of points. A Dirichlet Tessellation of a point set is a pattern of convex regions, each being 

closer to some point than any others. A Voronoi diagram shows these regions; Figure 3.3: 
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Figure 3.3: Voronoi Diagram 

 

A Delaunay triangulation is the dual of the Voronoi diagram and is formed by connecting two 

points of the set if and only if their Voronoi regions have a common border section. The 

vertices of the Voronoi diagram will be the circumcentres5 of the triangulation because each 

vertex will be equidistant from its neighbouring points. The Delaunay triangulation of a given 

point set will always be unique. 
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Figure 3.4: Incircle Test for a Point D 

 

A specific property of the Delaunay triangulation is that no point will lie within the 

circumcircle6 prescribed by the vertices of any other triangle. This is defined by the Incircle 

property, Figure 3.4, above.  

 

                                                 
5 Circumcentre: The centre of a circle prescribed by three points lying on its perimeter. 
6 Circumcircle: The unique circle connecting the three points of a given triangle 
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Before triangulation takes place, an initial set of nodes defining the perimeter of the flow 

domain is required, and on this an initial triangulation is generated. There are four methods in 

which the Delaunay triangulation is generated: 

 

• Incremental Insertion Algorithms; Guibas & Stolfi (1982) 

• Divide and Conquer Algorithm; Dwyer (1987) 

• Advanced Front Algorithm; Guibas & Stolfi (1985) 

• Edge Swapping Algorithm; Lawson (1977) 

 

3.4.1 Incremental Insertion Algorithms 

An initial trianglulation is defined that encompasses all the points of the data set. The points 

that define the boundaries are inserted into the initial domain followed by a series of points 

defining a farfield boundary if that is required. A triangulation is now defined; to complete 

the process new points are continually added to the point set at the circumcentre of any 

triangle that exceeds some predefined criterion. This may be that the minimal internal angle 

of the triangle is greater than some limit or the ratio of the radius of the circumcircle to the 

radius of the in-circle is less than some limit. 
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(a) Before Insertion (b) Delaunay Cavity (c) New triangulation 

Figure 3.5: Insertion of a New Point into ∆ABC 

 

All existing triangles that contain the new point within their circumcircle are removed from 

the triangulation to leave a cavity and a new triangulation is made by connecting all nodes on 

the boundary of this cavity to the most recently inserted point. This can be seen in Figure 3.5, 
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for the insertion of point F into triangle ABC. This compromises triangles ACD and ABE 

requiring their removal, and points A through to E are then connected to the new point F. 

This process repeats until the Delaunay properties are valid for all points and triangles. This is 

also known as the Bowyer-Watson algorithm: Bowyer (1981), Watson (1981). 

 

3.4.2 Divide and Conquer Algorithm 

For the Divide and Conquer algorithm, the set of points must already be specified. The 

process is recursive in that the set of points is continually subdivided into two halves. Each 

half is Delaunay triangulated and the two halves are then merged together. The points must all 

be sorted in the x-axis. The main difficulty with this method is the merging of the two halves. 

There are two properties for the merging process: 

 

1. Only cross edges are created in the process, i.e. only edges linking the halves. 

2. Vertices with maximum (minimum) y values always connect. 

 

The algorithm begins by forming a cross edge between the maximal y value points of each 

set, satisfying property 2. Let this edge be denoted AB. A circle of increasing radius is then 

placed on AB such that A and B lie on the circle. The circle will then increase upwards and 

away from the line as can be seen in Figure 3.6: 

 
 

A 

B 

Left Triangulation 

Right Triangulation 

C 

 

Figure 3.6: Generating Next Cross Edge 

 

The circle will eventually encounter a point belonging to either of the two sets. A new cross-

edge is added that connects the new point with the end of line AB in the opposite set. In the 
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above case, C belongs to the left set, hence the new cross-edge connects C and point B which 

is in the right set. Edge CB now becomes the active edge and the process repeats until both 

the maximum y values have been reached. Any edges that are intersected are then removed 

from the triangulation. These will be edges from the left to the left set, and the equivalent in 

the right set: 

 
 

Edges marked 
for removal       

 

 
(a) Defining Cross-Edges (b) Merged Triangulations 

Figure 3.7: Merging Left and Right Triangulations 

 

Note the two intersections on the left image in Figure 3.7. It should be noted that at every 

level of recursion through the algorithm, all data sets are convex. 

 

3.4.3 Advanced Front Algorithm 

Unlike the Divide and Conquer routine, the Advanced Front Algorithm, Tanemura et al 

(1983), Merriam (1991), does not sub-divide the data set. The process begins by defining all 

the boundary edges. All these edges are available to the Advanced Front Routine. This will be 

called the Available Edges List. One now starts with an edge belonging to the available edges 

list. A Triangle is generated by joining the ends of this edge to one of the interior points. 
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Figure 3.8: Advanced Front Algorithm 

 

The algorithm proceeds by selecting any interior point (point C for example in Figure 3.8), a 

circumcircle prescribed by the end points and the new point is constructed. If there are any 

other interior points within this circumcircle (such as D and E) then replace the selected point 

with the point that lies nearest to the centre of the cirumcircle. From above, point E is closest. 

When the circumcircle is empty, connect the endpoints to the selected point: 

These new edges any now added to the Available Edges List and the original edge AB is 

removed. The process now iterates until there are no more edges in the list. 

 

3.4.4 Edge Swapping Algorithm 

The edge swapping method begins with a simple triangulation of the point set that does not 

satisfy the Delaunay constraints. The set is then made to conform to the Delaunay criterion by 

application of the edge swapping algorithm such that the equiangularity A(T) of the 

triangulation increases. A(T) is defined as the ordering of the angles A(T) = [α1, α2, α3, .... 

α3n] such that αi ≤ αj if i < j. 

A triangulation A(T*) < A(T) if αj
* ≤ αj and αi

* = αi for 1 ≤ i < j. 

In the algorithm, all interior edges of the triangulation are examined. Each is taken to be the 

diagonal of the quadrilateral formed from the two triangles sharing the edge. The quadrilateral 

is checked to make sure that a potential edge swap does not cause an intersection of the 

opposite edges. 

If it is convex, then the diagonal is chosen that maximises the equiangularity of the 

quadrilateral. This is equivalent to maximising the minimum angle of the two adjacent 

triangles, Figure 3.9. 
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Figure 3.9: Choosing the Diagonal 

 

If a mesh is locally equiangular everywhere then it can be shown to be a Delaunay 

triangulation. 

 

3.5 Concluding Remarks 

Various methods of triangulation have been presented for the generation of unstructured 

meshes. For the current study the triangulation software ‘Triangle’ be Jonathon Shewchuk has 

been used. The software is of a very high quality and generates satisfactory meshes. This has 

enabled the author to pursue other areas of the research. The particular method used is the 

divide and conquer algorithm. 
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4 GOVERNING EQUATIONS 
 

In this chapter a numerical method is described to solve the unsteady, compressible Euler 

equations. 

Roe’s Upwind Flux Difference Splitting method is employed together with a higher order 

scheme; Roe (1981). This is implemented on an unstructured grid constructed from a 

Delaunay triangulation with the conserved variables stored at the vertices of the mesh. 

Solutions are generated using fully implicit, steady and unsteady time integration. 

The governing equations are derived from the mathematical equations defining conservation 

of mass, conservation of momentum and conservation of total energy for a viscous fluid: 

 

• Conservation of mass: ( ) 0=⋅∇+
∂
∂ Uρρ
t

 (4.1) 

• Conservation of momentum: ( ) 0=−+⊗⋅∇+
∂
∂ τIUUU p
t

ρρ  (4.2) 

• Conservation of total energy: ( ) 000 =−⋅−⋅∇+
∂
∂ qUτU &he
t

ρρ  (4.3) 

 

where ρ is the density, U is the velocity vector, p the pressure, I the identity matrix, τ  the 

shear stress tensor, e0 the total energy per unit volume, h0 the total enthalpy per unit volume, 

and q& the rate of heat transfer vector. ⊗ is the dyadic product. This is an Eulerian7 principle 

where the properties are expressed as a function of space and time, as opposed to Lagrangian8 

where the properties are considered by following a particle. 

 

The following sections describe the major components in the development of the unstructured 

flow solver. 

                                                 
7 Eulerian: Leonard Euler (1707-1783). Swiss mathematician who first worked out the equations of motion for 

fluids. He was the leading mathematician of his time. 
8 Lagrangian: Joseph Louis Lagrange (1736-1813). French Mathematician. 
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4.1 The Euler Equations 

The Euler Equations are derived from the Navier-Stokes equations by considering the flow to 

be inviscid9, adiabatic and a continuum10. For very large Reynolds number flow Re→∞, the 

ratio 01 →Re  and so the Euler equations become a fair approximation to physical flow 

conditions in the limits of vanishing viscosity. The Euler equations can be expressed in 

various forms depending on the variables under consideration. The three forms most 

commonly used are: Conservative form; the variables used are the density, the x and y 

momentum components and the total energy, Primitive form; the variables are the density, x 

and y velocity components and the static pressure, and the Characteristic form where the 

dependent variables are those variables that propagate along the characteristic lines. From a 

theoretical point of view, it can be shown that the actual form to be used is immaterial for 

subsonic or supersonic flow; simple transformations can be used to change between methods. 

However, from a numerical point of view, there is the problem that discontinuities can be 

present in the flow field in the form of shock waves. Under these circumstances, the primitive 

(differential) form of the Euler equations is meaningless, as their derivatives do not exist. In 

this situation only the conservative form of the Euler equations can be used. 

 

4.2 The Navier-Stokes Equations 

The ‘quasi-3D’11 Reynolds Averaged Navier-Stokes equations define a system of non-linear, 

parabolic/elliptic, 2nd order conservation laws describing the flow of a compressible, viscous, 

Newtonian12 fluid, neglecting body forces13 and chemical reactions14. The set of equations is 

derived from the application of Newton’s 2nd law of motion to a unit body of fluid. These 

laws represent the conservation of mass, momentum in the x and y directions (as the model is 

assumed to be two-dimensional), and total energy. The Euler equations can be seen as the 

                                                 
9 Inviscid: Non-viscous; without viscosity, the fluid contains no shear stresses. 
10 Continuum: A fluid in which the distance between fluid particles is smaller than the mean free path, defined as 

the distance a particle has to move before colliding with another. 
11 Quasi-3D: 3-dimensional flow is simulated by the addition of a streamtube thickness defined at each point. 
12 Newtonian Fluid: A fluid in which the shear stresses are proportional to the deformation. 
13 Body Forces: are defined as gravitational, electromagnetic and buoyancy effects. 
14 Chemical Reactions: the flow is treated is being inert. 
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approximation of convection dominated flow at high Reynolds numbers, whereas the Navier-

Stokes equations define flow that is diffusion dominated. They are therefore most applicable 

where the flow encountered has a low Reynolds number. Due to the effects of viscosity and 

heat conduction, inviscid discontinuities do not theoretically exist in this flow, being 

transformed into a continuous but sharp gradient across the discontinuity. In real flow, the 

shock wave has a discrete thickness that can be resolved by a viscous calculation based on the 

Mach number M. The thickness is defined by the balance between the heat conduction and 

viscous effects opposing the pressure, and inertia forces across the shock wave. For a Mach 

number of 1.5 this gives a shock thickness of 10-4mm. As such, this is still generally thinner 

that can be accurately meshed so the flow can still be treated as containing discontinuities. 

 

4.3 Conservative form of the Euler Equations 

The conservative flux vector form of the Euler equations is defined as: 

 0))(()(
=+ QEQ div

t∂
∂  (4.4) 

 

where the conserved variables Q, and the inviscid Euler flux vector E(Q) are defined as: 
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Variables ρ, u and v are the density and the velocity components in the x and y directions, e0 

is the total energy per unit volume, and p is the static pressure.  

The equations are closed with the pressure equation: 

 






 +

−−=
2

)()1(
22

0
vuep ρ

ργ  (4.6) 

 

where γ is the ratio of specific heats 
V

P

C
C  and is generally taken as 1.4 for air. 
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4.4 Jacobian Matrices with respect to the Conservative 

Variables 

The Jacobian matrices are partial derivates of E(Q) with respect to the conservative variables 

Q and are derived as follows: 

 

Q is first expressed as the variables Qi, i = 0 to 3 to give: 
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Expressing E(Q) in terms of Q as above gives: 
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The Jacobian matrices in the x and y directions 
Q

QE
∂

∂ )(x  and 
Q
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and 
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The Jacobian matrices are necessary for the spatial discretisation based on a Taylor series 

expansion described in the following text. 

 

4.5 Spatial Discretisation 

For the spatial discretisation, a finite volume method is employed based on a cell-vertex 

scheme, Barth & Jesperson (1989). 

 

The main steps to the method are: 

• The flow domain under investigation is first subdivided into an unstructured triangular 

mesh Ω by an appropriate method; in this case a Delaunay triangulation. 

• Node points are defined at the vertices of the mesh. 

• A control volume Ωn is associated with each of these nodes and is constructed by taking 

the triangles sharing a common vertex n, joining the centroids of adjacent triangles and 

the mid-points of the edges to form a boundary; the control volume is defined as the area 

within this boundary. 

 

Figure 4.1 shows the control volume associated with node n and the adjacent control volume 

associated with the neighbouring node k. When applied to all the nodes, this generates a set of 

non-overlapping cells covering the whole domain. This is known as the Median Dual of the 

triangulation. In this scheme the entries for Q are stored at each of the nodes in the mesh, and 

are assumed to be the cell-averaged quantities of Q. 
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Figure 4.1: Median Dual Control Volume 

 

The conservative form of the (4.4) can be expressed in its integral form: 

 ∫∫∫∫
ΩΩ
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t

)(QEQ
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By applying Gauss’ divergence theorem, each of the area integrals can be expressed as a 

closed-loop line integral around the boundary of the cell. Applying to (4.11) gives: 

 dlndA
t

nn

∫∫∫
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⋅−= ˆ)(QEQ
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For the left hand side, the rate of change of Q is assumed to be constant over the cell, 

therefore it can be discretised as: 

 nA
t

dA
t

n
∆
∆

=∫∫
Ω

QQ
∂
∂  (4.13) 

where ∆Q is the change in Q between consecutive two time steps and ∆t is the time step. 

 

The boundary of the control volume is seen to consist of a finite number of short edges, 

Figure 4.2, the line integral will consist of these edges. 
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Figure 4.2: Line Integral Calculation 

 

If the property to be integrated is considered to be constant along each edge, and equal to the 

value at the centre of that edge, the line integral can be expressed as a summation of these 

values multiplied by the corresponding normal vector to the edge. The discretised form then 

becomes: 

ln
At nKk

k
n

∑
∈

⋅−=
∆
∆

)(

ˆ)(1
n,QEQ  (4.14) 

 

where K(n) is the set of adjacent nodes to the central node n, E(Qn,k) denotes the property 

E(Q) evaluated at the boundary between adjacent nodes n and k, n̂  is the outward unit normal 

vector of each segment, with l being the length of that segment, and An is the area of cell Ωn. 

 

4.6 Upwinding Schemes 

The flow solver in this research uses a technique in which the space and time discretisation 

are treated independently. Both types will be discussed in the following sections. There are 

two types of spatial discretisation: central differencing and upwinding schemes. 

The term upwinding is derived from the manner in which the fluxes are evaluated according 

to the direction of wave propagation as opposed to central differencing schemes in which the 

fluxes are evaluated via some numerical averaging technique applied to the left and right 

states. Central differencing schemes are therefore highly insensitive to the propagation of 

properties within the flow. The effect of this is dependent on the conditions of the flow under 

investigation; this means that a flow solver of this type would lose generality. A particular 
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phenomenon called ‘chequer-boarding’ presents itself in such solvers in which alternate cells 

in a discretisation can hold alternating values, in much the same way as a chess board 

contains alternating black and white squares. This could be mis-interpreted as a very high 

frequency oscillation present in the flow; it should be noted that these oscillations are entirely 

spurious and not a property of the flow, Morton (1996). It is therefore necessary to employ 

some form of artificial dissipation into the scheme, typically in the form of fourth order 

damping terms to remove these oscillations. The actual level of the damping that is required is 

a question of trial and error, relating to the flow conditions being modelled, and so stability 

and accuracy can be hard to achieve. Finally and more importantly, central differencing 

schemes do not take into account any of the aforementioned directional properties of a 

hyperbolic system, a property inherent to the Euler equations. It is these disadvantages that 

have led to the development of upwinding schemes. 

In the upwinding scheme, the flux at the interface of the cell is defined by the left and right 

states Qn and Qk. The flux function takes into account the relevant propagating waves by the 

sign of the eigenvalues of the Jacobian matrices 
Q
QE

∂
∂ )( n  and 

Q
QE

∂
∂ )( k . In order to be 

consistent with the hyperbolic nature of the Euler equations, the upwinding scheme must 

satisfy the following properties: 

 

1. For all positive eigenvalues: E(Qn,k) = E(Qn) 

For all negative eigenvalues: E(Qn,k) = E(Qk) 

i.e. for supersonic flow from the left, the cell interface is only affected by the left 

(upstream) state. The same applies for supersonic flow from the right. 

2. For a combination of positive and negative eigenvalues (subsonic flow) a Taylor series 

expansion about a point Q* bounded by Qn and Qk is used to defined an intermediate 

state: 

 ( ) ( )*
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*
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where 1
* )( −+

+

Λ=
∂

∂ TT
Q
QE  containing positive eigenvalues and 1

* )( −−
−

Λ=
∂

∂ TT
Q
QE  

containing negative eigenvalues. 

3. For equal states there is no flux: E(Qn,n) = 0 
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Thus the properties of the Euler equations are preserved. 

 

There are two major families of upwinding schemes for calculating E(Qn,k): flux differencing 

and flux vector splitting. Flux differencing schemes are based on the principle of the Riemann 

Solver whereas Flux vector splitting schemes are based on analysing the left and right states 

and then combining the results. 

 

4.6.1 Flux Differencing Schemes: Riemann Solvers 

Riemann solvers generate a solution by considering each cell interface as a Riemann Problem 

(also called a shock-tube problem), Hirsch (1990). It is of particular interest, as it presents an 

exact solution to the one-dimensional Euler equations. This is a discontinuity between two 

states, each with its own wave properties. The flux across the face is then a result of the 

interaction between these opposing wave properties. This can be seen in Figure 4.3: 

 
 

Ψ 

Cell interface 

QL QR 

 

Figure 4.3: Riemann Problem 

 

QL is the state in the control volume associated with the node on the left-hand side of the 

interface, QR the state on the right-hand side and Ψ is a property of Q. There are two 

approaches to solving this problem: Exact Riemann Solvers and Approximate Riemann 

Solvers. A detailed study of Riemann solvers can be found in Toro (1999). 
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4.6.1.1 Exact Riemann Solver 

In a true Godunov scheme, all the Riemann Problems are solved exactly, and the results are 

combined to generate a solution for the whole domain, Godunov (1959). This can be achieved 

if the time step is sufficiently small so that there is no interference from neighbouring wave 

fronts. As the solution is exact, the Godunov scheme is monotonic; generating no new 

extrema, and satisfies the entropy condition. However, since the local function involves the 

same non-linear wave equations as the global function, the non-linearity implies that the 

function at the interface must be iterated to a solution. This is time-consuming and 

undesirable. As an alternative to this, several approximate solvers have been developed, the 

most notable of which was by Roe (1981). These offer a more manageable way of calculating 

the flux difference without resorting to iteration, whilst still retaining the properties of the 

hyperbolic equations. Roe’s method is very popular due to its robustness and adaptability to 

upwinding and higher order schemes. 

 

4.6.1.2 Roe’s Approximate Riemann Solver 

For Roe’s Approximate Riemann Solver, Roe (1981), the flux at the interface is defined as 

follows:  

( ){ })(~ˆ)()(
2
1ˆ)( , nkknkn Ann QQQEQEQE −−⋅+=⋅  (4.16) 

 

The following method is used to calculate the term )(~
nkA QQ − , which defines the 

dissipation between the adjacent flow states. A~  is known is the Roe matrix and is a function 

of these two flow states. It is first approached by considering the Euler equation: 
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this is linearised to give 
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where the Jacobian matrix 
Q
QE

∂
∂

=
)(A . Replacing A with the required approximation A~  

gives: 
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∂ QQ divA

t
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A~  is now computed by evaluating 
Q
QE

∂
∂ )(  with a set of Roe Averaged Quantities. The 

approximation must satisfy 3 constraints set down by Roe for it to be consistent with the exact 

solution, namely: 

• A~  has real eigenvalues with linearly independent eigenvectors, this ensures 

that the local system stays hyperbolic. 

• Given any left and right states Qn and Qk there exists a unique solution: 

 [ ]nknk A QQQEQE −=−
~)()(    (4.20) 

  

 ensuring homogeneity of the equations. 

• Given two states Qn = Qk, then 
Q
QE

∂
∂

≡
)(~A , i.e. the approximate solution is 

equivalent to the exact solution if the left and right states are equal. 

 

The above properties are satisfied if the Roe matrix is evaluated by means of square root 

density-averaged variables defined as follows: 
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Mach velocity, enthalpy and flow property gradients can then be defined as: 
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where n̂ is the unit vector of Median Dual face. 

The matrix A~  can be decomposed by introducing diagonalising matrices T~  and 1~−T , to give: 

1~~~~ −Λ= TTA  (4.24) 

 

where Λ~  is the diagonal matrix containing the eigenvalues of A~ . 

 

A~  can then be defined as: 

1~~~~ −Λ= TTA  (4.25) 

giving 

( ) QQQ ∆Λ=− −1~~~~ TTA nk  (4.26) 

 

The matrices A~ , T~  and 1~−T  are defined as: 
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where: 
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The four eigenvalues associated with the three wave speeds are: 
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and their respective characteristic wave speeds are: 
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These correspond to: 

• A backward moving acoustic wave 

• An entropy wave 

• A shear wave 

• A forward moving acoustic wave 

 

4.6.1.3 Entropy Satisfying Condition 

There is an inherent problem associated with Roe’s Approximate Riemann Solver, that is its 

inability to correctly resolve entropy conditions over expansion shocks that occur at sonic 

points. At a sonic point one of the eigenvalues will be zero, so during the calculation its 

corresponding eigenvector will by multiplied by zero, and as a consequence there will be no 

dissipation associated with the characteristic wave. As a result, the expansion shock will be 

propagated, which is a physically impossible condition. However, the solution to this requires 

a simple modification to the eigenvalues. 

 

An entropy-satisfying condition is employed by modifying the calculated eigenvalues. This 

explicitly introduces an expansion fan into the flow at sonic conditions by smoothing the 

eigenvalues of the Roe matrix. 

 

The eigenvalues associated with wave speeds aU ~~ −  and aU ~~ +  are modified as follows: 
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The value εi in the above equation is defined as: 
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where UL and UR are the normal velocities of the left and right states in the direction of the 

normal vector n̂ , and aL and aR are the corresponding Mach velocities. A modification to this 

by Harten & Hyman (1983), generates a continuously differentiable solution with the value a 

εi defined as: 

( ) ( )[ ]iiRiLii MAX λλλλε
~,~,0 −−=  (4.35) 

 

where iλ
~  is the ith Roe averaged eigenvalue and iLλ  and iRλ  are the ith eigenvalues of the 

left and right states as calculated above. The new eigenvalues iλ
~  are then defined as: 
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A fundamental assumption of Roe’s scheme is that the characteristic waves are propagated in 

the direction of the face normal vector n̂ . If the waves are indeed lined up with the face then 

Roe’s scheme will exactly resolve the interface. For non-aligned waves, an error is introduced 

in which a proportion of the contact discontinuity is interpreted as a pressure wave. Rotated 

Riemann Solvers are extensions of Roe’s scheme that deal with these issues. They are not 

discussed here, but have been presented in detail by Levy (1990) and Rumsey (1991). 

 

4.6.2 Flux Vector Splitting 

Flux vector splitting techniques split the interface into two components dependent on the left 

and right states. The direction of wave propagation is taken into account by splitting each of 

the Jacobian matrices into positive and negative components defined by the positive and 

negative eigenvalues. The cell interface will then be affected by the upstream components 

(positive eigenvalues) of the left face and the downstream components (negative eigenvalues) 

of the right face, that is, if the flow direction was from left to right. If the flow direction were 

from right to left then the opposite would be true.  
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The flux at the interface is dependent on the left and right states: 

)()()( , knkn QEQEQE −+ +=  (4.38) 

 

The notation, n and k for the left and right states is continued here, for consistency with the 

previous sections. 

There are two main methods for flux vector splitting, those originally developed by Steger 

and Warming (1981) and the subsequent Van Leer scheme (1982). 

 

4.6.2.1 Steger and Warming Flux Vector Splitting 

In it simplest form, the left and right fluxes are calculated independently and then added to 

give the interface flux. As the Euler equations are hyperbolic, the Jacobian can be 

diagonalised with real eigenvalues: 
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The upstream and downstream Jacobians are defined by the positive and negative 

eigenvalues: 
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Unfortunately, the disadvantage of this scheme is that when an eigenvalue changes sign, a 

discontinuity is generated which has a non-unique solution. This would generate ambiguous 

errors affecting the stability of the whole scheme. To overcome this problem, Van Leer 

developed a scheme in which the solution at the interface is unique and differentiable, through 

a series of second and fourth order polynomials based on the Mach number of the interface. 
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4.6.2.2 Van Leer Flux Splitting 

Under the Van Leer scheme, the flux at the interface is evaluated as: 

)()()( , knkn QEQEQE −+ +=  (4.42) 

 

The Jacobian matrices are split according to the Mach number at the cell interface. 

For supersonic flow ( 1≥nM ) in the direction of the unit face normal n̂ : 

0)()()( == −+
knn QEQEQE  (4.43) 

 

and for supersonic flow in the opposite direction ( 1−≤nM ): 

)()(0)( kkn QEQEQE == −+  (4.44) 

 

For those cases where the Mach number is subsonic; -1 < Mn < 1, the flux is defined as: 
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therefore the flux can be expressed as the product of the above terms: 
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)(ˆ)( 0 nn QEQE ±± = ξ  (4.48) 

 

By the application of the chain run: 
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Finally the Jacobian 
Q

QE
∂

∂ ± )( can be numerically constructed from the above matrices using 

equation (4.50). 

 

4.7 Conservative form of the Navier-Stokes Equations 

The conservative form of the non-dimensional Quasi-3D Navier-Stokes equations is: 

 )(1)())((1))(()( QHQHQFQEQ
vi Re

hdiv
Re
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h
++=+

∂
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where h is the streamtube thickness, F(Q) is the viscous flux vector, and Hi(Q) and Hv(Q) are 

the inviscid and viscous components of the source term respectively. 

It can be concluded from chapter 2 that an Euler study of the flow around a turbine blade is 

sufficient for the generation of an accurate pressure distribution, Xu & Denton (1990). For 

this reason, only the Euler solver has been fully validated. The full Navier-Stokes form has 

not been used in the present study and has subsequently not been validated. However, for 

completeness the full definition can be found in the appendix C. 
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4.8 Concluding Remarks 

The governing equations and the computational method have been presented in this chapter, 

with various methods for solving the interface flux vector. The two most important methods: 

Roe’s Approximate Riemann Solver and Van Veer’s flux splitting, have been presented.  

These have been used successfully in a number of publications to date. Examples are those by 

Currie & Carscallen (1998), Gehrer et al (2000), Furukawa et al (1992), and Zheng & Liu 

(1995) for flow through turbine cascades, Luo et al (1994) for detailed flow around the F18 

Hornet, Frink (1994 & 1996) for his work on the ONERA M6 wing, and the computation of 

flow around NACA0012 aerofoils by Anderson (1992), and Zhang et al (1996). 
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5 NUMERICAL BOUNDARY CONDITIONS FOR 

THE EULER EQUATIONS 
 

The limits of the computational domain must be correctly treated in order to accommodate the 

hyperbolic nature of the Euler equations. This is known as an IBVP (Initial Boundary Value 

Problem). Incorrect treatment would seriously affect the stability and accuracy of the 

computational solver. A number of physical constraints must be applied to the boundaries to 

ensure convergence. The number and type of these constraints depends on the physical 

conditions at the boundary, and the type of boundary in question. The Characteristic 

Boundary Method analyses the characteristic waves entering and leaving the domain and 

constrains a number of flow variables accordingly. The number of flow variables to be 

constrained is equal to the number of characteristic waves entering the domain. An easier 

technique is simply to extrapolate information from the interior of the domain to the boundary 

through zero, first or second order extrapolation. 

There are several types of boundary associated with the current solver: 

 

• Supersonic Inlet 

• Subsonic Inlet 

• Supersonic Outlet 

• Subsonic Outlet 

• Wall Boundary 

• Periodic Boundary 

• Fixed Boundary 

 

5.1 Boundary Control Volumes 

For the current study the following types of control volumes are presented. Two types of 

control volume are defined for the processing of information within the domain, Flow cells 

and Boundary cells. Flow cells are defined within the interior region of the domain and 
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always have nodes existing on the opposite side of the boundary faces, each of these faces can 

be considered to be a Flow face: 

 
 

n 

Cell boundary 

Triangular Mesh 

Control Volume Ωn 

n ^ 

Flow faces 

 

Figure 5.1: Interior Control Volume 

 

Flow faces are processed using the Riemann solver previously described. 

A Boundary cell on the other hand, will have boundary faces that do not have a corresponding 

node on the outside of the face, these are considered to be Boundary faces. Processing of 

these faces requires the direct evaluation of the flux E(QB) at the boundary. This is based on 

the interior state and the fictitious exterior state dependent on the boundary type. 
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Figure 5.2: Boundary Control Volume for Inlet, Outlet, and Fixed Boundaries 

 

There are three types of Boundary face associated with this type of control volume: Inlet, 

Outlet and Fixed. 
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In all boundary cases, the edge is split into two halves, leftn̂  and rightn̂ . The left hand half of 

the face is treated in the normal fashion as a standard Flow edge as it is interior to the domain. 

The other half is treated according to the boundary type. 

 

5.2 Supersonic Inlet Boundary 

For a supersonic inlet, there is no influence on the boundary from the interior as all 

eigenvalues are positive into the domain. The inlet is expressed explicitly by a set of primitive 

variables, namely total temperature, Mach number, inlet flow angle and total pressure. 
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Using the isentropic relations: 
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the conservative vector can then be constructed as follows: 
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to give: 
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since the inlet is fully defined and constant, the derivative 
Q
QE

∂
∂ )( B  will be zero. 

 

5.3 Subsonic Inlet Boundary 

For a subsonic inlet boundary condition, one of the eigenvalues at the inlet will be negative 

implying that one interior variable needs to be extrapolated and the others described by the 

inlet conditions. The inlet boundary primitive variables are again: 
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but M, the Mach number is to be calculated from the required inlet Mach number and the 

interior Mach number, so as not to introduce any spurious waves into the solution. To ensure 

convergence and stability of the solution, the Mach number at the boundary is calculated by 

solving the equation, derived from the Van Leer Flux Splitting method: 
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The left hand side is completely described by the interior but the right hand side needs to be 

solved for the Mach number. 

M is defined as the absolute Mach number in the direction of the inlet flow vector, Mn is the 

Mach number in the direction of the surface normal and Mx and My are the Mach numbers in 

the x and y directions. 
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Figure 5.3: Directions for Mach Numbers 

 

From the above diagram, Mx, My and Mn can be expressed as functions of M: 
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If the flow direction is specified by the unit vector ( )yx ααα ,ˆ =  then cos(β) can be calculated 

from: 

( ) αβ ˆˆcos ⋅= n  (5.8) 

 

Through the isentropic relations, the interior Mach velocity and density can be expressed as 

functions of total temperature, total pressure and Mach number: 
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Substituting into (5.6) yields the equation: 
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This can be solved for M using a Newton-Raphson algorithm (see appendix). 

Once the Mach number M is known ρ and a can be recovered from (5.9) and (5.10), and p and 

T can be calculated from (5.2). The flux at the inlet is then defined as: 
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where 

RTpMavMauMaU ρααβ ==== )cos()cos()cos(  (5.14) 

 

The implicit scheme also requires the definition of the Jacobian 
Q
QE

∂
∂ )( . This is evaluated 

using the chain rule: 
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The inlet derivative is defined such that the Mach number is allowed to vary but all other 

primitive variables are constrained. This is achieved by defining 
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Q
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following method: 
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M is unconstrained, hence only those terms 
Q∂

∂M  will be non-zero, i.e. the 2nd row of 
Q
P

∂
∂ B . 

Expressing M in terms of Q gives: 
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therefore: 
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Since only the 2nd row of 
Q
P

∂
∂ B  is defined, only the 2nd column of 

BP
PE

∂
∂ )(  needs defining: 
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where 
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with 
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2
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γξ  (5.21) 

 

The derivative 
Q
QE

∂
∂ )(  is then constructed from the elements: 

Q
QE

∂

∂ )(],[ ji  = ψiφj ∀ i,j = 1, 5 (5.22) 

 

5.4 Supersonic Outlet Boundary 

For a supersonic outlet, all the eigenvalues are positive and passing out of the domain, 

therefore all boundary variables are taken from the interior. Hence E(QB) = E(QI) and 

Q
QE

∂
∂ )( B  = 

Q
QE

∂
∂ )( I . 

 

5.5 Subsonic Outlet Boundary 

For a subsonic outlet condition, only one eigenvalue is negative implying that only one 

external variable has to be defined, all others being taken from the interior. In this case, the 

external downstream static pressure p∞ is defined. The outlet boundary primitive variables 

are: 
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The following method is introduced as a means of damping any spurious waves from entering 

the domain by modifying the boundary ρ, u and v variables. 

 

The normal Mach number Mn at the boundary is given by the equation: 

001
2

2
3

3 =+++ αααα nnn MMM  (5.24) 
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As with the subsonic inlet, this is solved using a Newton-Raphson algorithm to give Mn (see 

appendix). The Mach velocity at the boundary can then be recovered from: 
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from which the normal velocity can be calculated: 
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B
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The tangential velocity does not change, hence: 

[ ] [ ]ItBt UU =  (5.28) 

 

and the density can be extracted from: 

B
B a

p




= ∞

2

γ
ρ  (5.29) 

 

Finally, the velocity has to be rotated back to the x, y co-ordinate system: 
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For the implicit system, the Jacobian is defined by only applying a constraint to the pressure 

variable, the chain rule need not be applied and the Jacobian can be directly evaluated: 
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5.6 Wall Boundary 

There are two types of condition that can be enforced at a wall; these are the slip-condition 

and the no-slip condition, depending on whether an inviscid or viscous solution is desired 

respectively. In the inviscid case the fluid velocity is constrained to be tangential to the wall, 

ensuring that there is no mass flow across the wall. This is achieved by generating a node 

state in which the velocity is reflected about the direction of the wall, as shown in Figure 5.4.  
 

Interior Velocity v 

Constructed Velocity v’ 

Interpolated Velocity 

n ^ 
Physical Boundary 

Wall node 

Ghost node  

Figure 5.4: Inviscid ‘Slip’ Wall Condition 
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As the magnitude of the new velocity is the same, no other changes to density or total energy 

are required. Interpolation between the two gives a tangential velocity at the wall. In all 

schemes, exterior Ghost cells are used to define the boundary. The physical boundary is then 

the line half way between the defined Wall cells and the exterior Ghost cells. 

 

The new velocity is constructed as follows: 

nvnvv ˆ)ˆ(2 ⋅−=′  (5.32) 

 

where v is the interior velocity vector, v’ is the constructed velocity vector and n̂  is the unit 

normal vector of the wall. 

 

5.7 Periodic Boundary 

A Periodic boundary is defined in which opposite sides of the domain can be mapped onto 

each other. This effectively gives an infinite domain on one axis. Whenever an adjacent node 

is found to be periodic, the information is instead extracted from the corresponding cell on the 

opposite side of the domain. A turbine cascade consists of a series of identical blades 

arranged in a row, it would be computationally expensive to model all the blades considering 

that all the blades would give identical result. The periodic boundary minimises the memory 

and processing requirements by modelling the cascade as a single blade. The geometry for the 

cascade in the current study can be seen in chapter eleven. 
 

Flow cells Mappings from Periodic 
cells to Flow cells 

Periodic Cells 

Physical boundary 
positions 

Triangular mesh  

Figure 5.5: Periodic Cell Mappings 
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5.8 Fixed Boundary 

The last type of boundary, a Fixed boundary, allows the exact defining of conditions along a 

particular edge. As with a supersonic inlet, all flow parameters are set explicitly allowing no 

flexibility. Great care must be taken as this may cause discontinuities in the flow and should 

only be used for the purposes of testing the code. 

 

5.9 Numerical Boundary Conditions for the Navier-Stokes 

Equations 

The presence of viscosity and heat transfer modifies the nature of the Euler equations. The 

resulting Navier-Stokes equations are now a mixed system of partial differential equations, 

(4.1), (4.2), and (4.3). The conservative laws for momentum and total energy are now second 

order. They are parabolic in time and elliptic in space and are known as parabolic-elliptic. 

The mass conservation equation, however, still remains hyperbolic. 

A consequence of this is that a greater number of boundary conditions are now required. For 

subsonic inlets and outlets in three dimensions, according to Gustafsson and Sundström 

(1978), five and four conditions need to be imposed respectively. For the two-dimensional 

case this would reduce to four and three conditions. As it is the momentum and total energy 

terms that are no longer hyperbolic, it is these terms that require velocity and temperature 

information to be defined at the boundaries. 

A reasonable approximation in such cases would be to assume that the flow at inlet and outlet 

boundaries is inviscid. Therefore the above processes for the Euler equations can be applied. 

It should be noted that this treatment would not correctly model flow behaviour, as it cannot 

generally be assumed that flow at the boundaries will be strictly inviscid. In particular, for the 

modelling of vortex shedding behind a cylinder, the wake flow will cross the exit plane, and 

viscous terms will still be present. However, the errors due to this approximation can be 

minimised if the outlet boundary is a sufficient distance from the cylinder, typically of the 

order of thirty or more cylinder diameters downstream. At this distance from the cylinder, the 

instabilities in the flow would have damped out considerably due to viscosity, resulting in a 

smooth flow. The loss of information due to the above approximation could be considered as 

negligible. 

 



Chapter 5  Numerical Boundary Conditions for the Euler Equations 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 62 

5.9.1 Solid Wall Boundary 

The only boundary that needs to be considered for the Navier-Stokes equations is the flow 

along a solid wall. A similar method to the slip wall can be used with the modification that the 

extrapolated velocity in the ghost cell is now a reverse of the interior node, rather than a 

reflection about the wall normal vector. If the wall is assumed to be adiabatic then no other 

treatment is required. A zero pressure gradient is automatically imposed by a zero-order 

extrapolation of density and total energy from the interior, thus ensuring no mass-flow 

through the physical boundary. The new velocity v’ is simply calculated as: 

 

vv −=′  (5.33) 

 

Interior Velocity v 

Constructed Velocity v’ 

Interpolated Velocity (zero) 

Physical Boundary 

Wall node 

Ghost node  

Figure 5.6: Viscous ‘No-Slip’ Wall Condition 

 

5.10 Concluding Remarks 

The relevant boundary conditions have been presented in this chapter. Of particular 

importance are the subsonic inlet and outlet conditions that have the advantage of minimising 

extraneous waves from being introduced into the domain. The inlet condition has the added 

advantage that the solution of the Mach number at the inlet, will not introduce numerical 

errors if the flow vector is close to the tangential vector of the outer boundary. This is 

particularly important if the outer boundary is circular or elliptical. 
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6 HIGHER ORDER UPWIND SCHEMES 
 

All the schemes so far described have been first order accurate discretisations in space and so 

generate poor representations of the flow phenomena, even in simple cases, with the solutions 

containing far too much diffusion. It is therefore necessary to improve the resolution of the 

solver with higher order methods. Two types of upwind schemes have been examined for the 

current study, the MUSCL scheme (Monotone Upwind Schemes for Conservative Laws), 

named after the code first developed by Van Leer (1979), and non-MUSCL schemes in which 

the higher order is obtained through an operator embedded in the Riemann solver. The 

introduction of higher order schemes increases the error due to truncation of higher order 

terms making such schemes susceptible to oscillations near discontinuities in the flow; this is 

due to the larger stencil that is required to calculate the higher order terms. To ensure that the 

schemes do not produce unnecessary oscillations, i.e. they are monotone, no new extrema are 

introduced into the solution at any time step, the concept of a TVD (Total Variance 

Diminishing) scheme is introduced; originally conceived by Harten (1984). TVD schemes are 

obtained by applying some limiting function to the gradients of the dependent variables (slope 

limiters) or to the fluxes themselves (flux limiters). The Total Variance of a one-dimensional 

mesh is defined as: 

∑ −= +
i

ii
tTV QQQ 1)(  (6.1) 

 

The scheme is said to be Total Variance Diminishing if at any time t: 

)()( 1 tt TVTV QQ ≤+  (6.2) 

 

i.e. at any time step the total variance is less than that of the previous time step - any new 

extrema would cause an increase. The scheme is monotonicity preserving if at any time no 

new extrema are introduced, and the values of local minima are non-decreasing and local 

maxima are non-increasing. The added property is maintained that if the scheme is monotone 

at time t then it will also be monotone at time t+1. Monotonicity is a necessary and sufficient 

condition for a TVD scheme; therefore all monotone schemes are TVD, and TVD schemes 
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preserve monotonicity. The concept of TVD would be achieved in the extrapolation cases if 

the gradients are constrained to ensure that the extrapolated values lies within some limits.  

The application of limiters will be described in each section. 

 
 Q 

x 

Non-monotone solution 

Monotone solution 

 

Figure 6.1: Monotone and Non-Monotone Solutions 

 

6.1 MUSCL Scheme 

The schemes so far described with the values taken at the centres of the control volumes are 

1st order accurate in space. A higher order scheme is generated whereby the value of Q is 

extrapolated to the cell boundary depending on the gradient of Q within the cell. A one-

dimensional example of this can be seen in Figure 6.2: 

Qi-1 Qi Qi+1 

QL QR 

QL 
QR 

Qi+2 

QL 
Interface i+1 

 

Figure 6.2: MUSCL Extrapolation 

 

Using the one-dimensional example above, the values at the interface i+1 would be defined 

as: 
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 (6.3) 

 

where the parameter κ is used to define the order of the scheme as defined in the table below: 

 

parameter κ Description of scheme 

-1 Second-order fully one-sided scheme 

0 Linear interpolation based on upstream and downstream cell 

1 Leonard’s scheme 

-2 Third-order upwind scheme 

1 Central differencing scheme 

Table 6.1: Values for Parameter κ 

 

The one-dimensional scheme can be applied to two-dimensional unstructured meshes by 

extrapolation of the end points to give a four-point stencil. The scheme can then be applied in 

the method defined above. As seen in Figure 6.2, Qn and Qk are the original points; Qnn and 

Qkk are interpolated from within a triangle by the values at the vertices of that triangle: 

 

���

���

���
���

���Qkk 

Qnn 

Qk 

Qn Cell interface 

Triangular Mesh 

 

Figure 6.3: Four-point Stencil 
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6.1.1 Point Interpolation 

The flow variables within a triangle are interpolated from the states at the vertices as defined 

in Figure 6.4, Foley et al (1990): 

 

 

Q0(x0,y0) Qint(xint,yint) 

Q2(x2,y2) 

Q1(x1,y1) 

 

Figure 6.4: Interpolation inside a Triangle 

 

Three weighting functions are defined for the three vertices, Q0, Q1, and Q2: 
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The interpolated interior state Qint is then defined as: 

∑
=

=
2

0
int

i
iiW QQ  (6.6) 

 

For those cases where the extrapolated co-ordinate lies outside the domain, a zero order 

extrapolation is used from the nearest Qn or Qk. 
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6.2 Minmod Limiter 

The MUSCL scheme as described above is not enough to remove the appearance of 

oscillations in the solution when the scheme is extended to higher orders; Godunov (1959) 

shows that monotone schemes can be at most first order accurate. This necessitates the 

introduction of a slope limiter in the case of variable extrapolation; a non-linear corrective 

factor to recovery monotonicity in higher order schemes. The limiter used in the current study 

is based on the Minmod limiter, defined as: 

( )[ ])(,,0)(),(minmod absignaMINMAXasignba ⋅=  (6.7) 

 

The extrapolated values are limited by the introduction of a limiting function Φ. Applying to 

the QL term in (6.3) gives: 
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These are forward and backward limiters applied to the upstream and downstream ratios: 
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A symmetry property is defined such that for a given limiter function: 







Φ=Φ

r
rr 1)(  (6.11) 

 

By replacing +
−

2
1i

r  with rL and rearranging (6.8), the following is derived: 
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where 
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Equation (6.12) can now be expressed as: 
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ΨL is now the slope limiter. In order that the solution does in fact satisfy the TVD condition, 

the limiter must lie within some constraint. This is achieved by the constraints proposed by 

Sweby (1984): 

 1 ≤ Ψ ≤ MIN(2, r)   ∀ r > 1 

 r ≤ Ψ ≤ MIN(1, 2r)   ∀ 0 ≤ r ≤ 1 

 

The limiter is therefore defined by the shaded area of Figure 6.5. 

 
ΨL(rL) 

rL 

1 

2 

1 2 

Ψ=2r Ψ=r 

 

Figure 6.5: Limiter Region for Second Order TVD Schemes 

 

Two such limiters are those of Van Leer (1974): 
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and the smoother limiter of Van Albada et al (1982): 

2
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However, these have the disadvantage that they have the inconvenience of a ratio, and would 

require the addition of an ε term in the denominator to eliminate division by zero errors. An 

alternative to this is the minmod limiter of the type used in the current study. This limiter is 

applied to the ∆Q’s from (6.3) in the following manner: 
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where 
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6.3 Barth MUSCL Scheme 

An alternative approach by Barth & Jesperson (1989) is to calculate the gradient by Green-

Gauss reconstruction: 

( )∑
∈

=∇
nFf

f
n

n n
A

ˆ1 QQ  (6.20) 

 

where Fn is set of boundary faces for cell n, An is the area of the cell, n̂  is the normal vector 

to the surface,  and Qf is the value of Q at the midpoint of the face. 
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Triangular Mesh 

Qn 

Qb 
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Figure 6.6: Gradient Calculation 

 

The values of Qf are calculated by 1st order interpolation from the neighbouring node values 

in two different ways depending on the face type, as in Figure 6.6: 

 • The centre of a standard Flow face:  
12

255
1

dkn QQQQ ++
=  

• A Flow face associated with a boundary edge:  
12

525
2

dkn QQQQ ++
=  

 • A Boundary face associated with a boundary edge: 
4

3
3

dn QQQ +
=  

 

The value of Qn and Qk can now be extrapolated to the cell interface using the cell gradient 

and the vector to the middle of face f : 
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 (6.21) 

 

where fŵ  is the vector from the adjacent node to the midpoint of face f as shown in Figure 

6.7: 
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Figure 6.7: Extrapolated QL and QR 

 

The minmod limiter Φn is again applied, but in this scheme it is applied radially around the 

central node; hence the formulation is slightly different: 
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where 
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The effect of this limiter can be seen in the diagram below. 

 
 

Qi Qi+1 Qi+2 

Original gradient 

Limited gradient 

 

Figure 6.8: Applying a Limiter 
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The extrapolated values can now be calculated with the new limiter with the following 

equation: 

fkkkR

fnnnL

w
v
ˆ

ˆ

⋅∇Φ+=

⋅∇Φ+=

QQQ
QQQ

 (6.24) 

 

which are now used in place Qn and Qk when evaluating the inviscid flux. Both the methods 

described above can be applied to either Roe’s scheme or to Van Leer’s flux splitting scheme. 

 

6.4 Embedded Scheme: Flux Limiter 

In an embedded scheme an operator is introduced into the calculation of the Riemann solver, 

Quirk (1990); in this manner, each of the characteristic waves is upwinded individually. The 

explicit part of the Roe-averaged Matrix is now calculated as: 

( ) [ ] QQQ ∆Ψ−Λ=− −1~~~~ TITA nk  (6.25) 

 

where Ψ is the matrix whose diagonal elements consist of the limiters based on parameters ri , 

the ratios of the upstream to local wave strengths: 

locali

upwindi
iii rwhererLIMITER

)(
)(

)(
α

α
==Ψ  (6.26) 

 

Looking back at the definition of Roe’s Riemann Solver, the local wave strengths are given 

by the column vector: 

Q∆= −1~Tlocalα  (6.27) 

 

The upstream wave strength vector is given by the Roe-averaged quantities, based on either 

Qn and Qnn if iλ
~  is positive or Qk and Qkk if iλ

~  is negative. 

The division in the calculation of ri can be removed by calculating each wave strength in turn 

and expanding out the term [ ] localii )(1 αΨ−  to give: 

[ ] ( )upwindilocalilocalilocalii LIMITER )(,)()()(1 αααα −=Ψ−  (6.28) 
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For the current study, the most efficient limiter was found by using the minmod limiter in the 

following form: 

( ) )
3

,(minmod)3,(minmod
3
2, bababaLIMITER +=  (6.29) 

 

Examination of the following graph shows that this is similar to the limiter of Van Leer 

(6.17): 

 

0 1 2 3 40

0.5

1

1.5

Van Leer Limiter
Van Albada Limiter
Minmod Limiter

 
 

Figure 6.9: Van Leer, Van Albada, and Minmod Limiters 

 

Higher values of ω in the limiter increase the resolution of shocks at a slight detriment to the 

monotonicity of the scheme. It should be noted that the 1st order scheme is fully monotone. 

 

6.5 Concluding Remarks 

The upwind schemes presented here constitute all those examined in the present study. Of the 

schemes investigated, the minmod limiter described in equation (6.29) was chosen as the best 

compromise of embedded limiters for the current study. 

r 

Ψ
(r

) 



Chapter 7  Time Integration 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 74 

 

7 TIME INTEGRATION 
 

Time Integration is performed using three different methods: Explicit steady state, 1st order 

Implicit and 2nd order Implicit. All methods are derived from (4.14) and (4.16): 

( ){ }∑
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∆ nd

kn

n lAn
At 1

)(~ˆ)()(
2
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LRRL QQQEQEQ  (7.1) 

 

In the explicit formulation, the terms on the right hand side of (7.1) are evaluated at time t and 

those on the left hand side at time t+1. Since all the information at time step t is always 

available at every iteration, the equation can be evaluated in a single operation. However, for 

the implicit formulation, both sides of the equation are evaluated at time t+1. The information 

on the right hand side is not fully defined, and the equation must be iterated to a solution. 

 

7.1 Explicit Steady State 

For the explicit method, the right hand side of the above equation is first denoted by –R(Q), 

the discrete form of the equation can then be written as: 

t
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Time integration of the equations is performed with an Explicit Four-Stage Runge-Kutta 

algorithm, first introduced by Jameson et al (1981), with local time-stepping to give Qn at the 

next time step: 
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where 

1
2
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3
1

4
1

4321 ==== αααα  (7.4) 

 

The maximum allowable time step for any given cell is defined as: 

( ) CFL
aU

A
t n ×

+
=∆  (7.5) 

 

where An is the area of the cell, a is the local speed of sound, U  is the local velocity, and 

CFL is the Courant-Friedrich-Levy number. A CFL number of 1 inserted into (7.5) will give 

the time taken for the fastest characteristic wave to propagate across the given cell. 

 

This is a stationary method, meaning that information is only gained from the immediate 

neighbouring nodes, and as such has several disadvantages; namely that to ensure the stability 

of the solution, the maximum CFL number is defined as substantially less than one. Secondly, 

the rate of convergence to a solution is low due to the CFL constraint, with the accuracy of 

the residual only decreasing by 1 or 2 orders of magnitude. 

 

7.2 1st Order Implicit Method 

In theory, Implicit time integration methods are unconditionally stable, implying that they are 

stable, independent of the time step, effectively removing the CFL constraint. However this is 

only true for linear systems. In practice, the time step must still be restricted for non-linear 

systems with the CFL value begin dependent on the particular solver being used. In some 

cases, the CFL number may even be close to values for explicit solvers as described 

previously. 

For implicit time integration a different approach is required. All the terms on the right hand 

side of equation (3.17) are first defined at time step t+1, Currie & Carscallen (1998), Arnone 

et al (1995), to give: 
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where the value of Q at time t+1 is given by: 

n
t
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t
n QQQ ∆+=+1  (7.7) 

 

In order for the equation to be solved, the values on the right hand side must be evaluated at 

time t. This is accomplished by using a Taylor’s Series expansion of each of the terms about 

time t. For the first term )( 1+t
LQE  this gives: 

 

t
t

t
Lt

L
t
L ∆

∂
∂

+=+ .)()()( 1 QEQEQE  (7.8) 

 

the chain rule 
t
x

x
y

t
y

∂
∂

∂
∂

=
∂
∂  can then be applied: 

n
n

t
Lt

L

t
Lt

L

t
Lt

L
t
L

t
t

t
t

Q
Q
QEQE

Q
Q
QEQE

Q
Q
QEQEQE

∆
∂

∂
+=

∆
∆
∆

∂
∂

+=

∆
∂
∂

∂
∂

+=+

.)()(

.)()(

.)()()( 1

 (7.9) 

 

Similarly for all the other terms on the right hand side: 
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The only exception to the above is the Roe matrix A~ , which is left at time step t to minimise 

overheads in processing time and memory storage. The derivations for the Jacobian matrices 

are quite large and complex and are given in Appendix C. Substituting for the above terms 

into equation (3.19) and rearranging so that the nQ∆ , kQ∆ , and +∆
k
Q  terms are on the left 

hand side gives: 
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and 

nn AC 2−=  (7.17) 

 

The x and y subscripts denote the x and y components of the Jacobian matrices. n is the central 

node, and k is an adjacent node. 

 

The above set of equations when applied to all the relevant nodes in the system now defines a 

complete set of simultaneous equations in ∆Qi. This is called a Newton Linearisation and 

defines a set of linear equations. With the aid of an example node, the system can be 

expressed in matrix form as follows: 

 

Given an arbitrary Flow node with a set of 5 neighbours: 

 



Chapter 7  Time Integration 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 78 

0 

1 

2 

3 

4 

 

Figure 7.1: Example Node for Matrix Structure 

 

Placing the above nodes into the matrix gives: 
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 (7.18) 

This method is also termed a ‘Steady state’ solver due to the time integration being only 1st 

order. As such, it can be used for time dependent solutions, but with limitations applied to the 

time step. 

 

7.3 2nd Order Implicit Method 

The 1st order method has been previously defined as: 
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where 
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A higher order time accurate scheme is then devised by defining the residual at the next time 

step, Currie & Carscallen (1998), Arnone et al (1995), to give: 
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the unsteady equation then becomes: 
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The subscript n denotes the equation for a given node, t is the current time-step, t+1 is the 

next time-step, and k is the kth sub-iteration to the next time-step. 

 

A 1st order backward predictor is used to start the inner iterations with: 
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7.4 Concluding Remarks 

Various time stepping methods have been presented in this chapter that are all independent of 

the spatial discretisation. Explicit methods have the advantage of their reduced computational 

costs over the implicit methods. However, the effect of the stability limit on the allowable 

time-step can restrict their use to the simulation of low frequency events or very small time-

steps. If the time step of the physical phenomena to be investigated is far larger than the 

stability limit allows, then implicit schemes may still be beneficial. It should also be noted 

that the convergence rate to a steady state solution of an implicit scheme is superior to that of 

an explicit scheme. 
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8 MATRIX INVERSION 
 

As shown from the previous section, at every iteration a linear system of the type Ax=b must 

be solved. In this case, the x will be the vector of ∆Qs used for updating the conservative 

variables to the next time step. Due to the processing time and memory requirements such a 

system poses, iterative methods are normally employed. In this study, the system is solved by 

GMRES, a Krylov sub-space method with a Block-ILU preconditioner, Saad & Schultz 

(1986). To reduce memory requirements, the matrix is stored in sparse format, in which only 

the non-zero elements are defined. The preconditioner transforms the system into the form 

MAx=Mb, if M=A-1, this implies a direct inversion of the matrix that will solve the system 

within a single operation. However, this is impractical due to the limitations previously stated, 

justifying the use of the preconditioner.  

The efficiency of the algorithm relies heavily on the arrangement of the information within 

the matrix to be solved. A measure of the effort required can be estimated by the bandwidth of 

the matrix, which is defined as the distance to the furthest non-zero element from the diagonal 

line: 

 

            
            
            
            
            
            
            
            
            
            
            
            

 

Figure 8.1: Matrix Bandwidth 

 

In this study, a Cuthill-McKee algorithm, Cuthill & McKee (1969), is employed to generate 

an ordering for the nodes to give a reduced bandwidth matrix. It should be noted however, 

Bandwidth = 5 
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that this is not the optimum minimum bandwidth but merely a reduced bandwidth for any 

given set of connected nodes. The algorithm works in an advancing front method. Generation 

starts at a single point on the boundary; a new set is defined as those points immediately 

adjacent to the first set – each new set can be described as a wave front. These points are then 

added to the matrix in order according to the number of adjacent points they have. This 

continues until there are no more points left in the domain. This can be seen diagrammatically 

in the following example. 

 

For the example domain given in Figure 8.2(a), consisting of 20 nodes, the matrix constructed 

from the node numbers can be seen to cover the matrix with plenty of empty space, Figure 8.2 

(b). However, using the Cuthill-McKee algorithm, all the elements are arranged near to the 

diagonal. The nodes are numbered randomly to simulate the order in which the nodes would 

be generated using a Delaunay triangulation algorithm. 

 
  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
 1                  

 2                  

 3                  

 4                  

 5                  

 6                  

 7                  

 8                  

 9                  

 10                  

 11                  

 12                  

 13                  

 14                  

 15                  

 16                  

 1 

15 
9 14 

8 
5 

11 

17 
12 

2 7 13 

10 6 16 3 4 
 

 17                  

 (a) Example Node Structure (b) Ordering Based on Node Numbering 

Figure 8.2: Node Structure and Original Ordering 

 

The set of points belonging to each wave front are sorted according to their number of 

neighbours and then added to the matrix list in that order. The wave fronts and the order that 

they are generated can be seen in Figure 8.3: 
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1 

15 
9 14 

8 
5 

11 

17 
12 

2 7 13 

10 6 16 3 4 

Wave 5 

Wave 4 

Wave 1 Wave 3 Wave 2 

Wave 6  

Figure 8.3: Wave front Ordering 

 

The new ordering becomes: 1, 8, 13, 7, 15, 17, 5, 2, 3, 10, 12, 9, 11, 6, 14, 16, and finally 4, to 

give the matrix shown in Figure 8.4: 

 
 1 8 13 7 15 17 5 2 3 10 12 9 11 6 14 16 4 

1                  

8                  

13                  

7                  

15                  

17                  

5                  

2                  

3                  

10                  

12                  

9                  

11                  

6                  

14                  

16                  

4                  

Figure 8.4: Cuthill-McKee Ordering 

 

It can be seen from the above that there is a small reduction in the bandwidth; the following 

example, Figure 8.5, shows this more clearly. 

 

 

Figure 8.5: Sample Mesh For a Symmetric Nozzle 
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 (a) Unordered Matrix (b) Ordered Matrix 

Figure 8.6: Unordered and Cuthill-McKee Ordered Matrix 

 

The algorithm for the Cuthill-McKee method is as follows: 

 
Mark all lists as empty – a NEW list, OLD list and MATRIX list 
Add any node on the boundary to NEW list 
Mark this point as visited, all other points as not visited 
Append all points in NEW list to the end of MATRIX list 
 
// MATRIX will hold the actual points in the order they 
// will appear in the final matrix 
 
Repeat { 
 Clear OLD list 
 Move all point in NEW list to OLD list 
 Clear NEW list 
 For all points in OLD list 
 { 
  For all neighbours of current point 
  { 
   If point has not already been visited, then add to NEW list 
   Mark neighbour as visited 
  } 
 } 
 Sort NEW list according to number of neighbours of each point 
 Append all points in NEW list to the end of MATRIX list 
} until all nodes have been checked. 

 
 

Figure 8.7: Cuthill-McKee Algorithm 

 

In some cases, it may still be necessary to decrease the memory requirements of the solver. A 

simple improvement, presented by the author, can be achieved by splitting the matrix into 
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sub-matrices and solving each of these independently. This effectively takes a section of 

nodes at a time, treating neighbours of this section as explicit. A disadvantage of this method 

is that the global matrix would need to be solved a number of times for information to 

propagate across the whole domain. In order to minimise information in those areas not 

covered by the sub-matrices, the sub-matrices are staggered on alternate iterations. 

 

 

Global Matrix 

Sub-matrices to be solved 
at time t 

Sub-matrices to be solved 
at time t+1 

 

Figure 8.8: Matrix Subdivision 

 

8.1 Concluding Remarks 

An effective method of solving the system of equations has been presented in this chapter. 

Due to the limitations of memory and resources available, the matrix subdivision scheme 

shown above was necessary for the implicit scheme. This does not, however, lead to any 

detrimental effects. The bandwidth reduction was very effective in minimising the memory 

requirements for the preconditioner, and allowing subdivision of the global matrix. 
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9 ADAPTIVE GRID STRATEGIES 
 

It has been shown in the previous chapters that a Riemann solver or equivalent can 

successfully capture the properties of a shock across two or three nodes. In the case of a 

coarse grid, the shock thickness will be many orders of magnitude smaller than the thickness 

of the shock defined on the grid. Actual shock waves will be in the range of 10-4-10-5m across 

depending on the local Mach number. 

In order to correctly resolve this structure, it is necessary to define the grid such that the 

relevant number of nodes are in fact contained within this distance. Unfortunately, due to the 

nature of shock waves, a priori knowledge of their position and strength is usually unknown. 

It is therefore practical to define a method whereby the grid is refined only in those places 

where the property gradients exceed some previously defined limit. 

No such adaptive strategies are applied to vortex shedding. As can be seen in the section on 

the Water-Table Model, the grid is refined in a block over the area in which the vortex 

shedding occurs. 

The adaptive grid strategy is based on the steady state solution; a triangle is simply 

subdivided if its density gradient is above a user-defined limit. If the adapt limit was set to too 

low a value, density gradients associated with minor events such as vortex shedding would 

trigger adaption. As the process of vortex shedding is unsteady, with vortices convecting 

downstream, this would result in a large region of flow being adapted from the trailing edge 

to the outlet boundary. As this region can be determined beforehand, it is more efficient to 

generate a pre-defined adapted mesh here. Analysis of the experimental data has shown that 

the shock waves are present and do not move sufficiently from the steady case to warrant 

further adaptive steps. Therefore in the water table model, adaption is not required for 

unsteady flow. 

 

In the current study, the grid is constructed of a triangular mesh. The gradient within each 

triangle is calculated using Greens’ theorem, (9.1), based on the triangle in Figure 9.1: 

∑
=

=∇
3

1

ˆ1
f

ff n
A

QQ  (9.1) 



Chapter 9  Adaptive Grid Strategies 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 86 

 

Qj 

nf Qf ^ 

Qk 

Qi 

 

Figure 9.1: Gradient in a Triangle 

 

Qf is the property averaged at the midpoint of the face and fn̂  is the face normal multiplied be 

the length of that face. 

 

9.1 Triangle Subdivision 

If the gradient for any particular triangle exceeds the preset limits, the triangle is then 

subdivided as follows; new points are defined at the midpoints of the edges of the triangle. 

Together with the original three points, four non-overlapping triangles can be generated.  

 

New points Triangle marked 
for subdivision 

The two triangles formed by
a bisection are linked in the
subdivide routine and are
known as ‘split’ triangles.
Further subdivision requires
that they are reformed into a
single triangle and then
subdivided into four as with
a normal divide. 

 

Figure 9.2: Triangle Subdivision 

 

It can also be seen from the above diagram that in order to accommodate changes to the 

central triangle, the adjacent triangles have been bisected to meet at the new points. In the 

event of two adjacent triangles required subdivision, they would simply meet at the midpoint 

of the common edge. 
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9.2 Boundary Subdivision 

The boundary requires special consideration as it consists of two layers of points that must 

remain consistent. For this to hold, the author presents the following technique to ensure that 

both layers are subdivided equally - ensuring that the effective boundary does not move. This 

can be seen in Figure 9.3: 

 

New point Triangle marked for 
subdivision 

Reflected point on opposite side of 
the boundary to ensure integrity 

Effective boundary 

 
Figure 9.3: Boundary Subdivision 

 

The basic algorithm for subdivision is given below. 
 

For all ∆s: { 
 Calculate gradient within ∆ 
 If gradient > limit then { 
  If normal ∆ then mark for full-adapt 
  If ‘split’ ∆ then mark both it and the adjacent for full-adapt 
 } 
} 

 
repeat { 
 check all ∆s: { 
  if adjacent to a single marked ∆ then mark for bisection 
  if adjacent to 2 or 3 marked ∆s then mark for full-adapt 
 } 
} until no more ∆s need marking 
 
For all ∆s marked for full-adapt: { 
 define new points at the midpoints of the edges 
 split the edges in half 
 define 3 new edges connecting the new points 
 generate 4 ∆s from the original and the new points 
} 

 

Figure 9.4: Subdivide Algorithm 
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9.3 Concluding Remarks 

The adaptive strategy presented here is based on the ideas of Connell et al (1993) and a 

similar technique by Currie & Carscallen (1998). This method is also known as red-green 

refinement, Bank (1985). The algorithm is very complex, but equally versatile, and can also 

be used to adapt periodic boundaries in almost the same manner as a solid boundary. The 

results of this can be seen clearly in the adaption of the turbine blade geometry in chapter 11. 

The removal of points in regions of low density gradient has not been considered for this 

study. 
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10 NUMERICAL VALIDATION 
 

In the following section, several numerical results are presented that test a class of problems 

associated with the Euler equations. Various two-dimensional geometries are presented, all 

being generated for the specific purpose of validating the developed code. The validation 

exercise is a fundamental stage in the development of a working code if numerical accuracy is 

to be achieved. Complex phenomena such as shock waves and contact discontinuities are 

present in the transonic turbine cascade under investigation and therefore form a large part of 

the test cases. Grid generation is highly flexible allowing the analysis of the complex 

geometries associated with the thesis, namely the turbine cascade and water-table geometries 

in the following sections. The validation exercises performed are: 

 

• Flow over a supersonic compression corner 

• Flow over a supersonic expansion corner 

• Normal shock against a cylinder 

• Subsonic flow through a converging-diverging nozzle 

• Transonic flow through a converging-diverging nozzle 

• Shock tube problem 

• Supersonic flow over a backward facing step 

 

10.1 Supersonic Compression Corner 

The first test case is an oblique shock; this is a shock wave that is not perpendicular to the 

direction of the flow, and occurs when supersonic flow is deflected by a sharp object or by a 

wedge. A schematic of this can be seen in Figure 10.1.1 below:  
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Figure 10.1.1: Compression Corner 
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Figure 10.1.2: Shock Wave as Normal and Tangential Components 

 

Supersonic inviscid flow over a compression corner has an exact solution that can be derived 

from the Rankine-Hugoniot equations (10.1.1) for an oblique shock against a wedge of a 

known angle α and a known supersonic inlet Mach number M1. The flow is separated into 

normal and tangential components (Figure 10.1.2), the tangential component remains 

constant, and the normal component is treated as for a normal shock. Thus, only the normal 

velocity component is reduced, resulted in the flow deflection. The angle of the shock wave β 

is first computed from Rankine-Hugoniot equations: 
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The downstream flow properties can then be calculated from the following equations. 
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For test case 1, the inlet conditions are: Mach number = 3.0, wedge angle α = 9.5°, p = 1.0 

and ρ = 1.0. The shock angle β = 26.93° from (10.1.1), and from (10.1.2) the exact 

downstream conditions are: 
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The five schemes under test are: 

• First Order Scheme – using Roe’s Riemann Solver 

• Barth Scheme – Roe’s Scheme with MUSCL Extrapolation 

• Van Leer Flux Splitting – Second order flux splitting scheme with MUSCL 

extrapolation 

• Quirk-minmod Scheme – Roe’s Scheme with embedded TVD limiter 

• Adapted Quirk-minmod Scheme – as above but with adaptive meshing. 
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The non-adapted and adapted meshes for the compression corner are shown in Figure 10.1.3 

and Figure 10.1.4 respectively. Examination of the pressure contours in Figure 10.1.6 and 

Figure 10.1.7, shows that the shock in the first order scheme is smeared to about four times 

the width of the shock captured by the Quirk-minmod scheme. Figure 10.1.9 shows this to be 

about 20 nodes. The scheme is thus too highly diffusive and can be discounted from all 

further tests. The Barth scheme and the Van Leer scheme are almost indistinguishable, 

requiring 6 nodes across the shock. The Quirk-minmod scheme is slightly better requiring 

only 5 nodes. Downstream pressure values are highly accurate for all schemes. Examination 

of the density profile, Figure 10.1.10, and the Mach number profile, Figure 10.1.11, shows 

that all the non-adapted schemes do not recover the density or Mach number correctly across 

the shock. The Quirk-minmod scheme does however give the slightly better results. The 

results are acceptable once the scheme has been adapted though with an accompanied 

reduction in shock width. Figure 10.1.8 shows this more clearly when compared to Figure 

10.1.7. In all cases, the solutions converge very quickly with the first order scheme being the 

quickest due to the high diffusivity. The higher order schemes all converge at about the same 

rate, Figure 10.1.12, with the adapted scheme taking more iterations due to the increased 

number of points within the mesh. All schemes do however converge to an acceptable 

residual level. 

 

The downstream computed values at co-ordinates (5.0, 1.25) are: 
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These can be seen to be very close to the exact values, with the maximum relative error being 

0.12% for the Mach number. 
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Figure 10.1.3: Mesh for Compression Corner 
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Figure 10.1.4: Adapted Mesh for Compression Corner 
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Figure 10.1.5: Detailed View of Adapted Mesh for Compression Corner 
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Figure 10.1.6: Pressure Contours for First Order Scheme, ∆p = 0.05 
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Figure 10.1.7: Pressure Contours for Second Order Quirk-Minmod Scheme, ∆p = 0.05 
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Figure 10.1.8: Pressure Contours for Adapted Quirk-Minmod Scheme, ∆p = 0.05 
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Figure 10.1.9: Pressure Profiles for Exit Plane, x = 5.0 
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Figure 10.1.10: Density Profiles for Exit Plane, x = 5.0 
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Figure 10.1.11: Mach Number Profiles Across the Exit Plane, x = 5.0 
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Figure 10.1.12: Log 2-Norm Residual History for All Schemes 
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10.2 Supersonic Expansion Corner 

The second test case is supersonic flow over an expanding corner. This type of flow is known 

as a Prandtl-Meyer Expansion and is shown in Figure 10.2.1. 

 
 Inlet Outlet 

Supersonic Flow 

Wall Boundary θ (turning angle ) 

Expansion Fan 

 

Figure 10.2.1: Expansion Corner 
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Figure 10.2.2: Expansion Fan Conditions 

 

The effect of the turn in the wall is propagated along left running Mach lines in the 

characteristic plane. The exact solution is determined by a series of increments along the 

appropriate Mach line to give a continuous expansion. In practise, this can be calculated from 

isentropic and characteristic tables in a single step. For the current upstream conditions: 
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From isentropic tables for M = 3.0: 
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Downstream conditions can be easily determining from the following rules: 

θ2 - θ1 = -(ω2 - ω1 ) for left running Mach waves (10.2.4) 

θ2 - θ1 = ω2 - ω1 for right running Mach waves (10.2.5) 

 

where θ is the flow angle and ω is the angle on the characteristic plane. 

The inlet flow angle θ1 = 0°, and from characteristic tables for M1 = 3.0, ω1 = 49.757°, and α1 

= 19.47° (angle of the leading edge of the expansion fan). 

For a turning angle of 9.5°, this implies that θ2 = -9.5°, therefore (10.2.4) gives ω2 = 59.257°. 

Again, from characteristic tables, cross-referencing for ω2 gives: 

M2 = 3.5461 and α2 = 16.38° (10.2.6) 

 

From isentropic tables for M2: 
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Finally, the downstream pressure and density can be calculated: 
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Therefore the exact downstream conditions are: 
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The mesh for the expansion corner is given in Figure 10.2.3 for the non-adapted case, and 

Figure 10.2.4 for the adapted case. The schemes tested are those from the compression corner, 

less the first order case. Analysis of the pressure contours again shows that the adapted mesh, 

Figure 10.2.5, gives superior performance to the non-adapted mesh, Figure 10.2.6. Closer 

examination of the profiles shows that the Barth scheme gives excellent results for 

downstream pressure, shown in Figure 10.2.7, being close to the adapted case. However, the 

Mach number profile, Figure 10.2.9, shows only average performance with the Quirk-

minmod scheme giving the better results. As with the compression corner, grid-adaption 

improves the downstream conditions. Taking a cross-section at the exit plane, Figure 10.2.10, 

it can be seen that the Mach number has now returned to the exact values calculated above, 

and is in accordance with the exact profile. The residuals in Figure 10.2.11 behave in an 

almost identical manner to the compression corner due to the supersonic nature of the test. 

 

The downstream numerical values at co-ordinate (5.0, -0.25) are: 
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Figure 10.2.3: Computational Mesh for Expansion Corner 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
X

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Y

 

Figure 10.2.4: Adapted Mesh for Expansion Corner 
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Figure 10.2.5: Pressure Contours for Expansion Corner; Quirk-minmod Scheme, ∆p = 0.025 
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Figure 10.2.6: Pressure Contours for Adapted Mesh; Quirk-minmod Scheme, ∆p = 0.025 
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Figure 10.2.7: Pressure Profiles Along the Lower Wall; Corner located at x = 1.0 
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Figure 10.2.8: Density Profiles Along the Lower Wall; Corner located at x = 1.0 
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Figure 10.2.9: Mach Number Profiles Along the Lower Wall; Corner located at x = 1.0 
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Figure 10.2.10: Mach Number Profile Across the Exit Plane; Quirk-minmod Scheme, x = 5.0 
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Figure 10.2.11: Log 2-Norm Residual History for All Schemes 
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10.3 Normal Shock Against a Cylinder 

Test case 3 is supersonic flow impinging on a cylinder. This causes a normal shock to form 

against the leading edge. The performance of the solver can be compared against exact data 

extracted from normal shock tables. The geometry can be seen in Figure 10.3.1. 

 

 
 

Figure 10.3.1: Normal Shock Against a Cylinder 

 

The inlet conditions are defined by: 
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From normal shock tables, the conditions immediately downstream of the shock are: 
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Inlet 

M1, p1, ρ1 

Symmetric Boundary, y = 0.0 

Outlet 

M2, p2, ρ2 

Shock 

x = -3.0 x = -1.0 
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Behind the shock, the flow then stagnates against the cylinder. The flow properties along the 

centre-line, y = 0.0, from the shock to the wall can be calculated from the isentropic relations 

to give table 10.3.1: 

 

x M p ρ 
-3.00000 3.0 1.0 1.0 
-1.73733 3.0 1.0 1.0 
-1.720 0.47519 10.3333 3.8571 
-1.688 0.45000 10.49612 3.90044 
-1.616 0.40000 10.80183 3.98125 
-1.544 0.35000 11.08114 4.05452 
-1.472 0.30000 11.33076 4.11955 
-1.400 0.25000 11.54765 4.17955 
-1.328 0.20000 11.72909 4.22248 
-1.256 0.15000 11.87275 4.25936 
-1.184 0.10000 11.97675 4.28598 
-1.102 0.05000 12.0397 4.30206 
-1.00000 0.00000 12.0608 4.30744 

Table 10.3.1: Flow Properties for Normal Shock 

 

The non-adapted and adapted meshes are shown in Figures 10.3.2 and 10.3.3 respectively. 

The higher performance of the adapted mesh can be seen in the pressure contours of Figure 

10.3.5 compared to those in Figure 10.3.4. Pressure, density and Mach number profiles along 

the centerline, y = 0.0, are given in Figures 10.3.6, 10.3.7, and 10.3.8. The actual profiles are 

in good agreement with the exact values denoted by the green line. However, there are several 

issues of concern: undershoot and overshoot can be seen on either side of the shock in all 

profiles, implying the scheme is not performing as a TVD scheme should be, and although the 

Mach number is in excellent agreement this is at the expense of a drop in pressure and density 

at the wall. The author attributes this to the walls not functioning in a perfectly adiabatic 

manner. The residual log, Figure 10.3.9, is generally decreasing, although this does take a 

considerable number of iterations compared to the supersonic compression and expansion 

corners. The two predominant peaks at about iteration 2000 are the points at which adaption 

takes place. 
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Figure 10.3.6: Pressure Profile for Adapted Quadrant, y = 0.0 
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Figure 10.3.7: Density Profile for Adapted Quadrant, y = 0.0 
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Figure 10.3.8: Mach Number Profile for Adapted Quadrant, y = 0.0 
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Figure 10.3.9: Log 2-Norm Residual History for Quadrant 
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10.4 Subsonic Nozzle 

The purpose of the subsonic nozzle is to test the symmetric properties of the Euler Equations 

when there are no shocks present. The nozzle is of the converging-diverging type, and at any 

x position along the nozzle the flow properties can be derived from the continuity equation 

and the isentropic relations. The flow in such a case will be symmetric about y = 0.0 due to 

the symmetric nature of the geometry and symmetric about x = 2.0 implying that flow from 

either the left or the right will give an identical solution. 

 

 

 
Figure 10.4.1: Converging-Diverging Nozzle 

 

The section defined by 0.0 ≤ x ≤ 4.0 is constructed from a cosine wave between the limits [0, 

2π]. 

The inlet conditions for the current case are: 
















=

















0.1
0.1
2.0

1
p

M
ρ  (10.4.1) 

 

The inlet mass flow can be calculated, and from the continuity equation the mass flow rate at 

any cross-sectional area A2 can be calculated, based on a 1-dimensional analysis: 

222111 AuAum ρρ ==&  (10.4.2) 

 

By making suitable rearrangements: 

uA
RT
puAm == ρ&  (10.4.3) 

Inlet Outlet 

x = 0.0 x = 4.0 
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A
T
T

RTRT
upm 0

0

γ
γ

=&  (10.4.4) 

 

From the definition for the stagnation temperature ratio and Mach number: 

( )









 −
+=

2
1

1
2

0 M
T
T γ

 and 
RT
uM
γ

=  (10.4.5) 

 

Substituting into the above gives: 

( ) AM
RT

pMm
2
1

2

0 2
11 







 −
+=
γγ

&  (10.4.6) 

 

From the isentropic relations, the total pressure and density can be determined for the current 

case: 

( ) 







−










 −
+=

12

0 2
1

1
γ
γ

γ M
pp  (10.4.7) 

( ) 
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−
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


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


 −
+=

1
1

2

0 2
1

1
γγ

ρρ
M

 (10.4.8) 

 

Substituting the above into the (10.4.6) gives mass flow rate in terms of total pressure: 

( )
A

M
RT

Mpm
32

0
0 2

1
1

−










 −
+=
γγ

&  (10.4.9) 

 

From the defined upstream conditions, p0, T0 and the mass flow rate can be calculated: 

4662.0003511.002828.1 00 === mTp &  (10.4.10) 

  

Equation (10.4.9) can be easily solved for M for a given A using any mathematical package 

such as XMaple to give the following exact results: 
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x A M ρ P 
-2 1.97 0.2 1.0 1.0 
0 1.97 0.2 1.0 1.0 
0.4122 1.87 0.21128 0.997703 0.996785 
0.5868 1.77 0.22395 0.994981 0.992981 
0.7363 1.67 0.23829 0.991724 0.988432 
0.8694 1.57 0.25469 0.987771 0.982921 
1.0 1.47 0.27363 0.982909 0.976155 
1.1237 1.37 0.29580 0.976823 0.967703 
1.2579 1.27 0.32217 0.969044 0.956932 
1.4074 1.17 0.35417 0.958847 0.942864 
1.5864 1.07 0.39408 0.945021 0.923886 
2.0 0.97 0.44578 0.925412 0.897159 
2.4136 1.07 0.39408 0.945021 0.923886 
2.5926 1.17 0.35417 0.958847 0.942864 
2.7421 1.27 0.32217 0.969044 0.956932 
2.8763 1.37 0.29580 0.976823 0.967703 
3.0 1.47 0.27363 0.982909 0.976155 
3.1306 1.57 0.25469 0.987771 0.982921 
3.2637 1.67 0.23829 0.991724 0.988432 
3.4132 1.77 0.22395 0.994981 0.992981 
3.5878 1.87 0.21128 0.997703 0.996785 
4.0 1.97 0.2 1.0 1.0 
8.0 1.97 0.2 1.0 1.0 

Table 10.4.1: Flow Properties for a Given Cross-Sectional Area 

 

It should be noted that these areas correspond to the co-ordinates between the two outer layers 

of points of the mesh and not the actual boundary of the mesh. 

It can immediately be seen from the Mach number contours in Figure 10.4.4 that the 

unadapted mesh does not give a symmetrical solution; however, a single level of adaption, 

Figure 10.4.3, seems to solve this and can be seen in Figure 10.4.5. Figure 10.4.6, Figure 

10.4.7 and Figure 10.4.8 show the pressure, density and Mach number profiles for the adapted 

solution compared to the exact values given above. The profiles compare very well. However, 

in all cases the exact solution sits slightly inside the computed profile. This is due to the two-

dimensional effects of the computed solution. It can be seen from Figure 10.4.5 that the 

contours are curved and the length of this curve is longer than corresponding cross-sectional 

area at that point. At the inlet, the pressure and density are high and the Mach number is low, 

the author attributes this slight deviation to the fact that the inlet to the domain is too short 

and significant pressure waves are present upstream of the contraction. Although the 

centreline Mach number is low, it can be seen in Figure 10.4.9 that the mean Mach number 
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across the throat is 0.443 compared to the exact value from Table 10.4.1 of 0.44578. This is a 

numerical error of 0.6%. 

The residual history is given in Figure 10.4.10. Adaption was performed at iteration 2000. 

Although convergence continues, it does take many iterations due to the subsonic nature of 

the domain. 
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Figure 10.4.6: Pressure Profile for Adapted Subsonic Nozzle, y = 0.0 
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Figure 10.4.7: Density Profile for Adapted Subsonic Nozzle, y = 0.0 
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Figure 10.4.8: Mach Number Profile for Adapted Subsonic Nozzle, y = 0.0 
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Figure 10.4.9: Mach Number Profile for Adapted Subsonic Nozzle - Nozzle Throat, x = 2.0 
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Figure 10.4.10: Log 2-Norm Residual History for Subsonic Nozzle 
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10.5 Transonic Nozzle 

This is an amalgamation of the normal shock and the subsonic nozzle test cases. By 

increasing the inlet Mach number to the nozzle to the maximum allowable for the given area 

ratio, the downstream static pressure can be decreased to facilitate the formation of a shock in 

the diverging section of the nozzle. 

 

 

 
Figure 10.5.1: Converging-Diverging Nozzle 

 

The inlet conditions for the test case are given as: 
















=

















0.1
0.1
3.0

1
ρ
p

M
 (10.5.1) 

 

Using the same principles as for the subsonic nozzle the flow properties from the inlet to the 

shock can be calculated from (10.5.2): 

( )
A

M
RT

Mpm
32

0
0 2

1
169928.0

−










 −
+==
γγ

&  (10.5.2) 

 

which can be solved for M using a relevant mathematical package. For the conditions 

downstream of the shock, equation (10.5.3) is employed (note the change in the power): 

( ) AM
RT

pMm
2
1

2

0 2
1169928.0 







 −
+==
γγ

&  (10.5.3) 

 

Inlet Outlet 

x = 0.0 x = 4.0 
Shock 
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This is convenient, as downstream conditions are defined by the exit static pressure, which in 

this case is pstatic = 0.6666. The following table is thus generated for the given cross-sectional 

areas: 

 

x A M ρ p 
-2 1.97 0.3 1.0 1.0 
0 1.97 0.3 1.0 1.0 
0.4122 1.87 0.31814 0.994514 0.992328 
0.5868 1.77 0.3388 0.987929 0.983142 
0.7363 1.67 0.36262 0.979907 0.971984 
0.8694 1.57 0.39046 0.96997 0.958211 
1.0 1.47 0.42361 0.957384 0.940851 
1.1237 1.37 0.46405 0.940995 0.91838 
1.2579 1.27 0.51513 0.918808 0.888207 
1.4074 1.17 0.58338 0.886898 0.845324 
1.5864 1.07 0.68545 0.835329 0.777321 
2.0 0.97 0.95126 0.689865 0.594661 
2.4136 1.07 1.38218 0.465622 0.342962 
2.5926 1.17 1.54603 0.393688 0.271153 
2.7421 1.27 1.67220 0.344413 0.22486 
2.8763 1.37 1.77782 0.307244 0.191636 
3.0 1.47 1.86983 0.277795 0.166423 
3.1306 1.57 1.95192 0.253721 0.146588 
3.2637 1.67 2.02635 0.233595 0.130572 
3.4132 1.77 0.515 0.659417 0.637472 
3.5878 1.87 0.47709 0.671341 0.653669 
4.0 1.97 0.4453 0.680849 0.666665 
8.0 1.97 0.4453 0.680849 0.666666 

Table 10.5.1: Flow Properties for a Given Cross-Sectional Area 

 

The above equations can be used irrespective of whether the flow is isentropic or not, as the 

total temperature will be constant in all cases. The non-adapted mesh is the same as for the 

subsonic nozzle. The adapted mesh can be seen in Figure 10.5.3. The adapted mesh gives a 

normal shock with very high definition, Figure 10.5.5, compared to the non-adapted case, 

Figure 10.5.4. The pressure, density and Mach number profiles along the centre-line, y = 0.0, 

are given in Figure 10.5.8, Figure 10.5.6, and Figure 10.5.7. The green line denotes the exact 

profiles based on a one-dimensional analysis. The computed profiles are in good agreement 

and show the correct trends in their shape. The downstream conditions show a loss in Mach 

number and density behind the shock. This is due to the down-stream static pressure being 

fixed. The entropy change therefore manifests itself as a change in density. 
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Figure 10.5.6: Pressure Profile for Adapted Transonic Nozzle, y = 0.0 
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Figure 10.5.7: Density Profile for Adapted Transonic Nozzle, y = 0.0 
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Figure 10.5.8: Mach Number Profile for Adapted Transonic Nozzle, y = 0.0 
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Figure 10.5.9: Log 2-Norm Residual History for Transonic Nozzle 
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10.6 Unsteady Shock Tube 

An unsteady shock tube is based on the principal of a Riemann Problem, Hirsch (1990). A 

one-dimensional tube is separated into two halves by a diaphragm; the left and right states 

contain fluid at different pressures and densities. On removing the diaphragm (at time t=0), 

the interaction between the two states will be defined by a rightward moving pressure wave, a 

contact discontinuity and a leftward moving expansion wave, travelling at velocities U+a, U 

and U-a respectively. 

  
 

Diaphragm 
Left Properties 
ρl pl ul 
High Pressure 

Right Properties 
ρr pr ur 
Low Pressure 

 

Figure 10.6.1: Unsteady Shock Tube 

 

At any given time t>0 the solution can be separated into five discrete domains: 
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Figure 10.6.2: Solution to the Shock Tube Problem 
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For the current test case, the initial conditions are based on those of Hixon (1999): 
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The density being calculated from γγρ
1

)( p=  

The mathematical solutions in each of the domains are: 

 

Domain 1: As there is no influence from the approaching shock front, the fluid is still in the 

initial state, therefore: 
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The shock is moving to the right at u = 1.48612 ms-1 

 

Domain 2: Immediately behind the shock, 
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The contact discontinuity is moving at ucd = 0.621163 ms-1 

 

Domain 3: behind the contact discontinuity 
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Domain 4: The area defined by the expansion fan. The properties for a given x position at 

time t are defined by the following equations: 
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The velocities at the boundaries of the expansion fan are: 

left edge ule= -1.29657 ms-1 

right edge ure = -0.55118 ms-1 

 

Domain 5: There is no influence from the approaching expansion fan, so the fluid is still in 

the initial state: 
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The Shock Tube is included to verify that the solver captures the correct propagation of the 

characteristic waves. 

Numerical calculations were performed with the 1st and 2nd implicit solvers over an interval of 

2 seconds with a time step of 0.02 seconds. Results are presented for the solution at time t = 

2.0 seconds after 100 iterations. The diaphragm is located at x = 4.0. 

The mesh was defined with the upper and lower boundaries as periodic to remove any two-

dimensional effects. The inlet is on the left and the outlet on the right; this can be seen in 

Figure 10.6.3.  

The 2nd order solver can immediately be seen to give a sharper defined shock than the 1st 

order solver as demonstrated by the pressure contours in Figure 10.6.5 and Figure 10.6.4 

respectively. Looking more closely at the profiles for the 1st order solution, Figure 10.6.6, the 

expansion fan does follow the exact line very well. The contact discontinuity is present, 
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although smeared over several points, and the forward shock is well defined with no 

overshoot. The exact solution is represented by a green line where applicable. With regards to 

the 2nd order case, Figure 10.6.7, the solution follows the exact profiles much more closely 

than the 1st order case – the expansion fan is very well defined, the contact discontinuity is 

sharper and the forward shock is captured more accurately. However, there is now an 

overshoot present behind all of the moving waves. The author attributes this to dispersion 

within the solver. The same features can be seen in the 1st order case but only to a minor 

degree. It is assumed that the extension to the 2nd order time accurate scheme does not 

accommodate the TVD properties of the 1st order scheme. 

Figure 10.6.8 shows the residual history for the inner iterations performed in advancing a 

global time-step. The solver currently requires a large number of inner iterations, and the 

increase in accuracy does not currently outweigh the necessary increase in processing. 
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Figure 10.6.6: Pressure, Density and U Velocity Profiles for 1st Order Shock Tube, y = 0.0 
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Figure 10.6.7: Pressure, Density and U Velocity Profiles for 2nd Order Shock Tube, y = 0.0 
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Figure 10.6.8: Log 2-Norm Residual History for Inner Iterations of 2nd Order Shock Tube 
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10.7 Unsteady Step 

The last qualitative test case is the supersonic backward facing step. The purpose of the test is 

to evaluate the performance of the solver when computing the interaction between shear 

layers and shock waves. This is of particular importance as it simulates the flow in the trailing 

edge region of the turbine blade. The geometry for the test case can be seen in Figure 10.7.1. 
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Figure 10.7.1: Backward Facing Step 

 

The inlet conditions are: 
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The computational mesh is given in Figure 10.7.2. The Mach number contours for the 

solution can be seen in Figure 10.7.3. The flow can be seen entering the left hand side of the 

domain. As the flow crosses the edge of the step, an expansion fan forms. The flow is turned 

towards the base of the step in a similar manner to the expansion corner, as described in 

chapter 10.2. The inlet Mach number defines the leading edge angle of the expansion fan. 

From characteristic tables, the leading edge angle α1 = 23.58°. 

The trailing edge angle of the expansion fan is defined by the static pressure within the 

recirculation, Figure 10.7.4. This is not low enough that the flow is completely turned against 

the back of the step, hence, a shear layer develops. The flow below the shear layer is forced 

into a recirculation. The flow continues downstream, strikes the lower wall and is turned back 

on itself into the main flow. At this junction, a compression shock is formed. Analytical 

solutions are not available for this test case; however, the numerical results are compared with 
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the experimental data of Smith (1967). The numerical pressure profile along the lower wall is 

given in Figure 10.7.5. The results can be seen to compare favourably with the experimental 

results. The shapes of the two curves are very similar, although the numerical pressures are 

slightly underestimated. This is attributed to the numerical computation being inviscid. A 

viscous computation would reduce the wall velocity thereby increasing the wall static 

pressure, giving a more accurate correlation. The experimental values are given in Table 

10.7.1. 

 

X position 
0p

p  

1.1875 0.01111 
1.4584 0.01111 
1.75 0.01481 
2.037 0.02643 
2.2963 0.0406 
2.7962 0.0535 
3.0377 0.05464 
3.2453 0.05518 
3.5472 0.05571 
3.7925 0.05625 
4.0392 0.05678 
4.2353 0.0575 
4.549 0.0575 
4.7843 0.0575 
5.0392 0.05786 
5.2353 0.05786 
5.549 0.05786 
5.7843 0.05786 
6.04 0.058528 
7.04 0.058528 

Table 10.7.1: Experimental Pressure Readings along Lower Wall, Smith (1967) 
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Figure 10.7.4: Recirculation for Backward Facing Step 
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Figure 10.7.5: Pressure Profile Along Lower Wall, y = 0.0 
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10.8 Concluding Remarks 

A series of test cases has been presented for the validation of the numerical solver. The range 

of tests covers the types of flow and conditions that may exist in transonic turbomachinery. It 

can be seen that the solver performs very well; it can be used confidently for the turbine blade 

and water table geometries on the following chapters. 
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11 TURBINE CASCADE GEOMETRY 
 

The profile under investigation for the present study is the mean section of a first stage nozzle 

designed for a highly loaded turbine stage. The mean section is given below with details of 

the geometry dimensions. The complete co-ordinate set can be found in Appendix B. 
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Figure 11.1: Turbine Cascade Design Parameters 
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This particular blade has already been used extensively in previous computational and 

experimental investigations due to its relatively thick trailing edge. For the current study, the 

flow conditions are defined by an inlet Mach number of 0.112, an exit Mach number of 1.16 

and a turning angle of 76°; the flow in the trailing edge region is transonic. This corresponds 

to experimental work performed in Canada, Carscallen et al. (1998), measured a vortex 

shedding frequency in the order of 11-12kHz. At this frequency a detailed analysis of the 

structure of the wake is very difficult, making this a good candidate for alternative methods of 

study. In particular, the method of study offered is to model the blade computationally, and 

use the numerical data to design a larger scale experimental model. 

As only the pressure distributions around the turbine blade are required at this stage, and not 

the unsteady phenomena in the wake region, the following computations are steady state 

using the implicit formulation defined in chapter seven. 

The computational model is designed with upper and lower periodic boundaries. The non-

adapted mesh can be seen in Figure 11.2, and the adapted mesh in Figure 11.3. The Mesh 

around the blade consists of a semi-structured region consisting of four layers. The mid-line 

between the first two layers defines the effective wall boundary of the blade. This can be seen 

in the inset of Figure 11.2. The structured layer ensures that the end-points of the four point 

stencils lie within the domain. See chapter 6.1. The periodic boundary is defined along the 

middle of the channel between two consecutive blades.  

Figure 11.4 shows the Mach number contours. The upper and lower adjacent blades have 

been included to show the periodic nature of the solution. Shock waves can be clearly seen 

after the expansion fan at the trailing edge of the blade. Of particular interest is the reflection 

of the shock wave from the suction surface of the next lower blade in the row. It is 

particularly important that this is replicated in the flow around the water table model, as this 

shock wave will perturb the boundary layer, ultimately affecting the flow at the trailing edge. 

The pressure distribution around the blade can be seen in Figure 11.5, in comparison with 

recent experimental data, Table 11.1, produced by Jon Ackerman of the University of 

Leicester. The shock impingement can be seen at xaxial = 0.71. Agreement with the 

experimental data is excellent. Although a coincidence, pressure-tapping 19 can be seen to lie 

on the line of the shock. In the experimental case the shock would move very slightly and as 

such, the pressure tapping would measure a weighted average of the upstream and 

downstream pressures depending on how much the shock moved across the tapping. In this 

case the experimental measurement lies near the centre of the numerical shock. Upstream of 

the shock, a ‘kink’ can be seen in the pressure profile; this is attributed to the presence of a 
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separation bubble on the suction surface. The bubble has not formed in the computational 

work due to the low resolution of the grid in this region, but its existence could be predicted 

from the strong adverse pressure gradient at this point. Sanz & Platzer (1997) have produced 

similar results showing separation bubbles forming on the suction surface of compressor 

blades. Separation behind this particular blade has been verified by Moustapha et al (1993), 

over a range of Mach numbers including the current test case. 

 

Tapping No. x (mm) y (mm) 
∞p
p  

1 -46.0602 48.5839 0.990672 
2 -42.6732 40.54084 0.999111 
3 -33.3646 35.91397 0.998108 
4 -24.8973 29.97037 0.998098 
5 -16.4336 19.69983 0.996624 
6 -7.96991 0.489753 0.993618 
7 0.497434 -13.2259 0.987074 
8 6.84337 -28.7231 0.976987 
9 13.19296 -46.1479 0.953784 
10 32.23809 -108.729 0.496660 
11 -46.0602 48.5839 0.991329 
12 -42.6732 56.04906 0.946087 
13 -33.3646 61.01243 0.921808 
14 -20.6654 61.05632 0.792133 
15 -12.2018 57.16829 0.682408 
16 -3.73807 47.92919 0.614674 
17 2.611526 31.83941 0.514840 
18 8.96112 9.623146 0.373773 
19 13.19296 -5.75706 0.344086 
20 25.88849 -54.7945 0.437600 
21 30.12399 -72.2413 0.415471 
22 37.73912 -105.288 0.374461 
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10  
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Table 11.1: Experimental Pressure Measurements15 

 

11.1 Concluding Remarks 

A computational study of the turbine blade under analysis has been presented in this chapter. 

It has been shown to be in excellent agreement with previous experimental work, and a good 

indicator of the accuracy of the numerical code.  

                                                 
15 Courtesy: Jon Ackerman, University of Leicester. Taken at the CNRC, Ottawa, Ontario. 
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Figure 11.2: Computational Mesh for Turbine Cascade 
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Figure 11.3: Adapted Mesh for Turbine Cascade, 1 Adaptive Step 
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Figure 11.4: Mach Number Contours for Adapted Turbine Cascade, ∆M = 0.1 
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Figure 11.5: Pressure Distribution for Turbine Cascade 
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12 HYDRAULIC ANALOGY 
 

An objective of the current study is to develop a water table model, based on the principle of 

open channel flow, that exhibits the same characteristics and flow phenomena that are 

associated with the turbine blade. The purpose being that experimental investigation of the 

turbine blade is problematic; the geometry of turbomachinery constrains the use of intrusive 

probes, and the velocity of transonic airflow requires the use of very high frequency data 

capture techniques. Carscallen (1998) measured vortex-shedding frequencies in the region of 

11-12kHz for the turbine blade under study. If, for example, only ten samples are required 

between two consecutive vortices shed from the same surface of the blade, the sampling 

frequency would need to be in the order of 100kHz; this has only recently been achieved, 

Carscallen et al (1999). For a more detailed study, even higher frequencies are required. A 

water table model, however, has the advantage that for an equivalent model, transonic flow 

will occur above about 0.44ms-1 for a water depth of 0.02m, and vortex-shedding frequencies 

will be proportionately less. Visual analysis of flow phenomena may be achieved through 

simple techniques such as the use of video cameras and float gauges. Before this can be done, 

it is necessary to establish that the water table may indeed be used as an analogy of the air 

model. This is achieved through the concept of the hydraulic analogy; Shepherd (1965). 

 

The hydraulic analogy depends upon the similarity between the equations describing two-

dimensional compressible flow and those describing open channel flow with a free surface. 

Forces that are encountered in any fluid system may include inertia, viscosity, gravity, surface 

tension, pressure, and compressibility; Douglas et al (1995). A series of dimensionless 

constants can be used to describe the properties of any system in terms of these six forces: 

ρ
γp

UM =  Mach number16 (12.1) 

                                                 
16 Mach number: Ernst Mach (1838-1916). Austrian Physicist and Philosopher. 
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µ
ρULRe =  Reynolds number17 (12.2) 

gL
UFr =  Froude number18 (12.3) 

L

UWe

ρ
σ

=  Weber number19 (12.4) 

 

where U is the characteristic velocity, L the characteristic length, µ is the molecular viscosity, 

g the acceleration due to gravity, σ the surface tension and ρ the density. For complete 

similarity, based on two models surrounded by the same working fluid, all the above must 

match between the prototype and the model. For the current study, however, where similarity 

is to be achieved between a model in air and a water table model, similarity may be achieved 

by comparison of Mach number with Froude number. The flow is transonic; therefore both 

the systems are dominated by pressure waves.  

 

12.1 The Hydraulic Jump 

Consider water or any liquid flowing in an open channel; any small disturbance in the flow 

will be propagated along the channel at a velocity governed by the depth of the water; Graf 

(1998). If the height of the wave is sufficiently smaller than the depth of the channel then the 

velocity of propagation of the wave, also known as its celerity, will be: 

gDc =   (12.5) 

 

where D is the depth of the channel. If the velocity of the wave is the same as the velocity of 

the flow then the flow velocity can be expressed as Fr = 1 from (12.3). For U < c the flow is 

expressed as subcritical and for U > c the flow is supercritical. For supercritical upstream 

flow, a hydraulic jump will present itself. A typical hydraulic jump is shown in Figure 

                                                 
17 Reynolds number: Osborne Reynolds (1842-1912). Professor of Engineering at Manchester University. 
18 Froude number: William Froude (1810-1879). Pioneer in the study of Naval Architecture. 
19 Weber number: Moritz Weber (1871-1951). German Naval Architect. 
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12.1(a); the jump is normally smeared over a finite width. Figure 12.1(b) shows the idealised 

instantaneous jump condition.         

 

 

Inflow Outflow 

 

U1 

U2 

D1 

D2 

F1=p1A1 F2=p2A2 

 
(a) Real Hydraulic Jump (b) Ideal Hydraulic Jump 

Figure 12.1: Real and Ideal Hydraulic Jump 

 

This flow criterion can be seen as analogous to compressible gas flow. In this case the 

velocity of wave propagation is: 

ρ
γpa =   (12.6) 

 

For U > a the flow is considered to be supersonic and U < a the flow is subsonic. From 

(12.1), a velocity of U = a will give M = 1. One can clearly see that an analogy may exist 

between a hydraulic jump in channel flow and a plane normal shock in compressible flow. To 

verify this, the continuity, momentum and energy equations must be more closely examined. 

 

12.2 Continuity 

For a one-dimensional compressible flow, the continuity equation may be expressed as: 

m&  = ρ1U1A1 = ρ2U2A2 = constant (12.7) 

 

where m&  is the mass flow rate, ρ is the density, U the mean velocity, and A the cross-

sectional area of the flow. Thus, in its differential form for a uniform cross sectional area: 

0=∂+∂ UU ρρ  (12.8) 
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For open channel flow, the continuity equation is given as: 

m&  = ρ1U1A1 = ρ1U1B1D1 = ρ2U2B2D2 = constant (12.9) 

 

where U is the mean velocity, B is the channel width, and D is the channel depth. As the flow 

is incompressible, ρ is constant, and cancels out. In its differential form for a uniform channel 

width, as in the above case: 

0=∂+∂ UDDU  (12.10) 

 

One can now see a clear comparison between (12.8) and (12.10) with the channel depth being 

analogous to density. This analogy can be extended to two dimensions without loss of 

generality. 

 

12.3 Conservation of Momentum 

With an instantaneous change over the hydraulic jump as in Figure 12.1(b), the only forces 

acting on the fluid are those due to pressure, thus the momentum equation for a channel of 

unit width reduces to: 

)( 122211 UUmDpDp −=− &  (12.11) 

 

where m&  is the mass flow rate. As the particular forces in question are those due to 

hydrostatic pressure, p can be taken as the mean pressure at the centroid of the face: 

gDp ρ
2
1

=  (12.12) 

 

Making the above substitution, and using the continuity equation (12.9), the momentum 

equation becomes: 

)(2
12

12
2

2
1 UU

g
UDD −=−  (12.13) 

 

which can be rearranged to give: 
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)(2
21

2

2
12

2
2

1 DD
gD
UDD −=−  (12.14) 

therefore 

02 2
121

2
2 =−+ UDgDgD  (12.15) 

 

Solving for D2 and dividing through by D1 gives the ratio: 

1

2
1

1

2 2
4
1

2
1

gD
U

D
D

++−=  (12.16) 

 

Examination of (12.16) shows that for flow velocity equal to the celerity then D2 = D1, and for 

supercritical flow, D2 > D1. The case for D2 < D1 will be investigated in the following text. 

 

12.4 Conservation of Energy 

The energy equation for channel flow is given by: 

LE
g

UD
g

UD ++=+
22

2
2

2

2
1

1  (12.17) 

 

The energy losses EL would be those caused by shear stresses due to surface tension. If the 

downstream condition is taken to be very deep and the energy losses very small, then the 

velocity at this point can be assumed to be negligible, representing stagnation conditions: 

sD
g

UD =+
2

2
1

1  (12.18) 

 

where Ds is the stagnation depth. This then gives a maximum velocity, as D1 tends to zero: 

sgDU 22
max =  (12.19) 

 

The velocity for a given depth can then be derived from: 

s

s

D
DD

U
U −

=







2

max

 (12.20) 
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For compressible flow, assuming there are no energy losses, the energy equation is: 

2

2
2

2

2
1

2
1

1

1

22
u

g
UpuUp

++=++
ρρ

 (12.21) 

 

Thus by introducing the thermodynamic relations: 

v

p
vpv C

C
RTpRCCTCu ===−= γρ and  (12.22) 

 

where u is the internal energy, Cv and Cp are the specific heat constants for constant volume 

and pressure respectively, T is the temperature, R is the universal gas constant, and γ the ratio 

of specific heats; the energy equation reduces to: 

( ) constant
21

2

=+
−

Up
ργ

γ  (12.23) 

 

Substituting for the velocity of wave propagation a into the above gives: 

( ) constant
21

22

=+
−

Ua
γ

 (12.24) 

 

As with the channel flow, the stagnation and maximum conditions can be derived as: 

( ) constant
2

constant
1

2
max

2

==
−

Uas

γ
 (12.25) 

 

and the velocity can then be expressed as: 

2

222

max s

s

a
aa

U
U −

=







 (12.26) 

 

For similarity of velocities, a comparison of equations (12.20) and (12.26) gives: 

ss D
D

a
a

=2

2

 (12.27) 
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but since 
ρ
γpa =  this can be expressed as:  

s

s

s p
p

a
a

⋅=
ρ
ρ

2

2

 (12.28) 

 

Now the hydraulic analogy relies on the analogy between depth in channel flow and density 

in compressible flow. For this to be satisfied, the following relation must hold: 

ssD
D

ρ
ρ

=  (12.29) 

 

This can be satisfied from (12.27) and (12.28) if 

constant2 =⇒⋅=
ρρ

ρ
ρ
ρ p

p
p

s

s

s

 (12.30) 

but for adiabatic flow constant=γρ
p , thus the water table flow becomes analogous to a gas 

with ratio of specific heats  γ = 2. This is representative of the operating conditions of a steam 

turbine running at a temperature of 700K and a pressure of 20-25MPa20. The hydraulic 

analogy would therefore be highly accurate for modelling such a case. 

 

12.5 Energy Losses 

By taking into account the energy loss term EL in (12.17), across the hydraulic jump this can 

be interpreted as a loss in mechanical energy. 

g
UUDDEL 2

2
2

2
1

21
−

+−=  (12.31) 

 

Substituting for the continuity equation (U1D1 = U2D2 = constant) into the above: 

                                                 
20 Obtained from NIST (National Institute of Standards and Technology) website; http://www.nist.gov 
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( )
21

3
12

4 DD
DDEL

−
=  (12.32) 

 

By definition, EL must be positive, as there can be no increase in mechanical energy; this 

would violate the second law of thermodynamics. Therefore D2 will be greater than D1 

implying from (12.16) that U1 must be supercritical. Furthermore, it may also be noted that as 

D2 → D1, then EL tends to zero and the hydraulic jump tends to the ideal. For the equivalent 

compressible flow, EL this will manifest itself as a loss in stagnation pressure. 

 

From the above analysis, it can be shown that there is a close qualitative analogy between the 

hydraulic jump and a normal shock wave, see Table 12.1: 

 

Hydraulic Jump Normal Shock 

Celerity gDc =  Wave speed 
ρ
γpa =  

Subcritical flow Subsonic flow 

Supercritical flow Supersonic flow 

Possible only for U1 > c1 

 and U2 < c2 

Possible only for U1 > a1 

 and U2 < a2 

Loss of mechanical energy Loss of stagnation pressure 

Table 12.1: Comparison of Hydraulic Jump and Normal Shock 

 

The above calculations have been based on the assumption that there are no energy losses, 

though this is clearly invalid as there are mechanical losses and loss of static pressure in 

hydraulic jumps and shock waves. However, the analogy may be used with minimal losses if 

the flow is restricted to the subsonic to transonic flow region. 

 

12.6 Reynolds Number 

In the case where both the prototype and the model are assumed to be inviscid, the effects of 

viscosity are assumed to be negligible, consequently the Reynolds number can be ignored in 

both cases. It must be noted however, that the experimental model has viscous effects 
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associated with it. In this case, Reynolds number must be accounted for, particularly when 

considering unsteady phenomena such as vortex shedding. 

  

The conditions for the turbine blade are: 
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 (12.33) 

 

giving a calculated Reynolds number, based on chord length, of: 

ReBlade = 507,096 (12.34) 

 

The computational water table model is a one-to-one scale model of the physical model, so 

the Reynolds numbers will match. For the actual water table model: 


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
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WT

L

Fr

µ

ρ
 (12.35) 

 

For matching Reynolds numbers, ReWT must equal ReBlade.  

3

3

10
9135.0 .  . 10

ReRe −== WT
WTBlade

U
 (12.36) 

 

to give the inlet velocity of the water table to be UWT = 0.55ms-1. Unfortunately, for this to be 

equivalent to a Mach number of 0.112, the required depth of the inlet must be 2.5 metres, 

clearly impractical for the current study; the flume at the university is only 30cm deep. Based 

on this information, it is appropriate to find a balance between the Reynolds numbers 

calculated and the applicability of the hydraulic analogy. The water table geometry that will 

be described in the following chapter has been designed to fill the flume at the University of 

Leicester; the larger the model, the closer the Reynolds number will match with the turbine 

blade. 
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In order for the hydraulic analogy to hold, the depth of the water must be restricted to 

minimise three-dimensional effects. It is reasonable to hold the inlet depth at about 0.02-

0.025m, this gives an inlet wave speed of 0.443-0.495ms-1. For a Mach number of 0.112, this 

corresponds to an inlet velocity of 0.0496-0.0555ms-1, and a Reynolds number of only 50,356. 

 

The condition of the boundary layers is very important when considering Reynolds number 

matching as small changes in Reynolds number can alter the state of a boundary layer from 

laminar to turbulent. For the current study, the pressure surface of the turbine blade can be 

assumed to be laminar due to the lack of substantial diffusion on that surface. The suction 

surface contains various states: from the leading edge the boundary layer is laminar, the 

boundary layer separates and re-attaches further downstream, and the impingement of the 

shock triggers a turbulent boundary layer to the trailing edge of the blade. Between the re-

attachment point and the shock, the boundary layer may be transitional. For the water table 

model, the separation bubble is not modelled; consequently the conditions for this section of 

the suction surface may be inaccurately resolved. Fortunately, the presence of the shock 

impingement ensures that the probability of the suction surface boundary layer being in the 

correct turbulent state at the trailing edge is very high. Further steps to address this may be 

taken by modifying the surface roughness of the flat plate, or introducing boundary layer trips 

to promote the correct boundary layer state. 

 

12.7 Weber Number 

To ensure that vortex shedding is accurately portrayed by the hydraulic analogy it is also 

necessary to examine the importance of Weber number. Considering the Euler equations 

appropriate to a compressible gas flow, there would be no contribution from surface tension, 

and the Weber number is unimportant. However, the Weber number is important in the 

comparison of the numerical water table simulations with the experimental water table. 

Surface tension is now present and it is necessary to ensure that the surface tension can either 

be ignored or accounted for by the viscous terms of the numerical method. 

Surface tension is produced because all molecules on average are attracted equally to the 

surrounding molecules. At the interface between air and water, a molecule has a net force 

attracting it into the bulk of the fluid. This has the effect that the fluid acts as if a membrane 

under tension were present at the interface. The overall result of this is the minimising of the 

surface area. In the case of the water table, this would cause smearing of the shock waves, 
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smoothing of vortices in the trailing edge region, and effects along the boundaries and the 

base of the model. 

In the current study, the effects of surface tension have been ignored, as this would require the 

addition of extra terms to the Navier-Stokes code. However, careful attention should be paid 

to the smoothing effects to ensure that they do not invalidate the comparison. 

 

12.8 Vorticity 

The vorticity of a fluid element within a flow, Douglas et al (1995), is defined by the 

equation: 

y
u

x
v

∂
∂

−
∂
∂

=Ω  (12.37) 

 

and is a measure of the degree of rotation of that element. Vorticity is applicable to both gas 

flow and water table flow as it is only a function of velocity. The velocity has been shown to 

be analogous in the above text. 

 

12.9 Concluding Remarks 

The hydraulic analogy has been presented in this chapter. Through this analogy, two-

dimensional flow around turbomachinery can be accurately simulated by open channel flow. 

The application of the analogy simply consists of a shallow sheet of water flowing over an 

almost horizontal table. The slight gradient overcomes the resistance due to the contact with 

the surface of the water-table. Two-dimensional representations of the prototype to be tested 

are then placed on the table. Visualisation techniques such as shadowgraph, video cameras, 

and float gauges can be used for which a great deal of literature is available. 

 

It has been shown that, neglecting viscous and surface tension effects, the Euler equations can 

be used for the study of flow around turbomachinery blades. In this manner, density is 

analogous to the depth of flow in the water table. Inaccuracies will be present, however, when 

the remaining viscous terms and surface tension are taken in account. For the current study, 

no further matching of Reynolds number can be achieved by the methods described earlier, 

and surface tension will cause smearing of the shock waves and damping of the vortices. 
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Several techniques can be used to improve the characteristics of the physical model by 

seeking to reduce the viscosity and minimise the surface tension. 

 

1) Increasing the water temperature will have the effect of decreasing the kinematic 

viscosity; the combined effect will be an increase in the Reynolds number to match 

the turbine blade. The effects of temperature on the required depth, and the water 

table Reynolds number if the inlet is held at 0.025m deep, can be seen in Table 

12.2. This shows that it may be feasible to minimise the effects of the difference in 

Reynolds number between the prototype and the model. The temperature increase 

would also have the additional effect of reducing the surface tension. 

2) The addition of surfactant molecules to the water would have to effect of reducing 

the surface tension. Surfactants have not been investigated in the current study, but 

will be important in further experimental work. The flume used for the current 

study is fed by a continuous source from a large recycled reservoir. In this case, the 

use of a surfactant would be undesirable as continuous injection upstream of the 

model would be required. This would eventually contaminate the reservoir that is 

used for several other projects. An independent, small-scale reservoir would be 

needed for which the concentration levels of the surfactant can be accurately 

controlled. 

3) It may also be possible to investigate other fluids with lower kinematic viscosity. 

These would give a higher Reynolds number for the water table, giving a better 

match with the turbine blade. 

 

Temperature 

(°C) 

Kinematic 

Viscosity 

(m2 s-1) 

Surface 

Tension 

(Nm-1) 

ReWT Required Inlet depth 

(m) 

20° 1.007 (x10-6) 7.36 (x10-3) 50356.21030 2.538 

40° 0.661 7.01 76682.61563 1.095 

60° 0.477 6.88 106284.6537 0.57 

80° 0.367 6.3 138009.8912 0.338 

100° 0.296 5.94 171092.1169 0.22 

Table 12.2: Required Inlet depths 
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13 WATER TABLE GEOMETRY 
 

Two sets of results have been computed for the water table geometry. The first set comprises 

the computations required to generate a comparable Mach number distribution to the turbine 

blade geometry. The second set of results is a time dependent simulation to generate an 

unsteady flow field, with a view to capturing unsteady phenomena. The initial grid is 

sufficient to generate the steady pressure distributions, as with the turbine blade. However, for 

the unsteady case, a denser grid is required in the trailing edge region. The purpose of the 

denser grid is to give improved resolution of the unsteady flow phenomena. The water table 

computations were performed with the same inlet conditions as the turbine blade, with the 

exception that a γ of 2 was chosen for compatibility with the hydraulic analogy. 

 

13.1 Mach Number Distribution 

To generate a geometry for the water table, an initial simple grid was first constructed, this 

was very similar to that given in Figure 13.1.  Several modifications to the grid were 

necessary before reaching its current state.  This was important, if particular features of the 

flow around the Turbine Blade were to be taken into account. The most important feature is 

the impingement of the trailing edge shock of an adjacent blade onto the suction surface of 

the current blade. 

INLET 
OUTLET 

Upper Wall 

Lower Wall 

Simulated Pressure Surface 

Simulated Suction Surface 

Flat Plate 

 

Figure 13.1: Water Table Geometry 
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A schematic of the water table geometry can be seen in Figure 13.1. The model is designed to 

given a Mach number distribution around the flat plate that is equivalent to the Mach number 

distribution around the turbine cascade; this is based on a similar model by Roberts & Denton 

(1996), designed for subsonic flow. The flat plate dimensions are: height = 25.4mm, length = 

912.375mm, trailing edge diameter = 25.4mm, leading edge = 4:1 ratio ellipse to match the 

height of the blade. The current dimensions were chosen such that the model would fit the 

water table flume in the University of Leicester Hydrodynamics Laboratory, thereby giving 

the largest Reynolds number possible.  

The upper surface of the flat plate is designed to simulate the pressure surface of the turbine 

blade, and the lower surface the suction surface of the turbine blade. With regard to the 

computational mesh, there are four layers at the surface of the flat plate, as with the turbine 

blade. The outer wall boundaries were created through an iterative process from an initial 

crude approximation very similar to Figure 13.1. The process involved manually inspecting 

the Mach number distribution around the flat plate and continuously making modifications to 

the geometry until the distributions, Figure 13.7, for the flat plate and the turbine blade were 

considered to be in good agreement. At this point, the main features of the Mach number 

distribution had been captured and further modification was deemed impractical. 

The non-adapted mesh is given in Figure 13.2, and the adapted mesh in 13.3. The adapted 

mesh contains 79,384 points. The Mach number contours for the adapted mesh are given in 

Figure 13.4. A qualitative analysis of the Mach number contours shows that a similar 

expansion fan and shock structure is present downstream of the trailing edge of the blade. A 

shock wave impinging on the suction surface is also evident. This has been achieved by a 

small converging diverging section of the outer wall at that point, and can be seen more 

clearly in Figure 13.5. The Mach number distribution can be seen in Figure 13.6 with the 

profile for the flat plate. Figure 13.7 shows the comparison between the Mach number 

profiles for the turbine cascade and the water table geometry. 

 

A close agreement can be seen between the two with the main features being present in both. 

The shock impinging on the suction surface of the water table is clearly visible and of a 

comparable magnitude to the turbine blade, although slightly more upstream. This 

displacement is not considered a problem, but could be rectified in further work. 

There are, however, some distinct differences between the water table distribution and the 

turbine blade distribution: 
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1) Upstream of the shock wave, the flow is smooth on the suction surface; this is does 

not correctly match the turbine blade in which separation occurs at this point, and 

can be seen as the increase in Mach number. The fact that separation is not present 

in the water table model is due to the fact that the pressure gradient is more severe 

in that location of the turbine blade model. 

2) The suction surface distribution is in general of the correct shape, but displaced 

upwards on the graph. 

3) The pressure surface distribution matches exactly at the trailing edge but is too 

low at the leading edge. 

4) At the leading edge of the flat plate, the angle of incidence of the flow can be seen 

to be aligned with the plate geometry; this can be deduced from the matching 

peaks in the pressure and suction surface pressure distributions. This does not 

correspond with the turbine blade behaviour, as this has an inlet flow angle of –

10°. This is not considered to be a serious problem since the investigation is 

focused on trailing edge flows, but may be corrected when more important 

differences have been addressed. 

 

The discrepancies in Figure 13.7 are mostly due to a higher loading at both the leading and 

trailing edges of the cascade as compared to the water table model. A further development of 

this work might be to increase the loading on the water table model. 

For points two and three; the flow in the water table is not subject to any turning effects that 

are present in the turbine cascade – the flow is simply from left to right, and there is no angle 

of incidence of the incoming flow. The absence of curvature effects may lead to differences in 

the characteristics of the boundary layers of the turbine blade and the water table model. A 

closer match would be obtained with further modifications to the geometry. The suction 

surface distribution is of the correct shape, implying that modifications to the corresponding 

wall would not be required. In order to simulate higher loading, it would be necessary to 

divert more flow through to pressure surface channel by expanding the walls in the upstream 

region. As a consequence, flow velocity would increase in the lower channel causing a 

decrease in the local pressure, thereby increasing the loading on the blade. 

It should be noted that the pressure distributions obtained from a turbine cascade are a 

property of the series of blades acting interactively, a property that is absent from the water 

table geometry. 
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Figure 13.5: Impinging Shock on Suction Surface 
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Figure 13.6: Mach Number Distribution for Adapted Water Table 
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Figure 13.7: Comparison of Blade and Water Table Mach Number Distributions 
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13.2 Time Dependent Computation 

To capture the unsteady phenomena, a slightly different gridding strategy is required for the 

time dependent study of the flow around the water table geometry. There is a great deal of 

activity in the trailing edge region of the flat plate, the point from which the vortex shedding 

originates. The dense grid for this region is given in Figure 13.9. The grid has been adapted to 

be at its most dense at the confluence region of the shear layers, at about x = 0.06. Grid 

adaption was performed manually over a series of rectangular zones; grid adaption based on 

density gradients would be impractical as the density gradients would be too low to active the 

procedure. There are now fifteen layers close to the surface of the plate. This is to 

accommodate turbulence modelling for future study, and to minimise any grid dependencies 

that may occur near the trailing edge.  

The flow enters from the left hand side of the domain, on both the pressure and suction 

surfaces of the flat plate. A close-up of density contours in this region is given in Figure 

13.10. As the flow rounds the curvature at the trailing edge an expansion fan forms. At about 

40° around the edge, a shear layer is formed as the flow meets the re-circulation in the base 

region. The flow is straightened slightly, causing a compression shock to form. Kelvin-

Helmholtz instabilities can be seen forming as a corrugation along the upper shear layer, a 

consequence of density and velocity gradients normal to the flow direction; Faber (1995). 

These propagate downstream to the confluence region of the upper and lower shear layers. A 

vortex structure can be seen emerging from the confluence region and spanning downstream. 

The Kelvin-Helmholtz instabilities can be seen more clearly in the enthalpy plot; Figure 

13.11. These are more predominant in the upper layer corresponding to the pressure surface, 

which experiences a larger velocity and density gradient. 

The instabilities can clearly be seen in the sequence of six density plots; Figure 13.12 to 

Figure 13.17. Additionally, these instabilities disturb the flow and cause smaller shock waves 

to be created, Figure 13.10. Above and below the confluence point, a pair of oscillating 

shocks are formed due to the turning of the flow to the outlet direction. These are created at 

the leading edge of the newly formed vortices emerging from the base region. The 

compression shocks from the trailing edge and the above mentioned shocks then merge to 

form the recognised ‘fish-tail’ shock structure. These are pointed out in Figure 13.10, and can 

be seen more readily in full-scale contour plot, Figure 13.4. 

The flow entering the left hand side of the picture is roughly sonic. As the flow rounds the 

curvature of the blade, the Mach number increases to supersonic. After the shock structure, 
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the flow is temporarily subsonic and quickly becomes supersonic again. In the triangular base 

region the flow is subsonic. The shear layers defining the upper and lower bounds of this 

region are at the subsonic/supersonic interface. The centreline of the wake is subsonic. 

The author posits the following phenomena interacting in the trailing edge region. In subsonic 

flow, the effective trailing edge is the trailing edge of the plate, Figure 13.8(a). Vortex 

shedding stems from the boundary layer separation points and the familiar von Karman vortex 

street is observed. As the flow becomes transonic and then supersonic, the flow acts as 

described in the previous paragraph. The effective trailing edge of the flat plate now looks 

more like that seen in Figure 13.8(b). Vortex shedding now stems from the smaller effective 

trailing edge resulting in higher frequency, lower energy vortices. If the trailing edge were 

thus shaped, a conventional von Karman vortex street would be observed. However, the 

situation now arises that the upper and lower surfaces of the extended section are dynamic. As 

the flow changes from type (a) to type (b), the base region initially has a very minor shear 

layer. Any instability in this layer is relatively small compared to the vortex shedding. As the 

Mach number increases, the effective trailing edge elongates. The vortex shedding decreases 

in magnitude and the instabilities in the shear layer become more dominant. 

 

 

 

 

Real Trailing 
Edge 

Effective 
Trailing Edge  

(a) Effective Subsonic Trailing Edge (b) Effective Supersonic Trailing Edge 

Figure 13.8: Effective Trailing Edges Shapes 

 

There are two hypotheses at this point: 

1) It is the Kelvin-Helmholtz instabilities themselves that are squeezed through the 

confluence region to form the transient vortex shedding phenomenon. This raises 

the question of the relative length scales of the instabilities before and after the 

confluence region. The squeezing may be due to the ‘shock waves’ forming above 

the instabilities; each shock wave acting as a high-pressure barrier against 

expansion. There are no such structures in the wake region; the pressure gradients 

here are not large, with the pressure decreasing downstream. 
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2) The Kelvin-Helmholtz instabilities interact with the already-present von Karman 

vortex street; it is thought that there is a point at which the instabilities are of such 

a magnitude that they disrupt the flow reaching the effective trailing edge, and as a 

consequence the vortex street collapses into the transient features described in the 

introduction. The wavelength of the von Karman vortex street is defined by the 

‘throat’ of the confluence region, and the wavelength of the Kelvin-Helmholtz 

instabilities is determined by the viscosity and the velocity gradient across the 

shear layer. The frequency of the latter may affect the vortex shedding by causing 

the former to try to ‘lock-in’ to the new frequency. This may not be a natural mode 

for the vortex shedding, causing an unstable feed-back loop. As a result, transient 

features present themselves. 

 

With regard to the original question of energy separation, discussed in chapter 2.4, energy 

separation due to the vortex shedding can be seen in the wake region of the flow in Figure 

13.11. This is evidenced by the regions of high and low stagnation enthalpy. An important 

original observation is that for the first time energy separation can be seen clearly in the upper 

shear layer. Again this is demonstrated by regions of high and low stagnation enthalpy and is 

presumably associated with the Kelvin-Helmholtz instabilities. This is particularly important 

in that it implies that regions of vorticity exist along the shear layer, and also that energy is 

being transported from the base region across the shear layer into the main flow. Such a re-

distribution of energy would undoubtedly modify base pressure values. The transport of 

energy across the shear layer may be due to the mechanism present in the vortex street, or a 

new mechanism particular to the Kelvin-Helmholtz instability due to the pressure differential 

across the shear layer. 

Further investigation would need to be performed in order to quantify the magnitude of the 

energy separation and the effect on the pressure in the base region and the exact mechanism. 

Downstream of the base region, the energy separation can be seen to damp out considerably 

in a short distance, this can be attributed to the weak-coherence of the vortex street at the 

transonic speed. 
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13.3 Preliminary Experimental Results 

Preliminary experiments have been performed on a prototype model in the Hydrodynamics 

Laboratory. A photograph of the Water Table Model can be seen in Figure 13.18.  

 

 

Figure 13.18: Prototype Water Table Model 

 

The model consists of a nine-layer marine plywood base, sanded and varnished. The flat plate 

is machined from a square section of aluminium with a machined semi-circle at each end. The 

upper and lower walls are fashioned from angled aluminium. Where the sections of the wall 

are curved, the lower arm has been removed and the natural flexibility of the aluminium has 

been used to follow the desired line of the wall. This is only a prototype and tolerances for the 

outer walls are in the order of ±0.5mm; this is deemed acceptable by the author for the current 

study. Several instances of the unsteady flow field are given in Figure 13.19. The ‘shock 

waves’ stemming from behind the trailing edge can clearly be seen in all images21. In all 

images, Kelvin-Helmholtz instabilities are clearly visible along the shear layer projecting 

from the upper surface (pressure surface), and in some cases the instability is also present in 

the lower shear layer. This correlates well with the numerical data given in section 13.2. The 

                                                 
21 Imaging: The images in Figure 13.19(a-f) were taken with a Kodak DC210+ Digital Camera.  No special 

techniques were employed, the camera was simply held in the slightly off-vertical position above the trailing 

edge region of the flow. 
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fact that the instabilities are present in the experimental work strengthens the argument that 

the effects of surface tension may be ignored in the current study. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13.19: Unsteady Flow Field Behind Flat Plate 
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Previous experimental results for the equivalent test case can be seen in the Schlieren images 

in Figure 13.20(a)-(d); Carscallen & Gostelow (1994). A variety of the transient shedding 

patterns can clearly be seen and the definition of the shock structure in the trailing edge 

region is good. However, the structure of the triangular base region is unclear; the vortex 

shedding appears to emanate from the confluence point, and there is insufficient resolution 

along the shear layers to determine the existence of instabilities. The boundary layer on the 

suction surface is more prominent than that on the pressure surface. 

 

  
(a) (b) 

  
(c) (d) 

Figure 13.20: Vortex Shedding Behind the Turbine Blade, Carscallen & Gostelow (1994) 

 

13.4 Concluding Remarks 

A model has been presented for the water table geometry. Numerical results are in good 

agreement with the computed turbine blade Mach number distributions. The problems 

associated with the extension to the Navier-Stokes equations have been discussed; namely, 

the Reynolds number mismatch and the effects of surface tension. Unsteady computational 

results have clearly shown new unstable phenomena along the shear layers behind the trailing 

edge and their effects on the vortex shedding patterns. Two hypotheses have been presented 

for the mechanism behind the degeneration of the von Karman vortex street into transient 
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shedding patterns. The introduction of the instabilities adds a measure of vorticity along the 

shear layer. In order for the shear layer to remain linear, a sufficient level of counter-rotating 

vorticity must be introduced into the base pressure region to ensure that the total vorticity of 

the region is zero; if this is not the case, precession of the vortices will occur. The instabilities 

will therefore alter the characteristics of the flow in the base region. 

An additional source of energy separation has been identified in the trailing edge region. 

Energy separation has also been shown, for the first time, to occur in the shear layers prior to 

the flow forming the familiar von Karman vortex street. This would have important 

implications for base pressure calculations and energy separation in the wake region. 

It has been shown that these problems can also be addressed by experimental means. The 

water table results can be compared to those in Figure 13.20. Both exhibit similar shock 

structures in the trailing edge region. However, the water table results seem to imply that the 

instabilities may stem from the shear layers and convect into the wake region, whereas the 

experimental results of Carscallen & Gostelow show distinct vortex shedding from the 

confluence region. The unsteady phenomena in the water table results also appear less well 

defined than the corresponding experimental results; this may be because they are of a lower 

intensity or because the imaging technique is insufficient. These are all issues that may be 

addressed in future work. 

Preliminary experiments have been most useful and show that further work on the experiment 

model is likely to provide an understanding of the unusual vortex shedding configurations 

observed in Figure 13.20. 
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14 CONCLUSIONS AND FURTHER WORK 
 

A highly accurate numerical solver has been presented for the calculation of two-dimensional 

flow around turbine blading. 

This has been based on application of computational fluid dynamics using an unstructured 

grid methodology. The choice of the unstructured grid is justified by the complex outer 

boundaries displayed in the water table geometry. This requires at least one layer of structure 

at the boundaries for the method to generate acceptable results but this is still easier than 

generating a full body-fitted grid. The unstructured method does allow the use of adaptive 

techniques, and the current technique has produced very good results. This may be further 

investigated by employing a technique of multi-blocking to allow both unstructured and 

structured zones within the domain. Mesh generation was relatively easy; the mesh is initially 

defined as a set of points on the domain boundary connected by an edge set. A Delaunay 

triangulation was then generated from this point set. 

An analysis of several schemes was performed to find the most suitable for applying to the 

unstructured method. The author’s own upwinding scheme based on the minmod limiter, the 

‘Quirk-Minmod’ scheme, was found to generate the most accurate results. This was due to the 

higher order scheme being applied independently to each of the eigenvalues. In subsonic 

cases this does result in lower rates of convergence when compared to the Barth and Van Leer 

schemes. It is clear that there are still problems associated with the current scheme; in 

particular, work still needs to be done in examining the adiabatic properties of the wall 

boundaries, nevertheless the current scheme does offer the best performance over several 

other types of boundary. 

A new subsonic inlet boundary condition was presented, based on the work of Manna (1992), 

with improvements to ensure that the boundary does not suffer from numerical inaccuracies 

when the inlet flow angle is tangential to the boundary. This is particularly important if 

circular or elliptical outer boundaries are chosen for a domain. 

A complete set of test cases has been presented and validated that cover the range of flow 

phenomena that may be present in transonic two-dimensional flow. 

As yet no proper testing has been performed on the viscous solver, as this was not considered 

essential for the generation of the Mach number distributions around the blades. Viscous 
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computations would make minimal differences to the Mach number distributions around the 

blades and the extension to fully viscous flow was not deemed necessary at this time. It was 

also shown that the inviscid scheme accurately depicted the flow around the turbine blade, 

particularly the positioning of the impinging shock on the suction surface. 

The turbine blade in the study was chosen because it is currently under study at the University 

of Leicester and the CNRC. A great deal of computational and experimental data is available 

for further analysis if this is necessary; it is the technique of generating the analogous model 

that is of importance in this study. In particular, pressure distributions and Schlieren images 

were readily available. As such, the blade was found to be an acceptable choice. 

It was decided that the axial direction would be used on which to base the Mach number 

distribution, however, the chord vector could also have been chosen. This would not have 

affected any computation of the blade, but would have resulted in a different geometry for the 

water table model. The main features of the flow would still be captured but would simply be 

in different regions of the geometry. In particular, the impinging shock on the suction surface 

would be further upstream. In this manner, the actual position of the shock is less important 

than the magnitude and characteristics of the shock. 

The co-ordinates for the upper and lower walls were generated manually by an iterative 

method by the author. This was very time-consuming and a rather trial and error method. A 

further extension to this would be to develop an automated inverse method for generating the 

water table geometry. The author feels that this may well be very complex, but would be an 

exciting challenge for future study, and would make the code more useful for blade design 

purposes. 

Energy separation has clearly been predicted behind the flat plate of the water table model, 

and by analogy behind turbine blades. This new phenomenon of energy separation along the 

free shear layers has been presented, and attributed to the presence of Kelvin-Helmholtz 

instabilities. There are now two, possibly coupled, mechanisms active in the trailing edge 

region that would have a combined effect on the base pressure and the overall energy 

separation. 

 

14.1 Further Work 

Computational work has so far been restricted to inviscid flow. The next step would be to run 

fully viscous simulations with a relevant turbulence model in order to capture the full 

dynamics of the system. Given the different Reynolds numbers involved the transitional 
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behaviour of the boundary layers would also need to be modelled. This should result in 

correct predictions of the boundary layers on either side of the blade. In particular, the fact 

that the pressure surface boundary layer is only one quarter the thickness of that on the 

suction surface should be predicted, Currie & Carscallen (1998), Arnone & Pacciani (1997). 

The correct thickness of boundary layers would be accompanied by the correct density and 

velocity gradients normal to the flow direction, this would give a more physically correct 

condition for the Kelvin-Helmholtz instabilities in the upper and lower shear layers to form. 

Their strengths and concentration would then be more accurately reproduced than in the 

inviscid case, as would the vortex shedding. The supposition that the Kelvin-Helmholtz 

instabilities are a mechanism for energy separation would also provide areas of further 

research for situations in which these instabilities are known to exist; in particular whether the 

mechanism is similar to that of vortex shedding or a new mechanism that needs to be 

explored. 

With regard to the experimental aspects, Chapter 13.3 has clearly shown that the water table 

model is capable of showing the interaction between the vortex shedding and the shock 

waves. However, the model is very primitive, its purpose being merely to demonstrate the 

technique. Further experimental work would require a more complex model that would also 

allow more advanced visualisation methods. This would entail construction from transparent 

materials such as glass and Perspex and an improved approach to the flow visualisation. 

Ongoing work at the University of Leicester is orientated to producing more sophisticated 

models. 
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APPENDIX A: NEWTON-RAPHSON ALGORITHMS 
 

The two routines listed below are those for solving for the Mach number at a subsonic inlet 

and a subsonic outlet. 

  

Subsonic inlet 

The subsonic inlet requires the defining of three flow variables at the boundary, namely: total 

pressure Total_P, total temperature Total_T, and inlet flow angle inlet_angle. The code to 

solve for Mach number using the Newton-Raphson algorithm is as follows: 

 
void Inlet_E_Sub( double* Q, complex vector, double* Q_out, matrix& E, matrix& DE ) 
{ 
 //  total_P        upstream total pressure 
 //  total_T        upstream total temperature 
 //  inlet_angle       inlet flow angle in degrees 
 
 double  angle = inlet_angle*PI/180; 
  
 double  r0 = total_P / (total_T*UNIVERSAL_GAS_CONSTANT); 
 double  a0 = sqrt( flow_gamma*UNIVERSAL_GAS_CONSTANT*total_T ); 
 double  r0grt = r0*a0; 
 double  g1d2 = (flow_gamma+1)/2.0; 
 double  refroe = r0; 
 double  refa = a0; 
  
 double  pr[MATRIX_SIZE]; 
 double  prb[MATRIX_SIZE]; 
  
 Change_QtoQ_P( Q, pr );              // change to primitive 
  
 complex  v_int( pr[1], pr[2] ); 
 double  U_int = dot( v_int, unit(vector) ); 
 double  V_int = -cross( v_int, unit(vector)); 
 double  c_int = sqrt( flow_gamma*pr[3]/pr[0] ); 
 double  m_int = U_int/c_int; 
 double  a_int = pr[0]*c_int*sqr((m_int+1)/2.0); 
  
 double  m_bnd = len(v_int)/c_int; 
 double  err = 10E6; 
 double  x_mb1, x_alt; 
 double  f, fd; 
  
 complex  flow_vect( cos(angle), sin(angle) ); 
 double  cos_flow = dot(vector, flow_vect); 
  
 for (int iter=0; ((iter<20) AND (err > 10E-12)); iter++) 
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 { 
  x_alt = m_bnd; 
  x_mb1 = 1.0+((flow_gamma-1)*sqr(m_bnd)/2.0); 
   
  f = (a_int*pow(x_mb1, g1d2/(flow_gamma-1))) 

 - (r0grt*sqr((cos_flow*m_bnd)+1.0)/4.0); 
   
  fd = (a_int*m_bnd*g1d2*pow(x_mb1, ((3-flow_gamma)/(2.0*(flow_gamma-1))))) 

 - (r0grt*cos_flow*((cos_flow*m_bnd)+1)/2.0); 
   
  m_bnd -= (f/fd); 
  err = fabs((m_bnd-x_alt)/m_bnd); 
 } 
   
 prb[0] = r0 / pow( (1.0+((flow_gamma-1)*sqr(m_bnd)/2.0)), (1.0/(flow_gamma-1)) ); 
 prb[3] = total_P*pow( (prb[0]/r0), flow_gamma ); 
  
 double  c_bnd = sqrt( flow_gamma*prb[3]/prb[0] ); 
 double  uabs = m_bnd*c_bnd; 
 double  un = uabs*cos_flow; 
 double  u = uabs*cos(angle); 
 double  v = uabs*sin(angle); 
    
 prb[1] = u; 
 prb[2] = v; 
  
 Change_Q_PtoQ( prb, Q_out );     // return back to Q 
  
 // Build E and DE from here for implicit method 
  
 double  E0 = prb[0]*un; 
 double  E1 = (prb[0]*u*un) + (prb[3]*real(vector)); 
 double  E2 = (prb[0]*v*un) + (prb[3]*imag(vector)); 
 double  E3 = un*((flow_gamma*prb[3]/(flow_gamma-1)) + (prb[0]*sqr(uabs)/2.0)); 
  
 E.set( 0, 0, E0  ); 
 E.set( 0, 1, E1  ); 
 E.set( 0, 2, E2  ); 
 E.set( 0, 3, E3  ); 
 
 matrix  DH_P(1, MATRIX_SIZE); 
 matrix  DP_Q(MATRIX_SIZE, 1); 
  
 double  em = 1.0+((flow_gamma-1)*sqr(m_bnd)/2.0); 
 double  ema = pow(em, -(flow_gamma+1)/(2.0*(flow_gamma-1)) ); 
 double  emb = pow(em, -flow_gamma/(flow_gamma-1) ); 
 double  emd = pow(em, (1-(2.0*flow_gamma))/(flow_gamma-1) ); 
 
 double  c3 = (1-sqr(m_bnd))/em; 
 double  c4 = -total_P*emd*flow_gamma*m_bnd; 
 double  c5 = cos_flow*(sqr(m_bnd)-2); 
 double  dE0 = (E0/m_bnd) * c3; 
  
 DH_P.set( 0, 0, dE0  ); 
 DH_P.set( 0, 1, c4*( (cos(angle)*c5) + real(vector) )  ); 
 DH_P.set( 0, 2, c4*( (sin(angle)*c5) + imag(vector) )  ); 
 DH_P.set( 0, 3, dE0*flow_gamma*UNIVERSAL_GAS_CONSTANT*total_T/(flow_gamma-1)  ); 
  
 double  e0 = Q_out[3]/Q_out[0];               // total_energy 
 double  neta = flow_gamma*(flow_gamma-1)/(prb[0]*cube(c_bnd)); 
 
 DP_Q.set( 0, 0, -neta*e0*uabs/2.0  ); 
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 DP_Q.set( 1, 0, neta*e0*u/uabs  ); 
 DP_Q.set( 2, 0, neta*e0*v/uabs  ); 
 DP_Q.set( 3, 0, -neta*uabs/2.0  ); 
  
 DE = DH_P*DP_Q; 
} 
 

C++ Code Segment: Procedure to solve for Inlet Mach Number 

 

Q is an array of four doubles defining the inlet conservative variables, vector is the inlet 

normal vector, Q_out is the new vector of conservative variables, and E and DE are the flux 

and derivative of the flux defined as matrices. The matrix structure is simply a two-

dimensional array of double. 

 

Subsonic outlet 

The outlet routine is very similar to the above routine returning the same variables. The outlet 

only requires the definition of the outlet static pressure Static_P. 

 
void  Outlet_E_Sub( double* Q, complex vector, matrix& E, matrix& DE, double* Q_out ) 
{ 
 double   pr[MATRIX_SIZE]; 
  
 Change_QtoQ_P( Q, pr ); 
 
 //   static_P         outlet static pressure 
 
 complex   v_I( pr[1], pr[2] ); 
 double   U = dot(v_I, vector); 
 double   V = -cross(v_I, vector); 
 double   c_int = sqrt( flow_gamma*pr[3]/pr[0] ); 
 double   m_int = U/c_int; 
  
 double   a_int = pr[0]*c_int*sqr(m_int+1); 
 double   t_int = ((flow_gamma-1)*U) + (2.0*c_int); 
  
 double   c3 = flow_gamma-1; 
 double   c2 = 2.0*flow_gamma; 
 double   c1 = flow_gamma+3.0; 
 double   c0 = 2.0-(a_int*t_int/(flow_gamma*static_P)); 
  
 double   err = 10E6; 
 double   xm, xm2, xm3, f200, df200; 
 double   m_bnd = m_int; 
 
 for (int iter=0; ((iter<20) AND (err > 10E-12)); iter++) 
 { 
  xm = m_bnd; 
  xm2 = sqr(xm); 
  xm3 = cube(xm); 
  f = (c3*xm3)+(c2*xm2)+(c1*xm)+c0; 
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It is only necessary to store
the non-zero row/column of
these matrices as described in
the chapter on boundary
conditions. 
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  df = (3.0*c3*xm2)+(2.0*c2*xm)+c1; 
  m_bnd -= (f/df); 
  err = fabs((m_bnd-xm)/m_bnd); 
 } 
 
 double   c_bnd = flow_gamma*static_P*sqr(m_bnd+1)/a_int; 
 double   U_bnd = m_bnd*c_bnd; 
  
 pr[0] = flow_gamma*static_P/(sqr(c_bnd)); 
 pr[1] = (real(vector)*U_bnd) - (imag(vector)*V); 
 pr[2] = (imag(vector)*U_bnd) + (real(vector)*V); 
 pr[3] = static_P; 
  
 Change_Q_PtoQ( pr, Q_out ); 
  
 double   u = pr[1]; 
 double   v = pr[2]; 
 double   U_bar = sqr(u)+sqr(v); 
 double   h = (flow_gamma*static_P/((flow_gamma-1)*pr[0]))+(U_bar/2.0); 
   
 E.set( 0, 0, pr[0]*U_bnd  ); 
 E.set( 0, 1, (pr[0]*u*U_bnd)+(static_P*real(vector))  ); 
 E.set( 0, 2, (pr[0]*v*U_bnd)+(static_P*imag(vector))  ); 
 E.set( 0, 3, pr[0]*U_bnd*h  ); 
  
 DE.set( 0, 0, 0 ); 
 DE.set( 1, 0, real(vector) ); 
 DE.set( 2, 0, imag(vector) ); 
 DE.set( 3, 0, 0 ); 
  
 DE.set( 0, 1, -u*U_bnd ); 
 DE.set( 1, 1, U_bnd+(u*real(vector)) ); 
 DE.set( 2, 1, u*imag(vector) ); 
 DE.set( 3, 1, 0 ); 
  
 DE.set( 0, 2, -v*U_bnd ); 
 DE.set( 1, 2, v*real(vector) ); 
 DE.set( 2, 2, U_bnd+(v*imag(vector)) ); 
 DE.set( 3, 2, 0 ); 
  
 DE.set( 0, 3, -U_bnd*(h+(U_bar/2.0)) ); 
 DE.set( 1, 3, (h*real(vector))+(u*U_bnd) ); 
 DE.set( 2, 3, (h*imag(vector))+(v*U_bnd) ); 
 DE.set( 3, 3, 0 ); 
} 
 

C++ Code Segment: Procedure to solve for Outlet Mach Number 
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APPENDIX B: CO-ORDINATE TABLES 
 

Turbine Blade  Water Table Model 
Suction Surface  Pressure Surface  Pressure Surface  Suction Surface 

  X Y     X Y     X Y     X Y 
0 -0.045927 0.048586  0 -0.045927 0.048586  0 -1.333333 0.4  0 -1.333333 -0.4
1 -0.045865 0.049366  1 -0.045915 0.048322  1 -1.317169 0.4  1 -1.323333 -0.4
2 -0.045747 0.050148  2 -0.045865 0.047528  2 -1.307169 0.4  2 -1.313333 -0.4
3 -0.045581 0.05092  3 -0.045777 0.046741  3 -1.297169 0.4  3 -1.303333 -0.4
4 -0.045348 0.051673  4 -0.045643 0.045962  4 -1.287169 0.4  4 -1.293333 -0.4
5 -0.045055 0.052407  5 -0.045448 0.0452  5 -1.277169 0.4  5 -1.283333 -0.4
6 -0.044886 0.052765  6 -0.045172 0.044461  6 -1.267169 0.4  6 -1.273333 -0.4
7 -0.044717 0.053123  7 -0.044852 0.043737  7 -1.257169 0.4  7 -1.263333 -0.4
8 -0.044528 0.053469  8 -0.044488 0.043036  8 -1.247169 0.4  8 -1.253333 -0.4
9 -0.044339 0.053815  9 -0.044069 0.042369  9 -1.237169 0.4  9 -1.243333 -0.4

10 -0.044116 0.054139  10 -0.04359 0.041741  10 -1.227169 0.4  10 -1.233333 -0.4
11 -0.043892 0.054463  11 -0.043072 0.041143  11 -1.217169 0.4  11 -1.223333 -0.4
12 -0.043643 0.05477  12 -0.042517 0.040583  12 -1.207169 0.4  12 -1.213333 -0.4
13 -0.043394 0.055077  13 -0.041909 0.04008  13 -1.197169 0.4  13 -1.203333 -0.4
14 -0.043127 0.05537  14 -0.041271 0.039613  14 -1.187169 0.4  14 -1.193333 -0.4
15 -0.042861 0.055663  15 -0.040599 0.039201  15 -1.177169 0.4  15 -1.183333 -0.4
16 -0.042576 0.055936  16 -0.039891 0.038849  16 -1.167169 0.4  16 -1.173333 -0.4
17 -0.042291 0.056209  17 -0.039308 0.038585  17 -1.157169 0.4  17 -1.163333 -0.4
18 -0.041677 0.056709  18 -0.038646 0.038345  18 -1.147169 0.4  18 -1.153333 -0.4
19 -0.041044 0.057191  19 -0.037898 0.038055  19 -1.137169 0.4  19 -1.143333 -0.4
20 -0.040394 0.057649  20 -0.037155 0.037757  20 -1.127169 0.4  20 -1.133333 -0.4
21 -0.039729 0.058085  21 -0.036413 0.037452  21 -1.117169 0.4  21 -1.123333 -0.4
22 -0.03905 0.058499  22 -0.035677 0.037134  22 -1.107169 0.4  22 -1.113333 -0.4
23 -0.038355 0.058886  23 -0.034944 0.036809  23 -1.097169 0.4  23 -1.103333 -0.4
24 -0.03765 0.059252  24 -0.034215 0.036475  24 -1.087169 0.4  24 -1.093333 -0.40001
25 -0.036927 0.059581  25 -0.033492 0.036124  25 -1.077169 0.4  25 -1.083333 -0.400031
26 -0.036192 0.059889  26 -0.032782 0.035748  26 -1.067169 0.4  26 -1.073333 -0.400045
27 -0.035453 0.060184  27 -0.03208 0.035359  27 -1.057169 0.4  27 -1.063333 -0.400045
28 -0.035077 0.060315  28 -0.031385 0.034958  28 -1.047169 0.4  28 -1.053333 -0.40002
29 -0.034701 0.060446  29 -0.030698 0.034544  29 -1.037169 0.4  29 -1.043334 -0.399927
30 -0.034323 0.06057  30 -0.030015 0.034122  30 -1.027169 0.4  30 -1.033335 -0.399807
31 -0.033945 0.060695  31 -0.029343 0.033682  31 -1.017169 0.4  31 -1.023336 -0.39967
32 -0.033564 0.060806  32 -0.028684 0.033222  32 -1.007169 0.4  32 -1.013337 -0.399507
33 -0.033183 0.060918  33 -0.028037 0.032745  33 -0.997169 0.4  33 -1.003341 -0.399236
34 -0.032796 0.061009  34 -0.027405 0.032252  34 -0.987169 0.4  34 -0.993815 -0.396571
35 -0.03241 0.061099  35 -0.026776 0.031753  35 -0.977169 0.4  35 -0.984913 -0.392021
36 -0.032019 0.061177  36 -0.02616 0.03124  36 -0.967169 0.4  36 -0.976292 -0.386957
37 -0.031629 0.061254  37 -0.025549 0.030721  37 -0.957169 0.4  37 -0.967827 -0.381633
38 -0.031237 0.061323  38 -0.024945 0.03019  38 -0.947169 0.4  38 -0.959499 -0.376098
39 -0.030844 0.061391  39 -0.024364 0.029635  39 -0.937169 0.4  39 -0.951242 -0.370456
40 -0.03045 0.061451  40 -0.023793 0.029071  40 -0.927169 0.4  40 -0.944596 -0.363062
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41 -0.030056 0.06151  41 -0.023236 0.028494  41 -0.917169 0.4  41 -0.938515 -0.355124
42 -0.029662 0.061557  42 -0.022683 0.027914  42 -0.907169 0.4  42 -0.932539 -0.347106
43 -0.029268 0.061604  43 -0.022143 0.027321  43 -0.897169 0.4  43 -0.926583 -0.339073
44 -0.028872 0.061631  44 -0.021604 0.026728  44 -0.887169 0.4  44 -0.92062 -0.331046
45 -0.028475 0.061658  45 -0.021078 0.026123  45 -0.877169 0.4  45 -0.914623 -0.323043
46 -0.028077 0.061671  46 -0.020551 0.025517  46 -0.867169 0.4  46 -0.908597 -0.315063
47 -0.027679 0.061685  47 -0.020052 0.024887  47 -0.857169 0.4  47 -0.902503 -0.307134
48 -0.027281 0.061691  48 -0.019558 0.024256  48 -0.847169 0.4  48 -0.896207 -0.299366
49 -0.026883 0.061697  49 -0.019075 0.023617  49 -0.837169 0.4  49 -0.889799 -0.291689
50 -0.026485 0.06169  50 -0.018592 0.022977  50 -0.827169 0.4  50 -0.883344 -0.284051
51 -0.026087 0.061683  51 -0.018123 0.022327  51 -0.817169 0.4  51 -0.876844 -0.276452
52 -0.025689 0.061666  52 -0.017656 0.021678  52 -0.807169 0.4  52 -0.870236 -0.268946
53 -0.025292 0.061649  53 -0.017192 0.021024  53 -0.797169 0.4  53 -0.86358 -0.261484
54 -0.024896 0.061616  54 -0.016735 0.020367  54 -0.787169 0.4  54 -0.856884 -0.254056
55 -0.0245 0.061583  55 -0.016279 0.019707  55 -0.777169 0.4  55 -0.85015 -0.246664
56 -0.024105 0.061535  56 -0.015843 0.019033  56 -0.767169 0.4  56 -0.842325 -0.240475
57 -0.02371 0.061487  57 -0.015409 0.01836  57 -0.757169 0.4  57 -0.833771 -0.235297
58 -0.023316 0.061429  58 -0.014985 0.017681  58 -0.747169 0.4  58 -0.825132 -0.23026
59 -0.022923 0.061371  59 -0.014561 0.017001  59 -0.737169 0.4  59 -0.816468 -0.225266
60 -0.022531 0.061301  60 -0.014143 0.016318  60 -0.727169 0.4  60 -0.807783 -0.220309
61 -0.022139 0.06123  61 -0.01373 0.015633  61 -0.717169 0.4  61 -0.799095 -0.215358
62 -0.021748 0.061152  62 -0.013317 0.014947  62 -0.707169 0.4  62 -0.790409 -0.210402
63 -0.021358 0.061074  63 -0.012909 0.014258  63 -0.697169 0.4  63 -0.781722 -0.20545
64 -0.020971 0.060984  64 -0.012503 0.013568  64 -0.687169 0.4  64 -0.773031 -0.200503
65 -0.020584 0.060894  65 -0.012098 0.012877  65 -0.677169 0.4  65 -0.764336 -0.195563
66 -0.020203 0.060783  66 -0.011706 0.012177  66 -0.667169 0.4  66 -0.75563 -0.190644
67 -0.019822 0.060672  67 -0.011316 0.011478  67 -0.657169 0.4  67 -0.747627 -0.185667
68 -0.019443 0.060549  68 -0.010932 0.010776  68 -0.647169 0.400003  68 -0.740067 -0.179121
69 -0.019064 0.060427  69 -0.01055 0.010073  69 -0.637169 0.400012  69 -0.732547 -0.17253
70 -0.018688 0.060297  70 -0.010167 0.009369  70 -0.627169 0.400018  70 -0.725046 -0.165916
71 -0.018311 0.060166  71 -0.009792 0.008662  71 -0.617169 0.400026  71 -0.717555 -0.159292
72 -0.017938 0.060026  72 -0.009417 0.007955  72 -0.607169 0.400025  72 -0.710074 -0.152657
73 -0.017565 0.059887  73 -0.009043 0.007248  73 -0.597278 0.399224  73 -0.702622 -0.145988
74 -0.017196 0.059737  74 -0.008672 0.006538  74 -0.587892 0.395789  74 -0.694468 -0.140342
75 -0.016828 0.059587  75 -0.008303 0.005828  75 -0.578859 0.391506  75 -0.685539 -0.135843
76 -0.016467 0.059422  76 -0.007934 0.005118  76 -0.570095 0.386697  76 -0.676408 -0.131767
77 -0.016105 0.059257  77 -0.007573 0.004403  77 -0.561594 0.381433  77 -0.667163 -0.127955
78 -0.015749 0.05908  78 -0.007214 0.003687  78 -0.553287 0.375869  78 -0.657826 -0.124376
79 -0.015394 0.058902  79 -0.006856 0.002971  79 -0.545575 0.369545  79 -0.648428 -0.120958
80 -0.015043 0.058713  80 -0.006503 0.002253  80 -0.538134 0.362865  80 -0.63892 -0.117863
81 -0.014693 0.058524  81 -0.006151 0.001535  81 -0.53069 0.356187  81 -0.629317 -0.115074
82 -0.014346 0.058327  82 -0.005798 0.000816  82 -0.523244 0.349512  82 -0.619644 -0.112539
83 -0.014 0.05813  83 -0.005451 0.000095  83 -0.515777 0.342861  83 -0.60994 -0.110123
84 -0.013657 0.057926  84 -0.005104 -0.000626  84 -0.508318 0.3362  84 -0.600214 -0.1078
85 -0.013315 0.057723  85 -0.004756 -0.001347  85 -0.500822 0.329582  85 -0.590414 -0.105813
86 -0.01298 0.057509  86 -0.004412 -0.00207  86 -0.49268 0.323783  86 -0.580584 -0.103978
87 -0.012645 0.057295  87 -0.00407 -0.002793  87 -0.48422 0.318455  87 -0.570741 -0.102211
88 -0.012318 0.057069  88 -0.003727 -0.003516  88 -0.475663 0.313286  88 -0.560887 -0.100506
89 -0.011991 0.056843  89 -0.003388 -0.004241  89 -0.467017 0.308262  89 -0.551033 -0.098805
90 -0.011673 0.056605  90 -0.003052 -0.004968  90 -0.458237 0.303476  90 -0.541187 -0.097056
91 -0.011355 0.056366  91 -0.002717 -0.005695  91 -0.449459 0.298688  91 -0.531341 -0.095311
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92 -0.011045 0.056115  92 -0.002384 -0.006422  92 -0.440475 0.294299  92 -0.526415 -0.094452
93 -0.010736 0.055865  93 -0.002052 -0.007151  93 -0.43142 0.290056  93 -0.521489 -0.093593
94 -0.010427 0.055612  94 -0.001722 -0.00788  94 -0.422309 0.285933  94 -0.51656 -0.09275
95 -0.010119 0.05536  95 -0.001393 -0.008609  95 -0.413208 0.281789  95 -0.511632 -0.091908
96 -0.009822 0.055094  96 -0.001067 -0.00934  96 -0.404113 0.277633  96 -0.506557 -0.091065
97 -0.009526 0.054828  97 -0.000742 -0.010071  97 -0.394996 0.273525  97 -0.501766 -0.090281
98 -0.00923 0.05456  98 -0.000418 -0.010803  98 -0.385858 0.269462  98 -0.497106 -0.089612
99 -0.008935 0.054293  99 -0.000096 -0.011536  99 -0.376732 0.265373  99 -0.491854 -0.088964

100 -0.00865 0.054017  100 0.000225 -0.012269  100 -0.36756 0.26139  100 -0.487639 -0.088574
101 -0.008364 0.05374  101 0.000545 -0.013002  101 -0.358382 0.257419  101 -0.48189 -0.088127
102 -0.00809 0.053453  102 0.000862 -0.013737  102 -0.349502 0.253693  102 -0.471902 -0.087639
103 -0.007816 0.053165  103 0.001178 -0.014472  103 -0.340667 0.249007  103 -0.461908 -0.087301
104 -0.007554 0.052866  104 0.001492 -0.015208  104 -0.331878 0.244242  104 -0.451911 -0.087042
105 -0.007292 0.052567  105 0.001805 -0.015945  105 -0.323156 0.239352  105 -0.441913 -0.086844
106 -0.007038 0.052261  106 0.002117 -0.016682  106 -0.314619 0.234145  106 -0.431915 -0.08666
107 -0.006783 0.051954  107 0.002428 -0.017419  107 -0.306201 0.228756  107 -0.421916 -0.086487
108 -0.006535 0.051642  108 0.002738 -0.018157  108 -0.298103 0.223014  108 -0.411918 -0.086333
109 -0.006287 0.05133  109 0.003045 -0.018896  109 -0.290377 0.216665  109 -0.401918 -0.086198
110 -0.006043 0.051015  110 0.003351 -0.019636  110 -0.282631 0.210341  110 -0.396919 -0.086142
111 -0.005799 0.0507  111 0.003655 -0.020376  111 -0.27489 0.20401  111 -0.391919 -0.086086
112 -0.005567 0.050376  112 0.003959 -0.021116  112 -0.267051 0.197801  112 -0.386919 -0.086047
113 -0.005335 0.050051  113 0.004261 -0.021857  113 -0.25924 0.191558  113 -0.384419 -0.086028
114 -0.005103 0.049727  114 0.004563 -0.022598  114 -0.251486 0.185244  114 -0.381919 -0.086009
115 -0.004871 0.049403  115 0.004863 -0.02334  115 -0.243411 0.179354  115 -0.379374 -0.086101
116 -0.00465 0.049071  116 0.00516 -0.024083  116 -0.235286 0.173525  116 -0.376828 -0.086194
117 -0.004429 0.048739  117 0.005456 -0.024827  117 -0.2272 0.167641  117 -0.374392 -0.08644
118 -0.00421 0.048406  118 0.005751 -0.025571  118 -0.219021 0.161895  118 -0.371955 -0.086686
119 -0.003992 0.048073  119 0.006044 -0.026315  119 -0.210718 0.156321  119 -0.36984 -0.087114
120 -0.003788 0.047732  120 0.006337 -0.02706  120 -0.202234 0.151028  120 -0.367725 -0.087542
121 -0.003584 0.047391  121 0.006628 -0.027805  121 -0.193619 0.145956  121 -0.364968 -0.088223
122 -0.003391 0.047043  122 0.006919 -0.028551  122 -0.184878 0.141103  122 -0.362211 -0.088903
123 -0.003197 0.046694  123 0.007207 -0.029297  123 -0.176029 0.136451  123 -0.359891 -0.089538
124 -0.003008 0.046343  124 0.007494 -0.030044  124 -0.167006 0.13214  124 -0.357571 -0.090172
125 -0.00282 0.045992  125 0.00778 -0.030792  125 -0.158019 0.127755  125 -0.355074 -0.090875
126 -0.002639 0.045636  126 0.008065 -0.03154  126 -0.149045 0.123349  126 -0.352576 -0.091578
127 -0.002458 0.04528  127 0.008348 -0.032288  127 -0.139852 0.119412  127 -0.350316 -0.092122
128 -0.00228 0.044923  128 0.008631 -0.033037  128 -0.134432 0.117053  128 -0.348055 -0.092665
129 -0.002102 0.044565  129 0.008912 -0.033786  129 -0.130691 0.115405  129 -0.346085 -0.09298
130 -0.001929 0.044206  130 0.009191 -0.034536  130 -0.124378 0.112576  130 -0.344114 -0.093295
131 -0.001755 0.043848  131 0.009468 -0.035287  131 -0.121562 0.111323  131 -0.342036 -0.093369
132 -0.001595 0.043483  132 0.009744 -0.036038  132 -0.117342 0.109631  132 -0.339959 -0.093442
133 -0.001435 0.043119  133 0.010019 -0.036789  133 -0.112275 0.107627  133 -0.33412 -0.093434
134 -0.00128 0.042751  134 0.010293 -0.037541  134 -0.106959 0.105637  134 -0.33023 -0.093332
135 -0.001124 0.042383  135 0.010565 -0.038294  135 -0.102862 0.104266  135 -0.324125 -0.09314
136 -0.000972 0.042014  136 0.010837 -0.039046  136 -0.097898 0.103006  136 -0.31413 -0.092819
137 -0.00082 0.041645  137 0.011108 -0.039799  137 -0.09312 0.102046  137 -0.304135 -0.092498
138 -0.000673 0.041274  138 0.011377 -0.040553  138 -0.087753 0.101241  138 -0.294141 -0.092153
139 -0.000526 0.040902  139 0.011644 -0.041307  139 -0.08322 0.100656  139 -0.284152 -0.091688
140 -0.000382 0.04053  140 0.01191 -0.042062  140 -0.080908 0.100444  140 -0.277717 -0.091341
141 -0.000237 0.040158  141 0.012175 -0.042817  141 -0.073266 0.099709  141 -0.274166 -0.091157
142 -0.000095 0.039784  142 0.012439 -0.043572  142 -0.067793 0.099219  142 -0.26417 -0.090928
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143 0.000046 0.03941  143 0.012703 -0.044328  143 -0.063302 0.098881  143 -0.25417 -0.090817
144 0.000185 0.039037  144 0.012965 -0.045084  144 -0.058343 0.098574  144 -0.244171 -0.090715
145 0.000324 0.038663  145 0.013227 -0.04584  145 -0.053384 0.098267  145 -0.234171 -0.09062
146 0.000452 0.038286  146 0.013486 -0.046597  146 -0.053353 0.09825  146 -0.224172 -0.090531
147 0.00058 0.037908  147 0.013744 -0.047355  147 -0.053323 0.098233  147 -0.214172 -0.090446
148 0.000703 0.037528  148 0.014001 -0.048112  148 -0.050974 0.098151  148 -0.204172 -0.090366
149 0.000826 0.037148  149 0.014258 -0.04887  149 -0.048626 0.098068  149 -0.194173 -0.090292
150 0.000947 0.036767  150 0.014512 -0.049629  150 -0.045979 0.098034  150 -0.184173 -0.090221
151 0.001069 0.036386  151 0.014766 -0.050388  151 -0.043332 0.098  151 -0.174173 -0.090154
152 0.001188 0.036005  152 0.01502 -0.051146  152 -0.038332 0.098  152 -0.164173 -0.090088
153 0.001308 0.035623  153 0.015274 -0.051905  153 -0.033332 0.098  153 -0.154174 -0.090026
154 0.001426 0.035241  154 0.015526 -0.052665  154 -0.023332 0.098  154 -0.144174 -0.089983
155 0.001545 0.034859  155 0.015776 -0.053425  155 -0.013332 0.098  155 -0.134174 -0.089973
156 0.001664 0.034478  156 0.016027 -0.054184  156 -0.003332 0.098  156 -0.124174 -0.089975
157 0.001782 0.034096  157 0.016278 -0.054944  157 0.006668 0.098  157 -0.114174 -0.089985
158 0.001899 0.033714  158 0.016529 -0.055704  158 0.016668 0.098  158 -0.104174 -0.089997
159 0.002016 0.033331  159 0.016777 -0.056464  159 0.021668 0.098  159 -0.094174 -0.09
160 0.002133 0.032948  160 0.017026 -0.057225  160 0.026668 0.098  160 -0.084174 -0.09
161 0.00225 0.032566  161 0.017274 -0.057985  161 0.031668 0.098  161 -0.074174 -0.09
162 0.002367 0.032184  162 0.017523 -0.058746  162 0.036668 0.098  162 -0.064174 -0.09
163 0.002484 0.031801  163 0.017764 -0.05951  163 0.041668 0.098  163 -0.054174 -0.09
164 0.002597 0.031418  164 0.018005 -0.060273  164 0.046668 0.098  164 -0.044174 -0.09
165 0.002711 0.031035  165 0.018245 -0.061036  165 0.051668 0.097998  165 -0.034174 -0.09
166 0.002824 0.030651  166 0.018485 -0.061799  166 0.056668 0.097995  166 -0.024174 -0.09
167 0.002937 0.030268  167 0.018726 -0.062562  167 0.061668 0.097992  167 -0.014174 -0.09
168 0.003161 0.0295  168 0.018966 -0.063325  168 0.066668 0.097989  168 -0.004174 -0.09
169 0.003385 0.028732  169 0.019206 -0.064089  169 0.071668 0.097987  169 0.005826 -0.09
170 0.003608 0.027964  170 0.019442 -0.064854  170 0.076668 0.097984  170 0.015826 -0.09
171 0.00383 0.027196  171 0.019677 -0.065618  171 0.081668 0.09798  171 0.020826 -0.09
172 0.004053 0.026427  172 0.019912 -0.066383  172 0.086668 0.097977  172 0.025826 -0.09
173 0.004276 0.025659  173 0.020148 -0.067147  173 0.091668 0.097974  173 0.030826 -0.09
174 0.004498 0.024891  174 0.020383 -0.067912  174 0.096668 0.097971  174 0.035826 -0.09
175 0.004719 0.024122  175 0.020619 -0.068676  175 0.101667 0.09792  175 0.040826 -0.09
176 0.004939 0.023353  176 0.020854 -0.069441  176 0.106667 0.09787  176 0.045826 -0.09
177 0.005159 0.022584  177 0.02109 -0.070206  177 0.111667 0.09787  177 0.050826 -0.09
178 0.005379 0.021815  178 0.021325 -0.070971  178 0.116667 0.09787  178 0.055826 -0.09
179 0.005598 0.021045  179 0.021557 -0.071737  179 0.121667 0.09787  179 0.060826 -0.09
180 0.005817 0.020276  180 0.021788 -0.072503  180 0.126667 0.09787  180 0.065826 -0.09
181 0.006036 0.019506  181 0.022019 -0.073268  181 0.131667 0.09787  181 0.070826 -0.09
182 0.006145 0.019121  182 0.022251 -0.074034  182 0.136667 0.09787  182 0.075826 -0.09
183 0.006254 0.018737  183 0.022482 -0.0748  183 0.146667 0.09787  183 0.080826 -0.09
184 0.006363 0.018352  184 0.022713 -0.075566  184 0.156667 0.09787  184 0.085826 -0.09
185 0.006473 0.017967  185 0.022945 -0.076332  185 0.166667 0.09787  185 0.090826 -0.09
186 0.006582 0.017583  186 0.023176 -0.077097  186 0.176667 0.09787  186 0.095826 -0.09
187 0.006691 0.017198  187 0.023407 -0.077863  187 0.186667 0.09787  187 0.100826 -0.09
188 0.006799 0.016813  188 0.023639 -0.078629  188 0.196667 0.09787  188 0.105826 -0.09
189 0.006908 0.016428  189 0.023868 -0.079396  189 0.206667 0.09787  189 0.110826 -0.09
190 0.007017 0.016043  190 0.024097 -0.080163  190 0.216667 0.09787  190 0.115826 -0.09
191 0.007125 0.015658  191 0.024325 -0.080929  191 0.226667 0.09787  191 0.118326 -0.09
192 0.007233 0.015273  192 0.024554 -0.081696  192 0.236667 0.09787  192 0.120826 -0.09
193 0.007341 0.014888  193 0.024782 -0.082463  193 0.246667 0.09787  193 0.123326 -0.09
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194 0.007449 0.014503  194 0.025011 -0.083229  194 0.256667 0.09787  194 0.125826 -0.09
195 0.007558 0.014118  195 0.025239 -0.083996  195 0.266667 0.09787  195 0.128326 -0.09
196 0.007666 0.013733  196 0.025468 -0.084763  196 0.276667 0.09787  196 0.130826 -0.09
197 0.007775 0.013348  197 0.025696 -0.085529  197 0.286667 0.09787  197 0.133326 -0.09
198 0.007883 0.012963  198 0.025925 -0.086296  198 0.296667 0.09787  198 0.135826 -0.09
199 0.007991 0.012577  199 0.026151 -0.087064  199 0.306667 0.09787  199 0.140826 -0.09
200 0.008099 0.012192  200 0.026376 -0.087832  200 0.316667 0.09787  200 0.145826 -0.09
201 0.008208 0.011807  201 0.026601 -0.088599  201 0.326667 0.09787  201 0.150826 -0.09
202 0.008317 0.011422  202 0.026826 -0.089367  202 0.336667 0.09787  202 0.155826 -0.09
203 0.008425 0.011037  203 0.027051 -0.090135  203 0.346667 0.09787  203 0.165826 -0.09
204 0.008533 0.010652  204 0.027274 -0.090903  204 0.356667 0.09787  204 0.175826 -0.09
205 0.008641 0.010267  205 0.027498 -0.091671  205 0.366667 0.09787  205 0.185826 -0.09
206 0.00875 0.009882  206 0.027721 -0.09244  206 0.376667 0.09787  206 0.195826 -0.09
207 0.008858 0.009497  207 0.027833 -0.092824  207 0.386667 0.09787  207 0.205826 -0.09
208 0.008965 0.009111  208 0.027945 -0.093208  208 0.396667 0.09787  208 0.215826 -0.09
209 0.009071 0.008726  209 0.028168 -0.093976  209 0.406667 0.09787  209 0.225826 -0.09
210 0.009178 0.008341  210 0.028389 -0.094745  210 0.416667 0.09787  210 0.235826 -0.09
211 0.009285 0.007956  211 0.028611 -0.095514  211 0.426667 0.09787  211 0.245826 -0.09
212 0.009392 0.00757  212 0.028722 -0.095898  212 0.436667 0.09787  212 0.255826 -0.09
213 0.009498 0.007185  213 0.028832 -0.096283  213 0.446667 0.09787  213 0.265826 -0.09
214 0.009605 0.006799  214 0.028942 -0.096667  214 0.456667 0.09787  214 0.275826 -0.09
215 0.009712 0.006414  215 0.029053 -0.097052  215 0.466667 0.09787  215 0.285826 -0.09
216 0.009819 0.006029  216 0.029274 -0.09782  216 0.476667 0.09787  216 0.295826 -0.09
217 0.009925 0.005643  217 0.029496 -0.098589  217 0.486667 0.09787  217 0.305826 -0.09
218 0.010032 0.005258  218 0.029717 -0.099358  218 0.496667 0.09787  218 0.315826 -0.09
219 0.010139 0.004872  219 0.029938 -0.100127  219 0.506667 0.09787  219 0.325826 -0.09
220 0.010352 0.004101  220 0.03016 -0.100896  220 0.516667 0.09787  220 0.335826 -0.09
221 0.010566 0.00333  221 0.03027 -0.10128  221 0.526667 0.09787  221 0.345826 -0.09
222 0.010779 0.002559  222 0.03038 -0.101665  222 0.536667 0.09787  222 0.355826 -0.09
223 0.010992 0.001788  223 0.030489 -0.10205  223 0.546667 0.09787  223 0.365826 -0.09
224 0.011204 0.001016  224 0.030598 -0.102435  224 0.556667 0.09787  224 0.375826 -0.09
225 0.01131 0.00063  225 0.030707 -0.10282  225 0.566667 0.09787  225 0.385826 -0.09
226 0.011415 0.000245  226 0.030817 -0.103204  226 0.576667 0.09787  226 0.395826 -0.09
227 0.011521 -0.000141  227 0.030927 -0.103589  227 0.586667 0.09787  227 0.405826 -0.09
228 0.011627 -0.000527  228 0.031036 -0.103974  228 0.596667 0.09787  228 0.415826 -0.09
229 0.011733 -0.000912  229 0.031145 -0.104358  229 0.606667 0.09787  229 0.425826 -0.09
230 0.011839 -0.001298  230 0.031255 -0.104743  230 0.616667 0.09787  230 0.435826 -0.09
231 0.011945 -0.001684  231 0.031364 -0.105128  231 0.626667 0.09787  231 0.445826 -0.09
232 0.01205 -0.00207  232 0.031473 -0.105513  232 0.636667 0.09787  232 0.455826 -0.09
233 0.012155 -0.002456  233 0.031582 -0.105898  233 0.646667 0.09787  233 0.465826 -0.09
234 0.012261 -0.002841  234 0.031692 -0.106282  234 0.656667 0.09787  234 0.475826 -0.09
235 0.012366 -0.003227  235 0.031801 -0.106667  235 0.666667 0.09787  235 0.485826 -0.09
236 0.012471 -0.003613  236 0.03191 -0.107052      236 0.495826 -0.09
237 0.012576 -0.003999  237 0.032019 -0.107437      237 0.505826 -0.09
238 0.012681 -0.004385  238 0.032127 -0.107823      238 0.515826 -0.09
239 0.012786 -0.004771  239 0.032233 -0.108207      239 0.525826 -0.09
240 0.012891 -0.005157  240 0.032339 -0.108592      240 0.535826 -0.09
241 0.012996 -0.005543  241 0.032456 -0.108974      241 0.545826 -0.09
242 0.0131 -0.005929  242 0.032573 -0.109355      242 0.555826 -0.09
243 0.013203 -0.006315  243 0.032693 -0.109735      243 0.565826 -0.09
244 0.013306 -0.006701  244 0.032813 -0.110115      244 0.575826 -0.09

 



Appendix B  Co-ordinate Tables 

A Numerical Investigation of Time Resolved Flows Around Turbine Blades 198 

 

245 0.013409 -0.007088  245 0.032877 -0.1103      245 0.585826 -0.09
246 0.013511 -0.007475  246 0.032941 -0.110486      246 0.595826 -0.09
247 0.013715 -0.008248  247 0.033024 -0.110658      247 0.605826 -0.09
248 0.013919 -0.009021  248 0.033107 -0.11083      248 0.615826 -0.09
249 0.014122 -0.009795  249 0.033212 -0.110989      249 0.625826 -0.09
250 0.014326 -0.010569  250 0.033317 -0.111148      250 0.635826 -0.09
251 0.014529 -0.011342  251 0.033443 -0.111292      251 0.645826 -0.09
252 0.014732 -0.012116  252 0.033568 -0.111436      252 0.655826 -0.09
253 0.014935 -0.01289  253 0.033712 -0.111561      253 0.666667 -0.09
254 0.015137 -0.013664  254 0.033856 -0.111687         
255 0.015339 -0.014438  255 0.034015 -0.111792         
256 0.015542 -0.015212  256 0.034174 -0.111897         
257 0.015744 -0.015986  257 0.034346 -0.11198         
258 0.015947 -0.01676  258 0.034518 -0.112063         
259 0.016149 -0.017534  259 0.0347 -0.112122         
260 0.016351 -0.018308  260 0.034881 -0.112181         
261 0.016554 -0.019082  261 0.035069 -0.112215         
262 0.016756 -0.019856  262 0.035257 -0.112249         
263 0.016958 -0.02063  263 0.035448 -0.112258         
264 0.017161 -0.021404  264 0.035639 -0.112266         
265 0.017362 -0.022178  265 0.035829 -0.112249         
266 0.017563 -0.022952  266 0.036019 -0.112232         
267 0.017763 -0.023727  267 0.036391 -0.112146         
268 0.017964 -0.024501  268 0.036748 -0.112012         
269 0.018165 -0.025276             
270 0.018365 -0.02605             
271 0.018566 -0.026824             
272 0.018766 -0.027599             
273 0.018967 -0.028373             
274 0.019167 -0.029148             
275 0.019368 -0.029922             
276 0.019568 -0.030697             
277 0.019769 -0.031471             
278 0.01997 -0.032246             
279 0.02017 -0.03302             
280 0.020371 -0.033795             
281 0.020571 -0.034569             
282 0.020772 -0.035343             
283 0.020972 -0.036118             
284 0.021173 -0.036892             
285 0.021373 -0.037667             
286 0.021574 -0.038441             
287 0.021774 -0.039216             
288 0.021975 -0.03999             
289 0.022176 -0.040765             
290 0.022376 -0.041539             
291 0.022574 -0.042314             
292 0.022773 -0.043089             
293 0.022971 -0.043864             
294 0.023169 -0.044639             
295 0.023368 -0.045414             
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296 0.023566 -0.046189             
297 0.023764 -0.046964             
298 0.023963 -0.047739             
299 0.024161 -0.048514             
300 0.024359 -0.049289             
301 0.024556 -0.050064             
302 0.024752 -0.05084             
303 0.024948 -0.051615             
304 0.025144 -0.052391             
305 0.02534 -0.053167             
306 0.025536 -0.053942             
307 0.025732 -0.054717             
308 0.025923 -0.055494             
309 0.026114 -0.056271             
310 0.026305 -0.057047             
311 0.026496 -0.057824             
312 0.026687 -0.058601             
313 0.026877 -0.059378             
314 0.027066 -0.060155             
315 0.027256 -0.060933             
316 0.027445 -0.06171             
317 0.027635 -0.062487             
318 0.027824 -0.063264             
319 0.028012 -0.064042             
320 0.028199 -0.064819             
321 0.028387 -0.065597             
322 0.028574 -0.066375             
323 0.028761 -0.067153             
324 0.028949 -0.06793             
325 0.029136 -0.068708             
326 0.029323 -0.069486             
327 0.029511 -0.070264             
328 0.029698 -0.071041             
329 0.029885 -0.071819             
330 0.030071 -0.072597             
331 0.030255 -0.073375             
332 0.030438 -0.074154             
333 0.030622 -0.074932             
334 0.030806 -0.075711             
335 0.03099 -0.07649             
336 0.031173 -0.077268             
337 0.031357 -0.078047             
338 0.031541 -0.078826             
339 0.031725 -0.079604             
340 0.031909 -0.080383             
341 0.032092 -0.081161             
342 0.032274 -0.08194             
343 0.032455 -0.082719             
344 0.032636 -0.083498             
345 0.032817 -0.084278             
346 0.032998 -0.085057             
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347 0.03318 -0.085836             
348 0.03336 -0.086615             
349 0.033541 -0.087395             
350 0.033721 -0.088174             
351 0.033902 -0.088954             
352 0.034082 -0.089733             
353 0.034262 -0.090512             
354 0.03444 -0.091292             
355 0.034618 -0.092072             
356 0.034797 -0.092852             
357 0.034975 -0.093632             
358 0.035153 -0.094411             
359 0.03533 -0.095191             
360 0.035508 -0.095972             
361 0.035685 -0.096752             
362 0.035863 -0.097531             
363 0.036039 -0.098312             
364 0.036215 -0.099092             
365 0.03639 -0.099873             
366 0.036566 -0.100653             
367 0.036741 -0.101434             
368 0.036916 -0.102214             
369 0.03709 -0.102995             
370 0.037265 -0.103776             
371 0.037439 -0.104556             
372 0.037614 -0.105337             
373 0.037787 -0.106118             
374 0.037961 -0.106898             
375 0.038044 -0.107289             
376 0.038127 -0.107679             
377 0.038204 -0.10807             
378 0.038281 -0.108461             
379 0.038343 -0.108849             
380 0.038404 -0.109236             
381 0.038404 -0.109427             
382 0.038404 -0.109618             
383 0.038378 -0.109807             
384 0.038353 -0.109996             
385 0.038303 -0.110181             
386 0.038252 -0.110365             
387 0.038177 -0.11054             
388 0.038102 -0.110716             
389 0.038004 -0.11088             
390 0.037907 -0.111044             
391 0.037788 -0.111193             
392 0.037669 -0.111342             
393 0.037531 -0.111474             
394 0.037393 -0.111606             
395 0.037239 -0.111718             
396 0.037084 -0.111831             
397 0.036748 -0.112012             
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APPENDIX C: NAVIER-STOKES EQUATIONS 
 

The conservative flux vector form of the Quasi-3D Navier-Stokes equations is: 
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where the conserved variables Q, the inviscid Euler flux vector E(Q), the viscous flux vector 

F(Q)  and the source term H(Q) are defined as: 
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and 
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For the purposes of discretisation, the source term H(Q) can be split into its inviscid and 

viscous components Hi(Q)and Hv(Q): 
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The removal of the 
dx
dh  term is accounted for by the discretisation. 

The viscous stresses are: 
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where 
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Variables ρ, u and v are the density and the velocity components in the x and y directions, e0 

is the total energy per unit volume, kc is the thermal conductivity, p is the static pressure, and 

h is the stream-tube thickness. The additional terms τ’xx and τ’θθ are associated with variations 

in stream-tube thickness and would not be present in a 2D implementation. Subscripts x and y 

denote partial derivatives in the respective directions. 

xq&  and yq&  are the components of the heat flux in the x and y directions, modelled according 

to Fourier’s Law, and Pr and Prturb are the laminar and turbulent Prandtl numbers respectively. 

 

The equations are closed with the pressure equation: 
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where γ is the ratio of specific heats 
V

P

C
C  and is generally taken as 1.4 for air. 

µ is the sum of the laminar and turbulent viscosities, turblam µµµ +=  The laminar viscosity is 

calculated using Sutherland’s Law (valid for temperatures ≥ 110.4°K): 
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µturb is reserved for the turbulence model in question. 

The thermal conductivity kc is derived from the Prandtl number: 
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The ratio 
Pr
C p  is approximately constant for most gases, so once µ has been evaluated, the 

thermal conductivity can be quickly calculated. Pr has been taken as 0.72, Cp = 1006.43 

J/kg.K, T is static temperature and R is the specific gas constant taken as 287.1 J/kg.K 

 

Non-Dimensionalisation 

Non-dimensionalisation is performed to simplify the act of comparing flows that are 

considered to be dynamically similar. This is achieved by replacing each of the dimensional 

variables by the product of a constant reference parameter and a non-dimensional component. 

Freestream conditions are used to non-dimensionalise the flow: 
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The conservative form of the Navier-Stokes equations can then be defined as: 
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The important parameters are now reduced to two, namely the Reynolds number 
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This is discretised in the following manner: 
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where n̂  is the normal vector to Face k and equals the length of Face k. 

v̂  is the normal vector to edge +→ kk  and is the length of that edge. 

n̂  represents the length of Face k. 

An is the area of cell Ωn. 

F(Qn,k,k+) is the element averaged viscous flux term at the centre of the triangle (n,k,k+). 

Hi(Qn) and Hv(Qn) are the inviscid and viscous source terms evaluated at node n. 

kh  is the stream-tube thickness at the centre of the edge kn → . 

eh  is the stream-tube thickness at the centre of the triangle (n,k,k+). 
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