SPACE EFFICIENT IN-MEMORY
REPRESENTATION OF XML DOCUMENTS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

O’Neil Delpratt BSc (Leicester)

Department of Computer Science

University of Leicester

October 2008

Author’s Declaration

| hereby declare that this submission is my ownkwad that it is the result of work
done mainly during the period of registration. Tie best of my knowledge, it contains
no material previously published or written by dwmtperson nor material which to a
substantial extent has been accepted for the asfady other degree or diploma of the
university or other institute of higher learningcept where due acknowledgement has

been made in the text.

Parts of this submission appeared in the follonsngjoint publications, to each of

which | have made substantial contributions:

e Delpratt, O., Rahman, N., and Raman, R. 2006. Emging the LOUDS
Succinct Tree Representation. RBroc. of 5th Workshop on Experimental
Algorithms (Menorca, Spain, May 24-27, 2006) WEA ’'06. LNCSyriBger-
Verlag, Berlin Heidelberg New York, NY, Vol. 400@p. 134-145.

e Delpratt, O., Rahman, N., and Raman, R. 2007. Cesged Prefix Sums. In
Proc. of the Theory and Practice of Computer Sae(tdarrachov, Czech
Republic, January 20-26, 2007). SOFSEM '07. LNC@riger-Verlag, Berlin
Heidelberg New York, NY, Vol. 4362, pp. 235-247.

e Delpratt, O., Raman, R., and Rahman, N. 2008. Eaging succinct DOM. In
Proceedings of the 11th international Conference Extending Database
Technology: Advances in Database Technolfdgntes, France, March 25-29,
2008). EDBT '08, Vol. 261. ACM International Cordece Proceeding Series,
New York, NY, pp. 49-60.

SPACE EFFICIENT IN-MEMORY REPRESENTATION OF XML DOC UMENTS
O’Neil Delpratt

Abstract

Extensible Markup Language (XML) is a multi-purpasxt-based format, used for
storage, transmission and manipulation of data. Xddtuments are often held in main
memory and processed via standard interfaces ssicheaDocument Object Model
(DOM). However, XML is inherently verbose, and tlrememory representation of
XML documents by existing DOM implementations is topten times larger than the
file size. This is a problem for machines with lied memory, such as mobile devices,
where processing even moderately-sized XML docusmesuires more memory than
is available. We focus on in-memory representatmmnXML documents for situations
where space is limited and where rapid processmg ts important. We propose a
compact representation of XML documents that ssesinctor highly space-efficient
data structures, that allows XML processing toxecated efficiently.

Succinct data structures use space that approdbbesformation-theoretic lower
bound on the space that is required to representlakta, and support operations upon
the representation in constant time. In the contéXXML documents, we study and
improve succinct representations for ordinal trbgsadding features that make them
more suitable for use in XML documents. We expldast and space-efficient
representations of the textual data of XML documeer@ur basic approach is to
concatenate all the textual data in the XML documeto a single string, and extract
individual textual values by computing the appraf@isubstring of the concatenated
string. Computing the substring requires us toestdfsets into the text. The storage of
the offsets is surprisingly expensive, if storedvaly (as 32 or 64-bit integer values).
We give a succinct representation and provide daiare representations (adapted from
work on inverted indices in information retrievaajyd show their close connection.

We describesuccinct DOM(SDOM), which is a DOM implementation that has low,
stable and predictable memory usage. We show, rviaxaerimental evaluation, that
SDOM is extremely fast. A variant, SDOM-CT, appliBZip-based compression to
textual and attribute data, and its space usagenparable with “query-friendly” XML
compressors. Some of these compressors supporgatiavi and/or querying (e.qg.
subpath queries) of the compressed file. SDOM-Cdsdwt support querying directly,
but remains extremely fast: it is several ordersnafynitude faster for navigation than
qguery-friendly XML compressors that support navigiat(and only a few times slower
than popular DOM implementations such as the Ap&chadation’s Xerces-C).

Acknowledgements

Firstly, | thank the Lord Jesus Christ, who took theough this course and made the
way for me to complete it. He provided me greatgbedo work with, who took interest
in my accomplishments. | therefore express my sengeatitude to them all.

| thank my supervisor Rajeev Raman, who, while $&a undergraduate, sparked the
interest and desire that was in me, to start alidwahrough the journey to complete
the PhD. During my period of study, he gave medsint support, guidance, help and
aided my professional development. He has sureljenaagreat impact upon me, which
shall be with me throughout the future. Naila Rahmaote the code for the succinct
data structures that underline SDOM, and | am vgrgteful for her help in
understanding the working of these data structdoesputting in the work to port the
code to a newer version of the GNU C++ compilerthtMit these two very special
people, this thesis would not have been possilpecidl thanks to Richard Geary for
very useful discussions in the early stages of SDOM

Clive Page and Tony Linde, from the departmenthofsits, were my co-supervisors.
They offered useful advice and an invaluable esleperspective. | express special
thanks to all the members of the Computer Scienepament at the University of
Leicester, notably Rick Thomas for his support tigiwout the years. Thanks also to the
PhD tutor, Fer-Jan de Vries and to Thomas Erlelfaclheir encouragement, advice
and assessing yearly reports presented to them.

| convey my gratitude to my PhD colleagues, Crid®W®liveira, Osama El-Hassan,
Joao Abreu and Ahmed Al-Ghamdi for the many uséifstussions throughout my time
at the University.

My PhD studies were supported by PPARC e-ScienceudeBtship
PPA/S/E2003/03749 (co-investigators: Tony Lindeiv€lPage, Rajeev Raman and
Mike Watson).

Special thanks to my examiners, Peter Wood and @kdanlebach, for enduring the
work represented to them and their recommendatimnssteer my thesis to a
comprehensible document.

To the special people in my life, my father, Bishlark Anderson, my mother,
Sharon Anderson, and my brother, Jordan, my gdaitannot be put into words. They
have been a great support in my development; witboem, studying at a university
would have been a mere thought. Dad has given medtive to push beyond my
limitation and to achieve my greatest potentiath&nk my dearest brethren at the
Emmanu-‘El Apostolic Church who have been very supype especially Sister Ellah
Kandi and Pastor Samuel Gapara.

Table of Contents

S o T T IX
LISt Of TADIES ..cooeiiiieeeeee ettt e e e e e bbb Xil
Chapter 1 INtrOAUCTIONeiie e e e e e e e e e e eeeeeeerenanaas 1
L I o oo TT] | o T 1
1.2 MemMOry ArChItECIUIEceeveeiiiiiiicmmmmme e e e e e e e r e e e e e e e e e aeaes 3
G I I 2] o T | P EET 4
1.3.1 XML COMPIESSION ...ceieiiieiiieiieeeet e s e e e e e e e e et eetebab e e e e s eeenaa e e as 5
1.3.2 OUI @PPIOACK ...t ettt e e e e e e e e e e e e e e eeeesseeenneeeesennnnes 5
1.4 Contributions and Organisation of ThesSIS..............uviiiiiiiiiiiee e 6
Chapter 2 XML BacKgrounduuuuiimmmmmm e eeeeiieeeeeeeiiisss e e e e e e e e e e eeeeeeeeaeeeees 9
2.1 XML e ———— et et an——— e aa e aaaa, 9
2.1.1 MArkup @nd TeXL ...t s 9
2.1.2 Well-formed and valid XML dOCUMENTSounserrrrrrrirmriiiiiiieieiaeaeeeenaassnnnnns 9
2.1.3 Components of an XML dOCUMENL ... eieiiieiieeeeire e e e 0.1
2.1.4 Advanced features of XML dOCUMENLS....cccciiiiiiiiiiiiiiiiiieeiiiiiii e 12
2.2 XML Parsing and ProCeSSINGccoeiieeemmaiieiee et 14
2.3 DOM Architecture and Standards.........cccceeeroieiiiiiiiiiie e 15
2.3.1 DOM NOAE TYPES ..coeveeereiiiiiiiiaieeeeeeeeeeeeeeeeeeeeeaaaansa s e e e e e aeaaaeeeeaeeenneees 17
2.3.2 Traversal MOUUIE.........cuuiiiiiiii ittt 19
Chapter 3 Implementations of DOM and XML COMPresSSQr..........covvvvvvvvveennnnnennnns 22
3.1 DOM IMPIemMENtatiONS.cooviiiiiiiiitcemmmm et 22
00 O =] o7 = TP 23
I A= Ve 0 I T)V I (== 28
3.2 XML COMPIESSIONciiiiiiiiiiiittteess e eseesssas s s e s e e e eeeaaaaeeeeeeesssbnnnnnsesssnnes 32
3.2.1 XML Compressors with DOM-IIKE SUPPOIt. ccceeeeceeeeiieeeeeiiiiieeeeeiiiiiin 35
3.2.2 XML COMPIESSOIS ...eiiiiiiiiieeiiie e et e et e et eeea e e et e e eaa e e esrneneeees 43
3.2.3 Query-friendly XML COMPIrESSOIScommmeeeeeeerrrunnnnninsaaaaeaeaesaeseeeenns AT
3.2.4 XML COMPreSSOr SUMIMEATYccceeuuen e eeeeenneeeeeeennnnaaeeseesnnnsaeeeeened 64
3.3 Statistics of XML dOCUMENTScoiii it 65
3.3 L Textual DAtacoeeeiiiiiiiiie ittt 68

IR YU |1 11 4= YU TPTPPPPTRRPIN 70

Chapter 4 SUCCINCt Data STIUCIUIES oo eeeeeeeeeieiiiiiiiiiiiaanaee e e e e e e eeeaaeeaaeaeas 72
4.1 Information-theoretic lower bounds 0N SPaACEJESA...........ccvvveivviiiiiiiinieeeeeeen. 72
O I = 1 1] o 1 72
4.1.2 Balanced Parenth@SEScooo oottt 72
o G @ o [T F= I (=T P PUPRUUURRPRPPPRTRRN 73
A. 1.4 BINAIY TIEE ettt e e e e ettt bt a s e e e e e e e e e e eeeaeeeeessseennneeessennnnes 74
4.1.5 PrefiX-SUMSeieiiiiiiiiieee ettt e 74
4.1.6 Succinctness vs Data COMPIrESSION ... eeeeeeeerrrrrnnnnniiiaseeeeeeeesseeeeni (D

4.2 SUCCINCE DAta SIIUCLUIEcoeiiiiiiceeeeem et 75
4.2.1 Bit-Vector Data SIUCLUIEcooi et eeeeeeee e 75
4.2.2 Balanced parentheses String...........ccceeviiiiiiiiiiiiiiiiiii 84
4.2.3 BINAry TIES ..ccevviiii it 86
R 0 o 1 b= Y M U =TSP 88
4.2.5 SUCCINCt PrefixX SUMS ..ovvviiiiiicciiii e 94

4.3 SUIMIMATY .ottt e ettt e e e e et e e e e e e et taa e e e e eeassa e e eaeeestna e eanaanneessnnnaaaaaenes 96

Chapter 5 Engineering Succinct Tree Representations.............ccccevvvvvvniiiinnnnnn! 99

ST Y[1) V7= L4 [o I PRSP PPPPPPPP 99

5.2 XML and DOM CharacCteriStiCS o eeeeeeeeeeeeininiiiinnaaaaaeeeeaaaaaenaen 101
5.2.1 DOM fUNCHONAIILYcooiiiiiiiiiiett et e e e e e e e e e e e eaeebeee e enneees 101
5.2.2 XML Document CharacCteriStiCS........ccuuuvuriiiiiiiiiiiiiiiiiiiieeeeeeeee e 103
5.2.3 REQUITEMENTS ...uuiiiiiiie e e e e e e e et s e e e e e e e e e e e e e eaeeeanansnnn s 103

5.3 Double NUMDBEINGcoooiiiiiiii e 107

5.4 Optimising LOUDS fUINET........cooiiiiee e 114
5.4.1 Adding isLeaf DIt-StriNguvuureeeeeeeeeiiiiiiieeee e e e e e e e e e ennnnees 114
5.4.2 Partitioned Representation...........ccceeee e eei i ee e e 116

5.5 Comparison of tree repreSentationsS.....ccccuueuueiiiiirieee e eeee e 118
5.6 Experimental EValuationuueiioeiiiiiiiiiiiiieei e 120
5.6.1 SOUUP ..ttt aaan 120
5.6.2 SPACE USAQE.....uuiiiiiiiiiiiiie et et e e et e e e et e e e ea e e e eeaaeeeeneanneeees 121
5.6.3 RUNNING TIME ..euiiiiiiiiii ettt e e e e e et et eee e nnnanseaene 124

Vi

5.7 Technical ideas SUMMAIYcceuuuuuuuuuuiiiiieeaeeeeeeeeeaeeeereeeeeeenannennne 127

Chapter 6 Representing Textual Data.......cccceaeeeviiiiiiiiieeeceeee s 129
6.1 OVEBIVIEW ...ttt emmt ettt e s e e e e e e e e e e e e e e e e eeesennnnneeeesssnnnnnnns 129
6.2 Prefix SUMS ProbIem...........oooiiiiii it 131

6.2.1 Data aware MEASUIES............ccoeecemmmmmmeeeeeenis e e eeeene e e eeernna e e aeeeenees 132
6.2.2 Related WOTK........oouiieiiiiiiii e e e eeeeees 133
6.2.3 Succinct Representations and Golomb Codes...........ccccceieiiiiiiiiiienn, 134
6.2.4 Gamma and Delta COUEScooiiieeeeeeee e 136
6.2.5 Implementation Detailsoooevvuccie i 138
6.3 TEXIUAL ALAueeeiiiiiiee e e et ereeeee e e e eereanana 141
6.4 Experimental EValuationuuuiiieiiiiiiiieeeii e 142
O I 7= 1S o Y= LU o 142
6.4.2 PrefiX-sums eXPeriMENTSuuu i ceeeeeeiiiiiise e e e e e e e eeeeeeeeeeeseaenennnnnaes 142
6.4.3 TeXt DS eXPEIMENTScccoiiiieeet e e e e eeeeeettttnea e e e e e e e e e e e e e e e eeeeeeeas 148
6.5 SUMMAIY ..ottt e e e e e e ee e e e e e e e eran e eas 149

Chapter 7 SUCCINCE DOM........uuuuiiiiiiisiee et e e e e e e e e e e aaeaeeeaaaeeeees 151

7.1 SDOM ArChitECIUIEcoeeeieiee i 151
7.1.1 STree & NOUE ODJECTccoiiiiiiieeeeeeeeee e 152
7.1.2 NameCode Data SIIUCIUIE o eeeeeeeeeeeiiniiinninaaa e eaeeeaaaeeeess 157
7.1.3 Textual Data STIUCTUIE.............oe ittt e e e e 162
7.1.4 Attribute Data StrUCLUIEcooeiiieeeeeiieeeeeeee e 164

7.2 SDOM INLEITACEot e e e e e e e ee e e e e e ees 171
7.2.1 Class SIUCIUIEcooiiiie it memm et 171
7.2.2 DOM TreeWalker INterfaceuveeeeuiiiiieiiiiiiiieieee e 173

7.3 Experimental EValuationuuuiieeieieiiiiceeecevicess e e e eeee e 174
4R T8 RS = U | o PP TUPPRTPTR 174
7.3.2 SPACE USAQE.....cceiuiiieiiiiiii st ettt s e e e et et e e e e e eessaaaeaaeeene 175
7.3.3 RUNNING TIME c.eeeiiiiiiiiieee e e e e e e e et s e e e e e e e e e e e e e e e eeeeeeeeeeees 178
7.3.4 Pre-processing PerformancCeccceeeeiiviiieeeeeie e 184

T4 SUIMIM@TY .ottt a e et e e e e e et eeat e e e e e e et e e e e eeesba e aaaaaeeaeennnn e aeas 185

Chapter 8 CONCIUSION.........uueiiiiiie et e e e e e e e e e e eeeeeeeeeeannee 187
8.1 Technical CoNntribULIONScooiiii e 187

8.2 FUture WOorkcccuvvvvviiieeeeeees e
Appendix A Experimental Setupccccceeeeeeeenne.

Appendix B DOM methods supported by SDOM

Bibliographyooovviiiii e,

viii

List of Figures
Figure 1.1— (a) Simple XML document. (b) Corresponding DQ#®EL 3

Figure 1.2— Node representation of a DOM implementationos represent

0101 1= PRSPPI 7
Figure 2.1— XML tree of the bookshop document. Data valleied in grey........... 13
Figure 2.2— DOM modules defined in the DOM specification][71......................... 15
Figure 3.1- Left: Simple XML document. Right: Example of Homorphism. 34

Figure 3.2 -Left: Original XML document. DDOM Centre: Structuaerays, Right:
DICHONAIES. ... e e e e et et e e e e et s e e e e e e e e e e e aaaeeeees 36
Figure 3.3 —(a): Unranked tree of XML document. (b): Binarye&mrepresenting the
UNFANKEO TrEE. ...ttt eeeeer ettt e e e e e e e e ettt et eaeaae e s anabbbbbbeeeee e 38
Figure 3.4 -Abstract view of XMill for a single book in the XMdocument of Figure
2t PP 44
Figure 3.5 -Ordered label tree of a simple XML document . .ccceeeeeeeeeeeeennnnen.. 49
Figure 3.6 —Left: SetSafter the pre-order visit df. Right: The sef after the stable
sort. Bottom:The three arraysx, Slast andSpcdata, output of the XBW transform. 49
Figure 3.7— (a): Unranked tree of XML document. (b): Congzed DAG version of

6=) 52
Figure 3.8— (a) Fragment of an XML tree structure: nodedegree 7, of the same
node. (b) Binary tree representation Of (8)-..........uueiiiiiiiiiieeiiiieeeei s 55
Figure 3.9— (a) DAG representation of XML tree structurd-igure 3.8 (a). (b)

Minimised binary tree of Figure 3.8 (D). ..o, 55
Figure 3.10— XCQ. Decompressed data blocks when processimy ggample........ 61
Figure 3.11— Left: Example XML document. Right: compressedriXG

(=T 01 €3] =T 0] =1 (o) o 1R 61
Figure 4.1— The set of balanced parenthesesifer3.ccccoeiiiiiiiiiiiiiiiiiiiies 3.7
Figure 4.2— The set of ordinal trees far= 4. Root node is shaded in grey. 73
Figure 4.3- The set of binary trees far= 3. 74
Figure 4.4- Parentheses String SEQUENCE.cci e e e e e e eaaaes 34.

Figure 4.5- (a): Binary Tree example, (b): Labelled Extentleg and (c): Bit-string

(=] 0] ST 0] =1 (o] o 1RSSR 88

iX

Figure 4.6 —Ordinal tree example.cooooiiiiiiieeieeee e 90
Figure 4.7 —TheLBS of the ordinal tree of Figure 4.6. Zeros-based @mek-based
10T o= T o U 90
Figure 4.8 -Parentheses string of the ordinal tree in FiguBe.4..............cccccceeeeeeeennn. 91
Figure 4.9— (a): Binary tree equivalent of the ordinal treé&igure 4.6. (b): its binary
T8 DIT-SIIING. .. eer e e e e e e e e e e e e e e eeeeaaeees 93
Figure 4.10— (a) The binary representation of the numbens We circle the top-
order bits of each number. (b) The multiplicitytbé top-order numbers — given

indirectly by listing their decimal values. (c) Topder bits encoded. (d) Lower-order

bits of (a) concatenated tOgether.o 96
Figure 5.1 -(a): Example XML document. (b): XML tree structwi(a). 100
Figure 5.2— (a) Ordinal tree. (b) LOUDS bit-string of tree(a). (c) Equivalent

[F=TguL 1o a=To I o1 c V7= Tox (0] R 115

Figure 5.3 —Top: Ordinal tree structure @irders.xml . Bottom: Bit-string
representation of Orders.xml (subscripts indicafeetition of sub-string sequence).. 124
Figure 6.1— Binary encoding for values in (a) wheh = 3 and in (b) wherb = 6.133
Figure 6.2 -Formation oftreg(x); shaded nodes are removed from the output..137
Figure 6.3 —libBZip2-block compression: Textual data of XMLalonents is arranged
Tl o [oTol Bl T=T o1l 0] o (=] C PP RPPRPPPP 147
Figure 7.1- DOM architecture. SDOM stored in the DocumerdexdSDOM
components shown with dotted boxes. Connecting lel®w relationships between
data structures, i.e. compute operations by pasdidgta in either direction. 152
Figure 7.2 -(a): Simple XML document fragment. (b): CorrespoigdDOM tree
representation. (c) Parentheses representatidre dfde structure with double
numbering of nodes. E.g., theldode (the element ‘year’) is at the"2fosition in the
bit-string. The entityent; represents the text ‘GmbH'............c.oovvviiicceennn. 156
Figure 7.3 -(a) Example XML document with elements and assediattributes. (b)
Bit-string of the attribute representation.cccco v 167
Figure 7.4— (a) Simple XML document. (b) Tree structure &f\yith attribute nodes
(not including textual data) in the tree. (c) Teteicture of (a) with attributes and their

ValuES IN ThE IrEE AS NOUES. . .e et 171

Figure 7.5 —Class Diagram ofinyTree and interface classes [61]. 173
Figure 7.6 -Space usage distribution of SDOM components exufuxtual data. 175
Figure 7.7 -Space usage of SDOM components from Figure 7a&déhin grey) with

textual data compressed (shaded in dark-grey)a «oooveeeeeeeieeeeeeeeiiiiieee e 175
Figure 7.8 -Space usage of DOM implementations compared gonatifile. 177
Figure 7.9 - Compression ratio comparisons of the XML cCOmprEss................... 177

Figure 7.10 -Running times, document-order and reverse docuoreler traversals
gathering basic statistics, of Xerces and SDOMaisextNode() and
previousNode() operations. Average time of a single traversabria for

XOCDINA XML et e e e e et e e e e e et e e e e e e ab e aeaaaaeeeanes 180
Figure 7.11 —Running times, for document-order and reverse hecu-order
traversals using DOM navigation, with basic statsstor Xerces and SDOM. Average
time of a single traversal reported SOCDNA.XMI. ..., 180
Figure 7.12 —Running times of Xerces and SDOM for ‘upward patlameration’

gathering basic statistics. Average time of a giniglversal reported f{(fCDNA.xml.

Figure 7.13 —Average running times for DOM full test includiegamination of
attributes and substring test on text and attribotde values.cooenennio. 182
Figure 7.14 -Running times for DOM full test including examiimat of attributes and

substring test on contentstekt andattribute nodes for XMark files (sizes

2MB-512MB). Average times are repPOrted. ... oo eeeeeeeeeeeeeiiieeiiiiiiii e 183
Figure 7.15 —Valgrind Massif profiler [65]: SDOM vs Xerces pars, using
XCDNAXMI (BIAMB). ...ttt eetea ettt n e 183
Figure 7.16 —Construction time of SDOM-(CT) vs Xerces using Xiark files.... 184
Figure 8.1— DOM performances graph.o eeeeieeiiiiicie e 188

Xi

List of Tables
Table 1.1- Memory usage of representing XML documents irc¥s-C, as a
percentage of the original file SIZe.ccccoeviiiiiii i 5
Table 2.1- Summary of the DONNlode types. Asterisk (*) indicates maximum of one
child node allowed for that NOAE tYPE.ocemmeeiiieeeiiiieeeerr e 20
Table 3.1 —Xerces internal classes, with their class memaedsmemory usage
(0 =3 =V 3PP 25
Table 3.2 —Xerces auxiliary classes that appear as class ersmbTable 3.1. We give
the class members and SPACE USAQE.cceeeveeeeeiiiieeeiiiiiieee e e e e e e e e e e e e e eeeeeeeee 26
Table 3.3 —TinyTree class MEMDEIS.oiiiiiii i s 31
Table 3.4—Multiplexed hierarchical modelling in XMLPPM. TiModel is a snippet of

an XML document in FIgUIe 2.1,ooooiiiiiceeeeeeee e 46
Table 3.5- The interval[0.65, 0.66) is obtained for the simple path
university/department/module PP 62
Table 3.6 —Comparison of XML processors and COMPreSSOlS. o uuvuuieeereervnnnnnnn. 64
Table 3.7- Description of XML files in our XML corpus takendm [73]. 66

Table 3.8— Size and node distribution according to DOM ntyge of all the XML
documents in our corpus. Assume all XML documeatgeha document node. (EL:
Element, ATT: Attribute, ER: EntityReference, ENHntity, COM: Comment, DT:
DOCTYPE, NS: NAMESPACE) cieeiee e ieeeeeeee ettt e e e e e e e e e e eeaaaeeees 67
Table 3.9- Statistics of XML documents trees for Our COLPUS.........uueiieeieeeeeeeeeennn. 68
Table 3.10 —Statistics on textual data distribution. We reffibetsize, text & attributes
node count, % leaf nodes in tree (% of text nodad)average textual data length. For
Negligible We USE NEG. ... et 69
Table 4.1— Space usage of the three bit-vector implemeamtsitiised. We denoteand

n’ as the length of the bit-stringsandA’, respectively, where > n'. n0 andnl are

the count ofls andOs present in the bit-string, respectivelyb, B andSB are
parameters in the data structuri®s.[1 are the number of the zeros and ones large gaps,
respectively. In KNKP the termis the number of extracted blocks in the input bit

string. The terms0 andc1 are the sizes of the clump array.cccccceeeevevvvvveveninnns 82

Xii

Table 4.2 —Assume a bit-string witlh /2 1s. We showhe space usage of the three bit-
vector implementations. For CJ and CNEW, the patam&lues ar® = 64, s = 32
andLG = 256, and for KNKP we use 256-bit superblocks and G4loicks. Results
are based on Table 4.1 fOrmulas.ccceeeriiiiiiiiiiie e 84
Table 4.3 —Space usage of implementations of Jacobson’slfjacal Geary et al.’s
Parentheses DS (New), taken from Figure 6 in [BBg units are bits per node
(parenthesis pair). PD stands for pioneer density..............cuuvvviiiiiiiiiieeeeeeeeeeeeenn. 86
Table 4.4 -Navigation operations for zeros-based and onesdbasmberings/ is the
=15 TP 91
Table 4.5 —Navigation operations for ordinal tree via the bakd parentheses
representatiord is the parentheses bit-string affd] retrieves the bit at positiann

the bit-stringA. Let an opening (closing) parenthesis be repreddmy1(0) is the bit-

5] (11T TSRS 92
Table 4.6 —The Navigation operations for ordinal tree via byntiee.A is the bit-

string. Caps represent the binary tree operatibese operations aRARENT
(SELECTcall), LEFT-CHILD (RANKcall) andRIGHT-CHILD (RANKcall)............... 94
Table 5.1 -Pseudocode for the non-recursive document-ordeersal of a treé'... 102
Table 5.2 -Count of navigational operations called in thevEraals: document-order
(DFO) that is recursive (Rec) or non-recursive (Mer), also reverse DFO that is
recursive or non-recursive.is the count of nodes in the tree, and the count of non-
[EATF NOAES. ...ttt 103
Table 5.3 —Comparison of the succinct tree representatiossipport the
requirements; we give the operation calls per ndds.a node degree. 107
Table 5.4- Navigational operations f&/OUDS1+andLOUDSOHA is theLBS)..... 109
Table 5.5 —Parentheses sequence representation with doubleemumq. 112
Table 5.6 -Navigational operations fd?)AREN-+Hdouble-numbering supporf.is the
parentheses bit-string addi] retrieves the bit at positianin the bit-string4. Let an
opening (closing) parenthesis be representet{@yccoovrmiviiiiiiiinniineenennn. 112
Table 5.7 —Operations of the Binary Tree representations dathible-numbering 4 is

L0 T=T I 2 R PER PP 114

Xiii

Table 5.8 —Operations of the partitioned representation.sBiigsRunsO andRunsl
defined IN SECHON 5.4.2. ... 115
Table 5.9 —Total number oRANKandSELECTCcalls for recursive and non-recursive
document-order traversals. Comparisoh@JD3, LOUD®, LOUDS1+LOUDSO+
LOUDS1++andPLOUDSH is # nodes antlis # non-leaf nodes in the treg. operation
call for the tree representations is not included................ccccceeiiiiniiineenn. 119
Table 5.10 -Space Usage of tree reps. Columns are test filapruof nodes, % leaf
node and total space usage of tree representagjivers per node.OUDSOand
LOUDS1use the same space usage therefore call ti@dDS ForPLOUDSLOUDS
space per node for the clump data structure usMiH space per node to support long

gaps using CJ. FB?AREN space per node, cf Table 4.3. For negligible e NEG.

Table 5.11 -CJ and KNKP speed COMPAriSON..............ommmneeeeeeeeeenennnnnnnninneeenenns 124
Table 5.12 —-Performance evaluation on Intel-P4. Coloumns Best file, slowdown
relative to the Xerces for recursive and non-ragardepth-first order (DFO) traversals
for LOUDS1(L1), LOUDS1HL1+), LOUDS1++L1++) LOUDSOHLO+), PLOUDS
(PL), BinaryTree (BT), BinaryTree+ (BT+) all usit@y bit-vector and foPARENPar)
andPAREN+HPar+). Fastest data structure for each sethslohfont. 125
Table 5.13 -Performance evaluation for DFO on Sun-UltraSp&he setup is the same
AS TN TADIED. L2, ..o 126
Table 5.14 -Performance evaluation for BFO on Intel-P4 and-BlirmSparc. The
setup is the same as iN TaBLA2..............oooiiiiiiiiiiiii e 126
Table 6.1 —Naive representation of offset valuesdenotes the number of text and
attribute nodesK represents a thousand aMdrepresents a million), cost of storing
data values uncompressed, and of a naive représeria the offset values,
FESPECTIVEIY. ettt e e et e e e e e+ e a2 e e e e et e et e et e ettt e e e e e e e e e enaaanseaaaaaaeeeesennsnnns 144
Table 6.2 —Compression performance. Compressibility measgag®x), 4(x), I'(x),
GOLOMB(b, x) as(GOL), B(m,n) as(SUC). Tree overhead’tree * x — I'(x) /x.
Space usage: Total space in bits (spac) and wagtes in bits (wast) per prefix value

using the succinct prefix sum data structure ambusie explicity and succinci data

Xiv

structures. Data structure parameters for exphatd succincy were selected such
that wasted space is roughly equal........coccceeeeeeeiiiiiiiiiiii e, 145
Table 6.3 —Speed evaluation on Intel-P4 and Sun-UltraSpagst file, number of text
nodes, time ius to determine a prefix sum value for succinct datactures using CJ,
KNKP and CNEW. Time to determine a prefix sum fopleit-y (Exp) and for
succincty (Succ) data structure, both of which are basetthemew bit-vector. The best
runtime for each file on each platform is in bald............ccccoooiiiiiie, 147
Table 6.4 —Textual data compression. File names, text +oaifiei node countnf),

uncompressed text data size, compression ratiBZqr, FM-Index in document order,

and libBZip2 in document order and path-order. I4ij@2 block size = 8KB............ 148
Table 7.1 —Pseudocode of DOM Methods, (ggtNodeType() and (b):

(o L= oT0 (=T A = Vg 0=) I 161
Table 7.2 —Pseudocode of Attribute DS interfacing with DOMtheals.<i, j> is the
double number of the node in the tree. ..., 169
Table 7.3 -Space usage of XML representations.cccccceeeveveeeniiiiinneseeeeeeeneneenne. 178

Table 7.4 —Running times for Xerces and SDOM for ‘upward patlumeration’. Time
results in seconds. SDOM slowdown wrt Xerces. Agertime of a single traversal
reported FORXCDINAXMI ... e e e e e e e e e eeeeeeennnne 181
Table 7.5 -Full test usinglreeWalker . Shows running times in seconds for Xerces
using tree navigation operations, and usiagtNode() , versus SDOM using tree
navigation andiextNode() and SDOM-CT using tree navigation. Time results in

seconds. Average time of a single traversal reddaeall files................coovvnnn.n. 82

XV

Chapter 1

Introduction

The World Wide Web Consortium (W3C) [79] introducélte Extensible Markup
Language (XML) specification as a text-based platform-neluteaad customizable
markup language. The first use of XML was in the [B990s; it has become a powerful
complement to HTML. XML is a multipurpose data fairthat is well-suited to the
representation of complex, hierarchically strualudata. Its uses in data exchange,

storage and retrieval have reached much furtheriteareators may have anticipated.

For data exchange, standards exist in Service-@deComputing that provide
communication between applications and devicescbapen XML. These include the
Web-Services Description Language (WSDL), UniveiBakcription, Discovery, and
Integration (UDDI) and Simple Object Access Protd&DAP). In addition, web pages

are now represented in XML, such as XHTML.

XML as a storage format represents structured dateh as tables. The data format
used in the storage is often standardised, for pl@nhe VO-Table XML format [74]
represents scientific data with emphasis on asinoced data (e.g. Astrogrid [74]), and
we have the MEDLINE XML format [50] that is used tepresent the Medline
bibliographic citation database. Word processingliegtions are now using the XML
format as their document representation; thesadecMicrosoft Office 2007 and Open
Office. Many companies use XML for their technicklcumentation based upon the
standard format called DocBook [25]. DocBook enalile users to focus on capturing
the logical structure of the content, which camtbe published in a variety of formats
(e.g. HTML, PDF etc).

The retrieval of data in XML is a powerful featub@ViL is used in databases, with a
number of query languages that have been develggdXQuery) to provide access

and retrieval of the data, just like the SQL staddar traditional database systems.

1.1 XML Processing

A large and growing set of specifications desctie processing of XML documents.
We focus on two low-level processing of XML docurtgerthe first is the Simple API

for XML (SAX) [60], which provides event-driven fgtionality used for stream
1

Chapter 1 - Introduction

processing. The second is the Document Object M@i®eM) APIls, which requires a
pre-processing phase to construct a representatittie document. DOM and SAX are
often used as the underlying engine in many hidgnest processors; we will see

examples of these later.

The SAX parser provides sequential access to the. XMdcument. It reads the
document from the beginning to the end, and themtedata read is provided to the user
through call-back event methods. The user is tbgnired to manage the data received,
as SAX does not keep track of data that has bexh re

The DOM represents XML documents as an in-memopyesentation; the XML
document is parsed, sometimes using a SAX parsarechte the DOM tree structure.
The DOM provides access to all parts of the reprtes®n of the XML document

through the navigation operations.

An example of the DOM is given in Figure 1.1, whére XML document in (a), is
represented as the DOM document tree in (b). Wergbsin (b) the square shaped
nodes represent tredementsn the XML document, also the circular nodes repre
the element’s content and the single attributehexdocument is mapped to the library

element, where it is defined.

SAX is extremely fast to read the XML document, dmas very little memory
requirement, whereas DOM has to load the entiraitient before data can be read.
However, DOM provides flexibility of repeated naatgn, retrieval and/or update on
the document. It is simpler to develop applicatiosgi)g DOM than only using a SAX
parser, for the reason that SAX requires the useupplement the call-back methods
and to maintain the data received. Furthermorsijtuations where we require repeated

navigation upon the XML document SAX is simply safficient.

DOM serves as a general-purpose tool that can éx insapplications, stand-alone or
with other standards such as XPath [71], XSLT [d@8f XQuery; these are the high
level processors. We observe XSLT processors (agcKalan [66] and Saxon [61])
rely on the DOM [66] or simpler tree structure eg@ntations. The language neutral

DOM is supported in most programming languages sischavaScript, Perl, Java,

2

Chapter 1 - Introduction

<library>
<book catalogue="XML">
<author>OND</author>
<title>SDOM Design</title>
<year>2007</year>
</book>

;'/Iibrary>

[cr]isp]

document

Attr:value

@) (b)

Figure 1.1— (a) Simple XML document. (b) Corresponding DQelkt

ActiveX, Python, C/C++, PHP and ASP, etc. In adulti web browsers use DOM
parsers to load XML documents, such as the Micto#6f5 and higher, which
incorporates their XML parser to build the DOM downts.

1.2 Memory Architecture

To help understand the problems associated ingeptieag and processing XML

documents, we give an overview of the memory agchire of a computer. The central

processing unit (CPU) of a computer receives igtivns, decodes them and performs a

sequence of operations, given from a program, ¢eltd in its memory. Data is

stored in the following types of memory [19]:

» the hard disk which provides a permanent storage of the datan evhen the

machine is switched off. This type of memory is thegest and the cheapest.
Data here is not directly accessible by the CPUW,idbdirst loaded into RAM

memory.

* the Random-Access memofRAM), (or main memory), which provides data
storage whilst the computer is on. Main memory igmfaster than disk, but a
lot less in capacity. Main memory is connectedht® €PU through anemory
bus which has a bandwidth or maximum throughput fansferring data. A

software program loads data from the disk to thé&vVRAemory.

» the cache which is an intermediate storage between the @RU the main

memory. Cache is much faster than RAM memory, $ubuch more expensive
3

Chapter 1 - Introduction

and hence smaller than the main memory. It is tseeduce the average time to
access memory. If the CPU requests data storedcattain memory address,
this data and the data stored in nearby memorytitotsais brought into the
cache (up to the cache’s maximum size). Dudotality of referencgit is
normally the case that requests for data from thenrmemory will be served

from the cache [18].

In summary, programs that make better use of fashony are usually executed much
faster. In particular, a program that is designed use in RAM but uses so much
memory that some of its data is stored in virtu@mory on disk, may potentially
exhibit thrashingwhere data is repeatedly read and written baak fiRAM to virtual
memory. When thrashing occurs, a system will slownito an extent that it appears to

hang.

1.3 XML Bloat

XML is inherently a verbose representation. XML sithysto a flat text file to separate
the document into sections, or to indicate the nmgaaf the text enclosed in the tags.
The addition of meta-data (tags) to flat files, easily triple its size; also, XML files
are nearly always much larger than comparable pifmmats. This problem with XML
documents is what we calKML bloat. XML bloat becomes a problem for mobile
devices that have a very limited memory space, sagiPalmTops or PDAs, and
increases transmission times and storage/backup foo$?Cs and servers.

For a desktop PC or server, XML bloat is still algem, particularly if the document
is processed using DOM. The DOM exacerbates thelgmmo of XML bloat in its tree
representation of the document. Existing DOM immatations maintain the entire
DOM tree in main memory, as it is faster. Howevbese implementations suffer from
a high memory usage: Table 1.1 illustrates how miacher the in-memory DOM
representation (of the standard Xerces-C implentiendais than the (already bloated)
XML file. Thus, loading even a moderate size XMlefiusing DOM may lead to
thrashing. Thus, solving these problems arisinthenstorage and processing of XML

data is an important research topic in the comgutommunity.

4

Chapter 1 - Introduction

Table 1.1- Memory usage of representing XML documents inc¥se-C, as a percentage of the

original file size.

File File SizeXerces-C

Orders.xml | 5MB 451%
Lineitem.xm|32MB [399%

1.3.1 XML compression

One way to address the space consumption of XMLumients is through data
compression. Compression has a number of positigets: in addition to space saving,
better use of memory levels closer to the processmreased disk and memory
bandwidth and reduced (mechanical) seek ti8tandard text compression like GZip
does not compress the XML-specific files as welX&4L compressors, such as XMill
[48], which achieve very good compression ratioewever, XMill does not support
processing operations, such as navigation uponctrapressed representation. A
number ofquery-friendlyXML compressors have recently been developeddsee[3],
[10], [14], [30], [48], [52], [55], [64], [75], [8D). The characteristic of a query-friendly
compressor is that answering the query involvepdason only of a (usually small)
fraction of the XML file, and in principle, onlyfaaction of the compressed file must be
decompressed as well. However, few of these caaprs ([10], [30]) support DOM-
like navigation, and those that do, are signifisardlower than standard DOM

implementations.

1.3.2 Our approach

In summary, existing XML compression software @i addresses XML bloat, but
little has been done to efficiently support thegassing operations, such as navigation
of the documents, on an in-memory representatitve. dbjectives of this thesis are as

follows:

(a) To develop a space-efficient in-memory represematf XML documents
with memory usage, an order of magnitude less tkaisting DOM

implementations.

Chapter 1 - Introduction

(b) Fast support for DOM operations at a speed thabmparable to standard

DOM implementations.

The basic intuition underlying the approach in thigsis is as follows. The high
memory usage of XML DOM implementations is largdlye to the use of pointers for
maintaining the relationships between nodes irbx@ tree. For example, a Xerces-C

node may contain as many as five pointers to otbdes, as shown in Figure 1.2.

These pointers occupy 160 bits, assuming 32-bitpms. However, an information
theoretic argument shows that a tree withodes can be represented using just under
2n bits. It is not at first sight clear how to reprasa DOM tree so compactly while still
performing navigation efficiently. The idea in thikesis is to apply the theory of
succinct data structuresuccinct data structures pioneered by Jacobsfrsfow how
to represent data using close to the minimum plessipace, while performing

operations quickly.

1.4 Contributions and Organisation of Thesis

We present a DOM implementation call8dccinct DOM(SDOM based on succinct

data structures. In detail, the contributions dg thesis are as follows:

(a) We study the Xerces-C DOM implementation and deitenits space usage

costs, and also that of thenyTree DOM implementation in Saxon.

(b) We study several succinct data structures, andspuge implementation details

that have not previously been published.

(c) We advance the knowledge of succinct data strustur¢hat we have created a
strong correlation between succinct tree repreientaand XML document
trees. The succinct tree representations now effii support the DOM

operations upon the tree.

Chapter 1 -Introductior

Parent node

Previous sibling Next sibling
node node

First child Last child

node node

Figure 1.2—Node representation of a DOM implementation. Arroggresent pointel

The results show an improved running time and ahmraduced space usage
existing succinct tree representations. We ddtailintroduction of the idea of
partitioned representatiotof bit-strings to represent tree structures. 1
experimental evaluion proved our predictions that a partitioned repreatior
of a succinct tree representation does not incrdgsspace usage of a succi

tree (with one exception), and gives improved rogriimes

(d) We advance the knowledge of representingtextual datan XML documents
by investigatinghe efficient representation and access of theviddal textual
data. Where»asting solutions focus on the textual data comgioes we shov
the importance of compressing the pointers to tmdividual textual data

themselves, which would generally be expen

(e) We present a DOM implementaticcall Succinct DOM (SDOM) th uses
succinctand othe data structureso represent XML documen We provide
experimental evaluation of SDOM against other DONplementaons and a
compressed variant called SD(-CT againstXML compressors The space
usage of SDOM on average was 0.5 times the oridileakize, whereas tfr
space usage of the DOM implementation, i.e. Xeoresaverage was 5.7 tim
larger than the originaile size. The space usage of SDE@M showed further

improvements, which is competitive to the qi-friendly compressor

The rest of thehesis isorganised as follows: Chaptergdves background details
XML and ofthe DOM specificatio. Chapter 3jives an overview of Xerc-C, details

of Saxon’s inmemory tree represeition, a survey ofelated XML compressc and

7

Chapter 1 - Introduction

statistics of XML files used in this thesis. In @ter 4, we define the key algorithmic
idea of succinctness, applied to the data strustwe use. Chapter 5 gives an
experimental study of the succinct tree represiemsit where we have engineered them
further with XML specific requirements. Chapter twes a study of representing the
textual data of XML documents efficiently. Chaptepresents the main contribution of
this thesis with the details of the SDOM impleméotg interfaces for other
applications and the experimental results of SD®Mally, in Chapter 8 we give the
closing remarks of the thesis achievements, cartabs, and outline future
development of SDOM.

Chapter 2
XML Background

Firstly, this chapter introduces basic backgroundwedge on XML and secondly,

details of the DOM specification.
2.1 XML

2.1.1 Markup and Text

An XML document is a text file that is made updafta valuesandmarkup The data
itself is just text. The markup is the descriptimd structure of the data. Markup is
composed ofags which consist of a label (characters) insidedfmbols <’ and >’;

an example of a tag #hook> .

Tags generally appear in pairs, comprisirggaating tagandending tag A tag help to
distinguish a piece of text from any other piecdext, and often provides information
about, or give meaning to the text it contains. &xample, in the following element
“<Year>2007</Year> " we know that the content is probably a numeritugdor the
year. Elements may contain other elements provithieg are properlypestedthis is to
say elements cannot stand alone (unless therelysoor element, the root element),
and they must be contained within a hierarchy efmants that begins with the root

element.

2.1.2 Well-formed and valid XML documents

We categorize the correctness of XML documents iwio levels:

« Well-formed documents, which obey the necessary and sufficsgntactic
condition (defined in the XML specification [79]Jhe documents contain text
and XML tags, which are nested properly (meaningnapy and closing tags
must match and tag pairs must be contained withteraags) and data values
must appear within an enclosing tagdécument type definitio(DTD), which

we define below, is not compulsory.

e Valid documents, which conforms to the above XML syn&ad are error
checked against a set of rules defined in a DTIXML Schema, which are

9

Chapter 2 - XML Background

associated with the file. The DTD describes thengtrof an XML document’s
markup, such as the tags allowed, what values ttagsemay contain, definition

of entities or attributes allowed, and how the taate to each other.

2.1.3 Components of an XML document

An XML document consists of the following comporgent

(a) Document prolog— Is an optional component at the start of the XML
document that consists of two parts: the XML delan, i.e. <?xml
version="1.0"> , and the DTD. Miscellaneous statements may al$st, ex

such as comments or processing instructions.

(b) Document instance This follows the prolog in the document layontlds
the main part of the XML document, containing tloatent of the document.
The term instance means (as in object-oriented ranogning) that the
document is an instance of the DTD or an unspetiflass if the DTD is not
given. The document instance must contain a raaneht that encloses all
other nested elements and data values. We diselew the subcomponents

of the document instance in more detail.

(c) Optionally, processing instructions may appearhe prolog and/or in the

document instance.
The document instance includes some or all ofaHeviing subcomponents:

* Elements- This is a pair of tags, enclosing pairs of tagd/er some simple
text, or a single tag with a forward slash at the @.e.<break/>). The
elements are named using ¥NIL name An XML name must begin with a
letter, underscore, or a colon. They can contaitere digits, periods,

hyphens, underscores and colon.

* Attributes - Elements may contain some namettributes associated with
them that describe certain properties of the elém&hey consist of an
attribute value pair — the name of the attributgi¢h is an XML name), then
an equal sign, followed by the attribute value esetl in double (or single)

10

Chapter 2 - XML Background

quotes (an attribute must have a value). For exantipé attributeatalogue

with valueXMLappears within an element as
<book catalogue="XML"> ... </book>

« Comments- These appear in either the prolog or the bodyhef XML
document. XML comments are like HTML comments; tloeyn be used for
explanatory notes, which are sometimes ignoredppji@ations. They appear

in the form<!-- comment-->

» Entity References An entity is understood as a named body of degaally
text. They are often used to represent single charatttatannot be entered
on the keyboard. Aentity references a placeholder that represents the entity.
Entity references appear in the form of a name,clwhs preceded by an
ampersand (&) and followed by a semicolon (;). Ehare five predefined
entities in XML:

o & (‘& or ampersand)
o < (<orlessthan)

o > (> or greater than)
0 ' (apostrophe)

0 " (quotation mark)

» CDATA section- This markup contains character data with no ic#gins of
the characters used, and is in the faiCDATA[content]]> . A CDATA
section is ideal for inserting arbitrary text ejgrogramming code. All
characters enclosed in the CDATA section are inéded as characters, not
markup or entity references. A CDATA section magH like:
<I[CDATA[
for(int i=0; i<=10;i++)

sum+=i;

1>

11

Chapter 2 - XML Background

* Processing Instructior- These appear in either the prolog or the bodhef
XML document. A processing instruction allows do@mts to contain
instructions for applications, e.g., style-shee#s.processing instruction
consists of the string? followed by an XML name, optional white spaces,
followed by a list of name-value pairs (similarda attribute, but the name
need not be an XML name), the name istdrget and the value is theata
Finally the string?> closes the processing instruction. The XML detiarais
not a processing instruction. Example of a proogssistruction is a style-

sheet declaration connected to the document:

<?xml-stylesheet href= “headlines.css” type="text/c ss” 7>

2.1.4 Advanced features of XML documents

Namespaces

Namespaces provide a way to identify unique elesnand attributes with the same
XML name, but different meaning in the same or etiéht XML documents. For
example, if we build an XML document of the courdasight in an educational
institution, we may use the tagodule , to represent courses taught. We would like to
integrate this XML document with a document for themputer Science department
that already uses the element namedule to describe a component of a system
development. Using thmodule tag in a combined document causes the problem of
ambiguity in the meaning when the tag is used. Voidathis conflict of names

namespaceare used.

A namespacés defined by an attribute with the nasmins in the start element of a
tag. When declaring the namespace the syntaxfisllas/s xmins: pre =‘URI ' . The
URI uniquely identifies the namespace. The styrg is used to prefix any tag name
that belongs to the namespace denoted by the URinwthe scope of its declaration,
thus helping to distinguish between two tags witentical XML names but different

meanings. In the example above, the conflicts @arebolved as follows:

12

Chapter 2 - XML Background

<university xmins:de= “http://www.cs.le.ac.uk/depar tment”
xmins:cs= “http://www.cs.le.ac.uk/systems” >

<department name = “computer science”>
<de:module = “algorithms” >....</de:module>

<cs:module = “SDOM” >....</cs:module>
</department>
<university>

XML tree

The tags and the element content in the documstdnne form a hierarchical structure,
which is logically viewed as an XML tree. We lalteé nodes with the element names

and the data values are stored at the leaves ineteFor example, see Figure 2.1.

The order of element nodes in the XML tree (in préer) matches the order of the

elements in the document, reading from top to Inotto

<bookshop>

<book catalogue="XML'>
<author>OND</author>
<title>SDOM Design</title>
<year>2007</year>
<note>Development in

<code>C++</code>

</note>

</book>

<book catalogue="XML'>
<author>
<firsthame>J</firstname>
<surname>Andrews</surname>
</author>
<title>DOM processing</title>
<year>2006</year>
</book>

</bookshop>

Figure 2.1— XML tree of the bookshop document. Data vallegied in grey.

13

Chapter 2 - XML Background

2.2 XML Parsing and Processing

Parser: A parseris a program that receives input in the form @&f tharacters of a file,
which is then analysed against a grammar for éwaguage to check its validity. The

parser will often create tokens from the sequem@gpuit characters.

XML Parser: The sequence of outputs received from an XML grais the markup
tags, character data and other data of the XML wheci. The parser will separate the
XML document components (i.e. elements and charaeti), which is the output to be
handled by other programs. An XML parser applies \hlidity, well-formedness and

semantic rules that are given in the DTD or theeBw of the document.

To read and manipulate XML documents one can uses\tknt-basedgarser (i.e.
SAX only or use SAX to read the XML document and @bt into an XML DOM

object in memory.

The Simple API for XML (SAX), a ‘de facto’ standard an event-driven push model
for processing XML. As SAX reads the XML documeimsa “stream” manner, it
triggers off a series of events. Event handlerstnies written to process the data

retrieved from these events.

SAX maintains minimal information about the XML dounent at any one point while
parsing, therefore resulting in low memory consuamptUsing SAX, we therefore can
parse documents that are much larger than thensysimory. The disadvantage with
SAX is that the document content or its hierarahynot maintained, during or after the
parsing phase, therefore, the content must be édray an external application. In
essence, repeated processing cannot be achievedSAsK without repeated parsing of

the document.

DOM implementations represent the XML document agea structure in main
memory. The tree is constructed using a SAX parfbe tree can be navigated

efficiently, but existing DOM implementations exduate XML bloat.

14

Chapter 2 - XML Background

&
/

| |
| validation | | Events | | s |
|[HTMLEvents| |MutationEvents| | UlEvents |—
[MutationNameEvents |
|KeyboardEvents| | TextEvents | [MouseEvents|

Figure 2.2— DOM modules defined in the DOM specification][77

2.3 DOM Architecture and Standards
The DOM [77] is a set of application programmingenfaces (APIs) that defines the

logical structure, access and manipulation of XMid &{”TML documents. The DOM
APIs are organised into groups that address the $aatures; these groups are called
modulesand are given a name according to the feature shpport. In addition, all
APIs are categorised infevels each providing its own operations for the APleeT
levels describe the functionality a user can exfrech an application that supports the
module(s). In Figure 2.2, we show the hierarchgtedcture of the modules, where the
arrows show the dependences. For each module, (evel) includes the functionality
at leveli. Some modules begin at level 2 or higher. We des¢he modules according
to the DOM levels:

* Level 1 — The DOM APIs at this level are dividetbitwo modules, th€ore
andHTML TheHTMLmodule provides higher-level APIs that are usexh@l
with those in the&Core module for working with HTML documents. Ti@are
also contains inherited APIs, which are grouped iwhat is called thxXmL

module.

15

Chapter 2 - XML Background

« Level 2 —The DOM APIs at this level are dividetbii4 modules.

« Level 3 — Adds further features for thié"L module such as abstract schemas,

and has six new modules suchX&ath , Load /Save, Validation , etc.

We show in Figure 2.2 all the modules in DOM adaadichical structure: the circled
modules in the figure are those we are interestesipporting. The details of these are

as follows:

(a) Core Module: Contains the fundamental core APIs thatuukhbe in all DOM
implementations to maintain their conformance ® EBFOM specification. This
module must be supported for others to exist. TRésAontained are as follows:
Node, Element , Attr , CharacterData (which has the derived APIBext
and Commenf), DOMImplementation , DocumentFragment and two helper
APIs, NodeList and NamedNodeMap The Node is the base API, which
contains functionality common to all nodes, theeotAPIs inherit their methods
and properties from th8ode API. In level 2, the module is updated with the

XML namespace support and further features foxtnemodule.

(b) XML Module: Contains the following APISCDATASection , DocumentType ,
Notation , Entity , EntityReference and Processinglnstruction
This module is an extension of tkmre module. It deals with XML-specific

node types.

(c) Traversal Module: Contains the following APIs:Nodelterator
NodeFilter , TreeWalker andDocumentTraversal . The first three provide
node traversal functionality over a document's mode The
DocumentTraversal provides operations to create instance3reéWalker

andNodelterator

The Node interface consists of a number of variables, agiibdeName, nodeValue ,

and attributes . In addition, theNode interface consists of navigation operations
upon the DOM tree, which are as followdirstChild , nextSibling
previousSibling , parent andlastChild

16

Chapter 2 - XML Background

In Level 2, theCore module has methods to access the node’s namekjiRicand
prefix. Other methods exist such as for comparingudhent position, node identity
check, text content retrieval of all sub-tree nodes namespace and prefix lookup

(within the sub-tree, including the current node).

2.3.1 DOM Node Types

The DOM tree consists of node objects representiag{ML document. Each node has
a type, which corresponds to the XML component gmesn the XML document
(details of the XML components in Section 2.1.3peTDOM tree begins with a
document node, which provides a central point to accessethtre document. The
document node can have several child nodes, but must hauggke root node, we call
the root element node. The root node corresponds to the root eleimethe XML
document. Other node types exist in DOM, whichgawven the same name as the XML
document components in Section 2.1.3. The type nbde is stored in the variable
nodeType , there are twelve possible values, depending enyibe of a node the Node

API variables will differ. The node types are aldas:

* Element node: this node type represents the elements nwitte XML
document. Access to a node of this type is provittedugh the interface

Node andElement .

e Attribute node: this node type represents an attribute aflament node.
Attributes are not part of the DOM tree, but areessed through the

NamedNodeMapinterface, which is a variable in the Node integfa

* Text node: this node type represents the ‘free’ textoakent of an element.
They appear only as leaf nodes in the DOM treeefgto a node of this type
is provided through the interfat®de, CharacterData andText .

* CDATASection node: this node type represents the CDATA sectiodML
documents. The textual body is the data value. #gt@ a node of this type is
provided through the interfad¢ode, however the DOM level 2 includes the

CDATASection interface, which provides direct support.

17

Chapter 2 - XML Background

* EntityReference node: this node type represents an entity referantee
XML document. XML allows the user to define themtiées in the DTD.
Access to a node of this type is provided throunghinterfaceNode; however,
the XML module, Level 2 includes thentityReference interface, which

provides direct support.

* Entity node: this node type represents an entity in an Xdbicument.
Access to a node of this type is provided throdghihterfaceNode, however
Level 2 includes theentity interface, which provides direct support. An

Entity node may be of the following types:

o Internal entity the definition for this type of entity is withithe
document’s DTD. There are five internal entitiesdefined in XML,
these are special codes to represent the follonchgracters:

ampersand, less-than, greater-than, double qudtsiagle quote.

o External entity which allows the user to integrate entity defons

from other documents.

o Parameter entitywhich can be internal or external entity references
and are not expanded in the DTD or the internalssulimain

document body).

* Processinglnstruction node: this node type represents a processing

instruction in the XML document. They appear dsad in the DOM tree.

e Comment node: this node type represents a comment in thé ¥dtument.

Thecomment node is a leaf node in the DOM tree.

e Document node: the DOM tree has a singlecument node. It appears at the
root of the tree. The document node object suppibscreation of node

objects and access to the entire DOM tree.

18

Chapter 2 - XML Background

DocumentType node: this node type represents the DTD in the XML
document. This node appears as a child ofdidbmiment node. Only one

instance of th®ocumentType node can exist in a DOM tree.

DocumentFragment node: this node represents a sub-tree insertetheto t

DOM tree. This node type is used in dynamic impletatons of DOM.

Notation node: this node type represents a notation in ar. Xigcument.

Notations have no parent nodes. They are defindueiDTD.

Table 2.1 shows a summary of the node types iDtbkl and shows the corresponding

variable detailmodeName andnodeValue for a given node type. In addition, we show

for the node types the children allowed, if theydnany. Each node type is associated

with a special ID number.

2.3.2 Traversal Module

The two main orders of traversal are:

Document orderWe navigate the DOM tree from the root node tgfoall
first child nodes. Then navigate the right siblmapes if we are at a leaf node
or if we have visited the current node’s sub-tr&eaaly. This process we

repeat until we have reached the right-most ledgerio the tree.

Reverse document ordéNe navigate the DOM tree from the right-most leaf
node through all previous nodes in the tree ungilreach the root node. The
process is to navigate to the right-most leaf efdbb-tree of each node, then
repeat the process on the left sibling of each nddéne node is a leaf or
visited already. If there are no more left siblingsthe current node, we
navigate to the node’s parent, then repeat theepsowvith the node’s left

sibling or at an ancestor node if it has no ldjtisg node.

19

Chapter 2 - XML Background

Table 2.1- Summary of the DONWode types. Asterisk (*) indicates maximum of one child

node allowed for that node type.

Node | Node Type NodeName NodeValue Children

No. Allowed
(node no.)

1 Element Tagname NULL 1,3,4,57,
8

2 Attribute Attribute name Attribute value| 3,5

3 Text “Htext” Data value None

4 CDataSection “#CDataSection” Data value None

5 EntityReference Entity name NULL 1,3,4,5,7,

referenced 8

6 Entity Entity name NULL 1,3,4,5,7,
8

7 Processinglnstruction Target Data value None

8 Comment “#comment” Data value None

9 Document “#document” NULL 1* 7, 8, 10*

10 DocumentType DocType Name NULL None

11 DocumentFragment “#documentFragment” NULL 1,3,4,5,7,
8

12 Notation Nptation name NULL None

The orders of traversal are applied to TheeWalker or Nodelterator interfaces.

Details of these are as follows:

TreeWalker
getWhatToShow()

TheNodelterator logically views the XML document in a “flat” manndike

an array of nodes that appears in document ordeving forward in this array
(given by the operationextNode()) and backward (given by the operation
previousNode()) represents document-order and reverse documeldr or

traversal, respectively.

The TreeWalker maintains the tree (or sub-tree) structure of dbeument.

The operations ofreeWalker are the tree navigations similar to those in the

Node API,
getCurrentNode()

in addition we have nextNode()

, PreviousNode()

and

. A call of any navigation operation returns a noal¢he

user, and updates the iterator of the current rfueld within TreeWalker |,

providing that the node returned is not null.

and Nodelterator

, getFilter()

both support the operationgetRoot() |,

andgetExpandEntityReferences()

20

. The last

Chapter 2 - XML Background

two operations relate to tiNodeFilter ~ API, which allows the user to create an object
that filters out nodes. The user callsl@deFilter , which is applied to a node in any
traversal to determine whether or not the node Ishbe presented in the traversal's
logical document. The user can select from thirtdéferent constant filters, which
describes what to show. We only list a few of thbseause (as their names suggest)
they are based upon the DOM node types: SHOW_ALHO® ELEMENT,
SHOW_ATTRIBUTE, SHOW_TEXT, SHOW_CDATA_SECTION, etc.

The documentation of the DOM specification can lbenfi at [77] and [78].
Appendix B details these APIs and their methods emlicates when methods are
supported by the SDOM application that we will diss in Chapter 7.

21

Chapter 3
Implementations of DOM and XML Compressors

In this chapter, we examine in-memory represematiof XML documents that
implement the DOM interface. We also include a syref some XML compressors,
some of which are designed to support the DObe and XML modules, whereas

others support some navigation resembling the DOM.

In Section 3.1, we focus on the Xerces-C DOM immatation and Saxon’s in-
memory tree data structure. In Section 3.2, weudiscsome of the related work on
XML compressors that have in-memory and/or diskeaepresentations. Finally, in
Section 3.3 we describe, and present statistica ofllection consisting of real-world
and synthetically generated XML files that we widle in the experimental evaluation.

3.1 DOM Implementations

The usefulness of the DOM in many applications legsto implementations of the
DOM interface in almost all programming languagedaty, with several in Java and
C++. We examine the Xerces DOM implementation, whicas developed by the
Apache Software Foundation [2]. Implementationsavailable in either Java or C++;
these are called Xerces-J [68] and Xerces-C [6€gpectively. Other DOM
implementations exist, such as JDOM [45] and ddi24], both developed in Java, that
implement the DOM interface, as simplified APIstthae less complex and consume
less memory, than what DOM offers. We work in the+Qorogramming language;
therefore, we focus mainly on the Xerces-C DOM ienpéntation in our discussions.
We abbreviated Xerces-C to just Xerces in the radsiof the thesis.

XQuery and XSLT processors often rely on intern@ND implementations that are
optimized for good performance. For example, Sgsdih for Java and Xalan [66] for
C++ use their own interfaces as a plug-in to gigeeas to their data structures, which

can without difficulty be wrapped into a DOM node.

We now discuss some of the implementations of DO&htioned above, beginning

with Xerces, followed by Saxon’s tree representatio

22

Chapter 3 - Implementations of DOM and XML Compressors

3.1.1 Xerces

Xerces is a validating XML parser (in version 2t8ree time of writing of this thesis),
which supports the DOM, SAX and SAX2 APIs. We fean the DOM APIs of the
Xerces implementation, which conform to the DOM &k API and contains in
addition, a partial implementation of the DOM Lew&[Core . More specifically the

modules supported a@ore , XML, Traversal , Range andLoad/Save.
Class Structure

We now discuss Xerces’ implementation of the ARIgheCore , XMLandTraversal
modules. For th€ore module (and for the entire DOM) the primary APthe Node
API, this is represented by the cladSMNodelmpl. The DOMNodelmpl class consists
of a single pointer, which points to its parent @¢fbr the nodes that are in the tree, but
for other nodes the pointer points to some othso@ated node, e.g. an attribute node
points to the element node where it is declarete DOMNodelmpl also consists of a
special flag(of type short) indicating certain properties lo¢ hode, e.g., a read-only or
first child node. We observe that navigation (exdép getParent() operation) and
data retrieval operations are not supported in tess, but implemented by other
classes in Xerces (which are derived fro@MNodelmpl), we will come back to this

later. The other supported DOM APIs in there are given as follows:

e The Element API is implemented in théOMElementimpl class, and the
Element API, which defines a namespace is implemented hia tlass
DOMElementNSImpl . The Attribute APl is implemented in the
DOMAttrimpl class, and thattribute API, which defines a namespace is
implemented in the clagd3OMALttrNSImpl . The Text API is implemented in
the DOMTextimpl class. The other APIs relating to the node ardeampnted

similarly.
e TheNodeList APl is implemented in thBOMNodeListimpl class.

* TheNamedNodeMapAPI is implemented in thBOMNamedNodeMaplimplclass.

NamedNodeMapcontains a vector of nodes (e@OMTextimpl objects) and a

23

Chapter 3 - Implementations of DOM and XML Compressors

pointer to the node, which owns the map. Ti@MVAttrMapimpl is a derived
class ofNamedNodeMap which provides specific support for attribute asd

e.g. includes a boolean value indicating defaufutly declared attributes.

In Table 3.1, we show the class structure of Xeradsch implements the DOM APIs,
such as the APIs in th&ML module; for example, th€DataSection API is
implemented in the clagSOMCDATASectionimpl . The Xerces classes that implement
the DOM APIs have a number of pointers and intecteds instances as class members,
which are shown in Table 3.1. In the following, wWiscuss the auxiliary classes of
Xerces (includingDOMNodelmpl), which provide navigation support and the data

values, depending on the node’s position in the ared its node type information:

a) DOMNodelmpl: We have discussed this class already, but we nsaleeial
mention here because a class representing a DOkl modt contain an instance
of this class.

b) DOMParentNode: In DOM tree, a node, which can have children (Eabkle 2.1)
must contain an instance of this class. For suabsels, e.JQDOMElementimpl ,
we need to store a first-child pointer and an imstaofDOMNodeListimpl class
for thechildNode() operation support. Node objects that cannot haidren
such as irbOMTextimpl class do not store this class instance, and theretid
this cost.

c) DOMChildNode: A node that is a part of the DOM tree must caontdiis class
instance. This class has pointers to previousrgjldnd next-sibling nodes, if they
exist, or a null value if any of the siblings dat eaist. TheDOMAttributelmpl
is not part of the DOM tree, and therefore it doescontain this class instance.

d) DOMCharacterData : A node that stores a data value must contain dlaiss
instance. For example, theOMTextimpl and DOMAttrimpl have a value,
therefore, must contain this class instance. Howdkie DOMElementimpl does

not have a data value, therefore, does not cotli@rclass instance.

24

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.1 —Xerces internal classes, with their class memaedsmemory usage details.

CLASS MEMBERS MEMORY
NODETYPE CLASS| CLASS INSTANCES POINTERS VARIABLES USAGE OF
DEFINITION
CLASS
DOMDOCUMENTIMPL DOMNODEIMPL, lelementID, fActualEncoding, fEncoding, fVersion, fChanges:int, 136 BYTES

DOMPARENTNODE,
DOMNODEIDMAP,

IRTUAL CLASSES x2

fDocumentURI, fDOMConfiguration,

fUserDataTable, fRecycleNodePtr, fRecycleBufferPtr,
NodeListPool, fCurrentBlock, fFreePtr,

fDocType, fDocElement, fNamePool, fNormalizer,

fRanges, fNodelterators, fMemoryManager

lerrorChecking:bool,
fStandalone:bool,
fFreeBytesRemaining

: XMLSize_t

DOMELEMENTIMPL

DOMNODEIMPL,
DOMPARENTNODE,
DOMCHILDNODE

IRTUAL CLASS

FATTRIBUTES, FDEFAULTATTRIBUTES, FNAME,

FSCHEMATYPE

52 BYTES

DOMELEMENTNSIMPL

IRTUAL CLASS

FNAMESPACEURI, FLOCALNAME, FPREFIX

68 BYTES

DOMTEXTIMPL

IDOMNODEIMPL,
DOMCHILDNODE,
DOMCHARACTERIMPL,

IRTUAL CLASS

28 BYTES

DOMATTRIBUTEIMPL

DOMNODEIMPL,
DOMPARENTIMPL, VIRTUAL

CLASS

INAME, FSCHEMATYPE

36 BYTES

DOMCOMMENTIMPL

IDOMNODEIMPL,
DOMCHILDNODE,
DOMCHARACTERDATAIMPL,

IRTUAL CLASS

28 BYTES

DOMENTITYREFIMPL

IDOMNODEIMPL,
DOMPARENTNODE,
DOMCHILDNODE, VIRTUAL

CLASS

FNAME, FBASEURI

44 BYTES

DOMCDATASECTIONIMPL

DOMNODEIMPL,
DOMPARENTNODE,
DOMCHILDNODE,
DOMCHARACTERIMPL,

IRTUAL CLASS

44 BYTES

DOMPROCINSTRIMPL

IDOMNODEIMPL,
DOMCHILDNODE,
DOMCHARACTERIMPL,

IRTUAL CLASS

FTARGET, FBASEURI

36 BYTES

DOMENTITYIMPL

IDOMNODEIMPL,
DOMPARENTNODE, VIRTUAL

CLASS

FNAME, FPUBLICID, FSYSTEMID, FNOTATIONNAME
FACTUALENCODING, FENCODING, FVERSION, FBASEURI,

FREFENTITY

FENTITYREFNODECLO

INED: BOOL

68 BYTES

DOMDOCUMENTTYPEIMPL

DOMNODEIMPL,
DOMPARENTNODE,
DOMCHILDNODE, VIRTUAL

CLASS

FNAME, FPUBLICID, FSYSTEMID, FINTERNALSUBSET,

FENTITIES, FNOTATIONS, ELEMENTS

FINTSUBSETREADING:
BOOL,
FISCREATEDFROMHEA

P:BOOL

68 BYTES

25

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.2 —Xerces auxiliary classes that appear as class emmmbTable 3.1. We give the

class members and space usage.

CLASS ATTRIBUTES MEMORY
DOM TREE CLASS |DOM CLASS POINTERS VARIABLES USAGE OF
CLASS
[DOMNODEIMPL OWNER FLAG:SHORT 8 BYTES
[DOMPARENTNODE OWNERDOCUMENT, 16 BYTES
FIRSTCHILD,

DOMNODELISTIMPL

[DOMNODELISTIMPL IRTUAL CLASS FNODE — ARRAY 8 BYTES
[DOMCHILDNODE PREVIOUSSIBLING, 8 BYTES
INEXTSIBLING

[DOMCHARACTERDATAIMPL FDATABUF, FDOC 8 BYTES
*DOMNAMEDNODEMAPIMPL IRTUAL CLASS FNODE, FOWNERNODE 12 BYTES
*DOMATTRMAPIMPL IRTUAL CLASS IATTRDEFAULTS:BOOL 12 BYTES
“DOMBUFFER FBUFFER, FDOC FINDEX:INT, FCAPACITY:INT (16 BYTES
“DOMTYPE IRTUAL CLASS INAME, NAMESPACEURI 12BYTES
“DOMNODEIDMAP "*FTABLE, FSIZEINDEX, FDOC [FSIZEINDEX, FSIZE,

FNUMENTRIES, FENTRIES

*DOMCONFIGURATION IRTUAL CLASS FERRORHANDLER, 20 BYTES
FSCHEMATYPE,
FSCHEMALOCATION,
FMEMORYMANAGER
[DOMSTRINGPOOL FDOC, **FHASHTABLE, FHASHTABLESIZE:INT
[DOMNODEVECTOR **DATA IALLOCATEDSIZE:XMLSIZE_T,

NEXTFREESLOT: :XMLSIZE_T

As an example of a node in Xerces, D@MElementimpl class represents an element
node in the tree. This class contains instancesthef classesDOMNodelmpl,
DOMParentNode and theDOMChildNode . In addition, schema type information is
stored. A C++ string is stored, which represehesdlement name information of the
node and two pointers to the cl@3MAttrMaplmpl representing attributes and default
attributes declared at this element node. A defatidibute is given a value by the DTD

at the parsing phase if that attribute’s valuenmstied in the document.

The DOMElementimpl class require$2 bytes. This includes four bytes as overhead
because it is derived from the virtual DORlement class. The remaining space
comprises (assuming pointers are four bytes) elgfies for the DOMNodelmpl
instance, sixteen bytes for thBOMParentNode instance, eight bytes for the

DOMChildNode instance and four further pointers.
26

Chapter 3 - Implementations of DOM and XML Compressors

We observe that the space usage of other nodesriteX can be much less than for
an element node, excluding the space for the datluev For example, the
DOMTextimpl class that represents a text node in the tree @uyires 28 bytes. In
Table 3.1, we show the classes contained inCitve and XML modules. We give the
space usage of each class. The cost of usinguahatass is included in the space usage
costs. Table3.2 shows the class members of the auxiliary ctassethe Xerces
implementation of the DOM APIs. We include the spasage of each class which was

obtained using thsizeoffunction.
Navigation operations

Navigation in Xerces is very fast. The navigatigge@tions such a#stChild() ,

parent() , nextSibling() andpreviousSibling() just return a pointer value.

For all nodes in the tree, the last child node appas the previous sibling pointer of
the first child node. Therefore, in thestChild() operation we first dereference the
first child node pointer then return its previouisling pointer. This avoids traversal of
the next sibling nodes to get to the last childenddowever, this potentially causes the
following problem: if we are at the node that ig fiirst child in the tree, a call of the
previousSibling() operation would return a pointer to its parendistichild node,
which is incorrect. Xerces avoids this problem Isng a flag (inDOMNodelmpl) to

indicate in the node instance whether this nodefiist child.
NodeType

Node types in Xerces are not explicitly stored. yrhee represented through the classes
representing the node, for example, a@&tement node is represented by
DOMElementimpl class object in memory. Therefore, for tigetNodeType()

operation, the node type of a node is known inctass, and not explicitly stored.
Node name and textual data
Xerces stores node names in two types of classeshwre as follows:

* Classes with namespace support: Contain three gueinio C++ strings,
representing the element name. The first pointémtpdo the namespace URI,
27

Chapter 3 - Implementations of DOM and XML Compressors

the second to its prefix and the third to its losame. Element nodes with the

same node name (including namespaces) point teatine strings.

* Classes without namespace support: Contain a soughger to a C++ string to
represent element name (or a local name). Noddsthé same name point to

the same string.

Xerces stores a data value as a pointer to a Girg ghere, nodes with the same text
do not point to the same string).

3.1.2 Saxon’s TinyTree

Saxon has its own internal tree structure, caffegTree [61]. Besides reducing
memory usage, the objective is to minimize the sadt allocating and garbage-
collecting Java objects used. ThmyTree class contains a collection of arrays to
represent the content of one or more XML documéFtte. arrays irminyTree give a
flat view of the tree structure in document ordeable 3.3 shows the arrays in the

TinyTree class.

The arrays, which are of length represent an XML document tree withnodes.
Theith entry in the array stores information relatingheith node in document order.
The following information is maintained for eachdeo its node type is maintained in
thenodeKind array, the depth of a node is maintained indéggh array, and the tag
names (represented by special namecodes) are maahtia thenamecode array (we
discuss namecodes later). A node’s next and prewsdiling nodes are maintained in
thenext andprior arrays, respectively. Thedpha andbeta arrays hold different

kind of data depending on the type of the nodé¢h@urlpha array, if theith node is of
type:

 Text node, thenalpha] i] contains an offset into theext buffer(which
contains all the text data of the document, itslementation is described

below).

e Comment or processinglnstruction node, theralpha] i] contains an
offset in thecomment buffesimilar to the text buffer).
28

Chapter 3 - Implementations of DOM and XML Compressors

* Element node, theralpha] i] contains an index to its first attribute node or -

1 if the element has no attribute.

In thebeta array if theith node is of type:

e Text node, therbeta] i] contains the length of the data value held intéxé
buffer,

e« Comment or processinglnstruction node, thenbeta] i] contains the

length of the data value held in the comment buffer

* Element node, therbeta] i] contains an index of its first namespace node in

thenamespaceCode arrayor -1 if the element has no namespace nodes.

Thetext node values are stored in a class called_tingeStringBuffer , which is

an implementation of the JawzharSequence interface. The.argeStringBuffer
contains the length of the buffer, a Jaw& array callecsegments , which contains a
number ofFastStringBuffer class instances (@astStringBuffer is a character
array). Initially the individual textual data vakiare concatenated into a single string,
which is then split into equal size blocks. Eacbcklis held in @&astStringBuffer

and stored in theegments array. ThelLargeStringBuffer also contains an integer
array of offsets used to give the position at tkertsof the block relating to the
individual text data. ThelLargeStringBuffer supports thesubstring(i,j)

operation which returns the substring from positioto j in the string buffer. The

textual data ofcomment and processinglnstruction nodes are stored in a
FastStringBuffer.

The attributes are represented in a collectionrmalya of lengtha, wherea is the total
number of attributes. ThattParent array maintains information relating théh
attribute to its parentlement node, and the attribute names are represented by
namecodes maintained in theCode array (analogous to theamecode array). The

attribute values are maintained i€barSequence class.

The namespace information is maintained in arrdylergth s, wheres is the total

number of namespace declarations. The arrays ootitainamespace code (these are
29

Chapter 3 - Implementations of DOM and XML Compressors

the prefix and URI components of the namecode)amuohdex of theelement node’s

first namespace in the array.

We now discuss the use of namecodedinyTree . These represent, as 32-bit
values, the fully qualified names of nodes in saclvay that the namespace prefix,
namespace URI and local name can easily be retriéwe¢he parsing phase, namecodes
are built as follows: we have a hash table of aique tag names adocalname,

URI> pairs in the document. These are stored in a eHalmash table, called the
NamePool, with 21° buckets, where each bucket is (effectively) limhite hold lists of
length2°. A <localname, URI> pair is specified by a 10-bit hash code (specifyin
the bucket) and a 10-bit offset into the list iattbucket. A further 10 bits are used to
encode the namespace prefix.

TinyTree does not create all of the above arrays at theegubut only creates them
if the user invokes an operation that needs thiayafm herefore, depending on the actual
sequence of operations, which are invoked or usethé user, the space usage of
TinyTree is between 20-30 bytes per node. In Table 3.3sheev the data structures
of TinyTree , given that we know the count of nodes of an XMicument we can
easily calculate and confirm the above, space upag@&ode. Fast construction of the
tree representation is crucial; [46] states that ¢bnstruction can take as long as a

subsequent query or transformation.
Saxon’s Class Structure

Saxon provides access to thlényTree data structure using classes that must
implement theDocumentinfo andNodelnfo class interfaces, and which are used to
interface with other components in Saxon. The clsscture of Saxon is similar to
Xerces, in that th&inyNodelmpl class, which implements tiNodeinfo interface, in
essence represents a DQWdde. TinyNodelmpl class consists of thenyTree class
object, the node number andrmyNodelmpl class instance of its parent node. The
TinyDocumentimpl implements th®ocumentinfo , which represents thdcument

node.

30

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.3 -TinyTree class members.

TYPE NAME SIZE MEMORY DETAILS
arrayList documentList 5 Default list of documents
largeStringBuffer charBuffer m 8m |mis the total length cteXinode
fastStringBuffer commentBuffer k 8k |k is the total length ccommen
byte nopdeKind n 8n Node type
short depth n 16n |Depth of node in tree
int Next n 32n |Node number of next sibling
int alpha n 32n |Value depending on node type
int beta n 32n |Value depending on node type
int Namecode n 32n |Holds the name of the node as a
int prior n 32n |Node number of previous sibling
int typeCodeArray n 32n |Typecode array for elements if
int attParent a 32a |Index of the parent element node
int attCode a 32a |Namecode representing the attribute
charSequence attValue a 8la L is the #chars. String value of the
int attType a 32a |Type annotations. Created if needed
int namespaceParent s 32s |Index of element owning namespace
int namespaceCode s 32s |[Namespace code used by
int rootindex 8 256 | Array holding level 0 root nodes |n
lineNumberMap lineNumberMap 5 160
systemldMap systemldMap 5 160 |Created if needed

In Chapter 7, Figure 7.5 shows the class diagramngfiree . These are designed for
use with XPath and XQuery operations. Saxon impiemehe DOM by wrapper
classes of th&lodelnfo class. The DOM support in Saxon is limited todaly read-
only DOM operations, (b) only th€ore and XML modules and (c) a separate

representation of namespace declarations fromtthieides.
Navigation operations

The navigational operations in the DOM, suchfiesChild() , nextSibling() ,
previousSibling() and lastChild() are supported indirectly in thidodelnfo
class using a set of XPa#ixis iterator classes. These classes are customizadéom
XPath, but they can support (less efficiently) B®M. The navigation operations
require sequential access to one or more item$iefatray structures, the details of

which are given below:

 The parent() operation is simple because an instance of thenparode
object is included as a class member of Di@vNodelmpl class. However, if
31

Chapter 3 - Implementations of DOM and XML Compressors

the parent node is not known for nagdéhen we make a sequence of calls to the
next array, fromnext[i] until to get to the last-sibling node, say ngdeé\

final call tonext[j] stores the index of the parent node, simog[;] <.

* The firstChild() operation is simple. If we are at a nagehe first-child

node will appear at positiar+ 1, if depth[i] <depth[i+ 1].

» ThenextSibling () operation is simple. If we are at a nddéhe index of the
next-sibling node is given byext[i]. If next[i] < i, then it is really the
index of the parent from the last sibling. TpreviousSibling() operation

is similar, but applied to therior array.

* ThelastChild() operation is slow. We require a traversal acrdsshddren
until we reach the last child node. If the countlod children of the node (the
degree) isd, then there arel array accesses made in each ofribe and
nodeKind arrays. In addition, an instance of tlmayNodelmpl class is
created for each sibling node, where we check foulbvalue; in this case, the
last child node has been reached. The creatiohedfibyNodelmpl object is

based on the design of thrisiterator class.

Saxon supports third-party tree structures as plagthey are required to implement
the Documentinfo and Nodelnfo interfaces. We discuss these interfaces further in
Chapter 7.

3.2 XML Compression

We now discuss specialised compressors designecepoesenting XML documents,
which exploit the typical XML characteristics, suat a highly regular structure and the
predictive values of the upward path from an eleémerdetermining the element. A

pathp from the root to a leaf node is defined as theiseqe of tags,, t,, ..., t;, where
t, is the tag of the root node amdis the parent of the leaf node (data value). The
upward path is the reverse, itg...., t,, t;. In essence, a path gives valuable information

to the XML compressors. More generally, some XMImpoessors useontainersin

grouping textual data elements with similar chagastics, and applying specialized
32

Chapter 3 - Implementations of DOM and XML Compressors

compression algorithms to each container. Explgitilese characteristics often gain
better compression than generic text compressoc$, as Gzip [43], which is not able

to use the path information in its compression alym.

Our survey of XML compressors focuses on in-memapgresentations, such as
BPLEX [10], XBZipindex [30], DDOM [55] and SEDOM pB{, which provide support

for tree navigation, with some moving towards DO gort.

We also focus on XML compressors that have a coatioin of in-memory and/or
disk-based data structures, often they store tluetste of the document separately to
the data values compressed on disk. The use ofbdiséd data structures for XML
compressors is a well-studied area that has pradom@ny interesting results [3], [6],
[8], [7], [13], [30], [32], [48], [52], [56], [64], [75] and [80]. In essence, the

representations of the XML compressors usually lumesof the properties below:

(a) Local homogeneityThe final data structure separates the tree tsteidrom the data
values. The data values are often grouped anddstoi@containers,according to their
paths and tend to be of the same data type, winishtlae compression. The paths give
valuable information about the data that is sto¥dill [48] was the first to introduce

this technique.

(b) Homomorphic The final data structure preserves the documenttsire with the data
values. XGrind [64] was the first to introduce théghnique, where the advantages are
the parsing/querying can now be made directly uppencompressed documents, also
indexes and updates can directly be applied tactimpressed document in the same
way as applied to the original document. In additithe compressed document can be

checked for validity against a compressed versfaheDTD.

In Figure3.1, we show an example of an XML compressor, whigds the
homomorphic property. We have a simple XML docun{&it) and the compressed
representation (right), which is itself, in therfoof an XML document with the tag
names replaced by some encoding (e.g. dictionadgg)aand the data values encoded

using some encoder designed by the compressor.

33

Chapter 3 - Implementations of DOM and XML Compressors

<Element1> T1

<Element2>valueA</Element2> T2 encode(valueA)/

<Element3>valueB</Element3> T3 encode(valueB)/
<Element4></Element4> T4/

</Element1> /

Figure 3.1- Left: Simple XML document. Right: Example of Homorphism.

The compression performance of the XML compressimgends upon the specific
XML document that is being compressed, a standategorisation of XML documents

is described below; we use these in what follows:

« Data-centric documents have a regular structure of tags as fbeus. For
example, Figure 2.1 shows the representation @k b@cords in a XML
document of a book shop, we observe that dataicefdcument can be used as
a database representation. The tags are usuatlgfpred in a DTD or an XML

Schema.

e Document-centricXML have the text as the focus. Tags only appeaernwh
needed and explicitly indicate when parts of astexy document have structure
or meaning, for example, when a section of a docuimepresents a paragraph,

or a stanza of a poem.

For the survey of XML compressors, we compare (&haosssible) the compression
ratio and compression time for each compressor. chmepression ratio is defined as
follows:

Size of compressed XML data
Size of original XML data

Compression rate =

34

Chapter 3 - Implementations of DOM and XML Compressors

3.2.1 XML Compressors with DOM-like support
DDOM

The dictionary-compression based Document ObjecteMdDDOM) [55] is java
implemented and is locally homogeneous. Two arraggesent the tree structure of the
document, with the nodes arranged in document-of@men an XML document tree
with n nodes, which containselement nodes, the arrays are of lengthe. Elements

in the XML document are represented by two entireghe arrays, these are the
positions where the opening and closing tags waplgear. Other node types, such as
text and attribute node, are represented by aesiagiry in the arrays. The first array,
called TYPE, uses 8 bits per entry, and maintdiesrode type information. For an
element node, the array entries store a specia Bahie representing the type, and
either opening or closing tag indication. For a eanddat is not an element, the array
entry stores an 8-bit value representing its ngge.tThe second array uses 32 bits per
entry, to maintain for each element node an indexerto its name in the ELEMENT
dictionary (the same value is stored at the passtiof the opening and closing tags).
For other nodes that have a value, the array masthe indexes of the data values into
their respective dictionaries (discussed below).

Text nodes are maintained in dictionaries associatétetio parent nodeelement
or attribute). The index value in the above array is specdia tdictionary given by
its parent node. The data values are stored agatepstring objects within the

dictionaries.

Navigation requires a linear pass over the arry8igure 3.2, we show the DDOM
data structure, with a simple XML document. We obsethat the elements (e.qg.
university , department) are stored in the ELEMENT dictionary array aneé th

textual data are stored in dictionaries accordintpéir parenglement node.

The column with the hash (#) symbol maintains tbkerences into the dictionary
arrays. We observe all textual data under <hame> tag are grouped into the same

dictionary, for example, in Figure 3.2, even thokghme> may appear as a descendant

35

Chapter 3 - Implementations of DOM and XML Compressors

Type #
<university> Document -| | # | ELEMENT
Element 1 1 | university
<department> 2 | departmer
<name> 3 | name

Computer science Element 2 4 | module-code

</name> Element 3
<module-code> Text 1
CO1003 | Element 3 # | TEXT: name
</module-code> Element 4| | 1| Computer Science
Text 1 2 | Mathematics
</department> / Element 4
<department> }i:;lement 5 # | TEXT: module-code
<name> 1| CO1003
Mathematics 2 | MA2012
</name> Element 2
<module-code> Element 3
MA2012 Text 2
</module-code> / Element 3
Element 4
</de_partr_nent> Text 2
</university> / Element 4

/Element 2

/Element 1

/Document -

Figure 3.2 -Left: Original XML document. DDOM Centre: Structuaerays, Right:

Dictionaries.

of university or department , they share the same dictionary. A limitation of
DDOM is that for different tags, which have the sadata value, the data values are
duplicated in the different dictionaries. Howewueéls unusual for an XML document to

have such a structure.

The implementation of DDOM supports read-only asc@s a document once it has
been parsed or generated, however new nodes caddeel at the end of an existing
structure. The structure arrays require 5 bytesnpee, plus an extra 5 bytes for each
element node in the document. The dictionariesheamery large, especially for XML
documents that have few patterns in its contentgdneral, document centric XML

documents will have larger space usage in DDOM thata centric documents. In

36

Chapter 3 - Implementations of DOM and XML Compressors

addition, highly nested documents have larger spaage since the cost of representing

the element nodes in the structure array is paicetwequiringlOe bytes.

DDOM does not explicitly create node objects, otifye document node and
dictionaries exist initially. As iTinyTree , the DOM nodes are generated dynamically
and contain a reference into the structure arnag,aae garbage collected once they are
no longer needed. The internal DDOM methods workatiy on the structure array.
DDOM does not directly support query operationgréfore externally a XML Query
Language (XQL) engine implemented in Java is reguan top of the DOM.

DDOM showed good compression ratios compared taeéed and another DOM
implementation called Crimson [21]. The compressaes of DDOM for data-centric
XML files were betweer2z0% to 60%. For document centric XML files the approach
had minimal impact with compression rates betwe@¥ 70 80%. However, DDOM
does not solve the problem of XML bloat, as forl ida XML documents the space

usage is 3 to 4 times the size of the file.
BPLEX

This XML compressor is locally homogeneous. BPLEa6 la very compact pointer-
based representation of the XML tree structure repdesents the data values in string
buffers [10]. There are two types of string buffafree first is for the text nodes, which
appear in the tree at the leaf nodes, the secolwd &tribute values that are associated
with the element nodes. For each string buffer w@resan array of integers,
representing for each text (or attribute) nodeldication of the text (or attribute) node
in the tree relative to other nodes in the bufiavigation and queries, such as the Core

XPath are supported without full decompression.

The main result of [10] is the very compact treeicture, which we now discuss.
Initially an unranked XML trekis transformed into a binary tree. For example, in
Figure 3.3 the tree (a) representing an XML docuneetransformed to the binary tree

(b) with the following labels: in the binary treenade that has no left child (a leaf in the

1 A tree where nodes have an unbounded list of ehil@we discuss relationship to the binary treeSdation 4.2.3)

37

Chapter 3 - Implementations of DOM and XML Compressors

®

(@) (b)

Figure 3.3 —(a): Unranked tree of XML document. (b): Binarye&mrepresenting the unranked

tree.

XML document) is denoted by the superscript 2, andode with no right child has
subscript 1. A last child node that is a leaf ipesscripted with a 0.

We observe in the binary tree that there are ofegetitions of sub-tree patterns,
which can be shared. If a sub-tree occurs more timme, then a pointer is used (to
replace the repeated sub-tree) from the parertteostib-tree to its first occurrence. In
this way, a minimal unique directed acyclic grafflAG) of a tree is obtained. For
common XML documents, the minimal DAG is about deeth of the size of the binary
tree [7]. We then represent the minimal DAG credted the binary tree (Figure 3.3
(b)) by the regular tree grammar that has thredymtons:

M - module®(student(A, student (4, student (4, student (4, student(4))))))),
A - ID?(B), B -» name®

The BPLEX algorithm takes as input the DAG and d$ind minimal context-free
grammar that ishalf to one-third of the size of the DAG in amoeiizlinear time. It
identifies patterns in the grammar, and replaceselby non-terminals representing that
pattern. In the above example, we consider theymtomh M, which contains four such
patterns ofS = student(4,y;). Thus, given the productia(y,) — student(4,y,),
each of the occurrences can be replaced by thdemoriral C. However, there is one
further occurrence of a similar patte$h= student®(A4), which can be obtained by
removing the parametegy from the patteris. SinceA is a first child ofS, removingy;

changestudent into student?.

38

Chapter 3 - Implementations of DOM and XML Compressors

Hence, if a non-terminal appears with no argumkehtan empty string is used as the
marker. With this “overloading” semantics of protians in mind, we therefore have as
output from BPLEX:

M - module? (C(D(D))),D(yl) - C(C(yl)), C(y,) — student(4,y,), A
- ID*(B),
B - name®

Construction of BPLEX is a relatively slow proceshe algorithm uses a parameter for
the maximum number of nodes and production thaegaeined (window size) in one
process. The experiments of [10] show that a winda& greater than 100 would give
better compression results of BPLEX, but would teg&eeral hours for a file size of say
100MB. However, with default parameters (i.e. wiwdsize set to 3) BPLEX takes less
than a minute. The authors of [10] mention the c@®sgion rates of the tree structure
for two files in our XML corpusSwissProt.xml 4.1% andTreebank_e.xml 34%
(for a smaller version of this file). No experimgtiave been done for a complete XML

document representation.

Results from an experimental test of BPLEX in a DQlystem have not been
provided, and detail of the support of navigaticas mot been given. However [10]
states that a DOM interface can be can be supporFtesl suggestion is made to store

the string buffers more space-efficiently usinghderd techniques in [3].
SEDOM

SEDOM [75] is a DOM implementation that support$rieval, update and XPath
operations on the document. A schema of the XMLudwent is required to specify the
abstract data model of the document. The datatsteids locally homogeneous and

consists of the following components:

(a) Name index: This stores the unique element naméaanarrays. In the first
array, the element names are stored as their patinsthe root to the element.
The schema of the document is represented as attusture, which is used to

construct the paths; we refer to each entry iratihey as aelement clasdf we

39

Chapter 3 - Implementations of DOM and XML Compressors

have m unique element classes, an index franto m, called the token,
represents an element class in (b) below. Thengpdi the element classes in
the array is given by the order of the paths indti@ema tree. The second array
of sizem stores for each entry a list of indexes wheretdhken is found in (b).

The purpose is to find the name of an element @addind its locations in (b).

(b) Framework or document structure: This represemsltcument tree as a one-
dimensional array in document-order, where eachyemquires 16 bits to
represent a node. The top 3 bits of the 16-bitevaldicates one of six different
node types, i.e. element class tokatrjbute node container block number,
attribute index in the containegxt node container block number, text node
index in the container, and an end symbol for tleenents. The other 13 bits
are used to indicate (depending on the type of hadeken as in (a), above, or

a container block number in (c), below, fext orattribute nodes.

(c) Compressed containers: Stores the data valuesgadanto blocks for fast
retrieval and updating. Each element class hagwits container, however, all
attribute values share the same container. Thispoaent is stored on disk,
whereas the other components are held in main memor

(d) Container block index: This represents indexingrimfation for each block in
the compressed containers. The information storeds follows: the token of
the element class that owns the data values icdhtiner, the block number,
the offset of the block in the file, length of théock, and the node type that
represents element of the first item in the blddke index information is stored
in an array structure organised aB-atree A B+ tree represents sorted data in
a way that allows for efficient insertion, retrié\a records, each of which is
identified by akey[4]. The pair consisting of the element class tokad the
block number are the search keys. The purpose isfitikdex is to provide
efficient access to the individual data valueshim blocks, and also to locate the

element class of the data value.

40

Chapter 3 - Implementations of DOM and XML Compressors

All navigational operations of the DONreeWalker API are supported by operating
on the framework (part (b)). These are realizesh@isin iterator approach, where the
iterator points to a position (token) in the franoekv The operations require scanning
forwards and backwards (based upon nodes storetbéoment-order), we describe

their running time performance as follows:

e ThefirstChild() operation is extremely fast. If we are at a nod widex

i, then we require the memory access of indext.

* The nextSibling() operation is potentially slow. If the sub-tree of the
current node is large, then we require the scanairige nodes in this solutions
tree until we reach the end symbol of the currenaten the next sibling node will
be at the next position in the array. TpeviousSibling() operation is

implemented analogously.

* The lastChild() operation is slow, since it requires scanning ugfiothe
array of all child nodes and their sub-tree nodesil the end symbol for the
element (parent node) is reached. Likewiseptitent() operation requires the
scanning through the array of the previous siblingdes and their sub-trees
before we get to the parent node.

* The operationextNode() , previousNode() , and attributes retrieval are

implemented similarly to the above operations.

Retrieving text values requires retrieving indetormation from the container block
index (see (d)), given we know the desired blodeiwe load the block from disk into
a buffer in main memory and then retrieve text gallihe retrieval of an element name
requires a lookup in the element array (a) forghe with matching index value from

the framework, and then to get the path.

In [75] the experimental evaluation of SEDOM is aivwith comparison made
against pointer-based DOM implementations. The ntamre delay in the parsing
process of SEDOM is due to the compression and d3lof the data values. As a

41

Chapter 3 - Implementations of DOM and XML Compressors

result, accessing node names, node values and dddication of the tree is slower

than most DOM implementations, e.g. Xerces, butpgamable to XML compressors.

Results of the memory usage of SEDOM and the poebdsed DOM
implementations are given only on the data strestuhat are held in main memory.
Therefore, they exclude the textual data contaihedd on disk. The main memory
usage of SEDOM is less than 6.9% of the main memggge of the pointer-based
DOM implementations for the XML files discussed [iR5]. In addition, the data
structures of SEDOM that represent the structurthefXML documents together are
only a factor of 0.1-0.3 of the file sizes of thrggnal XML documents.

We provide a very loose comparison of SEDOM to thanter-based DOM
implementations, which includes the textual datat@imers uncompressed. The textual
values of the XML files in our corpus (see Sect®B) were on average 46% of the
XML file sizes. Therefore, SEDOM would be a factir0.56-0.76 of the file sizes of
the original XML documents; we assume the memorgpgas of the structural
components of SEDOM detailed in [75] would be theme for the XML documents in
our XML corpus. In essence, the memory usage of @®DOncluding textual data
containers is smaller than the original file sizediereas the pointer-based DOM
implementations enlarge the original file sizesto8.6 times (see Table 7.3); this can
be interpreted in [75].

The advantage of SEDOM is that it supports DOM tgdzperations and that it
supports documents of size much larger than thetgmebased DOM, given the same
memory resources because the framework is muchesntiadn the tree representation
of the pointer-based DOM and that the text valugtaoers are held on disk. However,
the only navigational operation for which times asported in the paper is the
firstChild() operation, which is around 20 times slower tham plointer-based
DOM. Clearly, the other navigation operations woslibw similar or much worse
running times, since several scans in the framewaiky is much slower than a single

pointer access for the pointer-based DOM (e.g. &&rc

42

Chapter 3 - Implementations of DOM and XML Compressors

3.2.2 XML Compressors

We now review two specialized XML compressors thettieve excellent compression
ratios ([13] [48]), but do not support query opemas without the de-compression of the

XML document in its entirety.
XMill

XMill [48], a locally homogeneous compressed repmggtion of XML documents
shows good compression performance in terms of &nte memory usage. There are

two main phases during the parsing process:

(a) Separating Structure from Content Start tags are replaced by an integer value
relating to the element name in a dictionary agantaining all unique elements
used in the document, which reduces the space ussgepeated tags are
replaced by the codes. The end tags are replacdtelsymbol/. Attributes are
represented aslémen} tags with the symbo@ prefixed to its name in the
dictionary array (which distinguishes attribute name from arelementname).
Each data value (including attribute values) islaegpd by a container ID
number from (b). The structure of the XML documentXMill's compressed
structure was 1%-3% of the compressed file (foa-dantric files), but was
approximately 20% of a certain document-centrie fifreebank.xml , see
Section 3.3).

(b) Grouping data values Each data value is uniquely assigned to one data
container. The mapping from data values to contaireresolved by the data
value’s path and by user parameters to assign icensato specific paths. This
allows the user to group into the same containata dalues of the same type or
with similar patterns of data, hence aids bettanm@ssion. For example, the
data values relating to the pdboc/Person/Title and/Doc/Book/Title
may have different patterns of data, and shouldetbee be stored in different
containers. The data containers are compressedrdaggoto semantic
compressors on the data; these are built-in enspdesigned to encode specific

data type and perform better according to the pettef the data. For example,

43

Chapter 3 - Implementations of DOM and XML Compressors

Structure Container
TO T1 T2 C2 T3 C3 /T4 C4/ T5 C5I6 C6 T7 C7 / /] T1 ...

Data Containers

c2[XML C5 | 2007..
C3| OND... C6 | Development i ... |
C4| spoMm Design. Cc7 | C++.. |

Figure 3.4 -Abstract view of XMill for a single book in the XMdocument of
Figure 2.1.

the run-length encodes integers more efficiently (particularly vie have
duplicated values) than if, we used another encodBuring compression,
default settings are applied, however the user spmtify as expressions the
encoders to use for the containers, and to linkter encoders not available in
XMill.

Figure 3.4 shows a conceptual view of the compredseument produced by XMill for
a simple XML document. The structure of the XML dowent is maintained by
applying dictionary encodings of the tagsokshop , book , author , etc (encoded as
TO, T1, T3, etc). The attributedcatalogue is encoded a32. The data values are

arranged in the containers according to their gaesn

XMill compared well against the generic compressdip. The compressed file was
45% — 60% the size of GZip for data-centric documents widfadlt settings: using
semantic compressors, XMill reduced the siz83% — 47% of GZip. For documents

with mostly text, XMill was only slightly better.

XMill is one of the first specialised XML compresso However not supporting
guerying over the compressed data has limitedgmieation mainly to archival and

transmission.

44

Chapter 3 - Implementations of DOM and XML Compressors

XMLPPM

XMLPPM [13], a locally homogeneous compressed regmeation of XML documents
shows good compression in terms of time and merbgrapplying the technique of
encoding SAX streams and on Prediction by Partiatddl (PPM) encoding [17]; this
technique is calletMultiplexed Hierarchical ModelingMHM).

In summary, the PPM model maintains statistics @vipus symbols seen so far in
the uncompressed stream. For each symbol, the n®dskd to estimate a probability
of the next symbol in the stream. The PPM compoassncodes the symbols using
arithmetic coding, although it is possible to uieeo encodings [13].

The MHM technique handles the SAX event streamsived during parsing within
four PPM models; one for element and attribute rsa®yms), one for the element
structure Elts), one for attribute valuesAfts), and the other for text values
(Chars). The models operate independently, but sharesacte one underlying
arithmetic coder.

Table 3.4 shows the status of the four PPM moddienwan XML document is
converted into a corresponding stream by XMLPPM;tfi@ Syms model, the string of
the XML name is stored the first time the name apmeand other times a unique byte
code is used. The byte code is sent toBlhte model to indicate a start tag (e.g. in
Table 3.4 thebook element has the byte co@&). When an end tag is received, the
token FF is sent to theElts model representing the end tag. Attribute names. (e
catalogue) are sent to th&yms model and the attribute name token (O&) are
sent to theAtt model. Attribute values, such aXML, are sent to thétts model
with their corresponding attribute name token, @& Data values, such a®ND, are

sent to theChars model.

45

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.4—Multiplexed hierarchical modelling in XMLPPM. TiModel is a snippet of an
XML document in Figure 2.1.

Model <book atalogue= “XML" > <author> OND </author> |... |</book>
Syms: book 00 |catalogue 00 author 00

Elts: 01 02 FE <02>FF <01>FF
Atts: <01>0D XML 00 FF

Chars: <02>0OND 00

MHM breaks existing homogeneous property, due ® ghveral models used. To
restore the homogeneous property in XML documewfsich aids the prediction
process, XMLPPMinjects the enclosing token index (i.e. the token is ia thrmat
<nn>) into the correspondinglts , Att , or Chars model immediately before an
element , attribute , or data value is encoded (see Table 3.4). Thekens$
indicate to the models that a particular tokenligen seen, without explicitly encoding

or decoding it.

XMLPPM has the benefit over XMill in supportirgnline processing, which means
the compressor is able to stream the compressed tdathe decoder, rather than
requiring the entire compressed data before decessmm can begin (i.effline). [13]
claim XMLPPM achieves compression on XML documehtst are document-centric
and data-centric, 5% and 10-35% better, respegtittehn the best existing XML
compressor (i.e. XMill [13]). However, in XMLPPM g¢hcompression time is slower

than others.

46

Chapter 3 - Implementations of DOM and XML Compressors

3.2.3 Query-friendly XML Compressors

We now review eightjuery-friendly XML compressors.
XBZiplndex

Ferragina et al. [30] present two XML processingisoThe first is an XML compressor
called XBZip, which represents the XML documenitgrcompressed format on disk,
and requires full decompression before any quergeng be done. The other tool, on
which we focus, is a query-friendly XML compresscalled XBZipindex. These
representations are locally homogeneous and aredbas the principles of the
Burrows-Wheeler Transform [9]. Their main resulttie XBW transform algorithm

that represents the tree structure of the XML dasninbetter for compression.

We describe the process with an example. The XMtudwentd of a book record
(Figure 2.1) corresponds to the trBeggiven in Figure 3.5. The opening tags such as
“<book>" are replaced by the stringBook ”. Attribute nodes are stored in the tree
aselement nodes, labelled with the symb@lat the start of thattribute name (i.e.
@catalogue) to distinguish them from element names. The wxtiata fortext
nodes or theattribute node values creates two nodes in the tree: aapecde
called theskipnode with the label ‘=’, and @ntentnode, which is the child of the skip
node. The label of the content node has the #@pmwherep is the textual value, e.g.

?#2007, andg is a terminating character ih

A pre-order traversal of' is carried out to build the arrays in Figure 3léft),
representing all nodes. The strifig,; indicates for each node if it is a last child node
(if it is, the valuel is stored otherwise, @is stored). The strin§, stores the label of
each node ifT. The stringS,, shows the upward path of nodes given from therpare
the node in the tree. The strifig.q,, Stores a concatenation of the data values in the

document.

These strings are the input into the XBW transfomhjch applies a stable sort
according to theS, component, arranging the tripl€t%,.:, Sx, Si) in lexicographical
order to produce the sdfS;,.;, S«, S;) In Figure 3.6right). We observe that element

nodes (i.e. nodes labelled with ‘<’) appear befatibutes (i.e. nodes labelled with
47

Chapter 3 - Implementations of DOM and XML Compressors

‘@’), and in this order appear before text nodes fiode labelled with ‘="). Given that
the number of nodes in the XML treetis= n + [, wheren is the number of internal
nodes and the number of leaves, thefy[1, n] contains the labels of the internal nodes
and Sy[n + 1,t] contains the textual valuepcdatgd. Since leaves have no children
Sieselil =1 fori=n+1,...,t. To avoid the wasteful representationSgf;;[n + 1, t]
they split Sx and S;gsr INt0 (Siase, Swr Spedata)- The output of XBW are the sorted

stringsSy, Sigse andﬁpcdata in Figure 3.6bottom). The strings are stored separately, as

the tree structure (i.8.c andS;,s,) and the textual content (i.8,cqata)-

The two main advantages of the output representafic(BW are as follows: firstly,
the strings fpcdata and S, uphold the locally homogeneous property in the re-
arrangement of the textual values in the transfdremce they are highly compressible.

Secondly, search and navigation operations B\eme greatly simplified.

If we are only interested in a compressed reprasientofd then the array$., ;g

andS,qata are stored compactly as possible. This is don@dngingS,,s; and S, in a

single array calledS’, where we insert after each internal label thecispéabel</ if
the previous label corresponded to a 1 b&jg,. '« andﬁpcdata are compressed using

the general-purpose compressor PpMDI [63]. The cesged representation is called
XBZip.

If we are interested in the support of navigatiod aearching, th§,,; bit-string and
the S, string are represented with the support of ReNKand SELECT operations
(we will study these in Chapter 4). This represemtawith query support is called
XBZipIndex. Also, to support navigation and seamnchthe array of labels is split into
blocks and compressed individually using the Gext tompressor, and decompression
is only applied to a single block instead of thdirenarray (in order to execute a
navigation step). The text content array is muedaand requires a more sophisticated
compression tool called the FM-Index that offerdsdting searching (essential for
XPath queries).

48

Chapter 3 - Implementations of DOM and XML Compressors

@catalogue <author <tirle

[
@XML

<book

<year

1 |
gOND 9SDOM Design gi2007

Figure 3.5 -Ordered label tree of a simple XML document

Siast S« Sz RK 1S a5t S« Sy
1|<book empty string 1| 1|<book empty string
0|@catalogue <lbook 2 1|= cauthor<book
1= @catalogue<book 3| O|@catalogue <lbook
1{@XML =@catalogue<book 4| O|<author <hook
O|<author <hook 5/ O|<title <bgok
1= cauthor<book — 6 1i<year <book
1/@OND =<author<book 71 1= <title<book
of<title <bdok 8| 1|= cyear<book
1= <title<book 9 1= @catalogue<book
1|SDOM Design #<title<book 10 1|9OND =<author<book
1|<year <pook 11/ 1/9SDOM Design F<title<book
1= Kyear<book 12| 1|/02007 =<year<book
1{@2007 =<year<book 13 1|9XML =@catalogue<book

Siase = 110001111

P

P

S«= < book = @catalogue < author < title < yea
Spcdata = BONDBSDOM Design@2007BXML

Figure 3.6 —Left: SetSafter the pre-order visit @f. Right: The sef after the stable sort.

Bottom:The three array,, Si45¢ andS,cdata, OUtPUL Of the XBW transform.

XBZip showed the best compression ratio comparethéoXML compressors that are
not query-friendly (e.g. XMill), however the compsers lie within a 5% absolute
difference in their compression ratios. XBZipindeffers 20% to 30% better
compression compared to XPRESS, XQZip.

49

Chapter 3 - Implementations of DOM and XML Compressors

XQueC

XQueC [3] has a locally homogenous compressed septation of XML documents
and supports a large sub-set of XQuery queries tpercompressed representation.

XQueC is implemented in Java, and is arrangedaridtiowing data structure:

(a) Node name dictionary The uniqueslement /attribute names are stored in
a dictionary. If there are unique names, then a unique bit-string is assigoed

each name requirinfJog, e| bits each, called tag code(which is discussed

later).

(b) Tree structure: The non-text nodes are representedase recordsstored in a
sequence. Each record entry contains its own IBn{itying the node in the
tree), the corresponding tag code, a list of IDstochildren and the ID of its
parent. A search tree is constructed and storetbprof the sequence of node
records, with the ID as the search key, to achimteer query performance. For
example, given we are at a node in the tree, togaty to the parent node
record, we retrieve the parent ID in the currerdencecord, which is then used
in the search tree to find the parent node redéod.each node record there is a

pointer to itsattribute ortext value in their respective containers in (c).

(c) Value Containers.The use of containers ssmilar to the ideas in XMill, where
the data values are stored in containers accotdirfd the root to leaf path in
the tree structure, which are strongly homogendmunse highly compressible,
and (i) the type of the data value. XQueC makes the angment based on
XMill by partitioning the containers intoontainer recordsand a compressed
value and a pointer to its parent node record @eed in each record. The
container records are grouped into lexicographiceder (for fast binary

searching) and then compressed using a text cosipneslgorithm.

A small tree structure is stored to represent umigaths in the document, this is called
the structure summary The leaf nodes in the structure summary pointthe
corresponding value container. The storing of #tisicture is somewhat redundant;

however, the purpose is to cut down the cost ofetring the whole structure tree in

50

Chapter 3 - Implementations of DOM and XML Compressors

guery operations. Indeed the space usage of thetwte summary is about 19% of the

original document size.

XQueC primarily focuses on querying; however, wedgtthe potential navigation

support on the tree structure, which is given #evs:

* firstChild() . for the current node record, the first ID in theguence of
IDs is the first child ID. We then use the seandetto find the node in the
sequence of node record.

e nextSibling() , previousSibling() . we call theparent() operation
at the current node, then get the ID of the nellirg) node (or previous
sibling), which is following (or proceeding) the I&f the current node. We

then use the search tree to find the node in ttpeesee of node record.

* parent() : the ID of the parent node is given with each nadeord,

therefore we use the search tree with the paretd find its node record.

The retrieval of text nodes requires loading ancbdgressing data from disk, however
the frequently accessed data is cached. Queriesffasently executed as follows: We
parse the structure summary for the matching p&fhthen navigate the tree structure
according to the path given by the structure sumgmBne leaf node of the path in the
tree structure points to theext value in the data container record. This is then

retrieved from the compressed storage structure.

The compression ratio of XQueC is compared with KNKPRESS [52] and XGrind
[64] (we discuss XPRESS and XGrind later). XMill eearly better in terms of
compression ratio, however, among query-friendlynpeessors XQueC appears to
compresses as well as XPRESS, and better than &Gricould even be better if white
spaces in the XML document

51

Chapter 3 - Implementations of DOM and XML Compressors

@
D EEOEO@EE)
(@) ° @ (b)

Figure 3.7— (a): Unranked tree of XML document. (b): Congsed DAG version of (a).

were ignored in the compressed representation,naXARESS. Finally, XQueC
supports a larger fragment of XPath and XQueryn tkBRESS and XGrind. The query
performance of XQueC is much better than the XQueogessor called Galax [33] in

most cases.
Path Queries on Compressed XML

Buneman et al. [7] present a query-friendly XML qoessor that is locally
homogeneous and supports the Core XPath querijesia’ one of the first to provide
compression on the XML tree structure, where theehsharing of common subtrees
technique is used to reduce the XML tree to a mahiDAG representation. They
further reduce the size of the minimal DAG repréggon by using multiplicity

counters for consecutive equal subtrees (see FRjudré)). [10] and [14] later followed
with techniques to compress the XML tree structoased upon the minimal DAG

representation.

In Figure 3.7, we show the tree structure of an XKlikcument in (a), and the
corresponding compressed DAG representation inrflipe compressed representation
the edges that have consecutive sequence of oasaddghe same node are replaced by

a single edge and marked with the appropriate wcalityy.

The pre-processing phase requires a SAX parséack and a hash table to build the
DAG in one parse of the XML document. The DAG isltbusing pointers to node
objects in main memory in a bottom-up approach;staek is used to track nodes under
construction and the hash table is used to keeg thnodes already in the compressed

instance that is being created.

52

Chapter 3 - Implementations of DOM and XML Compressors

It is possible to partially decompress the DAG esentation with some of the nodes in
the original tree that would be selected by an KPRgiery. In [7] the data values are not
compressed, therefore the original XML documeméiparsed each time we require the
access of a data value. Therefore, the compresssoitts shown were only on the XML

tree structure and not including the data value$7], they claim the compressed tree is

about% to% of the uncompressed XML tree. In regards to thergperformance, [7]

reports the result that a Core XPath qu@rgan be evaluated on an XML document

represented by a DAG in time 0(2!9! x |D|), where|D| is the number of nodes f.
Query Evaluation on Compressed Trees

Frick et al. [32] study XPath query evaluation @ampressed XML tree structures; this
is related work to that in [7] where the XML tregusture is compressed as DAG
representation. The results are theoretical, heret is no practical implementation
developed in this paper. However, they observetXRath is not easy to define from a
theoretical viewpoint; therefore, the authors shihat the XPath language can be
mapped efficiently tomonadic dataloglanguage [38]. Frick et al. show that the
evaluation problem of queries for monadic datalog @ compressed instance is
PSPACE-complete. They then show, again for XPatretexists an algorithm to solve
the monadic datalog evaluation@fk x 2% x n) time, wherek denotes the size of the

datalog program anl is the size of the compressed instance.

The complexity results above only consider unanyesdin the DAG representation.
The inclusion of edge multiplicities can have acical impact on the compression rate.
To avoid the potential problem and to representettige multiplicities, an XML tree
structure! is initially transformed to binary tree (callé®(l)), then to a minimized
binary treeM(B(I)). We show in Figure 3.8 (b) the binary tree repmné&steon of a
fragment of the XML tree structure (a), where weéha node with degree 7 and the
child nodes are duplicate nodes. In the binary tineenode withi children is replaced
by an almost complete binary tree of heighte®!. The other unary relations dfcan

be directly transferred tB(I).

53

Chapter 3 - Implementations of DOM and XML Compressors

In Figure 3.9, we show the minimisation®fl). We observe that there is a blow-up in

size by a factor that is logarithmic in the maximedge multiplicity.

We cannot draw upon any practical results in [32fompare to the other query-
friendly XML compressors, but their study shows tlerrelation of DAG
representations and XML trees. Experimental evaednatis shown in [7], [8], [14] and
[10].

Vectorizing and Querying Large XML Repositories

Buneman et al. [8] presents a query-friendly XMLmgessor that is locally
homogeneous. The XML tree structures are compreasddAG representations. This
work extends the work done in [7] to support XQuenthout decompression, where
the compressed representation only did supportXHdtte evaluation of queries yields

new, usually smaller XML tree structures, which B&G representations.

The XQuery system of [8] is calledX. The compressed XML tree is held in main-
memory. As in XMill [48], the data values are reggrted as containers (also called
vectorg. However, these remain uncompressed and are ggaupder their unique path
from the root node to the leaf in the XML tree stre. The vectors are held on disk as

separate clustered files.

In the experimental evaluation of [8], comparisdnVX is made against the SQL
Server and a few XQuery systems, including Mone{bB Galax [33]. The running
times for the queries in VX were competitive if no¢tter than the other XQuery
systems for most queries evaluated. For a partiauiary that required constructing
portions of the original XML document VX is bettdtan MonetDB by almost 2.5
orders of magnitude [8]. For the query that reqlitlee matching of all data values,

MonetDB was significantly better than VX.

54

Chapter 3 - Implementations of DOM and XML Compressors

(0)

Figure 3.8— (a) Fragment of an XML tree structure: nodedegree 7, of the same node. (b)

Binary tree representation of (a).

(a) (b)

Figure 3.9— (a) DAG representation of XML tree structurd-igure 3.8 (a). (b) Minimised
binary tree of Figure 3.8 (b).

XQZip

XQZip [14] is locally homogeneous in its compressegpresentation of XML
documents and supports a number of XPath queriesn AXMill, the data items are
grouped into containers for compression. The rd@as here are a blocking strategy on
the data value containers to reduce the amountatd tb be decompressed, and a
strategy on the tree structure of the XML docuntenteduce the tree to a DAG. The

DAG representation, called th&L Structure Index Tree (SITi¥ significantly smaller

than the original tree structure.

SIT: We maintain the tree structure of the XML documwith all duplicate sub-trees
removed. Initially we have a tree with all non-texddes, such as the element and
attribute nodes (we interpret the attribute valasgext nodes, which are maintained

along with text nodes in containers). Each nodesggned a tree node number that is in

55

Chapter 3 - Implementations of DOM and XML Compressors

level-order, and a hash ID representing the elemaeattribute name in the hash table.

The attribute names are prefixed by the speciabsyi@.

Define a tree structure 8s= (Vr, Er, ROOT), whereV; andE; are the set of nodes
and edges, respectively, aRQO0T is the unique root df. A tree nodev € V; Is a triple
v = (eid,nid, ext), wherev.eid is a Hash IDy.nid is the unique document order
number and. ext initially is {v.nid}. v.ext will subsequently contain IDs of removed

sub-tree nodes.

Each node is represented as the paieid, v.nid). The ROOT is uniquely assigned
(0,0). Before reduction of the tree, each node is camedeuasing four pointers (to the
parent, first-child, next-sibling and previous-sgilgl nodes). Sibling nodes are ordered
according to their Hash Ieid), i.e. if the children of a node at, ..., B,, then
v.B;j.eid < v.B,.eid < --- < v.By.eid. If any of the Hash IDs are equal then thd
number is used to break ties. This node orderinglacates node matching by a factor
of two, since two nodes are matched by teéirand on average, only half the children
of a given node need be searched. We now discesgrttess of reducing the tree

structure to a DAG by the following steps:

» Step 1: Branch and Branch ordering: A branch is a unique path from the
root to a leaf node in the tré&é Given two branches; = vy - - - v; -
> v, andb, =uy > - > uy - - > Uy, Wherev, andu, are leaf nodes
of T. We sayb, is ordered beforé, if when we scan through the nodes there
exists a node where eithBy.u;.eid < b,.v;.eid or eid values are the same

butnid values are different with; node lower thaih, node value.

« Step 2: SIT-Equivalence:Two branchesh; = vy - - - v; - - > v, and
b, =uy = > u - >u,, are SlT-equivalent ifv;.eid = u;.eid for
0 <i <p andp = q. The purpose of this step is to identify identicednches
in terms of theikid code. Two sub-trees are SIT-equivalent if theysiéngs
and all their branches are branch ordered andtkhbranch in each are SIT-
equivalent, fol0 < i < m andm = n, wherem andn is the count of branches

in the trees, respectively.
56

Chapter 3 - Implementations of DOM and XML Compressors

» Step 3: Merge Operator: This operator performs a merge on two sub-trges,
andt, to producet in place oft; in the tree, where is SIT-equivalent ta,
andt,. The effect of the merge operator is that the idaf# SIT-equivalent
structure is removed. Thads of thet; sub-tree nodes are usedtimnd the
nids of thet, sub-tree nodes are added to ¢ke set of the equivalent node in
t.

The construction of the SIT maintains four poingees node in the tree, pointers to the
parent, previous-sibling, next-sibling and firsitdhnode. This in turn maintains the
speed of navigation for query evaluation. The spzzge of SIT pointers is usually
insignificant, as many tree structures of XML do@nts have repeated patterns of sub-
trees, which we now reduce to only a single ocawee Construction of SIT is achieved
using the SAX parser, with time @(|Vr|) or O(|SIT||Vr]) in the worst case, where
SIT is the set of nodes in the SIT tree.

XQZip groups the data values with the same tagdate parent into the same data
value containers (similar to XQueC). We divide eaohntainer into blocks, compress
the blocks using GZip and store them on disk. Wsgaseach compressed block an ID,
which is given as the highest node ID in the trgacture that is represented in the
block. In addition, the starting position of eadbdk is stored in an array, as hash table
values. To retrieve a block contained in the cosged containers of a node, we match
the node ID with those stored in the blocks. Thenaltain the starting position of the
block using a binary search on the array to retrigkie block, which is then
decompressed. Other nodes such as processingctiwitucomment and namespace
handling are not considered in this model; howethes,authors mention that extension
for these node types is trivial. The advantagehef lilocking strategy is that in many
guery evaluations we only require the decompressioimdividual blocks hence we

avoid full decompression.

XQZip achieves approximately the same compressiatio ras XMill. The

implementation of XQZip supports most of the caratlires of XPath, with navigation

57

Chapter 3 - Implementations of DOM and XML Compressors

support directly focused on the eight XPath axd® 3peed of queries was compared
against XGrind [64], which they out-performed bfaator of 12.84.

XCQ

XCQ [56] is locally homogenous in its compressegresentation of XML documents
and supports a number of XPath queries. It makesotishe information provided by

the DTD in the compression and query evaluatiocgss.

To compress the XML document the DTD is first rey@rgted as a tree, which is used
along with aSAXparser, this we call thBSP techniqueThe DSP technique has two
purposes, (1) to extract structural informationnirahe input XML document that
cannot be directly gathered by the DTD during paysi(2) to group data values
according to their paths given by the DTD tree.

A DTD tree is traversed as the document is parsedhe next event of the SAX
parser is expected to match to the next node iDW2 tree. This process constructs the

following:

(a) Structure stream: The DTD tree is traversed to construct thisastrefor
each node, if the next node cannot be derivedttiirteom the DTD tree then
we output a special symbol, which indicates theentight is the one in the
XML document. For example, to keep track of how ynames a repetition
node group is used in the document it is inserted into the structure
stream, otherwise @ bit is inserted indicating no more repeats. Alsp dn
optional node, where the DTD specifies a choicé.at nodes, the valueis
outputted to the structure stream, representingeitigtence of théth child

that is used in the document.

(b) Data streams The DTD tree is traversed to construct the dataam. The
DTD tree knows when the next node is a data valéch is given as output
to a container of data values grouped accordinge®paths in the DTD tree.
The use of the tree path to group data into coetaimids compression,

gueries and improves upon the simple names us¥iitl. These containers

58

Chapter 3 - Implementations of DOM and XML Compressors

are divided in blocks (discussed below). The bloaks compressed using
GZip.

The data streams are represented using the semtejiPartitioned Path-Based
Grouping (PPG) andBlock Statistics SignaturdBSS). The data is compressed
according to paths in a number of streams of blodks have a BSS index per block,
which summarizes the content in that particulackld-or example, if we had a group
of numbers in a block then the BSS index wouldestbie minimum, maximum, sum
and count of the values present. Similar summar@esbe applied to alphabetic data.
When querying for a data value in a block storeddsk, the BSS index is first
consulted, which will filter out blocks that do naintain the required data, before any

block is accessed and searched.

We explain the querying process by example. In féidi7, we show a compressed

XML document in XCQ. Given the query:
record/book[@catalogue="XML’ and year/text()="2007"]

The query only involves the data streams DO andVid8first access the data stream DO
with the path keyrecords/book/@catalogue . The entire data stream has to be
decompressed since we do not know where the téltYappears. If the word ‘XML’
appears in blocks 0 and 1 out of many blocks, veam tbnly have to decompress the
blocks 0 and 1 in the data stream D3 with path/kegords/book/year for the matching
text '2007’. Once the block is found with both nfas, we then decompress the related
blocks in the other data streams to construct tiegygoutput to the user.

XCQ can be used as an XML compressor by applyingp &Zthe structure and data
streams into a single file on disk, which compredsetter than GZip and XMill (see
Figure 13 of [56]).

The compression time of XCQ is slow because treamiinitial construction of a tree
structure of the DTD and the continual traversahef DTD tree for the construction of

the structure stream. XCQ compression time is #8lidbnger than XMill.

59

Chapter 3 - Implementations of DOM and XML Compressors

In contrast, without applying the GZip to the sture stream, XCQ is query-friendly;
we are required to decompress at least a singéesti@am for query matching. Running
time performance of XCQ is not assessed [56], belirpinary results are given in their

appendix.
XGrind

The first of two query-friendly XML compressors weview that use a homomorphic
compressed representation is XGrind [64]. The stegmguired to construct the
compressed document are as follows. An initial schithe document and DTD is
required, where statistics are gathered for comgertlements and attribute names to
dictionary-based codes and to build a senari-adaptive context-freduffman coders
for the data values. The second scan performsdtualaencoding of the XML names

and data values.

We show in Figure 3.11 a simple XML document asdcihmpressed representation
using XGrind. Like XMill, the elements and attribuhames are dictionary encoded:
each opening tag is encoded by the charattdollowed by its unique element ID, i.e.
thebook element is replaced by0. The closing tags are encoded by the charagter
An attribute node is encoded by the charactérfdliowed by its unique attribute ID.
The Huffman code of a data valwels denoted by (x). For attributes that are of an
enumerated type, XGrind uses the DTD to assign thespecial value that is held in a

symbol table.

XGrind claim compression on average is 33.9% offilleesize, which is based upon
files used in [64]. XGrind supports a variety ohumon XQL queries, such agact-
match , prefix-match , range-match and partial-match . To query the
compressed representation the query expression lmusbnverted into a compressed
equivalent form. This is achieved byexical analyzetthat replaces the tag names in the

guery expression to the

2 XCQ appendix (2005) experimental data of XCQ pennce: http://www.cs.ust.hk/~wilfred/XCQ/appnditip
60

Chapter 3 - Implementations of DOM and XML Compressors

Structure Stream bo bt b2 b3
Keys for path-based grouped data streams:
DO: /records/book/catalogue
D1: /records/book/author
D2: /records/bookititle ' pecompressed data block
D3:/records/book/year [Compressed data block

Figure 3.10— XCQ. Decompressed data blocks when processiny gquample.

<book catalogue="XML"> TO A0 H(XML)
<author>OND</author> T1 H(OND)/
<title>SDOM Design</title> T3 H(SDOM Design) /
<year>2007</year> T4 H(2007)/

</book> /

Figure 3.11— Left: Example XML document. Right: compressedriX@ representation.

dictionary codes and data value codes used indhgessed representation. A byte-
by-byte comparison is made on the compressed doduiorea pattern matching query.

We observe that although for such queries we adembmpression, the compression
ratio of XGrind is much worse than most XML com@m@s and the construction time
is slow since it requires two scans of the XML doeunt.

XPRESS

The second query-friendly XML compressor that isnbenorphic in its representation
is called XPRESS [52]. The key ideas are BReverse Arithmetic Encodingethod
which encodes a labelled path of tags into unigtervals in the rangg.0,1.0) and the
automatic type inferencehich applies different encoders (e.g. Huffmancelieg) to
the individual data values, depending on their dgfe. We examine the Reverse
Arithmetic Encoding by the use of a simple exam@e/en an XML document of a

university’s organisational structure:

61

Chapter 3 - Implementations of DOM and XML Compressors

<university>
<faculty>
<department>
<module>modulel</module>

</department>
</faculty>
</university>

Table 3.5- The interval[0.65, 0.66) is obtained for the simple path

university/department/module

Simple path Interval
module [0.5,1.0)
department/module [0.65,0.75
university/department/module [0.65,0.66

In the compression phase of XPRESS, we requirest@os of the XML document, the
first scan performs the gathering of statisticpriavide the necessary information in the
second scan, which compresses the XML documenteSirthe statistics gathered in
the first scan are the element tags and their &eqy of appearance. In our example
above, we have the following element tagsversity , faculty , department and
module . Suppose that the frequency of appearanceurdfersity , faculty
department andmodule tags in the document is 0.1, 0.2, 0.2 and 0.5exsely.
Initially we assign each tag name an interval, depg on how frequently they appear
in the document. In our example, we give the follay intervals: university
[0.0,0.1), faculty [0.1,0.3), department [0.3,0.5) andmodule [0.5,1.0). The size

of the interval off is proportional to the frequency of the elemEnt

Reverse Arithmetic Encoding operates on paths.igaré 3.4, we show the output
steps in the functioneverse_arithmetic_encoding defined in [52] to obtain
the interval[0.65, 0.66) for the pathuniversity/department/module . We observe

that if a simple patl® has an interval, then the interval of all suffix paths Bfcontains
62

Chapter 3 - Implementations of DOM and XML Compressors

1, . For example, the interval that represents ment path /department/module
contains the interval that represents the element ath:p
“/university/department/module ", since ‘/department/module " is a suffix.

It is easy to compute sub-path queries with theepat//*/subpath” .

XPRESS stores a compressed XML document by reglathe start tags by the
minimum value of the subinterval depending upon pia¢h. In the decompression

phase, the tags can be obtained by a binary seanotervals.

Type Inference engine The data type information received in the parsihgse is
passed to a dictionary based type inference erfiginencoding. For the integer data
types, the type inference engine uses the pathnafioon to apply binary encoding and

then differential encoding to the set of values.

Data types are categorized into two types for @wxtlata. Firstly, they have the string
type, which is for general text data; they applg tHuffman encoding to such data
types. Secondly, the enumeration type can handtendi patterns of the textual data up
to 128. If the enumeration count is above 128 tiendictionary encoding is used for

such textual data. This selection of the best-duitga value compressor is automatic.

To evaluate queries on the compressed data, & gath is transformed into an
interval and then XPRESS scans the compressetbfikalues in that interval. Integer
data values are converted to encoded values forchingt in the file without

decompressing. Textual data require a partial dpcession.

We observe that XPRESS does not cover all quemesravigational support is
limited. Improvement is made upon the ideas of X@&rby encoding the tree paths
instead of the element tags themselves. This pesviirect support for path-based
gueries. XPRESS suppossact-match andprefix-match on the compressed data,
partial-match and range-match on decompressed data, and the XPath axes
child , descendant and attribute . The support ofrange-match on the

compressed data is only for numeric data.

XPRESS claim compression on average is 27% ofilbesize, which outperforms

XGrind especially where data values are integersimeration and floating point.
63

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.6 —Comparison of XML processors and compressors.

XML Tool Compression C_:ompression XML language |Navigation|Update |Homomorphic
ratio time support support [support
TinyTree NA NA XQuery, XSLT, |Yes No No
XPATH, DOM
DDOM NA Slow DOM Yes No No
BPLEX Very good Slow DOM Yes No No
SEDOM Good Fast DOM Yes Yes No
XMILL Very good Fast Not supported No No No
XMLPPM |Very Good Slow Not supported No No No
XBZiplndex |Very Good Slow XPath Yes No No
XQueC Poor NA XPath, XQuery| Yes No No
VX Poor NA XPath, XQuery | Yes No No
XQZip Very Good Fast XPath 1.0 Yes, slow No No
XCQ Very Good Fast XPath 1.0 subset Yes, slow No No
XGRIND Poor Slow XPath subset Yes, slow No Yes
XPRESS Poor Slow XPath subset Yes, slow No Yes

However, on average it is still 20% worse than XMibr querying, XPRESS takes few
seconds to evaluate queries in [52], which is béitien XGrind by a factor of 2.83. For
navigation support, if a node has many descendastsipling will be located quite far
away in the (compressed or original) file. In suppof the operations

nextSibling /previousSibling() , next /previous() XGrind or XPRESS may
be quite slow.

3.2.4 XML Compressor Summary

We now summarize our discussion of XML compressorsluding TinyTree , in
terms of compression ratio, compression time amdtfanality. We found that XMill
had the best average performance in terms of casipretime and compression ratio;
however, its lack of query support limits its u3de support of DOM navigational
operations by the query-friendly XML compressorssvgow, this is because they are
designed to support path-based queries, whereas BQMsigned for a much wider

scope of applications in-mind and features navigatipon the documents. See Table
3.6 for the full details.

64

Chapter 3 - Implementations of DOM and XML Compressors

3.3 Statistics of XML documents

We now describe a corpus of XML documents takemf[@3] and [74]. Fifteen XML
documents have been selected based on their widge raf characteristics and are
described in Table 3.7. We also used synthetic XNdés that were created using the
xmlgen data generator [70]. Xmlgen generates a typicaligil-structured XML
document, based upon processes of an auction weld$ie file sizes range from
0.13MB to 593.6MB and the DOM node count of thetesfrange from7,000 to 25

million nodes.

In Table 3.8, we show the count of node types, umitpg/attribute names that
appears in the DOM trees for the XML documents um corpus, we also show the
count of element and attribute nodes that appetr ainamespace. We include the
statistics of the synthetic XML files, which we naXMARK([file size]+MB For all our
files, the majority of the nodes arext nodes 60% of nodes in the tree, on average
over all files). The next largest types are ¢lenent nodes with38% on average over
all files. We have not includeattribute nodes in these averages, as they are not a
part of the tree and not all XML documents use thelowever when they are used,
there is sometimes a large number of them, e.g.fitaeMondial-3.0.xml has
104,795 nodes in the document, of the$&% areattribute nodes, also in the file

w3cl.xml 28% of the nodes asgtribute nodes.

We examine the properties of the DOM tree represems of the XML documents
further in Table 3.8. The tree properties we exammeach file are the proportion of
leaf nodes to non-leaf nodes, the maximum deptthentree, which is the maximum
number of nodes in any path from the root to a tesfe. We also examine the largest
degree of a single node, and observe that thera Emge number of leaf nodes, which
have node degree zero. The maximum depth of an XM generally is quite low.
However, there are some documents that have ay fdekep tree, for example,

Treebank_e.xml has a maximum depth 87.

65

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.7- Description of XML files in our XML corpus takendm [73].

XML Documents: | Description:

Elts.xml Describes chemical elements in the periodic table.

w3cl.xml W3C specification documentation

w3c2.xml W3C specification documentation

Mondial- World geographic database integrated from the Citl&/Factbook, the
3.0.xml International Atlas, and the TERRA database amahgrasources. From

FLORID-Mondial case study

Partsupp.xml

Part/Supplier relationship. TPC-H Benchmark, 10 WéBsion in XML form.
Converted to XML by Zack Ives. From Transactiond@ssing Performanc
Council (TPC).

D

[ad

Orders.xml Orders. TPC-H Benchmark, 10 MB version, in XML for@onverted to
XML by Zack Ives. From Transaction Processing Renonce Council
(TPC).

XCRL.xml XML files using the Extensible Customer Represéntatanguage format
(XCRL) on customer relationship management

Votable2.xml File created in the VOTABLE XML format defined ftite exchange of dat

Nasa.xml Datasets converted from legacy flat-file formabiXtML and made availab
to the public. From GSFC/NASA XML Project.

Lineitem.xml Line items. TPC-H Benchmark, 10 MB version, in XNtirm. Converted to
XML by Zack Ives. From Transaction Processing Renonce Council
(TPC).

XPATH.xml Is not in [73], but uses the LocusXML schema taespnt geospatial

information in an XML format, it stores annotataghtean genomic data.

Treebank_e.xml

English sentences, tagged with parts of speechteiieodes have been
partially encrypted because they are copyrightetiftem the Wall Street
Journal. This document has a deep recursive steudtniversity of
Pennsylvania Treebank project.

SwissProt.xml

SWISS-PROT is a curated protein sequence datalvhie strives to
provide a high level of annotations (such as trsedgtion of the function o
a protein, its domains structure, post-translatiomadifications, variants,
etc.), a minimal level of redundancy and high lexfahtegration with other
databases. From ExPASy - SWISS-PROT and TrEMBL.

DBLP.xml The DBLP server provides bibliographic informatmmmajor computer
science journals and proceedings. DBLP stands iptaDBibliography
Library Project. From the DBLP Homepage.

XCDNA.xml A cDNA library of a collection of cloned fragmentsenverted into an XML

form.

66

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.8— Size and node distribution according to DOM nogbe of all the XML documents
in our corpus. Assume all XML documents have a dwmnt node. (EL: Element, ATT:
Attribute, ER: EntityReference, ENT: Entity, COMo@ment, DT: DocType, NS: Namespace)

XML FILES |SIZE| NODES |TREE NODES| EL ATT | TEXT | ER |ENT|COM|DT|UNIQUE|ELEM & ATTR
(MB) NAMES| WITH NS
Elts 0.13 6927 5992| 1897 936 3896 ol ol 197] 0 22 0
w3ct 0.22 18809 13299 4176 5190 7689| 1430|321 1| 1 64 4216
w3c2 0.19 16984 12169| 3696 4495 7102| 1367|321 1| 1 63 3736
Mondial-3.0 11| 104795 57373| 22423| 47423| 34947 of o 1] o0 50 0
Partsupp 2.2 96004 96004| 48001 1| 48001 of o oo 8 0
Orders 51| 300004 300004| 150001 1| 150001 of o oo 12 0
xCRL 8.5| 333245 250423| 98723| 73823| 155625 o| 0|5073| 0 112 0
Votable2 15.6| 1991870 1991193|1150175 678 840989 ol o 27| 0 29 2
Nasa 23.8| 1481852 1425536| 476646| 56317| 948888 of o oo 70 30152
Lineitem 31.6| 2045954 2045954(1022976 1| 1022976 of o oo 19 0
XPATH 49.8| 2522571 2522572| 840857 0| 1681713 of o oo 42 0
Treebank_e 82| 7312613 7312613(2437666 1| 4874945 of o oo 251 0
SwissProt 109.5| 10599084 8409226 (2977031(2189859| 5432193 of o oo 99 0
DBLP 127.6| 10595379| 10191037|3332130| 404276| 6792148|66756| 67| 0| 1 40 0
XCDNA 593.6| 25221153 25221154|8407051 0[16814101 of o oo 210 0
XMARK2MB | 2.72| 123,582 114404| 40600| 9178| 73803 ol o oo 77 0
XMARKAMB | 3.94| 179,435 166114| 58957| 13321| 107156 of o oo 77 0
XMARKSMB | 7.82| 361,187 333867| 118669| 27320 215197 of o oo 77 0
XMARK16MB [15.63| 719,454 665188| 236322| 54266| 428865 of o oo 77 0
XMARK32MB |31.23| 1,422,486 1315903| 467275 106583| 848627 of o oo 77 0
XMARK64MB |63.10| 2,877,347 2661006| 945248| 216341| 1715757 of o oo 77 0
XMARK128MB|124.8| 5,689,748 5261055(1869171| 428693| 3391883 of o oo 77 0
XMARK256MB|256.9(11,697,794| 10816629|3842922| 881165| 6973706 of o oo 77 0

67

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.9- Statistics of XML documents trees for our corpus

XML FILES TREE NODES LEAF MAX. DEPTH LARGEST
DEGREE

Elts 5992 68% 4 225
w3c1 13299 61% 16 412
w3c2 12169 62% 15 412
Mondial-3.0 57373 78% 6 1911
Partsupp 96004 50% 4 16001
Orders 300004 50% 4 30001
xCRL 259423 80% 19 3113
Votable2 1991193 58% 8 19999
Nasa 1425536 67% 9 4871
Lineitem 2045954 50% 4 120351
XPATH 2522572 67% 6 42075
Treebank_e 7312613 67% 37 112769
SwissProt 8409226 1% 6 100000
DBLP 10191037 67% 7 657717
XCDNA 25221154 67% 8 82237
XMARK2MB 114404 71% 13 1225
XMARK4MB 166114 71% 13 1785
XMARK8MB 333867 71% 13 3571
XMARK16MB 665188 1% 13 7241
XMARK32MB 1315903 1% 13 14281
XMARKG64MB 2661006 1% 13 28865
XMARK128MB 5261055 1% 13 57121
XMARK256MB 10816629 71% 13 117299

3.3.1 Textual Data

Table 3.10 shows the statistics of the textual dathered belonging to attribute values
and text nodes of files in our XML corpus. We rdpbe percentage aéxt nodes in
the DOM tree, leaf nodes, average length of theviddal text data and their total
length. Forattribute nodes, we report the count of nodes, total lemdthttribute

values and average length of each attribute value.

There are a number of observations on the texttal dirstly, textual data comprises
on average 46% of our XML file sizes. However, fineportion varies a lot depending
on whether the file is data centric or documentieenFor example, the textual data of
the Treebank_e.xml data-centric file accounted for 70% of the fileesiwhereas a

document-centric file such ameitem.xml only accounted for 19%.

68

Chapter 3 - Implementations of DOM and XML Compressors

Table 3.10 —Statistics on textual data distribution. We reflibetsize, text & attributes node
count, % leaf nodes in tree (% of text nodes) arealage textual data length. For negligible we

use NEG.
Text Nodes Attribute Nodes

File Size #nodes %Leaf % Text avg Text Len. #nodes |Value Len. Avg

Elts 128KB 3896 68% 65% 7 25KB 936 14KB 15
w3c1 224KB 7689 61% 58% 15 116KB 5190 36KB 7
w3c2 200KB 7102 62% 58% 16 110KB 4495 26KB 6
Mondial-3 1.1MB 39.3K 78% 61% 11 392KB 47K 296KB 6
Partsupp 2.20MB 48.0K 50% 50% 23 1.1MB 1 NEG 8
Orders 5.1MB 150.0K 50% 50% 10 1.5MB 1 NEG 6
xCRL 8.5MB 155.6K 80% 60% 12 1.8MB 73K 1.2MB 17
Votable2 15.6MB 841.0K 58% 42% 7 5.2MB 678 7KB 10
Nasa 23.8MB 948.9K 67% 67% 16 14.4MB 56K 776KB 14
Lineitem 31.6MB 1.0M 50% 50% 6 6.0MB 1 NEG 8
XPATH 49.8MB 1.7M 67% 67% 8 13.0MB 0 0 0
Treebank_e 82MB 4.9M 67% 67% 12 57.4MB 1 NEG 8
SwissProt 109.5MB 5.4M 71% 65% 7 35.4MB 2.2M 13.2MB 6
DBLP 127.6MB 6.8M 67% 67% 10 64.0MB| 404.2K 7.3MB 19
XCDNA 593.6MB 16.8M 67% 67% 16 255.8MB 0 0 0

The average individual data value length over dLXiles for text nodes and attribute
values was approximately twelve and nine charactespectively. The range of value
length reaches up to twenty-three characters irfinand as low as six characters long

in another file.

The proportion of leaf nodes present in all ouedilon average wast%. This is
expected as we have already noted that there rge daunts of text nodes in the XML
documents (see Table 3.8), and the fact that taegat have children in the DOM. It is
interesting to note that text nodes comprise 91984 @f the leaf nodes in our XML

files.

In summary, based on the statistics gathered ineTalB, Table 3.8 and Table 3.10

we make the following observations:
i. XML documents have many text nodes.
ii. average length of a text node is relatively low.

ii. XML documents often have large attribute node count

69

Chapter 3 - Implementations of DOM and XML Compressors

iv. unigue XML names are few.
Trees have:
v. few node types that are not of the element, texttoibute node type.
vi. relatively low depth.
vii. large leaf node count.

some nodes with large degrees.

3.4 Summary

We have studied in detail the Xerces XML proces3@rces provides an almost full

implementation of the DOM, but uses a lot of spatfe. have also studied in detail the
SaxonTinyTree data structure, which has reduced the space ugagpresenting the

tree to 20-30 bytes per node, even though it iStdunto support of read-only

operations.

The XML compressor XMill [48] appears to be thestéor compression (closely
matched by XBZip [30]), and is much better than yngeneric text compressors. XMill
and XBZip minimize storage and transmission timat Querying is not directly

supported. We also studied a number of query-fiedxdML compressors [3], [10],

[12], [30], [52], [55], [56] and [64], which answegueries inspecting only a small
fraction of the XML file and in principle only adction of the compressed file is
decompressed as well. However, only a few of thgssy-friendly XML compressors
offer fast support for DOM-like navigation, for @rgle moving from a tag to its sibling
in one operation. Other compressors such as BPLEX ¢r XBZIPIndex [30] do

support navigation using the compressed represemtaf detailed experimental

evaluation focusing on navigation speeds is naigeed in either paper.

We have discussed DOM implementations such as D)&8YIfor data centric files
and SEDOM [75], which present a space efficienteggntation supporting both read-
only and update operations. Running time perforraafadhe navigational operation is

reported only for thdirstChild() operation, but it is stated in [75], the other

70

Chapter 3 - Implementations of DOM and XML Compressors

navigation operations give similar response timdtepa, even though they are

potentially slower, e.dastChild()

We tried to get some understanding how best toesgmt XML documents by

examining the characteristics of a range of XMLwuoents in our corpus.

71

Chapter 4
Succinct Data Structures

Succinct or highly space-efficient, data structures thgiport operations rapidly were
pioneered by Jacobson [44]. Succinct data strustiepresent certain data objects; for
each kind of object, we begin by giving theauccinct lower boundwhich is an
information-theoretic lower bound on the amountspbce needed to represent the
object. We then discuss the corresponding datatates that use a small amount of
space in addition to the succinct bound to suppoimber of operations upon the data

object.

4.1 Information-theoretic lower bounds on space usa ge

The succinct lower bound on the space requireddi@ an object can be obtained as
follows. Suppose that the algorithm knows thatdbgect that it needs to represent is
one object from a sétof objects. Then, the algorithm must fkgS|] bits’ to represent
an object fromS in the worst case (otherwise, the algorithm wordgresent two

distinct objects fron$ the same way). We now give examples of succinvegétdounds.

4.1.1 Bit-strings

The set of objects here is all bit-strings of léngt We assume that the algorithm
knows that it has to store a bit-string, and alsovks the length of the bit-string. Since

there ar&™ such bit-strings, taking the logarithm base twahig number, we get:
Proposition 4.1.The succinct lower bound for representing bit-graf lengthn bits isn bits.

Remark — The succinct lower bound of a bit-string indicathat the best possible
representation of a bit-string is given by writitige bit-string down itself. In other

words, the obvious representation is succinct.

4.1.2 Balanced Parentheses

The set of objects here is all balanced parenthssagys of lengtl2n. A balanced
parentheses string of leng#m is a string which containg opening andn closing

parentheses, and which is balanced, i.e., witlniy prefix of the string, there are

3 We usdg x to denotdog, x.

12

Chapter 4 - Succinct Data Structures

always at least as many opening parentheses asglumrentheses. We assume that the

algorithm knows it has to store a string2af balanced parentheses.

(M) 000 O)Xo) OeH) 0O0)

Figure 4.1-The set of balanced parenthesesfer 3.

It can be shown that there afg = ﬁ(zrf) such objects in the set, whetgis thenth

Catalan number. For example, for= 3, we havel; = (1/4) x (6 x5 x4)/6 =5, and
there are five sequences of six balanced parergl{Eggure 4.1). Taking the logarithm

base 2 of’,, we obtain:
Proposition 4.2. The succinct lower bound for representing a balahcsequence ofn

parentheses i8n — O(logn) bits.

4.1.3 Ordinal trees

The set of objects here is alldinal trees withn nodes. An ordinal tree is an arbitrary
rooted tree where the children of each node areredd We assume that the algorithm
knows the number of nodes. It can be shown thaethes(,,_; ordinal trees om
nodes. For example, there ag= 5 ordinal trees witm = 4 (see Figure 4.2). Since

the order of children matters, the third and founttiinal trees below are different.
Taking the logarithm base 2 6f_; we obtain:

Proposition 4.3. The succinct lower bound for representing an ortimee withn nodes is
2n — O(log n) bits.

OB SR GO

Figure 4.2—The set of ordinal trees far= 4. Root node is shaded in grey.

73

Chapter 4 - Succinct Data Structures

So B, A g

Figure 4.3- The set of binary trees far= 3.

4.1.4 Binary Tree

The set of objects here is all binary trees withodes. A binary tree is a rooted tree

with each node having space for a pointer to aaledt a right child node; nodes may
have only one child node (left or right), bothnar child nodes (leaf node). It can be
shown that there ai@, such objects in the set, for example,”fot 3, there are€; = 5

binary trees on three nodes (see Figure 4.3).

Taking the logarithm base two 6§ we obtain:

Proposition 4.4.The succinct lower bound for representing a birtaeg ofn nodes is
2n — O(logn) bits.

4.1.5 Prefix-sums
The set of objects here is a sequence (x,...,x,) of n positive integers that add up
tom. We assume that the algorithm knowsandm. It can be shown that there are

l= (’7’1‘_"11) such objects in the set. For example, o= 3 andm = 6, we havel =

2L~ 10 sequences: (1,1,4), (1,4,1), (4,1,1), (1,2,3)1,8, (2,3,1), (1,3,2), (3,1,2),

2!3!

(3,2,1) and (2,2,2). Taking the logarithm base t@fol, and using the inequality

n
(M) < (%) [20] we obtain:
Proposition 4.5. The information-theoretic lower bound for represegta sequence oft

positive integers that add upteis [Igl] < nlg (m) + nlge bits.

n

74

Chapter 4 - Succinct Data Structures

4.1.6 Succinctness vs Data Compression

Succinctness is related to, but distinct from, dat@pression. It can be applied to many
data types such as numeric values, strings, deties, tree, etc. Representing random
data, the space usage of a succinct representatisually good, but it misses out on
space savings for regular data, typically captubgdcompression algorithms, for
example, repeated tags in an XML document. In @adr, the size of a representation
can be estimated quite accurately using the nuidaput entities in an instance of the

data structure.

4.2 Succinct Data Structure

We now describe the succinct data structures toesept the data objects given in
Section 4.1. The space usage of these data stsctwe designed to be close to the
corresponding succinct lower bounds and they supperdesired operations rapidly. In
what follows, we say thgf(n) = o(g(n)) if lim,_,, f(n)/g(n) = 0. Thus, a space
bound ofn + o(n) bits means a space bound(df + ¢,) n bits, wheree,, goes to
zero asn grows. For each data structure we state the opesat supports, the obvious

or naive solution, the succinct solution and itplementation details.

We give the implementation details because theamphtations described here are
used together in the Succinct DOM application prese in Chapter 7. In addition,
some of these implementation details are not ginghe published literature, hence the
space usage formulas we give in this chapter allewio verify the space usage costs

stated for the DOM application.

4.2.1 Bit-Vector Data structure
The object to be represented is a bit-strin@f lengthn (ref. Section 4.1.1). The
operations to be supported are:

e SELECT(x,i): Given an index, returns the position of théh 1 bit in x.

* RANK(x,i): Returns the number @t to the left of, and including, positiornin

X.
75

Chapter 4 - Succinct Data Structures

SELECT and RANK are defined analogously for th® bits in the bit-string; the
operations are collectively referred to RANK and SELECT We refer to a data
structure that supports (a non-empty subseRé#iNKandSELECToperations on a bit-

string as ait-vector.

For example, ik =1 001 10 1 GhenSELECT(x, 4) = 7 (the fourtHL is in position
seven) andRANK(x, 4) = 2 (there are twas in positions one to fourfhese operations
are inverse of each other, in th®ANK(x, SELECT(x,i)) =i and RANK(x,
SELECT(x,i)) =i for the indexi contained withinx. Given RANK(x,i) =j we
observe thaRANK(x,i) is computed for free ds- j. Hence, by supportinRANK,
we automatically supporRANK without requiring any additional data structures.
Therefore, in this chapter when referringRANK it implies both thd(RANK andRANK

implementation together, even thougANK is discussed.
Naive Representation

A naive representation to supp&ANK would be to explicitly store the count b at
each position in the bit-string in an array of léng, with space usagelgn bits. As
noted above,RANK would be automatically supported. F&ELECT, we would
explicitly store the position of eadhin the bit-string in an array of length, wheren,
is the count ofls, therefore the space usagenidgn bits. SupportingSELECT, is
analogous, but applied to tBs. SupportiniRANKandSELECTtogether require2nlgn
bits.

Succinct Solution
The following is known about a bit-string of length

Theorem 4.1. ([51], Chapter 37)There are bit-vector data structures that use¢ o(n) bitsto
supportSELECTandRANKoperations inD(1) time.

76

Chapter 4 - Succinct Data Structures

Implementations

We used three bit-vector implementations develdpeNaila Rahman; in what follows,
we refer to these as CJ, which is based upon ioed®], [16], [36] and [44], KNKP,
which is based upon ideas of [47], and CNEW, whglbased upon ideas of Naila
Rahman [23]. CJ and KNKP implementations suppod BRANK and SELECT
operations, but we only describe th8ELECT, operation $ELECT, works
analogously). CNEW supporBANK and eitheiSELECT or SELECT,, but not both.
The implementations and their parameters are aahpdactical performance, and some
implementations below even uge(n) bits, rather thamm + o(n) bits, from an

asymptotic viewpoint. For all the bit-vector implentation we assume < 232,
CJ Implementation

Let n be the size of the given bit-stridg The implementation uses the parameber?,
s andL; = 8s, which are all powers of two. The bit-string isretd in blocks of siz&
bits and each block is divided into sub-blocksiné#® bits, whereb < B andB < 512.

b is limited to the value 8 or 16.

RANK: The implementation of tiRANKoperation is as follows:

* We use an arra® of lengthn/B, whereD|i] stores the number 46 in A up to
the start of théth block. The space usageis 32(n/B) bits.

« Two static lookup tables are created. The firstetalhich is of size2? bytes,
maps all combinations of bits in a sub-block bydh&y index to the count &
in that sub-block. The second table, which is akedi x b/8 bytes, stores a
single mask for each position in a sub-block. Tdtaltspace used by the lookup
tables i2? + b x b/8 bytes.

Therefore, the total space usage of tRBNKimplementation is32(n/B) + n bits,
including the bit-string but not the static lookiables.

RANK(A,i) is computed as follows: we first retrieve the soinis for the blocks before

thei/B-th block by accessing the array elemefli/B]]. If i is not a multiple oB we

77

Chapter 4 - Succinct Data Structures

add to this value the count & up to the sub-block where tixh bit resides by using
the first lookup table. In the worst case we wodidkdB /b — 1 table lookups. Finally in
the sub-block where thieth bit resides (if is not a multiple ob), we add the count of
1s up to and including thith bit using the second lookup table to mask bet hits
afteri in the sub-block. Then we use the first lookuddab count the number @k in

the b bits up tai.
SELECT: TheSELECT, operation is implemented as follows:

* For everys-th 1in A, we store its position in the arr&y. This array requires
32n,/s bits, wheren, is the number ofs in A.

* A large gapin A appears where the positions of tleth 1 and (i + 1)s-th 1
differ by more thar.; = 8s. We define a bit-strin@¢ of lengthn/B bits, which
stores at th¢gth position al bit indicating the start of a large gap somewhere
the jth block inA, and stores @ bit otherwise. We add t8 data structures to
support theRANKoperation. The space usageRofs 32(n/B?) + n/B bits. If
there is a large gap starting at positionwe store in an arra§ the position of
the 1s fromis up to(i + 1)s — 1. The space usage of arréyis32 = [, * s bits,
wherel; is the number of long gaps. Clealy< n/L;.

« We make use of th®ANKIlookup tables and introduce two new tables for
selecting theth 1 in their relative sub-block position, these requir+ 2° bytes

each.

Since we choosk; = 8s, C takes up at moS2 * s * n/8s = 4n bits in the worst case.
At first sight this seems costly, however in geheva observe this cost is not often
paid. However in Chapter 5 we will see an examgla dit-vector derived from an
XML document that has a large count of large gapestd its unique structure. The cost

of large gaps is noticeable in the overall spaeges

SELECT(A4,i) is computed as follows. Letting= |i/s| we get the position of the
li/s] x s-th 1 by readingE, [z]. If i is a multiple ofs, we return this value. If not, we

check ifi is within a large gap. IE;[z] + L; < Eq[z + 1] we know that thdth 1 is
78

Chapter 4 - Succinct Data Structures

within a large gap. Then we do a simple computatiofind the offsep of i in values
is..(i + 1)s — 1, namely we returd@[RANKR, z)+p] as the position of th&h 1. If the
ith 1 is not within a large gap we use fRANKarrayD to check in which block is
located. We now require the use of R&NKlookup tables; in the first lookup table we
count the number of 1s in each sub-block up tosthie-block of where théth 1 is
found. We keep the total of bits before the suleblof thei-th 1 that is inA. The
second lookup table is used to count the numbéitsfup to and including theth 1
within its sub-block, which is achieved by a maskhe bits up to thé-th bit. Then we

use the first lookup table to count the bits, whgthen added to the total and returned.
KNKP I mplementation

Let n be the size of the given bit-stridg This implementation uses the parameteB®
and SB, which are all powers of two. Alsdy < B < SB, and the implementation
assumesSB < 256. The bit-string is stored in super-blocks of s&® bits and we
divide each super-block into blocks of s#its, and each block is in turn divided into
sub-blocks ob bits.

RANK: The implementation of tiRANKoperation is as follows:

* We use an arrap of lengthn/SB, which stores as running totals, the count of
1s inA everySB bits. The space usagebfis 32(n/SB) bits.

* We use an array of lengthn/B, which stores the running totals of the count of
1s everyB bits. At the start of each super-block the totadsinitialised to zero.
SinceSB < 256 the values ind fit into a byte, therefore the space usage of
8(n/B) bits.

* We use two static lookup tables. SeeRANKimplementation for details.

The total space usage of tR&NKimplementation (including the bit-string, but ribe
static lookup tables) 32(n/SB) + 8(n/B) + n bits.

RANK(A,i) is computed similarly to CJ.

SELECT: The implementation of th® ELECT, operation is as follows:
79

Chapter 4 - Succinct Data Structures

* We use a bit-strin@ of lengthn,, wheren, is the number ois inA. In Q we
store at thdth position a0 bit, if theith 1 and (i — 1)th 1 in A are contained
within the same block, and stord &it otherwise. The first bit i@ is always set
to 1. Q is augmented with additional bits to supp@ANK The space usage is
32(ny/(SB)) + 8(n,/B) + n, bits.

» Conceptually, we use a bit-strilyof lengthn/B, which indicates all-zero and
non-zero blocks (i.e. blocks that contain at least1) in A using a0 bit and1
bit, respectively.P need not be maintained, we only need to suppat th

SELECToperation orP as follows:

o We use a bit-strin@, which is similar taQ, but applied ta@. Its length is
the number ofls in P and is at moskh/B. We defineR[0] as 0 if
P[0] =1, and 1 otherwise. R is augmented with additional bits to
supportRANK If z is the number ofls in P (this is the same as the
number of non-zero blocks id), the space usage B2(z/(SB)) +
8(z/B) + z bits. The operatiorRANKR ,i) indicates the number of
clumps before theith 1 bit in P, where a clumps as a group of
contiguouss inP.

o We use an array called tlobump array of lengthc,, wherec, is the
number of clumps i®. Theith index in the array stores the accumulated
count of zeros up to théh clump inP. The space usage32c; bits and
in the worse case, = n/2B; however in practice, is small, hence the
array is often small.

To computeSELECT, (P, i), we first computeRANKR, i) , which reports the
number of clumps beforg then we compute the numbyeof Os in front of the

ith 1 bit using the clump array. ThR&ELECT (P,i) =i + .

The total space usage SELECT (including the bit-stringd) is n + 32(n,/(SB)) +
8(n,/B) + 32(z/(SB)) + 8(z/B) + 32¢, bits.

80

Chapter 4 - Succinct Data Structures

The computation oSELECTIis summarised as followRANKQ, y) gives the number
of non-zero blocks up to and including the blockntaming theyth 1 bit of A.
SELECT(P,RANKQ, y)) then gives the block containing thth 1 bit. Further scanning
of the block is required using lookup tables, tlwete SELECT (4, y).

CNEW Implementation

Let n be the size of the given bit-strizg This implementation uses parameterand
B, which are both powers of two. We divide the Iitrg into blocks of sizeB bits
(whereB < 256) and further divide the blocks into sub-blockssideb. We obtain the
extractedbit-string A’ of lengthn’ (cf. [47]) by removing all blocks id that contain no
1s (such blocks are callegll-zero blocks). The blocks that remain i are called

extractedblocks.

RANK: The implementation of tieRANKoperation uses the following data structures:
We use a bit-strin@@ of lengthn/B. We store at théth position & bit if thei-
th block inA is an all-zero block, otherwiselabit is stored. We augment this

bit-string with additional bits to suppdRANK(using the CJ implementation).

The original bit-string is not maintained as it che reconstructed frol® and A’.
RANK(4, 1) is computed as follows: we get the count of exé@dlocks beforeé by
y = RANK (P, |i/B]), map position to its positioni’ in A” by computingi’ = i —
(li/B] — y)x B. If i was in an all-zero block (which we can check bgkiag at
P[li/B]]) then it does not exist iA’, in this case we sét = yB — 1. In each case,

we returnRANK(4’,i") as the answer.

The implementation dRANKon A’ is done similarly to the CJ implementation, except

that the array is replaced by the following array:

For each block im’, we store the number 66 up to the start of the block that was in

A in an arrayR of lengthn’/B, requiring32(n’/B) bits.

81

Chapter 4 - Succinct Data Structures

Table 4.1- Space usage of the three bit-vector implememtsaitused. We denoteandn’ as
the length of the bit-string$é andA’, respectively, where > n'. n, andn, are the count afs
andOs present in the bit-string, respectivelyb, B andSB are parameters in the data
structuresly, I, are the number of the zeros and ones large gegzectively. In KNKP the
termz is the number of extracted blocks in the inputshiing. The terms, andc; are the sizes

of the clump array.

CJ KNKP CNEW

Input bit- n n n'
string
RANK 32n/B 32(n/SB) + 8(n/B) |32(n/B*) + 32n'/B
directory
SELECT 32ny n 32n 32(n,/SB) + 8(n,/B) +
directory s B ' B% 32(z/SB) + NA

+ 325, 8(z/B) + 32¢;
SELECT |32n, n 32n 32(ny/SB) + 8(ny/B) +| 32(n;/s) +8n'/B
directory s B B? 32(z/SB) +

+ 32sl; 8(z/B) + 32c,

The change is made to help wlELECT, as we will see later. We observe that the
number ofls up to the start of thigh block in4A’ can easily be calculated froRji], as

the number 00s in A’ up to the start of the ith block is jugfi] — (i —y) X B.
SELECT: We now come t&ELECT,, for which we store the following information:

» We store the index (iA’) of the location of theés + 1-st1, fori = 0,1,...,|n;/
s], in an arrays, wheren, is the number ofs in the bit-string. As each block in
A’ contains at least a sindleadjacent entries i differ by at mostB — 1. The

arrayS requires32(n,/s) bits.

* An arrayB(C of lengthn’/B stores 8-bit values that give the couniiefrom the
start of the block to the first pointer frasnthat lies in the block.
SELECT(4,i) is computed as follows. We first retrieve the ipos of the (|i/s]| x
s + 1)-st 1 by accessingS[|i/s|] + R[li/s]]. If this is the required answer it is
returned. Otherwise, suppose thft/s|] lies in blockz. We first search from the start

of block z for the block containing thieth 1 as follows:
82

Chapter 4 - Succinct Data Structures

* We move to the start of block and determine the number I to the start of
blockz. This is done by subtractirBC[z] from i (assuming[|i/s]] is the first
pointer fromS in z, otherwise we further subtract as many multiplés as

necessary).

* We check if thei-th 1 lies in blockz. Note that the number @ in blockz
equals(R[z + 1] — R[z]) modB (since any all-zero blocks between bloeks
andz + 1 would contribute exactly Os toR[z + 1]). From this we calculate
the number ofls in blockz and therefore the number &$ up to the start of
blockz + 1.

This allows us to determine whether thth 1 is in blockz or not. If not, we
repeat the process with blocks 1,z + 2,... until the right block is found. In

the worst cases, blocks may have to be checked.

Once the block containing thieth 1 has been found we locate thewvithin the block

using table lookup on sub-blocks, as describedipusiy for the CJ implementation.

In Table 4.2, we evaluate the space usage of theutas for the bit-vector
implementations (see formulae in Table 4.1) byrgjvthe parameters certain values.
CNEW becomes better than KNKP, when we have makyeab blocks. The space
usage of CJ and KNKP is dependent on the numblargé gaps and extracted blocks,
respectively, but CNEW has no hidden costs in thestwcase.

For the bit-vectors CJ, KNKP and CNEW, the runniinge of theRANKoperation is
a little slower than a memory access and3B&ECToperation i2.5 times slower than
RANK In Chapter 5 and 6, we compare the running tiofethe bit-vectors (where

space usage is comparable) for real-life and ranoitstrings.

83

Chapter 4 - Succinct Data Structures

Table 4.2 —Assume a bit-string with /2 1s. We shovithe space usage of the three bit-vector
implementations. For CJ and CNEW, the parameteregahreB = 64, s = 32 andL; = 256,
and for KNKP we use 256-bit superblocks and 64luitks. Results are based on Table 4.1

formulas.
CJ KNKP CNEW

Input bit-string n n n
RANKdirectory 0.5n 0.25n 0.5n" +0.008n
SELECT 0.52n + 10241, 0.625n + NA
directory 0.25z + 32¢;

SELECT, 0.52n + 1024, 0.625n + 0.125n" + 0.5n
directory 0.25z + 32c¢,

1234567891011121314

(OO) C))

Figure 4.4- Parentheses string sequence.

4.2.2 Balanced parentheses string

The object to be represented is a balanced passdistrings (ref. Section 4.1.2), and

the operations to be supported are:

« ENCLOSKs, i): Return the position of the opening parenthesisthe
parentheses pair that most immediately enclosesoffaming parenthesis in
positioni of s.

* FINDOPENS, i): Return the position of the opening parenthdsas matches the
closing parenthesis in the positioaf s.

 FINDCLOSHS, i): Return the position of the closing parenthebat tmatches

the opening parenthesis in positioof s.

* INSPECT(s, i): Return the state of theth parentheses & which is either an

opening or closing parenthesis.

For example in Figure 4.4 the operatieNCLOSEs, 7) = 4, the opening parenthesis

at position seven is enclosed by the parenthesasirggpat position four and closing at

84

Chapter 4 - Succinct Data Structures

position eleven. In operatioRINDCLOSHKSs, 4) = 11, here the closing parenthesis at

position eleven is the matching parenthesis toffening parenthesis at position four.
Naive Representation

A naive representation to support the above omerativould require two arrays of
length 2n each. In the first array, the values would stdre index of the matching
closing (opening) parenthesis, depending on whetfeerare at an opening (closing)
parenthesis. Therefore we compjiteFINDCLOSKH;:) by returning the valug at array
positioni. If i < j thenj is the closing parenthesis ©felsej is an opening parenthesis
of i, and we therefore return null. We compjuteFINDOPEN(:) by accessing the value
at indexi. If i > j thenj is the opening parenthesisiptlsej is a closing parenthesis of
i, therefore return null. To compufdSPECT(i) we check the value at thi¢h index. If
this is less tham then we know we are at an opening parenthesisywibe a closing
parenthesis. In the second array at indewe store the index of the enclosing

parenthesis, therefore supportlB CLOSEThe total space required4a Ign bits.
Succinct Solution
The following is known about a balanced parenthetasg of lengti2n:

Theorem 4.2.There are balanced parentheses data structuresubeizn + o(n) bits to

support the above operations@(1) time.

Jacobson [44] first considered this problem andegaO (n)-bit representation. Munro
and Raman [54], and later Geary et al. [36], garet o(n)-bit representations that

support the parentheses operation8(h) time.
Implementations

The best implementation [36] uses a paramBtewhich can be set to 32, 64 or 128.
Larger values oB cause the data structure to use less space bumatm slowly. The
space usage reported in [36] is summarised in TaBleThe space usage depends upon
the pioneer density (PD), which is a parameter thepends upon the particular

parenthesis sequence being represented. We takePD) as this value was shown to
85

Chapter 4 - Succinct Data Structures

Table 4.3 —Space usage of implementations of Jacobson’'sl{jacm Geary et al.’s
Parentheses DS (New), taken from Figure 6 in [BB¢ units are bits per node (parenthesis

pair). PD stands for pioneer density.

PD=4 PD=2.4

Blocksize Jacoh New |[Jacoh New
32 16.008.341(12.80/5.75
64 9.00 | 4.647.40 | 3.73
128 5.50 | 3.244.70 | 2.86
256 3.75 3.35

be realistic for parenthesis sequences derived femhworld XML files (in the worst
case, PC=4). We remark here that although all operations asgmptoticallyO(1)
time, they vary in speedNSPECT is the fastest:INDOPEN/FINDCLOSE are next,
andENCLOSE:s the slowest, being typically 5-6 times slowartkRINDOPEN

4.2.3 Binary Trees

The object to be represented is a binary tree $@dtion 4.1.4), and the operations to be

supported are:

e LEFT-CHILD (x): Return the left child of node, if the node does not exist,

then return null.

e RIGHT-CHILD (x): Return the right child of node, if the node does not exist,

then return null.
* PARENTX): Return the parent of nodg if no parent exists, then return null.
Naive Representation

A naive representation of a binary tree is to ised pointers per node connecting to its
left-child, right-child and parent node. Given wavkn nodes in the tree the space

usage required i3n Ign bits.

86

Chapter 4 - Succinct Data Structures

Succinct Solution

Clark [15] and Jacobson [44] gave a succinct regpriagion of a binary tree with

nodes:

Theorem 4.3.There are binary tree representations that dgse+ o(n) bits to support

the above operations ifA(1) time.

This representation uses a level-order bit-strigresentation of a binary tree.

Consider the binary tree in

Figure 4.5 (a). To form the bit-string represematof this tree, we write & in each
node. We then extend the binary tree by replacihgqudl pointers by pointers to

dummy “external” nodes, and we writd & each dummy external node (see
Figure4.5 (b)). The bit-string is shown in
Figure4.5(c). Clearly, this representation requiges+ 1 bits.

This representation, like all succinct tree repméstons, imposes a particular
numbering on the nodes of the tree. In this casmde is numbered by the position in
which the corresponding) appears in the bit-string. For example, ngdes given the
number eight. Note that node numbers are integens T to 2n + 1 and nodes are not
numbered consecutively (other succinct tree reptatens also have node numberings

with these properties).

Given this numbering, we use one of the auxilidryctures given in Section 4.2.1 that
supportRANKand SELECT operations on the bit-string. We then supportrédwuired
navigational operations on the tree as follows, r@les the bit-string representing the

tree:
« LEFT-CHILD (x) = 2 * RANK(s, x)
« RIGHT-CHILD (x) = 2 * RANK(s, x)+1

« PARENTx) = SELECT(s, |x/2])

87

Chapter 4 - Succinct Data Structures

1

/\
b
() (a) ()/1\ !
ogio v
AN AN
@ © » L b o
2 NN N
& ® @ §% d ¢
2 3 4 5 6 7 8 9 10 { 11 | 12 | 13 | 14 | 15 | 16 | 17 18 19
111|110} 1212|1212}121|0|]O0O0}|212|0O0]]O0O]O0O0O|]O0O]O0O]}|O0]O0
a| b | c|d]|e f |l gl h i

(©)

Figure 4.5- (a): Binary Tree example, (b): Labelled Extentteg and (c): Bit-string

representation.

4.2.4 Ordinal Trees
The object to be represented is an ordinal trefeSgetion 4.1.3) and the operations to

be supported are:

e FIRST-CHILD (i): Return the first child of the node. If the node does not

exist, then return null.

e LAST-CHILD (i): Return the last child node of the naddf the node does not

exist, then return null.

* PREVIOUS-SIBLING (i): Return the previous sibling of the nodeIf no

previous-sibling exists then return null.

e NEXT-SIBLING (i): Return the next sibling node bflf no next-sibling exists

then return null.

* PARENTi): Return the parent node given that we are aittheode. If we are at

the root node then return null.
Naive Representation

A naive representation of the ordinal tree is te tigee pointers per node connecting to

its first-child, parent and next-sibling node. Giwee haven nodes in the tree the space
88

Chapter 4 - Succinct Data Structures

usage i88nlgn bits. Given that an ordinal tree can have arhjitrarmber of children at
each node we observe that tRREVIOUS-SIBLING and the LAST-CHILD
operations can be slow, if we were to use onlyiBtpes per node. For example, to find
the last child node of a node with large degreewwald have to traverse through the
first child node and all its sibling nodes, befere reach the last child node. A simple
but costly improvement would be to have two mormigos per node, connecting to the

last child and previous-sibling nodes.
Succinct Solution
The following is known [44] about an ordinal treélwn nodes:

Theorem 4.4.There are ordinal tree representations that @se+ o(n) bits to support the

above operations i (1) time.

The performance bounds in Theorem 4.4 are achibyesl number of data structures.
We outline three different representations of adir@ tree. The numbering of the

nodes is given differently in all three represeants.
Level-order unary degree sequence representation (LOUDS

The LOUDShit-string (BS) is defined as follows [44]. We begin with an egptring
and visit every node in level-order, starting froine root. As we visit a node with
d > 0 children, we append®0 to the bit-string. Finally, we prefix the bit-stgrwith
a10, which is the degree of an imaginary ‘super-ros¢én as the parent of the root of

the tree (see Figure 4.7). Therefore we get:

Proposition 4.6.The LBS of an ordinal treel” with n nodes has fs andn + 1 0s.The i-th
node ofT in level-order is represented twice: as th 1, which lies within the encoding of the
degree of its parent, and is associated with ttgedtat attaches it to its parent, and also as the

i + 1-st0, which marks the end of its own degree sequence.

89

Chapter 4 - Succinct Data Structures

Figure 4.6 —Ordinal tree example.

1234567 8910111213141516171819
Ones-based a bcde fg h [

Zero-based ab c d e f g h i
10[11 110‘0‘1 1 0‘0‘1 0‘0‘1 o‘o‘o‘

Figure 4.7 —The LBS of the ordinal tree of Figure 4.6. Zeros-based @mes-based
numberings.

In Figure 4.7, the nodes of the tree in Figure &® numbered (again, using non-consecutive

integers fronl to 2n + 1) in one of two different ways suggested by Propmsi4.6:

Ones-based numbering Jacobson [44] suggested numbering #tk node in level-
order by the position of thieth 1 bit. This gives a node a number from {.., 2n + 1}.
Table 4.4 indicates how the navigational operationight work on the ones-based

numbering.

Zeros-based numbering Geary [34] suggested numbering b node in level-order
by the position of théi + 1)-st0 bit, namely the bit that ends the unary sequefce o
that node’s degree. Table 4.4 indicates how theyational operations might work on

the zeros-based numbering.

90

Chapter 4 - Succinct Data Structures

Table 4.4 -Navigation operations for zeros-based and onesdhasmberings4 is theLBS).

Ones-based numbering

Zeros-based numbering

parent(x)
if x =1 return NULL
else return

SELECTXA, RANKGQA x))

parent(x)
if x =1 return NULL

lety:= SELECTIA, RANKQA x)-1)
return SELECTQA, RANKQA,y)+1)

first-child(x)
lety :=

first-child(x)
if (A[x-1]=0) then return NULL

SELECTQA, RANKIA x)+1 else
if A[y] = 0 then return NULL lety:= SELECTQA, RANKQA x)-
else returny 1)+1
return
SELECTQA, RANK1Ay)+1)
last-child(x) last-child(x)
lety if (A[x-1]=0) then return NULL

= SELECTQA, RANKIA x)+1)-1
if Aly] = 0 then return NULL
else return y

SELECTQA, RANKIA x)+1)

else

next-sibling(x)
if A[x+1] = 0 then return NULL
else return x+1

next-sibling(x)

lety := SELECTIA, RANKQA x)-
1)+1

if Aly] = 0 then return NULL

else return SELECTQA,y+1)

previous-sibling(x)
if A[x-1] = 0 then return NULL
else return x-1

previous-sibling(x)

lety = SELECTXA, RANKQA,x)-
1)-1
if Aly] = 0 then return NULL else
return

SELECTQA, RANKQA,y+1))

9 1C 11 12 13 14 15 1€ 17 18

12 4 5 7 8

a b c f g i d e h
cCHyco)ycocyy y)y ¢)y
1101101120001 01 1 0 000

Figure 4.8 -Parentheses string of the ordinal tree in Figuée 4

91

Chapter 4 - Succinct Data Structures

Table 4.5 —Navigation operations for ordinal tree via the bakd parentheses representation.
A is the parentheses bit-string afifd] retrieves the bit at positiann the bit-stringA. Let an
opening (closing) parenthesis be representet{®yis the bit-string.

Parentheses (node represented by opening parentheses)

parent(x) next-sibling(x)
return ENCLOSE(A, x) Z:= FINDCLOSE(A, x)
if A[z+1]=1 then
return z+1
else return NULL
first-child(x) previous-sibling(x)
if A[x+1]=1 then if A[x-1]=0 then
return x+1 return FINDOPEN(A, x-1)
else return NULL else return NULL
last-child(x)
if A[x+1]=1 then
Z:=FINDCLOSE(A, x)
return FINDOPEN(A, z-
1)
else return NULL

Balanced Parentheses representation

The representation of an ordinal tree as a balapeedntheses string is defined as
follows. Traverse the tree in depth-first orderd @utput an opening parenthesis when a
node is first encountered and a closing parenttmsse all its descendants have been
visited (see Figure 4.8). The bit-string at thetdmt of Figure 4.8 encodes the

parentheses sequence using the magigihg 1 and“)” = 0.

Jacobson [44] suggests numberingithle node in depth-first order by the position of
the i-th “(” parenthesis. This gives a node the number frdam. { 2n}. Table 4.6
indicates how the navigational operations might kvavith this representation. It is
possible to represent the nodes by their closimgrpheses or by a pair of parentheses

positions, but these appear to have no particalearstage.

92

Chapter 4 - Succinct Data Structures

O,
O,
()
) @
OO,
OBNO
(@)
;g34(5:?‘38210]3]}213][141516171819
1100111021201 1010 0O0O0TD0O0

(b)
Figure 4.9- (a): Binary tree equivalent of the ordinal thed-igure 4.6. (b): its binary tree bit-
string.

Binary Tree succinct representation

An ordinal tree can be transformed into a binaegtin a one to one correspondence.
The steps required are as follows:

* Ordinal tree: first child < binary tree: left child

* Ordinal tree: right sibling= binary tree: right child

We represent the resulting binary tree (Figure 49i)g the representation of Section
4.2.1. The resulting ordinal tree representaticesds + o(n) bits and the ordinal tree
navigation operations are simulated via the bitgeg operations as shown in Table 4.6.
As can be seen, the operatidA&RST-CHILD , NEXT-SIBLING and PREVIOUS-
SIBLING are supported i@ (1) time, butLAST-CHILD takesO(d) time, whered is
the degree of a node, aRARENTtakesO (i) time, if called at a node that is ti¢h
child of its parent. The node numbering is by lewm&ler in the binary tree, which is

neither depth-first nor level-order in the orditrale.

93

Chapter 4 - Succinct Data Structures

Table 4.6 —The Navigation operations for ordinal tree via lyntiee.A is the bit-string. Caps
represent the binary tree operations; these opastird? ARENT(SELECTcall), LEFT-
CHILD (RANKcall) andRIGHT-CHILD (RANKcall).

Ordinal treevia binary tree

parent(x) next-sibling(x)
if x=1 return NULL y:=RIGHT-CHILD(A, x)
while(x mod 2 !=0) if Aly]=1 then returny

X:=PARENT(A, X) else return NULL

return PARENT(A, x)

first-child(x) previous-sibling(x)
y:=LEFT-CHILD(A, x) if (x mod 2) =0
if Aly]=1 returny return PARENT(A, x)
else return NULL else

return NULL

last-child(x)
y:=LEFT-CHILD(A, x)
if Aly]=0 return NULL
else
while(A[y]'=0)
X:zy
y:= RIGHT-CHILD(A, x)
return x

4.2.5 Succinct Prefix sums

The object to be represented is a sequence ofi@ositegers (ref. Section 4.1.5)=

(x1, -, X)), Where); x; = m. The operation to support is as follows:
* SUMyx, j): ReturnsZ{zlxi.

For example, ik = 1,1, 3,4, 5 thenSUMx, 3) = 5.

Naive Representation

A naive representation to support tBelMoperation would be to explicitly store each

prefix sum value, requiring[lg m] bits.
Succinct Solution

We use the following notation. For a sequencéts length is denoted bj| and, if
|x| = n then its components are denoted Ayy...,x,,. The following theorem was

essentially shown by EIlid&7]:
94

Chapter 4 - Succinct Data Structures

Theorem 4.5.A sequence with [x| = n and Y[~ x; = m can be represented inlg(m/n) +

0(n) bits so thaSUMyx, i) can be computed i@(1) time.

The performance bounds are achieved by the follgwdiata structure. Ley; =

SUMx, i) fori = 1,...,n. Letu be an integerl < u <lgm:

() We use a bit-strin@ of lengthn(lgm —) bits, which stores thiewer-order

lg m — u bits of eacly; value concatenated together.

(i) We use a bit-string of lengthn + 2% bits. The multi-set of values formed by
the top-order u bits is represented by coding the multiplicity edch of the
valueso,...,2* — 1 in unary using0s, with thels as separators. The unary

values are concatenated togettiehésn Os and2* 1s).

We chooses = |Ign], so|P| = 0(n). We augment this bit-string with additional bits
to support SELECT, (using an implementation from Section 4.2.5UMx,j) is
computed as follows: we first retrieve the lowedar bits represented iR by the
substring starting at pointez = (j —1) X (Igm —u)+1 and ending at pointer
y = j(lgm — u). The top-order bits are retrieved by comput8eLECT(j) —j on P.
The lower and upper order values are concatenstedive y;, which is returned in

0(1) time.

We now give an example of the prefix-sums solutiorietting
x=3,3,2,423122,39 1,7,7,5,10,n = 16 andm = 64. Let the sequence be
the prefix-sums ok, that is,y = 3,6,8,12,14,17,18, 20,22, 25,34, 35,42,49, 54, 64.
We choose: = |lg16] = 4, so we take the four top-order bits of the numlieng, see
Figure 4.10 (a). We show the multiplicity of thenmoers inP in Figure 4.10 (b) and
encode them in Figure 4.10 (c). In this example reguire 16 + 2* = 32 bits to
represenP. Figure 4.10 (d) shows the bit-striRg

95

Chapter 4 - Succinct Data Structures

1

0 00 011 000O0 O
0 00 1|10 0001 1
0 01 0/00O0 0010 2 (c) - Top-order bits:
0 01 1{00 0011 3 01010100100100101100110110101101
001 1/10 0011 3
010001 0100 4
010010 0100 4 (d) - Lower-order bits:
010100 0101 5 [1i]10]00]00[20{01[10[00[10[01[1011[10[02]20[11]
010 1/10 0101 5
011001 0110 6
1 00010 1000 8
1 00 0|11 1000 8
1 01010 1010 10
1 10001 1100 12
110 1/10 1101 13
1 11 111 1111 15
(@ (b)

Figure 4.10— (@) The binary representation of the numbeps We circle the top-order bits of
each number. (b) The multiplicity of the top-ordemmbers — given indirectly by listing their

decimal values. (c) Top-order bits encoded. (d) €earder bits of (a) concatenated together.

The SUMx, 6) operation on the representation in Figure 4.1@dsputed follows:
SELECT(P,6) — 6 = 4, the binary representation of 40400, which gives the top-
order bits of the answer. We now concatenate tivert@rder bits inR to the top-order
bits, by extracting the substring Bf starting at position 11 and ending at position 12,
which can be done i (1) time. We return 000 01 = 17.

4.3 Summary

We have given the succinct lower bounds for theesgntation of the following data
objects: bit-strings, balanced parentheses, ordmeals, binary trees and prefix-sums

values.

Representing XML documents in succinct represeaatis an area of research that
needs to be explored. In Chapter 5, we providaidysbf succinct tree representations
and show engineered representation of these tesepr XML trees. In Chapter 6, we
investigate the problem of the storage retrievaheftextual data in XML documents;
here we employ succinct prefix sums representatmmd other engineered

representations to solve the textual retrieval f@mb In Chapter 7, we provide a more
96

Chapter 4 - Succinct Data Structures

comprehensive study of the succinct representatorsupport a full XML DOM

application.

We have described succinct data structures thatldesto support operations, usually
in 0(1) time, upon the data object using space relatietdge to the succinct lower
bound. In particular, we studied several represiems of ordinal trees that were
implemented using the balanced parentheses, birteeg and LOUDS tree
representation. A careful analysis of the navigatiooperations for succinct tree

representations is provided.

The ideas o0RANKand SELECT operational support on the bit-string in the socti
representations underpin the potential speed ingonewnts of succinct data structures in
the area of XML processing compared to other XMagassors.

97

Chapter 5
Engineering Succinct Tree Representations

In this chapter we investigate how best to represba tree structure of XML

documents. We begin with some motivations for tinel\s of succinct tree structures. In
Section 5.2, we summarise the basic characteristicthe tree structure of XML

documents, and also the DOM operations that impaanh the tree structure, in order to
derive requirements for our succinct tree repregemts. In Section 5.3 and 5.4, we
discuss our work on engineering succinct tree sm@&ations to support the
requirements, and in Section 5.6, we evaluate mpiamentations empirically. Parts of

this chapter were published as [22].

We obtain theree structureof an XML document by removing:
* Non-tree nodes (i.attribute nodes).
» Textual data (i.etext node,comment or CDATASection values).
* Element labels and node type information.

For example, the tree structure of the XML documenFEigure 5.1 (a) is shown in
Figure 5.1 (b). Note that the tree structure ofXdiL document has the following

properties:

(i) It has aroot, and the parent-child relationshipvieen two connected nodes is

therefore well-defined.
(i) The number of children of a node is unbounded.

(i) The order of children matters, since changing thder corresponds to a

different document.

Thus, the tree structure of an XML document canmoelelled as an ordinal tree (ref.
Section 4.1.3). In this chapter, we useo denote the number of nodes in the tree

structure.

5.1 Motivation

As noted in Chapter 3, existing DOM implementatioggresent the tree structure using
3 — 5 pointers per node, &6 to 320 bits per node (assuming pointers 32eor 64 bits
99

Chapter 5 - Engineering Succinct Tree Represematio

<library>
<book catalogue="XML">
<author>OND</author>
<title>SDOM Design</title>
<year>2007</year>
</book>
<book catalogue="XML">
<author>Jones</author>
<title>The DOM
Spec</title>
</book>
</library>

@) (b)
Figure 5.1 -(a): Example XML document. (b): XML tree structuie(a).

long). In theory, it is possible to represent e tstructure withn nodes using just
2n + o(n) bits and support navigation ifi(1) time (see Chapter 4). However, a
careful investigation of the practical performarafethe representations is justified,

because:

* Only the parentheses representation has been igatest before. Other,
potentially practical, representations like th®@UDSand the binary tree

representations have not.

* Theo(n) term in the space usage is significant in pracfite space usage of
the succinct tree implementations in [36] rangesnf2.87 bits to 5.75 bits per

node, even though the theoretical space usadye{so(n) bits.

» There has been no attempt to study these repréisestéor the specific task
of representing the tree structure of XML documgenthich have many

unique characteristics.

100

Chapter 5 - Engineering Succinct Tree Represematio

5.2 XML and DOM Characteristics

The characteristics of XML files and the DOM spmafion are summarised in Chapter
2 and Chapter 3.

5.2.1 DOM functionality

DOM supports navigation with the operationgarent() , firstChild() ,
nextSibling() , previousSibling() and lastChild() . These are contained in
the DOM Node API, in addition to the operations to retrieveoirmhation associated
with each node, for example, thgetNodeName() and the getNodeType()
operations returns the name and the type of a na@spectively. The
getNodeValue() operation returns the textual value of the nods tias a value.
Traversals are an important navigation operatioD@M: they allow an entire XML
document to be read and processed. The two marsof traversal (described in

Chapter 2) are:
* Document order, which corresponds to pre-order.
* Reverse document order.

Traversals can be implemented by a user via theyaienal operations provided in the
Node API. Traversals can be either recursive or nomngee: the pseudocode of the

non-recursive (document order) traversal is shawhable 5.1.

We recall that a traversal in DOM uses the treeigawnal operations, such as
firstChild() and nextSibling(), which are for recursive and non-recursive

traversals. A non-recursive traversal requiregddition, theparent() operation.

DOM provides direct support for the tree navigataperations in th@reewalker
class, and in addition, has other navigational af@rs to traverse the tree. We come
back to this in Chapter 7. In order to understdr@derformance of the tree traversals
(in our context) using the tree navigation opersjowe summarise in Tab®2 the
total number of calls required to traverse a tmeursively and non-recursively. The
traversals applied are in document-order and iems&vdocument-order.

101

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.1 -Pseudocode for the non-recursive document-ordegrsal of a tre&.

Non-recursive document-order traversal:

Traverse(T){
current:=root(T)
direction:=DOWN
while(current!=NULL){

switch(direction){
case DOWN:
/* Code to process the node’s associated
information */

if(firstChild(current)!=NULL){
current:= firstChild(current)

lelse
direction:=HORIZONTAL

case HORIZONTAL.:
if(nextSibling(current)!=NULL){
current:= nextSibling(current)
direction:=DOWN
}else
direction:=UP

case UP:
current:=parent(current)
direction:=HORIZONTAL

102

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.2 -Count of navigational operations called in theveraals: document-order (DFO)
that is recursive (Rec) or non-recursive (Non-red¢3p reverse DFO that is recursive or non-

recursiven is the count of nodes in the tree, and the count of non-leaf nodes.

Traversal

Navigation DFO Reverse DFDO

operation RegNon-recRec|{Non-reg
firstChild n| n - -
nextSibling n| n - -
Parent - t - t
previousSibling - - n n
lastChild - - n n

5.2.2 XML Document Characteristics

The tree structures of the XML documents we haatheyed in our XML corpus,
generally have a large count of leaf nodes. Onamesover all files, abot/3 of nodes
were leaves, the minimum count of leaves wa®nters.xml which hadl/2 of its
nodes as leaves. The file with the most leaves xg@&t..xml , which had4/5 of its
nodes as leaves. In addition, we observe the nuwibeodes that appear at the last
(rightmost) child node of their parent is the saasethe number of non-leaf nodes. On

average about/3 of the nodes in the tree are non-leaf nodes.

The average count of child nodes in the tree (ibgrek) of an XML document is
clearly just under one. However, we observe immeddL document that there exists at
least one node with a large degree relative tofillkesize. For example, the file
Partsupp.xml with 96,004 tree nodes, has a node with degreevef 2*. In

addition,XPATH.xml with 2,522,572 tree nodes, has a node with degfreger2>.

5.2.3 Requirements

We now derive the set of requirements for the swtdree structure representation to

efficiently represent the XML tree and supportoperations.

103

Chapter 5 - Engineering Succinct Tree Represematio

Requirement 1 As mentioned in Section 5.2.1, associated inftionais stored for
each node in the tree, this we represent usingray af lengthn. The associated data
of the ith node in the tree is stored at indéxin the array. The succinct tree
representations do not directly support the acteise array of associated information,
for the reason that nodes are numbered ftaim 2n. Using an array of sizén would

mean doubling the space usage. Hence, we have:
R1: Number nodes from1 to n.

Requirement 2 Locating and retrieving XML data in the DOM docainh relies upon
the navigation operations. Since DOM implementaiose a large amount of space,
some implementations reduce space costs by noosupp all navigation operations
rapidly. However, this is often inappropriate, a®©MN is used in a variety of

applications with differing traversal patternstlas following example shows.

The C++ DOM implementation calle@enterpointDOM [12] uses less space than
Xerces by storing a pointer to the parent, firskdchnd next sibling nodes but not to the
last child or previous sibling. However, this comasa cost of speed for certain

operations. The lastChild() and previousSibling() operations in this
implementation are slow. THhestChild() operation requires a traversal across all
the children. Likewise thereviousSibling() operation at theéth child requires a

traversal across— 1 children; one goes to the parent node and palsasgh the first
child and next sibling nodes until we reach thevjangs sibling node. In a traversal, at a
node withd children, this process takégd?) time in all, which can be very slow if
this is a node with large degree (as observed enettample in Section 5.2.2, XML
documents have node(s) with large degrees). Atctst of the space usage, Xerces
explicitly includes the previous-sibling pointeresich node and includes the last-sibling
pointer as a previous-sibling pointer of the nofilss-child, which greatly improves the

speed. Hence, we have:

R2: All navigational operations must be fast.

104

Chapter 5 - Engineering Succinct Tree Represematio

Requirement 3 Traversals are common in DOM. In a document-otderersal of a
tree we requiren calls to thefirstChild() and nextSibling() operations each
(see Table5.2). For example, calling therstChild() operation in theLOUDS
representation using the one’s based numberingSseion 4.2.4) requires calls to both
RANK and SELECT and is therefore relatively expensive. AldostChild()

remains equally expensive everiiigtChild() is called at a leaf, where the answer
is null. Given that leaf nodes in XML documents egpl /2 to 2/3 of the time, a fast
check for leaf nodes would avoid these operatiofis.cdor the parentheses
representation thenextSibling() operation is slow, as it requires a call to
FINDCLOSE operation, but forl/3 to 1/2 the nodesnextSibling() returns null.

Hence, we have:
R3. 1 Detect quickly if a given node is a leaf.
R3. 2 Detect first and last-child nodes quickly.

Having formulated the requiremer®i-R3 we now summarise how well the existing
succinct tree representations support these regents in Table 5.3. We abbreviate,
from now on, the ones-based and the zeros-basedbearing for the LOUDS
representation asOUDS1andLOUDSQ respectively. We refer to the parentheses and
the binary tree representationsPBSRENandBT, respectively.

Table 5.3 shows that the tree representations give@Ghapter 4 do not directly

support all requirements. In detail:

e LOUDSPARENandBT number nodes fror to 2n. To map this to numbers
from 1 to n we would need to suppdRANKon the bit-string that represents
the tree. For example Figure4.8 an opening (closing) parenthesis is denoted
by 1(0); nodei which is numbere® in the1 to 2n numbering is mapped to
the 1 ton numbering byRANK(8) = 6. While BT andLOUDSanyway need
to supporiRANKon the bit-string that represents the tree, upote there is no
need forPARENto supportRANK (the space bound of Table 4.3 does not

105

Chapter 5 - Engineering Succinct Tree Represematio

include space foRANK. Thus, forBT/LOUDSthere is a time cost to number

nodes from 1 tm, and forPARENhere is a space and time cost.

* For R2, we observe thatOUDSand PARENnNavigation operations are all
0(1) time. ForBT the parent() andlastChild() operations are rather
slower. For example, calling thearent() operation from theth sibling
requiresi SELECT calls, and théastChild() operation required RANK
calls whered is the degree of the node. HoweR® is definitely satisfied by
PAREN and LOUDS1/0, and partially byBT (unlike the example of
Centerpoint XML, traversals still tak@(d) time in theBT representation).

* ForR3 (leaf node detection), ihOUDS1 nodes are represented by fisein
the degree sequence of their parent node. We eeq@uitall ofRANKand
SELECTto locate the node’s own degree sequence, andtbaly we can
detect whether the node is a leaf nd8l€.requires only &ANKcall, and for
LOUDSOand PAREN the detection of a leaf node is fast (requiringt jthe
check of a single bit). The detection of the fiekild node inLOUDS1and
PARENare fast (requiring the check of a single bitybwer forLOUDSOQ we
require a call oRANKandSELECT, and forBT we require &ANKcall. The
detection of the last child node RARENs slow because we require a call to
the FINDCLOSE operation. FolLOUDSOand LOUDS1we require a call of
RANKandSELECT, and forBT we require &ANKcall.

106

Chapter 5 Engineering Succin(Tree Representations

Table 5.3 —Comparisorof the succinct tree representationsupport the requiremer; we

give the operation calls per nc. d is a node degree.

Requirement LOUDS: LOUDSO PAREN BT
R1 RAN} RANK RANK RANK
PARENTrequires
R2 d xSELECT,
v/ v v LASTCHILD
requiresd XxRANK
R3.1 RAN} and RANK
SELEC1 v v
FINDCLOSE
R3.2 NG RANKand (FIRST-CHILD RANK
SELECT is fast)

5.3 Double Numbering

To address requiremeR1, for each representatiorevnumber the nodes frol ton in
the order that they are numbe. For example in Figure 4.7, faOUDS: the first node
(which is noden) is at positior1, the second node (which is ndgjeis at positior3, the
third node (which is nodc) is at position 4, and so on, until trest nod, which is the
last to appear in levalrdel. ForPARENhis means numbering nodin document order
(pre-order), fol,OUDS3 andLOUDSOthis meansiumbering nodes in lev-order, and
BT has the node numbering that is neither docu-order or leve-order. Fori =
1,...,n, we lete(i) denott the position of théth node in the bistring representatic

of the treey (i) is the number of noci as described in Chapter 4.

It is important to maintain the association betwi and¢ (i) for fast navigation, as tr
tree navigation operations are impleme by operations that use(i). We apply

double numbering to succinct tree representatiorisliasvs.

Our new approachgalled double numberingnumbers theith node as the pe
(i, p(1)). In Figure 4.7according toLOUDS] nodec is indicated by(3,4). Our key
observation is that fdrOUD, LOUDSOandPARENnavigationin DOM with double
numbering can be done with very little excost. Tlke key property of navigation

DOM is that it always begins the root (the double numbering of the root is ust
107

Chapter 5 - Engineering Succinct Tree Represematio

easy to compute). Then, each node is reached bgfdhe five navigation steps from a

previously reached node.
Double numbering in LOUDS

In LOUDS1andLOUDSQ nodes are numbered fromto 2n in level-order. However,
note that all operations in Table 4.4 ug&). For example, inLOUDS1 if j is the
parent of i, thenp(j) =SELECT(RANK(¢(i))). Recall that:

(@) @ (i) in LOUDSOequals the position of thén 0 in the bit-string. Thusp (i) =
SELECT® () + 1 andRANK(p()) — 1 = i.

(b) @ (i) in LOUDS1equals the position of théh 1 in the bit-string. Thusp (i) =
SELECT (i) andRANK (¢ (i) = i.

The key observation is:

Proposition 5.1 Computingy = SELECT(x), for i =0 or 1, also computeRANK(y) and
RANK(y).

Proof. If y = SELECT(x) thenRANK(y) = x andRANK(y) = y — x. SELECT, is

similar. [

Double numbering ihOUDS1works as follows:
* We can calculate of the root node, which ig(1) = 1.
* We consider the remaining navigation operatiorsiin:

To computefirstChild(< i, ¢(i)>), we compute the position of
the first child, i’ as ¢(i") = SELECTH(RANK(¢(i))) + 1. Noting
that RANK(¢(i)) = i, this simplifies top(i') = SELECTH (i) + 1.
Now we use Proposition 5.1 to observe tI#ELECT(i) also

essentially computeRANK (¢ (i) = 1.

108

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.4- Navigational operations f&'OUDS1+andLOUDSOHA is theLBYS).

LOUDS1+ LOUDSO+
parent(<x, y>) parent(<x,y>)
if x= 1 then return NULL else if x= 1 then return NULL else
letx’ ==y -Xx let X’ := SELECTIA, x) - x
lety” := SELECTXA, x) lety’ := SELECTQA, x' + 1)
return(<x’, y'>) return(<x’, y'>)
firstChild(<x, y>) firstChild(<x, y>)
lety":= SELECTQA, x) + 1 if (A[x-1]=0) then return NULL
if(A[y’]=0) then return NULL else
else let x":= (SELECTQA, x) + 1) - x
return <y’- X, y> lety:= SELECTQA, x' +1)
return <x’, y’>
lastChild(<x, y>) lastChild(<x, y>)
lety":= SELECTQA, x+1) - 1 if (A[x-1]=0) then NULL
if(A[y’]=0) then return NULL else
else letx'=y—(x+1)
return <y’- x, y’> lety:= SELECTQA, x +1)
return <x’, y'>
nextSibling(<x, y>) nextSibling(<x, y>)
if Aly+1] = 0 then return if A[SELECTIA, x)+1]=0 then
NULL return NULL
else else
return <x+ 1,y + 1> lety:= SELECTQA, x +2)
return <x + 1, y’>
previousSibling(<x, y>) previousSibling(<x, y>)
if Aly-1] = 0 then return if Al SELECTIA, x)-1]=0 then
NULL return NULL
else else

return<x-1,y-1>

lety:= SELECTQA, x + 1)

return <x - 1,y’>

0o To computeparent(< i, @(i)>), we compute the position of the
" as ¢@(i') = SELECT(RANK(¢@(i))). Noting that
RANK(p() =i, this simplifies to ¢(i") = SELECT(p(i) —i).

Now we use Proposition 5.1 to observe tIELECT (i) also

parent, i

essentially computeRANK (¢ (i) = 1.

109

Chapter 5 - Engineering Succinct Tree Represematio

o The other navigation operations are similar or msanpler (i.e.
nextSibling()). We show these (including the operations abave) i
Table 5.4.

Double numbering ihOUDSOworks as follows:
* We can calculate of the root node, which ig(1) = 2.

* Using double numbering, the navigation operatiamd_OUDSOin Table 4.4

are simplified as shown in Table 5.4.

We call theLOUDSlandLOUDSOvariants with double numbering suppb@®UDS1+
and LOUDSO+ respectively. In support of the requiremeRi, LOUDS1+ and
LOUDSO+are now faster because we avoid ®R&NKcalls in the tree navigation

operations.
Double numbering in Parentheses

In PARENnodes are numbered frohto n in depth-first or document order. Recall that
(i) is the position of théth opening parenthesis in the bit-string. For examm
Table 5.5 the seventh open parenthesis, which septe node seven, is at position
twelve in the bit-string, s@(7) = 12. We map the opening (closing) parentheses as
1(0), forming a bit-string, and note thRIANK (¢ (i)) = i. Note that all operations in
Table 4.5 usep(i). For example, if is the parent of, then theparent operation is
computed ag(j) = ENCLOSEp(i)). We now illustrate the use of double numbering

through two examples:

0 Again, suppose thgtis the parent of, and sap(j) = ENCLOSEp(i)). The
parentheses that lie in the bit-string betweendpen parentheses ai(j)
and¢ (i) comprise the representations of the previousrgblof node and
their descendants. This means that there are @l agmber of open and
close parentheses between positigiig) and¢(i). Furthermore, the open

parentheses that lie in betweeitj) and ¢ (i) correspond precisely to the

110

Chapter 5 - Engineering Succinct Tree Represematio

nodes that lie in betwegnandi in document order. ThURANK(p())) =
i= () —e()+1D)/2=].

0 Another example is for theextSibling operation, ifj is the next-sibling
of i, then the nextSibling operation is computed as

@(j) = FINDCLOSE¢(i)) + 1:

The parentheses that lie in the bit-string betwi#enopening and closing
parenthesisp(i) and¢(j) — 1 are the descendant nodesiofThis means
that there are an equal number of open and closnth@ses between(i)
andg(j) — 1. As described for thparent operation the open parentheses

that lie in betweerp (i) ande(j) — 1 corresponds precisely to the nodes that
lie in betweenj andi in document order. ThHURANK(¢p(j)) =i+ 1+
() —@) —1)/2 =.
We modify all navigation operations to work withigh*double numbering” in an
analogous manner mable5.6. Observe that the root is notleand¢ (1) = 1. Thus,
we obtain the double numbering of the root direciiyd the double numbering of any
node reached from the root via navigation operatios correctly computed by
induction. We call th®€ ARENwith double numberin@ AREN+

111

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.5 —Parentheses sequence representation with doubleening.

p@|1]2]3|4]5|6]7]|8|9]|10/11]12[13|14
i [1]2] [3]4] [5]6 7
CLCD T QI
1/1/0(1(1(0f1|1|0|0|0|1]0]|0

Table 5.6 -Navigational operations fd’ AREN-+double-numbering support}.is the

parentheses bit-string addi] retrieves the bit at positiann the bit-stringd. Let an opening

(closing) parenthesis be represented (0.

PAREN+

parent(<x, y>)
if x=1 return NULL
lety’ := ENCLOSE(A, y)
letx :=x-(y-y +1)/2
return (X, y')

nextSibling (<x,y>)
let y'= FINDCLOSE(A, y)+1
if Aly']=1 then
let X :=x+ (y' -y)/2
return <x’, y’>
else return NULL

firstChild(<x, y>)
if A[y+1]=0 then return NULL
else
return <x+1, y+1>

previousSibling
if Aly-1]=0
let y:= FINDOPEN(A, y-1)
letxX:=x-(y-y)2
return <x’, y’>
else return NULL

(<X, y>)

lastChild(<x, y>)
if Aly+1] = 1 then
lety’ := FINDCLOSE(TP, y)
y":= FINDOPEN(y'-1)
letxX:=x+(y -y+1)/2
return (X', y’)
else return NULL

Double numbering in Binary tree representation

In support of requiremem1 we apply double numbering BT, and number each node

as (i, p(i)). Hence,(i) in BT is the position of theath 1 in the bit-string and

RANK(¢(i)) = i. The numbering that results is, as noted befagither in document-

order or level-order. Note that all operations able 4.6 usep(i). For example, if is

the next sibling of, thengp(j) = 2 X RANK(¢ (1)) +1 = 2i + 1.

112

Chapter 5 - Engineering Succinct Tree Represematio

Operations inBT begin with the operatioRANK In other words, once you are at a
node, you cannot navigate away from the node witltming aRANK Hence, we
compute theRANK"in advance” since it is going to be needed. W#edathe BT
representation with double numberiBg+. BT+ is never worse thaBT. See Table 5.7

for the pseudocode @&T+ (with double numbering).

We now give an example wheBd + is faster thafBT for a document-order traversal.
At a nodex that is a leaf node, we make several successwmgaten operation calls
even though the answer is null. This happens whetrywo go to the first-child only to
discoverxit is a leaf. We then go to the next-siblingwfin BT one would do thRANK
operation for each navigation operation called frorin BT+ the RANKoperation is
performed only once by the operation that reachediven that the double numberof
is <i, ¢@(i)>, for the operationgirstChild() and nextSibling() we check the
bit at positioni *x 2 andi * 2 + 1, respectively. AO-bit indicates a leaf node, this is
without callingRANK In a document-order recursive traverBdl requires2zn RANK
calls, where we haven nodes in the tree and we cditstChild() and
nextSibling() operations at each node.BiT+ we requiren + t RANKcalls, where
t is the number of non-leaf nodes in the tree, wkaoh nodes make up'3 of nodes in

the tree. Therefore we have a performance impronemé&T+.

113

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.7 —Operations of the Binary Tree representations dathble-numbering 4'is the

LBS).
BT+
parent(<x, y>) nextSibling(<x, y>)
lety:=vy, let x:= x let y':= 2*x+1
while(y’ mod 2 = 0) if A[y’]=0 then NULL else
<x’,y’>:= previousSibling(x',y") return < RANK(A, y), y'>
X=y'[2
return <x’, SELECT(A, x)>
firstChild(<x, y>) previousSibling(<x, y>)
let y’ := 2*x if (y mod 2)!=0
if Aly’] = 0 then return NULL xX"=y/2
else y:= SELECT(A, x)
return < RANK(x), y> return <x’, y’>

else return NULL

lastChild(<x, y>)

let y':= 2*x

if Aly’] = 0 then return NULL

else

let x:= RANK(A, y)

while(nextSibling(<x’, y'>)
I=NULL)

<x’, y'>:=nextSibling(<x’,y">)
return <x’, y’>

5.4 Optimising LOUDS further

5.4.1 Adding isLeaf bit-string

We make a further optimisation to th®UDS1+representation by including a bit-
string of lengthn, which differentiates all leaf nodes from non-leaides in the tree.
The bit-string of lengtm is defined as follows: each bit represents a simgide in the
tree, in level-order; where thiéh bit is set tdl if the ith node in the tree is a leaf node,
and to0, otherwise. This suppor82 andR3, at the cost ofi extra bits overall. In a
recursive document-order traversal of a tree tlgpired n SELECT calls are now
reduced to betweeh/3 and1/2. We refer to thdeOUDS1+representation with the
isLeaf bit-string ad OUDS1++

114

Chapter 5 - Engineering Succinct Tree Represematio

12]3|4|5|6|7|8|9]10]11|12]|13|14|15|16|17|18]19
a blc|d|e flg h i

1{ofafaf{z]afofofa[2] oo 2] o] of 1 g 0 ¢
(b) _
Vertex abcdef ghi
RunO 1010101001
Runs1 100010111

(c)

Figure 5.2— (a) Ordinal tree. (b) LOUDS bit-string of tree(a). (c) Equivalent partitioned bit-
vector.

Table 5.8 —Operations of the partitioned representation.sBingsRuns0 andRuns1 defined
in Section 5.4.2.

Partitioned representation (PLOUDS)
parent(x) nextSibling(x)
let x:=RANK "(Runs1,x) if Runs1[x]=1 then NULL
return SELECT ;(Runs0,x’) else
return x+1
firstChild(x) previousSibling(x)
if isLeaf(x) then NULL if Runs1[x-1]=1 then NULL
else else
let x:= RANK “(Runs0,x) return x+1
return SELECT 1(X)+1
lastChild(x)
if isLeaf(x) then NULL
else
let x':= RANK "(Runs0,x)+1
return SELECT ;(X)+1

115

Chapter 5 - Engineering Succinct Tree Represematio

5.4.2 Partitioned Representation

We now describe a new representation that hasitmglisity of LOUDS1+and also
allows the check of a leaf node @n(1) time. We address requiremerR4, R2 (fast
navigation operations) arRi3 (indicate leaf and last-child nodes rapidly). Tdea is to
encode the runs dfs andls in theLOUDSbit-string LBS) in two separate bit-strings,
which we will callRuns0 andRunsl. Specifically, if there are runs @k of length
l,1,,...,1, in the LBS, then the bit-stringRuns0 is simply 0'27110%711 ... 0%=~11.
Runsl is defined analogously (see example in Figure.]\NB}ing that thd.BS begins
with a1 and ends with &, it is clearly possible to reconstruct it froRunsO and
Runsl. PLOUDSIs simply RunsO and Runsl, each augmented with directories to

SupportSELECT, andRANK operations, where:

RANK" (X) returns the number df bits strictly to the left of positior in the bit-vector.
(RANK(X) = RANK(X - 1) except when = 1).

In Table 5.8, we show the navigation operationsPbOUDS Observe that, some

operations are now trivial:

* The check of a leaf node requires the check optbeious bit in theRuns0 bit-
string. For a node that appears at positipit is a leaf if the bit at position — 1
is a0. For example, in Figure 5.2 — (a) Ordinal tred. (®UDS bit-string of

tree in (a). (c) Equivalent partitioned bit-vector.
* ,node9, d, f, h andi are leaf nodes by the criterion.

* ThenextSibling() andpreviousSibling() operations irPLOUDSare as
simple as they were ibOUDS The nextSibling() operation is computed in
theRunsl bit-string. For a node at positianwe check the bit position, if the

bit is a0 then we returrx + 1, otherwise return null.

116

Chapter 5 - Engineering Succinct Tree Represematio

We now observe:

Proposition 5.2. SELECT operations on thé.BS can be simulated by 8ELECT; and a
RANK on RunsO andRuns1.

Proof. We claim thatSELECT(LBS, i) = SELECT(RunsO, RANK(Runs1, i))+i.
Note thatRANK(Runsl, i) equals the number of completed runslefbefore the run
thati is in. There must be an equal number of completes of Os beforei. The
SELECT onRuns0 then gives the total length of these runs, whicthén added tbto
give the position of théth 1. SELECT(LBS, i) is similar.

Corollary 1. PLOUDS supports the operationgarent , firstChild() and
lastChild()

Proof. We look at the implementation of these operations@UDS1 Due to double-
numbering, these operations only have a siBfiEECTcall, which can be simulated as

in Proposition 5.2.

Proposition 5.3.The number ofls in RunsO and Runsl is equal to the humber of non-leaf

nodes in the input tree plus one.

Proof. A run of 1s in theLBS is a node of degree 0, i.e. a non-leaf node (with the
exception of the super-root). The numbedsfin Runsl is the number of runs dk in
the LOUDShit-string. The number of runs 6§ in theLBS equals the number of runs of
1s.

The main advantage d¢*LOUDSIs that it requires jJusSELECT, and RANK not
SELECT. In addition, the number ofs in RunsO and Runsl is usually small.
Therefore, we would normally expect the space uss#HgPLOUDSto be less than
LOUDS1+ The disadvantage ¢fLOUDSSs that to do &ELECTcall we now must do
bothRANKandSELECTcalls.

117

Chapter 5 - Engineering Succinct Tree Represematio

5.5 Comparison of tree representations

We have presented a partitioned version of Jacdbddd] LOUDSrepresentation,
called PLOUDS Although we will demonstrate experimentally tidtOUDSuses less
space thah.OUDS this could be understood on a firmer theoretiis. It would be

interesting to see whether the partitioning ide@egalises to other applications.

The idea of double-numbering and fast leaf nodeckdhg in PAREN+ LOUDS1+
LOUDSO0+ LOUDS1++ andBT+ allows us to meet the requirements (Section 5&.3)
representing an XML tree, where we gain good traeersal performance competitive

to if not better than standard DOM implementations.

In summary, we show imable 5.9the total number of calls to tfRANK SELECTand
INSPECT operations in the document-order recursive traleesd non-recursive
traversal upon a tree for th©UDSandBT variants. TheNSPECT operation is simply
a check of a single bit, hence a memory accessiofedd in Chapter /RANK:is a little
slower than a memory access a88LECT is 2.5 times slower tharRANK For
LOUDS]1 LOUDSOandBT we requirep in addition to fulfil requiremenR1, which we
have omitted from the table. Even though, we seeowsrall improvement in the
LOUDS1+ LOUDSO+ LOUDS1++ PLOUDSand BT+ representations because we

avoid the call of the exti@ANKoperation, using in most cases the same space.usag

Further improvements we observe i®OUDS1++are that the number GELECT
calls are reduced toin the recursive traversal and2o in the non-recursive traversal,
wheret is the number of non-leaf nodes (usudl3 of tree nodes). IBT+ the number

of RANKcalls have been reduced fr@n (that is inBT) ton + t.

PLOUDSmakest x SELECT and t Xx RANKcalls in a non-recursive traversal. In
comparison to the other tree representations @baport double numbering) they
appear to be faster at first sight because thayotloequire both thRANKandSELECT

operations in a non-recursive traversal. Howevd&?Li©@UDSwe observe that there is a

potential operational time gain for

118

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.9 —Total number oRANKandSELECTcalls for recursive and non-recursive document-
order traversals. Comparisonl@dubDd, LOUD®, LOUDS1+4 LOUDS0+ LOUDS1++and
PLOUDSH is # nodes andis # non-leaf nodes in the treg operation call for the tree

representations is not included.

Tree Reps Recursive traversal Non-Recursive travesas
LOUDS1 n x SELECT, n x RANK (n +t) x SELECT, (n + t) x RANK
2n xINSPECT 2n X INSPECT
LOUDSO (2n + 2t) xSELECT, (n + (2n + 4t) x SELECT,
2t) xRANK 2n x INSPECT (n + 4t) x RANK 2n x INSPECT
LOUDS1+ n X SELECT, 2n x INSPECT (n + t) x SELECT, 2n x INSPECT
(2n + 3t) x SELECT, 2n x
+
LOUDSO (2n+t) X SELECT 2n x INSPECT | |1 (o= oY
LOUDS#+ t x SELECT, 2n x INSPECT 2t x SELECT, 2n x INSPECT
t X SELECT t x RANK2n x 2t x SELECT, 2t x RANK
PLOUDS ' ’ ' ’
INSPECT 2n X INSPECT
2n x RANK 2n XxINSPECT,
BT 2n x RANK 2n XINSPECT ¢ x SELECT
2t x RANK 2n XINSPECT,
+
BT (n + t) x RANK 2n XINSPECT t x SELECT

computingRANKand SELECT on a bit-string that is half the size (iRunsO and

Runsl compared t@.BS) on larger bit-strings.

The disadvantage oBT and BT+ is that for the operationsastChild() and
parent() it can be much slower than the other operationsekample, given we have
a node with child degree couhntthe cost to go to the last child of a nod€®{&) time,
making onlyRANKcalls.

Likewise going to the parent node, we make dBLECT calls, inO(h) time, in the
worst case when we are at the last-child node.rGivatSELECTis a factor 2.5 slower
than theRANKoperation, we predict that a non-recursive traaleier BT is slow, for

documents with large degree nodes.

119

Chapter 5 - Engineering Succinct Tree Represematio

5.6 Experimental Evaluation

In this section we provide a comparative experimleanalysis of the succinct tree

representations.

5.6.1 Setup

To test our data structures we obtain ordinal tfema the following six XML files in
our XML corpus (Chapter 3):Mondial-3.0.xml , Orders.xml , Nasa.xml ,
XPATH.xml, Treebank_e.xml andXCDNA.xml. We also tested the data structures on
randomly generated XML files. These were obtaingdising the algorithm described
in [49] to generate random parentheses stringsaWdom parentheses string was
converted to an XML file by replacing the openinglaclosing parentheses of non-leaf
nodes by opening and closing tags. The parentHesésaf nodes were replaced with

short text nodes.

The six XML files selected show a range of fileesizand tree structure. In all cases,
the type of each nodelément , text node, etc) was stored as a 4-bit value in an

accompanying array; we call this thede-typearray.

The basic setup of our experiments is outlined ppéndix A. We used the Xerces
DOM parser to construct the tree structure biagsiof the XML documents. The tree
representations were tested on the Intel-P4 and-UBumSparc machines. The
experiments were to traverse the trees and to cihentotal number of nodes of a
particular type by accessing the node-type arrag.t&¢ted with four different types of
traversal, breadth-first order (BFO), and depthtforder (DFO), which is done both
recursively and non-recursively (using the algeontfrom Table 5.1), and the reverse
recursive depth-first order (RDO), where we firdditvthe last child at each node and

then each of its previous siblings in turn.

We compare the running times of five variants <®@UDSdata structures, the two
BT representations and the tWARENrepresentations. FRANKandSELECTwe use
the CJ and KNKP bit-vector implementations detaite&ection 4.2.1, where in the CJ

120

Chapter 5 - Engineering Succinct Tree Represematio

bit-vector we use the paramet&s= 64 ands = 32, and in the KNKP bit-vector we

use the parameteBs= 64 andSB = 256.

5.6.2 Space Usage

In Table 5.10, we summarise the space usage pee mbdthe tree structure
representations. We state the space usage peremaesd for long gaps and the clump
array in the CJ and KNKP bit-vectors, respectivélgr our XML documents, thBT
representation has no long gaps for CJ and no dumphe clump array for KNKP
because the pattern @6 in the bit-string are densely distributed. Ounning time
comparisons of the succinct tree representationst tmel done based on similar space
usage; therefore, we use parameters that prockesdoli-like space usageOUDS1++
uses the same tree representation@dDS1 plus a single bit per node for tlsteaf
bit-string representation. We observe tR&iOUDSgenerally uses less space than the
other LOUDSdata structures. When implemented using KNKP pace usage is
competitive with the?PAREN

We observe that when using CIFbOUDS low number of long gaps usually relates
to high number of leaves in the document. For exanmondial-3.0.xml has78%

of leaf nodes in its tree structure, and the loag gn average is 0.34 bits per node.

Compared toOrders.xml , which has50% leaf nodes, the long gaps are much
higher at 1.6 bits per node. However, for the ranmigogenerated files, that have 50%
leaves and have a negligible amount of long gdpst space usage result per node is
consistently higher than most files. For tB€ representation, we have a consistent
space usage for all files, as there are not mang tmps, and we observe in the bit-
string thels andOs are usually equally distributed, i.e. there avdange runs of only

Z€eros or ones.

121

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.10 -Space Usage of tree reps. Columns are test filmbauof nodes, % leaf node and
total space usage of tree representations givenqarLOUDSOandLOUDS1use the same
space usage therefore call the@UDS For PLOUDSLOUDSspace per node for the clump data
structure using KNKP; space per node to suppog taps using CJ. F®AREN space per
node, cf Table 4.3. For negligible we use NEG.

PLOUDS LOUDS BT PAREN
KNKP CcJ KNKP CJ CJ| KNKP
% clump long clum long
File Nodes |[leaf]total DS |totallgap |total |p DS |total |gap

Mondial |57,372 78|| 3.12 0.07| 3.8%34 |5.11| 0.11| 5.65 0.5% 4.05 455 3.73
Orders 300,003 | 5¢(3.78 0.03 5,84 |5.07|0.07| 5.10 NE@LO5 |4.55 | 3.73

Nasa 1,425,53%7 ||3.37| 0.05 | 4.2]0.57 |5.09| 0.09| 5.42 0.33 4.05 4.55 3.73

XPATH |2,522,571|67 ||3.37| 0.04 | 3.9®.27 |5.08| 0.08] 5.63 0.583 4.05 455 3.73

treebank_¢7,312,612|67 |(3.37| 0.04 | 3.7j0.06 |5.08| 0.08] 5.10 0.01 4.05 455 3.73
25,221,15

XCDNA |3 67 (3.35| 0.02 | 3.8.08 |5.11| 0.11| 5.09 0.38 4.05 455 3.73

R65K 62,501 50| 3.79 0.04] 4.0SEG |5.08 |0.08 | 5.09] NEG4.05 455 | 3.73
R250K 250,001 | 50| 3.79 0.04 4.08EG |5.08 [0.08| 5.09] NE®4.05 |4.55 | 3.73

RiM 1,000,001{50 ||3.79]| 0.04 | 4.08NEG |5.08 | 0.08 | 5.09] NEG4.05 (4.55 | 3.73

R4M 4,000,00150 ||3.79| 0.04 | 4.09NEG |5.08 | 0.08 | 5.09] NE®4.05 |4.55 | 3.73
16,000,00

R16M 1 50 |(3.81| 0.04 4.0FNEG 5.08 |0.08| 5.10 NEG®4.05 |4.55 | 3.73

CJ bit-vector analysis on Orders.xml

We observe thaPLOUDSusing CJ uses more space tha@UDS1+ for the file
Orders.xml . We now explain this unusual behaviour. In essewbat we observed is
that the number of long gaps in the partitioneesbiings PLOUDS$ is relatively large,
even though there are no long gaps in the origisd. We first examine the tree

structure ofOrders.xml , which is shown in Figure 5.3.

The root node has degree 30,001. At the next lievidie tree these child nodes are

arranged in the following pattern: a leaf nodeda#d by a node with nine children.

122

Chapter 5 - Engineering Succinct Tree Represematio

The nine child nodes themselves each have a sthgténode. This pattern is repeated
15,000 times. Therefore, th&®UDShit-string representing the tree structure is rofi
as follows: we insert the bitk 10for the super root and the root node. We therrinse
30,001 1s and &) bit representing the node wig®,001 child nodes. For the next level
we insert repeatedlyl 5,000 times) the bit patter@ 1111111110, representing a leaf
node followed by a node with nine children over 8%001 nodes. For the next level
we insert the bit patterhO, repeated 35,000 times, representing a single child node for

each node in the groups of nine child nodes.

We use the parametess= 32 and L; = 256 for the CJ implementation given in
Section 4.2.1. Recall that in ti®=LECT, data structure we store explicitly evesti 1,
and a long gap appears where the difference betiean-th and(i + 1)s-st1 bit is
more tharl; bits. If a long gap appears, we store explicitky positions of all thé bits

fromisto (i + 1)s — 1 in an array.

For theLOUDS1+bit-string theSELECT, data structure has one long gap between
the s-th and2s-th O bit, but no more, for the reason that in the sddenel of the tree
representation we have tvddits for every ninels. In256 bits there are approximately
forty-six Os, therefore no long gaps. FBELECT, there are no long gaps for the reason

that for every 256 bits there are approximagly 1s.

However for thePLOUDShit-strings, which supportSELECT, our interest is with
the Runsl bit-string. The first long gap appears betweenfits and second-th 1,
where there ar80,000 Os. After this we have the pattern of eidis followed by a
singlel, repeated 5,000 times. Within these number of bits tireand (i + 1)s 1 bit
appear every 288 bits, which is bigger than the lgap sizel{; = 256), therefore the
number of long gapd.(¢) is 135,000/288 = 468.

Therefore as in Table 5.10, we confirm the long gppace usage f@rders.xml is

as follows:

LGs per node= (32 X #LG X s)/n = (32 X 468 x 32)/300,003 = 1.60 (2 d.p.).

123

Chapter 5 - Engineering Succinct Tree Represematio

308000
OQ . OQTC
O OO OOO0O0 O OO OO0
O OO OOO00O0O O OO OO0O00O

1010 1...3000001111111110...011111111,1§,,0 101010101010101010...101010101010103433430...035000

Figure 5.3 —Top: Ordinal tree structure @rders.xml . Bottom: Bit-string representation of

Orders.xml (subscripts indicate repetition of sting sequence).

In other words, in the partitioned representatibthe LOUD Shit-string we have found

an example where the space usage has increased.

5.6.3 Running Time

The performance measure we report for our sucdata structures is the slowdown
relative to Xerces based on the same type of tsaliewWe first determine which bit-
vector to use. Table 5.11 gives the slowdown netato Xerces oPLOUDSusing the
KNKP and using the CJ for a DFO traversal on aiBen#. The CJ baseBLOUDS
outperforms the KNKP based data structure. We savwsame relative performance for
LOUDS1+LOUDSO+andBT traversals. This is not too surprising since tiNKIR was
designed for sparse bit-vectors; the bit-vectorse hare dense. In the remaining
experimental results tHEOUDSand theBT data structures use CJ.

Table 5.11 -CJ and KNKP speed comparison

Mondial| Order| Nasa XPATH |Treebank | R62KR250K|R1M|R4M|R16M
KNKP|1.08 2.72| 2.01 1.75 2.40 2.11 2.15 217 224 246
(ON] 0.96 1.3 1.6? 1.42 1.96 1.7p 1.7? 179 1.83 1[98

124

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.12 —Performance evaluation onel-P4 Coloumns are: Test file, slowdown relative to

the Xerces for recursive and non-recursive depgt-brder (DFO) traversals fabUDS1(L1),
LOUDS1+(L1+), LOUDS1++(L1++) LOUDSO+(LO+), PLOUDYPL), BinaryTree (BT),

BinaryTree+ (BT+) all using CJ bit-vector and foxREN(Par) andPAREN-+HPar+). Fastest data

structure for each set is in bold font.

Intel-P4

File DFO recursive DFO non-recursive
L1 L1+ [LO+ [L1++ |[PL |Par | Par+BT |BT+||L1 |L1+ |LO+ |L1++|PL |Par | Par+BT BT+

Mondial | 1.87| 1.241.87| 0.75 |0.96{1.28/1.04|1.52|1.08||1.85/1.22|1.92| 0.79 |1.05|1.39({1.11|1.92|1.53
Orders 2.23| 1.412.29|1.07 |1.30(1.48|1.24|1.66|1.15|]2.29|1.54|2.55| 1.24 |1.62|1.66|1.41|2.10|1.59
Nasa 2.97| 2.0.19|1.32(1.68|2.08|1.67|2.25|1.59||3.09|2.13|3.38| 1.52 [1.95|2.44|2.00|2.96| 2.39
XPATH | 2.53|1.692.66|1.13|1.42|1.81|1.44|2.01|1.41{|3.02/2.00(3.25| 1.44 |1.87|2.33|1.87|3.01| 2.44
treebank | 3.29 2.283.60| 1.53|1.96|2.49(2.03|2.37|1.70||3.55|2.49(3.80| 1.87 |2.33|3.27|2.80|3.17| 2.55
R65K 2.521] 1.822.85| 1.45 |1.72(2.19|1.89|1.96|1.53)|3.04(2.24|3.28| 1.86 |2.20|2.95|2.67|2.74|2.27
R250K 2.55| 1.832.93| 1.49|1.78|2.18|1.90|1.98|1.54(|3.09|2.30(3.32| 1.93 |2.24|2.88|2.59(2.75| 2.27
R1M 2.56 | 1.842.98| 1.50 |1.79|2.39|2.12|1.98|1.55(|3.18|2.36(3.41| 2.01 |2.30|3.28|2.98|2.82| 2.34
R4M 2.63| 1.883.09| 1.56 |1.83|2.41|2.13|2.01|1.56||3.30{2.45|3.50| 2.09 |2.35|3.25|2.96|2.88|2.39
R16M 2.76] 1.983.27| 1.67 | 1.982.53|2.20|2.04(1.58)|3.47|2.63|3.75| 2.31 |2.61|3.23|2.95|2.93| 2.45

In Table5.12, Table 5.13 and Table 5.14, we summarise énfonpnance of the data
structures for the DFO and BFO traversals. FOIBRO traversal, it required thgpueue
data structure of the C++ STL library. The storaf@®OM nodes in the queue resulted
in some overhead, therefore the DOM in the BFOetrsad could not fit XCDNA.xml
into the internal memory of the Intel-P4 machinbeTata structures are based on the
succinct tree representations described in Chapte©OUDS1 LOUDSQ PARENand

BT. We observe that double numbering improves thaingntime operations of the tree
representations: Over all files, th©UDS1+variant was a factor of 1.44 better than
LOUDS1on average. FOPLOUDSthere is an improvement of a factor of 1.60 better
thanLOUDS1on average.

125

Chapter 5 - Engineering Succinct Tree Represematio

Table 5.13 -Performance evaluation for DFO on Sun-UltraSpahe setup is the same as in
Table5.12.

Sun-UltraSparc

File DFO recursive DFO non-recursive

L1 |L1+ |LO+ |L1++|PL |Par | Par4BT [BT+|[|L1 |L1+|LO+|L1++|PL |Par | Par4BT |BT+

Mondial [1.52/1.03|1.64| 0.68|0.92|1.17|0.97|1.43|0.91{|1.77/1.18|1.88| 0.81 {1.15(1.40(1.17(2.05| 1.52
Orders 1.160.75|1.37| 0.62 |0.78]0.97(0.80|1.09| 0.69| |1.48/0.99|1.73| 0.85|1.12|1.16{1.01|1.50{1.11
Nasa 1.220.81|1.40| 0.57 [0.75(0.98|0.81|1.12{0.71]]1.491.00(1.65| 0.74 |1.02{1.28|1.08|1.63| 1.22
XPATH |1.19(0.77|1.35| 0.55 |0.76|0.96/0.78(1.11|0.70] |1.46/0.96{1.61| 0.73 |1.03|1.17|1.00|1.62| 1.20
treebank | 1.230.83|1.38|0.58 |0.79]|1.06|/0.89(1.09(0.70||1.481.01{1.64| 0.75 |1.05|1.52|1.35|1.59|1.20
XCDNA |1.20(0.78|1.37| 0.57 |0.78|0.96/0.79(1.11|0.71] |1.45/0.97(1.62| 0.73 | 1.03|1.17|0.99|1.61|1.21
R65K 2.9412.07|3.35| 1.58 |2.07|2.70|2.38|2.68| 1.72[|3.72/2.62|4.25| 2.13 | 2.83|3.83|3.43(3.64| 2.72
R250K 1.290.90(1.47| 0.69|0.91|1.17|1.03|1.13|0.76[|1.591.11|1.82| 0.91 {1.21{1.64|1.47 (1.56| 1.17
R1M 1.26/0.88|1.43| 0.68 |0.89|1.31{1.15|1.10|0.74{]1.56/1.09|1.78| 0.89 |1.20{1.82|1.66|1.52| 1.15
R4M 1.27|0.88/1.45| 0.69 |0.90(1.33|1.18|1.11|0.75(|1.56/1.10{1.79| 0.91 {1.21{1.82(1.66 (1.53| 1.16
R16M 1.26/0.89|1.45| 0.69 |0.90(1.36|1.20(1.11|0.74{|1.581.10{1.79| 0.93 {1.21|1.79|1.64|1.52| 1.15

Table 5.14 -Performance evaluation for BFO mrel-P4and Sun-UltraSparc. The setup is the
same as in Tablg.12.

Intel-P4 Sun-UltraSparc

BFO BFO
L1 [L1+|LO+|L1++|PL |Par| Par{BT |BT+||L1 L1+ |LO+ |L1++|PL |Par| PartBT |BT+

File

Mondial |0.860.57|0.80| 0.38 |0.47|0.65|0.55|0.80|0.56/] 1.13 | 0.741.12| 0.53 |0.65|0.83|0.73{1.09/0.69
Orders 1.260.86|1.27| 0.71|0.83|0.99(0.85|1.05/0.71]] 0.78 | 0.510.85| 0.43 |0.53]|0.59|0.54|0.74|0.49
Nasa 1.190.81{1.18| 0.57 |0.71|0.94/0.79(1.07|0.78 | 0.84 | 0.560.88| 0.41 |0.52|0.64|0.57|0.81{0.53
XPATH |1.31]0.87(1.28| 0.62 |0.77({1.03/0.86/1.18|0.85| 0.82 | 0.540.86| 0.41 |0.51|0.64/0.57|0.79|0.50
treebank_e1.12|0.77|1.11| 0.54 |0.67|1.01{0.87|0.98|0.71f| 0.73 | 0.500.78| 0.36 |0.46|0.66|0.60(0.73|0.48
XCDNA 0.69 | 0.470.71| 0.36 [0.44/0.54|0.49|0.67|0.44
R65K 1.52/1.09|1.61| 0.87 [1.03]1.78|1.56|1.39|1.01f| 3.00 | 1.983.34| 1.61 |2.04(2.81|2.48(2.78|1.75
R250K 1.481.05|1.62| 0.86 |1.00(1.73|1.53(1.37|1.00| 1.27 | 0.831.41| 0.68 |0.86|1.23]1.06|1.19|0.74
R1M 1.491.05/1.61| 0.86 (1.01({1.95|1.75|1.39|1.01}] 1.24 | 0.821.37| 0.65 |0.83|1.38|1.22|1.19|0.74
R4M 1.15/0.81|1.24| 0.66 |0.78|1.55[1.39|1.09|0.79/] 1.09 | 0.741.21| 0.58 [0.74|1.27|1.14|1.07|0.68
R16M 0.960.69(1.07| 0.57 |0.66|1.43(1.27|1.02{0.74] 0.73 | 0.490.82| 0.40 [0.50|0.97|0.88|0.75| 0.50

126

Chapter 5 - Engineering Succinct Tree Represematio

For PARENandBT, double numbering speeded up the traversal oragedny a factor
of 1.17 and 1.37, respectively. Comparing the parémce of the basic tree navigation

operations we observe tHADUDS1++s the fastest tree representation.

Note thatLOUDS1++usesn bits more than the other succinct tree representafor
theisLeaf bit-string. Therefore, we are required to add erta bit per node to the
LOUDS1space usage in Table 5.10 to repres€itDS1++ For both the recursive and
non-recursive traversaltOUDS1++ is the fastest. Excluding OUDS1++ (which
requires an extra bit per node) we obsdBVe is the fastest anBAREN+s almost as
fast. For the non-recursive traversal Bif+) representations suffer on tharent()
operation: given that we are at the last-child nedge have to navigate through all
previous-sibling nodes before we get to the pamedie. Over the entire set of files, we
observe thaPLOUDSwas competitive if not better than the other teg@esentations, if
we were to consider the trade-off between the spmage and the running time

performance.

5.7 Technical ideas summary

We studied several succinct tree representatiodoptimised them for DOM support.
These optimised representations number the nodasrehode tree with integers from
1 ton, and (recall that previous representations nuntbeoeles non-consecutively with
numbers from 1 t@n), and have fast implementations for testing whetheode is a
leaf. The main new idea introduced was double nuimyppe and the partitioned
representation for theOUDSDbit-string. The idea of the partitioned represtatahas
been applied to bit-strings by [37].

Based on our requirements set out in Section 32 3XhosePAREN+as the tree
structure representation in our DOM application,icthwe present in Chapter 7.
PAREN+supports the requiremeni®l-R3, in that it numbers nodes from to n,
navigational operations are fast, and the indicatd first child nodes is fast. In

addition, the direct support of document-order narimy of nodes IPAREN+is an

127

Chapter 5 - Engineering Succinct Tree Represematio

advantage and is required in DOM. Such suppohei©UDSvariants, which number
nodes in level-order, would require additional dateuctures. The running time of
PAREN+s not as good as some of the other tree reprsam, however with a lower

space usage on avera@&REN+s still competitive.

Finally, if we were to extend our aims of suppaytibOM as in an XML processor
application, we would support structural joins ahd additional traversal operations
such as thefollowing and preceding operations. These are already supported in

PAREN+ but not in the other tree representations.

128

Chapter 6
Representing Textual Data

In this chapter, we present strategies to effityestore and access textual data
contained in XML documents. There is an abundanteertual data in XML
documents: for example, among our test fileegbank_e.xml has 67% of its nodes
in the document tree as text nodes. Indeed, in €h&we saw that textual data made

up between 50% and 80% of our documents.

We model the problem of storing textual data in XElhkcuments as follows. Given
n (non-empty) strings,, ..., s,, we wish to store the strings in a data structaréhat
we can support the operation of returning diestring, when given the integéby the
“user” (in our case, the “user” will be the SDOMpéipation described in Chapter 7).
The strings are numbered consecutively by the "used the data structure does not
have the freedom to re-order the strings. Our bapigroach is to concatenate the
strings, and store offsets into the concatenatéagstthat help us to get thith string.

In order to do this in a space-efficient manner,imteoduce theprefix sumsproblem:

given a (static) sequence of positive integerswe wish to support the operation:
SUMx,i), which is for the offset. This problem was described in Section 4.2.5, wilaer
succinct data structure was implemented. We inyatdithe practical performance of

this data structure as well as alternatives.

The chapter is organised as follows. We begin lngi more details of our basic
approach, and explaining how the prefix sums probbeecomes relevant. Then we
give solutions to the prefix sums problem. Nexg describe details of the storage of
textual data, and finally we give an empirical exaion of our approach. Parts of this

chapter were published in [23].

6.1 Overview

As noted above, we are givannon-empty strings,, ..., s,. From an implementation
perspective, we assume that the last characteadi string is a string terminating
character, and foir = 1,...,n we lett; be the string obtained by removing the string

terminating character frons;. We let x; = |s;|, x'; = |t;], x = (xq,..., %), x¥' =

129

Chapter 6 - Representing Textual Data

(x'4,...,x',). Since no string is empty, we have that> 2, andx;’ > 1, for alli. By

W (x) we denoté}i’ﬂlxi.

We consider two basic ways of representing thengsri First, we consider
uncompressed text. In this case, we concatenate, s,, into a single character array,
calledA. In addition, we store the numbexss..., x,, in a prefix sums data structure. In

order to access théh string, we:
e computej =SUMx, i)
* return a pointer tel[j]

(the second step is possible since we keep thegsierminating character). Next, we
consider compressed text. In this case, weTletlenote the string which is the
concatenation of;,...,t,. We storel in a data structure that keepsn a compressed
form, but is rapidly able to answsubString(j,k) queries, which returns a string that
equals the substring @ffrom positionsg/ to k. In this case, we access tile string as

follows:
e computej =SUMx’,i)
e computek =SUMx',i + 1)
e returnsubString(j,k—1).

We now explain why we choose this approach. ltmipdrtant to remember that there
are many textual nodes and that the average lesfgtiixtual data is relatively small
(particularly due to the whitespace text nodes)or Example, excluding the null
terminating character, on average over all filege ihdividual text nodes were
approximately 11 characters in length (the avetagenode length over all files ranges

from 6 characters to 23 characters).

We now consider the two naive approaches to thegstffset storage problem. We
could, for example store the “offset” valu8&Mx,1), SUMx,2),..., SUMx,n) in an

array of integers. This uses up 32 or 64 bits perg Given that strings are only about

130

Chapter 6 - Representing Textual Data

88 bits long on average, the space used by thetsffs a significant portion of the
textual data. Since the textual data in turn isignificant portion of the XML
document, the offsets would be a significant pdrthe eventual representation. The
other approach is to store each string as a C+4rgstrhis has the disadvantage that
somewhere we must store a pointer to this strifgchvagain takes 32 to 64 bits. In
addition, using a number of small (dynamically-e#ited) chunks of memory would
probably lead to memory fragmentation, and henaém greater memory usage. If the
text is stored compressed, then, assuming say iaatyp:1 compression ratio, the
compressed size of a text node would be on aveuay&0 bits, and a naive storage of

the offsets/pointers will be even less feasible.
In what follows, therefore, we want to focus on taroblems:

* How to store the lengths of the strings in a spzfieient way, so that the

SUMoperation can be supported efficiently.

 How to store the strind” in a compressed manner, so as to support the

subString operation rapidly.

6.2 Prefix Sums Problem

To address the problem of storing the string lemgtle engineer several prefix-sums

solutions based on two compressibility measures:

(a) The succinct space bound given in Proposition sB(in, n) = [log,(7'"/)| bits,
which applies to any sequene®f sizen whose elements add upng
(b) Data-awaremeasures, which depend on the values, iand can be lower than the

succinct bound for some sequences. Appropriate alagse measures have been

studied extensively in the information retriev&)icommunity [76].

We demonstrate a close connection between theaslsiee measure that is the best in
practice for an important IR application and thecsuct bound. As (a) is already

defined we now define (b).

131

Chapter 6 - Representing Textual Data

6.2.1 Data aware Measures

The data-aware measures are based upon self-degin@bhcodings of the individual
valuesx;; these have been studied extensively in the comieiR applications [76].
The data-aware encodings are designed so that srtegers have smaller codes than
larger values. This is suitable for our applicati@s mentioned before the average
length of text nodes is relatively small. There tave main families which we discuss;
the first is represented by tli@lombandRice codes, and the second by hendy

codes.
Golomb code

Given an integer parametér > 1, the Golomb code of an integer> 0, denoted
G(b,x), is obtained by writing the number= [(x — 1)/b| in unary (i.e. asl?0),
followed byr = x — gb — 1 in a binary encoding using eithgg b| or [Ig b] bits. If
0 <r < 2M8bl —p then usdlgh| bits to encode. If 2/18%1 — p < < b, then use
[1g b] bits to encode. If b is a power of two, we can encode each valuewith [Igb]

bits. A Rice code is a Golomb code wheris a power of two.

In Figure 6.1, we show as a binary tree the ‘préfde’ encodings of whenb = 3 and
b = 6. For example, ifx =9 andb = 3, theng =2 andr = 2 becaus® — 1 = 2 *
3 + 2; so the encoding(3,9) = 110 11 We observe that = 2 is encoded a&l as

shown in Figure 6.1 (a).

The first data-aware measureGOLOMB(b,x) = Y. ,|G(b, x;)|, where|a| denotes
the length (in bits) of the string. In other wordsGOLOMB measures how welt

compresses by coding eachusing a Golomb code.
Gamma (y) code

The y-code of an integex > 0, y(x), is obtained by writindlg x| + 1 in unary,
followed by the valuex — 2!!8*I in a field of [Igx]| bits, e.g,y(6) = 001 10
Clearly|ly(x)| = 2|lgx] +1 bits. The second data-aware measure of the

compressibility ofc isT(x) = X7, |y (x)].

132

Chapter 6 - Representing Textual Data

Figure 6.1— Binary encoding for values in (a) wheh = 3 and in (b) whem = 6.
Delta (6) code

The §-code of an integex > 0, 6(x), is obtained by writindlg x] + 1 using they-
code, followed byr — 2!'8*] in a field of |lgx| bits; e.g.,0(33) =001 10 00001 The

final data-aware measure of the compressibility &f A(x) = Y.1-,|6(x;)].

By the concavity of the log function, it follows ahthel” and A measures are

maximised when all the;’s are equal. This gives the following observation:
I'(x) = A(x) = 0(nlog(m/n)) (6.1)

We observel’ and 4 are never much worse than the succinct bound:ll rédzat
B(m,n) = [log,(""[)] (Chapter 4). Conversely, if the values inare unevenly
distributed, then thé” and 4 measures are reduced, and may be much less tean th
succinct bound. This, together with the simple oles#®on thatd(x) can never exceed
I'(x) by more tharf (n) bits, makes thd measure asymptotically attractive. However,
extensive experiments show in [76] that the” andGOLOMB measures of a sequence
arising from a particular IR application were briyasimilar, andl" is often less thaq;
GOLOMB with the choiceb = [(mIn 2)/n] has generally been observed to be the

smallest for a particular IR application.

6.2.2 Related Work

There is a large body of related work, which inesid
» Data structures achieving withtw(n) bits of the succinct bound were given by
many authors (e.qg. [27], [37]); the optimal bourakvachieved in [57].

133

Chapter 6 - Representing Textual Data

* In recent work [41l], a new data-aware measugep was proposed,
wheregap(x) = Y- [lgx;]. The authors considered, in addition $JM a
variety of operations including predecessor openation the set represented by
the prefix sums okx. Unfortunately,gap is not an achievable measure, i.e. there
exist sequences that provably cannot be compréssgtp.

* In [42], Gupta et al. carried out an experimentzleation on the data-aware
data structures. We note that some of the idedkisnchapter are similar to
those developed independently in [42].

» Other work [59] implies tha®(1)-time SELECTis possible if spacgap(x) +
o(m) bits is used, but the second term can be muckrangngap.

e As our main focus is on the practical performant¢hese data structures, we
look more closely at [42]. In [42], the focus is RANKqueries, while ours is on
SELECT, and our data sets are different. Contrary to,[42¢ uphold the
conclusions of [76] that Golomb coding (and henoe succinct bound) are
superior to the other gap-aware measures. Althdugbuld be meaningless to
draw direct conclusions regarding running timesveen our work and theirs, in
our implementations, only the trivial gap-awareadstiructures came even close

to the succinct data structure.

6.2.3 Succinct Representations and Golomb Codes

The succinct solution given in 4.2.5 is representsthgnlg(m/n) + 0(n) bits. We
observe thatGOLOMB is closely related to the succinct bound when @&womb
parameterb is chosen to bé®(m/n). We now show the connection between the

succinct and Golomb bounds:

Proposition 6.1.Letc > 1/2 be any constant, and letbe a sequence wit’(x) = m and
|x] = n and suppose thattm/n > 1. Then, takingb = [cm/n]|, |GOLOMB(b,x) —
B(m,n)| = 0(n).

134

Chapter 6 - Representing Textual Data

Proof. We use the following inequalities:

x—1<|x]|] <x < [x] for anyx. (6.2)
lg(cm/n) <lgb <lg(cm/n) + 1. (6.3)
n/2c <m/b <n/c. (6.4)

(6.2) follows from the definition. For (6.3) thedt inequality is obvious. For the second

inequality, take both sides to the power of 2 axlate it as:
[cm/n] < 2cm/n
Since cm/n > 1, therefore,b = [cm/n] < cm/n + 1 < 2cm/n, which shows (6.3).

The reasoning for (6.4) is similar to that for (6.3

We now prove the main proposition. Firstly,
n

.=1(l(xi — 1)/b] + 1 + [lgh])

L

GOLOMB(b,x) < Z

The RHS can be greater than the LHS since sgmavill have their binary part coded
using|lg b] bits. Now note that:

n

Zn (I(x; = 1)/b]l + 1+ [lgh]) < z (xi/b+1+1gb+1)
i=1 =1

l
SinceW (x) = m, we get:

GOLOMB(b,x) <m/b+n(2+1gb) <n/c+n(3 +lg(cm/n)) = nlg(m/n) + 3 +
1/c +1gc)n. Thus,GOLOMB(b,x) — B(m,n) = 0(n).

Now note thaGOLOMB(b,x) = Y1, (l(x; — 1)/b] + 1 + |lgh]), and:

> (G — /b1 + 1 + ligbl)

=1
n X; — 1
zz (+1+1gb—2)
i=t\ b

m-—-n

n
—n =>nlg(em/n) + ——2n

ang(%)+ e

Thus,B(m,n) — GOLOMB(b, x) = 0(n).
135

Chapter 6 - Representing Textual Data

We conclude thatB(m,n) — GOLOMB(b,x)| = 0(n).

Remark — Whenc =1n2, we see thaB(m,n) — 2.69n < GOLOMB < B(m,n) +
3.53n.

6.2.4 Gamma and Delta Codes
We now consider the compression criteria baseden andd codes. We assume that,
given y(x) or §(x), we can decode in O(1) time, provided the code fits iQ(1)

machine words.
We define the operatiohNCCES$x, i) as returning;. We now show:

Proposition 6.2.A sequence with |[x| = n andW(x) = m can be stored so as to support
ACCESSn 0(1) time while usind™(x) + 0(nlglg(m/n)) bits.

Proof. We form the bit-stringe by concatenating/(x,),...,y(x,). We create the
sequenceo, whereo; = |y(x;)| and store it in the data structure of Theorem 4.5.
EvaluatingSUMo, i — 1) andSUMo, i) gives the start and end pointsydf;) in 0(1)
time, andx; is decoded ir® (1) further time. Sincé/ (o) = I'(x) = 0(nlg(m/n)), the

space used to represenis O (nloglog(m/n)) bits.

Remark — An obvious optimisation is to remove the unarytpaitogether fromo,

since they are encodedanand this is what we do in practice.

A simple prefix-sum data structure is obtained@®ws (Lemma 6.1 is similar to one
in [42]):

Lemma 6.1 Given a sequence with |[x] = n andW(x) = m, we can store it using(x) +

0(nlglg(m/n)) bits and supporBUMn 0(Ign) time.

Proof. For convenience of description, assume thas a power of two. Consider a
complete binary tre& with n leaves, with the values stored in left-to-right order at
the leaves. At each internal node, we store the @&uits two children. We then list the

values at the nodes in the tree in level-ordent{stafrom the root), except that for

136

Chapter 6 - Representing Textual Data

every internal node, we only enumerate its smaléd. This produces a new sequence

of lengthn, which we denote asee(x).

For example, in Figure 6.2, = (3, 4, 6, 2, 6, 5, 3, 3) arnickex) = (32, 15,7, 6, 3, 2, 5,
3). Giventree(x) and an additional — 1 bits that specify for each internal node,
which of the two children was enumerated, we cailyeeeconstruct all values in nodes
on, or adjacent to, any root-to-leaf path, whictiiseis to answeSUMqueries.

The key observation is:
I'(tree(x)) < I'(x) + 2n — 2. (6.5)

To prove this, consider a procedure to fill in trues inT bottom up. First, it
stores in each node at level 1 the sum of its twlolien. Let the values stored at
level 1 bey,,...,yn 2, and note thay; = x,;_1 + xp; < 2 X max{x,;_q, X2;}, SO
ly(y)| < ly(max{xy;_1, x2:})| + 2. If we now deletenax{x,;_,, x,;} for alli,
the total lengths of thg-codes of they;s, together with the remaining/2
values at the leaves, fisbits more thai’'(x). Since the construction ofee(x)

now essentially recurses on,..., y, 2, equation (6.5) follows.

If we storetree(x) in the data structure of Proposition 6.2, we hagg) time
access to each of the valuegnae(x). Together with the bit-string that
indicates which nodes are deleted, decoding aN#hees from a root-to-leaf

path, and hence computifyM takesO (logn) time. [

&5

Figure 6.2 -Formation ofiregx); shaded nodes are removed from the output.

137

Chapter 6 - Representing Textual Data

6.2.5 Implementation Details

We implemented three prefix-sum data structures:sticcinct data structure and two
simple
data structures that storecodes. A preliminary implementation of Lemma 6 dsvalso

made. We now discuss some implementation detagsinaing a 32-bit machine.
Compacted bit-String data structure

All prefix sum data structures rely on a data dtrresthat stores a bit-string of length

in an integer array of sifa/32], and supports the following operations:

* subBitString(i, j) : extracts the substring from positionso j from the bit-
string. We assume that the extracted substringifits a single word, i.e.
j—i+1<32.

* getAlignedWord(i) : this returns the substring from positiongo i + 31

from the bit-string.

Since these operations are used frequently, the dedcarefully optimised. For
example, assuming 32-bit integers, we need to ctenjgy32]| andi mod 32, to
determine the integer containing tih bit, and the offset of thé&h bit within the
integer. The former is computed using shifts, ahd katter byAND with a pre-
computed mask. The main reason for separating uhetibns subBitString and
getAlignedWord is that the former requires a branch statemeseparate the cases
where the substring is all in one word and wheeestlbstring is split across two words,
and the latter does not. Since branch mis-predistiare quite expensive, the latter
should be faster. In addition, the former also setx perform division and modulo
operations on two indices, while the latter doas tnly on one index, and has very

simple code:

138

Chapter 6 - Representing Textual Data

getAlignedWord(i)
letidiv=1>>5
imod =i & Ox1F;
first = seq_BSJidiv];
second = seq_BS]idiv + 1];
return(first << imod + second >> (32-imod));

Decoding gamma-codes

The low-level representation of tirecodes is designed to decode quickly. Specifically,
we represeny(x) with the unary representation gg x| stored reversed in the lower-
order bits, and the ‘binary’ part stored in the tneigher-order bits. For example,
y(11) = 0001 011is stored a®11 1000 Now suppose that we are given an integer
that contains g-code in the lower-order bits, e.g,= ...011 1000 We compute

z AND(—2) to leave only the ‘unary part’ of(x) in the lower-order bits (this is a

standard trick).

For example:

z ...0111000
—Z ...1001000
z AND(-z) ...0001000

We then compute the index of the 1 in this wordablpokup table; suppose that the
result isk. We then shiftz right k positions, and mask out the l&st 1 bits to obtain
the binary part ok.

Succinct prefix sums data structure

This is implemented as described in Section 4TIh&. lower-order bits are
concatenated to form a bit-string, which is thesresd in the compacted bit-string data
structure described above. In addition, if the texd¢tored uncompressed, then we have
to store a sequenaesuch that each entmy in the sequence is greater than or equal to

2. In this case, we instead store the valugs= x; — 1; this reduces the sum of the

139

Chapter 6 - Representing Textual Data

values to be stored, and hence potentially the espsage. Note thaBUMx,i) =
SUMx', i) + i.

Y-code data structures

We have implemented two simple data structureshieprefix sum problem that target
the I' space bound; these we refer toeaplicity and succincty. For the sequence
X = x; ... X, We form the bit-stringr by concatenating(x,), . . . ,y(x,), and storing it
using the compacted bit-string data structure. dditeon, these data structures use a
parametez > 0. In the explicity data structure we store evemth prefix sum, as well
as offsets int@ to the start of thé&-th y-code, explicitly (using 32 bits); in the succinct-
y data structure, these prefix sums and offsetsstweed using the succinct data
structure. To comput8UMx, i), we access the appropriaketh prefix sum, and the
corresponding offset, and sequentially sedinom this offset usingetAlignedwWord
which we use to minimise calls to the sub-bitstropgration. TheyetAlignedWord
operation retrieves 32 bits of data containiagodes. We observe that on average over
all files they-codes are 5.43 bits long (see Table 6.2), thezdftese 32 bits contain on
average fivey-codes from the bit-string. These can be decoded “for free” before we

need to retrieve mone-codes.
y-tree data structures

Finally, we implemented the data structure of Len@ivia Here, we made the following
change: we always delete the right child of a nadée tree of prefix sums, rather than
the larger child. The advantages are that we domeet to store the additionalbits to
indicate which child was deleted, and it also spagulthe navigation down the tree. Let
tree*(x) be the sequence obtained by always deletingigfn child. We then encode
each integer of theree*(x) sequence using thecode. For the/-codes the unary and
binary parts are stored separately, the unary agsconcatenated into a bit-string,
which supportsSELECT. The binary parts are concatenated and stored) ubi@

compacted bit-string data structure. To retriewesith unary value we compute:

140

Chapter 6 - Representing Textual Data

start = SELECT 1(i)
end = SELECT ,(i+1) -1
unary = start-end.

The binary part is retrieved by the operatierbBitstring(start-i+1, end-

(i+1)) . The SUMx,i) operation is computed as follows: we decode vafues a
root-to-leaf path (the leaf whetds stored). To go to a right child node we comptsge
value by subtracting the left child value frompiarent node value. The answer is at the
leaf node. If the leaf node is a left child then g to the node’s parent and get the
value of its previous-sibling, if there is no prews-sibling node then we traverse up the
tree and get the value of the current node’s ptessgbling node, and so on if the
node’s previous-sibling does not exist. If the leafle is a right child then the answer is

the sum of all left child values before the curneght child node, in document-order.

6.3 Textual data
We now discuss two alternatives to represent thagst” in a compressed manner.

These representations support tabString() operation discussed in the

introduction to this chapter.
FM-Index

The first is using the FM-Index [29], which stofBsn a compressed form (it applies a
BZip-related substring operation without fully degaressingT’). In addition, it also

supports the following operation:

« Given a non-empty substriy count the number of occurrencesPah T, or
locate one occurrence Bfin T, in time dependent only on the sizePofthe null
terminating character for each individual stringstnioe left inT if the search

functionality is required).
Blocked BZip2

In the other representation, we diviflento blocks ofB characters, and compress each

block using BZip2 [11]. When the individual stringneeds to be retrieved, the block(s)
141

Chapter 6 - Representing Textual Data

containing it are decompressed. Once a block isrdpoessed, it is stored in a text
block cache ofK uncompressed blocks. Then to compsteString(j,k) we are
required to copy the required characters from posijt to k in the cache into a new
string. However, subsequent accesses to a cachekl & not require decompression
so long as a block is not evicted from the textkloache because the cache is full (we

use a FIFO replacement mechanism). WeKise 4 andB = 16KB.

The code of BZip2 and FM-Index has been retrievechf{11] and [31], respectively.

6.4 Experimental Evaluation

In this section, we experimentally evaluate thdiprgums data structures and text data
structures. We first describe the basic setup of experiments. We then present
experiments on the prefix-sums data structuresinbew with the evaluation of the
compressibility of the test data under certain mess We then evaluate the space
usage and (running time) performance of the prefids implementations. Finally, we

evaluate the compression performance of the taatsteuctures.

6.4.1 Basic Setup

The basic setup of our experiments is outlined ppéndix A. The test machines used
are the Intel-P4 and Sun-UltraSparc. Our test det¢aderived from the sixteen files in
our XML corpus (see Chapter 3). We use Xerces DOMXxtract the data values from
these XML files.

In Table 6.1, we show for each file the space usagt of the textual data and the
offsets, assuming the offsets are uncompresseatidition, we observe that the average
cost of the naive representation of the offset emlover all files was 40% of the

uncompressed textual data size.

6.4.2 Prefix-sums experiments

For the succinct prefix sums data structure we @mghree bit-vector implementations
(detailed in Section 4.2.1). For the CJ and CNEWIl@mentations, we choose the

following parametersB = 64,s = 32 andL; = 256. In addition, we include the bit-
142

Chapter 6 - Representing Textual Data

vector implementation KNKP (see Section 4.2.1) wilie parameter§B = 256 and
B = 64.

Compressibility and Space Usage

Table 6.2 summarises the measures of compresgililiterms of bits per prefix sum
value, using the encoding schemes and using amaigeipresentation. We omit from
the prefix sums experiments the results on théate value lengths, as they are less
common in our XML documents and provide similar poessibility and running time
results to the results otext node lengths. In the Golomb codes we use
[0.69m/n].

Although gap gives the best measure of compressibility, it canbe decoded
without additional data structures. We see thapracticeI’ and 4 are greater than
GOLOMB in eleven of our test XML files, and for half ofiles GOLOMB is at least
29% less than eithdr or 4; this is in line with many results on compressingerted
lists [76] (however, [42] give examples wheFeand 4 are smallest). Comparing
GOLOMB and the succinct bound, in all the cases in Téldeve see tha — 0.25n <
GOLOMB < B + 0.33n, which is much closer than what Proposition 6 dgested.

Recall thatl'(tree(x)) < I'(x) + 2|x| — 2 (Eqg. 6.5 in Lemma 6.1). In the best
case, I'(tree*(x)) = I'(tree(x)) = I'(x). In the worst case, we claim that
I'(tree*(x)) = 2TI'(x). Consider the sequenge= a,1,q,1,...., wherea is a value
such that|l'(a+ 1)| = |I'(a)| + 2 (for example,a = 7 is such a value). For this
sequencel'(x) = n/2 + (n/2)|I'(a)]. We now construct just the first level of the

tree, by summing pairs of leaves and deleting tleso

The resulting sequence of numbers (gagontainsn/2 a's andn/2 (a + 1)'s and
r'x) = n/2)|l'(@)| + n/2)[I'(a+1)] = n + n|l'(a)] = 2I'(x). Since
continuing the construction of the tree only insesathe size of the numbers, it is clear
thatl'(tree*(x)) = 2I'(x).

143

Chapter 6 - Representing Textual Data

Table 6.1 —Naive representation of offset valuesdenotes theumber oftext and attribute
nodes K represents a thousand avidepresents a million), cost of storing data value

uncompressed, and of a naive representation fasftbet values, respectively.

Files File size n' Uncompressed text Naive offsets|
Elts 128KH 4837 39KB 19KB
w3cl 224KE 12.8K 152KB 50KB
w3c2 200KE 11.6K 136KB 45KB
UNSPC-2.04 1,740KB 58.9K 531KB| 230KB
Mondial-3.0 1,081KB 82.4K 688KB 322KB
Partsupp 2,253KB 48.0K 1,088KB 188KB
Orders 5,243KB 150.0K 1,488KB 586KB
XCRL 8,708KB 229.5K 3,079KB 896KB
\Votable2 15,927KB 841.7K 5,376KB 3,288KB
Nasa 24,371KB 1.0M 15,530KB 3,927KB
Lineitem 32,326KB 1.0M 6,152KB 3,996KB
XPATH 50,995KHE 1.7M 13,314KB 6,569KB
Treebank e 83,968KB 4.9M 58,757KB 19,043KB
SwissProt 112,129KB 7.6M 49,795KEB 29,774KB
DBLP 130,724KB 7.2M 73,077KB 28,111KB
XCDNA 607,881KB 16.8M 261,953KH 65,680KB

Table 6.2 shows$I'(tree*(x)) — I'(x))/|x]| for our sequences. It is interesting to note
that this does not go below 1.96, which gives sonsgght into the distribution of
values. Neither does it go above 2.92 nor is tylgicauch smaller showing that always
deleting the right child (which is simpler and &r3tdoes not waste space in praétice

We now consider the space usage of our data stesctWe calculate the space used,
in bits per input sequence value, and also themdiffce between the space used by the
data structures and the corresponding compresgilmieasure (we refer to this as
wasted spade Table 6.2 summarises the space usage of theugadata structures

where parameters have been selected such thattedispace is roughly the same.

4 Recall thaf'(tree§)) does not include the— 1 bits needed for decoding

144

Chapter 6 - Representing Textual Data

Table 6.2 —Compression performance. Compressibility measgaggx), 4(x), I'(x),
GOLOMB(b, x) as(GOL), B(m,n) as(SUC). Tree overheadT(tree*(x)) — I'(x))/|x|.

Space usage: Total space in bits (spac) and wagte in bits (wast) per prefix value using the

succinct prefix sum data structure and using thi@ixy and succincy data structures. Data

structure parameters for expligitand succinci were selected such that wasted space is

roughly equal.

Space usage
Text Compressibility measures tree Succinct Explicity Succincty
File nodes| Gap| 4 r GOL | SUC | ovhd| Spac| was] spac wast spac wast

Elts 3896 2.90 5.53 5.3 3.79 4.04 199 7.10 3.0 7.3 2.0 7.89 2.53
w3cl 7689 2.0 4.37 4.34 537 534 254 812 274 6.34 2.00 7.00 2.65
w3c2 710% 2.00 4.30 4.28 540 538 289 819 281 6.28 2.00 6.83 2.55
Mondial-3.0 349K 3.55 6.87 6.56 4.76 490 204 7.77 2.84 8.5 2.00 9.13 2.57
UNSPSC-2 39.3K3.83 7.1 6.74 497 489 242 7.6 271 8.71] 2.00 9.3§ 2.65
Partsupp 48.0K2.53 524 523 6.14 595 199 9.3 341 7.23 2.00 7.94 271
Orders 150.0K 2.5 5.31 4.99 4.83 4.71 217 7.67 296 6.99 200 7.53 2.54
xCRL 155.6K 3.84 7.79 6.9 4.98 498 203 7.62 264 8.9 2.00 9.62 2.65
votable2 841.0K 2.5 5.67 5.2 4.22 4.03 197 7.2 323 7.2 2.00 7.8 2.57
Nasa 948.9K 3.04 558 545 5.64 539 240 8.15 2.7 7.4 2.00 8.11 2.66
Lineitem 1.0M 2.1 494 455 395 394 210 7.08 3.14 6.5 2.0 7.08 2.52
XPATH 1.7M| 3.2 6.41 581 4.15 437 227 7.2 2.89 7.81 2.00 8.3 2.57
Treebank_e 49M3.69 7.08 6.74 494 501 215 7.6 2.64 872 200 9.25 2.54
SwissProt 5.4M 2.3 5.38 464 431 410 225 750 340 6.64 2.00 7.14 2.50
DBLP 6.8M 1.78§ 3.8 3.89 5.00 4.67 292 8.2 3584 589 200 6.45 2.56
XCDNA 16.8V| 3.35 6.6z 6.1 5.61 5.39 2.29 7.87 2.4¢ 8.1¢] 2.0(] 8.7i 2.5¢

For the explicity and succincy data structures we use@d = 32 and G = 8,

respectively. For these values the space usagéhdany{codes data structures is

comparable to the succinct data structure.

Running time performance

The performance measure we report is timgdrior determining a random prefix sum

value. Each data point reported is the median ofrt&s in which we perform eight

million random SUM operations. We have again selected parameters thaththe

wasted space in each data structure is about the.sa

145

Chapter 6 - Representing Textual Data

Table 6.3 summarises the performance of the datiatstes. The fastest runtime for
each file on the Intel-P4 and on the Sun-UltraSpaachines is shown in bold. The
table shows the performance of the succinct datetstre using the three different bit-
vectors. We see that the performance of the CNBWaeaitor is similar to CJ and better
than KNKP. The table also shows the performandd@explicity and succinct data
structures using the bit-vector. We see that tipdi@ixy data structure out-performs the
succincty data structure when the space usage is roughlgdhee. The performance
results are preliminary, but we note that the swatgorefix sums data structure almost
always outperforms both the-codes data structures. We observed that a single
decode is about twenty times faster tha®EAECT operation, so improvements in the

bit-vector would make succingtimore competitive.

We also performed some limited experiments on d¢tetive performance of the data
structure of Lemma 6.1. We compared the timeSoiMx, i), whenx is stored as in
Lemma 6.1 (but always deleting the right child);sess in a simple bit-string. Ak| =
64, 128 256, 512 and 1024, the times us for the tree were. 067, 0.91, 1.12, 1.28 and
1.5, and for the bit-string were411, 0.81, 1.57, 3.08 and 6.03. We are not comparing
'like for like', as the tree uses more space. Blien we find that the (logarithmic) tree
data structure does not outperform the (linear)-stiihg until |x| > 128.
Unfortunately, the 2 bits per number (at least) tecdy the tree data structure means
that explicity with ¢ = 64 would be less wasteful in space than the tree, asad

faster.

The tree requires tw8ELECT operations at each node visited, so an approach to
speeding-up the tree data structure would be t®@ase the arity and thereby reduce the

height of the tree.

146

Chapter 6 - Representing Textual Data

Table 6.3 —Speed evaluation on Intel-P4 and Sun-UltraSpagst file, number of text nodes,
time inus to determine a prefix sum value for succinct datactures using CJ, KNKP and
CNEW. Time to determine a prefix sum for expligitExp) and for succingt-(Succ) data

structure, both of which are based on the newdxstar. The best runtime for each file on each

platform is in bold.

Machine 1 - Pentium 4 Machine 2 - Sun UltraSg#rc-

File Text Succinct prefix sums y-code Succinct prefix sums y-code
nodes| CJ KNKP | CNEW| Exp| Sucg CJ KNKP | CNEW Exp | Sucqg
Elts 389¢ 0.073 0.121 0.069 0.1890.194 0.151 0.222 0.1340.2840.389
w3cl 7689 0.083 0.134 0.084 0.2110.217 0.154 0.230 0.1340.2790.389
w3c2 7102 0.082 0.133 0.079 0.2090.214 0.154 0.229 0.1400.2790.39(

Mondial-3.0| 34.9K] 0.084 0.134 0.083 0.2110.214 0.176 0.24Q0 0.1440.2930.399
UNSPSC-2| 39.3K 0.087 0.13§ 0.082 0.2040.209 0.176 0.244 0.1490.2900.401
Partsupp 48.0K 0.084 0.133 0.080 0.2040.213 0.16§ 0.24Q0 0.15(00.2840.394

Orders 150.0K 0.081 0.134 0.08%1 0.1970.209 0.199 0.27Q 0.1740.29§0.408§
XCRL 155.64 0.102 0.150 0.094 0.2060.224 0.196g 0.27Q 0.1700.3130.418§
Votable2 841.0 0.086 0.13§ 0.083 0.2040.231] 0.20§ 0.298 0.1940.3160.470
Nasa 948.9K 0.107 0.159 0.10§ 0.2220.265 0.223 0.321 0.2120.3240.519
Lineitem 1.0vM 0.127 0.18Q 0.124 0.2350.30(0.213 0.310 0.20710.3160.481
XPATH 1.7M 0.113 0.172 0.114 0.2210.274 0.21§ 0.308 0.2030.32§0.51d

Treebank_e| 4.9M 0.118 0.183 0.127 0.2430.31(0.241 0.341 0.2440.3450.545
SwissProt S.W 0.273 0.333 0.274 0.3510.466 0.25 0.3 0.33 0.39 0.57

DBLP 6.8 0.281 0.344 0.275 0.3380.479 0.26 0.3 0.24 0.38 0.56
XCDNA 16.8M 0.248 0.306 0.253 0.3300.403 0.742 0.951 0.7330.6460.989
50%
45%
'..9.. 40%
S 35% m
S 30% m
'g 25%
= 20%
£ 15% -
S 10% -
5% -
0% -
€ o0 o T 0¥ R D@ LS D ES R Y
FLFFFE P CEELH S S
0@ & R R

O B=8KB M B=16KB

Figure 6.3 —libBZip2-block compression: Textual data of XMLalonents is arranged in

document order.

147

Chapter 6 - Representing Textual Data

Table 6.4 —Textual data compression. File names, text +oaitiei node counta,
uncompressed text data size, compression ratiBZqr, FM-Index in document order, and
libBZip2 in document order and path-order. LibBZig@ck size = 8KB.

Uncompressed DocOrder Doc-orde] Path-ordgr
File n text BZip2 FM-Index libBZip2
Elts 4,832 39 KB 12% 13% 149% 11%
w3cl 12,879 152 KB 26% 41% 33% 33%
w3c2 11,597 136 KB 27% 42% 36% 35%
Mondial-3.0 58,941 531 KB 1699 27% 19% 22%
UNSPSC-2 82,370 688 KB 15% 24% 17% 15%
Partsupp 48,002 1,088 KB 179% 27% 25% 22%
Orders 150,002 1,488 KB 20% 30% 30% 22%
XCRL 229,448 3,079 KB 8% 13% 10% 9%
Votable2 841,66[7 5,376 KB 30% 18% 31% 31%
Nasa 1,005,205 15,530 KB 20% 27% 29% 25%
Lineitem 1,022,977 6,152 KB 21% 27% 31% 21%
XPATH 1,681,713 13,314 KB 10% 1699 13% 9%
Treebank_e 4,874,945 58,757 KB 42% 58% 45% 42%
SwissProt 16,814,101 49,795 KB 18% 20% 29% 17%
DBLP 6,792,148 73,077 KB 25% 30% 35% 28%
XCDNA 5,432,193 261,953 KH 199% 199% 26% 17%

6.4.3 Text DS experiments

Figure 6.3 shows the compression ratio of usingmapression library of the Bzip2 data
format calledlibBzip2 [11] with block size 8KB and 16KB. We observe thhe
libBZip2 with block size 16KB is generally bettdran block size 8KB, but not by
much. However for the fil€lts.xml the compression with block size 8KB was better
than compression with block size 16KB. Given thealrdifference of compression
ratios between the block size 8KB and 16KB, appiices would benefit from the
smaller block size because the decompression ddrttadler block is faster. In addition,
we can access individual data values quicker in 88 blocks, especially for a
collection of textual values that are small in lBngnd where the text value begins far
away from the start of the block. For such a case 16KB block, we may have to read

double the number of characters than an 8KB block.

In Table 6.4, we show the compression ratio of BZp the textual data in the XML
documents, the textual data of each file is arrdngetwo representations; path-order

and document-order. Path-order is where the textat with the same upward path
148

Chapter 6 - Representing Textual Data

from leaf node to root are arranged together inchrecatenated file. Document-order is
where we concatenate the textual data as we mamtitha document-order traversal of
the tree. We also compare the compression ratmowipressing the textual data with
FM-Index. We observe that textual data arrangeddacument-order compresses
comparably well to text in path-order. The comp@sgatio of BZip2 is roughly

similar to FM-Index as mentioned earlier (we exelide fixed cost of the cache in the

BZip2 columns in Table 6.4, so FM-Index is bettart it seems at first sight).

The compression performance of the two representatare roughly similar. FM-
Index allows the searching for arbitrary substrimgsiundreds of megabytes within a
few milli-seconds [29]. The FM-index is recommendédhe string values are not
accessed very often, or the access is highly ncal;l@r the search functionality is
desired, but if the strings are accessed frequavitly a degree of locality, the blocked

BZip2 is recommended.

6.5 Summary

We have shown space-efficient solutions to reptedentextual data arising in XML
documents, where we are using either FM-Index ockdd BZip2. The experiments
show both compression algorithms have a compregssitm that is almost the same,
i.e., on average over all files, FM-Index and bledkBZip2 compress the file to 27%
and 26%, respectively. We are now able to get gooadpression ratios on the text data.
In addition, the offsets for accessing the indialduext data required careful
consideration to also represent space-efficienyg engineered several prefix sums
data structures that support tB&Moperation, answering the queries to retrieve the
offset values, which in turn allows us to accesbvidual string values in the text data

structures.

We gave compressibility measures for our prefix sufata structures. For our data
sets, Golomb encoding and the succinct bound avallysvery similar, and they
generally use less space thaandé encoding. The succinct prefix sums data structure

is faster than the codes data structures when space usage is congparfdae CNEW

149

Chapter 6 - Representing Textual Data

bit-vector has similar or better speed than theroltht-vectors and uses less space in the

worst case.

150

Chapter 7
Succinct DOM

In this chapter, we present our DOM implementaticadled Succinct DOM(SDOM),
bringing together as building blocks the succinatadstructures studied in isolation in
previous chapters. SDOM is principally suitable fepresenting large, static XML
documents. We currently support almost all reag-@perations of the DOM Level 3
Core API.

We analyse the space usage of SDOM compared t@¥Xebaxon’s TinyTree and to
several XML compressors. In addition, we compare Xerces the operational
performance of traversing a DOM tree, retrievingn@e textual data and node type

statistics.

We interface the DOM operations with an intermesligpresentation of the succinct
data structures, together with new data structilvasare more XML specific. The class

structure of SDOM is similar to that of Saxon.

The chapter is organized as follows: We begin ®senting the architecture of the
SDOM implementation. Here we discuss each compagieintg its purpose, operations
supported, existing solutions and our own solutlanvhat follows, we assume that an
integer or pointer is 32 bits long. In Section W& discuss the interface of SDOM to
other XML applications. Finally, in Section 7.3, weesent the experimental evaluation
of SDOM. Parts of this chapter were published 4$.[2

7.1 SDOM architecture

SDOM consists of 4 core components as showrFigare 7.1. We see the DOM

document node, which contains 4 pointers to the SDOM conepts) these are:

the succinct tree data structure (DS), hencefatledSTree ,
* theNamecode DS, which stores the XML names for the nodes endbcument,
« theText DS, which handles the textual data in the document

* theAttribute DS, which handles the attribute nodes in the d@rand their

associations to the element nodes.

151

Chapter 7 - Succinct DOM

SDOM

STree NameCodeDS
PAREN+
LocalNames
BitString | Hash table |—| string array |
Name Codes\ URINames PrefixesForURI
int array string array H string array | :
TextDS], AttributeDS
- TextNode Offsets Attr Offsets Short Codes
§ | PrefixsumsDs)T| PrefixSumsDS BitString |
: Textual Data Attribute Map \
string array BitVector

Figure 7.1- DOM architecture. SDOM stored in the Documerdexd5DOM components
shown with dotted boxes. Connecting lines showtimiahips between data structures, i.e.

compute operations by passing of data in eithecton.

The Text DS component consists of an uncompressed repateenpf the textual
data. However, a compressed representation cachievad simply by replacing this
sub-component in the Text DS, using a text datacsire given in Chapter 6.
Henceforth SDOM with compressed text we &NIOM-CT

In what follows we discuss each component in detaild mention the DOM
operations that are directly supported by it. GQfeaome operations rely on more than
one data structure, however we give the primaryaimss here. In Appendix B, we
provide a full detailed list of DOM operations (DOBVels 1, 2 and 3), indicating those
supported in SDOM.

7.1.1 STree & Node Object

Purpose: Provide support of the navigational operationstfa XML tree structure in
DOM.

152

Chapter 7 - Succinct DOM

Operations supported This component primarily supports the operatiohthe DOM

Node interface:

parent() » childNodes()
firstChild() * hasChildNodes()
lastChild() e compareDocumentPosition()

nextSibling()
previousSibling()

This component also supports:

The Treewalker interface. Here we have the same navigation dpesags in
the Node interface, in addition to theextNode() , previousNode() and

currentNode() operations.

The item() and length() operations in theNodeList helper interface
available to the DOM.

Thefollowing , preceding , descendant andancestor axes in XPath.

Existing solution: We discussed in Chapter 3 existing solutions of XL tree

structure, such as Xerces, which represents tlee riogles as objects consisting of

several pointers, to the parent, first-child, ngikiing and previous-sibling node. The

total cost per node of the pointers is typically 2Bts for an internal node and 128 bits

for a leaf node since there are no first-child lnitdznode list pointers.

Our solution: We use thd®AREN+representation as the tree structure and recat fr

Chapter 5 that a node is represented by a doubtebewy the node number in

document order (froml to n) and its positiong(i) in the succinct tree bit-string

representation (from to 2n), wheren is the number of nodes in the tree. Recall that

i = RANK(@ (1)), if we represent ‘(by0 and “)” by 1. The newnode objects each

contain the integersande (i) and a reference to the containdagument node

153

Chapter 7 - Succinct DOM

The navigation operation process works as follows: first access in the node the
pointer to thedocument node, then access tRAREN-+object, which allows us to call
the navigation operations of the underlying sudcinee representation which in turn
gives the answer as a double number, which is tr@pped in a node object. It is
important to remember that, unlike a pointer-ba3@M implementation, SDOM does
not create allhode objects in a document when the XML document iss@arbut
creates amode object whenever a navigational operation is ingbe an existingode
object (the implementation currently does not chiéckn object has previously been
created for the same node). The double number hedidcument node pointer
requires 96 bits to represent a node internally ddtument node pointer is required
in SDOM nodes because thiwcument node object stores pointers to all SDOM
internal components. For example, a navigationataimon at a node requires access to
the tree representation via tth@cument node. Nevertheless, the node representation in
SDOM is better than Xerces, which requires sever@le pointers to represent a node
(particularly an internal node). We navigate theetrrepresentation through the
navigational operations in the node object. The Gbject must be explicitly freed. As
an alternative to avoid the creation of node objeate recommend the use of the

TreeWalker class for navigation (see Section 7.2 for details)

The parentheses sequence of the XML document ir&ig.2 (a) is shown in (b); we
identify element nodes in circles antkxt nodes in boxes. We ignore for now the
storage of the node type information and thus famlg on the structure of the DOM
tree, as shown by the parentheses string (c). Nadesepresented by the double

numbering encapsulated imade class object.

We improvePAREN+with the speedup of the primitive operation tofgom a node
to the next/previous node in document order. Thisiigve is available in the DOM
TreeWalker class (see Section 7.2.2), and is also requiratbtate along the XPath
axesfollowing or preceding . We define two new operations on the parentheses

representation:

154

Chapter 7 - Succinct DOM

* NEXTOPEWX): To return the position arlRANKof the next opening parenthesis
given that we are at the opening parenthesis aitiguosc in the bit-string.
Formally, NEXTOPENeturns(i + 1, (i + 1)) if i < n and NULL otherwise,

wherex = < i, (i) >.
* PREVIOUSOPE(): Analogous.

These are implemented straightforwardly by inspechits in the parentheses sequence.
An individual call to NEXTOPENPREVIOUSOPENSkips over at mostl closing
(opening) parentheses, whetke is the depth of the tree; thus its worst-case time
complexity isO(d), but with a small constant. In our experimentsc{éa 7.3.3), we

show that usinfNEXTOPENE the fastest option for document-order travetsal

To understand why, we need to understand how ganipe next node using the
standard navigational operations varies with theation of the current node (we
consider document-order traversal, a reverse docuoreler traversal is symmetric).
For a non-leaf node, the next node is its firstdchiihe pseudocode f6IRST-CHILD
(Table 5.6) shows that this only requires the inspectibradbit in the parentheses
sequence, and is consequently very fast. Forfantaie, the next node is its following
sibling, and locating it is almost as fast as firgdthe first child of a non-leaf node,
except when the leaf node is the last child opasent. Note that the number of nodes
that are the last child nodes equals the numbedeaimodes, which is usuallylg3 of
nodes in the tree. Thus, for at ledst3 of the nodes, moving to the next node in
document order requires significant computationsekies of alternating parent and
next-sibling calls is made, both of which are rieklly expensive (generally similar to a
few memory accesses). UsiNgEXT/PREVIOUSOPENs much faster in this case.

155

Chapter 7 - Succinct DOM

<book catalogue="XML">
<author>OND
&&ent;</author>
<title>SDOM Design</title>
<year>2007</year>
</book>

fi)l) 1] 2]3] 4

) CCy) CH ey))y ey)
(©)

Figure 7.2 -(a): Simple XML document fragment. (b): CorrespogdDOM tree
representation. (c) Parentheses representatidre afde structure with double numbering of
nodes. E.g., the YInode (the element ‘year’) is at theé"a@bsition in the bit-string. The entity

&ent; represents the text ‘GmbH'.

Finally, we consider non-navigational operationscdfically, comparing the position

of two nodesy andw. Note that:

* if v precedesv in document order, bottomponents in the double-numbering for
v will be less than their corresponding componentsvi Thus, given two
nodes, we can check to see if a node precedesearnotdocument-order by

just looking at the double-numbering of the twales.

e v is an ancestor ofv if and only if (v) < ¢(w) < FINDCLOSHE¢(v)).
Thus, we can check i is an ancestor af by a single call t&-INDCLOSE
since FINDCLOSH¢@(w)) must precedeFINDCLOSHK@(v)) because the

XML document is well-formed.

These operations allow us to support tleenpareDocumentPosition() function
quickly. ThePAREN+representation also allows us to compare two nodasdw by

any of the main XPath axes:

e ancestor /descendant : as above.

156

Chapter 7 - Succinct DOM

* preceding : v is in the set of nodes precedingif FINDCLOSHE@(v)) <
pw) .

» following : similar to preceding.

e parent /child : obtained directly from the navigation operations.

o following- /preceding-sibling : v is a following (preceding) sibling of
w if v is after (beforew in document-order and andw have the same

parent.

7.1.2 NameCode Data Structure

Purpose: Store the name and type information of each nodleadOM tree.

Operations supported This component primarily supports the operatiohthe DOM

Node interface:

« getNodeName() « getNodeType()
» getTagName() * hasChildNodes()
o getPrefix() * lookupPrefix()

* getLocalName() getPrefix()

This component also supports:

* The operationgetElementByTagName() and
getElementByTagNameNS() in theDocument interface.

* The operatiomyetTagName() in theElement interface.

Existing solutions: Xerces stores the node names as three pointers, teaa C++
string, requiring 96 bits per node. For an elemmerde name with a namespace prefix,
the first pointer points to the namespace URI,sieond to its prefix and the third to its
local name. Arelement node without a namespace prefix has a single @o(irtstead

of the three) to its local name. Nodes with the saame point to the same string.

157

Chapter 7 - Succinct DOM

Node types in Xerces are not explicitly stored. yhee represented through the class
representing the node (see Section 3.1.1 for ditédr example, arlement node is
an instance of thBOMElementimpl class derived from theOMNodeclass. Therefore,

for thegetNodeType operation, the node type of a node is known iddisved class.

In Saxon’sTinyTree data structure, node names are represented usiNgraepool
data structure [61] (as discussed in Section 3.R2) are mapped to 32-bit integers
(name-codes). The name-codes are stored in ansireayure of lengthe, representing
the XML document in document-order. Each name-duoake three components, which
represent the fully qualified name information (preURI and local-name). The node
type information is represented in an array catleginodeKind which is of lengtn,
requiring eight bits each. For text nodes, the B2+ue stored gives an offset into an

array containing the textual data.

Our solution: Our solution comprises three partsTextNode bit-vector, the

Namepool and theshortCode data structure.
Namepool data structure.

Initially in SDOM, the fully-qualified names for @inents and attributes are converted
into 32-bit name-codes. The data structure for nmgpgtring names to name-codes and

back follows Saxon’s Namepool data structure closel

However, the use of a 32-bit name-code is costhgesthere tend to be very few
distinct name-codes. For example, one of our XMtuioentsSwissProt.xml has a
total of 5166890 element andattribute nodes in the document, but only ninety-
nine of these are distinct name-codes. In SDOMsalee space, we use an additional
level of indirection. Initially, we store each unielement name as 32 bits in an array
we call aname-code tabléhese can be decoded as in Saxon using the Namheégia

structure).

Our approach begins by splitting the nodes intd tedes and non-text tree nodes.

Specifically, we number all text nodes fraom t in document order, and all non-text

158

Chapter 7 - Succinct DOM

tree nodes (mostlglement nodes, but includingomment nodesgntityReference

nodes etc.) from..e, wheret ande are the number of text nodes and non-text tree
nodes, respectively (note that- e = n). The reason for this split is, in brief, that
while the information associated with non-text tnreedes and text nodes can be
compressed effectively, the compression methodsaher different. The splitting is

done using th&sTextNode bit-vector, as we now explain.
| sTextNode Bit-Vector

TheisTextNode is defined as follows: th&h bit is set tdl if the ith node in document
order is a text node, otherwise it is se0tdy augmenting thesTextNode bit-vector
with theRANKoperation, we provide a consecutive numberingxtff nodes fromi to t
and of non-text tree nodes frointo e. For example, if nodé is a text node, then
RANK(isTextNode , i) gives the ordinal position of hodeamong the text nodes,
considered in document order, and if node is a non-text tree node,
RANK(isTextNode , i) gives the ordinal position of nodeamong the non-text nodes.
The CJ bit-vector implementation (discussed in iBac#.2.1) is used to support the

RANKoperation, therefore the space usageTaxtNode is1.5n bits.
Short-code data structure

We then create an “array” of size Theith entry of this array is short-codefor theith
non-text tree node in document order. A short-asde positive integer, interpreted as

follows:

* If theith short-code is 12 or less, then ilfenode is not anlement node, and
the short-code value gives its node type. The ptessiode types and their
values areCDataSection (4), entityRef (5), processinglnstruction
(7), comment (8) ordocType (10). The other node types supported in SDOM
(i.e. Entity (6), Notation (12)) are only present in the XML document
prolog (see Section 2.1.3), therefore not in the MDQree. The

159

Chapter 7 - Succinct DOM

DocumentFragment (11) node type is a feature of dynamic DOM

implementations, therefore not supported in SDOM.

» If the ith short-codg is 13 or greater, then théh node is arelement node,

andj - 13 is an index into the name-code table, pointingh® entry in this

table corresponding to thith element name.

The short-codes thus take= [log(p + 12)] bits each, wherg is the number of distinct
name-codes in the document. The short-codes ar@lysauch smaller than name-
codes. For example, iBwissProt.xml p =99 and each short-code [$0g(99 +
12)] = 7 bits long. We concatenate all short-codes intoitastbng, using the
compacted bit-stringlata structure, described in Section 6.2.5. Teaektheith short-

codewe callsubBitString (I X i,Ix (i+ 1) —1).

We now explain some of the design decisions. Wasth bearing in mind that text
nodes appear to be the most common kind of nodéantree, and they comprised
nearly two-thirds of the nodes in many of our doeuis (as discussed in Chapter 3).

 We first consider the use of theTextNode bit-vector. The planned
representation of textual data (described in Chiateanyway requires text
nodes to be numbered consecutively. One couldrgeind this by treating all
nodes as text nodes (those without any real texdatd could be given a
dummy “null” string). This would increase the spacsage of the offset data
structure. In addition, the short-code array waylucally become 2-3 times
longer; since short-codes are often 6 bits or ntbeesavings in the short-code

array easily pay for the cost of tk@extNode bit-vector.

* Next, we argue that it does not make sense to applysame separation to
other kinds of nodes, e.gomment and CDataSection nodes. To do so
would require an additional bit-vector of lengthwith a space cost df.5e
bits. However, the space savings obtained in $fert-codearray by
removing thecomment andCDataSection nodes would normally be small

and would not normally cover the costs of the leittor.
160

Chapter 7 - Succinct DOM

Table 7.1 -Pseudocode of DOM Methods, (getNodeType() and (b):

getNodeName() .
getNodeType(int node_i)}{ 1 getNodeName(int node_i){ 1
if(isTextNode[node_i]=1) 2 if(isTextNode[node_i]=0) 2
return TEXT 3 x= RANK (isTextBit, node i) 3
else 4 scode=getShortCode(x) 4
x= RANK ,(isTextBit, node_i) 5 if(scode>12) 5
scode=getShortCode(x) 6 namecode=decode(scode-13) 6
if(scode>12)return ELEMENT 7 return QName(namecode) 7
else return scode 8 else 8
} 9 return undefined 9

}

Table 7.1 shows pseudocode for theNgeeType() and the getNodeName()
operations. The identification of a node type usihg gelNodeType() operation is
trivial: we access thasTextNode bit-vector. If theith bit is 1, then theith node is a
text node (see lines 2-3). Otherwise, ikilenode is some other node type and we must

make use of the short-code array to find this mi@tion out (see lines 5-8).

For thegetNodeName() operation we first map the document-order numbehé
non-text number in lines 2-3. Asis a number in the rangeto e, we fetch thexth
short-code in the compacted short-codes. If thetsioale value is greater than 12 then
the node in question is aement node and the short-code represents an indexhato t
name-code array (line 6-7). We access the name+tabdie to output the fully qualified
name, using th€@Name() operation, which is supported by tNamepool . The node

name of a non-text node that is noteéement node is undefined.

161

Chapter 7 - Succinct DOM

7.1.3 Textual Data Structure

Purpose: Store and retrieve the textual data of individuaties or groups of nodes
within the XML document.

Operations supported This component primarily supports the DOM openadi of the

Node interface:

* getNodeValue()
» getTextContent()

This component also supports:
« ThegetElementByID() method of thddocument interface.
» ThegetValue() method of theAttribute interface.
* ThegetData() method of thd’rocessinglnstruction interface.

Existing solutions: Xerces stores the textual data as a pointer to & &ifing.
TinyTree represents the textual data in an array of stridgsdiscussed in Section
3.1.2, thealpha array provides indexes for thext , attributes and comment

nodes into the string buffers.

Our solution: In SDOM, we make the improvement of concatenativgytextual data
of the XML document into a single C++ array. Thettel data for the following node

types are stored:
* Text — data value associated with the text node
* Attributes — attribute node value
* Processinglnstruction — data component of the processing instruction
* Comment— content of the comment node
* CDATASection — content of the CDATA Section

Recall that in Chapter 6, we gave a data strudturstoring a collection of non-empty
stringssy, ..., s; , concatenated into a single string, which isezitheld in a compressed
162

Chapter 7 - Succinct DOM

or uncompressed format. The lengths of the textodes are stored in a prefix-sums

data structure. The data structure retrievestthstring.

Given an indexi, we have two instances of the textual data stractlihe first
instance handles thext nodes. We assume tNemeCodedata structure numbers the
text nodes, given in the DOM tree from to t in document order (using the
isTextNode bit-vector) and stores the collection of striffgs..., T; in the string data
structure of Chapter 6, whefeis the value of théth text node. The second instance
handles the remaining kinds of textual nodes, sashattribute , comment,
processinglnstruction (target data) and€DataSection nodes. We assume the
attribute data structure (Section 7.1.4) numbegsdmodes fror to a (wherea is the

number ofattribute nodes, including the other nodes given above).

The reason for doing this (rather than storingstiings in a single instance of the
string data structure) is that the other kinds eftual nodes are typically far less
numerous thamext nodes (see statistics in Section 3.3), and appeaave different
distributions of lengths. The prefix sums data dtite discussed in Chapter 6
represents the lengths of ttext nodes, and the space usage of the data strusture i
based on the average length of a text node. Wenabske separation of thext
nodes andttribute nodes may have some benefit in the space usathe qfrefix
sums data structure (see Proposition 4.5);ig the number oéttribute nodes, and

m’ is their total length, then by the convexity of flog function,
(t+t)log((m + m)/(t + t')) = tlogm/t + t'logm’/t’,

so the space consumption of the offsets into tlagacher arrays is always reduced by
separately considering the offsets. For exampls,avoids the risk that one very large
comment node raises the average length of all textual soddhe tree, and thus the
space usage of all offsets, if the offsets fext nodes andattribute nodes

(including other nodes given above) were combined.

163

Chapter 7 - Succinct DOM

7.1.4 Attribute Data Structure

Purpose Provide mapping ddttribute nodes to thelement nodes (where they are

declared) in the DOM tree. Store the name inforamatf eachattribute node and

the associated node value.

Operations supported The DOM defines a set of operations to searchaaess the

attributenodes belonging to atementthrough theNamedNodeMap TheNode interface

specifies the operatiogetAttributes() , Which returns aNamedNodeMap This

component primarily supports the DOM operationstttg NamedNodeMap and the

Attribute interfaces:

item() * getName()
length() * getOwnerElement()
getNamedItem() e isID()

getNamedIltemNS()

This component also supports:

ThegetElementByld() andgetElementByTagNameNS() methods of
theDocument interface.

ThegetAttributes() andhasAttributes() methods of thé&lode interface.

ThegetAttribute() , getAttributeNS() , getAttributeNode()
getAttributeNodeNS() and hasAttribute() methods of th&lement

interface.
ThegetTarget() method of théProcessinglnstruction interface.
ThegetName() method of thédocType interface.

ThegetNotationName() method of theentity interface.

Existing Solutions Xerces representsttribute nodes belonging to aslement

node in theNameNodeMapclass. Eacklement node object has two pointers which are

instances of thé&lameNodeMap class: the first pointer is to standard attribuiebere

164

Chapter 7 - Succinct DOM

the attributes’ name and value are defined), amedsttcond pointer is to the default
attributes (where the DTD is required to retriehe tdefault attribute values, if not
defined in the document). These pointers are mulefement nodes that do not have
any attributes. ThelameNodeMapclass has a pointer to its owner element objetttasn

instance of a vector. The vector has an array @it@s to instances of the attribute
node; in addition, we have two integer variablesmnaintain the vector. In total the

attribute node itself has nine pointers with infatimn such as its name, value and

owner document (see Section 3.1.1 for details).

TinyTree represents all the attribute nodes in the docunueitig three integer
arrays, where each array item represents an d@#ribudocument-order. The first array
stores the node number (index) of the elementishtite attribute’s parent. The second
array stores the name-codes of the attribute nafesattribute values are stored in a
string array. The navigation of elements to théirieute nodes is supported by the
alpha array, which provides the mapping from an elenmente to the index of its first

attribute node (see Section 3.1.2 for details).

An important issue that arises is whether to plattebute nodes within the tree
structure of the XML document. This approach isetakoy a number of XML
compressors [14], [30], [48], [55], but appeardéounsuitable for SDOM. This design
decision has already been indicated by our dedmitf “XML document structure” in

Chapter 5, and is justified in this section.

Our solution: In SDOM, attribute nodes are represented separately from the tree
representation. We propose a mapping strategy, hwhiaps elements to their

attributes , andattribute names to their values.

We now describe the attribute data structure. Rdoain Section 7.1.2 that the
isTextNode bit-vector numbers non-text tree nodes frbito e. We create a sequence
of non-negative integet¥ = (x4, ... , x,) of lengthe as follows. If theith non-text tree

node is arelement node, therx; is the count of attributes it has. If tith non-text tree

165

Chapter 7 - Succinct DOM

node is any oprocessinginstruction , CDataSection , docType , document or

comment nodes, we give it a dummy attribute, theretore= 1.

Let a be the sum of the;s (i.e.a is the total number of attributes, including dummy

attributes). We now show how to represkrib satisfy the following goals:

(a) All attributes should be numbered fralo a, and the attributes associated with

a given non-text tree node should be numbered catigely.

(b) Given a non-text tree node, it should be possibléetermine quickly the range

of integers that number its (dummy) attributesyny.

These requirements are met as follows. We constdeh non-text tree node in
document order, and number all its (dummy) attebutonsecutively. The attributes (if
any) of the first non-text tree node are numbetadisg from one; for any other node,
its attributes (if any) are numbered starting frihre@ next available integer. Clearly, all

attributes of a node are numbered consecutivety(anis satisfied.

For (b), we represerk as a bit-string (calledttr_association) as follows. Each
valuex; is written in unary (e.qg. it; = 4, thenx; is written asl111Q and concatenated
in order (see Figure 7.3 (B)r an example). Note that this bit-string l#a8s anda 1s,
and it is stored as a bit-vector that supp8ELECT. The attributes of thé&h non-text

node are numbered froBELECT(i- 1) - i + 2 to SELECT, (i)—i (SELECT(i) -i
gives the number dfs before théth O in the bit-string). Hence (b) is satisfied.

The attribute names are represented analogouslyetelement names in the short-
code data structure. Initially we create an arffagizea, which stores the short-codes of
the attribute names and node types of the dummybats. The array is then
compacted to its final representation as describe&kction 7.1.2. The strings, ..., s,
are numbered, wherg is the textual data associated with it attribute or dummy

attribute node.

166

Chapter 7 - Succinct DOM

<root>
<U a="val" b="val" c="val" />
<V /> <l-- comment -->
<W d="val" e ="val">

<X f="val" g ="val" h="val" i="val">

<Y j="val">

<Z/>

</root>

(a)
root u|Vv Il W X Y| Z

al| b| c comd | e fl gl h| i]
1]12| 3 4 5| 6 7.8 9 10 11

60 1.1 1 0 O 1 O 1 0 1 1 1 1 O 1 0 O

1
(b)

Figure 7.3 -(a) Example XML document with elements and assediattributes. (b) Bit-string

of the attribute representation.

The attribute name and value are accessed viattfitgite class in SDOM, which is
a derived class of thidode class. Since thattribute node is not in the DOM tree,
calling operations such gseviousSibling() or nextSibling() returns a null

value, but fomparent() it returns theelement node associated with tlagtribute

In SDOM, anattribute node object has four values:

* A pointer to thedocument node to which it belongs. This pointer is required

because the attributeDS is referenced indttuement node object.
e An attribute number in the randeto a,
* The double numbex x,y > of its parent (thelement node).

The numbers< x, y > are filled in at the time of creation of th#ribute node (this
can only happen when navigation in the tree taathiébute’s parent node is performed).

Theattribute node exists until the user deletes the object.

The operation to retrieve the attribute name idagmaus to theyetName() operation

of Table 7.1 forelement nodes. The operation to retrieveatibute node value is

167

Chapter 7 - Succinct DOM

analogous to thgetNodeValue() = method (Section 7.1.3), except that we have to get
the attribute node number 1 ta before operations on thetribute node are

computed.
Implementation of the NamedNodeMap

The NamedNodeMapinterface represents a collection of nodes thatbsaaccessed by
name or by selecting thah item in the collection. We implemented a spéssal
NamedNodeMapclass forattribute nodes in SDOM, which contains the following

values:

» Pointer to an instance of the parent node (i.eeldraent), which contains as a

class member the double node number and a pomteedocument node.
* The number oéttribute nodes belonging to tredement node.

* The starting attribute position in thetr_association bit-string. This is

computed upon the creation of tikemedNodeMap

The operatioritem(i) is simple, since upon the creation of tikemedNodeMapwe
know the starting attribute number of the attribgup belonging to a particular
element. Given we know its length, théh attribute will appear at the position

start_position+ i

We show in Table 7.2 the pseudocode of the DOM rpaegationgetAttributes()

In lines, 2 and 3 we show the mapping of the tregennumber to the non-text node
number and check that the node number is an elementle. The
attrNodeCount() operation (line 4) retrieves the total count dfilatites belonging
to the element. If this count is greater than zem then return a neWamedNodeMap

instance.

To access of aattribute node belonging to aslement node we create a new

node object. We first get the non-text number efdlement node froml to e in the

168

Chapter 7 - Succinct DOM

isTextNode bit-vector. Letz be the non-text number of the element node. W the

first attribute belonging to thelement .

With the callj =SELECT(attr_association, z — 1) + 1. To retrieve theth attribute
node we comput®ANK (attr_association , (j = 1)+i). An instance of the DOM

Attribute class is returned to the user.

We now discuss alternative representations thaudecthe attributes in the document
tree structure. One option is to makeribute nodes “special” children of their
parent element node (for the sake of concretefetsss say that if a node has attributes,

then they appear before all its “real” children).

An obvious disadvantage of includiragtribute nodes in the tree structure is a
slow-down in the navigational operations. For exEmpf we were to perform a
firstChild() operation on a node, then we would need to check that the node that
we have reached is not attribute of x, and if it is, then we would need to skip over
all its attributes to reach the “real” first childHowever, there are disadvantages in

terms of space usage as well; depending on hovtlgxhis is done.

We consider two alternative ways to associatebaltiels with their values. In the first,
we store only thattribute nodes (not the attribute value) as the first ¢bildnodes

of their parent nodes (the element nodes where dheeylefined) in the tree (Figure 7.4
(b)).

Table 7.2 —Pseudocode of Attribute DS interfacing with DOMthwals.<i, j> is the double

number of the node in the tree.

getAttributes(<i,j>}
otherNr= RANK(isTextNode, i)
if(getShortCode(otherNr)>12)
attCount=attrNodeCount(otherNr)
if(attCount>0)
return new NamedNodeMap(<i,j>,otherNr,attCoun t)
return NULL

}

O~NOOOTHAWNPEF

169

Chapter 7 - Succinct DOM

We filter out thetext nodes using thsTextNode bit-vector as before, therefore we
have remaining non-text nodes, along with thelattd nodes.Similar taTextNode

we require a bit-vector to number théribute nodes froml..a (to access their
textual values includingomment, processinginstruction etc), which we call
hasTextValue . This bit-vector would be of length+ a bits, which is the same length
as theattr_association bit-vector above. In addition, however, we wonkkd2a
bits to store thattribute nodes in the tree (two bits per node). Finallg #ttribute
and element name-codes are stored together inray, #éneir names may overlap, and
hence we use thieasTextValue bit-vector to identify the attributes nodes frohet

element nodes.

Another alternative is to store thatribute (and comment, processing-
Instruction , etc) values as netgxt nodes in the tree (Figure 7.4 (c)). This would
add at leasRa nodes to the tree, and hente bits overall. ThdsTextNode bit-
vector would be modified to filter out the neext nodes as well, and number all
text nodes (original and new) consecutively. Compacethé attr_association

bit-vector, addin@a nodes to the tree could use less spaagasfsmall.

However, this approach would put all textual data ithe same data structure, which
can cause an increase in the space usage of tlualtebata structure, as discussed in
Section 7.1.3.

Finally, since attribute and element name-codeslavbe stored together in an array,
the name-codes potentially could overlap for thehaites and elements, as they might
have the same name; therefore we would need taiflattributes and element nodes.
This we can achieve by numbering the short-codésrently for the attributes and
elements even if the name-codes are the same.tRbetine space usage of the name-

code data structure would double, in this case.

170

Chapter 7 - Succinct DOM

<c> text
</c>

<d e="val™>

text </d>

val

(a) (b) (c)

Figure 7.4— (a) Simple XML document. (b) Tree structureaf\yith attribute nodes (not
including textual data) in the tree. (c) Tree dinoe of (a) with attributes and their values in the

tree as nodes.
7.2 SDOM Interface

7.2.1 Class Structure

In this section, we discuss SDOM as an applicatinch is designed to support DOM
and is compatible with XSLT/XQuery processors. Weénan intermediate interface
which calls the succinct data structures direatifzjich in turn is called by the DOM
operations. The intermediate interface is simitathtat used in Saxon [61], which has
the Nodelnfo and Documentinfo interfaces directly accessing theyTree data
structure. We also support a ported version of Nledelnfo and Documentinfo

interfaces in C++, thus allowing SDOM to be a pingeplacement foTfinyTree

In Figure 7.5, we show the class diagram of trieyTree data structure and the
interfaces operating directly offinyTree . The class TinyNodelmpl (which
implements theNodelnfo) is used in Saxon’s implementation of DOM, as assl
member instance of the DOM APIs. The class/Documentimpl is also used, as a
class member instance in the DODbcument. In essence, these class members
represent the node, i.e. tiimyNodelmpl class consists of a node number and parent

pointer. In SDOM, we replace thenyNodelmpl with SDOM’s Node class (which

171

Chapter 7 - Succinct DOM

consists of two integers for the node and a poitdethe Document node), which
represents the node object directly. An additidager implements thBodelnfo . The
Document node provides access to the SDOM data structbrsSDOM, some of the
DOM operations directly match those in theodelnfo , for example, the
getNodeKind() (in the Nodelnfo), which retrieves the node type information of a
node, has the same function as the DOM operaj@NodeType() . Therefore the
DOM getNodeType() operation calls directly thgetNodeKind() operation.

ThegetNameCode() operation retrieves the name-code of a node, tpgrdirectly
with the SDOM’s NameCode data structure. This operation is used by the DOM
operationgetNodeName() , where we find in the hash table the matching natae to

the name-code.

The navigational operations (with the exceptionpafent()) are not directly
supported ifNodelnfo , but require the use of tiis iterator. In SDOM, we provide
direct support of the DOMode navigation operations. In addition, we support the
iterate Axis operations of Nodelnfo . All the axes are supported in the

iterate Axis , except theamespace axes.

172

Chapter 7 - Succinct DOM

«interface»
Dcoumentinfo

+selectID(in id : string) : Nodelnfo

ValueRepresentation
+getStringValue() : string

+getUnparsedEntity(in name : string) : string ﬁk
|
| «interface» Item
‘ Nodelnfo - -
T " ‘ I _ . ' +getStringValueCS() : string
yDocumentimpi +compareOrder(in c_;ther. Nodelnfo) : Nodelnfo +getTypeValue:Sequencelterator()
-ldTable:HashMap = null +getBaseURI() : string
-elementList:IntHashMap = null <[>+getConﬁguration() - Configuration T
-entity Table:HashMap = null +equals(in other : Object) : bool astStringBuffer
+getDisplay() : string -array[*] : char
J7 +getFingerprint() : int -used[1] : int=0
+getlLocalPart() : string
- +getNameCode() : int -
|T|nyParentNodeImpI|7 +oetNodeKind() . int = :)l(r:;eltrze:::r
+getParent() : Nodelnfo
+getPrefix() : string
+getStringValue() : string LargeStringBuffer
TinyElementimpl +getSystem/d() : string “segment.Lis{1]
getURI() - string -startOffset[] : int
+hasChildren() : int Llength[1] : int'
+isSameNodelnfo(in other : Nodelnfo) : bool '
+iterateAxis(in axisNum : byte) : Axislterator \'/—1 \’/7
+iterateAxis(in axisNum : byte, in nodeTest) : void
+getAttributeValue(in fingerprint : int) : string TinyTree
0 “documentListArrayList[5]
! -charBuffer[1] : LargeStringBuffer
TinyNodelmpl -commgntE:uffer[ﬂ
TinyProclnstrimpl T hodeNr - int %'EOdfhK:”q[E].rl:yte
-parent : TinyNodelmpl * 1 —nZ)r:t[*E:]i.n? 0
T
7777777 | -alpha[*] : int
NamePool ‘ | beta[*] : int
-prefixes[0..100] : string | | -namecode[*] : int
-prefixesUsed[1] : short L W/ -prior[*] : int = null
-uris[0..100] : string «interface» «interface» -typeCodeArray[*] : int = null
-prefixesForUri*[0..100] : string SourceLocator FingerPrintNode _attParent[*] : int
-urisUsed[1] : short -attCode[*] : int
-clientData[1] -attValue[*]
Configuration >-attType[*] sint
1 -namespaceParent[*] : int
1024 -namespaceCode[*] : int
-rootindex[5] : int
NameEntry -lineNumberMap[1]
“localName : string -systemldMap:SystemldMap[1]

-uriCode : short
-nextEntry : NameEntry

Figure 7.5 —Class Diagram ofinyTree and interface classes [61].

7.2.2 DOM TreeWalker Interface

When traversing a document via navigation perforriiedugh theNode interface, it

results in at least ongode object being created for each node in the tree $etion

7.1.1); this collection oNode objects will, in many cases, occupy more space tha

SDOM representation of the document. To avoid pineblem, we recommend the use
173

Chapter 7 - Succinct DOM

of the TreeWalker class [78] for navigation; this has an iterat&elibehaviour. For
example, theextNode() operation in th@&reeWalker movescurrentNode pointer
to the next node, which is then returned if andyahlthe next node exists. If the

returned value is null, then ticarrentNode remains at the last node visited.

In essence, neviNode objects are not created by a navigation operaimoithe
TreeWalker , but it supports all the navigational operationpmorted by theNode

class (oufreeWalker implementation does not yet support node filters).

7.3 Experimental Evaluation

In this section we draw comparisons of the spa@geisand running times between
SDOM(-CT), Xerces anlinyTree (asTinyTree is implemented in Java we did not
compare its running times). We also compare oucespsage against XML-specific
compressors such as XMill, XBZipindex, XPRESS, X@2and XGrind (described in

Chapter 3). We do not make a detailed compariséh thieir running times: some do
not support queries/navigation (e.g. XMill, XBZipand those that do, focus on
supporting various XPath-like queries rather thavigation, and do not generally
report times for navigation. (An exception is [3@Jhere they report navigation

operations as taking milliseconds; however, wesareral orders of magnitude faster.)
The DOM operations supported in SDOM are listedppendix B.

7.3.1 Setup

The basic setup of our experiments is outlined ppéndix A. We compare our data
structure’s running times with Xerces, with testongy done on the Intel-P4 machine.
For RANKand SELECT we use the CJ bit-vector (described in Sectionl,.2wvith
parameterd = 64 ands = 32. We used the parentheses implementation of [3€] (i

PARENY, with parameteB = 128.

We tested our SDOM data structure on seven XMIs fitken from our XML corpus
(Section 3.3). Our choice of files gives us a raofgpical XML documents (with files

174

Chapter 7 -Succinct DON

W Stree BNameCodeDS OtextDS DAttributeDS

100%
90% A
80% A
70% A
60% A
50% A
40%
30% A
20% A
10% -
0% -

Proportations

100%
90% -
30% 1,
70%
50% -
50% -
40% -
30% -
20% —
10% -

0% -

Space usage propaositions

BSDOM OCT

Figure 7.7 -Space usage of SDOM componenom Figure 7.§shaded in grey) wittextual
data compressed (shaded in dark-grey).

size ranging from 5MB to 594MB with varied treeustiures and textual data). We a
ran preliminary tests on a set of syntheticallyegated files using Xlark [70].

7.3.2 Space Usage
The succinct data structurehare some static loak tables (detailed in Secti4.2.1

for bit-vectors and in[36] for the parentheses data structure) with total

175

Chapter 7 - Succinct DOM

approximately 3.5MB. We have not added this cosiunfigures. For relatively large
documents, this cost is negligible, and for mudtiplocuments loaded in SDOM, we

only pay the cost once.

Figure 7.6 shows the space usage of the SDOM coemp®nin their relative
proportions (excluding the textual data). Note tivdh the exception ofOrders.xml
andLineitem.xml , which are not as rich in text nodes as the diites, the textual
offset data structure (shaded in black diamond&igure 7.6) makes up the largest
proportion of the space usage and recall that ticeirsct representation is four times

smaller than the naive one discussed in Chapter 6.

In addition, the tree structure, despite being \@mpactly represented, still takes a
fourth of the cost of SDOM (excluding the text).eThaive representation, which would
require at leask x 32 = 64 bits per node, would be prohibitive. ThA&ribute
data structure is relatively small, as some docusda not have any (or only a few)
attribute nodes. For documents that have marftribute nodes

(SwissProt.xml) we observe the representation is still relativehall.

Figure 7.7 shows the breakdown of the space usahpevEDOM-CT. We see that
the compressed text is often smaller than the SOMponents. However we see that
for treebank_e.xml the compressed text is larger than the SDOM commisnwhich

is because the textual data is partially encrypteditherefore does not compress well.

Figure 7.8 compares the space usage of SDOM witardOM implementations.
We observe in Table 7.3 that files that would nasily fit into main memory of our
Intel-P4 machine under Xerces, such XBDNA.xml (size 594MB, which Xerces

increases by a factor of 4) fit comfortably inte tlnain memory using SDOM.

176

Chapter 7 -Succinct DON

1000%
o 900%
% 600%
e 00% -
o 600% -
& 500%
S 400%
3 300% A
& 200% -
& 100%
0% -
& & /& @ S] \gl
) %) N7 k A -
& & g &S T
@ <
A&
‘ mSDOM mXerces-C O3Saxon- TinyTree ‘

Figure 7.8 -Space usage of DOM implementations compared ténatifjle.

60%

50%

40%

30%

20% -
10% T
0%

OSDOM-CT OXBZioindex MXPRESS MXQZip BEXGRIND OXMILL

Compression ratio

Lineitem Treebank_e SwissProt DELP

Figure 7.9 - Compression ratio compariscof the XML compressor:

Figure 7.9 compareSDOM-CT with XML compressors: both quefriendly ones
(XPRESS, XQZip, XBZilndex and XGrind) and a standard compressor,ll. We
guote the results for the other compressors froenpidypers, and have | re-derived
them ourselveghowever, for XMill we derived the results usingithsoftware. We
only show files inFigure 7.9 that are reported by tineajority of other compressors.

Figure 7.9%the space usage is expressed as a percentageoriginal file size.

177

Chapter 7 - Succinct DOM

Table 7.3 -Space usage of XML representations.

Uncompressed repn’$ Query-friendly compressecesgmtations

File Size | SDOMXerces | Saxo[sDOM-CTXBZipIndex XPRESSXQZip [XGRIND [XMILL
Orders 5MB | 37% | 451% | 157%A7% - - - - 12%
Lineitem |32MB |28% | 399% | 161%43% - - 5% | 24% 5%
XPATH |50MB |33% |383% | 1379.0% - - - - 3%
Treebank_é2MB [84% |866% | 266%#3% 54% - 43% | 52% 30%
SwissProt | 110MB50% |704% | 272%22% 8% 38% 38% | 43% 7%
DBLP 128MB|68% [737% | 240%Y24% 14% 48% 30% | 43% 15%
XCDNA 594MB[50% |491% | 136%l4% - - - - 8%

In Table 7.3, we show the space usage of the XMicgssors and XML compressors,
where the percentage value is the proportion offiteesize. We observe that XMill
gives the best compression ratios for all our flee do not report the results from
XBZip, which are similar to XMill); however, XMildoes not support query operations
upon the compressed representation. We observeSD@M-CT often gives better

compression ratios than the other query-friendlylXé@mpressors.

7.3.3 Running Time

Our tests are based on traversals of XML documems. always use the SDOM
TreeWalker interface, and not the SDONbde interface, as discussed in Section 7.2.
Even so, there are two different ways of traversirdgpcument in document or reverse
document-order in SDOM(-CT):

e Using thenextNode() (previousNode()) operation.

e Using the standard DOM navigational methods. Okerdourse of a document-
order traversal of an-node tree, this results in a totaloftcalls to each of the
operationdirstChild() , nextSibling() andparent() , thus providing a
test that involves a mix of standard navigationgkerations. The reverse
document-order is analogous, using the operatimesiousSibling() :

parent() andlastChild()
178

Chapter 7 - Succinct DOM

In addition to document-order and reverse docuroeshes, we perform a third kind of
traversal, called thapward path enumeratigrwhich works as fdows. We perform a
document-order traversal using theeWalker navigational methods. When the main
iterator reaches a leaf, an auxiliary iterator éraes the entire upward path from the leaf

to the root using the DOMarent operation.

Along with the traversals, we either gathasic statisticswhich include the count of
element andtext nodes, or erform a full testIn the full test we (i) determine the
type of each node. (ii) check whether nodes hagecisted attributes. (iii) for nodes
with attribute data, otext nodes, we retrieve the node value, and checkedafgbe
value contains a substring that is unlikely to @splence, forcing the substring search
to scan the entire text in the node. Each testpgated several times to obtain stable
results (50 times forOrders.xml , 10 times forLineitem.xml , XPATH.xml,
Treebank.xml , DBLP.xml and SwissProt.xml , and 2-5 times foiXCDNA.xml).
The running times are reported as the total ofrtives, unless stated otherwise. For

XCDNA.xml we get the average for a single run of a traversal

In Figure 7.10, we show the total running times tfug traversal of the documents
using either theextNode() or thepreviousNode() operations, which corresponds
to document-order and reverse document-order, casply. We observe that SDOM is
40% faster than Xerces, on average. As expectedgdp grows for larger files, e.qg.

XCDNA.xml.

In Figure 7.11, we show the result of a documedepiand reverse document-order
traversal using the DOM navigational operationsO8Dis always within a factor of
two of Xerces, but equals or improves upon XercesKCDNA.xml. We observe that

traversals appear equally fast in document-ordeewrse order.

179

Chapter 7 -Succinct DON

16
14
12
10

Time {Secs)
[e]

(=R S S

W Xerces-NextNode O SDOM-NextNode

M Xerces-PreviousNode OSDOM-PreviousNode

Figure 7.10 -Running times, docume-order and reverse docum-order traversals
gathering basic statics, of Xerces and SDOM usimgxtNode () and
previousNode () operations. Average tine a single travers reported for

XCDNA.xmI.

30

25

20

15

10

Time (Secs)

) *
& & & F S ENE
N\ N R S 8 <
[8) <% + & S 4
¥ & oo
A
O Xerces-DocOrder @ SDOM-DocOrder

B Xerces-ReverseDocOrder B SDOM-ReverseDocOrder

Figure 7.11 —Running times, for docume-order and reverse documeortder traversals usir
DOM navigation, with basic statistics for Xerceslé&BDOM. Average tir of a single traversal
reported forXCDNA.xml.

180

Chapter 7 -Succinct DON

Table 7.4 —Running times for Xerces and SDOM for ‘upward patlumeration Time results

in secondsSDOM slowdown wrt Xerce Average timeof a single travers reported for

XCDNA.xml
File #Nodes | %non-leaf nodes | Max depth | Xerces | SDOM | Slowdown
Orders 300003 50% 4 0.08 0.1z 1.64
Lineitem 2045954 50% 4 0.55 1.2€ 2.33
XPATH 2522571 33% 6 0.8Q 2.5z 3.16
Treebank e 7312613 33% 37 3.22 9.84 3.05
SwissProt 10599084 29% 6 2.71 8.7¢ 3.23
DBLP 10595379 33% 7 2.97 7.9C 2.66
XCDNA 25221153 33% 8 24.50 30.72 1.25
120
100 —
7 80 M __
% 60
g
E 40
20 M
o il ﬂ J I I ﬁ
& -x& 2 2 3 2 o
& &8 & Lﬁ(R
.\(
W Xerces EOSDOM

Figure 7.12 —Running times of Xerces and SDOM for ‘upward pathreeration’ gatherin

basic statistics. Averagtime of a single traversal reported %CDNA.xml.

Figure 7.12 and Tablé.4 show the results fan upward path enumeration traver
This traversamakes a very heavy use of fparent() operation which is (relatively
inefficient in SDOM, and may be considered a “worst case” for SD@Ven here

SDOM on average was only a factor of 2.5 slowen Xerces.

We show the results of a f-test documenorder traversal for our XML files iFigure
7.13, and Tabl&.5. In Figure 7.13, we loserve that even SDC-CT with the slow
DOM navigation isonly a few times slower than Xerces, for smalldjland for ou
largest file, tle gap starts narrowing rapidlParticularly noteworthy is the time

SDOM (using thenextNode() operation) onXCDNA.xml, which is nearly 3.5 time

faster than Xerces.
181

Chapter 7 - Succinct DOM

Table 7.5 -Full test usingi'reeWalker . Shows running times in seconds for Xerces using
tree navigation operations, and usmextNode() , versus SDOM using tree navigation and
nextNode() and SDOM-CT using tree navigation. Time resultsénonds. Average time of

a single traversal reported for all files.

Xerces Xerces SDOM SDOM SDOM-CT
File #Nodes |TreeNav| NextNode TreeNav NextNode TreeNav
Orders 300003 0.06 0.05 0.09 0.06 0.22
Lineitem 2045954 0.37 0.32 0.64 0.39 1.22
XPATH 2522571 0.44 0.4Q 0.82 0.51 1.68
Treebank e 7312613 1.40 1.25 2.85 1.57 8.51
SwissProt 10599084 1.70 1.48 3.28 2.30 7.78
DBLP 10595379 1.86 1.67 3.56 2.28 10.45
XCDNA 252211538 17.63 16.88 8.50 5.42 27.90
30
25 -
- 20 ||
@
< 15 =
£

(= 10]

) _EHI: | |

o __:ﬂ el | |

Treebank_e SwissProt DBLP XCDNA
O XercesTreeNav M Xerces NextNode B SDOM TreeNav
B SDOM NextNode [OSDOM-CT TreeNav

Figure 7.13 —Average running times for DOM full test includiegamination of attributes and

substring test on text and attribute node values.

In Figure 7.14, we show the scalability of SDOM XNlark files with different file

sizes. The results are of a document-order travers¢he files. We run the full DOM
test using Xerces and SDOM. We observe Xercessierfabut for a file size of 512MB
SDOM is faster than Xerces, as Xerces uses moreonyethan what is available in

main memory, and so (slower) virtual memory is used

182

Chapter 7 - Succinct DOM

25

20 ’

15

o /

/ —&— Xerces

_--"/‘

0 + ==l T T T 1

2 4 8 16 32 64 128 256 512

Time (Sec)

SDOM

File Size (MB)

Figure 7.14 -Running times for DOM full test including examiiwat of attributes and
substring test on contentsteikt andattribute nodes for XMark files (sizes 2MB-

512MB). Average times are reported.

3,000

2,500 o
2,000 /
1,500 /

1,000 /

"\

Memory usage (MB]

Memory usage snap-shot

—S5DOM Xerces-c

Figure 7.15 —Valgrind Massif profiler [65]: SDOM vs Xerces pars, usingCDNA.xml
(594MB).

183

Chapter 7 - Succinct DOM

250

200
150 /
100 /-/ : :

Time (Secs)

2 4 8 16 32 64 128 256 512

File Size (MB)

«eepees Xerces —0 —SDOM —¥— SDOM-CT

Figure 7.16 —Construction time of SDOM-(CT) vs Xerces using Xidark files.

7.3.4 Pre-processing Performance

We used the Valgrind Massif profiler tool [65] tceasure the (heap) memory usage of
SDOM compared to Xerces. We show the results ofsMdsr the XML document
XCDNA.xml, in Figure 7.15 (the full set of Massif results &l our XML files used in
this chapter can be found in [62]); we include toastruction phase parsing, although
we have not spent any time discussing the parsing{ML documents and the
construction of subsequent SDOM representations. cdrdirm that the estimations
made by the formulas in Section 4.1.6 broadly felihe Massif resultin Table 7.3.
Optimisations still need to be made to the par$e8@OM; therefore, we have some
irregular growth during the construction phase tau$SDOM space usage to reach
above the size of the file before we reach thel ftate, which is smaller than the file
size. We observe Xerces exceeded the main memaysahachine, which has 2GB of

RAM and is over four times larger than the XML file

In Figure 7.16, we show the scalability of the SDEGT) parser on the XMark files,
reporting the construction speed. SDOM(-CT) requiee single parse of the XML
document to construct the internal data structufé® results include the time for

SDOM to create an intermediate representation, lwigcthen converted to the final

®We see up to 10% difference on some files.

184

Chapter 7 - Succinct DOM

memory-efficient representation. In the Xerces tmgsion phase time is spent
allocating memory for each node in the tree and@ated objects. We observe as the
file size gets bigger, the main memory begins toout and the slower virtual memory
is used. In Figure 7.16, we observe that SDOM ograge is 1.37 times faster than
Xerces. In contrast, SDOM-CT on average is 1.80etislower than Xerces; this

slowdown was due to the compression of the text.

7.4 Summary

SDOM is a fast in-memory representation of XML doe&nts with a small memory

footprint. The current implementation is close teing a plug-in replacement for a
standard DOM implementation in any application thimes not require dynamic

changes to the XML document, with very little peépah terms of CPU usage. It is

therefore not only suitable for handling moderatalge (a few GB) size documents on
standard PCs, but may also be useful for enabheguse of XML on devices with

limited resources, such as smart cards or handiwetgputers. SDOM is built upon the
succinct data structures introduced in Chapter dl emgineered in Chapter 5 and 6.
There has been a great deal of interest in theitdgts community in the theory of

succinct data structures, and implementations btdut indices that are based upon
succinct data structures (see e.g. [29]). Theseap be somewhat unknown to the
database community. We believe that the datatates we use could also be applied
to other XML compressors.

Our comparison to Xerces is based on textual datiais uncompressed; SDOM uses
significantly less space than the original file.vAriant, SDOM-CT compresses the
textual data, and achieves compression ratiosatieatompetitive with “query-friendly”
compressors, but worse than the best XML compregsee details in Table 7.3). Yet,

SDOM-CT compares surprisingly well concerning coaggion performance, because:

« If one uses BZip and relatives as the compresdgorithm, then in most cases,
BZip does pretty well even relative to specializesmpression algorithms

applied to containers.

185

Chapter 7 - Succinct DOM

* When using BZip, the benefit of grouping text miled in most cases.

The SDOM software library can be downloaded at.[62]

186

Chapter 8

Conclusion

The main objective of this thesis was to repre3@it. documents space efficiently in
memory and efficiently support DOM’s navigationaldaaccess operations upon the
space-efficient representation. We achieved thisusing succinct, or highly space-
efficient, data structures, which were pioneeredégobson [44]. We modified existing
succinct data structures for use in representing-XMcuments, and carefully put the
succinct data structures together to create a sgfficeent DOM implementation. Our
implementation, SDOM has processing speed thabisparable to Xerces, but the
space usage is much lower; the space usage of SODNM- comparable to query-
friendly XML compressors, but the speed is muchefasThe performance of SDOM(-
CT) is shown graphically in Figui&1. For the query-friendly compressors we estimate

the DOM processing time on the graph based upandbeclusions.

8.1 Technical Contributions

We made a number of technical contributions sunsedrbelow.
Tree representations

We studied several succinct tree representatiodoptimised them for DOM support.
These optimised representations number the nodmsmhode tree with integer from 1
to n, and (recall that previous representations nuntbeogles non-consecutively with
numbers from 1 t@n) have fast implementations for testing whetheodenis a leaf.
The main new idea introduced was double numbeand,the partitioned representation
for the LOUDShit-string. The idea of the partitioned represtotahas been applied to
bit-strings by [37].

Textual data structure

Strategies to represent and access efficientlyatgee amount of textual data in XML
documents were studied. The textual data coulcepeesented naively, where the text
nodes are concatenated into a string. Alternatjwed/could compress the concatenated

string using FM-Index [48] or blocked text compesssising BZip2.

187

Chapter 8 - Conclusion

Memory
Usage Xerces-C
l,//T'ulyTree ™
{ Careful DOM
. Implementations
spom e
SDOM-CT
[Query-friendly 4
1 I

'\ Compressors

-~ -

DOM
processing
time

Figure 8.1— DOM performances graph.

Based upon the experimental evaluation, found that there was no significe
difference in the BZip2 compression of text arrahge documer-order compared to
text in patherder (the method commonly used by XML compressach as XMill). As

a result, we organise text in docun-order in the representations.

Access to the individual text nodes required therisgy of offsets into th
concatenated string. Storing offsets naively wobklle a significant space co

particularly if text is stored compress

A careful experimental evaluation ofrious alternatives to store offsets was d¢
Our results show significant reduction in spacegaseosts, with -8 bits required per
offset, instead of the 32 bitper offset for a naive representatigxccessing an offset
was very fastThis was achieve by formulating the offset problem as the pr-sum
problem. The best data struct targeted the succinct prefix sums bound; we shc
(both experimentally and mathematically) a closkti@nship between the succir
bound on prefix sums and the c-awareGOLOMB measure. ThGOLOMB measure

had been shown to llee best for storing offsets in certain IR appliimag [23].

188

Chapter 8 - Conclusion

SDOM | mplementation

We bring together the succinct data structuredudieg the tree representation (the
PAREN+variant) and the textual data structure as buldbtocks of the DOM
implementation (SDOM). Additional improvements wemeade in SDOM, which
allowed, e.qg., faster support for traversals in DQOdficient implementation of the
element-attribute mapping and space-efficient smiuto represent fully qualified

element names. We include extensive experimerdtd tgn SDOM.

8.2 Future Work

There are a number of tasks and open questionsrémadin. Firstly, SDOM, as
described, can only be used for static documentsaiising succinct data structures is
an area of active research (see e.g. [58]), bstfér from clear how to implement a full
DOM with dynamic operations. Secondly, althoughdimg an XML document is fast
(it needs to be — our traversal tests take se litthe that reading in the XML file would
otherwise be a serious bottleneck in our experig)eamtd does not take anywhere near
the amount of memory required by a standard DOMegrawe have not made a serious
attempt at optimising either the speed or the mgmusage of parsing. Finally, in
addition to the tests that we have performed, iuldidbe very interesting to wrap
SDOM in an application such as Xalan or Saxon, smwvéstigate its performance

therein.

189

Appendix A
Experimental Setup

Xerces DOM

We use the Xerces-C v2.8 C++ [67] DOM implementatio parse the XML files,

gather statistics and construct the internal datetsires.

Data structures

The implemented data structures were in the C+g¢raraoming language.
Running Time

The specification of the test machines used foretkgeriments on the data structures

are as follows:

* Intel-P4: Dual processor Pentium 4 machine, with 2GB RAMm&mory, dual
core 3.4 GHz CPUs and a 2MB L2 cache, running Ub06 Linux. The

compiler was g++ 3.3.5 with optimisation level 2.

* Sun-UltraSparc: Sun UltraSparc-11l machine, with 8GB RAM of memnipa
1.2GHz CPU and an 8MB L2 cache, running SunOSThe.compiler was g++

3.3.2 with optimisation level 2.

190

Appendix B

DOM methods supported by SDOM

Document
Returns Method DOM |Related SDOM
Level [component

Attr createAttribute(String name) 1 NA
createAttributeNS(String namespaceURI,

Attr String qualifiedName) 2 NA

CDATASection | createCDATASection(String data) 1 NA

Comment createComment(String data) 1 NA

Document-

Fragment createDocumentFragment() 1 NA

Element createElement(String tagName) 1 NA
createElementNS(String namespaceURI,

Element String qualifiedName) 2 NA

EntityReference | createEntityReference(String name) 1 NA

Processing-

Instruction createProcessinglnstruction(Stringegr§tring data) | 1 NA

Text createTextNode(String data) 1 NA

DocumentType | getDoctype() 1 Document

Element getDocumentElement() 1 Document

Element getElementByld(String elementld) 2 Attt#DS

NodelList getElementsByTagName(String tagname) 1 mé&&odeDS
getElementsByTagNameNS(String namespaceURI

NodeList String localName) 2 NameCodeDS

DOM-

Implementation getimplementation() 1

Node importNode(Node importedNode, boolean deep) 2NA

String getActualEncoding() 3 Document

void setActualEncoding 3 Document

String getEncoding 3 Document

void setEncoding(String enc) 3 NA

void getStandalone 3 Document

String getVersion 3 Document

void setVersion(string version) 3 NA

String getDocumentURI() 3 Document

bool getStrictErrorChecking 3 Document

void setStrictErrorChecking 3 NA

void renameNode(Node n, String uri, String name) 3|NA

Configuration getDOMConfiguration() 3

191

Node

Returns Method DOM |Direct SDOM

Level |component
supported

Node appendChild(Node newChild) NIA

Node cloneNode(boolean deep) NA

NamedNodeMap getAttributes() 1|AttributeDS

NodeList getChildNodes() 1|STree

Node getFirstChild() 1|STree

Node getLastChild() 1|STree

String getLocalName() 2|NameCodeDS

String getNamespaceURI() 2|NameCodeDS

Node getNextSibling() 1|STree

String getNodeName() 1|NameCodeDS

short getNodeType() 1|NameCodeDS

String getNodeValue() 1|TextDS

Document getOwnerDocument() 1|STree

Node getParentNode() 1|STree

String getPrefix() 2|NameCodeDS

Node getPreviousSibling() 1|STree

boolean hasAttributes() 1|AttributeDS

boolean hasChildNodes() 1|STree

Node insertBefore(Node newChild, Node refChild) NA

boolean isSupported(String feature, String vepsion 2|Document

void normalize() 2|NA

Node removeChild(Node oldChild) NA

Node replaceChild(Node newChild, Node oldChild) NA

void setNodeValue(String nodeValue) NA

void setPrefix(String prefix) RA

short compareTreePosition(Node other) STee

String getTextContent() - missing minority nodes TextDS

void isSameNode(Node other) Nt implemented

String lookupPrefix(String uri, bool usedefault) N8t implemented

NodelList

The NodelList here is an interface class. We givaideof the class designed for

attribute nodes.

Returns Method DOM Direct SDOM

Level component supported
Int getLength() 1|STree
Node item(int index) 1|STree

192

NamedNodeMap

The namedNodeMap here is an interface class. Wedgtails of the class designed for

attribute nodes.
Returns Method DOM Direct SDOM
Level component

supported

Int getLength() 1|AttributeDS

Node getNamedItem(String name) AftributeDS

getNamedItemNS(String namespaceURI,

Node String localName) PAttributeDS

Node item(int index) 1|Attribute

Node removedNamedIltem(String hame) NA

removedNamedItemNS(String

Node namespaceURI, String localName) N2

Node setNamedltem(Node arg) NA

Node setNameditemNS(Node arg) N2

Attribute

Returns Method DOM Direct SDOM

Level component

supported

String getName 1|AttributeDS

Element getOwnerElement AdtributeDS

Bool getSpecified 1|NA

String getValue 1|TextDS

void setValue 1|NA

Tyelnfo schemaTypelnfo 3|Not supported

boolean isID 3|AttributeDS

Document Type

Returns Method DOM Direct SDOM

Level component
supported

NamedNodeM

ap getEntities() 1|DocType

String getinternalSubset() Not Supported

String getName() 1|NameCodeDS

NamedNodeM

ap getNotations() 1|DocType

String getPublicld() 2|DocType

String getSystemld() 2|DocType

193

Element

Returns Method DOM Direct SDOM
Level component
supported
String getAttribute(String name) AttributeDS
Attr getAttributeNode(String name) AttributeDS
getAttributeNodeNS(String namespaceURI
Attr String localName) AttributeDS
getAttributeNS(String namespaceURI,
String String localName) AttributeDS
NodeList getElementsByTagName(String name) STtee, NameCodeD
getElementsByTagNameNS(String namespace
NodelList URI, String localName) AameCodeDS
String getTagName() 1|NameCodeDS
boolean hasAttribute(String name) AftributeDS
hasAttributeNS(String namespaceURI,
boolean String localName) AttributeDS
void removeAttribute(String name) NA
Attr removeAttributeNode(Attr oldAttr) NA
removeAttributeNS(String namespaceURI,
void String localName) NA
void setAttribute(String name, String value) NA
Attr setAttributeNode(Attr newALttr) NA
Attr setAttributeNodeNS(Attr newAttr) RIA
setAttributeNS(String namespaceURI,
void String qualifiedName, String value) NPA
Entity
Returns Method DOM Direct SDOM
Level component
supported
String getNotationName() DocType
String getPublicld() 1|DocType
String getSystemld() 1/DocType
Notation
Returns Method DOM Direct SDOM
Level component
supported
String getPublicld() 1|DcoType
String getSystemld() 1|DocType

194

Processinglnstruction

Returns Method DOM Direct SDOM
Level component
supported
String getData() 1|TextDS
String getTarget() 1|AttributeDS
void setData(String data) NA
Text
Returns Method DOM Direct SDOM
Level component
supported
Text splitText(int offset) MNA
bool iselementContentWhitespace() N8t Supported
String wholeText() 3|Not Supported
DOM-Implementation
Returns Method DOM Direct SDOM
Level component
supported
createDocument(String uri, String
Document qualifiedName, DocType doctype) NBA
createDocType(String qualifiedName, String
DocType publd, String sysld) BIA
bool hasFeature(String feature, String version) Dogument

195

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Bibliography

Antoshenkov, G. 1997. Dictionary-based order-prgsgrstring compressionthe
VLDB Journal6, 1 (Feb. 1997), pp. 26-39. DOI= 10.1007/s00738031

Apache XML Project. http://xml.apchae.org

Arion, A., Bonifati, A., Manolescu, I., and PugleesA. 2007. XQueC: A query-
conscious compressed XML databas€M Trans. Inter. Techvol. 7, issue 2 (May.
2007), pp. 10. DOI=10.1145/1239971.1239974

B+ Tree. (2008, September 13). In Wikipedia, TheeFEncyclopedia. Retrieved
21:09, September 15, 2008, from http://en.wikiped@wiki/B%2B _tree

Benoit, D., Demaine, E. D., Munro, J. I., Raman, Raman, V. and Rao, S. S.
2005. Representing trees of higher degAdgorithmicg vol. 43, issue 4(2005),
pp. 275-292. DOI= 10.1007/s00453-004-1146-6

Boncz, P., Grust, T., van Keulen, M., Manegold, FEttinger, J., and Teubner, J.
2006. MonetDB/XQuery: a fast XQuery processor p@ddny a relational engine.
In Proceedings of the 2006 ACM SIGMOD International nfécence on
Management of Dat&Chicago, IL, USA, June 27 - 29, 2006). SIGMOD. 'B8EM,
New York, NY, pp. 479-490. DOI=10.1145/1142473.1322

Buneman, P., Grohe, M., and Koch, C. 2003. Pathiemien compressed XML. In
Proceedings of the 29th international Conference\amry Large Data Bases -
Volume 29(Berlin, Germany, September 09 - 12, 2003). J.Ffaytag, P. C.
Lockemann, S. Abiteboul, M. J. Carey, P. G. Selingmd A. Heuer, Eds. Very
Large Data Bases. VLDB Endowment, pp. 141-152.

Buneman, P., Choi, B., Fan, W., Hutchison, R., Ma&n and Viglas, S. D. 2005.
Vectorizing and Querying Large XML Repositories. Pnoceedings of the 21st
international Conference on Data Engineeri(@pril 05 - 08, 2005). ICDE. IEEE
Computer Society, Washington, DC, pp. 261-272. O0I£109/ICDE.2005.150

Burrows, M., Wheeler, D. 1994. A block sorting lless data compression
algorithm.Technical Report 12Digital Equipment Corporation.

197

Bibliography

[10] Busatto, G., Lohrey, M., and Maneth, S. 2005. k#ht Memory Representation of
XML Documents. In Database Programming Languages, 10th International
Symposium, proceeding$rondheim, Norway, August 28-29, 2005). DBPL 2005
LNCS, Springer-Verlag, Berlin Heidelberg New YolY, vol. 3774, pp. 199-216.
DOI=10.1007/11601524 13

[11] BZip2. http://www.bzip.org

[12] CenterPoint DOM Implementation. http://www.cpoictan/XML/ (note: not

delivered anymore as open source)

[13] Cheney, J. 2006. Tradeoffs in XML Database Comprass$n Proceedings of the
2006 IEEE Data Compression Conference, (Vanco@anada, 2006). DCC 2006.
IEEE Computer Society Press, Ls Alamitos, Califayn2006, pp. 392-401.
DOI=10.1109/DCC.2006.79

[14] Cheng, J., Ng, W., 2004. XQzip: Querying Compres¥ddl. Using Structural
Indexing. InAdvances in Database Technology - 9th Internatid@®ahference on
Extending Database Technology, proceedifigsraklion, Crete, Greece, March 14-
18, 2004). EDBT '04. LNCS, Springer-Verlag, Berhfeidelberg New York, NY,
vol. 2992, pp. 219-236. DOI= 10.1007/b95855

[15] Clark, D. R. 1996Compact Pat Tree$hD thesis, University of Waterloo.

[16] Clark, D. R. and Munro, J. I. 1996. Efficient suftrees on secondary storage. In
Proc. of the 7th Annual ACM-SIAM Symposium on [BisciAlgorithms(Atlanta,
Georgia, United States, January 28 - 30, 1996). S@B. Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathatics, Philadelphia, PA, pp.
383-391.

[17] J. Cleary and I. Witten. 1984. Data compressionguisidaptive coding and partial
string matchinglEEE Transactions on Communication&l. 32, issue 4, pp. 396-
402.

[18] CPU Cache. (2008, September 13). In Wikipedia, Ailee Encyclopedia. Retrieved
21:09, September 15, 2008, from http://en.wikipea@wiki/CPU_cache

198

Bibliography

[19] Computer Architecture. (2008, September 12). Inipéllia, The Free
Encyclopedia. Retrieved 21:09, September 15, 2008\

http://en.wikipedia.org/wiki/Computer_architecture

[20] Cormen, Thomas H.; Leiserson, Charles E.; RivestaRl L. (1990)Introduction
to Algorithms first edition, MIT Press and McGraw-Hill. ISBNZ52-03141-8.

[21] Crimson DOM implementation. http://xml.apache.orghson/
[22] Delpratt, O., Rahman, N., and Raman, R. 2006. Emging the LOUDS Succinct

Tree Representation. IProc. of 5th Workshop on Experimental Algorithms
(Menorca, Spain, May 24-27, 2006) WEA '06. LNCS,riBger-Verlag, Berlin
Heidelberg New York, NY, Vol. 4007, pp. 134-145. D€10.1007/11764298 12.

[23] Delpratt, O., Rahman, N., and Raman, R. 2007. Cesgad Prefix Sums. In
SOFSEM 2007Theory and Practice of Computer Science, 33rd Genf® on
Current Trends in Theory and Practice of Computerefce (Harrachov, Czech
Republic, January 20-26, 2007). SOFSEM '07. LNCS§rirtger-Verlag, Berlin
Heidelberg New York, NY, Vol. 4362, pp. 235-247. D© 10.1007/978-3-540-
69507-3_19.

[24] Delpratt, O., Raman, R., and Rahman, N. 2008. Emging succinct DOM. In
Proceedings of the 11th International Conference Brtending Database
Technology: Advances in Database Technol@ygntes, France, March 25-29,
2008). EDBT '08, vol. 261. ACM International Cordace Proceeding Series, New
York, NY, pp. 49-60. DOI = 10.1145/1353343.1353354.

[25] DocBook. http://www.docbook.org
[26] DOMA4j. http://www.dom4j,org

[27] Elias, P. 1974. Efficient storage retrieval by @mtand address of static filek.
ACM, 21 (1974), pp. 246—260. DOI = 10.1145/321812.2P18

[28] eXist-db. http://exist.sourceforge.net/

199

Bibliography

[29] Ferragina, P. and Manzini, G. 2001. An experimestady of an opportunistic
index. InProc. of the 12th Annual ACM-SIAM Symposium on retscAlgorithms
(Washington, D.C., United States, January 07 2091). Society for Industrial and
Applied Mathematics, Philadelphia, PA, pp. 269-278.

[30] Ferragina, P., Luccio, F., Manzini, G., Muthukrighn S. 2006. Compressing and
Searching XML Data Via Two Zips. IRroc. of the 15th International World Wide
Web Conferencédinburgh, Scotland, May 23 - 26, 2006). WWW 'B&M Press,
New York, NY, pp. 751-760.

[31] FM-Index. http://pizzachili.dcc.uchile.cl/indexeSFndexV2/

[32] Frick, M., Grohe, M., and Koch, C. 2003. Query Enxgion on Compressed Trees
(Extended Abstract). IRroceedings of the 18th Annual IEEE Symposium @jicLo
in Computer SciencdJune 22 - 25, 2003). LICS. IEEE Computer Society,
Washington, DC, pp. 188.

[33] Galax XQuery Implementation. http://www.galaxquerg/
[34] Geary, R. 2005. Private communication.

[35] Geary, R. F., Raman, R., and Raman, V. 2006. Scicoidinal trees with level-
ancestor querieA\CM Trans. Algorithmsvol 2, issue 4 (Oct. 2006), pp. 510-534.
DOI=10.1145/1198513.1198516

[36] Geary, R. F.,, Rahman, N., Raman, R., and Ramar006. A simple optimal
representation for balanced parenthesbsor. Comput. ScV/ol. 368, issue 3 (Dec.
2006), pp. 231-246. DOI=10.1016/).tcs.2006.09.014

[37] Golynski, A., Grossi, R., Gupta, A., Raman, R., RaoS. On the Size of Succinct
Indices. InProc 15th Annual European Symposium on Algoritl{Eiat, Israel,
October, 2007). ESA '07. LNCS, Springer-Verlag, IBeHeidelberg New York,
NY, vol. 4698, pp. 371-382.

[38] Gottlob, G. and Koch, C. 2002. Monadic datalog H#relexpressive power of Web
information extraction languages. ACM 51, 1 (Jan. 2004), 74-113. DOI=
http://doi.acm.org/10.1145/962446.962450.

200

Bibliography

[39] Grossi, R. and Vitter, J. S. 2000. Compressedsuaififrays and suffix trees with
applications to text indexing and string matchiegténded abstract). roc. 32nd
Annual ACM Symposium on Theory of Compuffgrtland, Oregon, United States,
May 21 - 23, 2000). STOC '00. ACM, New York, NY, .pB97-406.
DOI=10.1145/335305.335351

[40] Grossi, R., and Vitter, J. S. 2004. Private comigation.

[41] Gupta, A., Hon, W., Shah, R., and Vitter, J. S.200o0mpressed data structures:
Dictionaries and data-aware measuildgeor. Comput. ScVol. 387, issue 3, (Nov.
2007), pp. 313-331. DOI=10.1016/j.tcs.2007.07.042

[42] Gupta, A., Hon, W. K., Shah, R., and Vitter, J.Cmpressed dictionaries: space
measures, data sets, and experiments. 200&oln 5th International Workshop on
Experimental Algorithm¢gMenorca, Spain, May 2006). WEA ‘06. LNCS, Sprinrge
Verlag, Berlin Heidelberg New York, NY, vol. 4003p. 158-1609.

[43] Gzip. http://www.gzip.org

[44] Jacobson, G. 1989. Space-efficient static trees graghs. InProc. of the 30th
Annual Symposium on the Foundations of Computenge{NC, USA, 10/30/1989
- 11/01/1989). FOCS '89. IEEE Computer Society, Wagton, DC, vol. 225,
Cat.N0.89CH2808-4, pp. 549-554, 1989.

DOI=10.1109/SFCS.1989.63533
[45] JDOM. http://www.jdom.org

[46] Kay, Michael. 2006. Optimization in XSLT and XQuein Proc.XMLPrague: a
conference on XMl(Prague, Czech Republic, June 17-18, 2006). ITieSeVol.
2006-294, pp. 29-41, 2006. Link= http://iti.mff.dwoz/series

[47] Kim, D. K., Na, J. C., Kim, J. E., and Park, K. B0Efficient implementation of
rank and select functions for succinct represestatin Proc. of the 4th Workshop
on Experimental AlgorithmgSantorini Island, Greece, May 10-13, 2005). WEA
2005. LNCS, Springer-Verlag, Berlin Heidelberg N&wrk, NY, Vol. 3503, pp.
315-327. DOI= 10.1007/11427186_28.

201

Bibliography

[48] Liefke, H. and Suciu, D. 2000. XMill: an efficienbmpressor for XML data. 2000.
In Proc. of the ACM SIGMOD international Conference Management of Data
(Dallas, Texas, United States, May 15 - 18, 2080kMOD '00. ACM Press, New
York, NY, Vol. 29, Issue 2, pp. 153-164. DOI=10.51342009.335405

[49] Martin, H. W. and Orr, B. J. 1989. A random binanrge generator. Proc. of the
17th ACM Annual Computer Science Conference, pp3831989.

[50] Medline. http://www.nlm.nih.gov/mesh/gcmdoc2004.htm

[51] Mehta, D. P., Sahni, S. (Ed.). 20@4#andbook of Data Structures and Applications
Chapman & Hall/CRC publishers. ISBN = 1584884355.

[52] Min, J., Park, M., and Chung, C. 2006. A compreswor effective archiving,
retrieval, and updating of XML documentsCM Trans. Internet Technd, 3
(Aug. 2006), 223-258. DOI=10.1145/1151087.1151088.

[53] Munro, J. |. Tables. 2006. Froceedings of the 16th Conference on Foundatiéns o
Software Technology and theoretical Computer SeiéDecember 18 - 20, 1996).
V. Chandru and V. Vinay, Eds. LNCS, vol. 1180. 8par-Verlag, London, pp. 37-
42.

[54] Munro, J. I. and Raman, V. 2002. Succinct repredemt of balanced parentheses
and static TreeSSIAM J. Comput31, 3 (Mar. 2002), pp. 762-776. DOI
=10.1137/S0097539799364092

[55] Neumdller, M. and Wilson, J. N. 2003. Improving XMRrocessing Using Adapted
Data Structures. IRevised Papers from the Node 2002 Web and Datdbelsted
Workshops on Web, Web-Services, and Database Sy€detober 07 - 10, 2002).
LNCS, Springer-Verlag, Berlin Heidelberg London|.\25693, pp. 206-220.

[56] Ng, W., Lam, W., Wood, P. T., and Levene, M. 20B&Q: A queriable XML
compression systemKnowl. Inf. Syst 10, 4 (Oct. 2006), pp. 421-452.
DOI=10.1007/s10115-006-0012-z

202

Bibliography

[57] Raman, R., Raman, V., and Rao, S. S. 2002. Sucicidekable dictionaries with
applications to encodinkrary trees and multisets. Rroc. 13th Annual ACM-SIAM
Symposium on Discrete AlgorithnSan Francisco, California, January 06 - 08,
2002). SODA '02. Society for Industrial and Appliddathematics, Philadelphia,
PA, pp. 233-242.

[58] Raman, R. and Rao, S. S. 2003. Succinct dynamimadéries and trees. IRroc.
Automata, Languages and Programming, 30th Inteomai Colloquium
(Eindhoven, The Netherlands, June 30 - July 4, RACALP ‘03. LNCS, Springer-
Verlag, Berlin Heidelberg New York, NY, vol. 2718p. 357-368. DOI=10.1007/3-
540-45061-0_30

[59] Sadakane, K. and Grossi, R. 2006. Squeezing suatata structures into entropy
bounds. InProc. 17th Annual ACM-SIAM Symposium on Discretgodihm
(Miami, Florida, January 22 - 26, 2006). SODA '@8_M, New York, NY, pp.
1230-1239. DOI= 10.1145/1109557.1109693

[60] SAX Parser. http://www.saxproject.org/
[61] Saxon. http://saxon.source.forge.net/
[62] SDOM Software Libraries. http://hdl.handle.net/2ER63

[63] Shkarin, D. 2002. PPM: One Step to Practicality.Pimoceedings of the Data
Compression Conference (DCC '08pril 02 - 04, 2002). DCC. IEEE Computer
Society, Washington, DC, pp. 202.

[64] Tolani, P., Haritsa, J.R. 2002. XGRIND: A Querydfrily XML Compressor. In
Proc. 18th International Conference on Data Engmag (February 26 - March 01,
2002). ICDE. IEEE Computer Society, Washington, Pg., 225.

[65] Valgring Massif Profiler Tool. http://valgrind.org/
[66] Xalan XSLT Processor The Apache XML project. htinl.apache.org/xalan-c/
[67] Xerces C++ Parser. http://xerces.apache.org/xearces-

[68] Xerces Java 2 Parser. http://xerces.apache.orgs@jt

203

Bibliography

[69] Xindice. http://xml.apache.org/xindice/FAQ

[70] XMark - XML Benchmark Project. http://monetdb.cmixml/

[71] XPath. http://www.w3.0rg/TR/xpath

[72] XSLT. http://www.w3.0org/TR/xslt

[73] UW XML Repository.
http://www.cs.washington.edu/research/xmldatase&is/irepository.html

[74] VOTable Documentation. http://www.us-vo.org/VOTdble

[75] Wang, F., Li, J., and Homayounfar, H. 2007. A spefficient XML DOM parser.
Data Knowl. Eng60, 1 (Jan. 2007). Elsevier Science Publishelé.BAmsterdam,
The Netherlands. pp. 185-207. DOI=10.1016/j.daz#6201.002

[76] Witten, I., Moffat, A., Bell, LManaging Gigabytes, 2&organ Kaufmann, 1999.

[77] W3C DOM API documentation. 2004. http://www.w3.0rg/2004/REC-DOM-
Level-3-Core-20040407/

[78] W3C DOM Traversal, 2000. http://www.w3.0org/TR/DOMel-2-
TraversalRange/traversal.html

[79] W3C XML Specification. http://www.w3.org/TR/REC-xl

[80] Zhang, N., Kacholia, V., and Ozsu, M. T. 2004. AcS8uoct Physical Storage
Scheme for Efficient Evaluation of Path Queries XML. In Proc. 20th
international Conference on Data Engineerifigarch 30 - April 02, 2004). ICDE.
IEEE Computer Society, Washington, DC, pp. 54.

204

