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ABSTRACT 

Liquid helium (LHe) at 4.2 K was electronically excited using a corona discharge for 
both negative and positive high voltages. The experiments were carried out for 
different pressures in the range from 0.1 to 10 MPa at constant temperature. The light 
emitted from the zone close to the tip was spectroscopically analyzed showing features 
from atoms and excimer helium. The shifts and widths of the observed lines and bands 
were found to depend on the applied hydrostatic pressure and on the tip polarity. Our 
analysis showed that classic pressure broadening theory cannot account for the 
observed widths and shifts rather than the presence of bubbles which surround single 
excited atoms and molecules. For positive tip polarities red shifted features distinct 
from pure He and He2* were observed and tentatively assigned to “red satellites”.  

   Index Terms  —Helium spectroscopy, corona discharge, excimer helium. 
 

1   INTRODUCTION 
LIQUID helium is a fascinating substance with many 

peculiarities due to its highly quantum nature. A particular 
feature of liquid helium is its intense luminescence in the visible 
and near infrared spectral range. This luminescence has been 
observed from superfluid 4He bombarded with energetic 
electrons [1-3], from liquid helium excited by a corona discharge 
[4-8] as well as from 4He droplets excited by monochromatic 
synchrotron radiation [9-11]. After electronic excitation, 
Rydberg-type He atoms or excimer molecules are formed in 
liquid helium and a repulsive force between the Rydberg electron 
orbital and the surrounding ground state helium atoms is 
established. As a consequence the surrounding helium atoms are 
pushed away within a short time [12-13] creating a void around 

the excited atoms He* and molecules He2
*. This void is often 

referred to as a bubble and it has typical radii between 10-14 Å 
depending on the electron’s orbital radius [14]. Bubbles of 
similar type are well known to enclose electrons in liquid and 
even dense gaseous helium [15-17]. Within the confinement of 
these bubbles the perturbation by surrounding ground state 
helium atoms is low and the electronic life time of the excited 
atoms or excimers is almost similarly long as for free species in 
the vacuum. The remaining perturbation by the ground state 
helium atoms surrounding the bubble is nevertheless strong 
enough to cause broadening and wavelength shifts of the atomic 
and molecular lines and the magnitude of the width and shift was 
found to depend on the applied pressure. The hydrostatic 
pressure was also found to affect the line intensity distribution of 
the rotational spectrum of the confined He2

* as well as the total 
luminescence yield.  Manuscript received on 31 October 2008, in final form 1 April 2009. 
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Corona discharge represents a relatively simple and versatile 
way to produce and investigate electronic excitations and 
luminescence in liquid helium as it allows changes of pressure and 
density over a very wide range. However, the mechanisms 
involved in such a discharge in the liquid phase are complicated 
and involve electronic avalanches, energy transfer, formation of 
shock waves and bubbles, etc. Another complication is that the 
particle density in corona discharge is not uniform [18]: the region 
close to the tip has a high excitation density and thus resembles in 
many respects a plasma. It is a priori not clear whether under these 
conditions in the zone close to the tip the liquid state of helium is 
retained. To obtain a better understanding of these effects we have 
initiated a systematic spectroscopic investigation of liquid helium 
which is excited by corona discharges.    

In this paper we report on the effect of the tip polarity on the 
spectra obtained in the liquid phase at 4.2 K as well as the effect of 
external hydrostatic pressure. We show that most spectral features 
are due to light emission from excited He atoms and excimers. The 
features are broadened and shifted depending on te hydrostatic 
pressure. Classical line broadening theory cannot explain the 
magnitudes of the line shifts and widths and we find that the most 
likely origin of the perturbation is the presence of bubbles around 
the emitting species similar to the observation by Dennis et al. [1] 
who used electron bombardment for the excitation of superfluid 
helium. We further show that additional red-shifted spectral 
features exist that cannot be explained by rotational line intensity 
distributions of thermalized excimer molecules. These features 
depend on the polarity of the corona discharge giving rise to a 
provisional assignment to 'red satellites' side-bands. The 
microscopic origin of these red satellites is presently unknown. 

 

2  EXPERIMENTAL TECHNIQUES 
Our experimental set up has been described elsewhere [4] 

and we only briefly mention its most important features. The 
liquid sample was produced from helium at the grade N 60 
(Air Liquide) with an impurity concentration of about 0.1 ppm 
of oxygen. The gas was further purified by a series of traps 
that were filled with a mixture of molecular sieves (3-10 Å) 
and charcoal, activated under vacuum typically at 350°C for 3 
days and finally immersed into liquid N2. The liquid helium 
sample was obtained by condensing purified helium gas into a 
copper beryllium coaxial cell. The cell included a point 
electrode and had a characteristic impedance of 50 Ω when 
mounted into a cryostat and it also could withstand pressures 
up to 10 MPa. Before filling the cell was pumped to about 10-4 
Pa using a turbo-molecular pump. Tungsten tips with a radius 
of 0.45µm and 2.5 µm were prepared by electrolytic etching. 
The electrode spacing was 8 mm. All metallic electrodes were 
supported by Macor insulators. In the cryostat the temperature 
of the liquid could be adjusted to 4.2 K at a constant pressure 
P. The high voltage from a stabilized dc power supply 
(Spellman RHSR/20PN60) was connected to the point 
electrode. Light emitted from the region close to the point 
electrode was analyzed by a spectrograph through a sapphire 
window. The spectrograph (Acton Research Corporation of 

300 mm focal length) was equipped with 3 plane gratings: one 
with 150 gr./mm and two with 1200 gr./mm that were blazed 
at 750 nm and 300 nm, respectively. The 2D-CCDTKB-
UV/AR detector was located directly in the exit plane of the 
spectrograph. In order to reduce the dark current, the detector 
was cooled to a temperature of 153 K (dark current < 1 
electron/pixel/hour at 153 K. The instrumental broadening 
measured by recording the profiles of argon lines from a low 
pressure discharge lamp was Δλins = 0.12 nm for the 1200 
gr./mm gratings.  

 
3  EXPERIMENTAL RESULTS 

3.1 GENERAL REMARKS 
The light emitted from the corona region was collected and 

spectra in the range 500 - 1080 nm were recorded. Figure 1 
shows a representative spectrum observed in LHe. Several 
atomic lines and molecular bands can be identified. These 
lines correspond to radiative transitions between excited states 
of He* atoms and He2

* excimer molecules. 
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Figure 1. Overview spectrum recorded in the range 560-630 nm in LHe at 4.2 
K, 0.1 MPa.  
 

At low pressure the lines are sharp and their peak position 
match the atomic lines and molecular bands of helium from 
gas phase experiments. These lines are listed in Table 1.  

A strong background continuum from 490 to 1100 nm 
appears in spectra at high pressures above P = 4.0 MPa. 
Moreover, the width of the lines increases with pressure and 
their relative intensity decreases. Figure 2 shows the atomic 
3s3S -> 2p3P line at 706 nm being broadened and shifted with 
increasing pressure towards smaller wavelengths (blue shift). 
The relative intensity of the line decreases with pressure. No 
lines and bands can be observed in spectra if the pressure 
exceeds 5.0 MPa. 

Owing to the relatively small mass of He atoms the excimer 
spectrum of He exhibits a spectrum with comparatively large 
rotational line separation which our spectrometer is able to 
resolve. Figure 3 shows that for low pressures rotational lines 
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can indeed be observed allowing us to derive the population 
of upper rotational levels of the excited molecules. For the 
case that the intensities are governed by a Boltzmann 
distribution it is possible to assign a “rotational temperature”. 

 
Table 1. Transitions observed in liquid helium (T=4.2K, P=0.1MPa) 

Atomic lines Molecular bands 

λ(nm) Upper-Lower λ (nm) Upper-Lower 

492,19 4d 1D-2p 1P 462,24 J1Δu- B1Πg 

587,56 3d 3D-2p 3P 464,95 e3Πg- a3Σu
+ 

706,52 3s 3S-2p 3P 573,49 f3Δu(v=0)-b3Πg(v=0) 
728,13 3s 1S-2p 1P 575 f3Δu (v=1)- b3Πg (v=1) 

1083,02 2p 3P-2s 3S 577 f3Δu (v=2)- b3Πg (v=2) 

  588,7 f3Πu
-- b3Πg 

  639,6 d3Σu
+- b3Πg 

  659,55 D1Σu
+- B1Πg 

  913,61 C1Σg
+- A1Σu

+ 

  918,3 c3Σg
+- a3Σu

+ 
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Figure 2. Intensity of the 706nm atomic line for different pressures. LHe at 
4.2 K, Icorona = 0.3 µA, Power = 1 mW.  
 

In gaseous discharges of molecular species the rotational 
temperature is often close to the thermodynamic temperature 
of the gas, however, exceptions especially for helium have 
been reported [19]. The different behavior of He is due to the 
excimer molecules being formed after the electronic 
excitation. Likewise, the rotational temperatures in the 
molecular bands observed in LHe or He droplets were by two 
orders of magnitude higher than the temperature of the liquid 
or the droplets [1]. 

In the following we will investigate the effect of hydrostatic 
pressure on the spectra and we will also investigate the effect 
of the polarity of the discharge. Increased hydrostatic pressure 
leads to broadening and shifts of the lines. The spectra 

recorded with positive tip polarity show distinct differences in 
the form of red-shifted features. These features were observed 
near atomic and molecular lines. 
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Figure 3. Molecular features in the spectrum of LHe at 4.2 K and 0.1 MPa 
showing rotational structure. 
 

3.2 SPECTRA FROM NEGATIVE CORONA 
DISCHARGES  

In this section, we show atomic and molecular spectra 
recorded with negative tip polarities. Figure 4 shows the same 
spectrum of the 3s1S -> 2p1P atomic transition at 706 nm as in 
Figure 2 but with normalized line intensity. In this way it can be 
seen that changes in pressure up to 1.4 MPa cause increased line 
widths, but with no significant changes in the symmetry of the 
line. Further increments in pressure up to 2.3 MPa produce 
slightly asymmetric line shapes. The retained symmetric 
character of the line allowed us to quantify the width using the 
magnitude of the full width at half maximum (fwhm). The 
magnitude of the shift was derived from the position of the 
maximum.  
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Figure 4. Normalized intensities of the 706nm atomic line for different 
pressures. LHe at 4.2 K.  
 

In Figure 5 we show the dependence of the shift and width 
on the pressure.  Both show a linear dependence on the 
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pressure within the accuracy of our measurements. For high 
pressures the widths and the shifts have similar magnitudes 
which are remarkably distinct from the behavior of dense He 
gas at room temperature.  
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Figure 5. Shift and broadening of the 706nm atomic line vs. pressure. LHe at 
4.2 K. Lines are linear fitting of the data curves comparing.  

 
The molecular bands observed in our experiments with the 

negative corona show broadening and shifts with increasing 
pressure as well. The spectrum of the d3Σ+

u - b3Πg triplet 
transition at 640 nm is shown in Figure 6 for three different 
pressures. 
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Figure 6. Transition d3Σ+

u - b3Πg in LHe at 4.2K for different pressures. The 
intensities are normalized.  

 
As for the atomic lines the spectral features shift to shorter 

wavelengths with increasing pressure and become more 
broadened. The rotational structure of the band is resolved at 
0.1 MPa and shows the R, Q, and P transitions due to changes 
of the rotational quantum number ΔN = 1, 0, -1, respectively. 
We note that the spacing of the Q-lines is too close to be 
resolved with our spectrometer. The widths of the R and P 
rotational lines are 0.7 nm at 0.1 MPa. With increased 
pressure the widths of the lines quickly becomes larger than 
the 1.3 nm wide spacing of the rotational P and R lines which 
makes the analysis very difficult. We note that the profile of 

the band recorded at 0.6 MPa is very similar to the spectrum 
reported by Dennis et al. who bombarded superfluid helium 
with high energetic electrons [1]. The shift of the Q-branch 
maximum with pressure is presented in Figure 7. 
Experimental data [2] obtained in superfluid He II at 1.7 K are 
also shown for comparison.  
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Figure 7. Shift of molecular bands for different pressures. The circles 
represent our experimental data whereas the line shows the shift reported by 
Soley and Fitzsimmons [2]. For pressures larger than 0.2 MPa the rotational 
lines overlap strongly and therefore the widths cannot be analysed. 

 

3.3 SPECTRA FROM POSITIVE CORONA  
   Below, we show spectra recorded with positive tip polarity. 
These spectra show both atomic lines and molecular bands at 
4.2 K over a wide range of pressures but very different line 
shapes compared to those obtained with negative tip 
polarities. Figures 8 and 9 show the atomic 1s3s3S1 -> 
1s2p3P0,1,2 line at 706 nm and the 1s3s1S0 -> 1s2p1P1 transition 
at 728 nm at 4.2 K and 0.1 MPa. For negative tip polarity 
under same conditions these lines reveal no shift and no 
broadening (Figure 9), but in a  positive corona discharge the 
lines clearly show a strongly asymmetric profile which can be 
fitted by a superposition of two Gaussian functions shifted 
from each other (Figure 10). The first, non-shifted feature has 
a width Δλ1 = 0.706 nm. The second feature is shifted by 1.6 
nm towards lower wavelengths and has a larger width Δλ2 = 
3.3 nm.  

Figure 11 shows the molecular d3Σ+
u - b3Πg transition of  

He2 using positive tip polarity. Similar to the atomic lines this 
band shows an asymmetric profile. In order to assess the 
degree of deviation we simulated the pure molecular d3Σ+

u - 
b3Πg transition (Figure 11) and we subtracted the simulated 
spectrum from the measured features. Figure 11 shows the 
resulting difference spectrum.  This difference spectrum 
shows a clear asymmetry with regard to the pure molecular 
band and cannot be explained by broadening of by shifting of 
lines because P and R lines would be equally affected. The 
clear distinction from the well-known feature of pure He2 
molecules gives rise to assign the difference spectrum to a 
“red-satellite” of unknown origin. 
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Figure 8. Atomic line of 706nm of negative and positive coronas in LHe, T = 
4.2 K, P = 0.1 MPa.  
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Figure 9. Atomic line at 728nm for negative and positive corona discharge 
excitation in LHe; T = 4.2 K, P = 0.1 MPa.  
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Figure 10. Atomic line of 706nm of positive corona in LHe simulated as 
superposition of two Gaussian profiles.  
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Figure 11. Rotational spectra of transition d3Σ+
u - b3Πg of He2 in LHe, T= 4.2 

K, P = 0.143 MPa.  
 

4  DISCUSSION  
The theory of the pressure broadening of spectral lines 

using so called “collision approach” is usually adopted to 
account for the line shapes observed in gaseous discharges 
[20]. Strictly speaking, the collision approach is only valid for 
low density gases but LHe may be an exception because it has 
the lowest density of all condensed matter and we therefore 
investigate its applicability.  

The collision approach predicts symmetric Lorentzian line 
profiles with widths being proportional to the gas pressure. In 
helium gas the dependence of the line widths and shifts on the 
pressure are dominated by the repulsive interaction (V(r) = 
C12r-12) between an excited atom and surrounded atoms [21]. 
Within the so-called “limit of collision” for repulsive 
interaction, the expressions for the line broadening and the 
line shift are given by: 
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Here λul is the wavelength of the line in [m], w=104*T0.5 is 
the relative velocity of the gas atoms with T being the gas 
temperature in [K], C12 is the repulsive Lennard-Jones 
parameter in [m12 s-1]  and N is the gas number density in [m-

3]. Regardless of the type of gas the collision approximation 
predicts a ratio between the shift and the width of 0.143 which 
is indeed close to what we find in our experiments with He 
gas at 300 K.  

A consequence of the dominating repulsive interaction in 
He is that the lines are shifted towards shorter wavelengths. 
With increasing gas density the atomic He lines become more 
asymmetric in shape. This deviation from the initially 
symmetric blue-shifted lines can be accounted by the so-called 
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“static approximation” [22]. We point out that when using 
positive tip polarity we did not observe any “red satellites” in 
the atomic line spectrum in gaseous Helium at 300 K.  

In contrast to the gas phase we observe that in liquid helium 
the shift/width ratio is no longer constant and shows a distinct 
pressure dependence. For high pressures we find a value of 
about 0.8 for this ratio. For low pressures the shift/width ratio 
is lower but it never assumes a value of 0.143. The proximity 
of the shift/width ratio to the theoretical prediction may be 
taken as a measure for the applicability of the classical 
pressure broadening theory using the collision approach but 
we emphasise that deviations simply may indicate that other 
physical processes become relevant.  

Previous theoretical and experimental studies on electron 
beam bombarded liquid helium have provided convincing 
evidence for the existence of microscopic cavities or 
“bubbles” having a diameter of about 1 nm which enclose 
excited atoms and excimer molecules within liquid helium 
[14, 23]. The origin of bubbles around an excited state of an 
atom or a molecule results from the balance between the 
repulsive interaction between the Rydberg electron and the 
ground state He atoms arising from the Pauli principle on the 
one hand and the pressure and the surface tension of liquid on 
the other hand. The shift of the spectral lines and their width 
depend primarily on the size of the bubble which in turn 
results from the balance between the repulsive force from the 
Rydberg electron and force on the bubble surface exerted by 
the hydrostatic pressure. Therefore the bubble size is pressure 
dependent.  

It is a reasonable assumption that light emission from 
molecules enclosed in bubbles occurs in corona discharge-
excited LHe as well and the similarity between our molecular 
spectra recorded at 0.6 MPa and 4.2 K with negative tip 
polarity and those reported by Dennis and coworkers [1] 
supports this interpretation. The pressure dependence seen in 
our spectra of LHe are therefore likely due to the perturbation 
exerted by the presence of bubbles. When the bubble size 
decreases with pressure the perturbation of the dominating 
upper level of the light emitting atom or molecule increases 
because the average distance to surrounding ground atoms 
becomes smaller. The line broadening theory which is valid 
for gaseous Helium cannot be applied anymore because it 
assumes the medium around the perturbed species to be 
homogeneous. This is no longer the case for a bubble. In 
Figure 12 we have also compared the measured widths of the 
706 nm atomic line with the widths predicted by the “bubble” 
theory developed by Hickman et al. [14]. While there is 
agreement for small pressures deviations become significant at 
pressures larger than 1.0 MPa.  

We note further that the bubble model of the spectral line 
shape predicts larger shifts than widths. The shift/width ratio 
calculated in [14] is close to 3 which is significantly larger 
than that predicted for “collision broadening” in gaseous 
discharges which can be taken as a major attribute of the 
spectrum of an excited atom inside a cavity in LHe. 
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Figure 12. Full-Width-at-Half-Maximum (FWHM) of the 706 nm atomic line 
vs. pressure. LHe at 4.2 K.  
 

4.1 RED SATELLITES IN NEGATIVE CORONA  
A very small contribution of “red satellites” to molecular 

spectral features can be found in negative corona discharges 
as well. We have simulated the population distribution of the 
upper rotational levels for P = 0.1 MPa, where the rotational 
structure of the band is still clearly resolved (Figure 13). A 
Boltzmann distribution corresponds to a linear function in this 
semi-logarithmic plot. The plot shows that a Boltzmann 
distribution is only seen for large N. The “rotational 
temperature” derived from this distribution is 780 K which is 
significantly higher than the temperature of 4.2 K of the 
liquid. The populations derived from the P-branch intensities 
are larger than those from R-branch intensities. This fact can 
formally be interpreted by the existence of an additional 
source of radiation that contributes a side-band at larger 
wavelengths to the spectrum. A simulation of the d-b 
spectrum in Figure 14 shows the magnitude of the 
contribution of such a “red satellite” band as the difference 
between measured and calculated spectra. 
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Figure 14. Rotational spectra of the d3Σ+

u - b3Πg transition: experiment, 
simulation and “red satellite” in LHe. 
 

4.2 RED SATELLITES IN POSITIVE CORONA  
As stated before the intensities of the “red satellite” bands are 

much stronger in spectra recorded with positive corona 
discharges. A similar plot of the population distribution of the 
upper rotational levels to the one in Figure 14 is shown in Figure 
15.  

It is difficult to give a definite explanation for the nature of 
the red satellites. We have explicitly checked whether the “red 
satellite” stems from higher vibrational levels such as the v' = 1 -
> v’' = 1 transition whose band head is located close to 642 nm 
and we found that this possibility has to be excluded. The strong 
tip polarity dependence suggests that charge carriers are 
involved. To make matters worse an explanation of the 
phenomenon of positive corona discharges has to the best of our 
knowledge not been reported yet, although its existence is well 
known. Clearly, a positive tip polarity raises the question as to 
how the electrons are released from the tip. It might be possible 
that free electrons are generated by entirely different processes, 
for instance, collisions with high energetic cosmic particles and 
that the role of the tip is only to generate high electric field 
strengths which eventually causes avalanches. The resulting 
excitation densities can therefore differ depending on the 
polarity. The asymmetric profile of the red satellite bands can be 
due to vibrational states of a van der Waals complex formed by 
the radiating atom or molecule and a helium gas atom in the 
ground state.  We also recall the red-satellite features are only 
seen at 4.2 K, but not for gaseous He at 300 K. 

Due to the many unknowns we cannot offer a conclusive 
explanation for the precise origin of the “red satellites”. 

5  CONCLUSION 
We have shown that corona discharges are well-suited to 

excite visible luminescence of liquid helium at 4.2 K and to 
investigate its pressure dependence. The luminescence 
spectrum shows lines from transitions between electronically 
excited states of helium atoms and excimer molecules. For 
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Figure 15. Relative population of the rotational levels of the upper term d3Σ+
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- b3Πg (idem to Figure 11) for positive corona.  

 
negative tip polarity and increasing hydrostatic pressure the 
lines become broader and shift towards shorter wavelengths. 

For positive tip polarities a similar line spectrum can be 
observed, however, all lines are accompanied by red-shifted 
features. Also, the lines show much larger broadening than for 
negative tip polarities at similar pressure. Comparison 
between the P and R lines within molecular luminescence 
bands shows that the red-shifted features cannot originate 
from He excimer molecules and that they cannot be caused by 
a broadening process because P and R lines would then be 
equally affected. Therefore, the additional component in the 
spectrum is tentatively assigned to the contribution of an 
unknown “red-satellite”. Since the underlying physical 
mechanisms of positive corona discharges are unknown it is 
not possible to further clarify the precise nature of the satellite 
spectrum on the basis of the available data. 

Furthermore, we have investigated the dependence of the 
magnitudes of shift and broadening on the pressure for 
negative corona discharges. Classic line broadening theory 
predicts that these quantities are connected with each other 
such that the ratio between shift and width is a constant of 
0.143. Our analysis of the spectral features of liquid He at 4.2 
K reveals a higher ratio indicating that classic pressure 
broadening theory cannot be applied. We presume that the 
emitting atoms and molecules are localized in bubbles similar 
to the observations by Dennis et al., Soley and Fitzsimmons 
[1, 2]. The similarity between our spectral features and their 
reported spectral data supports our interpretation.   
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