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Essays on Bayesian Estimation and Model Comparison Guangjie LI

Abstract

This thesis consists of three chapters on economic and econometric appli-
cations of Bayesian parameter estimation and model comparison. The first
two chapters study the incidental parameter problem mainly under a linear
autoregressive (AR) panel data model with fixed effect. The first chapter
investigates the problem from a model comparison perspective. The major
finding in the first chapter is that consistency in parameter estimation and
model selection are interrelated. The reparameterization of the fixed effect
parameter proposed by Lancaster (2002) may not provide a valid solution to
the incidental parameter problem if the wrong set of exogenous regressors are
included. To estimate the model consistently and to measure its goodness
of fit, the Bayes factor is found to be more preferable for model comparson
than the Bayesian information criterion based on the biased maximum likeli-
hood estimates. When the model uncertainty is substantial, Bayesian model
averaging is recommended. The method is applied to study the relationship
between financial development and economic growth. The second chapter
proposes a correction function approach to solve the incidental parameter
problem. It is discovered that the correction function exists for the linear
AR panel model of order p when the model is stationary with strictly exoge-
nous regressors. MCMC algorithms are developed for parameter estimation
and to calculate the Bayes factor for model comparison. The last chapter
studies how stock return’s predictability and model uncertainty affect a ra-
tional buy-and-hold investor’s decision to allocate her wealth for different
lengths of investment horizons in the UK market. The FTSE All-Share In-
dex is treated as the risky asset, and the UK Treasury bill as the riskless
asset in forming the investor’s portfolio. Bayesian methods are employed to
identify the most powerful predictors by accounting for model uncertainty.
It is found that though stock return predictability is weak, it can still affect
the investor’s optimal portfolio decisions over different investment horizons.

Keywords: model comparison, model selection, consistency in estimation,
incidental parameter problem, Bayesian model averaging (BMA), Markov
chain Monte Carlo (MCMC), dynamic panel data model with fixed effect,
finance and growth, seemingly unrelated regression (SUR) model, stock re-
turn predictability, portfolio choice



Preface

Compared to frequentist econometric methods, a marked difference of Bayesian
econometrics is that it can provide a framework to unify parameter estima-
tion and model comparison. Once an appropriate prior is set up, a Bayesian
researcher can estimate the parameters in a model and compare different
model specifications in a straightforward way. In comparison, frequentist
econometricians tend to treat estimation and model comparison as two sep-
arate topics. Such difference can lead to quite different answers to some
questions for these two approaches. Another feature of Bayesian economet-
rics is its ability to take account of model uncertainty. This issue is relevant
especially when no single model specification is significantly better compared
with others. Such situation may arise, e.g. when we have small data sample
in our empirical study and there is too much noise in our data. Bayesian
econometrics can explicitly handle this problem by using a technique called
Bayesian Model Averaging (BMA). The thesis tries to demonstrate these
Bayesian ideas by providing three chapters of econometric and economic
applications.

The first and the second chapter study the incidental parameter prob-
lem. The maximum likelihood estimator (MLE) for the common param-
eters is not consistent while the generalized method of moments (GMM)
is not very informative about model specification. An important finding
in the first chapter is that consistent parameter estimation and consistent
model selection are interrelated. With consistency in parameter estimation,
it is likely that we can have consistency in model selection. On the other
hand, model selection criterion based on inconsistent parameter estimates
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tends to be misleading and performs poorly in application. Therefore we
should consider these two issues simultaneously for our applications. The
major contribution of the second chapter is to propose a new method from a
Bayesian perspective to tackle the incidental parameter problem. A solution
for linear autoregressive (AR) panel data model of order p with fixed effect
is discovered.

The theoretical results from the first two chapters are based on large
sample asymptotic theories. However, in real life applications, large data
sample is rarely present and we still have to extract robust and useful pat-
terns from our data. Forming our inference based on a single model may
lead us to finding some accidental data patterns. The last chapter gives an
example on this issue, in which the robust predictors for excess stock return
need to be identified. By accounting for model uncertainty explicitly in our
analysis, we will be able to reduce such risk. Bayesian methods form an
elegant framework to allow us to consider model uncertainty by averaging
estimation results from different possible models.

With the advancement of modern computing technology, Bayesian meth-
ods are becoming more influential in the field of econometrics than ever be-
fore. Programming is hence more and more important for Bayesian econo-
metrics. Though it was initially difficult to learn such technique, I would
consider my own learning experience worthwhile and rewarding. The pro-
grams used in the thesis are written in MatLab and Maple. In fact some
useful ideas are discovered during the time of coding in these two languages.

The thesis is finished under the supervision of Gary Koop, Roberto Leon
Gonzalez and Gianni De Fraja over the years of my PhD study at the Uni-
versity of Leicester. I wish to express my gratitude to Gary Koop for opening
up the door of Bayesian econometrics so that it is possible for me to explore
this wonderful world, to Roberto Leon Gonzalez for showing me research di-
rections and giving me patient guidance and to Gianni De Fraja who kindly
took over the role of supervisor in my final year. I would also like to extend
my thanks to Sebastiano Manzan and Rodney Strachan for their advice on
my third chapter, and to Ross Levine for sharing his dataset, which I use in
my first chapter. Financial help from the Economics Department is grate-
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fully acknowledged. The first chapter has benefited from the discussion with
participants at the 62nd European Meeting of the Econometric Society and
the 2nd Japanese-European Bayesian Econometrics and Statistics Meeting,
while the third chapter has been improved based on the comments and sug-
gestions received at the 2006 Far East Meeting of the Econometric Society
and the 2nd PhD Conference at the University of Leicester. The errors that
inevitably remain are solely my responsibility.

Leicester, England Guangjie LI (Jack)
April 2008 GL41@le.ac.uk
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Chapter 1

Consistent Estimation,

Model Selection and

Averaging of Dynamic Panel

Data Models with Fixed

Effect

1.1 Introduction

For a panel data linear regression model with lags of the dependent vari-
able as regressors and agent specific fixed effects, the maximum likelihood
estimate (MLE) of the common parameter is inconsistent when the num-
ber of time periods is small and fixed regardless of the cross section sample
size. Nerlove (1968) showed in Monte Carlo simulations that the MLE is
severely downward biased. Nickell (1981) derived the analytical form of the
bias for the first order autoregression (AR) model. This problem, known
as the “incidental parameter problem”, due to the fixed effect parameter
(incidental parameter), whose dimension will increase with the cross section
sample size has been reviewed by Lancaster (2000). The current econometric
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CHAPTER 1. ESTIMATION AND MODEL SELECTION 2

literature focuses mainly on deriving consistent estimator for the common
parameter. See, for example, Arellano and Bond (1991), Blundell and Bond
(1998), Gourieroux et al. (2006) and Hahn and Newey (2004). Little atten-
tion is given to model specification comparison in the presence of incidental
parameter.

Cox and Reid (1987) found that when the nuisance parameter1 is in-
formation orthogonal2 to the common parameter, it is more preferable to
construct a statistical test for the common parameter, especially for expo-
nential family likelihood models, based on the conditional likelihood given
the maximum likelihood estimaor for the nuisance parameter than on the
profile likelihood. Following the line of information orthogonalization, Lan-
caster (2002) proposed a Bayesian procedure to obtain consistent inference
on the common parameter. Compared to the classical methods, it is rela-
tively straightforward to unify parameter estimation and model comparison
under a Bayesian framework. In this chapter, we argue that parameter esti-
mation and model comparison should not be treated as two different issues,
which is the predominant practice in the linear dynamic panel model liter-
ature. Our arguments are as follows. First, from an application point of
view, researchers are often confronted with a large set of possible regressors
in the panel model. In such situations, it is hard for indirect inference and
moment methods to examine what model specification performs better than
the others and whether some regressors can robustly explain the dependent
variable. Second, as shown in this chapter, likelihood based correction ap-
proach (including Bayesian) will not always lead to consistent estimation
of the common parameter when the wrong set of exogenous regressors are
included. We show that consistent estimation is the result of certain regu-
larity conditions. Since model uncertainty can increase our estimation risk,
we should consider comparing different model specifications. We find that
consistency in estimation and consistency in model selection are interrelated.
If we base our model selection decision on the Bayes factor, which is derived

1Incidental parameter refers to the nuisance parameter which is of less interest to the
researcher and whose dimension will increase with the sample size.

2See the appendix for the details.
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from Lancaster’s reparameterization of the fixed effect, we tend to pick up
the true model when the cross section sample size increases. However, the
model selection performance of the Bayesian information criterion (BIC)
based on the biased MLE is very poor both for small and big sample sizes.
The BIC will asymptotically choose the wrong model for some situations3.
Thirdly, for small sample size, when model uncertainty is substantial, we
argue for the use of Bayesian model averaging (BMA) to reduce estimation
risk4. Apart from the theoretical results, in the end of the chapter we pro-
vide an example of finance and economic growth to show that our method is
flexible enough to accommodate real world problems and handle issues like
unbalanced panel.

The plan of the chapter is as follows. Section 1.2 summarizes our model
and the posterior results. Section 1.3 describes our motivation to compare
different model specifications and shows when our posterior estimators will
be consistent. Section 1.4 presents the conditions under which the Bayes
factor and the BIC can lead to consistency in model selection followed by a
short description of the BMA method. In section 1.6, we carry out simula-
tion studies to check our Propositions. Section 1.7 then gives an example of
application in finance and growth before Section 1.8 concludes.

1.2 The Model and the Posterior Results

Consider the model

yi,t = fi + yi,t−1ρ+ x′i,tβ + ui,t,

i = 1 . . . N, t = 1 . . . T.
(1.1)

Here we are investigating the case of first order autoregression linear panel,
where ρ is a scalar and xi,t is a k×1 vector. Denote ui as [ui,1, ui,2, . . . , ui,T ]′

and Xi = (xi,1, xi,2, . . . , xi,T )′. We assume ui|fi, Xi ∼ N(0, σ2IT ) where IT
3For example, consider two models with the same exogenous regressors: one has the

lag term of the dependent variable as a regressor and one does not. The BIC will asymp-
totically choose the model with the lag when the true model should be the one without
the lag.

4Here it refers to the risk of using the estimates from a misspecified model.
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is an identity matrix with dimension T . Our assumption states that the
error term is homoscedastic and our regressors, Xi, are strictly exogenous.
It is well known in dynamic panel model literature, see Nickell (1981) and
Lancaster (2000), that for a fixed T (the number of observations for each
economic agent), the maximum likelihood estimators of ρ, β and σ2 will not
be consistent even if N (the number of economic agents) tends to infinity.
This is due to the incidental parameter f ′is, whose number will increase
with the cross section sample size, N . Let us denote the common parameter
θ = (ρ, β, σ2)′, whose dimension will not change with the sample size. To
obtain consistent estimators for θ, Lancaster (2002) suggested an informa-
tion orthogonal reparameterization of the fixed effect fi = f(θ, gi) such that
the new fixed effect (gi) is information orthogonal to the rest of the param-
eters (θ)5. However, this idea cannot lead to any valid reparameterization.
By drawing analogy from two simpler cases, Lancaster instead found the
following way to reparameterize the fixed effect:

fi = gi exp [−b (ρ)]− 1
T
ι′Xiβ, (1.2)

where b (ρ) is defined as

b(ρ) =
1
T

T−1∑
t=1

T − t
t

ρt, (1.3)

Let us transform our model accordingly as

yi = gi exp [−b (ρ)] ι+ yi ρ+HXiβ + ui, (1.4)

where yi = [yi,1, yi,2, . . . , yi,T ]′, yi = [yi,0, yi,1, . . . , yi,T−1]′ and H is the de-
mean matrix of dimension T × T equal to IT − ιι′

T with ι as a vector of
ones. Note that yi,0 is viewed as known and our posterior results will be
conditional on it.

5See the appendix for the details.
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The structure of the prior distribution for θ and g = (g1, g2, ..., gN )′ is

p (g, θ) = p(g, ρ, σ2, β) = p(g1)...p(gN )p(ρ)p(σ2)p(β|σ2)

∝ 1
σ2
I(−1 < ρ < 1)p(β|σ2),

(1.5)

which means we adopt independent improper priors for parameters other
than β and ρ. The prior of ρ follows a uniform distribution between −1 and
1, which is the stationary region.

In regard to the conditional prior of β given σ2, we want to have a
proper distribution so that Bayes factors can lead to the selection of the
true model as the cross section sample size increases. We can see this point
more clearly later in Section 1.4. The prior we use takes the following g-prior
form, proposed by Zellner (1986):

β|σ2 ∼ N

(
0, σ2(η

N∑
i=1

X̃ ′iX̃i)−1

)
, (1.6)

where X̃i = HXi. The strength of the prior depends on the value of η. The
smaller the value is, the less informative is our prior. We will give more
details about the choice of η later. With the parameter priors given in (1.5)
and (1.6), we can derive the posterior distributions of the parameters shown
in Proposition 1.1.

Proposition 1.1. The posterior distributions for the parameters in our
model will take the following form:

gi|Y, yi,0, σ2, ρ ∼ N

(
eb(ρ) ι

′(yi − yi ρ)
T

,
σ2

T
exp[2b(ρ)]

)
, (1.7)

β|σ2, ρ, Y, Y0 ∼ N

 1
η + 1

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i, σ
2

(
(η + 1)

N∑
i=1

X̃ ′iX̃i

)−1
 ,

(1.8)

σ2|ρ, Y, Y0 ∼ IW (N(T − 1), A), (1.9)
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ρ|Y, Y0 ∝ I(−1 < ρ < 1) exp[Nb (ρ)] |A|−
N(T−1)

2 , (1.10)

where w̃i = H(yi− yi ρ), A =
N∑
i=1
w̃i
′w̃i− 1

η+1

N∑
i=1
w̃′iX̃i

(
N∑
i=1
X̃ ′iX̃i

)−1 N∑
i=1
X̃ ′iw̃i,

and Y0 is the collection of the initial observations from each economic agent
while Y is the vector of observations excluding the initial observations.

We can see that the posterior distributions of the parameters have a
hierarchical structure. The conditional posterior distributions of all the pa-
rameters other than ρ are commonly known standard distributions, while at
the bottom of the hierarchy the posterior distribution of ρ is not standard.
To make draws of all the parameters from the posterior distributions, we first
need to draw from this nonstandard posterior distribution of ρ. One way
to do it is as follows. We first split the interval (−1, 1) into small partitions
−1, ρ1, ρ2, . . . , 1 and then use some deterministic numerical method (such as
Gaussian quadrature) to calculate the value of the cumulative distribution
function at each partition point, i.e. F (−1) , F (ρ1) , F (ρ2) , . . . , F (1). Next
we draw a random variable u from uniform distribution U [0, 1] and deliver
F−1 (u) as a draw of ρ from the nonstandard distribution. F−1 (u) is ob-
tained from piecewise cubic Hermite interpolation, see for example Süli and
Mayers (2003).

1.3 Motivation to Compare Different Model Spec-

ifications

Lancaster (2002) showed that without model misspecification if we adopt
the fixed effect reparameterization and the prior p(g, θ) ∝ 1

σ2 , the mode of
the marginal posterior for θ will be consistent. The difference adopted here
is the g-prior we use for p

(
β|σ2

)
in (1.6). As long as we specify η as a

function of the cross section sample size N such that lim
N→∞

η (N) = 0, our
posterior results will be identical to Lancaster’s for big cross section sample
size. However, we cannot expect our model will always be correctly specified,
i.e. the true regressors used to generate the data are always included in the
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regression. Here in proposition 1.2 we show the conditions under which we
can obtain consistent posterior estimates for σ2 and ρ even if we include the
wrong set of exogenous regressors.

Proposition 1.2. The posterior estimates from (1.9) to (1.10) are consis-
tent if we have either

−(T − 1)h2(β, ρ)
h3(β)

= h(ρ) (1.11)

or
h2(β, ρ) = h3(β) = 0, (1.12)

where

h (ρ) =
T−1∑
t=1

T − t
T

ρt−1 =
d b(ρ)
d ρ

. (1.13)

h2(β, ρ) = plim
N→∞

1
N

 N∑
i=1

y′i HXiβ −
1

η + 1

N∑
i=1

y′i HXi

(
N∑
i=1

Xi
′HXi

)−1 N∑
i=1

Xi
′HXiβ

 ,
h3(β) = plim

N→∞

1
N

 N∑
i=1

β′X ′iHXiβ −
1

η + 1

N∑
i=1

β′X ′iHXi

(
N∑
i=1

Xi
′HXi

)−1 N∑
i=1

Xi
′HXiβ

 .
(1.14)

Here X are the regressors in the true model and X denote the regressors we
actually include in our (candidate) model, while ρ denotes the true value of
ρ.

Note that 0 < h(ρ) < T−1
2 and it is monotonically increasing for ρ ∈

(−1, 1). For h2(β, ρ) = h3(β) = 0 to be satisfied, it is enough that the

true regressors X are a subset of X. For
−(T−1)h2(β,ρ)

h3(β) = h(ρ) to hold, one
example could be that no serial correlation and collinearity exist among the
true regressors and the included regressors have zero correlation with the
true regressors.6 Proposition 1.2 tells us that if neither (1.11) nor (1.12) is
satisfied, our posterior estimates of σ2 and ρ will not be consistent even if we

6The proof is trivial and available upon request from the author, though the author
admits that such case sounds impractical in reality.
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have a large cross section sample size when the number of observations for
each economic agent is small in the panel. This is one of the major reasons
why we need to compare different model specifications. Due to Bartlett’s
paradox7, if we want to compare different models, we need to have a proper
prior8 for parameters not common to all the models. That is why we adopt
the prior for β in (1.6).

In empirical applications, such as that of the growth theory, we will often
have many possible regressors suggested by different theories to be included
in the regression in (1.1). In a case like this, the number of potential exoge-
nous regressors will be large. In addition to the concern over inconsistent
estimation, we may want to know which combination of these regressors can
best explain our data. The predominant GMM method in the literature to
estimate the fixed effect model provides little information in this respect.
Classical diagnostic tool such as R-square is not well defined. In a Bayesian
framework such as ours, we can evaluate how good the model fits the data by
looking at the posterior model probability. In our context, different models
are defined by different combinations of the regressors and by whether or
not we have a lag term of the dependent variable in the regression. So the
total number of models is 2K+1, where K stands for the number of all the
potential exogenous regressors. The posterior model probability of model i
is calculated as

p (Mi|Y, Y0) =
p (Mi) p (Y |Y0,Mi)

p (Y |Y0)

=
p (Mi) p (Y |Y0,Mi)∑2K+1

j=1 p (Mj) p (Y |Y0,Mj)
.

(1.15)

where p (Mi) is the prior model probability. Here we just assume all the
models are equally possible a priori such that the posterior model probabil-
ity only depends on the marginal likelihood, p (Y |Y0,Mi) , j = 1, 2, . . . , 2K+1.

7See for example Poirier (1995). To summarize it briefly, the problem here is that
under an improper prior (the integral of which is not finite), the most restricted model
will have the highest posterior model probability no matter whether it is true or not.

8Our prior is informative and proper in the sense that we have introduced the parameter
η and η 6= 0.
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We can see in (1.15) that to evaluate the posterior probability of a single
model we have to calculate the marginal likelihood of all the models. How-
ever, from the derivation of Proposition 1.1, we can only know the product
of the marginal likelihood and the posterior of ρ:

p(ρ|Y, Y0)p(Y |Y0) =
1
2
I(−1 < ρ < 1)

(
η

η + 1

) k
2

|A|−
N(T−1)

2

Γ
[
N(T − 1)

2

]
T−

N
2 (π)−

N(T−1)
2 exp (Nb(ρ))

(1.16)

To calculate the marginal likelihood, we can use the same numerical
techniques as we calculate the posterior cumulative distribution function of
ρ. By integrating ρ out of the product, we can obtain p(Y |Y0,Mi). If the
total number of models is not large, say less than 220, it is possible to use
any mainstream PC of today to calculate the marginal likelihood of all the
models and then use (1.15) to find the posterior model probability for each
of them. For large set of models beyond the computation power of today,
we can use the method of Markov Chain Monte Carlo Model Composition
(MC3) developed by Madigan and York (1995).

1.4 Consistency in Model Selection

In this section, we show that in our setting, how the posterior model prob-
ability can lead us to locate the true model when the cross section sample
size tends to infinity and certain regularity conditions are met. That is, if
Y is indeed generated by some combination of the potential regressors in
the linear model, the posterior model probability of this combination, which
is obtained by integrating out ρ in (1.16), will tend to 1 when N tends to
infinity. In the end of this section, we will also analyze whether the Bayesian
information criterion (BIC) based on the biased MLE can lead to consistency
in model selection.

In the simpler case in which the true value of ρ is known to be zero (i.e.
static panel data models), the consistency in model selection easily follows
from the analysis by Fernandez et al. (2001a). In our context, all we need to
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ensure consistency is to set η as a function of N such that lim
N→∞

η(N) = 0.

One possible choice could be η = O( 1
N ). As for the BIC, it is consistent in

model selection for the static panel.
Let us now consider the case when our candidate model contains a lag

term of the dependent variable. We can either compare it against a model
without the lag term and with different regressors or a model with the lag
term and with different regressors. The Bayes factor, which is defined as
the ratio between the marginal likelihoods of the two models, looks like the
following respectively.

p(Y |Y0,M1)
p(Y |Y0,M0)

=
(

η

η + 1

) k1−k0
2

1
2

1∫
−1

exp [Nb(ρ)]

[
N∑
i=1
w′iHwi − 1

η+1

N∑
i=1
w′iHXi1

(
N∑
i=1
X ′i1HXi1

)−1 N∑
i=1
X ′i1Hwi

]−N(T−1)
2

dρ

[
N∑
i=1
y′iHyi −

1
η+1

N∑
i=1
y′iHXi0

(
N∑
i=1
X ′i0HXi0

)−1 N∑
i=1
X ′i0Hyi

]−N(T−1)
2

(1.17)

p(Y |Y0,M1)
p(Y |Y0,M0)

=
(

η

η + 1

) k1−k0
2

1∫
−1

exp [Nb(ρ)]

[
N∑
i=1
w′iHwi − 1

η+1

N∑
i=1
w′iHXi1

(
N∑
i=1
X ′i1HXi1

)−1 N∑
i=1
X ′i1Hwi

]−N(T−1)
2

dρ

1∫
−1

exp [Nb(ρ)]

[
N∑
i=1
w′iHwi −

1
η+1

N∑
i=1
w′iHXi0

(
N∑
i=1
X ′i0HXi0

)−1 N∑
i=1
X ′i0Hwi

]−N(T−1)
2

dρ

(1.18)

where wi = yi − yi ρ, k1 and k0 are the dimensions of Xi1 and Xi0, which
denote the regressors included under M1 and M0 respectively. To simplify
(1.17) and (1.18), we need to simplify the integrals that appear in the nu-
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merator and the denominator. Let us first define the following quantities:

a =
N∑
i=1

y′i Hyi −
1

η + 1

N∑
i=1

(
y′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
,

b =
N∑
i=1

y′i Hyi −
1

η + 1

N∑
i=1

(
y′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
,

c =
N∑
i=1

y′iHyi −
1

η + 1

N∑
i=1

(
y′iHXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
.

(1.19)

Here we assume yi and Xi have finite second moments so that the following
probability limits exist.

plim
N→∞

1
N
a = a

plim
N→∞

1
N
b = a(ρ+NB)

plim
N→∞

1
N
c = ρ2a+ 2aρNB + h3(β) + (T − 1)σ2

NB = plim
N→∞


N∑
i=1
y′i HXiβ − 1

η+1

N∑
i=1
y′i HXi

(
N∑
i=1
Xi
′HXi

)−1 N∑
i=1
X ′iHXiβ+

N∑
i=1
y′i Hui − 1

η+1

N∑
i=1
y′i HXi

(
N∑
i=1
Xi
′HXi

)−1 N∑
i=1
Xi
′Hui


N∑
i=1
y′i Hyi −

1
η+1

N∑
i=1

(y′i HXi)
(

N∑
i=1
X ′iHXi

)−1 N∑
i=1

(X ′iHyi )

=
h2(β, ρ)− σ2h(ρ)

a
.

(1.20)

If the true model is either M1 or M0, we can show the conditions in
Proposition 1.3 and 1.4 under which the Bayes factors in (1.17) and (1.18)
can lead to the selection of the right model asymptotically.
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Proposition 1.3. When M1 is the true model, i.e. ρ 6= 0 and X ′i1s are
the true regressors to generate Y (which means Xi0 is the same as Xi in
(1.14)), as the cross section sample size increases, p(Y |Y0,M1)

p(Y |Y0,M0) in (1.17) will
tend to infinity if the following holds,

z(ρ) = b(ρ)+

T − 1
2

ln

[
a|M0

ρ2 − 2ρσ2h(ρ) + 2ρh2|M0
(β, ρ) + h3|M0

(β) + (T − 1)σ2

(T − 1)σ2

]
> 0.

(1.21)

When M0 is the true model, i.e. X ′i0s are the true regressors to generate Y
and ρ = 0, as the cross section sample size increases, p(Y |Y0,M1)

p(Y |Y0,M0) in (1.17)
will tend to 0 if either of the following is satisfied:

1. Under M1, plim
N→∞

f(ρ) has a unique maximum ρ∗ in (−1,1)where f(ρ)

is defined as

f(ρ) = b(ρ)− T − 1
2

ln
(
ρ2 − 2

b

a
ρ+

c

a

)
(1.22)

and

b(ρ∗) +
T − 1

2
ln

(T − 1)σ2

d(ρ∗|M1)
< 0 (1.23)

where

d(ρ|Mi) =a|Mi
ρ2 − 2a|Mi

(ρ+NB|Mi
)ρ+

a|Mi
ρ2 + 2aMi

ρNB|Mi
+ (T − 1)σ2 + h3|Mi

(β).
(1.24)

2. Though M1 is misspecified, it can still lead to the consistent estimation
of ρ, i.e. either (1.11) or (1.12) holds.

Proposition 1.4. When M1 is the true model, as the cross section sample
size increases, p(Y |Y0,M1)

p(Y |Y0,M0) in (1.18) will tend to infinity if any of the following
holds:
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1. Under M0, plim
N→∞

f(ρ) has a unique maximum ρ∗ in (−1,1) and

b(ρ)− b(ρ∗) +
T − 1

2
ln
d(ρ∗|M0)
(T − 1)σ2

> 0 (1.25)

2. Either (1.11) or (1.12) holds.

In addition to the Bayes factor calculated based on our parameteriza-
tion of the fixed effect, we may be interested in knowing whether or not
the Bayesian information criterion based on the biased MLE will lead to
consistency in model selection. The results are shown in Proposition 1.5.

Proposition 1.5. For the comparison of the two models in (1.17), when
M1 is the true model, BIC is consistent in model selection if the following
condition is met,

h3|M0
(β) + a|M0

ρ2 + 2ρh2|M0
(β, ρ)− 2ρσ2h(ρ) +

σ4h2(ρ)
a|M1

> 0 (1.26)

However, when ρ+NB|M1
= 0 and Xi1 = Xi0, BIC is inconsistent. When

M0 is the true model, BIC is consistent if the following is satisfied[
h2|M1

(β, 0)− σ2 T−1
T

]2
a|M1

− h3|M1
(β) < 0 (1.27)

However, if we have h3|M1
(β) = 09, BIC is inconsistent.

For the comparison of the two models in (1.18), when M1 is the true
model, BIC is consistent in model selection if the following holds

a|M1
a|M0

h3|M0
(β) + a|M0

σ4h2(ρ)− a|M1

[
h2|M0

(β, ρ)− σ2h(ρ)
]2
> 0 (1.28)

Moreover, if Xi0 nests the true set of regressors, i.e. h2|M0
(β, ρ) = h3|M0

(β) =
0 and a|M1

= a|M0
, BIC will be consistent.

9For example, Xi1 nests the true set of regressors or β = 0.
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1.5 Motivations of Bayesian Model Averaging

Our method allows us to compare the goodness of fit of different model
specifications. However, as Raftery and Zheng (2003) and Yuan and Yang
(2005) point out, if there is substantial model uncertainty, model averaging
is more preferable than model selection. In regard to our empirical appli-
cation of finance and growth, the data set we have is relatively small (such
as the one in Section 1.7, with cross section sample size equal to 40), which
implies model uncertainty for estimation. When we want to study the rela-
tionship between economic growth and other variables from the panel data,
it should be more appropriate to consider different model specifications than
just drawing our conclusions based on a single model so that we can reduce
the estimation risk in the presence of substantial model uncertainty. This
point will be made more clear in the subsequent sections. At the moment, we
will just briefly talk about the Bayesian model averaging (BMA) approach.

From different model specifications, we can have different estimates of
θ.10 Essentially, BMA consists in mixing the posterior distributions of θ from
all different models according to their posterior model probabilities in (1.15).
Inference about θ is drawn from its posterior distribution unconditional on
the model space, which takes the following form.

p(θ|Y, Y0) =
2K+1∑
i

p(θ|Y, Y0,Mi)p(Mi|Y, Y0) (1.29)

We then can use the posterior mean as the BMA point estimate for θ. To
measure the importance of certain element in θ (say, θj), we can use the
posterior inclusion probability defined as the following,

2K+1∑
i

I(θj ∈Mi)p(Mi|Y, Y0). (1.30)

We can see that it is a sum of the posterior model probabilities of the models
which leave θj unrestricted.

10Different models are defined by resticting different elements of θ, such as ρ or β to 0.
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1.6 Simulation Studies

In this section we will show the evidence for model selection consistency
of our method based on simulated data sets. Here we try to make our
simulation close to our application of the finance and growth example in the
next section. We set t = 4 (the number of observations for each economic
agent) and the number of possible regressors to 8. We draw independently
the fixed effect f from U[-1,1]. For each iteration in the simulation, we do
the following:

1. We first generate the potential regressors (X ′is) from the uniform dis-
tribution U [−4, 4]. We then make these regressors correlated with each
other and we also introduce serial correlation in our regressors.

2. We draw the model by selecting each regressor with the probability
of 50%, (i.e. all possible models have the same probability of being
selected). The element(s) of β are drawn from U [−2, 2]. If our model
includes the lag term of the dependent variable, we set ρ = 0.9.11

3. We calculate the posterior model probabilities of all the models and
compare the one with the highest model probability to the true model.

In Proposition 1.2 we show that we cannot have a consistent estimate of
ρ when neither (1.11) nor (1.12) holds. We want to check whether we can
still select the right model asymptotically using Lancaster’s transformation
of the fixed effect. That is why in step 1 we want to add collinearity and
serial correlation to our regressors. To achieve this, we first make each two
neighboring period observations correlated with each other as follows,

xt,s = st−1xt−1,s + s̄txt,ns, (1.31)

where xt,ns has no serial correlation and is generated from the i.i.d. uniform
distribution U[-4,4]. We set st−1 =

s′t−1√
s′2t−1+s′2t

and s̄t = s′t√
s′2t−1+s′2t

. For s′t−1

11We have also set the lag coefficient to other value, such as 0.5. The results, which are
available from the author upon request, do not change much.
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and s′t, we generate them from i.i.d.U [−2.5, 2.5]. In doing so, the correlation
matrix for the serially correlated [x1,s, x2,s, . . . , xT,s]′ is

S =



1 s1 · · ·
T−1∏
i=1

si

s1 1 · · ·
T−1∏
i=2

si

s2s1 s2 · · ·
T−1∏
i=3

si

· · · · · · · · · · · ·
T−1∏
i=1

si
T−1∏
i=2

si · · · 1


(1.32)

We can see that {xt} generated in such a way is not covariance stationary.
Moreover, for small T 12, the distribution of x′s will change with t. However,
if T is sufficiently large13, the final few points of x′s at the end of the
series will approximately follow, due to the central limit theorem, a normal
distribution with the same mean (0) and the same variance (around 5.3)
as the uniform distribution. We just use the final 4 observations from the
series for our study.

Next we introduce correlation among the regressors by using a linear
combination of those we just made serially correlated.

Xj,c =
K∑
i=1

qj,iXi,nc j = 1, 2, . . . ,K (1.33)

where Xi,nc denotes the regressor without collinearity and we set qj,i =
q′j,is
KP
i=1

q′2j,i

and q′j,i ∼ i.i.d.U [−2.5, 2.5]. Note that the L2-norm of [qj,1, qj,2, . . . , qj,K ]′

is equal to 1 so that we can preserve the same variance as that from the uni-
form distribution we use to generate x at the very beginning. Note that the
correlation coefficient of any two elements of Xi is the same across different
individuals and can be calculated as

12Here T denotes the sample size of the generated series.
13We choose T to be 100 for the results to be presented later. We have also used small

value of T to generate the data, all the results are similar and neither (1.21) nor (1.25) is
violated. These results are available upon request from the author.



CHAPTER 1. ESTIMATION AND MODEL SELECTION 17

corr(Xt,k, Xt′,k′) = S(t, t′)
K∑
i=1

qk,iqk′,i t = 1, 2, . . . , T k = 1, 2, . . . ,K.

(1.34)
where S(t, t′) denote the (t, t′) element in S and K is the potential number
of regressors. Through such data generating mechanism we can explicitly
calculate the values of h2(β, ρ) and h3(β), a and NB in (1.14) and (1.20)
respectively. Hence we can check whether condition (1.21) and (1.25) are vi-
olated or not when there is an error in our model selection based on posterior
model probability.

We run the experiment for 200 times. At first we set η = 1
N and σ2 = 1.

The results are presented in Table 1.1. The ER (error rate) column tells
us how often the model with the highest posterior model probability ends
up being different from the true model. When the cross section sample size
is 40 (the same as our application later), the Bayes factor criterion fails
to pick up the true model by 86 out of 200 simulations. However, we can
see that the error rate tends to decrease with cross section sample size,
which is a sign of model selection consistency. One thing to note is that
we generate β from U [−2, 2]. When the values of some elements in β are
very close to zero, it is virtually equivalent to the case when the true model
does not include the corresponding regressors. In Table 1.1, the column
“nest” denotes how often the top model is nested inside the true model
(including the case when the top model is the true model). We can find
that this number generally rises with cross section sample size. The column
“nouni” checks among the errors from the Bayes factor criterion how many
of them is related to the fact that either there is no solution or there are
more than one solutions in (−1,1) for the equation plim

N→∞
f ′(ρ) = 0, where

f(ρ) is defined in (1.22). We show in the proof of Proposition 1.4 that
when plim

N→∞
f(ρ) does not have a global maximum in the stationary region,

we cannot use Laplace method to approximate the integral(s) in the Bayes
factor. Hence the condition in (1.21), (1.23) and (1.25) do not hold. Under
our simulating data generating mechanism, such situations do not exist.
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The columns of “no(1.21)”, “no(1.23)” and “no(1.25)” denote the error rates
with the violation of (1.21), (1.23) and (1.25) respectively. We can see that
the numbers of the columns are all zeros, which means all our errors are
fixable with a large cross section sample size. The columns of “topprob”
and “top10prob” are the average of the posterior model probabilities of the
top model and the sum of the top ten models in the simulation. If these
two numbers are far below 1, it is a sign of model uncertainty. As the cross
section sample size increases, model uncertainty diminishes. If we raise the
variance of the disturbance, model uncertainty will increase. The results
are shown in Table 1.2 where we set the variance of the disturbance to 4.
Comparing Table 1.2 to Table 1.1, we can see that the error rate is higher
and the rest of the three columns are generally smaller for a particular cross
section sample size. As for the model selection performance of BIC based
on the biased maximum likelihood estimates, we list the results in Table 1.3
and Table 1.4. We can see that the BIC performance is much worse than
our Bayes factor method. The error rates stay above 50% for different cross
section sample sizes. Even for N = 1000, there is not much improvement.
In addition to the error rate, the top model is not very often nested inside
the true model as compared with the Bayes factor method. Again, it does
not improve much with the cross section sample size. Moreover, the column
headed with “no(1.27)” shows how many errors violate condition (1.27).
Such errors are not fixable even if we have infinite cross section sample size
according to Proposition 1.5. Note that around 50% of the true models
do not have the lag term of the dependent variable under our simulation
set-up. Also note that under our data generating scheme, we can be almost
sure that ρ + NB = 0 will not occur. Hence condition (1.26) will almost
surely not be violated. It could be true to say that the error rate for the
BIC would approach 50% in the limit since it is always possible for condition
(1.27) to be violated while condition (1.26) and (1.28) hold. When the true
model does not have a lag term of the dependent variable as the regressor,
it is always possible to find a candidate model with both the lag term and
exactly the same set of exogenous regressors as the true model such that
condition (1.27) will be violated. When we compare them, we will choose
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the candidate model over the true model as the cross section sample size
increases. Also we could expect that the percentage under no(1.27) in Table
1.3 and 1.4 should rise with cross section sample size.

Table 1.1: Simulation results when σ2 = 1
N ER nest topprob top10prob no(1.21) no(1.23) no(1.25) nouni

40 0.40 0.83 0.38 0.85 0.00 0.00 0.00 0.00

100 0.29 0.86 0.56 0.94 0.00 0.00 0.00 0.00

200 0.31 0.88 0.62 0.96 0.00 0.00 0.00 0.00

500 0.14 0.94 0.74 0.99 0.00 0.00 0.00 0.00

1000 0.10 0.97 0.81 0.99 0.00 0.00 0.00 0.00

Table 1.2: Simulation results when σ2 = 4
N ER nest topprob top10prob no(1.21) no(1.23) no(1.25) nouni

40 0.61 0.77 0.32 0.80 0.00 0.00 0.00 0.00

100 0.43 0.86 0.50 0.93 0.00 0.00 0.00 0.00

200 0.36 0.88 0.58 0.95 0.00 0.00 0.00 0.00

500 0.28 0.92 0.69 0.98 0.00 0.00 0.00 0.00

1000 0.16 0.96 0.78 0.99 0.00 0.00 0.00 0.00

Table 1.3: Simulation results for BIC when σ2 = 1
N error rate nest no(1.26) no(1.27) no(1.28)
40 0.78 0.34 0.00 0.46 0.00
100 0.69 0.42 0.00 0.60 0.00
200 0.69 0.41 0.00 0.51 0.00
500 0.54 0.51 0.00 0.65 0.00
1000 0.58 0.47 0.00 0.61 0.00

Judging from the previous simulation results, we can find that if we
simply select the model with the highest model probability to provide esti-
mates of our interest, chances are high that the model selected is not the
true model. Note that the top model probability for N = 40 is about 32%
while it is about 78% for N = 1000 when we set σ2 = 4. To account for
such model uncertainty, we recommend averaging the estimates from every
model. We argue that BMA can reduce our estimation risk when there is
substantial model uncertainty. To illustrate this, next we carry out another
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Table 1.4: Simulation results for BIC when σ2 = 4
N error rate nest no(1.26) no(1.27) no(1.28)
40 0.88 0.34 0.00 0.28 0.00
100 0.77 0.41 0.00 0.36 0.00
200 0.74 0.38 0.00 0.34 0.00
500 0.65 0.43 0.00 0.40 0.00
1000 0.55 0.425 0.00 0.65 0.00

simulation, in which we set the β’s to fixed values along with ρ (we set it to
0.9 as in our previous simulation). Then we use the posterior means to es-
timate these values. Table 1.5 shows the root mean squared errors (RMSE)
from different point estimators based on 200 iterations with the cross sec-
tion sample size (N) as 40. The true values of ρ and β’s are shown under
the column “TRUE”, where the first number is the value of ρ. The column
“TOP” shows the RMSE resulting from the posterior mean estimator of
the top model, which has the highest posterior model probability, while the
column “BMA” uses the posterior mean in (1.29). To evaluate the signifi-
cance of a regressor coefficient, we calculate the sum of the posterior model
probabilities of all the models which include the corresponding regressor. If
the inclusion probability for a regressor is too low, we may be better off by
viewing the coefficient for this regressor as zero. In Table 1.5, we try to
give some ideas on how to interpret such inclusion probabilities which we
will use in our application later. The RMSE in the columns headed with a
percentage number are derived based on certain inclusion probability crite-
rion. For each simulated data set, if the inclusion probability for a regressor
is lower than the percentage number on top of the column, we will simply
use zero as its point estimate. In the last row of Table 1.5, we sum up the
RMSE in each column. We can see that the overall performances of BMA
and various inclusion probability criteria are all better than that of the top
model criterion in terms of smaller total RMSE. Such performance seems to
fare best when we set our inclusion probability to 50%. We can also see that
higher inclusion probability criterion tends to give us smaller RMSE when
the true value of the parameter is exactly zero and higher RMSE when the
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true value is not zero while the BMA seems to give us a safer option for
almost all the parameter estimates.

Table 1.5: The RMSE of the point estimates when N=40 and σ2 = 1
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.034 0.034 0.034 0.034 0.034 0.034 0.034 0.034
0.1 0.112 0.090 0.090 0.092 0.096 0.102 0.105 0.108
0.3 0.139 0.132 0.132 0.134 0.137 0.142 0.148 0.164
0 0.065 0.054 0.054 0.053 0.050 0.042 0.038 0.031
0 0.069 0.057 0.057 0.054 0.050 0.044 0.039 0.037
1 0.127 0.133 0.133 0.133 0.133 0.133 0.133 0.145
0 0.054 0.068 0.068 0.067 0.065 0.036 0.032 0.029
0 0.076 0.075 0.075 0.074 0.047 0.044 0.030 0.026
2 0.134 0.122 0.122 0.122 0.122 0.122 0.122 0.122

SUM 0.810 0.765 0.765 0.765 0.734 0.700 0.683 0.697

To add more insight into how to use inclusion probability to determine
the significance of a regressor coefficient, we presents the error rates of in-
cluding the wrong regressor due to different inclusion probability criteria14

in Table 1.6. We can see that the overall error rates based on the 10% cri-
terion is the highest. All the errors are from those parameters whose values
are actually zeros. Again, the 50% criterion shows reasonably good perfor-
mance, although the 60% criterion is slightly better. One thing to note is
that the top model criterion has smaller overall error rate than nearly all
inclusion probability criteria. Hence it seems to be a useful tool in terms of
making the decision on whether to include a particular regressor or not.

Next we increase model uncertainty by increasing the variance of the
disturbance to 4. Point estimate performances based on different criteria are
shown in Table 1.7. When the model uncertainty is larger, the advantage of
the averaging estimators becomes more obvious. Though their performances
are quite alike, the 50% inclusion probability criterion still gives us the
smallest overall RMSE. The error rates of whether to include a regressor

14If a regressor has no less than the given inclusion probability, we include it, which
may not be one of the true regressors. The top model criterion means we only include the
regressors in the top model.
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Table 1.6: The error rates of whether to include a regressor when N=40 and
σ2 = 1

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.835 0 0.36 0.62 0.78 0.86 0.915
0.3 0.22 0 0.03 0.075 0.14 0.215 0.295
0 0.05 1 0.425 0.195 0.09 0.065 0.02
0 0.095 1 0.475 0.245 0.155 0.095 0.035
1 0 0 0 0 0 0 0
0 0.065 1 0.495 0.205 0.09 0.06 0.015
0 0.045 1 0.51 0.195 0.085 0.035 0.015
2 0 0 0 0 0 0 0

SUM 1.31 4 2.295 1.535 1.34 1.33 1.295

are presented in Table 1.8. Now none of the inclusion probability criteria
can have smaller overall error rates than that of the top model criterion. It
seems that the criteria using inclusion probability above 40% (along with
the top model criterion) have problems with the parameter whose value is
0.1 (close to zero).

Table 1.7: The RMSE when N=40 and σ2 = 4
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.066 0.065 0.065 0.065 0.065 0.065 0.065 0.065
0.1 0.156 0.115 0.115 0.115 0.116 0.116 0.113 0.105
0.3 0.299 0.211 0.211 0.215 0.225 0.237 0.249 0.257
0 0.147 0.098 0.098 0.097 0.092 0.085 0.079 0.064
0 0.184 0.123 0.123 0.123 0.119 0.115 0.109 0.106
1 0.312 0.240 0.240 0.241 0.241 0.251 0.263 0.295
0 0.193 0.118 0.118 0.117 0.114 0.110 0.101 0.097
0 0.236 0.146 0.146 0.145 0.142 0.137 0.129 0.124
2 0.273 0.222 0.222 0.222 0.222 0.222 0.222 0.246

SUM 1.866 1.338 1.338 1.339 1.336 1.339 1.331 1.359

When we set the variance of the disturbance to 1 and the cross section
sample size to 1000 such that the model uncertainty is not substantial, the
performance of different criteria will be similar, which is shown in Table 1.9
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Table 1.8: The error rates of whether to include a regressor when N=40 and
σ2 = 4

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.915 0 0.445 0.76 0.855 0.95 0.975
0.3 0.5 0 0.155 0.31 0.455 0.55 0.615
0 0.045 1 0.465 0.16 0.085 0.03 0.015
0 0.06 1 0.455 0.185 0.095 0.05 0.035
1 0.035 0 0 0.005 0.025 0.035 0.04
0 0.05 1 0.52 0.185 0.095 0.045 0.025
0 0.045 1 0.42 0.175 0.075 0.04 0.03
2 0 0 0 0 0 0 0

SUM 1.65 4 2.46 1.78 1.685 1.7 1.735

and Table 1.10. However, the averaging estimators still fare slightly better
in point estimates and the top model criterion is reasonably good in deciding
whether or not to include a variable.

Table 1.9: The RMSE of the point estimates when N=1000 and σ2 = 1
TRUE TOP BMA 10% 20% 30% 40% 50% 60%

0.9 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007
0.1 0.036 0.031 0.032 0.032 0.033 0.035 0.035 0.038
0.3 0.024 0.023 0.023 0.023 0.023 0.023 0.023 0.023
0 0.018 0.015 0.014 0.014 0.013 0.013 0.012 0.012
0 0.011 0.008 0.008 0.008 0.007 0.007 0.007 0.006
1 0.029 0.026 0.026 0.026 0.026 0.026 0.026 0.026
0 0.014 0.012 0.012 0.011 0.011 0.011 0.010 0.010
0 0.015 0.010 0.010 0.010 0.009 0.009 0.008 0.006
2 0.027 0.026 0.026 0.026 0.026 0.026 0.026 0.026

SUM 0.181 0.158 0.158 0.156 0.155 0.156 0.154 0.153

In terms of the point estimation, BMA seems to be more preferable than
simply using the estimates from the top model since it takes account of
model uncertainty explicitly. Moreover, in Bayesian Econometrics we have
many sensible tools to help us understand our data. As will be shown in the
application later, our inference is based on the posterior distribution of the
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Table 1.10: The error rates of whether to include a regressor when N=1000
and σ2 = 1

TRUE TOP 10% 20% 30% 40% 50% 60%
0.9 0 0 0 0 0 0 0
0.1 0.075 0.025 0.05 0.055 0.06 0.075 0.095
0.3 0 0 0 0 0 0 0
0 0.015 0.17 0.08 0.045 0.015 0 0
0 0.02 0.125 0.055 0.025 0.02 0.01 0
1 0 0 0 0 0 0 0
0 0.005 0.14 0.055 0.03 0.01 0 0
0 0 0.145 0.065 0.035 0.02 0 0
2 0 0 0 0 0 0 0

SUM 0.115 0.605 0.305 0.19 0.125 0.085 0.095

parameter unconditional on the model space, which gives us information on
what we are more sure of and of what we are less sure.

In our previous simulation studies, we adopt the g-prior and set its co-
efficient η = 1

N , which should lead to consistency in model selection. Our
previous simulation results seem to have confirmed this. In addition to set-
ting η = O( 1

N ), Fernandez et al. (2001a) also suggest setting η = 1
K2 for

linear model of non-panel data, where K is the number of potential regres-
sors. Their recommendation is

η =

 1
N if N > K2

1
K2 if N ≤ K2

In our context, K is the number of potential regressors plus 1 (the lag
term). We can see that Fernandez et al. (2001a) basically recommend a
more non-informative prior. They argue that although the second prior is
inconsistent15, it may perform better than the first one for small samples.

15The inconsistency in model selection under the second prior here means the poste-
rior model probability of the true model will not tend to 1 with increasing sample size.
However, when the true model does not have a lag term as regressor, the Bayes factor
under the second prior will still favour the true model, i.e. the true model still has higher
model probability than the other models. For more details, see Fernandez et al. (2001a).
When the model has a lag term, as long as relevant conditions in Proposition 1.3 and 1.4
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In contrast to Table 1.1 and Table 1.2, Table 1.11 and Table 1.12 present
the results under the second prior. It suggests that when N = 40 (the cross
section sample size in our application), the second prior seems to do much
better for smaller disturbance variance in terms of whether the true model
is nested inside the top model and it also has higher posterior top model
probability. However, it fares more or less the same as the first prior for
bigger disturbance variance. As the sample size increases, the improvement
of the second prior does not seem to be as big as that under the first prior.
For large sample size (such as N = 1000), the first prior is more preferable
than the second.

Table 1.11: Simulation results when the variance of the disturbance is 1 and
under the prior η = 1

K2

N ER nest topprob top10prob no(1.21) no(1.23) no(1.25) nouni
40 0.43 0.9 0.45 0.90 0 0 0 0
100 0.3 0.88 0.46 0.91 0 0 0 0
200 0.27 0.9 0.48 0.92 0 0 0 0
500 0.15 0.92 0.53 0.94 0 0 0 0
1000 0.17 0.9 0.49 0.92 0 0 0 0

Table 1.12: Simulation results when the variance of the disturbance is 4 and
under the prior η = 1

K2

N ER nest topprob top10prob no(1.21) no(1.23) no(1.25) nouni
40 0.59 0.78 0.40 0.85 0 0 0 0
100 0.48 0.8 0.42 0.88 0 0 0 0
200 0.34 0.88 0.44 0.89 0 0 0 0
500 0.39 0.77 0.47 0.92 0 0 0 0
1000 0.2 0.89 0.47 0.91 0 0 0 0

Results on the point estimation performance under the second prior are
presented in Table 1.13, Table 1.14 and Table 1.15. In comparison with Table
1.5 to Table 1.9, the performance under the second prior does not seem to
differ much, though when the sample size is small and model uncertainty
is large, for the column of the top model criterion, the second prior seems

hold, consistency in model selection will follow. That is why we can still see improved
performance under the second prior over larger sample size.
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to do better than the first prior. But all the averaging estimators still tend
to dominate the top model criterion for small samples. For large sample
size, such dominance of averaging estimators seems to diminish and their
performances are quite close to that from the top model. In Table 1.15,
under the second prior, the BMA estimates even have higher RMSE than the
top model criterion. Again, the first prior is more preferable than the second
for large samples in terms of smaller RMSE from the averaging estimators.

Table 1.13: The RMSE of the point estimates when N=40 and σ2 = 1 under
the prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033
0.1 0.118 0.092 0.092 0.094 0.098 0.101 0.102 0.103
0.3 0.170 0.143 0.143 0.144 0.149 0.155 0.167 0.173
0 0.097 0.061 0.061 0.060 0.058 0.051 0.048 0.038
0 0.097 0.060 0.060 0.059 0.050 0.047 0.031 0.019
1 0.116 0.113 0.113 0.113 0.113 0.113 0.113 0.113
0 0.058 0.068 0.068 0.068 0.061 0.038 0.031 0.020
0 0.058 0.051 0.051 0.048 0.043 0.041 0.038 0.038
2 0.144 0.132 0.132 0.132 0.132 0.132 0.132 0.132

SUM 0.890 0.754 0.754 0.752 0.739 0.711 0.695 0.671

Table 1.14: The RMSE of the point estimates when N=40 and σ2 = 4 under
the prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.074 0.075 0.075 0.075 0.075 0.075 0.075 0.075
0.1 0.146 0.118 0.118 0.119 0.120 0.115 0.107 0.104
0.3 0.280 0.228 0.228 0.233 0.242 0.251 0.261 0.272
0 0.102 0.109 0.109 0.108 0.101 0.095 0.078 0.073
0 0.238 0.118 0.118 0.117 0.112 0.108 0.090 0.066
1 0.316 0.258 0.258 0.263 0.267 0.274 0.301 0.313
0 0.233 0.148 0.148 0.146 0.143 0.140 0.124 0.120
0 0.117 0.111 0.111 0.109 0.104 0.075 0.069 0.064
2 0.271 0.241 0.241 0.241 0.241 0.241 0.241 0.271

SUM 1.776 1.407 1.407 1.411 1.405 1.374 1.347 1.358



CHAPTER 1. ESTIMATION AND MODEL SELECTION 27

Table 1.15: The RMSE of the point estimates when N=1000 and σ2 = 1
under the prior η = 1

K2

TRUE TOP BMA 10% 20% 30% 40% 50% 60%
0.9 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.1 0.029 0.028 0.028 0.028 0.028 0.029 0.031 0.034
0.3 0.026 0.025 0.025 0.025 0.025 0.025 0.025 0.025
0 0.012 0.013 0.013 0.012 0.012 0.011 0.010 0.010
0 0.008 0.020 0.020 0.019 0.009 0.007 0.005 0.005
1 0.026 0.028 0.028 0.028 0.028 0.028 0.028 0.028
0 0.011 0.018 0.018 0.018 0.013 0.007 0.006 0.004
0 0.022 0.023 0.023 0.022 0.018 0.017 0.016 0.016
2 0.036 0.039 0.039 0.039 0.039 0.039 0.039 0.039

SUM 0.178 0.201 0.201 0.200 0.181 0.172 0.169 0.171

1.7 An Application Example of Financial Devel-

opment and Economic Growth

The model in our application is slightly different from (1.1) and it takes the
following form.

yi,t − yi,t−1 = fi + yi,t−1ρ+ x′i,tβ + uit,

i = 1 . . . N, t = 1 . . . T.
(1.35)

Here yi,t is the log of GDP per capita, fi is the country-specific fixed
effect and xi,t is a vector of the explanatory variables as before. So on the
left hand side of the equation is the economic growth per capita, which we
are using the lag of the logged GDP per capita along with other variables to
explain on the right hand side of the equation. The framework we developed
in the previous sections is still applicable here given necessary adjustments.
It can be shown that the Jacobian from Y conditional on Y0 to Y − Y is
one, where Y is the collection of all the lag terms of the dependent variables
for different individuals. To apply our method from the previous sections to
the real data, we need to make the following small modifications.

The data we use are taken from Beck and Levine (2004) and are available



CHAPTER 1. ESTIMATION AND MODEL SELECTION 28

from Levine’s website. There are altogether 40 (N) countries and the panel
covers the period from 1976 to 1998. Eight potential explanatory variables
(xi,t) have been proposed in the literature. Details of the variables can be
found in Table 16. Here we just follow the practice of Beck and Levine (2004)
on how the variables enter equation (1.35). Our focus is on the variables
measuring the development of stock market and banking sector. We also
include three dummy variables for each period as our potential explanatory
variables.16 Hence the total number of possible regressors is 11. Since we
are studying the long run relationship between economic growth and other
economic variables, we average the data over every five years. Due to missing
data and the dynamic nature of our model, we can only use 143 observations
in the panel. Since it is an unbalanced panel, i.e. not every country in the
panel has the same number of observations (T ), we have to replace some
quantities that appear in the previous sections as the following,

T−
N
2 :

N∏
i=1

T
− 1

2
i ,

NT :
N∑
i=1

Ti,

Nb (ρ) :
N∑
i=1

b (ρ, Ti) .

There are 4,096 possible model specifications in total. Here in Table
1.17, we just present the top ten models with the highest posterior model
probabilities. We can see that the top model is nested in most of the top
ten models and it just accounts for around 6.4% posterior model probability
while the model probability of the top 10 models in total is about 30%. The
result is quite different from the simulation studies in the previous section
when we have a true model to generate our data. We find that in simulation
the top model alone (in many cases, the true one) usually accounts for above
30%. This confirms the fact that there is substantial model uncertainty

16At most there are 5 observations for each country. Due to the dynamic nature of our
model, we have to take away one observation. Therefore we have three dummy variables.



CHAPTER 1. ESTIMATION AND MODEL SELECTION 29

Table 1.16: Details of the explanatory variables

1. START: the per capita GDP at the starting year of the five years. It
enters the equation of (1.35) in natural log.

2. PRIV: the measure of bank development, calculated from bank claims
on the private sector by deposit money banks divided by GDP. It
enters the equation in log.

3. PI: the inflation rate. It enters the equation as log(1+PI).

4. GOV: the ratio of government expenditure to GDP. It enters the equa-
tion in log.

5. TRADE: the shares of exports and imports to GDP. It enters the
equation in log.

6. TOR: the measure of stock market development, which equals the
value of traded shares on domestic exchanges divided by the total
value of listed shares. It enters the equation in log.

7. BMP: the black market premium. It enters the equation as
log(1+BMP).

8. SCHOOL: average years of schooling. It enters the equation as
log(1+SCHOOL).
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in our data. To study the relationship of economic growth and different
economic variables, BMA should be a more preferable approach.

Table 1.17: Posterior Model Probabilities of the Top Ten
Models

Ranking Model Posterior Model Probability
1 0,1,6a 0.064
2 0,1,6,9 0.057
3 0,1,5,6,9 0.037
4 0,1,4,6 0.029
5 0,1,4,6,9 0.025
6 0,1,3,6,9 0.021
7 0,1,5,6 0.0183
8 0,1,4,5,6,9 0.0176
9 0,1,3,6 0.016
10 0,1,3,4,6,9 0.014

a See the description of the set of explanatory variables.
0 stands for the GDP of one period lag. Number 9 to
11 denote the dummy variables.

The BMA point estimates of the slope parameters from the posterior
distribution in equation (1.8) are shown in Table (1.18), where we omit the
results for the dummy variables. The estimates are based on 10,000 draws
from the posterior model and parameter space. The column headed by
“slope” presents the posterior mean of β in (1.35). The “NSE” column is
the numerical standard error, which is a measure of accuracy of our simu-
lated calculations. The true posterior means with around 95% confidence
should lie in the range of [estimate−1.96NSE,estimate+1.96NSE] due to
the central limit theorem. The inclusion probability is calculated as the sum
of the model probabilities from the models that include the regressor. Fi-
nally, prob < 0 is the cumulative posterior probability of the parameter less
than 0. It is based on the mixture of the models that include the regressor
and can be viewed as how far away the posterior distribution is from 0. If
our point estimate is negative (positive) and its posterior distribution is far
away from 0, we would expect prob < 0 to be close to 1 (0). Not surprisingly,
the regressors with the highest inclusion probability are the initial GDP and
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the lagged GDP, which are closely related to our dependent variable, the per
capita GDP growth. The turnover of stock market also has high inclusion
probability, about 78% and it is positively related with economic growth and
its posterior mean is around 1.28. This confirms the finding by Beck and
Levine (2004), whose GMM point estimates of stock market turnover are
significant and they range from 0.95 to 1.7 under the inclusion of different
sets of exogenous variables. However, it is a surprise to see that bank credit
to private sector, which is a measure of bank development, has the lowest
inclusion probability among all the regressors and its point estimate is quite
close to 0. Moreover, the column of prob < 0 tells us that the posterior
distribution of stock market turnover is far away from 0 while the posterior
distribution of bank credit has its center near 0. It seems that bank de-
velopment is not that important for economic growth. This finding seems
to contradict the results based on the GMM approach in Beck and Levine
(2004).

Table 1.18: Estimates of the Slope Parameters
regressor slope NSE inclusion probability prob < 0
START 0.74 0.08 1 0
PRIV 0.055 0.04 0.14 0.38

PI -1.19 0.07 0.27 0.89
GOV -2.24 0.06 0.37 0.95

TRADE 1.66 0.05 0.35 0.05
TOR 1.28 0.007 0.78 0.0057
BMP -0.002 0.014 0.16 0.49

SCHOOL -0.1 0.14 0.16 0.55
LAG -0.82 0.0009 0.99 1

To verify our results, in Table 1.19 and Table 1.20 we present the highest
(marginal) posterior probability intervals (HPDI) of bank private credit and
stock market turnover respectively. Such intervals are calculated by a kernel
smoothing package (ksdensity.m) in MatLab R©. The package uses a normal
kernel function to fit to certain number of draws from the parameter’s poste-
rior distribution. For bank private credit, the number of draws is 1,414 and
the one for stock market turnover is 7,794. Note that the results are based
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on the models which include the regressor. The HPDI results confirm what
we found previously, i.e. the posterior distribution for stock market turnover
is far different from zero while bank private credit is not. We may conclude
that stock market development is more important to economic growth than
bank development based on our dataset.

Table 1.19: The highest posterior density intervals for the private credit
PRIV lower bound upper bound
99% -3.45 4.21
95% -2.70 3.34
90% -2.08 2.82
80% -1.48 2.31

Table 1.20: The highest posterior density intervals for the stock market
turnover

TOR lower bound upper bound
99% 0.118 3.104
95% 0.432 2.83
90% 0.64 2.66
80% 0.84 8.56

Next from Table 1.21 to Table 1.24, we present the results under the
g-prior η = 1

K2 , where K is the number of potential explanatory variables
plus one (the lag term of the dependent variable). As is shown in our
simulation, this prior may have better performance when the cross section
sample size is as small as in our application. We can see that the second
prior mainly reconfirms our previous results. First there is substantial model
uncertainty as shown by the top model probability.17 Second the stock
market development is more significant and the bank private credit is more
insignificant under the second prior than the first prior. One difference under
the second prior is that trade seems more important. The top model now
consists of stock market development and trade.

17 The sum of the posterior top ten model probabilities is 51%.
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Table 1.21: Posterior Model Probabilities of the Top Ten
Models under the prior η = 1

K2

Ranking Model Posterior Model Probability
1 0,1,6,9 0.109
2 0,1,5,6,9 0.0965
3 0,1,6 0.0671
4 0,1,4,5,6,9 0.0572
5 0,1,4,6,9 0.056
6 0,1,4,6 0.034
7 0,1,3,4,5,6,9 0.025
8 0,1,3,6,9 0.023
9 01,3,4,6,9 0.0216
10 0,1,3,5,6,9 0.0214

a See the description of the set of explanatory variables.
Number 0 stands for the GDP of one period lag. Num-
ber 9 to 11 denote the dummy variables.

Table 1.22: Estimates of the Slope Parameters under the prior η = 1
K2

regressor slope NSE inclusion probability prob < 0
START 0.84 0.079 1 0
PRIV 0.047 0.043 0.093 0.34

PI -0.79 0.069 0.20 0.91
GOV -2.48 0.052 0.39 0.97

TRADE 2.05 0.041 0.40 0.018
TOR 1.73 0.006 0.93 0.00086
BMP 0.01 0.015 0.09 0.40

SCHOOL 0.001 0.15 0.1 0.37
LAG -0.93 0.00084 0.99 1

Table 1.23: The highest posterior density intervals for the private credit
under the prior η = 1

K2

PRIV lower bound upper bound
99% -2.82 3.59
95% -2.06 3.08
90% -1.68 2.70
80% -1.07 2.26
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Table 1.24: The highest posterior density intervals for the stock market
turnover under the prior η = 1

K2

TOR lower bound upper bound
99% 0.49 3.21
95% 0.82 2.92
90% 1.02 2.77
80% 1.18 2.57

1.8 Conclusion

In this chapter, we investigate the information orthogonal method proposed
by Lancaster (2002) to obtain consistent estimation of common parameters
under a model comparison context. We found that under the linear dynamic
panel model, when the wrong set of exogenous regressors are included, it is
not necessarily true that Lancaster’s fixed effect transformation will lead to
consistent estimation of the autoregressive coefficient. To take into account
the effect of model misspecification on parameter estimation and to provide
a measure of goodness of fit, we advocate to compare different model spec-
ifications. In the chapter, we use Lancaster’s transformation to estimate
the model and to calculate the marginal likelihood. We have shown the
conditions under which the Bayes factor can lead to consistency in model
selection. When the conditions are not obviously met, we rely on Monte
Carlo experiments and find that the Bayes factor obtained from the trans-
formation can still lead to the selection of the true model asymptotically.
We also compare the BIC model selection performance based on the biased
estimates with our Bayes factor method. It is found that the BIC performs
very poorly and that some errors will not disappear with the increase of
cross section sample size. This shows the relationship between parameter
estimation and model selection. It will be more likely for us to obtain consis-
tency in model selection if we can have consistency in parameter estimation.
When model uncertainty is substantial, we argue for the use of Bayesian
model averaging. Through Monte Carlo experiments, we have found that
BMA will tend to produce smaller RMSE than if we simply select the model
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with the highest posterior model probability. Using the method developed,
we study the connection of stock market and bank development with eco-
nomic growth. Consistent with the results from the classical approach, our
finding suggests that stock market development is positively correlated with
economic growth. However, the effect of bank development on economic
growth is not significant, which contradicts the classical results. In our
framework, we have restricted our attention to stationary data and strictly
exogenous explanatory variables. Future research to relax such restrictions
could be promising.

1.9 Appendix

1.9.1 The Informatation Orthogonal Method

Here we briefly mentioned the information orthogonal method developed by
Lancaster (2002). In general, we can separate the parameters in the model
into two categories, the incidental parameter, fi, for i = 1, 2, . . . , N , where
N is the sample size, and the common parameter, θ, whose dimension will
stay the same regardless of the sample size. When we say fi is information
orthogonal to θ, we mean the following,

E

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)∣∣∣∣
fi=fi,true,θ=θtrue

=
∫
∂2 ln p(yi|θ, fi)

∂fi∂θ
p (yi|θ, fi) dY

∣∣∣∣
i=fi,true,θ=θtrue

= 0
(1.36)

Lancaster (2002) showed that if (1.36) evaluated at the true values of fi and θ
is satisfied, the mode of the marginal posterior of θ (p(θ|y) ∝

∫ ∏N
i=1 p(yi|θ, fi)p(fi|θ)d f),

which is obtained by integrating out fi with repect to the flat prior, p(fiθ) ∝
118, is a consistent estimator. When the the original incidental parameter
is not information orthogonal to the common parameter, Lancaster (2002)
suggested we reparameterize fi = (gi, θ) such that the new incidental pa-

18Here we assume the flat prior is permissible in the sense that
R
p(yi|θ, fi)d fi <∞.
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rameter gi is information orthogonal to θ. To find the new parameterization
is equivalent to finding the solution for the following differential equation,

∂fi
∂θ

= −
(
EY (

∂2 ln p(yi|θ, fi)
∂f2

i

)
)−1

EY

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)
(1.37)

However, when θ is a vector, say θ = (θ1, θ2), there is no guarantee that
(1.37) has a solution since the compatability condition ∂2fi

∂θ1∂θ2
= ∂2fi

∂θ2∂θ1
may

not be satisfied. For the linear AR(1) panel model, Lancaster (2002) showed
that an information orthogonal parameterization can not be found.

1.9.2 Proof of Proposition 1.1

Denote yi as [yi,1, yi,2, . . . , yi,T ]′ and yi as [yi,0, yi,1, . . . , yi,T−1]′. We can
rewrite model (1.1) as

yi = fiι+ yi ρ+Xiβ + ui (1.38)

yi = fic1 + yi,0c2 + CXiβ + Cui (1.39)

where

c1 =


0
1

1 + ρ

· · ·
1 + ρ+ ρ2 + · · ·+ ρT−2

 , c2 =


1
ρ

ρ2

· · ·
ρT−1

 , C =


0 0 · · · 0
1 0 · · · 0
ρ 1 · · · 0
· · · · · · · · · · · ·
ρT−2 ρT−3 · · · 1 0


and ι is a T × 1 vector of ones. Note that h (ρ) defined in 1.13 is equal to
1
T ι
′c1 = −trace(C ′H).

Lancaster (2002) finds the appropriate reparameterization of the fixed
effect parameter by drawing analogy from two simpler cases, i.e. when
the model only contains either the lag term of the dependent variable or
the exogenous regressors. Here we provide a slightly different derivation of
the reparameterization. In brief, we attempt to find a correction function
attached to the marginal posterior density of ρ such that the mode of the
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marginal posterior is a consistent estimator for ρ. The solution turns out
to be the same as Lancaster’s. The derivation strategy adopted here is also
needed for the proof of Proposition 1.2. To obtain such a correction function,
let us first reparameterize the fixed effect as

fi = gir(ρ)− 1
T
ι′Xiβ (1.40)

where r(ρ) is a function of ρ, which we will find out later.
Now we can transform our model as

yi = gir(ρ)ι+ yi ρ+HXiβ + ui, (1.41)

The following is the derivation of the posterior distribution and the
marginal likelihood.

Let us define wi = yi − yi ρ. The product of the likelihood of the trans-
formed model and the prior for θ is

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

TN
2 σ2(−NT+2

2
)

N∏
i=1

exp
{
− 1

2σ2
[wi − gir(ρ)ι−HXiβ]′ [wi − gir(ρ)ι−HXiβ]

}
,

(1.42)

where Y = (y1, y2, ..., yN ) excludes the first observations of all economic
agents, i.e. Y0 = (y1,0, y2,0, ...yN,0).

Next we derive the posterior distribution of gi. Note that ι′H = 0 so we
can rewrite equation (1.42) as

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

TN
2 σ2(−NT+2

2
)

N∏
i=1

exp
{
− 1

2σ2
[(wi −HXiβ)′(wi −HXiβ)

+Tg2
i r

2(ρ)− 2ι′wigir2(ρ)]
}
.
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Then we complete the square for gir(ρ) by adding − (ι′wi)2

T + (ι′wi)2

T inside
the exponential. So it becomes

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

TN
2 σ2(−NT+2

2
)

N∏
i=1

exp
{
− 1

2σ2
[(wi −

ιι′wi
T
−HXiβ)′(wi −

ιι′wi
T
−HXiβ)

+T (gir(ρ)− ι′wi
T

)2]
}
,

or equivalently

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

TN
2 σ2(−NT+2

2
)

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′H(wi −Xiβ)

+T (gir(ρ)− ι′wi
T

)2]
}

Note that Hwi = H(yi − yi ρ) and ι′wi
T = ι′(yi−yi ρ)

T . So we can have

p(θ)p (Y |θ, Y0) = p(β|σ2)
1
2
I(−1 ≤ ρ ≤ 1)(2π)−

TN
2 σ2(−NT+2

2
)

N∏
i=1

exp

{
−r

2(ρ)
2σ2

T

[gi −
ι′(yi − yi ρ)
Tr(ρ)

]2
}

exp

[
− 1

2σ2

N∑
i=1

(yi − yi ρ−Xiβ)′H(yi − yi ρ−Xiβ)

] (1.43)

Remember p(β|σ2) does not involve parameters other than σ2. More-
over, since we ignore the distribution of Y0 and assume the prior of θ is
independent of it, from (1.43) it is clear that the posterior distribution of gi
conditional on yi,0, σ2 and ρ is i.i.d. normal as in (1.7).

Next we go on to derive the posterior distributions for β and σ2. First
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we can integrate out g in equation (1.43) to obtain

p(ρ, β, σ2, Y |Y0) = p(ρ, β, σ2|Y, Y0)p(Y |Y0)

= p(β|σ2)
1
2
I(−1 < ρ ≤ 1)T−

N
2 (2π)−

N(T−1)
2 σ

2
h
−N(T−1)+2

2

i

r−N (ρ) exp

[
− 1

2σ2

N∑
i=1

(yi − yi ρ−Xiβ)′H(yi − yi ρ−Xiβ)

]
.

(1.44)

Let us define a new function r(ρ) = r−N (ρ), w̃i = H(yi − yi ρ) and
X̃i = HXi. Incorporating the prior of β in (1.6) we can rewrite equation
(1.44) as

p(ρ, β, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)T−

N
2 (2π)−

N(T−1)+k
2 ·

σ
2

h
−N(T−1)+2+k

2

i
r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′iX̃i

∣∣∣∣∣
1
2

·

exp

{
− 1

2σ2

[
N∑
i=1

w̃i
′w̃i + β′

N∑
i=1

(η + 1)X̃ ′iX̃iβ − 2
N∑
i=1

w̃′iX̃iβ

]}
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Then completing the square of β yields

p(ρ,β, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)T−

N
2 (2π)−

N(T−1)+k
2 ·

σ
2

h
−N(T−1)+2+k

2

i
r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′iX̃i

∣∣∣∣∣
1
2

·

exp

− 1
2σ2

 N∑
i=1

w̃i
′w̃i −

1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i

 ·
exp

{
− 1

2σ2

β − 1
η + 1

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i

′ ·
(

N∑
i=1

(η + 1)X̃ ′iX̃i

)β − 1
η + 1

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i

}

We can see that the posterior kernel for β is normal as in (1.8) and hence
we can integrate it out. The posterior distribution for ρ and σ2 is

p(ρ, σ2|Y, Y0)p(Y |Y0) =
1
2
I(−1 ≤ ρ ≤ 1)

(
η

η + 1

) k
2

T−
N
2 (2π)−

N(T−1)
2

σ
2

h
−N(T−1)+2

2

i
r(ρ) exp

{
− 1

2σ2
[
N∑
i=1

w̃i
′w̃i

− 1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i]
}

(1.45)

It is also clear from equation (1.45) that conditional on ρ, σ2 follows an
inverted gamma distribution with mean A

N(T−1)−2 and degrees of freedom
N(T − 1) as in (1.9).

Now we can integrate out σ2 to obtain the posterior distribution of ρ as
in (1.10). Another way to write the posterior of ρ is as follows

p(ρ|Y, Y0) ∝ I(−1 < ρ < 1)r(ρ)t(
b

a
,
c

av
− b2

a2v
, v) (1.46)
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where

a =
N∑
i=1

y′i Hyi −
1

η + 1

N∑
i=1

(
y′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
b =

N∑
i=1

y′i Hyi −
1

η + 1

N∑
i=1

(
y′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
c =

N∑
i=1

y′iHyi −
1

η + 1

N∑
i=1

(
y′iHXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
.

(1.47)

Equation (1.46) tells us that when ρ is in the stationary region, its kernel
of the posterior distribution can be viewed as the product of r(ρ) and the t
distribution with the mean parameter b

a and the variance parameter c
av−

b2

a2v
,

where v = N(T −1)−1 is the degrees of freedom. Note that b
a is the within-

group estimator, which we could obtain if we operate on the first difference
data and adopt a non-informative prior for ρ by assuming our model is
stationary (|ρ| < 1) and the regressors are exogenous. This estimator is
inconsistent and the bias is a function of the true value of ρ. If our posterior
estimate of ρ is consistent, r(ρ) should act as the correction term to the bias.
Let us denote NB as the bias and ρ as the true value of the parameter. We
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will have the following19

plim
N→∞

b

a
= ρ+NB

plim
N→∞

1
N
a = a

NB = plim
N→∞

N∑
i=1
y′i Hui −

N∑
i=1
y′i HXi

(
N∑
i=1
X ′iHXi

)−1 N∑
i=1
X ′iHui

N∑
i=1
y′i Hyi −

N∑
i=1
y′i HXi

(
N∑
i=1
X ′iHXi

)−1 N∑
i=1
X ′iHyi

= −
σ2h(ρ)
a

,

plim
N→∞

1
N

 N∑
i=1

y′i Hui −
N∑
i=1

y′i HXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHui

 = −σ2h(ρ),

plim
N→∞

1
N

 N∑
i=1

u′iHui −
N∑
i=1

u′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHui

 = (T − 1)σ2,

(1.48)

where the function h (·) is given in (1.13). So we can obtain

plim
N→∞

c

a
= cta = ρ2 + 2ρNB +

(T − 1)σ2

a
(1.49)

.
Hence when the cross section sample size tends to infinity, the posterior
kernel of ρ can be written as

p(ρ|Y, Y0) ∝ I(−1 < ρ < 1)r(ρ)t(ρ+NB,
1
v

(
cta− (ρ+NB)2

)
, v) (1.50)

Recall that v = N(T − 1) − 1. If our estimate from the above kernel is
consistent, the posterior distribution of ρ should become a spike at the true
value of ρ (the mode of the kernel). The mode of the kernel in (1.50) can
be obtained from the following first order condition,

19Recall that we have specified η as a function of N in a way such that η(N) is o( 1
N

).
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1
N

d ln p(ρ|Y, Y0)
d ρ

= 0.

So we will have

1
N

d r(ρ)
d ρ

= (T − 1)
ρ− ρ−NB

cta− (ρ+NB)2 + (ρ− ρ−NB)2
. (1.51)

If our specification of r(ρ) leads to consistent estimator, the true value ρ
should be a solution for the above differential equation. By using (1.48), we
can obtain

Nh(ρ)d ρ =
1
r(ρ)

d r. (1.52)

Finally by using (1.13), we will have

r(ρ) = exp (Nb(ρ))

r(ρ) = exp (−b(ρ)) ,
(1.53)

where b(ρ) is given in (1.3). By inserting (1.53) into (1.40), we will get the
transformation in (1.2). By replacing r(ρ) and r(ρ) in our derivation, we
will have exactly the same results as those from (1.7) to (1.10).

1.9.3 Proof of Proposition 1.2

When the regressors under the candidate model are neither perfectly cor-
related nor perfectly uncorrelated with those under the true model, we can
define h2(β, ρ) and h3(β) as in (1.14) whereXi and Xi denote the regressors
under the true and the candidate model respectively. We can also rewrite
(1.47) as (1.19) and in the limit we will have (1.20). We can still have (1.50),
but the differential equation in (1.51) has now become

−N(T − 1)
[
h2(β, ρ)− σ2h(ρ)

]
h3(β) + (T − 1)σ2

d ρ =
1
r(ρ)

d r (1.54)



CHAPTER 1. ESTIMATION AND MODEL SELECTION 44

If the solution in (1.53) is still valid, we can insert (1.52) into (1.54) to obtain

−(T − 1)h2(β, ρ) + (T − 1)σ2h(ρ)
h3(β) + (T − 1)σ2

= h(ρ).

It is obvious that unless we have either
−(T−1)h2(β,ρ)

h3(β) = h(ρ) or h2(β, ρ) =
h3(β) = 0, (1.53) is not a solution for (1.54). In other words, the reparam-
eterization of the fixed effect in (1.2) cannot lead to consistent estimation
of ρ.20 Generally speaking, if the candidate model does not nest the true
model, it is likely that the reparameterization that will enable us to estimate
ρ consistently will involve the true values of the common parameters (β, σ2

and ρ).
In summary, it is not always true that Lancaster’s parameterization of

the fixed effect will lead to consistent estimation of the model when the
model is misspecified. It therefore justifies our motivation to compare dif-
ferent model specifications.

1.9.4 Proof of Proposition 1.3

To prove Proposition 1.3 and 1.4, essentially we need to simplify the inte-
gral(s) which appears in the Bayes factor. One way to do it is Laplace’s
method, the details of which can be found in Tierney and Kadane (1986)
and Kass et al. (1990). To apply the method, we can first multiply both the

numerator and the denominator by
(

1
N

)−N(T−1)
2 . The integral appearing in

20The inconsistency of the estimator for σ2 follows since σ2 is not independent from ρ
(asymptotically) as can be seen from (1.9).
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the Bayes factor can be simplified as

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHwi

]−N(T−1)
2

dρ

=
(

1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]
(
aρ2 − 2bρ+ c

)−N(T−1)
2 dρ

=
( a
N

)−N(T−1)
2

1∫
−1

exp
(
N

[
b(ρ)− T − 1

2
ln(ρ2 − 2

b

a
ρ+

c

a
)
])

dρ

=
( a
N

)−N(T−1)
2

1∫
−1

exp [Nf(ρ)] dρ

(1.55)

where f(ρ) and its derivatives are defined as follows,

f(ρ) = b(ρ)− T − 1
2

ln(ρ2 − 2
b

a
ρ+

c

a
),

f ′(ρ) = h(ρ)−
(T − 1)(ρ− b

a)

ρ2 − 2 baρ+ c
a

,

f ′′(ρ) = h′(ρ)−
(T − 1)(ρ2 − 2 baρ+ c

a)− 2(T − 1)(ρ− b
a)2

(ρ2 − 2 baρ+ c
a)2

,

(1.56)

where h′(ρ) =
T−2∑
i=1

i(T−i−1)
T ρi−1 = 1

(1−ρ)2
− (T+2)ρT+1−2ρT−TρT−1−2ρ+2

T (1−ρ)4
. Based

on (1.20), if we take the probability limit of (1.56), we can arrive at (1.57)
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as follows,

plim
N→∞

f(ρ) = b(ρ)− T − 1
2

ln
[
ρ2 − 2(ρ+NB)ρ+ ρ2 + 2ρNB +

(T − 1)σ2 + h3(β)
a

]
,

plim
N→∞

f ′(ρ) = h(ρ)−
(T − 1)(ρ− ρ−NB)

ρ2 − 2ρ(ρ+NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)
a

,

plim
N→∞

f ′′(ρ) = h′(ρ)−

(T − 1)
[
ρ2 − 2ρ(ρ+NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)

a − 2(ρ− ρ−NB)2
]

[
ρ2 − 2ρ(ρ+NB) + ρ2 + 2ρNB + (T−1)σ2+h3(β)

a

]2 .

(1.57)

Now we can use Laplace’s method to approximate the integral. Suppose for
the equation plim

N→∞
f ′(ρ) = 0, there exists only one solution ρ∗ in (−1,1) and

plim
N→∞

f ′′(ρ∗) < 0. For large N , the integral in (1.55) can be approximated

by

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHwi

]−N(T−1)
2

dρ

≈ a−
N(T−1)

2

√
2π

N |f ′′(ρ∗)|
exp
[
Nf(ρ∗)

]

=

√
2π

N |f ′′(ρ∗)|
exp
[
Nb(ρ∗)− N(T − 1)

2
ln d(ρ∗)

]
,

(1.58)

where d(ρ) is defined in (1.24).
Moreover, if our choice of the set of regressors included can lead to con-

sistent estimation of ρ, i.e. either (1.11) or (1.12) is satisfied, by substituting
the true value of ρ (i.e. ρ) into (1.57) we can obtain
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plim
N→∞

f(ρ) = b(ρ)− T − 1
2

ln
(T − 1)σ2 + h3(β)

a
,

plim
N→∞

f ′(ρ) = 0,

plim
N→∞

f ′′(ρ) = h′(ρ)− a(T − 1)
(T − 1)σ2 + h3(β)

+
2h2(ρ)
T − 1

.

(1.59)

For large value of N , the integral in (1.55) can now be approximated by

(
1
N

)−N(T−1)
2

1∫
−1

exp [Nb(ρ)]

[ N∑
i=1

w′iHwi −
1

η + 1

N∑
i=1

w′iHXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iHwi

]−N(T−1)
2

dρ

≈
√√√√ 2π

N
∣∣∣h′(ρ)− a(T−1)

(T−1)σ2+h3(β)
+

2h2(ρ)

T−1

∣∣∣ ·
exp
[
Nb(ρ)− N(T − 1)

2
ln
(
(T − 1)σ2 + h3(β)

)]
(1.60)

Considering (1.17), if X ′i1s are the true regressors to generate Y (so
h2(β, ρ) = h3(β) = 0), in the probability limit (1.17) can be approximated
by
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plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

≈1
2

(
η

η + 1

) k1−k0
2 [

a|M0
ρ2 − 2ρσ2h(ρ) + 2ρh2|M0

(β, ρ) + h3|M0
(β) + (T − 1)σ2

]N(T−1)
2

√√√√ 2π

N
∣∣∣h′(ρ)− a

σ2 +
2h2(ρ)

T−1

∣∣∣ exp
[
Nb(ρ)− N(T − 1)

2
ln(T − 1)σ2

]

=
1
2

(
η

η + 1

) k1−k0
2

√√√√ 2π

N
∣∣∣h′(ρ)− a

σ2 +
2h2(ρ)

T−1

∣∣∣ exp

{
Nb(ρ)+

N(T − 1)
2

ln

[
a|M0

ρ2 − 2ρσ2h(ρ) + 2ρh2|M0
(β, ρ) + h3|M0

(β) + (T − 1)σ2

(T − 1)σ2

]}
.

(1.61)

So we can guarantee plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0) = ∞ (ρ 6= 0) as long as (1.21) holds.

It does not matter whether we choose η to be O( 1
N ) or 1

K2 as used in the
simulation studies.

Now let us consider the case when the true model is M0 in (1.17), i.e. the
true value of ρ is 0 and Xi0 are the right regressors. Given the assumptions
in Proposition 1.3, the probability limit of the Bayes factor in (1.17) takes
the following form,

plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

≈1
2

(
η

η + 1

) k1−k0
2 [

(T − 1)σ2
]N(T−1)

2√
2π

N |f ′′(ρ∗|M1)|
exp
[
Nb(ρ∗)− N(T − 1)

2
ln d(ρ∗)

]

=
1
2

(
η

η + 1

) k1−k0
2

√
2π

N |f ′′(ρ∗|M1)|
exp
[
Nb(ρ∗) +

N(T − 1)
2

ln
[

(T − 1)σ2

d(ρ∗|M1)

]]
.

(1.62)
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If (1.23) holds, then the Bayes factor in (1.17) will tend to 0 for large sample
size. If M1 is misspecified but it can still give consistent estimates of ρ, i.e.
ρ∗ = 0 (either (1.11) or (1.12) holds), we can simplify (1.62) as

plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

=
1
2

(
η

η + 1

) k1−k0
2

√
2π

N |f ′′(0|M1)|
exp
[
N(T − 1)

2
ln
[

(T − 1)σ2

(T − 1)σ2 + h3|M1
(β)

]]
.

(1.63)

If h3|M1
(β) > 0, the Bayes factor in (1.63) will be 0 when N tends to infinity.

If h3|M1
(β) = 0, we should have k1 − k0 > 0. Once again, the choice of η

between O( 1
N ) and 1

K2 are not important here.

1.9.5 Proof of Proposition 1.4

For (1.18), suppose the true model is M1 and M0 despite being misspecified
can still lead to consistent estimation of ρ, (1.18) can be approximated as

plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

≈
(

η

η + 1

) k1−k0
2

√√√√√
∣∣∣∣∣∣1 +

a
σ2 − a(T−1)

(T−1)σ2+h3(β)

h′(ρ)− a
σ2 +

2h2(ρ)

T−1

∣∣∣∣∣∣
{

(T − 1)σ2 + h3(β)
(T − 1)σ2

}N(T−1)
2

.

(1.64)

Since h3(β) is a semi-positive definite quadratic form of β, it should be
greater than or equal to 0. It is 0 when M0 nests M1 (k1 < k0). It is not
hard to see that plim

N→∞

p(Y |Y0,M1)
p(Y |Y0,M0) =∞ when M1 is the true model and we set

η to be O( 1
N ). Under the choice of η = 1

K2 , the Bayes factor in the limit
will not tend to infinity, but rathe a constant, which is still possible to be
greater than 1 and favours the true model.

If we are comparing the true model to a model under which we can-
not obtain consistent estimate of ρ using the transformation of the fixed
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effect, we cannot use (1.60) to approximate the marginal likelihood of the
misspecified model. In fact we may not be able to use Laplace’s method to
approximate the integral since plim

N→∞
f(ρ) may not have a unique maximum

point in (-1,1). However, if plim
N→∞

f(ρ) has a nice bell shape in the stationary

region, we can prove that when using the reparameterization of the fixed
effect, Bayes factor can lead to the selection of the true model asymptoti-
cally under certain circumstances. To see this, we continue to suppose M1

is the true model in (1.18) and denote ρ∗ as our estimate of ρ under M0.
The Bayes factor (1.18) can be approximated by

plim
N→∞

p(Y |Y0,M1)
p(Y |Y0,M0)

≈
(

η

η + 1

) k−k0
2

√∣∣∣∣f ′′(ρ∗)f ′′(ρ)

∣∣∣∣ exp
{
N

[
b(ρ)− b(ρ∗) +

(T − 1)
2

ln
(
d(ρ∗)
d(ρ)

)]}
(1.65)

Note that d(ρ) = (T − 1)σ2. So if (1.25) is satisfied, the Bayes factor is
consistent in selecting the true model, as claimed by Proposition 1.4. It is
difficult to interpret under what circumstances our data can satisfy (1.25).
Note that the equation plim

N→∞
f ′(ρ) = 0 generally do not have analytical

solution when our model is misspecified and it does not nest the true model.
Therefore it is hard to check (1.25) and we have to rely on simulation studies
to shed some light on this issue.

1.9.6 Proof of Proposition 1.5

The likelihood function takes the following form,

p (Y |θ, Y0) = (2π)−
TN
2 σ2(−NT

2
)

N∏
i=1

exp{− 1
2σ2

[yi − yi ρ− ιfi −Xiβ]′ [yi − yi ρ− ιfi −Xiβ]}.

(1.66)
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By taking log of the likelihood function and solving the first order condition,
we can obtain the maximum likelihood estimators as the following,

σ2 =
1
NT

N∑
i=1

[yi − yi ρ− ιfi −Xiβ]′ [yi − yi ρ− ιfi −Xiβ] ,

fi =
ι′(yi − yi ρ−Xiβ)

T
,

β =
N∑
i=1

(X ′iHXi)−1
N∑
i=1

X ′iH(yi − yi ρ),

ρ =
b

a
,

(1.67)

where a and b are defined in (1.19) with η = 0. Based on the MLE, we can
find the Bayesian information criterion (BIC) as the following,

BIC = NT

(
ln
c− b2

a

NT
+ ln 2π + 1

)
+ (1 + k +N) ln(NT ). (1.68)

A BIC value close to zero calculated under a model indicates evidence in
favor of the model. Using (1.20), we can find the probability limit of BIC as

plim
N→∞

BIC =NT

ln
plim
N→∞

1
N c− (plim

N→∞

1
N b)

2(plim
N→∞

1
N a)−1

T
+ ln(2π) + 1


+ (1 + k +N) ln(NT )

=NT
(

ln
(T − 1)σ2 + h3(β)− aNB2

T
+ ln(2π) + 1

)
+ (1 + k +N) ln(NT )

=NT

ln
(T − 1)σ2 + h3(β)− [h2(β,ρ)−σ2h(ρ)]2

a

T
+ ln(2π) + 1


+ (1 + k +N) ln(NT ).

(1.69)
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For the true model, its BIC value at the probability limit is

plim
N→∞

BIC = NT

ln
(T − 1)σ2 − σ4h2(ρ)

a

T
+ ln(2π) + 1

+(1+k+N) ln(NT ).

(1.70)
For the model without the lag term of the dependent variable, the BIC at
the probability limit is calculated as

plim
N→∞

BIC = NT

ln
plim
N→∞

1
N c

T
+ ln(2π) + 1

+ (k +N) ln(NT )

= NT

(
ln

(T − 1)σ2 + h3(β) + aρ2 + 2ρh2(β, ρ)− 2ρσ2h(ρ)
T

+ ln(2π) + 1

)
+ (k +N) ln(NT ).

(1.71)

Let us now look at the case of (1.17). When Xi1 are the true regressors to
generate Yi, the difference between the BIC under M0 and M1 is

BIC|M0
−BIC|M1

=

NT ln
(T − 1)σ2 + h3|M0

(β) + a|M0
ρ2 + 2ρh2|M0

(β, ρ)− 2ρσ2h(ρ)

(T − 1)σ2 − σ4h2(ρ)

a|M1

+ (k0 − k1 − 1) ln(NT )

(1.72)

Clearly if we have BIC|M0
−BIC|M1

> 0 for large N , which means M1 is the
preferred model, inside the natural log on the right hand side of the equation,
the numerator should be larger than the denominator. In other words, we
should have (1.26) stated in Proposition 1.5. If ρ = 0, it is clear that (1.26)
can be satisfied and model selection is consistent. However, if Xi1 = Xi0, we
can have a|M0

= a|M1
= a, k1 = k0 and h2|M0

(β, ρ) = h3|M0
(β) = 0. Hence
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we can simplify (1.72) as

BIC|M0
−BIC|M1

=NT ln
(T − 1)σ2 − σ4h2(ρ)

a + aρ2 − 2ρσ2h(ρ) +
σ4h2(ρ)

a

(T − 1)σ2 − σ4h2(ρ)

a

+ (k0 − k1 − 1) ln(NT )

=NT ln

[
1 +

(
aρ− ρσ2h(ρ)

)2
(T − 1)aσ2 − σ4h2(ρ)

]
− ln(NT )

(1.73)

If aρ−ρσ2h(ρ) = 0, i.e. ρ+NB = 0, we will always have BIC|M0
−BIC|M1

<

0, which means we will always prefer M0 over M1 even if ρ 6= 0. In a situation
like this, model selection is not consistent.

The problem with BIC also arises when M0 is the true model. Now the
difference between the two BICs is

BIC|M0
−BIC|M1

=NT ln
(T − 1)σ2

(T − 1)σ2 + h3|M1
(β)− [h2|M1

(β,0)−σ2 T−1
T ]2

a|M1

+ (k0 − k1 − 1) ln(NT ).

(1.74)

If we want to haveM0 preferred byBIC, we should haveBIC|M0
−BIC|M1

<

0, which means we should have (1.27) claimed in Proposition 1.5. However,
if we have h3|M1

(β) = 0, which implies k1 ≥ k0, (1.27) cannot be satisfied

since
[h2|M1

(β,0)−σ2 (T−1)
T

]2

a|M1

≥ 0. Again, this implies inconsistency in model
selection.

For the case of (1.18), suppose M1 is the true model, the difference
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between the BICs calculated under M0 and M1 is

BIC|M0
−BIC|M1

=NT ln
(T − 1)σ2 + h3|M0

(β)− [h2|M0
(β,ρ)−σ2h(ρ)]2
a|M0

(T − 1)σ2 − σ4h2(ρ)

a|M1

+ (k0 − k1) ln(NT )

=NT ln

1 +
h3|M0

(β) +
σ4h2(ρ)

a|M1

− [h2|M0
(β,ρ)−σ2h(ρ)]2
a|M0

(T − 1)σ2 − σ4h2(ρ)

a|M1


+ (k0 − k1) ln(NT ).

(1.75)

If M1 is the true model, (1.28) stated in Proposition 1.5 should hold. If
Xi0 nests the true set of regressors, i.e. h2|M0

(β, ρ) = h3|M0
(β) = 0 and

a|M1
= a|M0

, (1.75) is reduced to

BIC|M0
−BIC|M1

= (k0 − k1) ln(NT ) (1.76)

Since k0 > k1, the difference between the two BICs will be greater than 0.
Therefore, the BIC is consistent in model selection in this case.



Chapter 2

A Correction Function

Approach to Solve the

Incidental Parameter

Problem

2.1 Introduction

In microeconomic and other applications, we often see models with some
parameters whose number will increase with the sample size and other pa-
rameters whose number will remain the same. We call those parameters
whose number will change with the sample size incidental parameters. They
capture the heterogeneity of economic agents. Those parameters whose size
remains the same are called common parameters. It is well known in the
literature that the maximum likelihood estimates (MLE) of the common
parameters are not consistent due to the presence of the incidental parame-
ters. Such problems are documented as incidental parameter problems, see
e.g. Nerlove (1968), Nickell (1981) and Lancaster (2000). The failure of
the likelihood method has driven researchers to look for valid instruments
and orthogonality conditions to estimate the common parameters through

55
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generalized method of moments (GMM), see e.g. Arellano and Bond (1991)
and Blundell and Bond (1998). However, when the instruments are weak
predictors of the endogenous variables, the GMM estimators may have poor
finite sample properties and are not free from bias. Such problems have been
pointed out by Alonso-Borrego and Arellano (1999) and Stock et al. (2002).
A more recent paper by Bun and Windmeijer (2007) showed that both the
GMM estimators proposed by Arellano and Bond (1991) and Blundell and
Bond (1998) are not free from weak instrument problems for the linear AR(1)
panel model when the data are persistent. Moreover, the GMM statistics
could have non-normal distributions, even for large sample size. The conven-
tional IV or GMM inferences are hence misleading. Another problem with
GMM is that it is hard for researchers to decide whether some set of the
moment conditions are more superior than the others when both can pass
the overidentification test. In this regard, the GMM framework provides
little information on model comparison and selection.

While GMM seems to be the dominant method in most economic appli-
cations, there are some researchers who stick to the likelihood based methods
to find solutions. The most common practice may be to treat the incidental
parameters as random variables from certain distribution and to transform
the estimation problem to estimating the common parameters along with
the parameters in the distribution of the incidental parameters. It is known
as the random effect model in the classical literature, see e.g. Wooldridge
(2005). However, the viability of such method depends heavily on the correct
specification of the incidental parameter distribution. Hsiao et al. (2002) got
around the incidental parameter problem in MLE by assuming certain con-
ditions on the data generating processes of the exogenous regressors. Hahn
and Newey (2004) and Arellano and Hahn (2006) developed the bias re-
duction approach. This approach tries to first estimate the first order bias
of the MLE and then remove the estimated bias from the estimator. An-
other important stream of the likelihood approach is the conditional likeli-
hood method, or the modified profile likelihood developed by Cox and Reid
(1987), who found that when the incidental parameters and the common
parameters are information orthogonal, an approximation is available for
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the conditional likelihood given the maximum likelihood estimator of the
incidental parameter. This method attempts to fix the bias of the profile
likelihood by introducing information orthogonality. Lancaster (2002) fur-
ther developed this idea under the Bayesian framework and found the priors
which lead to consistent estimation for a few models. However, information
orthogonality is not available for all models, such as the linear autoregres-
sive (AR) panel model with fixed effect and exogenous regressors. Arellano
and Bonhome (2006) tried to find the first order bias reduction prior and
their results showed that such prior will generally involve the dependent
variable(s).

In this chapter, we propose a strategy to derive the same prior found in
Lancaster (2002). Our strategy is related to finding the Jacobian from the
old incidental parameters, which are not information orthogonal to the com-
mon parameters, to the new information orthogonal incidental parameters
and hence the correction function required for consistent estimation. We
also extend our strategy to find the bias reducing prior for linear AR panel
data model of order more than one. Our results show that the correction
function happens to have closed form for this model and it involves only the
common parameters in concern. The specific form of the correction func-
tion will change with the number of observations for each economic agent
and the number of lags in the AR model. With the correction function, the
posterior distribution of the common parameters is generally not a standard
one. Therefore to estimate the model, we propose a Metropolis-Hastings
algorithm. The results from the simulated datasets show strong signs of
estimation consistency of our method. A very important issue related to
the likelihood based bias correction method raised in the previous chapter
is that consistent parameter estimation is related to consistent model se-
lection. For the linear panel AR model, when we include the wrong set of
exogenous regressors, we may not be able to obtain consistent estimate for
the autoregresive coefficient. Therefore, parameter estimation and model
selection should be carried out simultaneously. To compare different model
specifications, we use the Bayes factor calculated through the method pro-
posed by Chib and Jeliazkov (2001) and a reversible jump algorithm. The
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results from the simulated datasets suggest that the Bayes factor criterion
could achieve consistency for model selection.

The setup of the chapter is as follows. Section 2.2 gives a Bayesian
perspective on the incidental parameter problem and our strategy to find
the correction function to solve the problem. Section 2.3 demonstrates how
our strategy is applied to the linear panel AR model of order more than
one to derive the correction function. Section 2.3.2 and Section 2.3.3 discuss
the algorithms to carry out point estimation and model comparison, while
Section 2.3.4 and Section 2.3.5 give the respective examples using simulated
datasets before Section 2.4 concludes.

2.2 A Possible Way to Solve the Incidental Pa-

rameter Problem

Let us put the parameters to be estimated into two categories: the common
parameter, denoted by θ, whose dimension is the same regardless of the
sample size, and the incidental parameter, f , whose dimension will increase
with the sample size. The Bayesian way to estimate θ is to integrate f out
of the likelihood function p(Y |θ, f) with respect to the prior p(f |θ) and then
the estimation results are drawn from the marginal posterior distribution of
θ,

p(θ|Y ) ∝
∫
F
p(θ, f)p(Y |θ, f) df

∝
∫
F
p(θ)p(f |θ)p(Y |θ, f) df.

(2.1)

Here we use Y to stand for the collection of the dependent variable(s) and
p(f |θ) is a permissible prior function with support F1. The problem with
the Bayesian method is that there is no guarantee for us to obtain consistent

1A permissible prior function means that it should satisfy p(Y |θ) =R
F
p(f |θ)p(Y |θ, f) df < ∞ for fixed sample size. Note that all proper priors are

permissible while improper priors may or may not be permissible. For more details, see
Bernardo (2005).
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estimates of θ for arbitrary specification of the prior function, p(f |θ)2. That
is, the posterior function p(θ|Y ) will become a spike at a point different
from the true value of θ (denoted by θtrue) as the sample size, N , increases3.
Denote ν as the probability measure, of which p(θ|Y ) is the density. Further
assume that θ has the support Θ. If Ω represents any subset of Θ, we have
the following,

ν(Ω) =
∫
θ∈Ω

p(θ|Y ) dθ. (2.2)

The incidental parameter problem now can be interpreted as

plim
N→∞

ν(Ω) = I(θb ∈ Ω) (2.3)

where I(·) is the indicator function and θb 6= θtrue. The Bayesian method
could be viewed as related to the random effect model in the classical lit-
erature, in which p(f |ζ, θ)4 is assumed to be the correct distribution for f .
In a situation like this, we have a new parameter ζ, whose dimension will
not change with the sample size. We then need to estimate it along with
θ after we integrate f out of the likelihood with respect to p(f |ζ, θ). The
difference between p(f |ζ, θ) and p(f |θ) in (2.1) does not just lie in the in-
troduction of a new parameter. For the random effect model to work well,
the assumed p(f |ζ, θ) has to be a proper density5 and a good approximation
of the underlying distribution for the incidental parameter. However, for
most situations, it is unlikely for researchers to have such “prior” knowledge
about the form of the true incidental parameter distribution. On the other
hand, the prior used in a Bayesian framework does not have to be a proper
probability measure. There is a large literature on the use of objective priors
or so-called reference priors, which only depend on the assumed model and
the available data (see Bernardo, 2005). Liseo (2006) found that such priors

2It is shown by Hahn (2004) that the Jeffrey’s prior is generally not bias reducing.
3We assume that the prior function p(θ) is non-dogmatic throughout. That is, the

integrated likelihood function p(Y |θ) will asymptotically be dominant in the posterior
function.

4The conditional density function can also possibly depend on the exogenous regressors.
5It means

R
F

p(f |ζ, θ)d f = 1.
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are able to solve or alleviate the incidental parameter problem for a few
specific examples. However, the reference prior is not inherently designed to
solve the incidental parameter problem. For some situations, there is not a
clear guideline on the choice of bias-reducing prior.

To see why a prior, pr(f |θ), can remove the bias, we can compare it to
a bias prior, pb(f |θ)6 which has the incidental parameter problem described
in (2.3). Here we implicitly assume both priors are permissible. Then the
marginal posterior density functions of θ implied by the two priors through
the Bayes Theorem can be linked by a function, pr(θ|y) ∝ r(θ)pb(θ|y)7,
where

r(θ) =

∫
F pr(f |θ)p(Y |θ, f)d f∫
F pb(f |θ)p(Y |f, θ)d f

. (2.4)

It is not hard to see that r(θ) serves as a correction function and is a non-
negative and integrable (with respect to ν) function, which can induce an-
other probability measure νr,

νr(Ω) =
∫
θ∈Ω

k · r(θ)pb(θ|Y ) dθ =
∫
θ∈Ω

k · r(θ) dν. (2.5)

where k is a normalizing constant not depending on θ, such that

plim
N→∞

νr(Ω) = I(θtrue ∈ Ω). (2.6)

The problem now is to find the permissible and bias reducing prior,
pr(f |θ). Here we follow the information orthogonal argument used by Lan-
caster (2002) to find such prior. If f is information orthogonal to θ, i.e.

EY

(
∂2 ln p(Y |θ, f)

∂f∂θ

)
=
∫
∂2 ln p(Y |θ, f)

∂f∂θ
p (Y |θ, f) dY = 0 (2.7)

we can just use a flat prior p(f |θ) ∝ 18 to integrate out the incidental
6For many cases, it is convenient to choose p(f |θ) ∝ 1 as a reference given that it is

permissible, though this flat prior could be bias free in some case.
7We use the same marginal prior of θ under the two different conditional priors.
8We must assume here that the flat prior is a permissible prior.
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parameter and the resulting marginal posterior mode of θ is a consistent
estimator (given that p(θ) is non-dogmatic). This result holds since the
Bayesian integrated likelihood obtained from a flat prior is asymptotically
equivalent to the modified profile likelihood in Cox and Reid (1987), see
also Sweeting (1995). The modified profile likelhood was derived by Cox
and Reid (1987) as an approximation to the conditional likelihood given the
maximum likelihood estimator of the incidental parameter (as a function of
the common parameter) when the incidental parameter is information or-
thogonal to the common parameter. We can understand this approach from
the fact that consistent estimator of the common parameter can be obtained
from maximizing the conditional likelihood given the sufficient statistic for
the incidental parameter, see Lancaster (2000). If the orginal parameteriza-
tion does not lead to information orthogonality, Lancaster (2002) suggested
that we can reparameterize f as f(g, θ) such that the new incidental param-
eter g (with the same dimension as f) is information orthogonal to θ and
the integrated likelihood

∫
G p (Y |f(g, θ), θ) d g can yield consistent estima-

tion of θ. Lancaster (2002) showed that to find the information orthogonal
reparameterization amounts to solving the following differential equation

∂f

∂θ
= −

(
EY (

∂2 ln p(Y |θ, f)
∂f∂f ′

)
)−1

EY

(
∂2 ln p(Y |θ, f)

∂f∂θ

)
(2.8)

The new incidental parameter g can be recovered as the constant term in
the solution. Under the flat prior p(g|θ) ∝ 1, the integrated likelihood can
lead to consistent estimation of θ. In terms of the original parameterization,
the integrated likelihood can be represented as

∫
F |det(

∂g
∂f ′ )|p (Y |f, θ) d f for

p(g|θ)|det( ∂g∂f ′ )| = p(f−1(g, θ)|θ)|det( ∂g∂f ′ )| = p(f |θ) ∝ |det( ∂g∂f ′ )|. Hence to
find the bias reducing prior is equivalent to finding the Jacobian from the
old incidental parameter to the new incidental parameter. If we can assume
different individuals (y′is) are conditionally independent, since the bias re-
ducing prior is proportional to the absolute value of the determinant of
the Jacobian matrix, without loss of generality, we can assume ∂g

∂f ′ is di-
agonal, which means fi is only related to gi in addition to θ, such that
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|det( ∂g∂f ′ )| =
N∏
i=1
|∂gi∂fi
|. We can now rewrite (2.8) as

∂fi
∂θ

= χ(fi, θ) (2.9)

where χ(fi, θ) is defined as

χ(fi, θ) = −
(
Ey(

∂2 ln p(yi|θ, fi)
∂f2

i

)
)−1

Ey

(
∂2 ln p(yi|θ, fi)

∂fi∂θ

)
. (2.10)

Since fi is defined implicitly as a one-one function of gi, we can differentiate
both sides of (2.9) with respect to gi to obtain

∂2fi
∂θ∂gi

=
∂χ(fi, θ)
∂fi

∂fi
∂gi

,

which is equivalent to

−
∂ ln |∂gi∂fi

|
∂θ

=
∂ ln |∂fi∂gi

|
∂θ

=
∂2fi
∂θ∂gi

(
∂fi
∂gi

)−1

=
∂χ(fi, θ)
∂fi

. (2.11)

Let us denote ψ(fi, θ) = ∂χ(fi,θ)
∂fi

and λ(fi, θ) = ln |∂gi∂fi
|. It is possible to find

out λ(fi, θ) and hence |∂gi∂fi
| from (2.11) to solve the incidental parameter

problem.

Example 2.1. Let us consider a simple panel Poisson count model: yi,t ∼
i.i.d.Poisson (fi exp(xi,tθ)) with t = 1, 2, . . . , T and i = 1, 2, . . . , N where
θ is a scalar and fi exp(xi,tθ) is the mean parameter in the Poisson dis-
tribution. Denote yi = (yi,1, yi,2, . . . , yi,T )′, the likelihood contribution of
individual i is given by

li(fi, θ) = p(yi|fi, θ) ∝ e−fi
P
t exp(xitθ)f

P
t yit

i eθ
P
t yitxit (2.12)

Note that we can choose the parameterization fi = gi (
∑

t exp(xitθ))
−1 such

that the individual likelihood can be decomposed into two functions of only
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gi and θ respectively, i.e. li(fi(g, θ), θ) = li1(gi)li2(θ),

li(fi(g, θ), θ) ∝ e−gig
P
t yit

i × eθ
P
t yitxit

(
∑

t exp(xitθ))
P
t yit

(2.13)

which means gi and θ are orthogonal to each other and the MLE of θ is
consistent. Due to the parameterization invariance property, the maximum
likelihood estimator of θ is consistent under even the original parameteriza-
tion. On the other hand, the flat prior p(fi|θ) ∝ 1 can not lead to consistent
estimation since the Bayesian integrated likelihood is

p(yi|θ) ∝
eθ

P
t yitxit

(
∑

t exp(xitθ))
1+

P
t yit

, (2.14)

which is different from li2(θ) in (2.13) and hence the posterior mode of p(θ|y)
under the prior p(θ) ∝ 1 is not a consistent estimator. A natural choice of
the correction function is r(θ) =

∑
t exp(xitθ), by which (2.14) is multiplied

to give the same form as li2(θ). We can also derive this correction function
and the bias reducing prior from the Jacobian argument outlined before. First
note that

Ey

(
∂2li(fi, θ)
∂fi∂θ

)
= −

∑
t

xit exp(xitθ) 6= 0

Ey

(
∂2li(fi, θ)
∂f2

i

)
= Ey

(
−
∑

t yit
f2
i

)
= −

∑
t exp(xitθ)
fi

χ(fi, θ) = −
fi
∑

t xitexp(xitθ)∑
t exp(xitθ)

(2.15)

We can see that fi is not information orthogonal to θ in the model. That
is why the flat prior is not bias reducing in this case. Next we can see
that ψ(fi, θ) = ∂χ(fi,θ)

∂fi
= −

P
t xitexp(xitθ)P
t exp(xitθ)

. Finally use (2.11) to find out
that λ(fi, θ) = ln(

∑
t exp(xitθ)) and hence the bias reducing prior p(fi|θ) ∝

|∂gi∂fi
| =

∑
t exp(xitθ), which is exactly the same as the correction function

we found earlier.

When the dimension of θ is more than one, say, θ = (θ1, θ2), there is no
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gurantee that we can find λ(fi, θ) from the differential equation (2.11) since
the compatibility condition ∂2ψ(fi,θ)

∂θ1∂θ2
= ∂2ψ(fi,θ)

∂θ2∂θ1
may not be satisfied. That is

why the information orthogonal reparameterization in general does not exist
as pointed out by Lancaster (2002). For the linear dynamic panel AR(1)
model, Lancaster found that information orthogonality is not necessary for
consistent estimation of the common parameter. Note that if θ is a scalar, we
can always find λ(fi, θ) from (2.11). The idea proposed here is to break θ into
blocks such that for the jth block we have the differential equation ∂λj(fi,θ)

∂θj
=

ψj(fi, θ) which can be solved to obtain λj(fi, θ). We then assemble all the
solutions to yield the bias reducing prior as

p(fi|θ) ∝ exp [λ1(fi, θ) + λ2(fi, θ) + . . . ] . (2.16)

We will show in the next section that such strategy can produce the prior and
the correction function needed to give consistent estimation for the linear
dynamic AR(p) panel model.

2.3 The Linear AR(p) Panel Model with Fixed Ef-

fect

2.3.1 The Bias Reducing Prior and the Posterior Results

Suppose our model has p lags and can be written as

yi = ιfi + Yi ρ+Xiβ + ui (2.17)

where yi is [yi,1,yi,2,. . . ,yi,T ]′, fi is the fixed effect scalar, ι is a vector of
ones, Yi is a T × p matrix, in which a typical row (the j + 1th row) looks
like [yi,j , yi,j−1, . . . , yi,j−p+1] (j=0,1,. . . ,T-1), ρ is [ρ1, ρ2, . . . , ρp]′, Xi is the
strictly exogenous regressor matrix of dimension T × K and ui is a T × 1
disturbance, for which we assume ui ∼ i.i.d.N(0, σ2IT ).

In our model, it is obvious that fi is the incidental parameter, or the
fixed effect, which captures the heterogeneity of economic agents, while θ =
(ρ′, β′, σ2)′ are the common parameters, which we want to have consistent
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estimates for. The dimension of θ is p + K + 1. Lancaster (2002) showed
that there does not exist any information orthogonal reparameterization for
this model. However, we can see that θ has naturally three blocks, ρ, β and
σ2. For each block, we may be able to solve the differential equation (2.11)
to obtain λρ(fi, θ), λβ(fi, θ) and λσ2(fi, θ). Using the strategy mentioned in
the previous section, the bias reducing prior could have the form:

p(fi|θ) ∝ exp [λρ(fi, θ) + λβ(fi, θ) + λσ2(fi, θ)] . (2.18)

We will show later that this is indeed the case for the model9.
Note that the log likelihood contribution of individual i conditionnal on

the initial p observations (denoted by yi,−p) is the following,

li = ln p(yi|fi, θ, yi,−p) ∝ −
T

2
lnσ2− 1

2σ2
(yi − ιfi − Yi ρ−Xiβ)′ (yi − ιfi − Yi ρ−Xiβ) .

(2.19)
To implement our strategy, we first need to calculate the following quantities,

Ey

(
∂2li
∂f2

i

)
= − T

σ2
, (2.20)

Ey

(
∂2li
∂fi∂β

)
= − T

σ2
X ′iι, (2.21)

Ey

(
∂2li

∂fi∂σ2

)
= −Ey

[
(yi − ιfi − Yiρ−Xiβ)′ ι

(σ2)2

]
= 0, (2.22)

Ey

(
∂2li
∂fi∂ρ

)
= − T

σ2
Ey(Y ′i ι)

= − T
σ2

[Th(ρ)fi + ω1(Xiβ, ρ) + ω2(yi,−p, ρ)] , (2.23)

where h(·), ω1(·) and ω2(·) are all p × 1 vector functions10. ω1(·) and ω2(·)
are functions which do not involve fi. From (2.22), we can see that fi
is information orthogonal to σ2. The right hand side of (2.21) does not
involve fi. Hence we can have λβ(fi, θ) = 0K×1 and λσ2(fi, θ) = 01×1,

9In the appendix, we show that the true values of the common parameters constitute
a local stationary point asymptotically for the integrated likelihood under the solution
obtained in this way.

10See appendix for the detailed forms of the functions.
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which implies that we can just use a flat prior p(fi|β, σ2) ∝ 1 to obtain
consistent estimation of β and σ2 when the model does not have the lag
term, i.e. ρ = 0.11 With the lag term, to find λρ(fi, θ), we need to solve the
following differential equation system,

∂λρ(fi, θ)
∂ρ

= h(ρ). (2.24)

We show in the appendix that (2.24) has a solution, λρ(fi, θ) = τ(ρ), which
is a function of ρ only. The functional form of τ(ρ) depends on T and p.
Table 2.1 shows some forms of τ(ρ) under different values of T and p. For
specific values of T and p, we refer the readers to the appendix of this chapter
and a Maplet program written by the author (available on request) for the
exact form of τ(ρ). Since our posterior results are conditional on the initial
p observations, the actual number of time periods for an economic agent is
T + p. Under our setup, estimation is only possible if T ≥ 2. When T takes
a particular value, the form for τ(ρ) will not change for p ≥ T − 1. Finally

Table 2.1: The functional form of τ(ρ) under different values of T and p
H

HHH
HHp
T

2 3 4

1 1
T

T−1∑
t=1

T−t
t ρt1

2 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2

3 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2 + 1

4ρ3

4 1
2ρ1

1
3

2∑
t=1

3−t
t ρ

t
1 + 1

3ρ2
1
4

3∑
t=1

4−t
t ρ

t
1 + 1

4ρ1ρ2 + 1
2ρ2 + 1

4ρ3

the bias reducing prior, p(fi|θ) under our strategy in (2.18) is

p(fi|θ) = p(fi|ρ) ∝ exp(τ(ρ)). (2.25)
11It is well known that the within group estimator of β under static panel model is

consistent. Under the Bayesian framework, the integrated likelihood will give the correct
degrees of freedom for the estimator of σ2.
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Note that this prior involves ρ only. The correction function defined in (2.4)
is therefore

r(θ) = r(ρ) = exp[Nτ(ρ)]. (2.26)

For the linear panel AR(p) model, it happens that the conditional prior of
f given θ does not involve f in both the numerator and the denominator on
the left hand side of (2.4). That is why the correction function in (2.26) has
closed form. It is possible that the bias reducing prior defined in (2.16) can
involve f in other cases12 and the correction function does not have closed
form.

Next we need to specify the prior, p(θ) for our Bayesian analysis. The
structure of the prior distribution of (f, θ) looks like the following,

p(f, θ) = p(f, ρ, β, σ2) = p(f1|ρ) . . . p(fN |ρ)p(ρ)p(σ2)p(β|σ2)

∝ r(ρ)
1
σ2
I(ρ ∈ S)

1
m(S)

p(β|σ2)
(2.27)

where the set S denotes the stationary region of ρ, I(·) is the indicator func-
tion and m(S) is the measure of the volume of S13. The general form of
m(S) can be found in Piccolo (1982). Here we adopt the uniform prior re-
stricted to the stationary region for ρ. We use the g-prior for the conditional
prior of β on σ2, which is asymptotically non-informative if we set η = η(N)
such that lim

N→∞
η(N) = 014,

β|σ2 ∼ N

(
0, σ2(η

N∑
i=1

X ′iHXi)−1

)
, (2.28)

where the demean matrix H is equal to IT − ιι′

T .

Proposition 2.1. Conditional on the initial p observations of the dependent
variable, using the bias reducing prior (2.25) and the priors described in

12The binary logistic model is such an example.
13For example, if p = 1, then ρ ∈ (−1, 1) and hence m(S)=2.
14Note also that β and σ2 are asymptotically independent in our prior.
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(2.27) and (2.28), we can obtain the following posterior distributions,

fi|Y, yi,0, σ2, ρ, β ∼ N

(
ι′(yi − Yi ρ−Xiβ)

T
,
σ2

T

)
, (2.29)

β|Y, Y0, σ
2, ρ ∼

N

(
1

η + 1

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iH(yi − Yi ρ), σ2

(
(η + 1)

N∑
i=1

X ′iHXi

)−1)
,

(2.30)

σ2|ρ, Y, Y0 ∼ IG(N(T − 1),∆), (2.31)

where

∆ =
N∑
i=1

(yi − Yi ρ)′H(yi − Yi ρ)−

1
η + 1

N∑
i=1

(yi − Yi ρ)′HXi

(
N∑
i=1

X ′iHXi

)−1 N∑
i=1

X ′iH(yi − Yi ρ).

(2.32)

Moreover, after we integrate out f , β and σ2, we can have

ρ|Y, Y0 ∝ I(ρ ∈ S)r(ρ)t(A−1b,
1

N(T − 1)− p
(c− b′A−1b)A−1, N(T − 1)− p)

(2.33)
where

A
p×p

=
N∑
i=1

Y ′i HYi −
1

η + 1

N∑
i=1

(
Y ′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHYi

)
b
p×1

=
N∑
i=1

Y ′i Hyi −
1

η + 1

N∑
i=1

(
Y ′i HXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
c

1×1
=

N∑
i=1

y′iHyi −
1

η + 1

N∑
i=1

(
y′iHXi

)( N∑
i=1

X ′iHXi

)−1 N∑
i=1

(
X ′iHyi

)
.

(2.34)

Equation (2.33) tells us that the kernel of the posterior distribution of ρ
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can be viewed as the product of r(ρ) and the multivariate t distribution
with N(T −1)−p degrees of freedom, mean parameter A−1b and covariance
matrix 1

N(T−1)−p(c − b′A−1b)A−1, which we could have obtained using the
flat prior p(f |θ) ∝ 1. Note that A−1b is the within group estimator in the
classical literature, which is inconsistent. The function r(ρ) serves as the
correction function to fix such inconsistency.

2.3.2 Estimation Algorithm

Our estimation is based on the draws of the parameters from their posterior
distributions. From (2.29), (2.30) and (2.31) we can see that the posterior
distributions of g, β and σ2 all depend on ρ. Once we have posterior draws
of ρ, we can have draws of other parameters. We can see that the posterior
distribution of ρ in (2.33) is not standard and we can not directly draw from
it. Before we get into the details of the posterior estimation, let us recap the
prior of ρ in (2.27). The prior of ρ is a uniform distribution in the stationary
region. Barndorff-Nielsen and Schou (1973) found that there is a one-to-one
differentiable mapping between the partial autocorrelations (PAC) and the
slope coefficients (ρ) for the stationary AR model. Let us denote the PAC
as πp×1 = (π1, . . . , πp)′ and introduce the quantities κ(k) = (κ(k)

1 , . . . , κ
(k)
k )′,

k = 1, . . . , p. Then the mapping from PAC to ρ can be recovered from

κ
(k)
i = κ

(k−1)
i − πkκ

(k−1)
k−i , i = 1, . . . , k − 1, (2.35)

with κ
(k)
k = πk and ρ = κ(p). The Jacobian of the transformation is

J(π) =
p∏

k=2

(1− πk)[k

2
](1 + πk)[k − 1

2
] (2.36)

On the other hand, the mapping from ρ to π can be obtained by

κ
(k−1)
i =

κ
(k)
i + κ

(k)
k κ

(k)
k−i

1−
(
κ

(k)
k

)2 (2.37)

As Jones (1987) showed, if ρ follows a uniform distribution in the stationary
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region, PAC will be related to a beta distribution as follows,

πk + 1
2

∼ i.i.d.Beta

(
[
1
2

(k + 1)], [
1
2
k] + 1

)
(2.38)

where [x] denotes the integer part of x. Moreover, for the AR model to
be stationary, the absolute values of all its partial autocorrelations must
be less than 1. A more formal proof can be found in Ramsey (1974). It
is also possible to adopt a uniform prior for the PAC instead, see Philippe
(2006). However, through simulations we find that these two priors are very
different. The second prior has a higher tendency to choose the models
bordering the unit root circle as the lag order increases. Results are shown
in Figure 2.115, We can see that as the number of lags increases, the moduli
of the characteristic roots16 from the AR model under the second prior tends
more to be close to 1. Here we do not want to assume a prori that our model
is close to the unit circle. Hence we choose the uniform prior for ρ in the
stationary region.

Now we can turn to the details of how to take draws of ρ from (2.33),
which can be rewritten as,

p(ρ|Y, Y0) ∝ I(ρ ∈ S) exp
{
N

[
τ(ρ)− T − 1

2
ln(ρ′Aρ− 2ρ′b+ c)

]}
∝ I(ρ ∈ S) exp [Nϑ(ρ)]

(2.39)

where
ϑ(ρ) = τ(ρ)− T − 1

2
ln(ρ′Aρ− 2ρ′b+ c). (2.40)

Since the mode of the posterior distribution is a consistent estimator, we can
expect ϑ(ρ) has a unique global maximum in the stationary region when N
tends to infinite. Under certain regularity conditions, the posterior distribu-
tion will converge to a normal distribution as the sample size N increases,

15Here and in the subsequent sections, we use a nonparametric package (ksdensity.m)
from MatLab R© to make such plots based on the simulated draws from the corresponding
distributions.

16The roots are obtained from the characteristic equation: xp − ρ1x
p−1 − · · · − ρp = 0



CHAPTER 2. A CORRECTION FUNCTION APPROACH 71

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

p=2

(a) p=2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

p=4

(b) p=4

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20
p=6

(c) p=6

Figure 2.1: The kernel plots of the characteristic roots moduli. The dashed
lines represent the case when we use uniform prior for ρ and the solid lines
denote the case when we use uniform prior for PAC.
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see Bernardo and Smith (section 5.3 1994). It is sensible to use the following
truncated normal distribution to approximate the posterior:

ρ|Y, Y0
a∼ I(ρ ∈ S)N

(
ρ̂,

1
N

[
−ϑ′′(ρ̂)

]−1
)
. (2.41)

where the mean of the normal distribution, i.e. ρ̂, is the maximum of ϑ(ρ)
in the stationary region, which can be estimated by Newton’s method, and
ϑ′′(ρ̂) denotes the Hessian matrix evaluated at ρ̂. Algorithm 2.1 in the
following is a Metropolis-Hastings (MH) algorithm, which makes draws from
(2.39) using (2.41) as the proposal distribution. We refer the reader to Chib
and Greenberg (1995) for the details on the convergence of MCMC estimates.
Note that the truncated normal distribution is a good approximation to the
true posterior only in large sample. To take account of such scale errors,
in practice when we propose a draw from (2.41), we could replace N in the
denominator of the variance by v · N . The value of v is at our discretion.
The variance in the proposal distribution is scaled in this way such that we
can sample from a wide range of the parameter space.

Algorithm 2.1. Starting from the current value of ρ0 ∈ S, we repeat the
following steps.

1. We propose a draw ρc from (2.41).

2. We accept ρc as a draw from the posterior distribution (2.39) with the
probability

α(ρ0, ρc) = min
(

1,
exp [Nϑ(ρc)] q(ρ0)
exp [Nϑ(ρ0)] q(ρc)

)
(2.42)

where q(·) is the density function of the truncated normal distribution
(2.41).

3. If we accept ρc as our new draw, we replace ρ0 with ρc; otherwise we
keep it the same. Then we go back to step 1.

After we obtain enough draws from the posterior distribution, we can also
use the mean of the draws as our point estimator and construct the highest
posterior density interval to make inference.
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The above algorithm should work for most circumstances. However,
there are still some issues remaining. One potential problem is that when p
is large but N is small, the Newton’s method may not be efficient in finding
the maximum point of the posterior distribution. For such situation, we may
try many initial values but they may converge to different points through
the Newton’s method. A possible way to tackle the problem is to have a
pilot run of Algorithm 2.1 after we obtain a crude estimate of the maximum
point from the Newton’s method. Then we could improve the estimation by
using the Newton’s method again on a selection of the posterior draws, such
as those with high posterior density. We can repeat such processes until we
find the satisfactory global maximum point.

Another potential problem has been noticed by Lancaster (2002). When
N is small for the case of one lag, the posterior density function of ρ may
not have a bell shape. Figure 2.2 shows such a case. We can see that the
maximum is not close to the true value (0.6) but on the unit circle instead.
More importantly, the second order derivative of the density function at the
maximum is positive, which means the truncated distribution in (2.41) has a
negative (definite) variance. Although such situation does not always arise,
it is not hard to imagine that when p gets larger and N is small, it could
happen more often. Therefore it should be sensible for us to take precaution
against such case in our algorithm. One way is to replace the negative
definite variance matrix in (2.41) by a positive definite variance matrix,
such as 1

N(T−1)−p(c − b′A−1b)A−1 in (2.33). Again, we can multiply the
variance matrix by 1

v to control the acceptance rate such that our algorithm
can explore a wide range of the parameter space.

2.3.3 Comparison of Different Model Specifications

In the last chapter, we noticed that when our model is misspecified, such as
the case when we include the wrong set of exogenous regressors, the solution
for (2.24) may not enable us to obtain consistent estimate of ρ under the
AR(1) panel model. Therefore we suggested comparing different model spec-
ifications using the Bayes factor and showed certain regularity conditions
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Figure 2.2: The plot of a non-bell shape posterior density function of ρ

under which the Bayes factor is consistent in model selection. Drawing the
analogy, we also recommend comparing different model specifications here.
We propose two algorithms to achieve this.

Different model specifications are defined by different lag orders (p) and
the inclusion of different sets of regressors in (2.17). They are compared
based on their posterior model probabilities. We use a K by 1 vector ix,
whose elements are either 0 or 1, to denote the exclusion or the inclusion of
a particular exogenous regressor. If we denote the maximum AR order by
P ,17 the total number of models will be (P +1)2K . Suppose for our dataset,
there are Ttrue observations for each economic agent. Since our estimation is
conditional on the first p observations, the dimension of yi (T ) in (2.17) and
the maximum AR order (P ) must satisfy P +T = Ttrue. When we compare
different model specifications, T does not change for different models. The

17In the case of p = 0, we define τ(ρ) = 0, A = 0 and b = 0. When ix is a vector of

zeros, we have A =
NP
i=1

Y ′i HYi , b =
NP
i=1

Y ′i Hyi and c =
NP
i=1

y′iHyi.
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posterior model probability of model i is defined as

p (Mi|Y, Y0) =
p (Mi) p (Y |Y0,Mi)

p (Y |Y0)

=
p (Mi) p (Y |Y0,Mi)∑(P+1)2K

j=1 p (Mj) p (Y |Y0,Mj)
.

(2.43)

where p (Mi) is the prior model probability. Here we just assume all the
models are equally possible a priori such that the posterior model probability
only depends on the marginal likelihood, i.e.

p (Y |Y0,Mi)

=
∫
p(g, θ|Y0,Mi)p(Y |g, θ, Y0,Mi)dg dθ

=
∫
ρ∈S

p(ρ|Y0,Mi)p(Y |ρ, Y0,Mi)dρ

(2.44)

Therefore the comparison of two different models depends on the Bayes
factor, p(Y |Y0,Mi)

p(Y |Y0,Mj)
.

If the number of models under consideration is not large, we can cal-
culate the marginal likelihood for all of them. The method due to Chib
and Jeliazkov (2001) can help us in this regard. Recall that the marginal
likelihood for model i can be also calculated as,

p(Mi|Y, Y0) =
p(ρ∗|Mi)p(Y |ρ∗, Y0,Mi)

p(ρ∗|Mi, Y, Y0)
(2.45)

For ρ∗ we can choose arbitrary value in the stationary region, but for estima-
tion efficiency, the estimated mode of ρ from (2.41) is preferred. According
to Chib and Jeliazkov (2001), p(ρ|Mi, Y, Y0) can be estimated by

p̂(ρ|Mi, Y, Y0) =
K−1

K∑
k=1

α(ρ(k), ρ∗)q(ρ(k), ρ∗)

J−1
J∑
j=1

α(ρ∗, ρ(j))
(2.46)
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As in Algorithm 2.1 before, α(ρ∗, ρ(j)) and q(ρ∗, ρ(j)) respectively stand for
the acceptance probability and the proposal density function moving from
ρ∗ to ρ(j) in the Markov chain.18 In addition to that, {ρ(k)} are the sam-
ple draws from the posterior distribution and {ρ(j)} are the draws from
q(ρ∗, ρ(j)) (the proposal density). Carlin and Luis (2000) recommend the
Chib’s method for calculating the marginal likelihood since it is safe and rel-
atively easy to implement. For our algorithm, we find that the estimates of
the marginal likelihood are quite stable once we set up the proposal density
appropriately. However, the Chib’s method can evaluate only one model
each time we use it. When the number of models under consideration is
huge, it is computationally prohibitive to evaluate all the models. Next we
propose the reversible jump algorithm (Algorithm 2.2) which samples the
parameter space and the model space at the same time.

Algorithm 2.2. Starting from the current status (p(0), ix(0), ρ(0)), we repeat
the following steps.

1. From p(0) and ix(0), we propose p(c) and ix(c). The details of the
proposal will be discussed later.

2. Depending on the values of p(c) and ix(c), we propose ρ(c) and calculate
the acceptance probability according to the following:

• If p(c) > p(0), we first use (2.37) to transform ρ(0) into π(0) and
then draw a (p(c) − p(0)) × 1 vector u, whose elements follow
i.i.d.U(−1, 1). Finally ρ(c) is obtained by transforming (π(0), u)′

through (2.35). The acceptance probability is calculated as

min
(

1,
(

η

η + 1

)(k(c)−k(0))

·

m
(
S(0)

)
exp

[
Nϑ(ρ(c)|ix(c))

]
q(c, 0)

m
(
S(c)

)
exp

[
Nϑ(ρ(0)|ix(0))

]
2p(0)−p(c)q(0, c)

∣∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣∣
)
,

(2.47)

18In our context, q(ρ∗, ρ(j)) = q(ρ(j)).
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where ϑ(·) is defined in (2.40). q(x, y) denotes the probability of
jumping to model y given that the chain is now at model x and∣∣∣ ∂ρ(c)

∂(ρ(0)′,u′)

∣∣∣ is the Jacobian from (ρ(0)′, u′) to ρ(c). We can calculate
the Jacobian as∣∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣∣ =
p(c)−p(0)∏
i=1

(1 + ui)[ p
(0)+i−1

2
](1− ui)[ p

(0)+i
2

], (2.48)

where [x] denotes the integer part of x. (See the appendix for the
proof.)

• If p(0) > p(c), we first transform ρ(0) to π(0) and ρ(c) is obtained
from transforming (π(0)

1 , . . . , π
(0)

p(c)
). The acceptance probability is

calculated as

min
(

1,(
η

η + 1

)(k(c)−k(0)) m
(
S(0)

)
exp

[
Nϑ(ρ(c)|ix(c))

]
2p

(c)−p(0)q(c, 0)
m
(
S(c)

)
exp

[
Nϑ(ρ(0)|ix(0))

]
q(0, c)

·∣∣∣∣∣∣ ∂ρ(0)

∂(ρ(c)′, π
(0)

p(c)+1
, . . . , π

(0)

p(0)
)

∣∣∣∣∣∣
−1)

.

(2.49)

where the Jacobian takes the following form∣∣∣∣∣∣ ∂ρ(0)

∂(ρ(c)′, π
(0)

p(c)+1
, . . . , π

(0)

p(0)
)

∣∣∣∣∣∣ =
p(0)∏

i=p(c)+1

(1 + π
(0)
i )[ i−1

2
](1− π(0)

i )[ i
2

].

(2.50)

• If the values of p(0) and p(c) are the same, then we deliver ρ(c) =
ρ(0) and the acceptance probability is calculated from

min

(
1,

exp
[
Nϑ(ρ(0)|ix(c))

]
exp

[
Nϑ(ρ(0)|ix(0))

]) . (2.51)

3. If we accept ρ(c) as our new draw, we also replace p(0) and ix(0) with
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p(c) and ix(c). If we reject the proposed model and the parameter value,
we use Algorithm 2.1 to update ρ(0) under the old model. Then we go
back to step 1.

The reversible jump algorithm, first proposed by Green (1995), can be
seen as an extension of the MH algorithm when the dimension of the param-
eter space under consideration varies in the Markov chain. The rationale
behind the updating scheme of ρ in step 2 is that when we increase (reduce)
the dimension of ρ, we at the same time increase (reduce) the dimension
of the PAC (π) in the model. The way of updating in step 2 means when
we increase the dimension of ρ, we deliver (π, u)′ as our new PAC; for the
dimension reduction, we deliver (π1, . . . , πp(c)) as our new PAC.

Now we go back to discuss how we propose to change the parameter di-
mension, i.e., how we propose p(c) and ix(c) in step 1 of Algorithm 2.2 above.
The bottom line here is that we want our algorithm to move quickly enough
to sample the model space (especially when it is large) and to overcome the
problem of multi-modes. Similar practices can be seen in Ehlers and Brooks
(2002). We propose p(c) and ix(c) independently. To propose p(c), we use
the discretized Laplacian distribution so that the density for p(c) conditional
on p(0) (q(p(0), p(c))) is given by

q(p(0), p(c)) ∝ exp
(
−ς|p(c) − p(0)|

)
, p(c), p(0) ∈ [1, . . . , P ], (2.52)

where p(0) stands for the current value of p and ς ≥ 0 denotes a scale
parameter. For ς = 0, the proposal is a uniform distribution not depending
on the current status of the chain, while for bigger values of ς, the models
further away from p(0) are less likely to be proposed.

As for ix, we wish that it should change more often since the potential
number of regressors is generally large. We may like every proposed model
to be different from the old model. A simple way to achieve this is to first use
a truncated binomial distribution19 to generate the number of elements in ix

19We do not include 0 in the support for the proposal.
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to be changed. Then we draw the elements uniformly without replacement.
For the selected elements, we change them to 1 (0) if they are originally 0
(1). Let us denote the number of elements to be changed by k and it has
the probability function q(k),

q(k) =
(
K

k

)
γk(1− γ)K−k

(
1− (1− γ)K

)−1
(2.53)

where γ ∈ (0, 1) is the scale parameter. Taking γ = 1
2 , we have the uniform

distribution for all the potential models under consideration. For small
values of γ, we prefer small changes while for big values of γ, we prefer big
changes.

Through the study of the simulated dataset later, we find that the results
obtained through our reversible jump algorithm are quite similar to the
results from the Chib’s method, although the reversible jump may sometimes
have difficulty in separating two models with close posterior probabilities.

2.3.4 Demonstration Examples for Estimation

In this section, we use simulated data to demonstrate the performance of
our methods developed above. We want to show our methods can still work
for a rather difficult case.

First we use the techniques in Section 2.3.2 to estimate a model with
three lags and no exogenous regressors. Suppose there are Ttrue observations
for each economic agent in our panel. Recall that P (the maximum lag) and
T (the observations we use for estimation) must satisfy T +P = Ttrue. The
lowest value for T is 2 according to Table 2.1. In the simulated dataset,
we first set Ttrue = 5 and set σ2 = 1, ρ1 = −1.1718, ρ2 = 0.17399 and
ρ3 = 0.49181 (Table 2.2). Such setting implies that the true value of ρ is
near the unit circle in the stationary region. The largest modulus of the
characteristic root is 0.9196, which is fairly close to 1. We estimate our
model with different Ns (cross section sample sizes). The results are shown
in Table 2.3. As we can see, for N=50 and 100, both the posterior mode
and mean are very different from the true values, though the posterior mean



CHAPTER 2. A CORRECTION FUNCTION APPROACH 80

seems to be closer than the mode. Note that the largest moduli of the
characteristic roots obtained based on the posterior modes for these two
cases are 0.9998 and 0.9999, which are virtually equal to 1. This should
remind us of Figure 2.2 when the maximum point of the density function
is obtained on the unit circle and the density function does not have a bell
shape. In fact, evaluated at the posterior mode under N=50 and 100, the
Hessian matrix of ϑ(ρ) is positive definite, which means the variance matrix
of the proposal density in (2.41), i.e. 1

N [−ϑ′′(ρ̂)]−1, is negative definite and
has to be replaced by a positive definite matrix. When N is increased to
200 and 1000, such problems disappear. The largest moduli are 0.8807 and
0.9282 respectively, which means the posterior modes for these cases are
inside the stationary region. Moreover, the Hessian matrix of ϑ(ρ) is now
negative definite. As for N = 200, the estimated mode and mean are already
much closer to the true value of ρ than those for N=50 and 100, though for
N = 1000 the marginal improvement compared to N = 200 is not that
much. For ρ1 and ρ3 under N = 1000, our estimates look quite near to the
true values. However, there is still some difference for ρ2. We may say that
when T is 2 and the true value is near the unit circle, consistency results
may require huge N to achieve. When we have bigger values of T , our
estimators could be dramatically improved, as will be shown later. We also
put down the maximum likelihood estimates here under the header “MLE”
for comparison. The MLE are much further away from the true values for
all cases and none of the elements are close even for N = 1000.

Table 2.2: The true value of ρ in the simulation and the moduli of the
characteristic roots

ρtrue root moduli
-1.1718 0.9196
0.1740 0.9196
0.4918 0.5816

Though point estimates could be important, sometimes we may be more
interested in knowing the uncertainty surrounding our estimators. Figure 2.3
shows the posterior marginal density plots for ρ1, ρ2 and ρ3 under different
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Table 2.3: Point Estimation Results for T = 2
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE
-0.7657 0.9998 -0.94 -2.157 -0.758 0.9999 -0.91 -2.145
0.8687 0.9469 0.55 -1.594 0.9203 0.9152 0.636 -1.548
0.8965 0.9469 0.73 -0.38 0.8376 0.9152 0.695 -0.325

N = 200 N = 1000
mode root moduli mean MLE mode root moduli mean MLE
-1.28 0.8807 -1.24 -1.942 -1.27 0.9282 -1.26 -1.943
-0.07 0.8807 -0.02 -1.217 0.03 0.9282 0.04 -1.191
0.32 0.4182 0.35 -0.227 0.44 0.5050 0.44 -0.176

cross secion sample sizes. We can see that for N = 50 and 100, the marginal
densities are quite skewed and show signs of non-normality. When N =
200, the marginal density already looks rather symmetrical. It looks more
like normal distribution under N = 1000. Table 2.4 shows the highest
posterior density intervals (HPDI) of the marginal distributions and the
confidence intervals based on the MLE. Under N = 50, though the posterior
means and the modes are very different from the true values of ρ, there is a
high degree of uncertainty surrounding our estimators. As we can see, the
posterior distributions have very long tails. The true values of ρ are within
the 99% and 95% HPDI, and they are near the border of the 90% HPDI.
When N equals 100, the situation is similar, though our point estimates are
better than those under N = 50. As the sample size increases, the posterior
distributions get more symmetrical. When N = 200, we start to see that
not only can we get better point estimates, we can also have better interval
coverage. The HPDIs become narrower with the true values inside as the
cross section sample size increases. However, as for the MLE confidence
intervals, the true values are far away from the intervals for any cross section
sample size, which implies such intervals based on biased estimates could be
very misleading.

Now we increase T and repeat the experiment above. As far as the
MLE is concern, again, the estimates are poor even for T = 10 and N =
1000, which have still quite a distance from our true values. Although the
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Figure 2.3: The marginal density plots of the posterior draws of ρ for T = 2

Table 2.4: HPDI and Confidence Intervals for T = 2
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.363 -0.679 -2.415 -1.9 -0.201 0.890 -2.07 -1.12 0.328 0.966 -0.64 -0.12
95% -1.251 -0.711 -2.35 -1.96 0.046 0.890 -1.95 -1.24 0.443 0.942 -0.58 -0.18
90% -1.173 -0.725 -2.32 -1.99 0.179 0.890 -1.89 -1.29 0.510 0.926 -0.55 -0.21
80% -1.083 -0.740 -2.285 -2.029 0.358 0.875 -1.83 -1.36 0.588 0.909 -0.501 -0.25

N=100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.293 -0.691 -2.33 -1.96 -0.070 0.938 -1.88 -1.21 0.348 0.896 -0.5 -0.149
95% -1.179 -0.703 -2.28 -2.01 0.187 0.938 -1.8 -1.29 0.464 0.878 -0.458 -0.19
90% -1.118 -0.710 -2.26 -2.03 0.324 0.938 -1.76 -1.33 0.528 0.862 -0.437 -0.212
80% -1.037 -0.729 -2.23 -2.06 0.456 0.930 -1.71 -1.38 0.589 0.846 -0.412 -0.237

N=200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.512 -0.917 -2.06 -1.82 -0.487 0.548 -1.44 -0.997 0.113 0.628 -0.346 -0.11
95% -1.464 -1.010 -2.03 -1.85 -0.412 0.406 -1.38 -1.05 0.156 0.559 -0.32 -0.14
90% -1.443 -1.055 -2.02 -1.86 -0.362 0.321 -1.36 -1.08 0.177 0.514 -0.303 -0.15
80% -1.403 -1.100 -2.002 -1.88 -0.292 0.222 -1.33 -1.11 0.210 0.466 -0.29 -0.17

N=1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.386 -1.135 -1.998 -1.889 -0.189 0.302 -1.29 -1.09 0.323 0.565 -0.23 -0.12
95% -1.356 -1.160 -1.985 -1.9 -0.140 0.233 -1.27 -1.11 0.347 0.535 -0.22 -0.13
90% -1.344 -1.178 -1.98 -1.908 -0.111 0.193 -1.26 -1.13 0.359 0.517 -0.21 -0.14
80% -1.328 -1.197 -1.97 -1.92 -0.084 0.161 -1.24 -1.14 0.375 0.502 -0.2 -0.148
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confidence intervals are closer to the true values, none of them can have
the true values inside for different cross section sample sizes. As for our
correction function method, under T = 4, even for N = 50, the mode of the
posterior distribution for ρ is no longer on the unit circle as before and the
marginal distributions are all quite symmetrical. Though the posterior mode
and the mean are still fairly different from the true values, compared to the
case of T = 2, they already get much closer20. The interesting thing to note
is that although we have better point estimates under T = 4, the coverage
of the posterior marginal distributions does not seem to be as good as for
T = 2. The true values of ρ are quite often outside even the 99% intervals.21

The situation only starts to improve for N = 200. When N gets to 1000, the
true values of ρ are fairly well within (or bordering) the HPDIs, which are the
signs of estimation consistency. For T = 10, all results appear to be much
nicer. Both the posterior mode and the mean are already quite near the true
values even for N = 50. As for the posterior marginal distribution coverage,
the true values are quite near the center of the marginal distributions. This
strongly confirms the viability of our correction function method under the
linear short panel context.

Table 2.5: Point Estimation Results for T = 4
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE
-1.4303 0.9009 -1.4226 -1.7435 -1.3814 0.9253 -1.377 -1.712
-0.27864 0.9009 -0.2641 -0.8622 -0.14912 0.9253 -0.14 -0.7667
0.24896 0.3068 0.2563 -0.0491 0.34034 0.3975 0.3452 0.0239

N = 200 N = 1000
mode root moduli mean MLE mode root moduli mean MLE

-1.2123 0.9166 -1.2077 -1.6178 -1.2173 0.9111 -1.2164 -1.628
0.095423 0.9166 0.1039 -0.6581 0.072174 0.9111 0.0739 -0.665
0.44979 0.5354 0.4542 0.0578 0.43123 0.5195 0.4321 0.007

20The L2 distance between the mode and the true value for T = 2 and N = 50 is 0.9,
while for T = 4 and N = 50, it is 0.575.

21Note that these results are based on two particular datasets. If we want to investigate
the HPDI coverage performance in more details, further simulation research needs to be
carried out.
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Figure 2.4: The marginal density plots of the posterior draws of ρ for T = 4

Table 2.6: HPDI and Confidence Intervals for T = 4
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.629 -1.213 -1.92 -1.57 -0.657 0.140 -1.18 -0.55 0.066 0.459 -0.23 0.13
95% -1.585 -1.259 -1.88 -1.61 -0.558 0.040 -1.1 -0.62 0.101 0.415 -0.18 0.085
90% -1.556 -1.286 -1.86 -1.63 -0.512 -0.014 -1.06 -0.66 0.120 0.394 -0.16 0.064
80% -1.530 -1.323 -1.83 -1.66 -0.463 -0.073 -1.02 -0.7 0.148 0.358 -0.137 0.039

N = 100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.528 -1.213 -1.84 -1.59 -0.442 0.164 -0.99 -0.54 0.187 0.528 -0.1 0.15
95% -1.498 -1.244 -1.81 -1.62 -0.358 0.093 -0.94 -0.596 0.226 0.472 -0.07 0.12
90% -1.482 -1.273 -1.79 -1.63 -0.328 0.047 -0.91 -0.62 0.243 0.444 -0.056 0.1
80% -1.456 -1.298 -1.77 -1.65 -0.289 -0.004 -0.88 -0.66 0.262 0.423 -0.038 0.09

N = 200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.325 -1.089 -1.71 -1.53 -0.129 0.350 -0.82 -0.5 0.335 0.579 -0.034 0.15
95% -1.301 -1.114 -1.69 -1.55 -0.076 0.287 -0.78 -0.54 0.366 0.548 -0.01 0.13
90% -1.282 -1.133 -1.67 -1.56 -0.048 0.260 -0.76 -0.55 0.377 0.530 -0.001 0.12
80% -1.270 -1.149 -1.66 -1.57 -0.018 0.219 -0.74 -0.58 0.395 0.511 0.012 0.1

N = 1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.275 -1.157 -1.67 -1.588 -0.029 0.180 -0.74 -0.59 0.381 0.483 0.029 0.11
95% -1.260 -1.172 -1.66 -1.597 -0.004 0.152 -0.72 -0.61 0.393 0.471 0.039 0.1
90% -1.254 -1.180 -1.65 -1.6 0.006 0.140 -0.71 -0.618 0.398 0.466 0.044 0.096
80% -1.245 -1.189 -1.648 -1.61 0.021 0.126 -0.7 0.63 0.407 0.458 0.05 0.09
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Table 2.7: Point Estimation Results for T = 10
N = 50 N = 100

mode root moduli mean MLE mode root moduli mean MLE
-1.2032 0.9253 -1.2012 -1.362 -1.1758 0.91668 -1.1753 -1.354
0.12109 0.9253 0.1249 -0.177 0.16192 0.91668 0.1629 -0.176
0.47575 0.5556 0.4775 0.321 0.48155 0.57306 0.482 0.304

N = 200 N = 1000
mode root moduli mean MLE mode root moduli mean MLE

-1.1615 0.9086 -1.1607 -1.333 -1.1624 0.9173 -1.1624 -1.328
0.17642 0.9086 0.1777 -0.145 0.19369 0.9173 0.1938 -0.118
0.47595 0.5765 0.4765 0.31 0.49693 0.5905 0.497 0.335
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Figure 2.5: The marginal density plots of the posterior draws of ρ for T = 10
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Table 2.8: HPDI and Confidence Intervals for T = 10
N = 50 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE

99% -1.311 -1.089 -1.47 -1.25 -0.066 0.310 -0.36 0.01 0.371 0.585 0.213 0.43
95% -1.285 -1.115 -1.44 -1.28 -0.020 0.276 -0.32 -0.034 0.396 0.559 0.239 0.4
90% -1.270 -1.133 -1.43 -1.29 0.002 0.246 -0.296 -0.057 0.409 0.545 0.25 0.39
80% -1.256 -1.147 -1.42 -1.31 0.028 0.221 -0.27 -0.083 0.423 0.531 0.27 0.37

N = 100 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.256 -1.093 -1.433 -1.27 0.022 0.302 -0.31 -0.038 0.406 0.559 0.22 0.39
95% -1.239 -1.114 -1.414 -1.29 0.051 0.268 -0.28 -0.071 0.424 0.542 0.24 0.37
90% -1.230 -1.121 -1.4 -1.3 0.067 0.255 -0.26 -0.087 0.428 0.530 0.25 0.36
80% -1.220 -1.133 -1.39 -1.31 0.086 0.235 -0.24 -0.11 0.440 0.521 0.26 0.34

N = 200 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.219 -1.105 -1.39 -1.28 0.067 0.282 -0.24 -0.05 0.424 0.532 0.26 0.37
95% -1.204 -1.119 -1.38 -1.29 0.098 0.261 -0.22 -0.07 0.435 0.519 0.27 0.35
90% -1.197 -1.125 -1.37 -1.3 0.112 0.244 -0.21 -0.08 0.442 0.511 0.28 0.345
80% -1.189 -1.133 -1.36 -1.31 0.125 0.229 -0.19 -0.1 0.450 0.502 0.28 0.34

N = 1000 ρ1 HPDI ρ1 MLE ρ2 HPDI ρ2 MLE ρ3 HPDI ρ3 MLE
99% -1.185 -1.138 -1.35 -1.3 0.153 0.237 -0.16 -0.077 0.475 0.521 0.31 0.36
95% -1.180 -1.145 -1.346 -1.31 0.161 0.227 -0.15 -0.087 0.480 0.514 0.316 0.353
90% -1.178 -1.148 -1.343 -1.313 0.166 0.221 -0.145 -0.092 0.483 0.511 0.319 0.35
80% -1.174 -1.151 -1.34 -1.316 0.172 0.214 -0.139 -0.098 0.485 0.508 0.32 0.347

2.3.5 Demonstration Examples for Model Comparison

In this section, we show how well the algorithms developed in Section 2.3.3
work in some examples. As in the previous section, we also set the true val-
ues of ρ as (−1.1718, 0.17399, 0.49181)′, which indicates the model is fairly
near the unit circle. For T , it is set to 4. We then include some exogenous
regressors out of a group of potential regressors in our model. As in the
previous chapter22, we generate serially and cross-sectionally correlated ex-
ogenous regressors such that when we include the wrong set of regressors,
the correction function is generally not a valid solution for the incidental
parameter problem. We set the number of potential regressors to 6 and the
maximum possible AR order to 3. Therefore the total number of models
considered will be (3 + 1)26 = 256. For such scale of model space, both the
Chib’s method and the reversible jump are applicable for calculating the
posterior model probabilities, though care should be taken in fine-tuning
some parameter settings for the reversible jump method.

Table 2.9 shows the posterior model probabilities of the top models. The
results from the Chib’s method and the reversible jump are quite close. Most
of the model rankings are the same, though some discrepancies exist for the
posterior model probabilities. Such discrepancies may become more con-

22See Appendix for the details of the data generating process.
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spicuous for the models with low model probabilities, which, however, can
be seen as unimportant for our analysis. As the cross section sample size
becomes larger, the posterior model probability will concentrate more on
the top models. Although for N = 50, the model with the highest posterior
model probability is not the true model (the one with 3 lags and regressor
1,3,4 and 6). For bigger sample sizes, the top posterior model probability
criterion successfully picks up the true model. This is the evidence support-
ing that our correction function method may not only lead to consistency
in estimation, but also consistency in model selection.

In addition to calculating the posterior model probabilities, we use Bayesian
model averaging (BMA) to estimate the coefficients for the exogenous regres-
sors unconditional on any particular model (see Fernandez et al., 2001b). We
use the inclusion probability to measure the significance of each exogenous
regressor23. Since we assume that all models are a priori equally probable,
it is virtually equivalent as saying that the prior probability to include a
particular regressor is 50%. If the posterior inclusion probability is above
50%, it could be interpreted as a sign that our data support or reinforce our
prior and the exogenous regressor is significant. Since the posterior model
probabilities based on the Chib’s method and the reversible jump are quite
close, we can use either of them for BMA. Table 2.10 shows the BMA results
based on the reversible jump method, where the column under β shows the
true values of the coefficients for the regressors included. This implies we
include regressor 1, 3, 4 and 6 into our model. The column under “inclp” is
the inclusion probability obtained from the reversible jump method, while
the column “inclpC” is calculated based on the Chib’s method. Both the
Chib’s method and the reversible jump give us similar estimates. Except
for regressor 3, the coefficients of other true regressors all have inclusion
probabilities higher than 50% under N = 50. When the cross section sam-
ple size increases, the true regressors will have higher inclusion probability;
while for wrong regressors, the inclusion probabilities tend to decrease. For
N = 1000, the BMA estimates are nearly equal to the true values of β. We

23It is the sum of posterior model probabilities of all the models with the exogenous
regressor included.
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Table 2.9: The top models for T = 4 (true model indicated by “R”)
N = 50 Chib’s Method Reversible Jump
Ranking Model Post Prob Ranking Model Post Prob

1 1,4,6,p = 3 0.2433 1 1,4,6,p=3 0.23707
2 4,5,6,p = 3 0.19001 2 4,5,6,p=3 0.18852
3 1,2,4,6,p = 3 0.15484 3 1,2,4,6,p=3 0.14336
4 4,6,p = 3 0.076556 4 4,6,p=3 0.07719
5 3,4,5,6,p = 3 0.066607 5 3,4,5,6,p=3 0.07282

6(R) 1,3,4,6,p = 3 0.052044 6(R) 1,3,4,6,p=3 0.05234
7 2,4,5,6,p = 3 0.046289 7 2,4,5,6,p=3 0.0408
8 1,4,5,6,p = 3 0.036396 8 1,4,5,6,p=3 0.03418
9 1,2,3,4,6,p=3 0.030323 9 1,2,3,4,6,p=3 0.03318
10 1,2,4,5,6,p=3 0.025478 10 1,2,4,5,6,p=3 0.02379

N = 200 Chib’s Method Reversible Jump
Ranking Model Post Prob Ranking Model Post Prob

1(R) 1,3,4,6,p=3 0.52507 1(R) 1,3,4,6,p=3 0.54598
2 3,4,5,6,p=3 0.16266 2 3,4,5,6,p=3 0.15571
3 3,4,6,p=3 0.15322 3 3,4,6,p=3 0.14305
4 1,3,4,5,6,p=3 0.049876 4 1,3,4,5,6,p=3 0.0482
5 1,2,3,4,6,p=3 0.038934 5 1,2,3,4,6,p=3 0.03768
6 2,3,4,5,6,p=3 0.033994 6 2,3,4,5,6,p=3 0.03438
7 2,3,4,6,p=3 0.032771 7 2,3,4,6,p=3 0.0312
8 1,2,3,4,5,6,p=3 0.003463 8 1,2,3,4,5,6,p=3 0.0038
9 1,2,4,6,p=3 3.46E-06 9 1,2,3,6,p=3 0
10 4,5,6,p=3 1.10E-06 10 1,2,6,p=3 0

N = 1000 Chib’s Method Reversible Jump
Ranking Model Post Prob Ranking Model Post Prob

1(R) 1,3,4,6,p=3 0.8647 1(R) 1,3,4,6,p=3 0.88282
2 1,2,3,4,6,p=3 0.058693 2 1,2,3,4,6,p=3 0.04998
3 1,2,3,4,5,6,p=3 0.046229 3 1,2,3,4,5,6,p=3 0.04087
4 1,3,4,5,6,p=3 0.030118 4 1,3,4,5,6,p=3 0.02621
5 2,3,4,5,6,p=3 0.000183 5 2,3,4,5,6,p=3 7.00E-05
6 3,4,5,6,p=3 8.26E-05 6 3,4,5,6,p=3 5.00E-05
7 2,3,4,6,p=3 2.84E-10 7 3,4,6,p=1 0
8 1,2,4,5,6,p=3 4.01E-12 8 4,6,p=1 0
9 3,4,6,p=3 5.45E-17 9 2,3,4,6,p=1 0
10 1,2,4,6,p=3 9.90E-44 10 2,3,4,p=1 0
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can conclude that our method can not only achieve consistent estimates for
ρ, but also consistent for β.

Table 2.10: The BMA estimates for the exogenous regressors
N=50

β mean nse std inclp inclpC
0.1 0.095 0.000 0.129 0.567 0.586
0 -0.033 0.000 0.066 0.309 0.323

0.2 0.040 0.000 0.118 0.224 0.195
0.8 0.688 0.001 0.211 0.972 0.973
0 -0.034 0.000 0.112 0.422 0.427

1.6 1.504 0.000 0.129 1 1
N=200

β mean nse std inclp inclpC
0.1 0.063 0.000 0.057 0.636 0.617
0 -0.002 0.000 0.011 0.107 0.109

0.2 0.176 0.000 0.032 1 1
0.8 0.813 0.000 0.047 1 1
0 0.015 0.000 0.031 0.242 0.250

1.6 1.646 0.000 0.030 1 1
N=1000

β mean nse std inclp inclpC
0.1 0.105 0.000 0.038 1.000 1.000
0 -0.008 0.000 0.033 0.091 0.105

0.2 0.200 0.000 0.016 1 1
0.8 0.802 0.000 0.017 1 1
0 -0.004 0.000 0.022 0.067 0.077

1.6 1.598 0.000 0.022 1 1

Next we enlarge our model space by setting the potential regressors to
16 and choose 8 to include in the data generating process. Now there are
262144 models altogether. If we use the Chib’s method to calculate the
model probability for each model, it will take a mainstream PC 7− 9 days
to run uninterruptedly to finish, which is rather impractical. The reversible
jump is the only alternative, which only takes 1089 seconds for 20,000 draws.
The point estimation results are shown in Table 2.11, which are quite good.
All the true regressors have inclusion probabilities higher than 50% under
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N = 50 while the highest inclusion probabilities for the wrong regressors are
below 40%. In terms of point estimates, it appears to be better than the
previous case with 6 potential regressors, four of which are included in the
true model. Table 2.12 confirms the high level of model uncertainty when
we enlarge the model space. The top twenty models only account for around
64% of posterior model probability compared to 92% taken up by the top
ten models in the previous case under N = 50. However, the good thing for
the true model with more exogenous regressors is that the true model has
much higher model probability than any other potential models. This can
again be viewed as signs of consistency in model selection.

Table 2.11: The BMA estimates for the exogenous regressors with a large
model space

N=50
β mean nse std inclp

0.1 0.0902 0.0016 0.0713 0.7710
0.2 0.1035 0.0024 0.1063 0.5960
0 0.0709 0.0025 0.1108 0.3845
0 -0.0009 0.0005 0.0240 0.0825
0 0.0016 0.0009 0.0410 0.1835

0.3 0.2637 0.0019 0.0837 0.9735
0.8 0.8538 0.0014 0.0618 1.0000
0.9 0.9308 0.0015 0.0681 1.0000
0 -0.0212 0.0011 0.0477 0.2830
1 1.0464 0.0015 0.0671 1.0000
0 0.0457 0.0020 0.0880 0.3335
0 -0.0013 0.0006 0.0266 0.1815

1.5 1.3995 0.0022 0.0967 1.0000
1.6 1.5485 0.0016 0.0719 1.0000
0 0.0264 0.0015 0.0670 0.2185
0 -0.0086 0.0010 0.0436 0.1445



CHAPTER 2. A CORRECTION FUNCTION APPROACH 91

Table 2.12: The top models for T = 4 with a large model space (true model
indicated by “R”)

N = 50 Reversible Jump
Ranking Model Posterior Prob

1(R) 1,2,6,7,8,10,13,14,p=3 0.182
2 1,2,3,6,7,8,10,13,14,p=3 0.04
3 1,2,6,7,8,10,11,13,14,p=3 0.035
4 1,3,6,7,8,9,10,13,14,p=3 0.032
5 1,2,6,7,8,9,10,13,14,p=3 0.0305
6 1,6,7,8,10,11,13,14,p=3 0.029
7 1,2,3,6,7,8,10,12,13,14,p=3 0.0285
8 1,2,5,6,7,8,10,12,13,14,p=3 0.0285
9 1,2,5,6,7,8,9,10,13,14,p=3 0.0265
10 1,2,4,6,7,8,10,11,13,14,p=3 0.0225
11 1,3,6,7,8,9,10,12,13,14,p=3 0.0215
12 3,4,6,7,8,,9,10,13,14,15,p=3 0.021
13 1,6,7,8,10,11,13,14,15,p=3 0.021
14 1,2,4,6,7,8,10,13,14,16,p=3 0.02
15 1,6,7,8,10,11,13,14,16,p=3 0.0185
16 3,6,7,8,10,13,14,15,p=3 0.018
17 1,3,6,7,8,10,11,12,13,14,15,p=3 0.017
18 1,2,6,7,8,10,12,13,14,p=3 0.0165
19 2,3,5,6,7,8,10,13,14,15,p=3 0.016
20 1,2,6,7,8,10,11,13,14,16,p=3 0.016



CHAPTER 2. A CORRECTION FUNCTION APPROACH 92

2.4 Conclusion

In this chapter, we propose a strategy to solve the incidental parameter
problem. It involves finding the Jacobian from the incidental parameters,
which are not information orthongonal to the common parameters, to the
information orthogonal incidental parameters. The strategy is demonstrated
under a simple Poisson count model. We also extend our strategy to the
case when information orthogonalization of the incidental parameters is not
possible, such as the linear AR(p) panel model with fixed effect. We show
that there exists a correction function to solve the incidental parameter
problem for the model. It could be a function of the common parameters
under concern and it does not necessarily depend on the dependent variable
when our model is correctly specified. We have also developed algorithms for
estimation and to calculate the Bayes factors. Our results suggest that our
method could achieve consistency in both parameter estimation and model
selection.

Whether our approach will provide more solutions for other models with
incidental parameter problem is still under research. Some assumptions for
the panel AR model may be restrictive for application, such as the station-
arity of the model, the strictly exogenous assumption for the regressors and
the homoscedasticity. Future research to relax such assumptions and to in-
vestigate the correction function approach under a wider context may be
productive.

2.5 Appendix

2.5.1 Solution for (2.24)

By repetitive substitution, we can rewrite the model in (2.17) as the follow-
ing,
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[y′i,−p, yi,1, yi,2, . . . , yi,T−1]′ = fic1 + IT−1+p ⊗ y′i,−pc2 + CXiβ + Cui

yi,−p
p×1

=


yi,−p+1

yi,−p+2

. . .

yi,−1

yi,0

 , P
p×p

=


ρ1 1 0 . . . 0
ρ2 0 1 . . . 0
. . . . . . . . . . . .

ρp−1 0 0 . . . 1
ρp 0 0 . . . 0

 ,

c1
(T−1+p)×1

=



0p×1

1
P(1,1) + 1

P 2
(1,1) + P(1,1) + 1

. . .

P T−2
(1,1) + P T−3

(1,1) + · · ·+ P(1,1) + 1


, c2

[p2+(T−1)p]×1
=



vec(Ip)
P(:,1)

P 2
(:,1)

. . .

P T−1
(:,1)


,

C
(T−1+p)×T

=


0p×1 0p×1 . . . 0p×1 0p×1

1 0 . . . 0 0
P(1,1) 1 . . . 0 0
. . . . . . . . . . . . . . .

P T−2
(1,1) P T−3

(1,1) . . . 1 0

 .

(2.54)

where Pn(1,1) and Pn(:,1) denote the (1,1) element and the first column of the
matrix Pn. To find Ey(Y ′i ι)

p×1

, we just need to make use of (2.54). For the

convenience of the subsequent exposition, we define h : Rp 7→ Rp, ω1 :
Rp+T 7→ Rp and ω2 : Rp+p 7→ Rp as
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h
p×1

( ρ
p×1

) =
1
T


ι′c1(p:T+p−1)

ι′c1(p−1:T+p−2)

. . .

ι′c1(1:T )

 = −


trace

(
HC(p:T+p−1,:)

)
trace

(
HC(p−1:T+p−2,:)

)
. . .

trace
(
HC(1:T,:)

)



ω1
p×1

(Xiβ
T×1

, ρ
p×1

) =


ι′(CXiβ)(p:T+p−1)

ι′(CXiβ)(p−1:T+p−2)

. . .

ι′(CXiβ)(1:T )



ω2
p×1

(yi,−p
p×1

, ρ
p×1

) =


ι′(IT−1+p ⊗ y′i,−pc2)1(p:T+p−1)

ι′(IT−1+p ⊗ y′i,−pc2)1(p−1:T+p−2)

. . .

ι′(IT−1+p ⊗ y′i,−pc2)1(1:T )



(2.55)

where a1(1:T ) and A(1:T,:) denote the 1 to T elements and the 1 to T rows
of a and A respectively. Note that since Ey(Cui) is equal to zero, we can
obtain Ey(Y ′i ι) = [Th(ρ)fi + ω1(Xiβ, ρ) + ω2(yi,−p, ρ)] and hence (2.23).

Since the right hand side of (2.24) only involves ρ, we could assume
λρ(fi, θ)

1×1

= τ(ρ) + constant, where the constant term could be any arbitrary

function of fi, β and σ2. For simplicity, we choose the constant term to be
0.24 The equation ∂τ(ρ)

∂ρ = h(ρ) implies the following,

d τ(ρ) =
p∑

k=1

hk(ρ) dρk. (2.56)

To prove that τ(ρ) exists, we just need to prove the differential of τ(ρ)
is exact. Before the proof, we need to establish Lemma 2.1.

24This choice indeed can produce the solution to achieve consistent estimation for this
particular model. The authors are not entirely sure if ∂χ(fi,θ)

∂fi
, where χ(fi, θ) is defined in

(2.10), involves all the common parameters and the incidental parameter, what strategy
is required for consistent estimation. It should depend on the specific problems.
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Lemma 2.1.
∂P i+j(1,1)

∂ρi
=
∂P i

′+j
(1,1)

∂ρi′
(2.57)

where i, i′ = 1, 2, . . . , p and j is zero or a positive integer. Without loss of
generality, we can assume i ≤ i′.25

Proof. First note that26

Pn(1,1) =
p∑

k=1

ρkP
n−k
(1,1) . (2.58)

The above equation implies
∂Pn

(1,1)

∂ρi
= 0 and

∂Pn
(1,1)

∂ρi
= 1 for n < i and n = i

respectively. Then we can prove (2.57) by mathematical induction, which
involves the following three steps:

1. We assume that for any integer less than j equation (2.57) holds. The
left and right hand side of (2.57) can be rewritten as

∂P i+j(1,1)

∂ρi
= ρ1

∂P i+j−1
(1,1)

∂ρi
+· · ·+

∂
(
ρiP

i+j−i
(1,1)

)
∂ρi

+· · ·+ρi′
∂P i+j−i

′

(1,1)

∂ρi
+· · ·+ρp

∂P i+j−p(1,1)

∂ρi
(2.59)

∂P i
′+j

(1,1)

∂ρi′
= ρ1

∂P i
′+j−1

(1,1)

∂ρi′
+· · ·+ρi

∂P i
′+j−i

(1,1)

∂ρi′
+· · ·+

∂
(
ρi′P

i′+j−i′
(1,1)

)
∂ρi′

+· · ·+ρp
∂P i

′+j−p
(1,1)

∂ρi′
(2.60)

Due to our assumption27, the following must hold

ρn
∂P i+j−n(1,1)

∂ρi
= ρn

∂P i
′+j−n

(1,1)

∂ρi′
, (2.61)

where n ∈ {1, 2, . . . , p} \{i, i′}. Now to prove (2.59) and (2.60) are
25It is obvious that if i = i′, equation (2.57) holds. Therefore in the following, we just

need to prove the case when i < i′.
26We define Pn−k(1,1) = 1 if n− k = 0 and Pn−k(1,1) = 0 if n− k < 0.
27Note that j − n < j.
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equal to each other is reduced to proving

∂
(
ρiP

i+j−i
(1,1)

)
∂ρi

+ ρi′
∂P i+j−i

′

(1,1)

∂ρi
= ρi

∂P i
′+j−i

(1,1)

∂ρi′
+
∂
(
ρi′P

i′+j−i′
(1,1)

)
∂ρi′

, (2.62)

which is equivalent to

P j(1,1) + ρi
∂P i+j−i(1,1)

∂ρi
+ ρi′

∂P i+j−i
′

(1,1)

∂ρi
= P j(1,1) + ρi

∂P i
′+j−i

(1,1)

∂ρi′
+ ρi′

∂P i
′+j−i′

(1,1)

∂ρi′
.

(2.63)
It is not hard to see that (2.63) is true due to our assumption. Finally
we know that if (2.57) holds for any integer less than j, then it also
holds for j.

2. The smallest possible number for j is 0, which indicates both sides of
(2.57) are equal to 1. So (2.57) holds.

3. From the above two points, we know that Lemma 2.1 is true.

Now we are ready to prove that there exists a solution for the partial
differential equation system (2.56).

Proof. It can be seen from (2.56) that if the system has a solution, the differ-
ential of τ(ρ) must be exact, which implies the following must be satisfied,

∂hi(ρ)
ρi′

=
∂hi′(ρ)
ρi

(2.64)

Note that hi(ρ) and hi′(ρ) can take the following forms

hi(ρ) =
T − i
T

+
T − i− 1

T
P(1,1) + · · ·+ T − i− i′

T
P i
′

(1,1) + · · ·+ 1
T
P T−i−1

(1,1)

hi′(ρ) =
T − i′

T
+
T − i′ − 1

T
P(1,1) + · · ·+ T − i′ − i

T
P i(1,1) + · · ·+ 1

T
P T−i

′−1
(1,1) .
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To prove (2.64), we need to have

T − i− i′

T

∂P i
′

(1,1)

∂ρi′
+· · ·+ 1

T

P i
′+T−i−i′−1

(1,1)

∂ρi′
=
T − i′ − i

T

∂P i(1,1)

∂ρi
+· · ·+ 1

T

P i+T−i−i
′−1

(1,1)

∂ρi
(2.65)

By Lemma 2.1, we know that (2.65) is true. Hence (2.64) is true and d τ(ρ)
is exact. So we can conculde that τ(ρ) exists and (2.56) has a solution.

Next we go on to solve (2.56). A solution for τ(ρ) can take the following
form,

τ(ρ) = R1(ρ) + φ1(ρ2:p) (2.66)

where R1(ρ) =
∫
h1(ρ)dρ1 and φ1(ρ2:p) is a function involving all the ele-

ments in ρ except ρ1. To derive φ1(ρ2:p), we can use the following relation-
ship

∂τ(ρ)
∂ρ2

= h2(ρ) =
∂R1(ρ)
∂ρ2

+
∂φ1(ρ2:p)
∂ρ2

. (2.67)

Hence
φ1(ρ2:p) =

∫ (
h2(ρ)− ∂R1(ρ)

∂ρ2

)
dρ2 + φ2(ρ3:p). (2.68)

where φ3(ρ3:p) is a function of all the element of ρ except ρ1 and ρ2. We
could denote R2(ρ2:p) =

∫ (
h2(ρ)− ∂R1(ρ)

∂ρ2

)
dρ2. If we continue the above

procedure p times, we could find out the general solution for τ(ρ) is

τ(ρ) =
p∑
i=1

Ri(ρi:p) + k (2.69)

where k is an arbitrary constant not depending on ρ and

Ri(ρi:p) =
∫ hi(ρ)−

i−1∑
j=1

∂Rj(ρj:p)
∂ρi

 dρi for i = 2, . . . , p (2.70)

with R1(ρ) =
∫
h1(ρ)dρ1. If we look at (2.69) more carefully, we can see

that the general solution of τ(ρ) is obtained by summing up all the distinct
terms in each element of

∫
h(ρ)
p×1

d ρ
p×1

and an arbitrary constant (which we
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set to 0).

2.5.2 An Asymptotic Local Stationary Point of the Inte-

grated Likelihood

In this subsection, we will prove that the true value, θ is a local station-
ary point asymptotically for the integrated likelihood function, p(Y |θ) ob-

tained by integrating out f under the prior p(f |θ) =
N∏
i=1
p(fi|ρ) ∝ r(ρ) =

exp[Nτ(ρ)]. The natural log of the integrated likelihood function takes the
following form (see the next subsection for derivation details),

ln p(Y |r, b, s2) ∝ QN (r, b, s2)

= − 1
2s2

∑
i

(yi − Yi r −Xib)′H(yi − Yi r −Xib)−
N(T − 1)

2
ln s2 +Nτ(r).

(2.71)

where r, b and s2 are the specific values that θ takes. Subsituting (2.17)
into (2.71) yields

ln p(Y |r, b, s2) ∝ QN (r, b, s2)

= − 1
2s2

{
(ρ− r)′

∑
i

Y ′i HYi (ρ− r) + (β − b)′
∑
i

X ′iHXi(β − b)

+
∑
i

uiH
′ui + 2(ρ− r)′

∑
i

Y ′i Hui + 2(ρ− r)′
∑
i

Y ′i HXi(β − b)

+ 2
∑
i

u′iHXi(β − b)
}
− N(T − 1)

2
ln s2 +Nτ(r).

(2.72)
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Next we assume the following probability limits exist:

plim
N→∞

1
N

N∑
i

Y ′i HYi = Y Y
p×p

plim
N→∞

1
N

N∑
i

Y ′i Hui = σ2


trace

(
HC(p:T+p−1,:)

)
trace

(
HC(p−1:T+p−2,:)

)
. . .

trace
(
HC(1:T,:)

)

 = −σ2h(ρ)

plim
N→∞

1
N

N∑
i

Y ′i HXi = Y X
p×K

plim
N→∞

1
N

N∑
i

X ′iHXi = XX
K×K

(2.73)

Hence the probability limit of 1
NQN (r, b, s2) exists as the following28,

plim
N→∞

1
N
QN (r, b, s2) = Q(r, b, s2)

= − 1
2s2

{
(ρ− r)′ (Y Y ) (ρ− r) + (β − b)′ (XX) (β − b) + (T − 1)σ2

− 2σ2(ρ− r)′h(ρ) + 2(ρ− r)′ (Y X) (β − b)
}
− T − 1

2
ln s2 + τ(r).

(2.74)

28We also use the facts that plim
N→∞

1
N

PN
i uiH

′ui = (T − 1)σ2 and Xi and fi are strictly

exogenous.
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Now we can differentiate Q(r, b, s2) to check the first order condition:

∂Q

∂r
=

1
s2

[
(ρ− r)′ (Y Y )− σ2h(ρ) + (Y X) (β − b)

]
+ h(r)

∂Q

∂b
=

1
s2

[
XX(β − b) + (ρ− r)′(Y X)

]
∂Q

∂s2
=

1
2s2

{
(ρ− r)′ (Y Y ) (ρ− r) + (β − b)′ (XX) (β − b) + (T − 1)σ2

− 2σ2(ρ− r)′h(ρ) + 2(ρ− r)′ (Y X) (β − b)
}
− (T − 1)

2s2
.

(2.75)

We can see that (r = ρ, b = β, s2 = σ2) can obviously solve the above three
equations and hence is a local stationary point for the integrated likelihood
asymptotically.

2.5.3 Proof of Proposition 2.1

Let us define wi = yi−Yi ρ. The product of the likelihood and the prior for
θ is

p(θ)p(Y |θ, Y0) =
1

m(S)
I(ρ ∈ S)p(β|σ2)(2π)−

TN
2 σ2(−NT+2

2
)r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[wi − fiι−Xiβ]′ [wi − fiι−Xiβ]

}
,

(2.76)

where Y = (y1, y2, . . . , yN )′ excludes the first observations of all economic
agents, of which Y0 = (y1,0, y2,0, . . . , yN,0)′ is the collection.

Now we derive the posterior distribution of fi. We can rewrite equation
(2.76) as

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

TN
2 σ2(−NT+2

2
)r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′(wi −Xiβ)

+Tf2
i − 2ι′(wi −Xiβ)− fi

}
.
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We then complete the square for fi by adding − (ι′wi−Xiβ)2

T + (ι′wi−Xiβ)2

T

inside the exponential. So it becomes

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

TN
2 σ2(−NT+2

2
)r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −

ιι′wi
T
−HXiβ)′(wi −

ιι′wi
T
−HXiβ)

+T (fi −
ι′wi
T

)2]
}
,

or equivalently

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

TN
2 σ2(−NT+2

2
)r(ρ)

N∏
i=1

exp
{
− 1

2σ2
[(wi −Xiβ)′H(wi −Xiβ)

+T (fi −
ι′(wi −Xiβ)

T
)2]
}

where H = IT − ιι′

T is the demean matrix. Substituting wi = yi − Yi back
into our equation, we can have

p(θ)p (Y |θ, Y0) = p(β|σ2)
1

m(S)
I(ρ ∈ S)(2π)−

TN
2 σ2(−NT+2

2
)r(ρ)

N∏
i=1

exp

{
− 1

2σ2

T

[fi −
ι′(yi − Yi ρ−Xiβ)

T
]2
}

exp

[
− 1

2σ2

N∑
i=1

(yi − Yi ρ−Xiβ)′H(yi − Yi ρ−Xiβ)

]
(2.77)

Remember p(β|σ2) does not involve parameters other than σ2. Moreover,
since we ignore the distribution of Y0 and assume the prior of θ is inde-
pendent of it, from (2.77) it is clear that the posterior distribution of gi
conditional on yi,0, σ2 and ρ is i.i.d. normal as in (2.29).

Next we go on to derive the posterior distributions for β and σ2. First
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we can integrate out g in equation (2.77) to obtain

p(ρ, β, σ2, Y |Y0) = p(ρ, β, σ2|Y, Y0)p(Y |Y0)

= p(β|σ2)
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)
2 σ

2
h
−N(T−1)+2

2

i

r(ρ) exp

[
− 1

2σ2

N∑
i=1

(yi − Yi ρ−Xiβ)′H(yi − Yi ρ−Xiβ)

]
.

(2.78)

If we define w̃i = H(yi − yi ρ) and X̃i = HXi, by incorporating the prior of
β in (2.28) we can rewrite equation (2.78) as

p(ρ, β, σ2|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)+k
2

σ
2

h
−N(T−1)+2+k

2

i
r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′iX̃i

∣∣∣∣∣
1
2

exp

{
− 1

2σ2

[
N∑
i=1

w̃i
′w̃i + β′

N∑
i=1

(η + 1)X̃ ′iX̃iβ − 2
N∑
i=1

w̃′iX̃iβ

]}

Then completing the square of β yields

p(ρ, β, σ2|Y, Y0)p(Y |Y0)

=
1

m(S)
I(ρ ∈ S)T−

N
2 (2π)−

N(T−1)+k
2 σ

2
h
−N(T−1)+2+k

2

i
r(ρ)

∣∣∣∣∣η
N∑
i=1

X̃ ′iX̃i

∣∣∣∣∣
1
2

exp

− 1
2σ2

 N∑
i=1

w̃i
′w̃i −

1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i


exp
{
− 1

2σ2

β − 1
η + 1

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i

′
(

N∑
i=1

(η + 1)X̃ ′iX̃i

)β − 1
η + 1

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i

}
(2.79)
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We can see that the conditional posterior of β follows a normal distribution
as in (2.30). Now we can integrate out β in (2.79) to obtain the posterior
distribution for ρ and σ2 as the following,

p(ρ, σ2|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)

(
η

η + 1

) k
2

T−
N
2 (2π)−

N(T−1)
2

σ
2

h
−N(T−1)+2

2

i
r(ρ) exp

{
− 1

2σ2
[
N∑
i=1

w̃i
′w̃i

− 1
η + 1

N∑
i=1

w̃′iX̃i

(
N∑
i=1

X̃ ′iX̃i

)−1 N∑
i=1

X̃ ′iw̃i]
}
. (2.80)

It is clear from equation (2.80) that conditional on ρ, σ2 follows an inverted
gamma distribution with mean ∆

N(T−1)−2 and degrees of freedom N(T − 1)
as in (2.31),

Now we can integrate out σ2 to obtain the posterior distribution of ρ as
in (2.82).

p(ρ|Y, Y0)p(Y |Y0) =
1

m(S)
I(ρ ∈ S)

(
η

η + 1

) k
2

(∆)−
N(T−1)

2

Γ
[
N(T − 1)

2

]
T−

N
2 (π)−

N(T−1)
2 r(ρ)

(2.81)

p(ρ|Y, Y0) ∝ I(ρ ∈ S)r(ρ) (∆)−
N(T−1)

2 , (2.82)

Another way to interpret the posterior of ρ is given in (2.33) under Propo-
sition 2.1.

2.5.4 Proof of Equation (2.48)

Proof. Note that there is a differentiable mapping from (π(0)′, u′)′ to ρ(c),
whose Jacobian is given in (2.36), and also from ρ(0) to π(0). Hence we can
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obtain∣∣∣∣∣ ∂ρ(c)

∂(ρ(0)′, u′)

∣∣∣∣∣ =

∣∣∣∣∣ ∂ρ(c)

∂(π(0)′, u′)
∂(π(0)′, u′)′

∂(ρ(0)′, u′)

∣∣∣∣∣
=

p(c)−p(0)∏
i=1

(1 + ui)[ p
(0)+i−1

2
](1− ui)[ p

(0)+i
2

]

∣∣∣∣∣ ∂ρ(0)

∂π(0)′

∣∣∣∣∣
∣∣∣∣∣ ∂π(0)

∂ρ(0)′

∣∣∣∣∣
=

p(c)−p(0)∏
i=1

(1 + ui)[ p
(0)+i−1

2
](1− ui)[ p

(0)+i
2

]

2.5.5 Data Generating Process for the Exogenous Regressors

in Section 2.3.5

We go through the following steps to generate the exogenous regressors used
in Section 2.3.5:

1. We generate the potential regressors (X ′is) from the uniform distribu-
tion U [−4, 4].

2. We make the regressors serially correlated with each other. We achieve
this by first making each two neighboring period observations corre-
lated with each other as follows,

xt,s = st−1xt−1,s + s̄txt,ns, (2.83)

where xt,ns has no serial correlation and is generated from the i.i.d.
uniform distribution U[-4,4]. We set st−1 =

s′t−1√
s′2t−1+s′2t

and s̄t =
s′t√

s′2t−1+s′2t
. For s′t−1 and s′t, we generate them from i.i.d.U [−2.5, 2.5]. In

doing so, the correlation matrix for the serially correlated [x1,s, x2,s, . . . , xT,s]′
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is

S =



1 s1 · · ·
T−1∏
i=1

si

s1 1 · · ·
T−1∏
i=2

si

s2s1 s2 · · ·
T−1∏
i=3

si

· · · · · · · · · · · ·
T−1∏
i=1

si
T−1∏
i=2

si · · · 1


(2.84)

We can see that {xt} generated in such a way is not covariance sta-
tionary. Moreover, for small T 29, the distribution of x′s will change
with t. However, if T is sufficiently large, the final few points of x′s
at the end of the series will approximately follow, due to the central
limit theorem, a normal distribution with the same mean (0) and the
same variance (around 5.3) as the uniform distribution30. We just use
the final few observations from the series for our study.

3. We introduce correlation among the regressors by using a linear com-
bination of those we just made serially correlated.

Xj,c =
K∑
i=1

qj,iXi,nc j = 1, 2, . . . ,K (2.85)

where Xi,nc denotes the regressor without collinearity and we set qj,i =
q′j,is
KP
i=1

q′2j,i

and q′j,i ∼ i.i.d.U [−2.5, 2.5]. Note that the L2-norm of [qj,1, qj,2, . . . , qj,K ]′

is equal to 1 so that we can preserve the same variance as that from
the uniform distribution we use to generate x at the very beginning.
Note that the correlation coefficient of any two elements of Xi is the

29Here T denotes the sample size of the generated series.
30We choose T to be 100 for the results to be presented in the section so that x′s

approximately converge to a normal distribution.
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same across different individuals and can be calculated as

corr(Xt,k, Xt′,k′) = S(t, t′)
K∑
i=1

qk,iqk′,i t = 1, 2, . . . , T k = 1, 2, . . . ,K.

(2.86)
where S(t, t′) denote the (t, t′) element in S and K is the potential
number of regressors.



Chapter 3

The Horizon Effect of Stock

Return Predictability and

Model Uncertainty on

Portfolio Choice: UK

Evidence

3.1 Introduction

Finance advisors often tell people with long investment horizon to invest
more into stocks than bonds. Fund managers will recommend different
portfolios to investors with different investment horizons. For example,
they may recommend some stock shares for long term investment and some
others just for short term. Such ideas to allocate wealth according to the
length of investment horizon have been challenged by academics. Early work
about horizon effect can be seen in Samuelson (1969) and Merton (1969),
in which they prove that if the return of a risky asset is unpredictable, ra-
tional investors should choose the same portfolio regardless of the length of
their investment. Later work by Samuelson (1989) and Samuelson (1990)

107



CHAPTER 3. HORIZON EFFECT 108

readdressed the irrelevance of the length of investment horizon in portfolio
management.

The absence of horizon effect primarily relies on the assumption that the
return of the risky asset is unpredictable. However, there are also studies
showing that return predictability can affect investor’s optimal portfolio de-
cision, see, for example, Kandel and Stambaugh (1996), Barberis (2000) and
Xia (2001). To add more valuable insight into this debate, it is important to
understand the nature of stock market inefficiencies, which is closely related
to the question of whether stock return is predictable or not. Though most
studies using daily or weekly data find very little evidence of predictability
in terms of low R-squares or low p-values, many academic investigations
into monthly data suggest some variables may have the ability to explain
the movements in stock expected return. Fama and French (1988) reported
that apart from dividend yields, past stock return in the US market can
predict 40 percent of future return over the long run. Fama and French
(1993) then identified five common risk factors in explaining the return of
stocks and bonds. Consistent with Fama and French’s results, Kothari and
Shanken (1997) also found that book-to-market ratio (B/M) has predictive
power. However, these studies have invited criticisms from other scholars.
Hodrick (1992) and Goetzmann and Jorion (1993) argued that many find-
ings based on long-horizon return regressions may be inappropriate due to
problems such as data snooping1, nonrobustness of test statistics and poor
small sample properties of the inference method.

Such controversy about stock return predictability can be better ex-
plained from two aspects. First, though there are many articles addressing
the issue of stock return predictors, there is little consensus on what the
important conditioning variables are. This issue can be regarded as model
uncertainty, which in general refers to our uncertainty about the underlying
data generating process (DGP) of stock return, see, for example, Brennan
and Xia (1999). Secondly, even if one believes to have found the correct
set of predictors, the predictive relationship between stock return and the
predictors cannot be estimated with certainty due to limited sample size.

1It implies that such patterns in the data may happen by chance.
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In other words, it is not possible for us to identify the true values of the
parameters for our model in real life application. Parameter uncertainty or
estimation risk also has an important effect on investor’s optimal portfolio
choice, see Bawa et al. (1979) and Barberis (2000). By taking into account
both parameter and model uncertainty, one could better answer the question
of whether stock return is predictable or not. Cremers (2002) and Avramov
(2002) both used Bayesian model averaging (BMA) to consider such uncer-
tainty and found that the BMA method, which averages all the potential
models according to their posterior probabilities, can provide better fore-
casts of stock return than those selected based on certain criterion. The
above studies are based on the US stock market. Relevant research on the
UK market can be seen in Pesaran and Timmermann (1995), in which they
employed recursive regression method to select a best single model based
on certain information criterion to make out-of-sample forecasts. Though
they acknowledged there was uncertainty about which model best forecasted
stock returns over time, they did not address this issue explicitly in their
method.

In this chapter we study the stock return predictability in the UK market
by accounting for both parameter and model uncertainty. We then investi-
gate the effect of such predictability on a rational investor’s portfolio choice
given different lengths of investment horizons. We find that the stock return
predictability in the UK market is weak if we allow for model uncertainty.
Many explanatory variables are not as strong predictors as classical results
suggest. Moreover, if we take account of the data generating processes of
the explanatory variables and allow them to be correlated with that of the
stock return, the predicting power of these explanatory variables will de-
crease further. As for the horizon effect, we propose a computationally
convenient statistic that can be used as a reference for how a rational buy-
and-hold investor should adjust her optimal portfolio given different lengths
of investment. We find that although the return predictability is weak, it
still has a considerable effect on a rational buy-and-hold investor’s portfo-
lio choice as evidenced by different allocation proportion of wealth to risky
asset given different initial investment conditions over time.
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The chapter proceeds as follows. Section 3.2 explains the asset allocation
problem and the computation techniques used to solve it. Section 3.3 inves-
tigates the horizon effect when the risky asset’s return is unpredictable. We
look into the cases with and without parameter uncertainty and then pro-
pose a measure to capture the horizon effect. Section 3.4 studies the stock
return predictability in the UK market by considering model uncertainty.
Section 3.5 then examines the horizon effect of stock return predictability
and model uncertainty. Finally Section 3.6 concludes.

3.2 The Asset Allocation Problem and the Calcu-

lation of the Optimal Portfolio

The basic economic model of the analysis consists of a risk averse investor,
who allocates her wealth to either riskless (e.g. treasury bond) or risky
asset (e.g. stock share) in order to maximize her utility function. This
model has been studied by Kandel and Stambaugh (1996), Barberis (2000)
and Avramov (2002) with a focus on the time horizon effects, i.e. how
the investor will allocate her wealth given different lengths of investment
horizons. Different from their studies, we will look into the horizon effect
based on the UK data. Compared to Avramov (2002), we will take into
account not only the effects of parameter and model uncertainty, but also
the interactions between the data generating process (DGP) of the return
of the risky asset and those of its explanatory variables. Moreover, we will
propose a computationally convenient statistic, which may shed some light
on the behavior of a rational investor when she has to choose between risky
and riskless asset.

The investor’s preference over terminal wealth is described by the con-
stant relative risk-aversion power utility function (v) with the following form.

v(W ) =

{
W 1−A

1−A for A > 0 and A 6= 1
lnW for A = 1

(3.1)

where A is commonly referred to as the investor’s coefficient of relative risk
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aversion and W denotes the investor’s wealth. Without loss of generality,
we assume the initial wealth of the investor is equal to one. Let us denote
the rate of return of the riskless asset by rf and the excess return of the
risky asset over the riskless by r2. For simplicity, we further assume that
rf is non-stochastic and only r is a random variable. Suppose the investor
is going to hold the portfolio of the two assets from period T till period
T + T̂ . At the end of her investment horizon, her cumulative excess return
will be RT+T̂ = rT+1 + rT+2 + ... + rT+T̂ , which will also follow a certain
distribution. If we assume the returns are continuously compounded and
the investor allocates ω of her wealth to the risky asset, her total wealth at
the end of the investment will be (1 − ω) exp(T̂ rf ) + ω exp(T̂ rf + RT+T̂ ).
The asset allocation problem for the investor is to solve

max
ω

∫
RT+T̂

[
(1− ω) exp(T̂ rf ) + ω exp(T̂ rf +RT+T̂ )

]
1−A

1−A

p(RT+T̂ )dRT+T̂

(3.2)
That is, given a period of time, which is T̂ periods long, the problem facing
the investor is to choose ω to maximize her expected utility at the start of
her investment, i.e. period T . Our study will focus on the investment hori-
zon effect, i.e. the relationship between ω and T̂ . For the moment, we just
assume the integral in (3.2) exists and will leave more detailed discussion
of this issue to later section. Note that it is generally impossible to obtain
a closed form solution for (3.2) even if p(RT+T̂ ) is some standard density
function. To solve the problem, Barberis (2000) restricted ω to [0, 1] and
performed a grid search after simulating draws from p(RT+T̂ ) to integrate
RT+T̂ out. Here we use a relatively convenient and possibly more efficient
numerical method to tackle this problem. First we use Taylor expansion to
approximate the power utility function around the mean of RT+T̂ to pro-
duce a polynomial of RT+T̂ . We can choose the order of Taylor expansion
to control the approximation accuracy. Then we obtain the moments of
RT+T̂ analytically or by simulation and insert them into the polynomial to

2That is the difference of the rate of return between the two assets.
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obtain a function of only ω. Finally we use a numerical routine to maximize
the function.3 Our method relies heavily on the existence of the high order
moments of RT+T̂ . However, we argue that if the moments of RT+T̂ do not
exist to certain orders, we should cast doubt on the existence of the integral
in (3.2). In our application in later sections, we find that Taylor approxima-
tion with order around 10 could give us reasonably accurate results when
RT+T̂ follows a normal or t distribution with high degrees of freedom.

Next we discuss the force that may drive the horizon effect. Note that
the demand for the risky asset in the investor’s portfolio clearly hinges on
how we set up the maximization problem and the constraints confronting the
investor. However, it should be no surprise that the risky asset’s return and
its level of risk are the key factors. In other words, the first and the second
moments of RT+T̂ should have an important role in determining the horizon
effect. Note that the density function p(RT+T̂ ) will change with T̂ . Hence
both the first and the second moments of RT+T̂ are functions of T̂ . We may
be interested in knowing how fast the return changes relative to the change
of risk. For example, if the expected risk of an asset increases with time,
will the asset’s expected return increase fast enough to offset such effect so
that the asset will still remain attractive to a rational investor? Here we
propose the following expression which may help to answer this question.

MtoS =
∂µT̂
∂T̂
× σT̂

∂σT̂
∂T̂
× µT̂

(3.3)

where µT̂ and σT̂ denote the mean and standard deviation of RT+T̂ re-
spectively. The expression in (3.3) is no more than the ratio between the
percentage rate of change of RT+T̂ ’s mean and standard deviation. It could
be interpreted as the Sharpe ratio in a time context and provides a measure
of the value of risk (in terms of the mean return) over time. In the following
sections, we will illustrate how expression (3.3) is related to the investment
horizon effect under different probability density functions of RT+T̂ .

3All these procedures could be easily implemented in Maple once we obtain the mo-
ments of RT+T̂ .
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3.3 When the Excess Return is Unpredictable

Samuelson (1969) and Merton (1969) showed that when stock’s return is
not predictable, the optimal portfolio will be independent of wealth and all
consumption-saving decisions in a multi-period portfolio rebalancing model.
Different from Samuelson (1969), the distribution of the excess return will
change with time in this chapter. Barberis (2000) used the US data and
shows that the optimal portfolio is insensitive to investment time horizon
if RT+T̂ is unpredictable and follows a normal distribution with mean and
variance increasing linearly with time. In our empirical study, we will use
the UK 3 month treasury bill rate as rf . The excess return of the risky asset
(r) is calculated as the return difference between the FTSE All-Share Index
and rf . Now we assume the excess return is unpredictable and follows a
normal distribution as below,

rt = µ+ εt, εt ∼ IIDN
(
0, σ2

)
(3.4)

where µ is the mean of the stock excess return and σ2 is the variance in
the normal distribution. The cumulative excess return RT+T̂ will also be
normal as the following,

RT+T̂ |µ, σ
2 ∼ N(µT̂ , σ

2
T̂

) (3.5)

where µT̂ = T̂ µ, and σ2
T̂

= T̂ σ2. As pointed out by Barberis (2000), if
the investor ignores parameter uncertainty, i.e.taking the estimates of µ and
σ from the past data as the true values of these parameters, the optimal
holding proportion of the risky asset (ω) will not change with time. It is
easy to see that under such setup, MtoS defined in (3.3) is equal to 2 and
also independent of T̂ .

Our data sample is from November 1978 up to September 2003, which
includes 299 (T ) observations of the FTSE All-Share Index. The mean of
the excess rate of return (µ) of the FTSE index over T-bill in our sample
is 0.4772% , while the sample standard deviation is 4.88%(σ). When calcu-
lating the optimal ω, Barberis (2000) restricted ω to be within 0 and 1 to
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ensure the integral in (3.2) exists. The case corresponding to ω < 0 happens
if the investor sells short the risky asset and the case for ω > 1 means the
investor sells short the riskless asset. The nonexistence of the integral in
(3.2) arises since we allow infinite disutility for the power utility function.
To understand this point, first note that A is the investor’s coefficient of
relative risk aversion in (3.1) and usually takes the value of a positive inte-
ger. If the investor’s wealth is equal to zero, 4, we can easily find that the
investor will suffer infinite disutility5 if RT+T̂ = ln(ω−1

ω ). It is clear that
when 0 ≤ ω ≤ 1, RT+T̂ 6= ln(ω−1

ω ) will always hold6 and the expectation
in equation (3.2) will exist for certain distribution of RT+T̂ . But if we al-
low for short sale of either the risky or riskless asset, the existence of the
expectation may be in question with A bigger than 1. On the other hand,
it is reasonable to expect the investor to sell short the risky (riskless) asset
when the expected return of the risky asset is a large negative (positive)
percentage number. So to allow for a bit more generality, we may restrict ω
to be within [−0.3, 1.3] such that the real values of ln ω−1

ω will range outside
(−1.46, 1.46). Since it is rare to observe a return or a loss of more than
150% for RT+T̂ in our data given that T̂ is a moderate number, we could
expect our calculation algorithms to work well.

In our following studies we set A = 5 and rf = 0.3%, which is the last
observation of the monthly rate of return of the 3-month T-bill. Here we
study the horizon effect from one month to 5 years, i.e. 60 months. By
using the method described in the previous section7, the optimal holding
proportion of the risky asset and the MtoS defined in (3.3) are shown in the
left column of Figure 3.1 for different investment lengths. We can see that ω
is about 0.5 while MtoS is 2. Both of them do not change with time. These
results confirm the empirical findings of Barberis (2000) using the US data.
We have just added MtoS to analyze the relative change of the return and
risk of the risky asset over time.

4That is (1− ω) exp(T̂ rf ) + ω exp(T̂ rf +RT+T̂ ) = 0
5That is [(1− ω) exp(T̂ rf ) + ω exp(T̂ rf +RT+T̂ )]1−A = −∞ for A ≥ 1.
6Note that RT+T̂ must be real.
7Note that it is easy to derive the analytic moments of different orders for a normal

distribution once its first and second moments are known.
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Figure 3.1: Optimal holding of stock and MtoS with respect to time horizon
when excess return is unpredictable
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Next we turn our attention to the case when the investor no longer treats
the estimates of µ and σ as their true values, i.e. the investor is now taking
parameter uncertainty into account as termed by Barberis (2000). To model
the parameters µ and σ in (3.5) as random variables, we adopt the Bayesian
inference framework by assuming the joint distribution of µ and σ2 follows
a noninformative prior and hence their posterior follows a normal-gamma
distribution.

p(µ, σ2) ∝ 1
σ2

(3.6)

µ|σ2, D ∼ N(r̄,
σ2

T
) (3.7)

σ2|D ∼ IG
(
(T − 1)s2, T − 1

)
(3.8)

where r̄ = 1
T

T∑
1
rt = 0.4772% and s2 =

TP
t=1

(rt−r̄)2

T−1 = 0.0023797. Here σ2 fol-

lows an inverted gamma distribution with degrees of freedom T−1. Equation
(3.7) and (3.8) show the posterior distributions of µ and σ2, which are con-
ditional on the data8, denoted by D. The posterior mean and variance of
σ2 are

E(σ2|D) =

T∑
t=1

(rt − r̄)2

T − 3
= 2.40× 10−3 (3.9)

V ar(σ2|D) =
2(

T∑
t=1

(rt − r̄)2)2

(T − 3)2(T − 5)
= 3.91× 10−8 (3.10)

The conditional distribution of RT+T̂ is still given by (3.5). However, the
posterior distribution of RT+T̂ unconditional of µ and σ2 now becomes

RT+T̂ |D ∼ t(µ̂T̂ , σ
2
T̂
, T − 1) (3.11)

where µ̂T̂ denotes the mean parameter, which is equal to r̄T̂ and σ2
T̂

is the

variance parameter equal to s2T̂ (1 + T̂
T ). With parameter uncertainty of µ

and σ2, it is equivalent as saying that RT+T̂ in (3.2) has a t density function

8Here the data are the observed excess returns.
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with parameters described in (3.11). It can be seen that the mean and
variance of RT+T̂ grow at different speeds as compared to (3.5). The ratio
of the percentage rate of change between them (MtoS) is now the following,

MtoS =
∂µ̂T̂
∂T̂
× σ̂T̂

∂σ̂T̂
∂T̂
× µ̂T̂

= 2− 2T̂
T + 2T̂

. (3.12)

Unlike the case of no parameter uncertainty, this ratio depends on T̂ and
is a decreasing function of T̂ , whose value is less than 2 unless T̂ is 0.
Barberis (2000) shows that the optimal holding proportion of the risky asset
under parameter uncertainty will no longer be insensitive to the length of
investment horizon. It can be interpreted as the rational investor constantly
updating her estimation of the risky asset’s mean and standard deviation.
As there are more samples to be included for estimation in the long run,
she will become more doubtful about her initial estimation made at period
T . Therefore her expected risk of the asset will grow faster with time than
the case with no parameter uncertainty. To calculate the optimal ω, we will
still use the same numerical method as for no parameter uncertainty, since
for t-distribution it is also easy to derive the moments of different orders.
The plots of the optimal portfolio and MtoS are shown in the right column
of Figure 3.1. We can see that both ω and MtoS drop with the length of
investment horizon. For ω, it falls by around 7% while Mtos drops from
1.99 to 1.71. If we look at the expression of MtoS in (3.12), we could find
that it also involves T , i.e. the original sample size. We may conjecture
that the optimal portfolio may also be related to the sample size. Indeed,
if we keep the values of all other parameters the same and just change T to
its one tenth, the optimal ω will fall from 46% to 23% while MtoS is from
1.93 to 1.2. This can be due to the fact that as the investor’s estimation is
based on smaller sample size, she will have less confidence in it and will feel
that the asset is more risky in the long run. Hence the size of the drop of ω
is much larger and the horizon effect is more pronounced. The interesting
point here is that the ratio between the percentage rate of change of the
excess return’s mean and standard deviation (MtoS) seems to be able to
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tell how a rational investor will behave given different lengths of investment
horizons. However, in many applications, such as the one in the following
sections, the first and second moments of RT+T̂ may not have closed forms,
needless to say MtoS. Here we propose the following statistic, which can
circumvent this problem and approximate the MtoS,

ˆMtoS =
ln(µT̂ /µT̂−1)
ln(σT̂ /σT̂−1)

≈MtoS, (3.13)

which is the ratio of the log differences between the contemporaneous ex-
pected mean and the one of one period earlier to its standard deviation
counterpart9. The statistic approximates the instantaneous relative per-
centage change of expected return to that of risk. As we argued before, the
MtoS could be viewed as a measure of the economic value of risk in terms
of return over time. While the optimal holding proportion of the risky asset
is hard to calculate and depends on the setup of the maximization problem,
such as what form the utility function takes and how risk averse is the in-
vestor, the statistic defined in (3.13) is easy to calculate and may provide
a reference for the investor as to how attractive a particular portfolio is
over time. We will apply this statistic to the subsequent sections where the
analytical forms of the first and second moments of RT+T̂ are not available.

3.4 Whether Stock Return is Predictable or Not

3.4.1 Data and Summary of Statistical Results

All our data, except HGSC Index, are from DataStream, covering the period
from November 1978 to September 2003, altogether 299 observations (T ).
As before, we use r to denote the FTSE All-Share Index excess return,
which is our dependent variable. Its explanatory variables along with their
short forms used in the analysis are shown in the following list. Consistent

9Here we assume µT̂ is a monotonic function of T̂ and µT̂ and µ ˆT−1 have the same sign.
Note that with no parameter uncertainty (3.13) is equal to 2 just the same as the result
calculated in (3.3) given T̂ > 1. For the case with parameter uncertainty, the behaviour
of (3.13) is similar to that of (3.3) and they have the same limit as T̂ tends to infinity.
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Table 3.1: Details of the explanatory variables

1. January Dummy (Jan), which captures the January effect in the stock
market

2. monthly return of the three-month Treasury bill (Tb)

3. the first difference of Treasury bill (Tbchng), which is calculated as
Tb(t)− Tb(t− 1)

4. the difference of return between small market capitalization companies
and big ones (Smb), which is the difference between the total returns
of Hoare Govett Smaller Companies index (HGSC) and FTSE 100
Index

5. dividend yield, the ratio of dividend over stock price(Dy)

6. the difference between monthly returns of 20 year UK government gilt
and the 3 month T-bill (TERM)

7. monthly industrial production (Indp)

8. money supply, seasonally adjusted (M0)

9. monthly percentage change of industrial production (Indp%ch)

10. monthly percentage change of monetary supply (M0%ch)

11. Monthly inflation (Inf)

12. monthly oil price (Oilp)

13. monthly percentage change of oil price (Oil%ch)

14. the difference between returns of high book-to-market ratio company
index and low ones (HML), which is calculated as the difference be-
tween the total returns of MSCI value index and growth index

15. monthly change of inflation rate(Infch), which is calculated as
Inf(t)− Inf(t− 1)
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Figure 3.2: Monthly excess return on Financial Times All-Share Index
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Figure 3.3: Sample autocorrelation of FTSE All-Share Index excess return

with the study by Pesaran and Timmermann (1995), we do not include the
observation in October 198710, which is an outlier11. Figure 3.2 displays the
monthly excess returns of the FTSE All-Share Index over our sample range.
First sight suggests there do not seem to be any obvious patterns, such as
autocorrelation. This can be confirmed in Figure 3.312. The two parallel
horizontal lines indicate the 95% confidence interval. We can see that all
the autocorrelation coefficients up to twenty lags are well within the 95%
confidence lines.

10We achieve this by putting a dummy variable (1987Oct) in the linear regression later.
11In that month, there was a stock market crash. The index dropped by around 27%.
12The results are obtained from the MatLab routine autocor.m.
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Table 3.2: The OLS estimated excess return equation including all regressors
Regressors Coefficients T-statistic P-value

Intercept 0.007 0.088 0.465

Jan 0.0219 1.614 0.054

Tb -9.1271 -1.7349 0.041

Tbchng 7.45 1.3325 0.092

Smb -0.0864 -1.0134 0.156

Dy 2.265 3.1529 8.96e-4

TERM -9.998 -2.018 0.0223

Indp%ch 0.04985 0.225 0.411

M0%ch -0.106 -0.795 0.214

Inf -0.174 -1.093 0.138

Oil%ch -0.0881 -0.734 0.232

HML -0.0689 -0.746 0.228

Oilp 0.00033 1.303 0.0968

Indprd -1.41e-5 -0.019 0.492

M0 -0.0031 -2.04 0.0213

Infch 0.0605 0.104 0.4588

R2 0.17778

Adjusted R2 0.12804

Apart from the excess returns, all other variables are either business cycle
variables or financial market variables, which may possess explanatory power
for excess returns. A rough idea about the extent to which the excess return
can be predicted using different variables can be seen in the OLS regression
results obtained by regressing the excess return on all other variables as
summarized in Table 3.2. The numbers in bold indicate they are significant
at 10% level of significance. The signs of the coefficients and R2 statistics
are close to the findings for the US market, see Granger (1992). However,
such practice by regressing the excess return on all other variables could be
subject to criticism such as data snooping and model misspecification. In
the next subsection, we will use the BMA method to look into this issue
from another perspective.

3.4.2 Bayesian Model Averaging in a Univariate Linear Model

The Efficient Market Hypothesis (EMH, e.g. Fama (1970)) states that in an
efficient capital market, stock return is not predictable. Numerous empirical
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work has shown that the capital market is not efficient in this sense. While
traditional asset pricing models, like CAPM, precludes the use of predictors
in determining return, the literature of style investment, which bases invest-
ment on certain economic or accounting variables, has prospered in the past
decades. Banz (1981) documented that small-cap stocks have historically
outperformed large-cap stocks in the US by a margin that could not be ex-
plained by conventional measures of risk. Hence the capital size of a stock
may help predict its return. Later influential work can be seen in Fama and
French (1993), who documented five common risk factors in the returns on
stocks and bonds, i.e. the whole market returns, firm size, book-to-market
ratio, maturity risk and default risk. For the UK market, Pesaran and Tim-
mermann (1995) found that in addition to dividend yield, several business
cycle variables (see Table 3.1) help to predict the excess return. Different
variables can be seen in predicting returns in numerous other papers. The
variables presented in the last subsection are based primarily on these stud-
ies. Though there are many articles mentioning possible predictors, there is
little consensus on what the most important conditioning variables are.

Here we apply BMA techniques to a linear model to identify the most
important predictors using the UK data. We assume the predictors and the
dependent variable have a linear relationship with no serial correlation and
heteroscedasticity in the disturbance, i.e.

rt = ap +B′pxt−1,p + εt,p, εt,p ∼ i.i.d.N(0, σ2
p) (3.14)

where r stands for the excess return, and x stands for the set of predictors
used, which does not include any lag terms of r due to the weak autocorre-
lation of excess returns as shown before. The subscript p is a model specific
parameter, which implies the parameters are different for different models.
There are altogether 15 (K) possible predictors which may enter x to ex-
plain the excess return. The total number of different models with different
regressors, is P = 215. Each model, Mp, is described by a K × 1 binary vec-
tor γ = (γ1, ..., γK)′, where a one (zero) indicates the inclusion (exclusion)
of a variable. We denote the sum of all elements in γ by kp, which is the
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dimension of the column vector xt−1,p. If we stack up all the observations
for equation (3.14), then it can be written as,

r = apι+ XpBp + εp εp ∼ N(0, σ2
pI), (3.15)

where ι is a vector of ones, Xp = [x0,p, x1,p, x2,p, ..., xT−1,p]′, and r =[r1,
r2, r3,...rT ]′.

The following analysis relies heavily on the bench mark prior developed
by Fernandez et al. (2001a). To implement their approach, we first reparam-
eterize the intercept term (ap) in the regression such that the new intercept
term (ap) is orthogonal to the slope (Bp) in the likelihood function, i.e.
ap = ap − ι′XpBp

T . In doing so, we have changed (3.15) into

r = apι+HXpBp + εp, εp ∼ N(0, σ2
pI) (3.16)

where H = IT − ιι′

T is the demean matrix. The bench mark prior proposed
by Fernandez et al. (2001a) looks like the following.

p(ap, σ2
p) ∝

1
σ2
p

(3.17)

Bp|σ2
p, ap ∼ N(0, σ2

p(gX
′
pHXp)−1) (3.18)

Here we use noninformative prior for the equation variance and the constant.
For the slope vector Bp, we use the g prior designed by Zellner (1986), which
uses the explanatory variables to specify the prior variance. It substantially
reduces the trouble of eliciting too many hyperparameters. Now the strength
of the prior only depends on g. Fernandez et al. (2001a) elicit g based on
truth searching. They first generate hypothetical datasets in a linear model
and then try different values for g to find the one which can identify the
true model under different circumstances. After extensive experiments, they
recommend choosing

g =

 1
T if T > K2

1
K2 if T ≤ K2

(3.19)
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where T stands for the sample size and K stands for the number of potential
predictors. Note that g appears in the prior variance of the slope vector,
which controls our confidence in the prior. The choice of g in (3.19) means
we always prefer a more noninformative prior such that the variances for
the slopes in (3.18) are bigger than the alternative. It can be shown that
the posterior of Bp follows a multivariate t distribution with mean:

E(Bp|D,Mp) = B̄p =
1

g + 1
(X′pHXp)−1X′pHr (3.20)

and covariance matrix:

V ar(Bp|D,Mp) =
v̄s̄2
p

v̄ − 2
V̄p (3.21)

where v̄ = T is the degree of freedom, v̄s̄2
p = r′Hr− 1

1+gr
′HXp(X′pHXp)−1X′pHr

and D denotes the data. Note that σ2
p and ap enter into all models and their

dimensions will not change. It is acceptable to use uninformative priors for
them when we want to compare different models using posterior odds ra-
tios, which will be discussed later, see Koop (2003). The marginal likelihood
takes the following form:

p(D|Mp) ∝ (
g

1 + g
)
kp
2
(
v̄s̄2
p

)−T−1
2 (3.22)

We can see that the marginal likelihood penalizes the models with a large
number of regressors (kp) since g

1+g is less than 1. For our case there are
P = 215 models. Given this model space, there is uncertainty about what
is the correct model. Hence it makes sense to consider the parameters un-
conditional of the model space. This requires us to calculate the posterior
model probability as shown in equation (3.23).

p(Mp|D) =
p(D|Mp)p(Mp)

p(D)
=

p(D|Mp)p(Mp)
P∑
p=1

p(D|Mp)p(Mp)
(3.23)

To specify the model prior, p(Mp), it is possible to use a uniform prior,
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which gives every model the same prior probability( 1
215 in our case). How-

ever, we may want to penalize models with regressors which are highly cor-
related with each other. George (2001) suggests the following model prior
to achieve this,

p(Mp) ∝ |R|
K∏
i=1

πγi(1− π)γi (3.24)

where R is the correlation matrix of regressors included and π is the prob-
ability of including a variable. Here we set π = 1

2 to allocate equal prior
probability to each model13. The determinant of the correlation matrix in
the model prior serves to penalize the models with redundant regressors. We
can see this by noting that |R| = 1 when the regressors are orthogonal and
|R| approaches 0 when the regressors become more collinear. By putting
|R| into the prior, we can downweigh the models with similar regressors.
Table 3.3 displays the parts of the correlation matrix of both dependent and
independent variables. Here we just report those elements with absolute
values greater than 0.1. As we can see from the table, the use of the model
prior in (3.23) is justifiable since certain variables in our regression exhibit
high degree of correlation such as oil price, industrial production, monetary
supply, treasury bill rate and dividend yield.

Next we turn to how to construct the BMA estimates. Let β denote
the intercept and the slopes for the predictors. Though we choose different
regressors for different models, we can still think that we are running the
usual linear regression model where all possible regressors are included, but
for different models different elements of β are set to zeros with probability
one. As mentioned in Poirier (1985) we always condition on the full set
of available regressors. After model uncertainty is accounted for, Leamer
(1978) showed that the mean and variance of the elements in β can be

13It is possible to choose other values of π: a smaller value of π will favour more
parsimonious moodel, while a bigger value of π will prefer models with more explanatory
variables. In terms of inclusion probabilities, the order (from high to low) of the most
robust explanatory variables, which are picked up for the subsequent SUR analysis, does
not vary much under different values of π’s. The results are available upon request.
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calculated as14:

E(βi|D) =
P∑
p=1

I(γi = 1|Mp, D)p(Mp|D)E(βi|Mp, D) (3.25)

V ar(βi|D) = E(β2
i |D)− E2(βi|D) (3.26)

where E(β2
i |D) =

P∑
p=1

I(γi = 1|Mp, D)p(Mp|D)E(β2
i |Mp, D). An investor

may be interested in knowing how important the variables are in explaining
the excess return. We therefore need to have a measure of the importance
of the included regressor i unconditional of the model space. The following
posterior inclusion probability of variable i serves this purpose.

p(γi = 1|D) =
P∑
p=1

I(γi = 1|D,Mp)p(Mp|D) (3.27)

14In fact when we apply the BMA method, the formulae can also be used for other
parameters of our interest such as the predicted stock return.
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There are altogether 215 = 32768 (P ) models to be analyzed. The avail-
ability of the closed forms of posterior moments and marginal likelihood
substantially ease the computation, which enables us to evaluate all the
models. It takes about 30 seconds to evaluate all the models and carry out
the model averaging exercise in a computer with Pentium IV 3 GHz CPU.
It can be estimated that it takes around one hour to estimate models with
22 explanatory variables. For models with more predictors, which the cur-
rent computing technology cannot handle, we can rely on algorithms such as
Markov Chain Monte Carlo Model Composition (MC3) developed by Madi-
gan and York (1995). In our case, the cost to analyse all the models is rela-
tively small. Table 3.4 shows the estimation results for the slope parameters.
Table 3.5 lists the 10 models with the highest posterior model probabilities.
If the posterior distribution of a slope parameter can be approximated by
a normal distribution (e.g. when we have a large sample size), we could
characterize the distribution by only its mean and standard deviation and
we could know its distance from zero. However, under model uncertainty,
the coefficients’ posterior distributions are now mixtures of the posterior
distributions from all models, which makes the standard deviation hard to
interpret. Here we use the posterior inclusion probability defined in (3.27)
as a measure of the coefficient’s significance. Additionally, we also report
the probability of the coefficient being less than zero unconditional on the
model space. This probability and the statistic obtained through dividing it
by the inclusion probability (we will call this ratio statistic henceforth) are
designed to tell what the posterior distribution of a slope parameter looks
like. First note that the point zero has a probability mass for each param-
eter, which is the probability of not including the parameter conditional
on the data. Except for this point, the posterior distribution is continuous
anywhere in the real line. If the posterior distribution of a slope parameter
is different from zero, we should expect the point zero receives little prob-
ability mass and the continuous part of the distribution is far away from
zero. For example, if a parameter’s posterior mean is positive (negative), we
should expect p(slope < 0) be close to zero (one). The ratio statistic, de-
fined by p(slope < 0) divided by the inclusion probability, is the probability
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of the slope less than zero unconditional of the models with the regressor
included. In other words, it does not consider the point zero and only takes
into account those models with the parameter. We have put the variables
with more than 10% inclusion probabilities in bold. These are the relatively
powerful explanatory variables in our results. As we can see such models’
ratio statistics are also significant at 10%15. The variables with the highest
inclusion probabilities in descending order are Dy, Inf, Smb, Jan and M0.
If we compare the results to those in Table 3.2, we can see that only Dy, Jan
and M0 are robust for both Bayesian and classical approaches while the vari-
ables of oil price, Tb and Tbchng have relatively lower inclusion probability
in contrast to their significant results without model averaging. Hence one
should be more cautious of the significance of the latter set of explanatory
variables.

Table 3.4: Univariate Posterior Estimation of the Slope Parameters

slope standard deviation incl prob p(slope<0) p(slope<0)
incl prob

Jan 1.62e-3 5.455e-3 0.1257 0.01122 0.089
Tb -0.01926 0.43324 5.1e-2 0.02585 0.51

Tbchng 0.223 1.6047 0.06596 0.01735 0.263
Smb -0.0175 0.0522 0.14752 0.137 0.93
Dy 0.311 0.489 0.391 0.0039 0.01

TERM 0.0512 0.5828 0.06325 0.0202 0.319
Indp%ch 2.47e-3 5.17e-2 0.05564 0.02328 0.418
M0%ch -0.0289 0.1649 0.07454 0.0591 0.793
Inf -0.0362 0.0998 0.1644 0.15 0.913

Oil%ch -0.0098 0.044 0.090 0.0766 0.852
HML -0.0059 0.0325 0.076 0.061 0.80
Oilp -6.1e-6 3.01e-5 0.081 0.071 0.881
Indp -3.33e-5 1.56e-4 0.085 0.075 0.884
M0 -6.21e-5 2.3e-4 0.11 0.099 0.925
Infch -0.0197 0.1466 0.065 0.0476 0.732

Table 3.5 lists the top 10 models with the highest posterior model prob-
abilities. The column headed by “model” list the regressors included for the
particular model. The explanation of the variables can be found in Table

15That is if the posterior mean of the slope is positive (negative), the ratio statistic is
more than 90% (less than 10%).
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Table 3.5: Univariate Posterior Model Probabilities
ranking model model prob

1 0 0.129
2 Dy 0.098
3 Dy,Inf 0.056
4 M0 0.036
5 Indp 0.028
6 Oilp 0.027
7 Smb 0.025
8 Jan 0.019
9 Smb,Dy 0.014
10 Jan,Dy 0.0137

3.1. We can see that the model with the highest posterior probability is the
one without any explanatory variables. Moreover, the top 10 models are all
parsimonious models with at most 3 regressors. Their posterior probabili-
ties sum up to 0.49, while for the top 100 models out of 32768, the sum is
84%. All of the top 100 models have no more than 4 regressors, with 82 of
them with less than 3. A point to note is that although the model without
any explanatory variables has the highest posterior model probability, its
posterior probability is not much higher than those of other top models.
Their model probabilities sum up to around 87%. Another point to note is
that the variable with the highest inclusion probability (around 40%) is the
dividend yield. The inclusion probabilities of other variables are at most
between 10% and 15%. Remember that our prior for the inclusion probabil-
ity of each variable is 50%. However, the data do not seem to confirm our
prior. This reveals a substantial amount of model uncertainty. It seems that
none of the explanatory variables are overwhelmingly strong predictors of
the stock return, although the models supporting predictability have higher
posterior probability than the model supporting no predictability.
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3.4.3 Bayesian Model Averaging in a SUR Model

The previous subsection reveals that the excess return seems to be pre-
dictable and some explanatory variables have relatively high posterior in-
clusion probabilities. Judging from these results, we cannot rule out the
possibility that the stock return is predictable. However, as Holmes et al.
(2001) point out, if one can incorporate the data generating processes of not
only the dependent variable but also the explanatory variable into estima-
tion, the true model may receive higher posterior model probability since
different data generating processes can borrow strength from each other. In
this subsection, we will implement this idea in a seemingly unrelated regres-
sion (SUR) model to investigate more closely the predictability of excess
return.

We assume that the explanatory variables have their own data generating
processes and that such processes could be correlated with each other and
that of the excess return.

rt = a0p +B′0pxt−1,p + F ′0pyt,p + ε0t,p (3.28)

xi,t = ai +B′iwi,t−1 + εit (3.29)

As before p is the model specific subscript. Here we separate the explana-
tory variables into dummy variables y and non-dummy variables x, which
have their own generating processes described in equation (3.29). The re-
gressors for the predictor equations (w) may include the lag of the excess
stock return and those of the explanatory variables. To ease the computa-
tional burden in estimation16, we wish to reduce the number of equations and
the parameters to be estimated. We only pick up the five variables with the
highest inclusion probabilities calculated in the previous subsection, which
consist of one dummy variable, Jan, two financial variables, Smb and Dy,
and two business cycle variables, Inf and M0. All the equations in (3.29)
(i = 1, 2, 3, 4) have an intercept term. Table 3.6 describes the regressors

16The author agrees that model uncertainty should be considered for all equations at
the same time. However, the current computation power does not allow such practice.
Moreover we should place our focus on the first equation about the stock return.
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we choose for each predictor equation. Holmes et al. (2001) suggests a full
search of potential regressors for each equation under SUR framework. To
make it simpler, here we just use the univariate BMA method as described
before to pick up the variables with the highest inclusion probabilities for
each predictor equation. The potential explanatory variables for each equa-
tion are the predictor variables of the stock return and the stock return itself
17, i.e. r, Smb,Dy, Infl,M0 and Jan.

Table 3.6: Regressors for Equation (3.29)
Equation (for x′s) Regressors (w)
Smb(x1) r

Dy(x2) r Dy

Inf(x3) Inf

M0(x4) M0

Since our focus is still on the excess return, for different models we
assume only the regressors in equation (3.28) will change and the predictor
equations will stay the same for different models. Our total number of
potential models is P = 25 = 32. Let us define εt = [ε0t, ε1t, ε2t, ε3t, ε4t]

′ and
we assume

εt ∼ N(0,Σ) and E(εjε′k) = 0 for j 6= k (3.30)

We will estimate equation (3.28), (3.29) and (3.30) in an SUR frame-
work. Koop (2003) illustrates how to estimate SUR model in a Bayesian
framework. Our analysis partly relies on it. First we need to write equation
(3.28) and (3.29) into matrix form by defining the following notations.

zt
(m×1)

=


rt

x1t

...

x4t

 , X̃t
(m×kp)

=


x′t−1,p y′t 1 0 0 0 ... 0 0

0 0 0 w′1,t−1 1 0 ... 0 0
... ... ... ...

0 0 0 0 0 0 ... w′4,t−1 1


C

(kp×1)
=
[
B′0p F ′0p a0p B′1 a1 ... B′4 a4

]′
17All explanatory variables enter the predictor equation in the form of one period lag.

Detailed results are available from the author upon request.
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So equation (3.28) and (3.29) can be rewritten as

zt = X̃tC + εt (3.31)

We adopt the independent Normal Wishart prior for C and Σ, which looks
like

p(C,Σ) = p(C)p(Σ) = fN (C|C, V )fIW (Σ|Σ, v) (3.32)

where the prior parameters C and V denote the mean and variance in the
normal distribution and Σ and v denote respectively the matrix and degrees
of freedom in the inverted Wishart distribution. Although we have tried to
limit the number of our parameters, we still end up with 31 parameters to
estimate when we include all regressors into equation (3.28), which means
the specification of the hyperparameters could be a huge task. Here we try to
be as least subjective as possible. Koop (2003) recommends a general rule of
thumb for doing BMA which suggests it is acceptable to use a noninformative
prior for parameters which are common to all models and informative proper
priors for parameters changing over models. Since for different models we
only change the regressors in equation (3.28), only the dimension of B0p and
F0p will change across models. For these parameters, we use a proper prior.
We will use a noninformative prior for the other parameters. The prior for
Σ looks like the following.

fIW (Σ|Σ, v) ∝ |Σ|−
1
2

(5+1) (3.33)

Let us denote cp =
[
B′0p F ′0p

]′
. For parameters [a0p B

′
1 a1...B

′
4 a4]′,

we set their covariance elements in V and the diagonal elements in V −1

to zero so that the corresponding values of the hyperparameters in C are
irrelevant. We will leave the prior for cp to later discussion. For the moment
we just assume we have a proper prior for it.

The posterior distributions for C and Σ have no analytical forms since the
stock return equation and the predictor equations have different regressors.
We have to use the following Gibbs sampler algorithm (see Geweke, 2005)
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to evaluate them.

C|D,Σ ∼ N(V̄ (V −1C +
T∑
t=2

X̃tΣ−1zt, V̄ ) (3.34)

Σ|D,C ∼ IW (
T∑
t=2

(zt − X̃tC)(zt − X̃tC)′, T ) (3.35)

where V̄ = (V −1 +
T∑
t=2
X̃ ′tΣ

−1X̃t)−1.

We first choose some arbitrary values for C and draw Σ from equation
(3.35) and then plug the draw of Σ into (3.34) to make a new draw of C.
Repeating this process will give us a chain of draws. We discard a certain
number of the initial draws as burn-in and only retain the remaining draws.
The sample average of such draws can give us the estimates of the posterior
means for C and Σ.

Our system is comprised of equation (3.28) and (3.29) (described in
Table 3.6), where there are altogether 5 equations. The marginal likelihood
for a model in our case should be based on all the equations. Though our
focus is on the excess return equation, we should not ignore the DGPs of
other variables when calculating the marginal likelihood for a model. In
this sense our work differs from the previous researchers such as Avramov
(2002). To make different models comparable, we keep the specifications for
the explanatory variables the same across different models and only change
that of the excess return equation. Unlike the univariate case, an SUR
model like ours has no closed form for the marginal likelihood. We use
Savage-Dickey density ratio discussed in Verdinelli and Wasserman (1995)
to calculate the Bayes factors of all restricted models relative to the model
with all regressors included in equation (3.28). We denote the model with all
regressors included by subscript all. We can view different models as fixing
different parts of the elements in call, which we call η, to 0 with probability 1.
Again we attach a model specific subscript p to η for all restricted models18.

18Note that the other unrestricted elements in call form cp
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Then the Savage-Dickey density ratio (Bayes factor) could be evaluated as

BFp,all =
p(D|Mp)
p(D|Mall)

=
p(ηp = 0|D,Mall)
p(ηp = 0|Mall)

(3.36)

Though it is straightforward to evaluate the denominator from the marginal
prior distribution, there is no direct way to evaluate the numerator since we
do not know the analytical form of the posterior distribution for ηp. How-
ever, we know the marginal posterior distribution of ηp conditional on Σ
and we can have posterior draws of C and Σ from the Gibbs sampler. If we
denote the number of draws from the Gibbs sampler by N , we can evaluate
the numerator in (3.36) as

p(ηp = 0|D,Mall) =
1
N

N∑
i=1

p(ηp = 0|Σi, D,Mall) (3.37)

For us to use the above Savage-Dickey density ratio to calculate the Bayes
factor, the following condition must hold (see Verdinelli and Wasserman,
1995).

p(cp|ηp = 0,Mall) = p(cp|Mp) (3.38)

To guarantee the above condition to hold, we must choose the prior for cp
carefully. We first specify the prior for call using the g prior like that in
equation (3.18) without the term σ2

p. We choose g as in (3.19). Here we use
Ω to denote the variance hyperparameter for call and break it into blocks
corresponding to cp and ηp.

call =

[
cp
ηp

]∣∣∣∣∣Mall ∼ N

(
0,Ω =

[
Ω11,p Ω12,p

Ω21,p Ω22,p

])
(3.39)

where Ω takes the form of a g prior in (3.18). It can be proved that the prior
for cp should have the following form for condition (3.38) to be satisfied,

p(cp|Mp) ∼ N(0,Ω11,p − Ω12,pΩ−1
22,pΩ21,p) (3.40)

which means for models with restriction ηp = 0, we have more confidence in
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cp = 0 a priori compared to the all inclusive model.
With the Bayes factor we are able to calculate the posterior odds ratio

as
POp,all =

p(Mp|D)
p(Mall|D)

=
p(D|Mp)p(Mp)
p(D|Mall)p(Mall)

(3.41)

The prior model probability is calculated as before in (3.24) with π = 1
2 .

Finally we can calculate the posterior model probability for model p using
the following,

p(Mp|D) =
POp,all
P∑
p=1

POp,all

. (3.42)

The mean and variance estimates of C and Σ unconditional on the model
space can be obtained in a similar way as in equation (3.25). The advan-
tage of using Savage-Dickey density ratio is that to obtain posterior model
probabilities for different models, we only need to estimate the model with
all the regressors and do not have to calculate the marginal likelihoods of
different models one by one, which substantially reduces the computation
time.

There are altogether 31 parameters to be estimated in the model de-
scribed by (3.28) and (3.29). Table 3.7 lists all the models along with their
posterior probabilities in descending order. We obtain the results after 1
million draws in the Gibbs sampler. Remember we only change the regres-
sors of the excess return equation in (3.28) to form different models, while
the regressors for other equations of (3.29) remain the same in the BMA
exercise. Different from the univariate BMA case, the model without any
regressor has much higher probability while the posterior model probabil-
ities of most of the other top ten models in the univariate framework fall
substantially. The sum of the model probabilities of all the models sup-
porting stock return predictability is now only around 26%. This indicates
under the SUR model we find less favorable evidence for stock return’s pre-
dictability. A point to note is that the posterior model probability of the one
with only January effect jumps from 0.02 to about 0.135, which accounts
for around half of the posterior model probability of the models supporting
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Table 3.7: Posterior model probability under dynamic context
Ranking Model

Probability
Regressors in
(3.28)

Ranking Model
Probability

Regressors in (3.28)

1 0.736 0 17 5.1966e-5 Smb Dy Jan
2 0.135 Jan 18 3.8916e-5 Infl M0 Jan
3 0.070567 Dy 19 3.4636e-5 Smb M0 Jan
4 0.028658 M0 20 2.8122e-5 Dy M0 Jan
5 0.01023 Dy Jan 21 2.2804e-5 Smb Infl
6 0.0055782 M0 Jan 22 1.3884e-5 Smb Dy Infl
7 0.0052467 Smb 23 5.672e-6 Dy Infl M0
8 0.0032275 Infl 24 3.6299e-6 Smb Infl Jan
9 0.0025978 Dy Infl 25 1.4882e-6 Smb Infl M0
10 0.00086235 Smb Jan 26 1.4777e-6 Smb Dy Infl Jan
11 0.0005714 Infl Jan 27 1.0426e-6 Smb Dy M0
12 0.00039074 Smb Dy 28 6.725e-7 Dy Infl M0 Jan
13 0.00029996 Dy Infl Jan 29 2.7876e-7 Smb Infl M0 Jan
14 0.0001986 Smb M0 30 1.494e-7 Smb Dy M0 Jan
15 0.00018582 Infl M0 31 3.0519e-8 Smb Dy Infl M0
16 0.00018445 Dy M0 32 3.4185e-9 Smb Dy Infl M0 Jan

stock return predictability. It seems that if we incorporate the DGPs of the
explanatory variables from the excess return equation and allow such DGPs
to be correlated with each other, we find much weaker support for stock
return predictability compared with the univariate case. However, further
analysis needs to be carried out to see whether such weak predictability has
an impact on the investor’s portfolio strategy.

Table 3.8 shows the estimation results of all the parameters for the ex-
cess return equation (3.28) after model averaging, where numerical standard
error (NSE) is equal to standard deviation√

number of draws
, which is a measure of accuracy for

the mean estimates, see Koop (2003). When the true population mean has
no closed form, the numerical method we use implies that it should lie in the
region of (estimated mean-1.96NSE, estimated mean+1.96NSE) with about
95% probability. Compared with Table 3.4, the slopes of Smb, Dy and Inf
have decreased in scale (in absolute value). We can also see a huge drop in
their inclusion probabilities, while the inclusion probability of Jan has risen
moderately. The estimates for Σ are shown in the lower triangle of Table 3.9
with standard deviations in brackets. The correlation coefficients of different
equations are in the upper triangle. Note that the correlation between some
equations can be as high as 0.32. The fact that some equations of (3.28) and
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Table 3.8: BMA estimation results for the excess return equation under
dynamic context
return equation Smb Dy Infl M0 Jan 1987Oct const

slope -0.00075 0.043 -0.00079 -0.0022 0.0052 -0.2685 0.0038

std 0.0112 0.163 0.01611 0.01315 0.013 0.04569 0.0077

NSE 3.53e-5 0.0005 5.09e-5 4.16e-5 4.14e-5 0.00014 2.44e-5

incl prob 0.00683 0.0843 0.00697 0.03492 0.1527 1 1

Table 3.9: BMA estimate for error variance matrix under dynamic context
Equation of r Smb Dy Infl M0

r 0.0021775
(0.00018281)

-0.14287 0.013314 -0.095545 0.077462

Smb −0.00020629
(8.645e−5)

0.0009575
(7.9883e−5)

0.16883 0.090462 -0.063564

Dy 4.9834e− 7
(2.252e−6)

4.1904e− 6
(1.4901e−6)

6.4337e− 7
(5.3803e−8)

0.32002 0.16179

Infl −2.4844e− 5
(1.5398e−5)

1.5598e− 5
(1.0253e−5)

1.4303e− 6
(2.7633e−7)

3.1049e− 5
(2.5901e−6)

0.015963

M0 2.2598e− 5
(2.2496e−5)

−1.2296e− 5
(1.1387e−5)

8.1132e− 7
(2.9989e−7)

5.561e− 7
(2.048e−6)

3.9085e− 5
(3.2603e−6)

(3.29) are correlated could imply that the use of SUR model should lead to
improved estimation.

3.5 The Horizon Effect of Stock Return Predictabil-

ity and Model Uncertainty

Equation (3.28) and (3.29) provide us a framework to make forecasts of
more than one period ahead based on the information of current period. To
simplify the illustration, we need to write equation (3.28) and (3.29) into
the form of vector autoregression (VAR) model. Actually the SUR model
can be viewed as the restricted form of the VAR model. First let us define



CHAPTER 3. HORIZON EFFECT 139

the following19,

zt
5×1

=


rt

x1t

...

x4t

 , B5×5
=


0 B′0,p
B1 0 0 0 0
B21 0 B22 0 0
0 0 0 B3 0
0 0 0 0 B4


A

5×1
=
[
a0p a1 a2 a3 a4

]′
, F =

[
F ′0,p

0

]

For the DGPs of the explanatory variables, we use the regressors de-
scribed in Table 3.6. So equation (3.28) and equation (3.29) can be written
as

zt = B · zt−1 +A+H · yt,p + εt (3.43)

Now we can use the following to estimate the mean and variance of zt+h
periods ahead conditional on a particular model and the parameters in the
excess return and the predictor equations.

E(zT+h|C,Σ, D,Mp) = Bh · zT +
h−1∑
i=0

Bi ·A+
h−1∑
i=0

Bi ·H · yT+h−i,p (3.44)

V ar(zT+h|C,Σ, D,Mp) = Σ +BΣB′ + ...+Bh−1Σ(Bh−1)′ (3.45)

Note that we assume εt has no heteroscedasticity and no serial correlation
as in (3.30). This is the base to obtain the conditional forecast variance in
(3.45). Also note that y is the dummy variable, i.e. Jan in our case, which
captures the periodic phenomenon. In our evaluation of the moments of the
cumulative excess return (i.e.RT+T̂ = rT+1 +rT+2 + ...+rT+T̂ ), we set y = 0
since we are more interested in the relationship between the stock excess
return and the economic fundamentals over time. Note that the cumulative

excess return RT+T̂ is the first element in the vector
T̂∑
h=1

zT+h, whose mean

19Here Bi (i = 1, 3, 4) denote the slope parameters in equation (3.29), which are all
scalars, while B21 and B22 are the slope parameters in the second predictor equation (the
equation for dividend yield). See Table 3.6.
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and variance can be calculated as

µcum = B(BT̂−I)(B−I)−1zT +[B(BT̂−I)(B−I)−2−T̂ (B−I)−1]A (3.46)

V arcum =
T̂∑
h=1

δ(h)Σδ(h)′, δ(h) = (Bh − I)(B − I)−1 (3.47)

The predictive distribution of the cumulative excess return conditional
on C, Σ and the model is

RT+T̂ |C,Σ, D,Mp ∼ N(µ(1)
cum, V ar

(1,1)
cum ) (3.48)

where µ(1)
cum stands for the first element in µcum and V ar

(1,1)
cum is the (1,1)

element of the covariance matrix.
To summarize, when we make T̂ periods ahead forecast of the stock

excess return, we will go through the following steps:

1. We sort the posterior model probabilities of the 32 models calculated
from (3.42) descendingly as shown in Table 3.7.

2. Conditional on each model, we draw C and Σ from (3.34) and (3.35).
The number of draws for each model corresponds to its posterior model
probability20.

3. Conditional on the draws of C and Σ, we take draws of RT+T̂ from
(3.48) and calculate the moments.

Note that for the models with explanatory variables other than the
dummy in the excess return equation, our results are sensitive to the initial
condition of the variables included, i.e. zT . Predictability in the context of
equation (3.44) and (3.45) means that investors use the dynamic model to
predict the future based on the current information. The estimated mean
and variance of RT+T̂ from (3.48) should be viewed as the investor’s sub-
jective belief of the cumulative stock excess return and risk accordingly.

20If we denote the total number of draws in the algorithm by TN , then the number of
draws for model p will be around TN × p(Mp|D).
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Another reason for incorporating the DGPs for the explanatory variables of
the excess return equation is that we want to make forecast of excess return
T̂ periods ahead. Barberis (2000) showed that when the excess return can
be predicted only by dividend yield, the optimal stock holding proportion
will be very sensitive to the initial value of dividend yield while less sensitive
if the investor takes into account parameter uncertainty21. However, note
that in Table 3.7 the top two models receiving large amount of posterior
model probabilities include no explanatory variables and only the dummy
variable respectively22. These regressors do not appear in our forecast exer-
cise in equation (3.46). In the situations like these, we are virtually saying
that the stock return is unpredictable. However, our BMA results are based
on the average of all the potential models. Whether the weak predictability
will lead to any conspicuous horizon effect requires further analysis.

First we will use the sample mean of all the explanatory variables con-
cerned to form the investor’s initial condition. The final results shown in
Figure 3.4 are obtained after 8 million draws. The solid line represents the
forecast path of the mean and standard deviation of RT+T̂ over time. We
can see that the mean of the excess return is positive throughout our in-
vestment horizon and like the standard deviation, it rises in scale as the
investment horizon lengthens. In addition to our forecast, we have also in-
cluded the evolution paths of the mean and standard deviation of RT+T̂

when the excess return is unpredictable with and without parameter un-
certainty (in dotted and dashed line respectively), as indicated in (3.5) and
(3.11). We can see that RT+T̂ ’s forecast mean does not rise as fast as the
one under no predictability in the long run, while its standard deviation
is above the one without parameter uncertainty and slightly below the one
with parameter uncertainty. Given zT is the mean of the predictors, the
evolution paths of the mean and standard deviation of the excess return
from the BMA results are very similar to those under no predictability and

21Note that the marginal effect of dividend yield on stock return in most applications
is positive. Therefore given that a rational investor’s initial value of dividend yield is
positive, she should have more position in stock if she has longer investment horizon.

22The sum of their model probabilities is around 87%.
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Figure 3.4: The mean and standard deviation of RT+T̂ (solid line)

with parameter uncertainty. Therefore we may conjecture that the optimal
holding proportion of stock should decrease with time in the long run. This
should make intuitive sense since our framework does not only take into
account parameter uncertainty but also model uncertainty. When the ini-
tial condition for the investor is formed by taking the sample mean of the
predictors, it is close to the case with no predictability since in our sample
we find not much evidence supporting predictability.

To confirm our guess, we can calculate the ˆMtoS statistic defined in
(3.13) and the optimal holding proportion of stock. We use the algorithm
mentioned in Section 3.2 to search for the optimal ω. Figure 3.5 shows the
results in solid lines. Except for the initial tiny rise, the optimal holding pro-
portion of stock falls consistently. As for the ˆMtoS, although it has some
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zigzag movements23, it clearly demonstrates a downward sloping trend over
the long run. Hence we have reason to believe that the ˆMtoS statistic cap-
tures investor’s willingness to hold a risky asset over time to some degree.
Under our initial condition, the weak predictability and model uncertainty
lead to relatively slow increase of the mean of the excess return compared
to the risk, which makes the FTSE rather unattractive in the long run. A
rational investor under our utility maximization setting hence should de-
crease her holding of the FTSE index asset over time. While it is difficult to
calculate the optimal holding proportion of the risky asset, it is very conve-
nient to calculate the ˆMtoS statistic as long as we can simulate draws from
the predictive distribution of the excess return. Although the statistic does
not depend on how the utility maximization problem is set up, it may still
provide a reference for the investor in regard to how attractive an asset is
over time.

Next we will turn to the question of whether the weak predictability
of stock return will induce any horizon effect. As mentioned before, pre-
dictability should imply that the investor use the present information to
predict the future. If there is no horizon effect caused by predictability, the
investor should be insensitive to different values of zT (the initial condition).
Here we try two more values in addition to the mean of the predictors: zero
and twice the mean of the predictors. The results are also shown in Fig-
ure 3.5. The dashed line is obtained from the initial value zero while the
dashed-star line is from twice the predictors’ mean. We can see that the
three paths of ω from three initial values look quite different, though all of
them are downward sloping over time. The dashed-star line (from twice the
predictors’ mean) falls faster than the other two and its MtoS line is below
those of the other two. If we set the initial condition to a zero vector, the
starting ω is much less than the other two cases. Over time, its optimal
holding proportion seems to be parallel to the one obtained by setting zT to
the mean of the predictors. We can see that its MtoS line is initially below
the zT -mean line and the two get intertwined over time. To summarize, it

23Such movements could be due to the numerical error during the simulation. As the
number of draws increases in the Gibbs sampler, the range of oscillation should be reduced.



CHAPTER 3. HORIZON EFFECT 144

0 10 20 30 40 50 60
0.2

0.3

0.4

0.5

0.6

0.7

ω
 (

op
tim

al
 p

ro
po

rt
io

n 
of

 r
is

ky
 a

ss
et

)

z
T
=mean

z
T
=0

z
T
=2 × mean

0 10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

2.4

M
to

S

investment horizon in month(s)
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appears that although the stock return predictability is weak, it still has a
considerable effect on the investor’s optimal portfolio decision over time.

3.6 Conclusion

In this chapter, we study the horizon effect of stock return’s predictability,
that is, for different lengths of investment horizons how a rational investor
should allocate between risky and risk free asset. We show that the investor’s
portfolio choice for different investment horizons can be linked to the relative
time variation of stock’s expected return and its expected risk. We propose
a computationally convenient statistic to capture such horizon effect and
show that it could be related to an investors’ optimal holding proportion
of a risky asset. We also study the stock return’s predictability for the UK
market, i.e. what variables may be useful in predicting stock excess return.
We argue that Bayesian model averaging is more preferable than simply
focusing on a particular model in terms of picking up the variables truly
useful in predicting the return. By using BMA, we can avoid the problem of
data snooping and take into account parameter and model uncertainty. We
have studied the potential useful predictors under both univariate and mul-
tivariate frameworks. Our univariate results show that for the UK market,
the most powerful predictors are dividend yield, January effect, monetary
supply, inflation rate and company size effect. However, if we allow the data
generating processes of stock excess return to be correlated with those of
its explanatory variables, the predicting power decreases for most variables.
Only January effect still remains relatively robust. Though the evidence for
stock return predictability is rather weak, it can still lead to considerable
horizon effect. It is possible to extend our framework to consider several
risky assets. With regard to stock’s predictability, we have just considered
the predictability in return. It could be fruitful to study the case when the
same set of explanatory variables can predict stock’s conditional volatility.
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