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GEFANG: THREE ESSAYS ii

Abstract

The first essay introduces a Bayesian logistic smooth transition vector au-
toregression (LSTVAR) approach to investigating the impact of international
business cycles on the UK economy. We find that the British business cycle is
asymmetrically influenced by growth in the US, France and Germany. Over-
all, positive and negative shocks generating in the US or France affect the
UK in the same directions as the shock. However, a shock emanating from
Germany always exerts negative cumulative effects on the UK. Further, a
positive shock arising from Germany adversely affects the UK output growth
more than a negative shock of the same size.

The second essay proposes a Bayesian method to investigating the pur-
chasing power parity (PPP) utilizing an exponential smooth transition vector
error correction model (ESTVECM). Employing a simple Gibbs sampler, we
jointly estimate the cointegrating relationship along with the nonlinearities
caused by the departures from the long run equilibrium. By allowing for sym-
metric regime changes, we provide strong evidence that PPP holds between
the US and each of the remaining G7 countries. The model we employed im-
plies that the dynamics of the PPP deviations can be rather complex, which
is attested to by the impulse response analysis.

The final essay proposes a Bayesian approach to exploring money-output
causality within a logistic smooth transition vector error correction frame-
work (LSTVECM). Our empirical results provide substantial evidence that
the postwar US money-output relationship is nonlinear, with regime changes
mainly governed by the lagged inflation rates. More importantly, we obtain
strong support for long-run non-causality and nonlinear Granger-causality
from money to output. Furthermore, our impulse response analysis reveals
that a shock to money appears to have a negative aggregate impact on real
output over the next fifty years, which calls for more caution when using
money as a policy instrument.
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Summary of Thesis

Although linear models play a fundamental role in econometrics and eco-

nomic theory, it is widely accepted that the relationships between economic

variables are generally nonlinear [eg. Goldfeld and Quandt (1972), Granger

and Teräsvirta (1993)]. In the literature, a wealth of alternative nonlinear

models have been proposed to capture the nonlinearities in macroeconomics

and monetary economics. Among the time series models allowing for two

or more regimes in the data generating process, the three types of most

commonly used models are the Markov regime switching model [Hamilton

(1989)], the threshold autoregressive model [Tong (1978)], and the smooth

threshold autoregressive model [Teräsvirta (1994)].

In recent years, smooth transition models have become popular for they

suggest smooth, rather than discrete, adjustment mechanisms in regime

changes [see for example, Teräsvirta (1994), Lubrano (1999b), van Dijk,

Teräsvirta and Franses (2002)]. However, as noted by Osborn, Perez and

Sensier (2005), a vast majority of empirical studies utilizing smooth transi-

tion models are conducted in the univariate contexts, and the attempts in

1



SUMMARY 2

the multivariate systems are relatively rear. Noteworthily, we find that there

is a lack of Bayesian literature in multivariate smooth transition models. The

main theme of this thesis, consisting of three essays, is to introduce Bayesian

multivariate smooth transition approaches to investigating three important

topics in macroeconomics and monetary economics.

Compared with the available classical estimation techniques which of-

ten require multiple steps and Taylor expansions, our Bayesian method can

jointly estimate the autoregressive coefficients and the nuisance parameters

in the transition function simultaneously. Therefore, our approach is less sus-

ceptible to the issues associated with sequential testing and our finite sample

inference is exact. The class of nonlinear models we consider may be sub-

ject to the criticism of being too parameter rich. However, as we use Bayes

Factors for model selection and model averaging we effectively overcome this

issue as this approach rewards more parsimonious models.1 Finally, as far

as we are aware, our Bayesian methods developed in the second chapter are

among the first in the literature to identify the existence of the long-run

cointegrating relationship among endogenous variables where the nonlinear

effect is triggered by the deviations from the long-run equilibrium.

Business cycle linkages between countries have been remaining the focus

of public interest. In recent years, nonlinear multivariate models have been

widely adopted as researchers become more concerned with the regime shifts

in economic interdependencies across countries [Smith and Summers (2005),

1See Koop and Potter (1999a, 1999b) for further explanations.
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Artis, Galvao and Marcellino (2007), Chen and Shen (2007)]. The first es-

say introduces a Bayesian LSTVAR approach to investigating the impact of

international business cycles on the UK economy. Overall, we find that the

UK economy is sensitive to the fluctuations of international business cycles

in a asymmetric form. Our results suggest that linear models misspecify the

form of the relationship and would result in systematic errors in analysis

and policy making due to the presence of substantial nonlinear effects. Fur-

thermore, the negative effects on the UK growth rate exerted by Germany

is of intrinsic importance to policy makers. Although we make no attempt

here to provide an economic explanation for our empirical findings, our re-

sults warrant a closer investigation in business cycle linkages, especially how

macroeconomic shocks propagate through the transmission channels such as

trade, monetary policy and financial markets.

Given its importance in open economy macro modeling and policy ad-

vice, the validity of the purchasing power parity (PPP) over the post-Bretton

Woods era has been the subject of intensive study in the literature. Inspired

by the transaction cost theory [Dumas (1992), Sercu, Uppal and van Hulle

(1995)], the second essay proposes a Bayesian procedure to investigate PPP

utilizing an ESTVECM model. Different from the available approaches typ-

ically used in the literature, our methods jointly estimate the cointegrating

relationship along with the nonlinearities caused by the departures from the

long run equilibrium. By allowing for nonlinear regime changes in the in-

terrelationship among the nominal exchange rates and domestic and foreign
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prices, we provide strong evidence that PPP holds between the US and each

of the remaining G7 countries. The model we employed implies that the

dynamics of the PPP deviations can be rather complex, which is attested to

by the impulse response analysis.

Many researchers use vector error correction model (VECM) to explore

the money-output relationship due to the framework′s advantages in captur-

ing both the long-run and short-run dynamics [see, e.g., Johansen (1992),

Garratt, Koop, Mise and Vahey (2007)]. However, given the increasing

awareness of the importance of possible regime shifts in money-output re-

lationship [see, e.g., Lutekepohl, Terasvirta and Wolters (1999), Escribano

(2004)], we have good reasons to use nonlinear VECM to investigate whether

money is causal for output. Yet, among the vast literature focusing on the

causal effect from money to output, according to our knowledge, only Roth-

man, van Dijk and Frances (2001) apply a nonlinear multivariate VECM

framework to study the money-output relationship. The final essay pro-

poses a Bayesian approach to exploring money-output causality within a

LSTVECM context. Our empirical results provide substantial evidence that

the postwar US money-output relationship is nonlinear, with regime changes

mainly governed by the lagged inflation rates. More importantly, we obtain

strong support for long-run non-causality and nonlinear Granger-causality

from money to output. Furthermore, our impulse response analysis reveals

that an increase in money supply appears to have a negative aggregate im-

pact on real output in the long term. This result is of special importance



SUMMARY 5

when central banks consider injecting money into the market to ease the

current credit crunch .



Chapter 1

Impacts of International

Business Cycles on the UK —

a Bayesian Smooth Transition

VAR Approach

Acknowledgements: I am most grateful to Rodney Strachan for the in-
valuable supervision. Also, I would like to thank the participants in the
SNDE 2007 for their helpful comments on an earlier draft of this chapter.
Any remaining errors are the author’s responsibility.
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CHAPTER 1 7

1.1 Introduction

The study of international business cycle linkages is of special importance

to macroeconomic policy research. Numerous studies have sought to iden-

tify a common business cycle across countries [see for instance, Artis and

Zhang (1997), Wynne and Koo (2000), Inklaar and Haan (2001)]. In re-

cent years, nonlinear multivariate models have become more popular among

researchers for such models can effectively capture the cross-country asym-

metric inter-dependencies [Smith and Summers (2005), Artis, Galvâo and

Marcellino (2007), Chen and Shen (2007), to mention a few].

The present chapter examines the impacts of international business cy-

cles on the UK economy within the framework of a logistic smooth transition

vector autoregression (LSTVAR) model. In particular, we attempt to char-

acterize the behaviour of the UK output growth under the influence of the

booms and busts in the US, France, and Germany, respectively.

Business cycle linkages between the UK and the three afore mentioned

countries have been examined previously by, for example, Artis and Zhang

(1997), Inklaar and Haan (2001), and Perez, Osborn and Artis (2006). How-

ever, most of the literature focuses on exploring the business cycles syn-

chronization rather than investigating the propagation of different types of

shocks (such as positive and negative or large and small shock) across coun-

tries. Although the US’ effects on the UK economy are investigated in several

studies [for example, Artis, Krolzig and Toro (2004), Osborn, Perez and Sen-
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sier (2005), Artis, Galvâo and Marcellino (2007)], to our best knowledge, no

evidence on how France and Germany, the two largest continental European

economies, influence the UK business cycles has been documented, except

for Artis, Galvâo and Marcellino (2007), which look into Germany’s impact

on the UK business cycles at one point.

Our approach for the LSTVAR estimation is Bayesian. In particular, we

extend the Bayesian technique in estimating the univariate smooth transi-

tion models introduced in Lubrano (1999a, 1999b) into a multivariate form.

Compared with the available classical estimation techniques which often re-

quire multiple steps and Taylor expansions, our Bayesian method can jointly

estimate the autoregressive coefficients and the nuisance parameters in the

transition function in one stage. Therefore, our approach is less susceptible

to the sequential testing and inaccurate approximations problems. Further-

more, considering that nonlinear models are generally subject to the criticism

of being too parameter rich, we resort to Bayes Factors for model selection

and model averaging to reward more parsimonious models.1

Our results provide strong evidence of asymmetry in the bivariate re-

lationship across the three country pairs. For all cases, LSTVAR models

receive overwhelming support over the linear models. Additionally, we find

that business cycles in the US, the UK and Germany play important roles

in leading regimes changes, while the changes in France output would not

1As discussed by Koop and Potter (1999a, 1999b), Bayes Factors include an automatic
penalty for more complex models.
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cause salient nonlinear effect.

Impulse response analysis implies that features of the impact from the

three countries are quite different. Among the three countries, the US’ impact

is the most persistent. Observe that the effects from France or Germany die

out in relatively five years, while with a much clearer cyclical pattern, the

impacts of the US growth shocks are still evident after nine years. It is not

surprising to observe that the shocks from the US and France would affect

the UK in the same direction. However, different from Artis, Galvâo and

Marcellino (2007), we find that both the expansion and recession of Germany

would thwart the UK output growth. Most strikingly, we find that a boom

in Germany brings more negative effects to the UK’s economy than a bust

in Germany.

Overall, we find that the UK’s economy is sensitive to the fluctuations of

international business cycles in a asymmetric form. Our research nonetheless

suggests that relying on linear models would result in systematic mistakes

in analysis and policy making due to the presence of substantial nonlinear

effect. Furthermore, it goes without saying that pernicious effects on the UK

growth rate exerted by Germany is of intrinsic importance to policy makers.

The rest of the chapter is structured as follows. Section 2 introduces

the LSTVAR model and Bayesian inferences. Section 3 presents empirical

results. Section 4 concludes.
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1.2 Logistic Smooth Transition VAR Model

The vector autoregressive model (VAR) has proven very successful in mod-

eling endogenous relationships among macroeconomic variables without im-

posing restrictions that may be ‘incredible’ in the sense of Sims (1972, 1980).

We therefore model the pairwise business cycle linkages in a reduced form

VAR based on two considerations. First, VAR is ideally suited to the analy-

sis of endogenously determined processes where dynamics are important but

where we have little or no clear economic structure. Second, VAR provides

an atheoretical framework for analysis and allows very rich dynamics.2 Con-

sidering the possible presence of nonlinearities in the cross-country business

cycle linkages, we model the annual growth rates of the two countries of

concern in a bivariate LSTVAR system introduced by Weise (1999).

Let yt = (y1,t, y2,t), where y1,t is the annual real GDP growth rate of

the country other than the UK (the US, France or Germany), y2,t is the

British annual real GDP growth rate. For time t=1,...,T, the cyclical link-

ages between the UK and another country can be expressed in the nonlinear

autoregressive process of order p as follows.

yt = Φ + Σp
h=1Γhyt−h + F (zt) [Φz + Σp

h=1Γ
z
hyt−h] + εt, (1.1)

where εt is a white noise process, that is E(εt) = 0, E(ε′sεt) = Σ for s = t,

2Many studies of co-movements of business cycles among the main industrial countries
use VAR for modeling the interrelationships, see for example, Norrbin and Schlagenhauf
(1996), Helbling and Bayoumi (2003).
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and E(ε′sεt) = 0 for s 6= t.

The regime changes are assumed to be captured by the first order logistic

smooth transition function defined by the transition variable zt

F (zt) = [1 + exp {−γ (zt − c) /σ}]−1 (1.2)

In function (1.2), the parameter γ (which is non-negative) determines the

speed of the smooth transition. We can see that when γ →∞, the transition

function becomes a Dirac function, then model (1.1) becomes a two-regime

threshold VAR model along the lines of Tong (1983). When γ = 0, the

logistic function becomes a constant (equal to 0.5), and the nonlinear model

(1.1) collapses into a linear VAR(p). The parameter c is the threshold around

which the dynamics of the model change. The value for the parameter σ is

chosen by the researcher and could reasonably be set to one. However, if

we set σ equal to the standard deviation of the process zt, this effectively

normalizes γ such that we can give γ an interpretation in terms of the inverse

of the number of standard deviations of zt. The transition from one extreme

regime to the other is smooth for reasonable values of γ.

The principle underlying the LSTVAR is that as zt increases, moving from

well below some threshold c to well above this threshold, the dynamics of the

vector process yt changes from one regime to another. That is, if zt is very

low - i.e., well into what we will call the lower regime for nominal purposes
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- then the process yt may be generated by the VAR model as follows.

yt = Φ + Σp
h=1Γhyt−h + εt (1.3)

However, when zt is very high - i.e., well into what we will call the upper

regime - then the process yt may be generated by the VAR given by

yt = Φ1 + Σp
h=1Γ

1
hyt−h + εt (1.4)

The transition between these two regimes is smooth and governed by a

smooth function of zt denoted by F (zt). The value of F (zt) is bounded by 0

and 1. F (zt) = 0 when zt is very low, and F (zt) = 1 when zt is very high.

Thus we may express the full process as

yt = (1− F (zt)) [Φ + Σp
h=1Γhyt−h] + F (zt)

[
Φ1 + Σp

h=1Γ
1
hyt−h

]
+ εt (1.5)

which can equivalently be written as model (1.1).

Observe that model (1.1) encompasses a set of models distinguished by

the choice of the transition variable, the order of the autoregressive process,

and whether there exist nonlinear effects.

1.2.1 Likelihood Function

For notation convenience, we set xt = (1, yt−1, ..., yt−p), and xθ
t = [xt F (zt)xt].

Next we stack the vectors over t as Y = (y
′
1, y

′
2, ..., y

′
T )′,Xθ = (X

θ′
1 , X

θ′
2 , ..., X

θ′
T )′,



CHAPTER 1 13

B = (Φ,Γ1, ...,Γp,Φ
z,Γz

1, ...,Γ
z
p)

′, and E = (ε
′
1, ε

′
2, ..., ε

′
T )′.

Now we can write model (1.1) in a more compact form as

Y = XθB + E (1.6)

where the dimensions of Y and E are (T ×2), the dimension of Xθ is (T ×k),

and the dimension of B is 2k, with k = 2(1 + 2p).

Given the assumptions on the error terms, the likelihood function of the

model can be expressed as

L(B,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2
trΣ−1E ′E

}
(1.7)

Using standard algebraic results, it is possible to show that

E ′E = S + (B − B̂)′Xθ′Xθ(B − B̂)

where B̂ = (Xθ′Xθ)−1Xθ′Y , and S = (Y − XθB̂)′(Y − XθB̂). Thus, the

likelihood function can then be rewritten as

L(B,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2
trSΣ−1 − 1

2
tr(B − B̂)′X ′θXθ(B − B̂)Σ−1

}
(1.8)

Vectorizing model (1.6), we can transform model (1.1) into

y = xθb+ e, (1.9)



CHAPTER 1 14

where y = vec(Y ), b = vec(B), xθ = In ⊗Xθ, and e = vec(E).

Now, using the relationship between the trace function and the vectorizing

operation, we can write the term in the exponent of (1.7) as

trΣ−1E ′E = e′(Σ−1 ⊗ IT )e = s2 + (b− b̂)′V −1(b− b̂) (1.10)

where s2 = y′MV y,MV = Σ−1 ⊗
(
IT −Xθ(Xθ′Xθ)−1Xθ′

)
, b̂ = vec(B̂) and

V = Σ⊗ (Xθ′Xθ)−1.

Hence, the likelihood function in (1.7) can also be written as

L(b,Σ, γ, c) ∝ |Σ|−T/2exp

{
−1

2

[
s2 + (b− b̂)′V −1(b− b̂)

]}
(1.11)

which has a more familiar Normal form for vector b.

1.2.2 Priors

In setting the values for the priors we take into account a number of consid-

erations. It is apparent that the LSTVAR model is highly parameterized and

the degree of parameterizations influences the quality of inference in finite

samples. Priors that are tight around zero (i.e., very informative) tend to

improve estimation in VARs [Ni and Sun (2003)]. Also, we use Bayes Fac-

tors for inference on models. As discussed in Strachan and van Dijk (2004b),

the Bayes factors are functions of the prior normalizing constants and so the

prior settings can have a strong influence on the posterior model weights.



CHAPTER 1 15

Generally, less informative priors will tend to penalize more highly param-

eterized models. A final consideration is that we have little understanding

of the behaviour of economic growth beyond anecdotal evidence and how it

can be reasonably modeled. Thus, we face a potential conflict between our

desire to specify uninformative priors for a large number of parameters, and

priors that are informative which would improve the efficiency of estimation.

Furthermore, we do not want to completely avoid or prefer the use of large

models a priori. Taking into account these considerations, we elicit the priors

as follows.

To start with, we assume all models to be a priori equally likely. Next,

following Zellner (1971), we specify a standard Jeffreys prior for Σ as

p(Σ) ∝ |Σ|−(n+1)/2

We plan to compute posterior probabilities for model inference. For these

probabilities to be well defined, the priors for any parameters that change

dimensions, i.e. b, must be proper [see Bartlett (1957) and Strachan and

Van Dijk (2004b) for further discussion]. Hence, we assume the prior for b

is Normal with zero mean and covariance matrix V = η−1Ink, where η is a

shrinkage prior distributed as Gamma with mean µη, and degrees of freedom

νη. Note that the prior variance for b depends on η. Large values of η

imply greater shrinkage towards zero which will tend to reduce the expected

frequentist risk of the estimator. However, smaller values of η will imply a
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less informative prior. To allow prior for b that is relatively uninformative,

but still allow for a degree of shrinkage, we specify the prior of η distributed

as G(10, 0.001), where 10 is the mean, and 0.001 is the degree of freedom.

As explained in Bauwens, Lubrano and Richard (1999), at the point where

γ = 0, the smooth transition function in (1.2) becomes a constant and, as

a consequence, elements of b become unidentified. While when γ → ∞,

under a flat prior for γ, the posterior is not integrable. Hence, following

the suggestion of Lubrano (1999a, 1999b), we exclude a priori the point

γ = 0 from the support of γ. Specifically, we assume the prior of γ is a

Gamma distribution with mean µγ and degree of freedom νγ. Note that

although the prior for γ excludes zero, as the prior for b is centered on zero,

this restriction does not bias in favor of asymmetry. We define the prior

mean of γ as 1, in line with the starting values of grid search in most of

the classical works [see, for example, Öcal and Osborn (2000) and Sensier,

Osborn and Öcal (2002)], while our assumption that the degree of freedom of

the prior Gamma distribution is 0.001 is for minimizing the prior’s influence

on posterior computations.

In the end, we assume the prior of the location parameter c as uniformly

distributed between the upper and lower limits of the middle 80% of the

observed transition variables.
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1.2.3 Posteriors Computations

We use Gibbs Sampling to compute the outputs from the posteriors. Condi-

tional upon γ, c, and η, the model is linear. Thus the conditional posterior

distributions of Σ and b and are of standard forms. Combining the likelihood

function (1.7) and the priors, we obtain the conditional posterior distribution

for Σ as an inverted Wishart with scale matrix E ′E and degrees of freedom

T, and the conditional posterior distribution for the vector b as Normal with

mean b and variance V , where V = (V −1 + ηInk)
−1, and b = V V −1b̂.

To obtain the conditional posterior for η, we combine the prior and the

likelihood to obtain the expression

p(η|b,Σ, γ, c, y, x) ∝ η
νη+nk−2

2 exp(−
ηνη

2µη

− 1

2
b′bη) (1.12)

Thus with a Gamma prior, the conditional posterior distribution of η is

Gamma with degrees of freedom νη = nk + νη, and meanµη =
νηµη

νη+µηb′b
.

The posterior distributions for the remaining parameters, γ and c, have

nonstandard forms. However, we can use Metropolis-Hastings algorithms

[Chib and Greenberg (1995)] within Gibbs to estimate γ, and the Griddy

Gibbs sampler [Ritter and Tanner(1992)] to estimate c.

The Gibbs sampling scheme for our posterior computation, therefore,

takes the following form.

1. Initialize (b,Σ, γ, c, η) = (b0,Σ0, γ0, c0, η0);

2. Draw Σ|b, γ, c, η from IW (E ′E, T );
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3. Draw b|Σ, γ, c, η from N(b, V );

4. Draw γ|b,Σ, c, η through Metropolis-Hastings method;

5. Draw c|b,Σ, γ, η numerically by Griddy Gibbs;

6. Draw η|b,Σ, γ, c from G(µη, νη);

7. Repeat step 2 to 6 for a suitable number of replications.

To avoid the draws from Metropolis-Hastings simulator getting stuck in

a local mode, we try different starting values for the sampler.

1.2.4 Posterior Model Probabilities

There has been a great deal of work on the theories of business cycles and even

on the asymmetries observed in business cycles. However, there are relatively

fewer formal theories on the nonlinear effects in international business cycle

linkages. Thus we have little guidance on how to specify the model prior to

introducing the data. Further, notwithstanding the few studies that do exist,

we do not wish at this stage of the research to impose any restrictions implied

by particular theories. Our interest is on the existence of the linkages and

the form of the asymmetries. These concerns were important motivations

for considering LSTVAR models. However, we also have reason to expect

that the real data generating process might be nonlinear, yet we do not

wish to exclude the possibility that the model is linear. A linear model may

prove more robust if the asymmetric effect is trivial. Thus, we include the

standard linear VAR in our model set. Furthermore, we can not confidently

pre-specify the driving force of the asymmetric dynamics (if there is any)
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nor predetermine the duration of the dynamics, so we allow for a range of

specifications of zt and lag lengths p.

Bayesian methods provide us a formal method for evaluating the support

for alternative models by comparing posterior model probabilities. These

posterior probabilities can be used to select the best model for further infer-

ence, or to use the information in all or an important subset of the models

to obtain an average of the economic object of inference by Bayesian Model

Averaging (also known as the Bayesian Model Pooling technique in the liter-

ature3). The posterior odds ratio - the ratio of the posterior model probabil-

ities - is proportional to the Bayes factor. Once we know the Bayes factors

and prior probabilities, we can compute the posterior model probabilities.

The Bayes Factor for comparing one model to a second model where each

model is parameterized by ζ = (ζ1, ζ2) and ψ respectively, is

B12 =

∫
`(ζ)p(ζ)d(ζ)∫
`(ψ)p(ψ)d(ψ)

,

where `(.) is the likelihood function and p(.) is the prior density of the pa-

rameters for each model.

If the second model nests within the first at the point ψ = ζ1 and ζ2 = ζ∗,

then, subject to further conditions, we can compute the Bayes factor B12 via

the Savage-Dickey density ratio [see, for example, Koop and Potter (1999a),

Koop, Leon-Gonzales and Strachan (2006) for further discussion in this class

3We would like to thank Mateusz Pipień for pointing this out.



CHAPTER 1 20

of models]. For the simple example discussed here, the Savage-Dickey density

ratio is:

B12 =
p(ζ2 = ζ∗|Y )

p(ζ2 = ζ∗)
,

where the numerator is the marginal posterior density of ζ2 for the unre-

stricted model evaluated at the point ζ2 = ζ∗, and the denominator is the

prior density of ζ2 also evaluated at the point ζ2 = ζ∗.

Since the conditional posterior of b is normal, it is easy to incorporate the

estimation of the numerator of the Savage-Dickey density ratio in the Gibbs

sampler. As to the denominator of the Savage-Dickey density ratio, using

the properties of the Gamma distribution and the Normal distribution, we

derive the marginal prior for a sub-vector of b evaluated at zeros as

{(
µη

πνη

)ω/2Γ(
ω + νη

2
)}/[Γ(

νη

2
)]

where Γ(.) is the Gamma function, and ω is the number of elements in b

being restricted to be zero.

A simple restriction in our application to choose is the point where all

lag coefficients are zero, i.e., Γh = Γz
h = 0, at which point we have the model

with p = 0. This restricted model is useful as it nests within all models.

Once we have the Bayes factor for each model to the zero lag model, via

simple algebra we can back out the posterior probabilities for all models.

Taking a Bayesian approach we have a number of options for obtaining

inference. If a single model has dominant support, we can model the data
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generating process via this most preferred model. However, if there is con-

siderable model uncertainty then it would make sense to use Bayesian Model

Averaging and weight features of interest across different models using pos-

terior model probabilities [as suggested by Leamer (1978)].

1.3 Empirical Application

The data we used are quarterly observations of real GDP for the UK, the

US, France and Germany over the period of 1970:Q1-2004:Q4. All series

are taken from Datastream. For all cases, the first quarter of 1970 is set as

the base time for index purposes. We construct the annual growth rates by

taking the fourth-difference of log real GDP index.4

The growth rates for the four countries are plotted in figure 1.1. Note that

all the series are stationary and free from seasonal components. The average

annual growth rates for the sample period are: 2.34% for the UK, 3.08% for

the US, 2.49% for France and 2% for Germany. The correlations between the

annual growth rate for the UK and that of the US, France and Germany are

0.5941, 0.3606 and 0.3693, respectively. Note that the dynamics of recessions

are quite different from those of expansions, a phenomenon which might

imply the presence of asymmetry.

For all countries, we assume the maximum order of the unrestricted bi-

variate LSTVAR is 4. Although the driving force of the asymmetry can be

4The jump in German data due to the reunification in 1991 has been corrected.
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any exogenous or endogenous variables of concern, following the convention,

we simply choose a specific lag of the observed growth rate from our selected

countries as the transition variable. However, instead of picking a plausible

lagged growth rate from a particular country, we allow zt to be any of the

16 observations of the lagged (from 1-4) annual growth rates for the UK, the

US, France or Germany. Note that this specification allows for the driving

force of the regimes to be generated within or beyond the two countries be-

ing examined under the bivariate VAR. As we allow the order of the VAR

to vary from one to four, then for each of the three bilateral relationships we

consider a total of 68 models.5

1.3.1 Posterior Evidence on Alternative Models

We calculate Bayesian posterior model probabilities from the Bayes Factors

comparing the nested models to the unrestricted LSTVAR(4, zt) models.6

The Gibbs Sampler for each of the unrestricted LSTVAR (4, zt) model is

run for 12,000 passes with the first 2,000 discarded. The convergence of

the sequence draws is checked by the Convergence Diagnostic measure in-

troduced by Geweke (1992). We use the MATLAB program from LeSage’s

Econometrics Toolbox [LeSage (1999)] for the diagnostic.

The posterior probabilities for the top 10 models evaluated at Bayes Fac-

5The total number of models is calculated as 4 (maximum order of the nonlinear VAR)×
4 (choices for zt)× 4 (lags of zt) + 4 (the number of linear VAR models)= 68.

6Where the order of the model is 4, and the transition variable zt equals to
USt−1, USt−2, USt−3, USt−4, FRt−1, FRt−2, FRt−3, FRt−4, UKt−1,
UKt−2, UKt−3, UKt−4, GERt−1, GERt−2, GERt−3, GERt−4, respectively.
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tor are reported in table 1.1. As we calculate posterior model probabilities

with relatively uninformative priors, we would expect this to reward parsi-

mony and, as such, penalize the nonlinear models. However, there is little

overall evidence for linear models (which, for a given lag length, is the most

parsimonious model). This reinforces the evidence in favor of asymmetry in

the bilateral business cycle linkages between the UK and each of the other

three countries.

Posterior model probabilities reveal that model uncertainty is not a sig-

nificant issue in this data. For France and the UK, we find the bivariate

relationship can be jointly captured by LSTVAR(4, USt−2) and LSTVAR(4,

UKt−2), with posterior probabilities 52.34% and 36.99%, respectively. While

model comparison results involving the US and Germany show that a sin-

gle model receives substantial posterior support in each case. For US-UK,

LSTVAR(4, UKt−4) accounts for 90.38% of the posterior probability. For

Germany-UK, the posterior model probability of LSTVAR(4, GERt−3) is

92.68%.

We observe four interesting findings from our model comparison results.

First, the US growth rates play a leading role in triggering the regime changes

for France-UK and a non-negligible role in causing the nonlinear effects for

Germany-UK. Second, the regime changes are governed by the UK business

cycles in the case of US-UK. Third, Germany’s economic performance is

important for the regime changes in all cases, in particular, it plays a deter-

ministic role in the case of Germany-UK. Finally, we find that the role of
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France’s growth rate in triggering the regime changes is nearly negligible in

all cases. Observe that even though for France-UK, the nonlinear effects are

mainly determined by the growth rates of the US and the UK.

It is hard to explain the parameters in such big nonlinear models. Yet,

we present the estimated UK equations for the three most preferred models

in table 1.2, for the smooth transition functions and the impulse response

analysis we are going to report are based on these results.

To better understand the form of the asymmetric affect, we plot the

graphs of the time profile of F (zt) and the corresponding transition functions

over the range of zt for the three most probable models in figures 1.2 - 1.3. For

comparison, we also report the time profiles of F (zt) derived from Bayesian

Model Averaging in figure 1.4. Observe that for US-UK, the dynamics of

the regime changes remains to be between the upper and lower regimes, for

France-UK, the model is most often in the upper regimes, while for Germany-

UK, more abrupt regime changes can be spotted. From these figures, we can

see that the regime changes are rather smooth in all the three cases. Thus,

it is improper to model the nonlinear effects using functions that only allow

for abrupt changes.

1.3.2 Impulse Response Analysis

The nonlinear LSTVAR allows for asymmetries in the behaviour of the busi-

ness cycle linkages. Thus the model provides richer inference on the possible

response paths that account for both the nature of the shocks and the cur-
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rent economic environment. In analyzing the response of the UK economy

to the foreign shocks we are interested in how the economy responds taking

into account the magnitude of the shock, whether the shock is positive or

negative and whether UK growth is negative or positive at the time of the

shock. For example, it would seem natural to expect that the response to

a positive growth shock from the US, say, will have a different effect upon

UK’s growth if the UK is currently growing quickly than if the UK is in a

recession.

As discussed in, inter alia, Potter (1995), Koop, Pesaran and Potter

(1996), Koop and Potter (2000), impulse response functions of nonlinear

models are history- and shock- dependent. This contrasts with the tradi-

tional impulse response analysis in a linear VAR in which positive and neg-

ative shocks are treated symmetrically and independent of the current state

of the business cycle. Thus, the traditional methods of computing impulse

responses are unable to inform us on nonlinearities in responses [see Koop,

Pesaran and Potter (1996) for detailed discussions]. We therefore follow

these earlier papers and use generalized impulse response functions (GIRF)7

to measure the effect of a shock on the asymmetric system.

Following Koop, Pesaran and Potter (1996), we examine the GIRF where

we have a shock υt and a history ωt−1 which is defined as follows

GIy(n, υt, ωt−1) = E[yt+n|υt, ωt−1]− E[yt+n|ωt−1] (1.13)

7The term impulse response functions, if without any specific description, also refers
to general impulse response functions hereafter.
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where n is the number of periods into the future after the time t.

The definition in (1.13) is the expected response path where the expecta-

tion is taken with respect to the distribution of all future shocks, the distri-

bution of the parameters and, if model averaging is employed, with respect to

the posterior distribution of the models. That is, the impulse response is the

expected deviation of yt+n subject to the shock υt from the expected value

of yt+n without fixed future shocks and conditional only upon the history at

time t, ωt−1.

Estimation of the GIRF for a specific model with given parameters is

detailed in the literature mentioned above. Here, we only outline how we

achieve an estimate that is not conditional upon any parameter values.

We wish to calculate the GIRF for a given shock υt and history ωt−1.

Assume we have the ith draw from the Gibbs sampler of the parameters

in the model which we will denote by θ(i). For each draw we compute

GIy(n, υt, ωt−1|θ(i)) which is simply (1.13) for a given value of the param-

eters. Next assume we have N draws of θ(i) where i = 1, ..., N. Then we can

compute an estimate of (1.13) from by

ĜIy(n, υt, ωt−1) =
1

N
ΣN

i=1GIy(n, υt, ωt−1|θ(i)).

By drawing randomly from histories and averaging across these, we are

able to obtain an estimate of GIy(n, υt) which is not conditional upon the

current state of the economy. Furthermore, we report the estimates of
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GIy(n, υt, ωt−1) conditional upon some special ωt−1 since we believe these

paths may differ for different histories. To be specific, we are interested in

whether the path of GIy(n, υt, ωt−1) differs when the UK economy exhibits a

positive growth in comparison to a negative growth.

Finally, we report the estimated path of GIy(n, υt, ωt−1) when the shock υt

is a negative one/two standard deviations shock to the US, France or German

economy, as well as when υt is a positive one/two standard deviations shock

to the US, France or German economy. In the estimation of the posterior

distributions of these functions, we found that outliers distorted the posterior

means of the GIRFs in some cases. Therefore, we report the median of the

GIRFs instead of the mean.8

Graphs of the median estimates of the GIRFs for the most preferred

model and the BMA results, respectively, are plotted in figures 1.5 - 1.10.

In each figure, we use six graphs to examine general impulses from different

dimensions. In the upper panel of the figure, we display the impact on the

UK growth of positive and negative shocks from the other country but where

we have averaged across all the UK histories. The middle panel of the figure

shows the same response of UK growth but the path is conditional upon

the UK’s economy being in expansion at the time of the shock. The lower

panel of the figure presents the corresponding effects when UK’s economy is

in contraction at the time of the shock.

8The mean of the GIRFs with the outliers being dropped share the similar pattern with
the median results. Graphs depicting mean values of GIRF are available upon request.
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An inspection of all the graphs reveals that the GIRFs plots for the most

preferred model and that of the BMA results appear to be similar for all the

three country pairs, which is in consistent with the model comparison result

earlier reported.

Observing the GIRFs for US-UK plotted in figures 1.5 - 1.6, we see that

the impact of a US shock on the UK is in all cases prominent for the first

seven to eight quarters, after which there remain much smaller cyclical effects.

Finally, the impulse responses die out in about nine years. It is seen that

the cumulative effect of a positive US shock will increase the UK’s output

growth rate, while the cumulative effect of a negative shock from the US will

decrease the UK’s output growth rate.

With respects to France-UK, from figures 1.7 - 1.8, we can see that while

there are strong immediate positive and negative responses to shocks of the

same sign, the cyclical effect is much less pronounced than in the case of US-

UK. Observe that much of the impact takes place in the first six quarters after

the shock. Afterwards, only some smaller cyclical effect remains for another

nine quarters. Overall, the impact from France dies out in five years. Similar

to that of US-UK, we find a positive shock emanating from France would

boost the UK economy, and a negative shock from France would offset the

UK’s growth.

By visual inspection, we can hardly find any nonlinearities in the GIRFs

for US-UK and France-UK. First, the graphs for positive shocks appear to

mirror the graphs for negative shocks. Second, the impacts of shocks of
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differing magnitude seem to have proportionate effects. Third, it looks like

that the dynamics of the impulse responses is independent of the status of

the UK’s economy when the shocks hit.

Noticeable nonlinearities in impulse response functions are observed in

the case of Germany-UK. Observing figures 1.9 - 1.10, we find the paths of

the responses will not just differ given the sign and the magnitude of the

shock, but also given the current state of the UK economy. Surprisingly,

we find that the cumulative effect of any type of innovations in Germany

is to slow down the UK economy. More strikingly, we find a positive shock

from Germany brings more negative effect to the UK output growth than a

negative shock. For a given status of the UK economy when the shock from

Germany happens, we can order the shocks by gravity for negatively affecting

the UK growth rate. We find, in descending order of severity, that it is the

large positive shock, the small positive shock, the large negative shock and

the small negative shock. Finally, we observe that when the UK economy

is in recession when the shock happens, the overall setting back effect from

Germany is less than when the UK’s economy is in expansion.

1.4 Conclusions

In this chapter, we investigate bivariate relationships between the UK and

three main industrial countries - the US, France, and Germany - within the

framework of a LSTVAR model. We employ Bayesian methods to develop
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an approach to model estimation and evaluation.

The estimation results show that the UK’s business cycles are asymmet-

rically influenced by the other three countries. Overall, it would seem that

the UK benefits from positive shocks emanating from the US and France,

while suffers from negative shocks from these two countries. However, we

also observe that Germany always play a pernicious role in the UK’s econ-

omy. More strikingly, we find that a boom in Germany would bring more

negative impact on the UK than a bust.

As a purely atheoretical study, this chapter only describes the behaviour

of the linkages between the UK and each of the other three countries. For

a better understanding of the forms and sources of these linkages, further

investigations (for examples, on the transmission channels) which are beyond

our current research are called for.
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Table 1.2: Estimated parameters for the most preferred models

US-UK FR-UK GER-UK
η 8.9416 (3.4356) 17.7540 (6.0606) 15.6150 (5.1681)
c 0.0353 (0.0103) 0.0097 (0.0056) 0.0378 (0.0050)
γ 0.9886 (0.3812) 2.7632 (1.4184) 6.5763 (3.7615)

lower regime
Φ 0.0058 (0.0244) 0.0183 (0.0080) 0.0138 (0.0035)

Γ1,1 1.0682 (0.1833) 0.5870 (0.2198) 0.8401 (0.1487)
Γ2,1 0.7063 (0.1913) 0.5491 (0.1743) 0.5352 (0.1419)
Γ1,2 0.0867 (0.2200) 0.0757 (0.2246) 0.1233 (0.1686)
Γ2,2 0.0250 (0.1954) -0.0275 (0.1684) 0.0343 (0.1551)
Γ1,3 -0.2249 (0.2223) -0.4639 (0.2379) -0.1322 (0.3041)
Γ2,3 0.3403 (0.1975) 0.3824 (0.1697) 0.3026 (0.1480)
Γ1,4 -0.1364 (0.1948) -0.3274 (0.2209) -0.3537 (0.1477)
Γ2,4 0.0748 (0.3669) -0.1476 (0.1539) -0.0572 (0.1305)

upper regime
Φ1 0.0280 (0.0724) -0.0010 (0.0105) 0.0499 (0.0404)
Γ1

1,1 0.1948 (0.3747) 0.4036 (0.2478) -0.2431 (0.2850)

Γ1
2,1 -0.1739 (0.3531) 0.2292 (0.2082) 0.0808 (0.2565)

Γ1
1,2 0.0603 (0.4005) 0.1724 (0.2599) 0.0359 (0.2918)

Γ1
2,2 -0.3365 (0.3568) -0.0735 (0.2237) 0.2225 (0.2631)

Γ1
1,3 -0.0867 (0.4138) 0.0456 (0.2570) -0.2639 (0.3687)

Γ1
2,3 0.0886 (0.3877) -0.2466 (0.2300) -0.0758 (0.2437)

Γ1
1,4 -0.1776 (0.4054) 0.3180 (0.2502) -0.5306 (0.2856)

Γ1
2,4 -0.9271 (0.4002) -0.0724 (0.2038) -0.6705 (0.2598)

Notes:
*Standard errors are in parenthesis.
** The first subscript indicates the country, where 1 denotes the country other than the
UK, 2 denotes UK. The second subscript denotes the lag length of the variable.
***The superscript 1 indicates the parameter is of the upper regime.
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Figure 1.2   
Time Profiles of  Smooth Transition Functions ___ Most Preferred Models 
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Figure 1.3    
Smooth Transition Functions  
 

 

US-UK

0

0.2

0.4

0.6

0.8

1

-0
.2

-0
.1
8

-0
.1
5

-0
.1
3

-0
.1

-0
.0
7

-0
.0
5

-0
.0
2 0

0.
02

5
0.
05

0.
07

5
0.
1

0.
12

5
0.
15

0.
17

5
0.
2

 
 

 

FRA-UK

0

0.2

0.4

0.6

0.8

1

-0
.2

-0
.1
75

-0
.1
5

-0
.1
25

-0
.1

-0
.0
75

-0
.0
5

-0
.0
25 0

0.
02

5
0.
05

0.
07

5
0.
1

0.
12

5
0.
15

0.
17

5
0.
2

 
 

GER-UK

0

0.2

0.4

0.6

0.8

1

-0
.2

-0
.1
8

-0
.1
5

-0
.1
3

-0
.1

-0
.0
7

-0
.0
5

-0
.0
2 0

0.
02

5
0.
05

0.
07

5
0.
1

0.
12

5
0.
15

0.
17

5
0.
2

 

 



CHAPTER 1 36

Figure 1.4    
Time Profiles of Smooth Transition Functions __ BMA results 
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Figure 1.5 
General Impulse Response Functions ___ Most Preferred Models 
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Solid line is for the impulse response function when the shock equal to the standard deviation of the US growth rates. Dashed 
line is for the impulse response function when the shock equal to two times the standard deviation of the US growth rates. 
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Figure 1.6 
General Impulse Response Functions ___ BMA 
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Figure 1.7 
General Impulse Response Functions ___ Most Preferred Model 
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Notes:  
Solid line is for the impulse response function when the shock equal to the standard deviation of  France’s growth rates. Dashed 
line is for the impulse response function when the shock equal to two times the standard deviation of France’s growth rates. 
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Figure 1.8 
General Impulse Response Functions ___ BMA 
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Notes:  
See notes in figure 1.7. 
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Figure 1.9 
General Impulse Response Functions ___ Most Preferred Model 
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Notes:  
Solid line is for the impulse response function when the shock equal to the standard deviation of  Germany’s growth rates. 
Dashed line is for the impulse response function when the shock equal to two times the standard deviation of Germany’s growth 
rates. 
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Figure 1.10 
General Impulse Response Functions ___BMA 
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See notes in figure 1. 9. 
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2.1 Introduction

Given its importance in open economy macro modeling and policy advice,

the validity of PPP over the post-Bretton Woods era has been the subject of

intensive study in the literature. Employing unit root tests or cointegration

tests in a linear framework, earlier work generally fails to confirm the presence

of PPP over the modern floating exchange rate regime [e.g., Meese and Rogoff

(1988), Edison and Fisher (1991), Mark (1990)]. Inspired by the theoretical

arguments that emphasize the role of the transaction cost as proposed by

Dumas (1992) and Sercu, Uppal and van Hulle (1995), among others, recent

studies turn to analyze whether PPP adjustment follows a nonlinear process.

This research has led to evidence in favor of relative PPP [e.g., Michael,

Nobay and Peel(1997), Baum, Barkoulas and Caglayan (2001), Sarno, Taylor

and Chowdhury (2004), Peel and Venetis (2005)].1

The majority of the literature modeling PPP in a nonlinear framework

uses univariate models. In these models, the variable of concern is the real

exchange rate which is calculated by imposing a cointegrating vector on the

nominal exchange rates and the foreign and domestic price levels.2 How-

ever, given the interrelationships among the three variables that constitute

1 Note that the research adopting a panel data framework [e.g., Lothian (1997), Lopez
and Papell (2006)] usually finds support for PPP in the real exchange rates under the
recent floating exchange rate regime. However, the panel data approach is not free from
controversies [e.g. O’Connell (1998), Sarno and Taylor (1998)]. In Bayesian framework,
Li (1999) proposes a system of equations model with hierarchical priors to surmount the
problems associated panel data unit root tests.

2Generally, the imposed cointegrating vector is either in accord with the strict version
of PPP or is pre-estimated through a linear VECM.
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PPP, multivariate models, especially nonlinear vector error correction models

(VECM), can be more effective in capturing both the long run and short run

dynamics of PPP adjustment. Perhaps the reason why researchers have not

followed this route is due to the lack of a fully developed statistics tool that

can directly test the cointegration (or no cointegration) null in a nonlinear

VECM against its both linear and nonlinear alternatives [see Seo (2004), Seo

(2006), Kapetanios, Shin and Snell (2006) for the latest developments in the

nonlinear VECM tests].

This chapter proposes a Bayesian approach to investigate PPP within an

exponential smooth transition VECM (ESTVECM) framework. Specifically,

we follow the Bayesian cointegration space approach introduced by Stra-

chan and Inder (2004) and the Bayesian logistic smooth transition Vector

Autoregressive (LSTVAR) approach of Gefang and Strachan (2007).3 Our

method jointly captures the equilibrium and the presence of nonlinearity

in the ESTVECM in a single step. Compared with the available classical

estimation techniques which often require multiple steps and Taylor expan-

sions, our approach is less susceptible to the sequential testing and inaccurate

approximations problems. Furthermore the commonly used maximum like-

lihood estimation in classical works is subject to the multi-mode problem

caused by the nuisance parameters in the transition function of ESTVECM.

Yet, jagged likelihood functions do not create any particular problems in our

3Their approach is based on the univariate smooth transition model estimation tech-
nique introduced by Bauwens, Lubrano and Richard (1999).
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Gibbs sampling scheme.

In our empirical investigation, we analyze the validity of PPP between

the US and the remaining six G7 countries over the post-Bretton Woods era.

We take account of model uncertainty through Bayesian model selection and

Bayesian model averaging. Following Koop and Potter (1999a), We use Bayes

factors derived from the Savage-Dickey density ratio (SDDR) to calculate the

posterior model probabilities. Here, different models are distinguished by the

presence of the cointegration relationship, the order of the model, whether

there exist nonlinear effects, and the transition variables which trigger the

regime changes. Our estimation results strongly support that PPP holds,

while the dynamics of the adjustment process to PPP is nonlinear. Further-

more, our results from the general impulse response functions show that the

dynamics of the misalignment from PPP is determined by the sources and

magnitudes of the original shocks.

The rest of the chapter is structured as follows. Section two introduces the

ESTVECM model and Bayesian inferences. Section three reports empirical

results. Section four concludes.

2.2 Exponential Smooth Transition VECM

Under the relative PPP, the nominal exchange rates and domestic and foreign

prices should follow a cointegration relationship. However, as argued by

Dumas (1992), among others, due to the presence of the transaction cost,
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the adjustment towards PPP should follow a nonlinear process, where small

deviations from PPP are left uncorrected for the profit is not large enough

to cover the transaction costs.

In the multivariate framework, this type of nonlinear adjustment can be

captured by a threshold VECM (TVECM) or an ESTVECM. In a VECM

the adjustment process induced by deviations from the long run equilibrium

is a linear function of the magnitude of the deviations from that long run

equilibrium. In contrast, in a TVECM or an ESTVECM, the dynamics of the

adjustment process change across regimes, and the driving force of the regime

changes is governed by the observed deviations from the equilibrium through

the transaction function. In a TVECM, the regime changes are assumed to

be discrete, whereas in an ESTVECM, the regimes change smoothly. Since

the market force driving PPP adjustment is an aggregated process, following

the suggestions of Teräsvirta (1994), we use an ESTVECM to model the

nonlinear convergence towards PPP between two countries. ESTVECM ap-

pears to have another attractive property for it allows the same dynamics of

regime changes for deviations above and below the equilibrium level.

Let yt = [st pt p∗t ], where st, pt, and p∗t are the logarithms of the foreign

price of the domestic currency and respective domestic and foreign price

levels. Assuming the cointegration relationships are common across different

regimes, we model PPP in the exponential smooth transition VECM for
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t=1,...,T as follows.

4yt =yt−1βα+ dtξ + Σp
h=14yt−hΓh

+ F (zt)(yt−1βα
z + dtξ

z + Σp
h=14yt−hΓ

z
h) + εt

(2.1)

where 4yt = yt − yt−1. The error term εt is a Gaussian white noise process,

with E(εt) = 0, E(ε′sεt) = Σ for s = t, and E(ε′sεt) = 0 for s 6= t. The

dimensions of Γh and Γz
h are 3× 3, and the dimensions of β, α′, and αz′ are

3× r, where r is the rank of the cointegration space, with r can be either 0

or 1. If PPP holds, the value of r should be equal to 1.

In model (2.1), the regime changes are assumed to be caused by a past

deviation from the equilibrium relationship, and the dynamics of the regime

changes is captured by the symmetric U shaped exponential smooth transi-

tion function proposed by Teräsvirta (1994):

F (zt) = 1− exp(−γ(zt − c)2) (2.2)

where the transition variable zt = yt−dβ is the cointegrating combination

among s, p, and p∗ at period t − d;4 c is the equilibrium level of the coin-

tegrating relationship, also the threshold around which the regime changes;

γ is the smooth parameter that governs the speed of the transition process

between extreme regimes, with higher values of γ implying faster transition.

4Note that the driving force of the regime changes can be any exogenous or endogenous
variables of concern. In this study, we only examine the nonlinear effects caused by the
misalignments from PPP.
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The transition function F (zt) is bounded by 0 and 1. It is seen that

F (zt) = 0 when zt − c = 0, and F (zt) = 1 when zt − c → ±∞. As conven-

tion, we define F (zt) = 0 and F (zt) = 1 corresponding to the middle and

outer regimes, respectively. In the middle regime, model (2.1) becomes a

linear VECM, with the adjustment process governed by (α, ξ, Γh); while in

the outer regime, model (2.1) becomes a different linear VECM, where the

dynamics of the model are determined by (α + αz, ξ + ξz, Γh + Γz
h). Be-

tween the two extreme regimes, the speed of PPP adjustment is determined

by the deviations from the equilibrium. For small deviations from PPP, the

model is more dependent on the parameters of the middle regime. Once the

deviations get larger, the adjustment process will be more influenced by the

parameters in the outer regime.

Finally note that equation (2.1) allows a set of models which vary in

the rank of the cointegration vector (0 or 1), the order of the autoregressive

process, the lag length of the transition variable, and the presence of the

nonlinearity.

2.2.1 The Likelihood Function

For notational convenience, we can re-write model (2.1) as

4yt = x1,t−1βα+ x2,tΦ + F (zt)(x1,t−1βα
z + x2,tΦ

z) + εt (2.3)
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where x1,t−1 = yt−1, x2,t = (dt,4yt−1, ...,4yt−p), Φ = (ξ′,Γ′
1, ...,Γ

′
p)

′, Φz =

(ξz′ ,Γz′
1 , ...,Γ

z′
p )′.

To simplify the notation, we first define the T×nmatrixX0 = (4y′1,4y′2, ...,4y′T )′

and T × 2(r + 2 + np) matrix X = (X1β X2 F zX1β F zX2), where X1 =

(x′1,1, x′1,2, ..., x′1,T )′,X2 = (x′2,1, x′2,2, ..., x′2,T )′, and F z = diag(F (z1), F (z2), ..., F (zT )).

Next, we set B = (α′ Φ′ αz′ Φz′)′. Finally, we stack the error terms εt in

the T × n matrix E, where E = (ε′1, ε
′
2, ..., ε

′
T )′. Hence, model (2.1) can be

written as

X0 = X1βα +X2Φ + F zX1βα
z + F zX2Φ

z + E = XB + E (2.4)

The likelihood function of model (2.4) is following.

L(y|Σ, B, β) ∝ |Σ|−
T
2 exp{−1

2
trΣ−1E ′E} (2.5)

Vectorizing model (2.4), we transform model (2.1) into

x0 = xb+ e (2.6)

where x0 = vec(X0), x = In ⊗ X, b = vec(B), and e = vec(E). Note that

E(ee′) = Ve = Σ⊗ IT . Hence,

trΣ−1E ′E = e′(Σ−1 ⊗ IT )e

= s2 + (b− b̂)′V −1(b− b̂)

(2.7)
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where s2 = x′0Mvx0, Mv = Σ−1⊗[IT−X(X ′X)−1X ′], b̂ = [In⊗(X ′X)−1X ′]x0

and V = Σ ⊗ (X ′X)−1. Thus, the likelihood function in equation (2.5) can

be re-written as

L(y|Σ, B, β) ∝ |Σ|−
T
2 exp{−1

2
[s2 + (b− b̂)′V −1(b− b̂)]} (2.8)

2.2.2 Priors

Although the strict version of PPP states that the combination st + pt − p∗

should be stationary, there is no theoretical guidelines to specify the values

of β in the cointegration relationship for the relative PPP. Furthermore, it

is impossible to impose meaningful informative priors for the coefficients of

the long run/short run adjustment in the VECM nor for the parameter that

indicates the speed of regime changes in the transition function. Therefore,

we use the uninformative or weakly informative priors to allow the data

information to dominate any prior information. To start with, we assume

that all possible models are to be, a priori, equally likely.

Before eliciting our priors of the parameters, it is worthwhile to stress

the identification problems in our model setting. Note that both a linear

VECM and a simple smooth transition VAR model suffer from the identifi-

cation problems. As well documented in the literature, a linear VECM suffers

from both the global and local nonidentification of the cointegration vectors

and parameters corresponding to the long-run adjustment. In Bayesian lit-

erature, a great effort has been made to surmount this problem. In earlier
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research, to set uninformative prior for the cointegration vector β, researchers

first normalize β into β = [Ir V ′]′, then impose uninformative prior on the

sub-vector V . However, as argued by Strachan and van Dijk (2004a), this

approach has an undesirable side-effect that it favors the regions of cointe-

gration space where the imposed linear normalization is actually invalid. In

most recent work, researchers have worked on putting uninformative priors

on the cointegration space [e.g. Strachan (2003), Strachan and Inder (2004),

Villani (2005)]. As pointed out by Koop, Strachan, van Dijk and Villani

(2006) in their survey on the Bayesian approaches to cointegration, since

only the space of the cointegration vector can be derived from the data, it

is better to elicit priors in terms of the cointegration space than in terms

of cointegration vectors. With regards to the smooth transition part of the

model, as explained by Lubrano (1999a), since Bayesians have to integrate

over the whole domain of the smooth parameter, the identification problem

that arises from γ = 0 [the so called Davies’ problem [Davies (1977)], see

Koop and Potter (1999a) for further explanation] becomes more serious in

Bayesian context than in the classical framework. Bauwens, Lubrano and

Richard (1999) and Lubrano (1999a, 1999b) introduce a number of prior set-

tings to solve the problem. Following Gefang and Strachan (2007), we tackle

this problem by simply setting the prior distribution of γ as Gamma.

The nonidentification problem faced by the ESTVECM model is slightly

different. Although the Davies’ problem remains relatively the same as in a

smooth transition VAR, the problem in identifying the cointegration vector
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and its adjustment parameters is subject to the additional influence from

the transition parameter. Here the cointegration vector comes forth in three

combinations, namely βα, βγ and βαz. However, this difference does not

render the identification problem more complicated than what we have to

deal with in a single linear VECM and a LSTVAR. As long as we can rule

out the possibility that γ = 0, we can identify β, α, αz and γ sequentially

once we choose a way to normalize β.

Following the arguments of Koop, Strachan, van Dijk and Villani (2006),

we elicit the prior of β indirectly from the prior expressed upon the cointe-

gration space.5 While we adopt the general approach developed in Strachan

and Inder (2004), we diverge in two aspects important for this application.

First, as is standard in the cointegration analysis of PPP (as there is con-

siderable empirical evidence and theoretical support for this restriction), we

only consider a single equilibrium cointegrating relationship. Second, we

restrict ourselves to the economically justifiable region of the cointegrating

space where the signs of the elements in the cointegration vector are [+ +

-] or [- - +]. Therefore, our method does not explore if there are any other

long run equilibrium relationships different from PPP. Having restricted the

support to this region, the prior is otherwise uninformative on this space.

Specifically, we set the prior of β as following. First, we specify the

5To our knowledge, in literature, only Sugita (2006) applies the Strachan and Inder
(2004) methodology in defining the prior density for cointegrating vector in a nonlinear
VECM. In his model the regimes changes are assumed to follow a Markov switching
process.
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space of the three by one vector β to be uniformly distributed over the two

dimensional Grassman manifold G1,2.

p(β) =
1

c31
(2.9)

where c31 =
∫

G1,2
dg3

1 is a constant, which is the volume of the compact space

G1,2 [James (1954), Muirhead (1982)]. Next, we restrict β′β = 1 for the

purpose of identification as the normalization method does not distort the

distribution of the cointegration space (see Strachan and Inder, 2004 for

further explanation). Thus, we can use polar coordinates to denote the semi-

orthogonal β as follows:

β = [sin(θ1)sin(θ2) sin(θ1)cos(θ2) cos(θ1)]
′

To describe the uniform distribution of the cointegration space in polar co-

ordinates, we multiply the uninformative prior of the space of β in (2.9) by

sin(θ1), the Jacobian of the transformation from rectangular coordinates to

polar coordinates [Muirhead (1982), p55]. As explained before, we want to

restrict the signs of the elements in β instead of allowing the space of β to

move freely. The objective can be easily achieved by restricting the range of

θ1 to be from π/2 to π, and the range of θ2 to be from 0 to π/2.

With regards to the variance covariance matrix of the error terms, fol-
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lowing Zellner (1971), we set standard diffuse prior for Σ:

p(Σ) ∝ |Σ|−
n+1

2

.

For the purpose of our research, we need to calculate posterior model

probabilities to compare across different possible models. As the dimension

of b changes across different model specifications, to have Bayes factors well

defined, we are not allowed to set flat prior for b [see Bartlett (1957), O’Hagan

(1995) for details]. Therefore, following Strachan and van Dijk (2006), we

set weakly informative conditional proper prior for b as:

P (b|Σ, θ1, θ2, γ, c,Mω) ∝ N(0, V )

where b = vec(B), V = Σ⊗ η−1Ik, k = 2(r+1+np), η is the shrinkage prior

as proposed by Ni and Sun (2003). As practiced in Koop, Leon-Gonzalez

and Strachan (2006), we draw η from the Gibbs sampler. In our case, we set

the relatively uninformative prior distribution of η as Gamma with mean µη,

and degrees of freedom νη, where µη=10, νη=0.0001. Note that in our prior

setting, the conditional weakly informative priors for α and αz are the same,

which are normal with zero mean and covariance matrix Σ⊗ (β′ηI3β)−1.

To avoid the Davies’ problem in the nuisance parameter space, following

Gefang and Strachan (2007), we set the prior distribution for γ as Gamma,

which exclude a priori the point γ = 0 from the integration range. Since the
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nonlinear part of b can still be a vector of 0s as γ > 0, the prior specification

of γ does not render model (2.1) in favor of the nonlinear effect. In the

empirical work, we set the prior distribution of γ as Gamma(1, 0.0001),

which is relatively uninformative.

Finally, to interpret our results more sensibly, we elicit the conditional

prior of c as uniformly distributed between the upper and lower limits of the

middle 80% of the transition variables (which, in our case, is the product of

[st−d pt−d p∗t−d] and the cointegrating vector β). Note that the bounds of

the support for c are both data dependent and dependent upon β.

2.2.3 Posterior Computation

We use full conditional Gibbs sampler for posterior computations. From

the priors just elicited and likelihood function derived in Section 2.1, we

find that the posterior of Σ is Inverted Wishart (IW) with scale matrix

E ′E, and the degrees of freedom T , while the conditional posterior of b

is Normal with mean b = vec[(X ′X + ηIk)
−1X ′X0] and covariance matrix

V = Σ ⊗ (X ′X + ηIk)
−1. Note that the posterior distributions of θ1, θ2, γ

and c are not of any standard form. However, the ranges of θ1 and θ2 are

restricted as explained in the previous section, and in each run of the Gibbs

sampler, the range of c can be predetermined based on the current draws of

θ1 and θ2. Thus, we can use Griddy Gibbs Sampling introduced in Ritter

and Tanner (1992) to draw θ1, θ2 and c within the main Gibbs Sampler.

With respect to γ, we resort to Metropolis-Hastings algorithms [Chib and
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Greenberg (1995)] within Gibbs for the estimation. In order to carry out all

the aforementioned posterior analysis, we need to know the posterior of η as

well. The conditional posterior of η is calculated as

p(η|B,Σ, γ, c, Y,X) ∝ p(η)|Σ−1 ⊗ ηIk|
1
2 exp

{
−1

2
b′(Σ−1 ⊗ ηIk)b

}
(2.10)

which indicates that the conditional posterior of η is distributed as Gamma

with the mean µη =
νηµη

νη+µηtr(B′BΣ−1)
, and the degrees of freedom νη = nk+νη.

The Gibbs Sampling Scheme can be summarized as follows:

1. Initialize (b,Σ, θ1, θ2, γ, c, η);

2. Draw Σ|b, θ1, θ2, γ, c, η from IW (E ′E, T );

3. Draw b|Σ, θ1, θ2, γ, c, η from N(b, V b);

4. Draw θ1, θ2|Σ, b, γ, c, η numerically by Griddy Gibbs;

5. Draw γ|Σ, b, θ1, θ2, c, η through Metropolis-Hastings method;

6. Draw c|b,Σ, θ1, θ2, γ, η numerically by Griddy Gibbs;

7. Draw η|b,Σ, θ1, θ2, γ, c from G(µη, νη);

8. Repeat steps 2 to 7 for a suitable number of replications.

In case the draws from Metropolis-Hastings simulator get stuck in a local

mode, we try different starting values for the sampler.
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One of the main concerns of our study is to examine the posterior proba-

bilities of different possible models and trace the effects of cointegration and

nonlinearity. For this purpose, we resort to the SDDR approach of Koop and

Potter (1999a) to calculate the Bayes factors.

As explained in Koop and Potter (1999a), by penalizing parameter rich

models, using Bayes factors to calculate posterior odds ratio can resolve the

over fitting problems that generally exist in nonlinear models. Following

Koop and Potter (1999a) and Koop, Leon-Gonzalez and Strachan (2006), we

use SDDR to compute Bayes factors comparing every restricted model nested

within the general model (2.1) with the general model itself. Using this

information, we back out the posterior model probabilities for each country

pair through a base model (e.g. the model where all the parameters in b

are restricted to be zero). Note that the restricted linear VECM model

occurs when all the elements of αz and Φz are equal to zero. Likewise, the

restricted linear VAR model with neither the cointgration nor the nonlinear

effect occurs when we impose all the elements of α, αz and Φz to be equal

to zeros.6 Hence, we can use the conditional posterior distribution and the

conditional priors of b to compute the Bayes factor for the restricted model

M1 (nested in model M2) versus the unrestricted model M2 using the SDDR

6It is important to stress that as explained by Koop, Leon-Gonzalez and Strachan
(2006), in the linear VECM model, the rank of the cointegration relationship equal to zero
if and only if α = 0.
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which is given by the expression:

B1,2 =
Pr(M1|y)
Pr(M2|y)

=
p(b|M2, y)|bi=0

p(b|M2)|bi=0

where the restrictions are bi = 0. Note that this method penalizes parameter

rich models as explained in Koop and Potter (1999a).

2.3 Empirical Results

In this section, we investigate whether PPP holds between the US and the

other six G7 countries—Canada (CAN), France (FRA), Germany (GER),

Italy (ITA), Japan (JAP), and the UK. In all cases, the US is considered the

foreign country. We extract monthly nominal exchange rates and consumer

price index (CPI) series from the International Financial Statistics database.

For Canada, Japan and the UK, the data span the period 1973:1 to 2006:12.

For France and Italy, the sample period covers from 1973:1 until the fixing

of the Euro conversion rate 1998:12. For Germany, we use the former West

Germany data running from 1973:1 to 1991:12.

The Gibbs sampler is run for 12,000 passes with the first 2,000 discarded.

The convergence of the sequence draws is checked by the Convergence Diag-

nostic measure introduced by Geweke (1992). We use the MATLAB program

from LeSage’s Econometrics Toolbox [LeSage (1999)] for the diagnostic. The

parameter estimates are presented in tables 2.1 - 2.3. Given the large amount
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of parameters being estimated, we only report the estimation results for the

cointegration relationship, the threshold, and the smooth variable which in-

dicate the speed of the regime changes. To aid comprehension, both the

angles in the polar coordinates and corresponding elements in the cointegra-

tion vector are reported. 7

2.3.1 Model Comparison Results

In this section, we report results relating to the posterior model probabil-

ities of 85 different models [namely 1 model with only the error terms, 6

linear VARs, 6 linear VECMs, 36 exponential smooth transition VAR mod-

els (ESTVAR) and 36 ESTVECM models] for each country pair.8 Among

these models, both the maximal order of the autoregressive process and the

longest lag length of the transition indicator are allowed to be 6. We assume

the 85 models are exhaustive and mutually independent.

Table 2.4 summarizes the total posterior probabilities of the models. In

all cases, ESTVECM models receive over 90% of the posterior model proba-

bilities, which provides strong eveidence that PPP holds, and the adjustment

process towards PPP is nonlinear.This finding suggests that it is improper

to model the interrelationship among the nominal interest rate and domestic

7We identify the parameters by normalizing β′β = 1; Linear identification can be
achieved by first dividing the reported β by one of its element that of concern, then
transform the reported γ and c accordingly.

8Note that by imposing restrictions on the long-run adjustment parameters α and αz

in the unrestricted model, the linear and nonlinear VAR models we considered are in
differences.



CHAPTER 2 62

and foreign price levels in a linear framework.

It may also be illuminating to look into the support for the VECM and

VAR models in the linear context. It is seen that except for the case of US-

ITA, the linear VECM models are more favored over linear VAR models in

all countries pairs.

Table 2.5 contains results of the sum of the posterior probabilities of the

ESTVECM models distinguished by the transition variables for each country

pair. The model comparison results show that the transition indicators with

longer lag lengths are generally preferred over the shorter ones in modeling

the nonlinear effects. Given the time lags between the contract and settle-

ment in international trade, this result is not surprising. However, in the case

of US-FRA, it turns out that the most preferred lag length of the transition

indicator is 2, and it receives nearly 100% of the posterior mass.

To shed more light on the properties of the posterior probabilities, we

report the individual top 20 models for each country pairs in tables 2.6 - 2.7.

Observe that, for all country pairs, the top 20 models account for more than

99% of the total posterior mass. However, the degree of model uncertainties

are rather different across country pairs. In the case of US-FRA, with the

single most preferred model obtains 84.78% of the posterior model probabili-

ties, more than 99% of the posterior model probabilities are taken by the top

six models. While in others cases, although a great majority of the posterior

mass is also taken by the top six models, the posterior model probabilities

tend to spread across the six models more evenly. For example, in the case
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of US-CAN, each of the top six models accounts for relatively 14% of the

posterior model probabilities; In the case of US-GER, the posterior model

probabilities of the top six models range from 8.17% to 21.27%. The most

obvious case of model uncertainty can be found in the US-UK pair. For

US-UK, 96.89% of the posterior mass is scattered across twelve models, with

their posterior models probabilities ranging from 4.85% to 12.93%.

We report the time profiles of the smooth transition functions of the

most probable models in figure 2.1. Observe that throughout the years,

in the cases of US-CAN and US-UK, the dynamics of regime changes is

gradually switching from the outer regimes towards the middle regimes. In

the cases of US-FRA and US-ITA, we observe U-shaped time profiles, with

the former hit the middle regime in November, 1980, and the latter hit the

middle regime in August, 1980. In the case of US-GER, the dynamics of the

PPP adjustment remains very close to the middle regime. In contrast, for

US-JAP, the dynamics of the regime changes is in the outer regime during

most of the time. The graphs show that the regime switching processes are

rather smooth for all cases, thus it is improper to adopt an abrupt function

to model the nonlinear effects.

2.3.2 Impulse Response Analysis

It is acknowledged that the impulse response functions of the nonlinear mod-

els are history- and shock- dependent [e.g. Potter (1994), Koop, Pesaran and

Potter (1996)]. We use the generalized impulse response function proposed
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in Koop, Pesaran and Potter (1996) to examine the effect of a shock on the

PPP relationship. In particular, we examine the generalized impulse response

functions of GIP for a shock, υt, and a history, ωt−1 as follows

GIP (n, υt, ωt−1) = E[Pt+n|υt, ωt−1]− E[Pt+n|ωt−1] (2.11)

where n is the time horizon. By averaging out the future shocks, in (2.11),

we treat the impulse responses as an average of what might happen given

what has happened. Using Bayesian approach, we calculate the generalized

impulse responses by averaging out the history uncertainties, the future un-

certainties, the parameter uncertainties and model uncertainties.

To examine the impulse response functions of the cointegrating PPP com-

bination, we allow a shock amounting to ±0.01 and ±0.02, respectively, to

hit each of the three variables (namely st, pt and p∗t ). The time horizon of the

impulse responses is set to 60 months. Note that for each country pair, we

have 85 models and 12 different shocks for model comparison. For brevity, we

only present the impulse response functions of the PPP combinations for the

most preferred models in figures 2.2 - 2.4. Inspecting the impulse response

functions, we have two main findings.

i. The dynamics of PPP deviations are determined by the sources and

magnitudes of the initial shocks that hit st, pt and p∗t .

ii. Deviations from PPP are mean-reverting in the next 5 years in all

cases except for when shocks are originated from Canada’s price levels.
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However, the types of convergence processes are rather different across

different cases.

Our findings in the impulse response functions of PPP might shed some

light on the discussions regarding the half life of PPP adjustment.9 As shown

in our study, the impacts on PPP relationship varies with the sources and

magnitudes of the initial shocks hitting st, pt and p∗t . In the cointegrating

context, an amount of deviation from PPP can be traced to a myriad com-

binations of initial shocks that hit st, pt and p∗t . Hence, we suggest that any

assertions on the speed of PPP convergence which neglect the causes of the

deviation can be misleading.10

2.4 Conclusion

In this chapter, we introduce a Bayesian approach to estimating an ESTVECM

model to investigate whether purchasing power parity holds between the US

and the other six G7 countries. The model comparison results are in accord

with the theoretical assertion that in the long run PPP holds, and the adjust-

ment to PPP is a nonlinear process with the regime changes governed by the

magnitude of deviations from the long-run PPP equilibrium. Furthermore,

our research casts doubt over the practice of estimating the half life of PPP

9The half life estimates has been extensively used in the literature to indicate the speed
of PPP adjustment on real exchange rates [e.g. Cheung and Lai (1994), Lothian and Taylor
(1996), Lopez, Murray and Papell (2005)].

10Chortareas and Kapetanios (2005) also claim that using the half life measure to analyze
PPP adjustment might be problematic. However, their reasoning are different from ours.



deviations. The analysis of the impulse response functions show that the

mean-reverting process of the PPP misalignment can be rather complex.
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Table 2.1: Parameters (a)

US - CAN

d=1 d=2 d=3 d=4 d=5 d=6

γ
12.6520 13.7470 13.3550 15.5270 13.8080 13.9260
3.5105 4.1453 4.0240 5.2090 4.0288 3.4595

θ1
2.3150 2.0431 2.0648 1.9085 1.9747 1.9319
0.0537 0.0865 0.0685 0.0790 0.0930 0.0373

θ2
1.4372 1.5365 1.4857 1.5337 1.5171 1.5283
0.0805 0.0246 0.0519 0.0316 0.0463 0.0309

c
-0.2820 1.3063 1.3917 2.2738 1.8870 2.1457
0.4604 0.5750 0.4554 0.5565 0.5909 0.2492

β1 0.7291 0.8900 0.8773 0.9429 0.9182 0.9346
β2 0.0980 0.0305 0.0749 0.0350 0.0493 0.0398
β3 -0.6774 -0.4550 -0.4742 -0.3313 -0.3930 -0.3534

US - FRA

d=1 d=2 d=3 d=4 d=5 d=6

γ
30.4830 28.7710 0.1131 25.9230 0.0339 0.0382
4.8129 4.3462 0.3682 6.5391 0.1182 0.1242

θ1
3.0893 3.0240 2.2722 3.0322 2.2540 2.3632
0.0758 0.0498 0.0480 0.0954 0.0846 0.0698

θ2
1.0376 1.0875 0.4227 1.0655 0.5105 0.6029
0.4789 0.3591 0.1585 0.4284 0.1852 0.1697

c
-4.9709 -4.4999 1.7649 -4.5704 1.9835 1.1213
0.4376 0.3262 0.4055 0.5818 0.6248 0.6242

β1 0.0450 0.1039 0.3134 0.0956 0.3790 0.3981
β2 0.0266 0.0545 0.6967 0.0529 0.6767 0.5783
β3 -0.9986 -0.9931 -0.6453 -0.9940 -0.6313 -0.7121

Notes: Standard deviations are in italics.
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Table 2.2: Parameters (b)

US - GER

d=1 d=2 d=3 d=4 d=5 d=6

γ
0.0136 0.9400 0.6267 9.0952 0.0517 14.4090
0.0653 1.8586 1.1395 1.6984 0.1453 2.9474

θ1
1.8754 1.8200 1.9436 1.8318 1.9217 1.9702
0.0499 0.0609 0.0114 0.1280 0.0355 0.0033

θ2
0.0186 0.0180 0.0130 0.0365 0.0139 0.0384
0.0109 0.0112 0.0057 0.0347 0.0074 0.0255

c
3.2665 3.6215 2.7841 3.5507 2.9426 2.6839
0.3401 0.3841 0.0835 0.8344 0.2554 0.1183

β1 0.0177 0.0174 0.0121 0.0353 0.0131 0.0353
β2 0.9538 0.9690 0.9312 0.9655 0.9390 0.9206
β3 -0.2999 -0.2466 -0.3642 -0.2580 -0.3438 -0.3889

US - ITA

d=1 d=2 d=3 d=4 d=5 d=6

γ
4.3500 7.8474 42.2050 6.4511 30.5660 3.4249
2.9948 3.8444 8.1170 2.2292 2.0644 1.7186

θ1
2.4866 2.4649 3.0858 2.5294 3.0539 2.4769
0.0076 0.0033 0.0451 0.0048 0.0820 0.0187

θ2
0.0615 0.0487 0.8980 0.0248 1.1982 0.0339
0.0590 0.0409 0.4882 0.0158 0.3517 0.0362

c
-0.3737 -0.2265 -4.8580 -0.8063 -4.6900 -0.3258
0.0732 0.1011 0.3030 0.0546 0.5221 0.1963

β1 0.0374 0.0305 0.0436 0.0143 0.0816 0.0209
β2 0.6080 0.6255 0.0347 0.5745 0.0319 0.6165
β3 -0.7931 -0.7797 -0.9985 -0.8184 -0.9962 -0.7871

Notes: Standard deviations are in italics.
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Table 2.3: Parameters (c)

US - JAP

d=1 d=2 d=3 d=4 d=5 d=6
γ 22.7700 34.7190 85.1300 15.2390 1.5974 48.3000

32.2510 7.3199 59.0440 6.5107 2.9569 11.0160
θ1 2.6538 1.9233 1.8639 2.1151 2.3533 1.8933

0.0856 0.0206 0.0517 0.0019 0.1240 0.0497
θ2 0.7510 1.5155 0.9572 0.0763 0.3485 1.5201

0.2628 0.0460 0.6698 0.0147 0.2272 0.0568
c -1.4580 3.0393 3.7788 2.1029 0.7404 3.3569

0.6592 0.2016 0.5806 0.0610 0.7972 0.4702
β1 0.3198 0.9371 0.7827 0.0652 0.2422 0.9472
β2 0.3426 0.0519 0.5513 0.8530 0.6665 0.0481
β3 -0.8834 -0.3452 -0.2889 -0.5178 -0.7051 -0.3170

US - UK

d=1 d=2 d=3 d=4 d=5 d=6

γ
12.6260 16.8620 17.0540 15.2000 14.2380 14.5250
5.0581 6.9726 5.2787 5.2428 4.5599 6.1151

θ1
2.0099 2.3977 2.3327 2.3090 1.7875 2.0869
0.2439 0.0288 0.0596 0.0645 0.0891 0.2538

θ2
1.2821 0.8151 0.9159 0.9517 1.5146 1.2118
0.2369 0.0489 0.0901 0.0895 0.0741 0.2544

c
2.4621 0.7374 1.1670 1.3126 3.1515 2.1100
0.8302 0.2304 0.3802 0.3856 0.2692 0.9630

β1 0.8677 0.4929 0.5739 0.6024 0.9751 0.8143
β2 0.2577 0.4644 0.4407 0.4293 0.0549 0.3055
β3 -0.4251 -0.7358 -0.6903 -0.6729 -0.2150 -0.4935

Notes: Standard deviations are in italics.
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3.1 Introduction

From the late 1980s through the early 2000s, with the prevalence of studies

based on Taylor rule [Taylor (1993)], the role of money (monetary base or

monetary aggregates) had been deemphasized in much research on monetary

policy and macroeconomic modeling [see, e.g., Barro (1989), Taylor (1999),

Clarida, Gaĺı and Gertler (2000)]. However, there has been a renewed in-

terest in the effect of money in recent years. Meltzer (2001), Nelson (2002,

2003), Duca and VanHoose (2004), among others, raise the issue that money

constitutes a crucial channel for the transmission mechanism of monetary

policy, and the role of money cannot be simply replaced by any other policy

instruments. Moreover, we find money reemerges as an important variable

of concern in a number of most recent empirical work [for instance, Wang

and Wen (2005), Sims and Zha (2006), Hill (2007), to mention a few].1

This chapter contributes to the discussion on whether money matters by

revisiting an old topic: the causal effects from money to output in the postwar

US data.2 However, the current research departs from the literature in two

main aspects. First, to capture the possible regime changes in US monetary

policy, we adopt a logistic smooth transition vector error correction model

1As of the time of writing, Federal Reserve, the European Central Bank, Bank of
England and central banks from Canada and Switzerland jointly announced cash injection
plans to lessen the credit squeeze triggered by the sub-prime mortgages losses. Although
the consequence of the intervention is yet to know, this unprecedent operation clearly
implies that money remains a vital instrument for monetary policy.

2The money-output relationship has been intensively investigated in the literature.
However, there is much less consensus about how money affects output [see, e.g. Sims
(1972, 1980), Stock and Watson (1989), King and Watson (1997), Coe and Nason (2004)].
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(LSTVECM) incorporating cointegration of an unknown form. Second, we

develop a simple Bayesian approach to investigating the causal effects from

money to output.

Single-equation logistic smooth transition error correction models have

been widely used in the literature to capture the possible nonlinear money-

output relationship [Lütekepohl, Teräsvirta and Wolters (1999), Teräsvirta

and Eliasson (2001), Escribano (2004), Haug and Tam (2007), to mention a

few]. However, considering the interplay between endogenously determined

money, interest rates and the ultimate policy targets output and inflation,

we believe LSTVECM can be more effective in capturing both the long run

and short run dynamics in the linkages among all the variables. Perhaps

the reason why researchers have not followed this route is due to the lack

of a fully developed statistics tool that can directly test the cointegration

(or no cointegration) null in a nonlinear VECM against its both linear and

nonlinear alternatives [see Seo (2004), Seo (2006), Kapetanios, Shin and Snell

(2006) for details]. In the literature, only Rothman, van Dijk and Frances

(2001) apply a multivariate LSTVECM framework which is closest to us to

study the money-output relationship.3 Yet, Rothman, van Dijk and Frances

(2001) pre-impose a theory based long-run cointegrating relationship in their

estimation. While recognizing that the actual money-output interrelation is

rather complex, unlike Rothman, van Dijk and Frances (2001), we let both

3Rothman, van Dijk and Frances (2001) test Granger causality from money to output
in a classical context involving rolling window forecasting.
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the cointegration rank and cointegrating vectors to be determined by the

data.

Our estimation technique is Bayesian. Specifically, we extend the Bayesian

cointegration space approach introduced in Strachan and Inder (2004) and

collapsed Gibbs sampler developed in Koop, Leon-Gonzalez and Strachan

(2005) into the nonlinear framework. Our method jointly captures the long-

run cointegrating relationship and presence of nonlinearity in the LSTVECM

in a single step. Compared with the available classical estimation techniques

which often require multiple steps and Taylor expansions, our approach is

less susceptible to the sequential testing and inaccurate approximation prob-

lems. Furthermore, the commonly used maximum likelihood estimation in

classical works is subject to the multi-mode problem caused by the nuisance

parameters in the transition function of the LSTVECM. Yet, jagged likeli-

hood functions do not create any particular problems in our Gibbs sampling

scheme.

Considering that the large model we employed might be subject to the

criticism of being too parameter rich, we use Bayes Factors for model com-

parison in order to reward more parsimonious models.4 Alternative models

are specified by placing zero restrictions on certain parameters of the un-

restricted LSTVECM. Our approach to examining whether money long-run

causes output is in spirit similar to that in Hall and Wickens (1993), Hall

4Bayes Factors include an automatic penalty for more complex models (see Koop and
Potter, (1999a, 1999b) for details).
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and Milne (1994) and Granger and Lin (1995). With respect to the Granger

causality test from money to output, aside from considering if money directly

enters the output equation as described in Rothman, van Dijk and Frances

(2001), we look into whether money indirectly affects output through the

channels of price and interest rate.

An important finding of our study is that the postwar US money-output

relationship is nonlinear, with the regime shifting mainly driven by the lagged

inflation rates. In terms of triggering regime changes, compared with the key

role played by inflation rates, the role of lagged annual growth rates of output

is less important, while the roles played by changes in oil prices, money and

interest rates are nearly negligible. However, it is worth stressing that, in

our study, nonlinear models consistently outperform linear models.

We find substantial evidence that money does not long-run cause output

in the postwar US data. Additionally, consistent with the in-sample test-

ing results in Rothman, van Dijk and Frances (2001), our studies show that

money is nonlinearly Granger-causal for output. The impulse response anal-

ysis shows that the dynamic paths of output given a shock to money is rather

complex. Most strikingly, we find that the accumulated effect of a shock to

money is negative on real output in the next 50 years, regardless of the size

and sign of the initial shock. This result calls for a word of caution when

using money as a policy instrument.

The outline of this chapter is as follows. Section 2 describes the model and

the Bayesian estimation technique. Section 3 reports the empirical results.
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Section 4 concludes.

3.2 LSTVECM Model and Bayesian Inference

Following a majority of empirical work [for example, Lütekepohl, Teräsvirta

and Wolters (1999), Rothman, van Dijk and Frances (2001)], we investigate

the money-output relationship in a system of output, money, prices and

interest rates.

We use the monthly US data spanning from 1959:1 to 2006:12. The

data are obtained from the database of Federal Reserve Bank of St. Louis.

Various measures of output, money, prices and interest rates are used in

the literature. In this chapter, we adopt the seasonally adjusted industrial

production index (it), the seasonally adjusted M2 money stock (mt), the

producer price index for all commodities (pt), and the secondary market rate

on 3-month Treasury bills (rt) for the measures of output, money, prices and

interest rates, respectively. All variables are in logarithms except for interest

rates which are in percent.

To catch the possible regime changes in US monetary policy, we model

the interrelationship among output, money, prices and interest rates in a

LSTVECM.5 Let yt = [it mt pt rt], the LSTVECM of the 1×4 vector time

series process yt, t=1,...,T, conditioning on the p observations t= -p+1,...,0,

5The possible regime changes in US monetary policy have been well documented in
the literature [see, e.g., Weise (1999), Clarida, Gaĺı and Gertler (2000), Leeper and Zha
(2003)].
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can be specified as

4yt =yt−1βα + ξ + Σp
h=14yt−hΓh

+ F (zt)(yt−1β
zαz + ξz + Σp

h=14yt−hΓ
z
h) + εt

(3.1)

εt is a Gaussian white noise process where E(εt) = 0, E(ε′sεt) = Σ for s = t,

and E(ε′sεt) = 0 for s 6= t. Note that 4yt = yt − yt−1. The dimensions of Γh

and Γz
h are n× n, and the dimensions of β, α′, βz, and αz′ are n× r. Since

we are using monthly data, without loss of generality, we set p = 6.

In model (3.1), the dynamics of the regime changes are assumed to be

captured by the first order logistic smooth transition function introduced in

Granger and Teräsvirta (1993) and Teräsvirta (1994):

F (zt) = {1 + exp[−γ(zt − c)/σ]}−1 (3.2)

where zt is the transition variable determining the regimes. Note that zt

can be any exogenous or lagged endogenous variables of interest. Using

Bayesian approach, we are able to search over large numbers of choices for

zt (or average over them). In this chapter, following Rothman, van Dijk and

Frances (2001), we set zt to be the lagged annual growth rates of output,

the lagged annual growth rates of money, the lagged annual inflation rates,

the lagged annual changes in interest rates and the lagged annual growth

rates in oil prices, respectively.6 In particular, we allow the lag length of the

6Rothman, van Dijk and Frances (2001) point out that using annual growth rates
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transition variables to vary from 1 to 6.

The transition function F (zt) is bounded by 0 and 1. As convention,

we define F (zt) = 0 and F (zt) = 1 corresponding to the lower and upper

regimes, respectively. In function (3.2), the smoothing parameter γ (which

is non-negative) determines the speed of the smooth transition. Observe

that when γ → ∞, the transition function becomes a Dirac function, then

model (3.1) becomes a two-regime threshold VECM model along the lines of

Tong (1983). When γ = 0, the logistic function becomes a constant (equal

to 0.5), and the nonlinear model (3.1) collapses into a linear VECM. The

transition parameter c is the threshold around which the dynamics of the

model change. The value for the parameter σ is chosen by the researcher

and could reasonably be set to one. In this study, we set σ equal to the

standard deviation of the process zt. This effectively normalizes γ such that

we can give γ an interpretation in terms of the inverse of the number of

standard deviations of zt. The transition from one extreme regime to the

other is smooth for reasonable values of γ.

Observe that model (3.1) encompasses a set of models distinguished by the

number of the long-run equilibrium relationships, the cointegrating vectors,

the order of the autoregressive process, the existence of the nonlinear effects,

the choice of the transition variable, and whether Granger non-causality or

long-run non-causality from money to output is imposed.

instead of monthly changes as plausible transition variables is in accord with the commonly
accepted perception that the regimes in the money-output relationship are quite persistent.
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3.2.1 Likelihood Function

Koop, Leon-Gonzalez and Strachan (2005) develop an efficient collapsed

Gibbs sampler for the VECM estimation in linear contexts, which provides

great computation advantages over conventional methods. To incorporate

the collapsed Gibbs sampler into our posterior simulation algorithm, follow-

ing Koop, Leon-Gonzalez and Strachan (2005), we obtain two representations

of the likelihood .

To start with, restricting β and βz to be semi-orthogonal, we write (3.1)

as

4yt = x1,t−1βα + x2,tΦ + F (zt)(x1,t−1β
zαz + x2,tΦ

z) + εt (3.3)

where x1,t−1 = yt−1, x2,t = (1,4yt−1, ...,4yt−p), Φ = (ξ′,Γ′
1, ...,Γ

′
p)

′, Φz =

(ξz′ ,Γz′
1 , ...,Γ

z′
p )′. To simplify the notation, we then define the T × n ma-

trix X0 = (4y′1,4y′2, ...,4y′T )′ and the T × 2(r + 1 + np) matrix X =

(X1β X2 F zX1β
z F zX2), whereX1 = (x′1,1, x′1,2, ..., x′1,T )′,X2 = (x′2,1, x′2,2, ..., x′2,T )′,

and F z = diag(F (z1), F (z2), ..., F (zT )). Next, we set B = (α′ Φ′ αz′ Φz′)′,

and stack the error terms εt in the T ×n matrix E, where E = (ε′1, ε
′
2, ..., ε

′
T )′.

Finally, we rewrite model (3.1) as

X0 = X1βα+X2Φ + F zX1β
zαz + F zX2Φ

z + E = XB + E (3.4)

It is seen that the likelihood function of (3.4) is

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
trΣ−1E ′E} (3.5)
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Vectorizing (3.4), model (3.1) can be transformed into

x0 = xb+ e (3.6)

where x0 = vec(X0), x = In ⊗ X, b = vec(B), and e = vec(E). Note that

E(ee′) = Ve = Σ⊗ IT .

Given that

trΣ−1E ′E = e′(Σ−1 ⊗ IT )e

= s2 + (b− b̂)′V −1(b− b̂)

(3.7)

where s2 = x′0Mvx0, Mv = Σ−1⊗[IT−X(X ′X)−1X ′], b̂ = [In⊗(X ′X)−1X ′]x0

and V = Σ⊗ (X ′X)−1. The likelihood (3.5) can be written as

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
[s2 + (b− b̂)′V −1(b− b̂)]} (3.8)

Observe that the likelihood of b is Normal conditional on all other parameters.

With a Normal form for the likelihood of b, we next obtain a Normal form

for the likelihood of the cointegration vectors.

For any positive definite matrices κ and κz of rank r, we have βα =

βκκ−1α = β∗α∗ and βzαz = βzκzκz(−1)αz = βz∗αz∗, whereβ∗ = βκ and

α∗ = κ−1α, β∗z = βzκz and α∗z = κz(−1)αz. Moreover, restricting κ =

(αα′)
1
2 = (β∗

′
β∗)

1
2 , and κz = (αzαz′)

1
2 = (βz∗′βz∗)

1
2 , we find α∗′ and αz∗′ are

semi-orthogonal if β and βz are semi-orthogonal. Therefore, we can reexpress
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equation (3.4) as

X0 −X2Φ− F zX2Φ
z = X1βα + F zX1β

zαz + E

= X1β
∗α∗ + F zX1β

∗zα∗z + E

(3.9)

Setting x̃0 = vec(X0 − X2Φ − F zX2Φ
z), x̃ = [α∗′ ⊗ X1 α∗z′ ⊗ F zX1], b̃ =

[vec(β∗)′ vec(β∗z)′]′, we find equation (3.9) can be written as

x̃0 = x̃b̃+ e (3.10)

where the dimension of x̃0 is Tn × 1, the dimension of x̃ is Tn × 2nr, and

the dimension of b̃ is 2nr × 1.

Thus, we find the second likelihood representation from (3.10) is

L(y|Σ, B, β, βz, γ, c) ∝ |Σ|−
T
2 exp{−1

2
[s2

β∗+(bβ∗−b̂β∗)′V −1
β∗ (bβ∗−b̂β∗)]} (3.11)

where s2
β∗ = (x̃0 − x̃b̂β∗)

′(Σ−1 ⊗ IT )(x̃0 − x̃b̂β∗), b̂β∗ = (x̃′x̃)−1x̃′x̃0, V
−1
β∗ =

x̃′(Σ−1 ⊗ IT )x̃.

3.2.2 Priors

Although the most commonly elicited quantity money demand equation in-

dicates that the velocity of money is stationary [see, e.g., Rothman, van Dijk

and Frances (2001), Teräsvirta and Eliasson (2001)], empirical work does not

rule out the possibility that the number of the long run cointegration relation-
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ships and the cointegration vectors are in fact data-based [see, e.g., Ambler

(1989), Friedman and Kuttner (1992), Swanson (1998)]. Furthermore, it is

impossible to impose meaningful informative priors for the coefficients of the

long run/short run adjustment in the VECM or for parameters that indi-

cates the speed of regime changes in the transition function. Hence, we use

uninformative or weakly informative priors to allow the data information to

dominate any prior information. To start with, we assume that all possible

models are to be independent and, a priori, equally likely.

Before setting our priors for the parameters, it is worthwhile to stress

the identification problems in our model setting. Note that both the linear

VECM and logistic smooth transition VAR model (LSTVAR) suffer from

identification problems.

As well documented in the literature, a linear VECM suffers from both

the global and local nonidentifications of the cointegration vectors and pa-

rameters corresponding to the long-run adjustments. In Bayesian literature,

a great effort has been made to surmount this problem. In earlier research, to

set uninformative prior for the cointegration vector β, researchers first nor-

malize β into β = [Ir V ′]′, then impose uninformative prior on the sub-vector

V . However, as argued by Strachan and van Dijk (2004a), this approach has

an undesirable side-effect that it favors the regions of cointegration space

where the imposed linear normalization is actually invalid. In most recent

work, researchers have worked on putting uninformative priors on the cointe-

gration space [see, e.g., Strachan and Inder (2004), Villani (2005)]. As noted
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in Koop, Strachan, van Dijk and Villani (2006), since only the space of the

cointegration vector can be derived from the data, it is better to elicit priors

in terms of the cointegration space than in terms of cointegration vectors.

With regard to the smooth transition part of the model, as explained in

Lubrano (1999a), since Bayesians have to integrate over the whole domain

of the smooth parameter, the identification problem that arises from γ = 0

[the so called Davies’ problem [Davies (1977)], see Koop and Potter (1999a)

for further explanation] becomes more serious in the Bayesian context than

in classical framework. Bauwens, Lubrano and Richard (1999) and Lubrano

(1999a, 1999b) introduce a number of prior settings to solve the problem.

Following Gefang and Strachan (2007), we tackle this problem by simply

setting the prior distribution of γ as Gamma.

The nonidentification problem faced by the LSTVECM is slightly differ-

ent. Although the Davies’ problem remains relatively the same as in the

LSTVAR, the problem in identifying the cointegration vector and its adjust-

ment parameters is subject to the additional influence from the transition

parameters. Here the cointegration vectors come forth in two combinations,

namely βα and βzαz. However, this difference does not render the iden-

tification problem more complicated than what we have to deal with in a

linear VECM or a LSTVAR. As long as we can rule out the possibility that

γ = 0, we can identify β, βz, α and αz sequentially once we choose a way to

normalize β and βz.

In the rest of the section, we construct prior distributions for all the
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parameters. With regards to the variance covariance matrix of the error

terms, following Zellner (1971), we set standard diffuse prior for Σ.

p(Σ) ∝ |Σ|−
n+1

2

For the purpose of our research, we need to calculate posterior model

probabilities to compare across different possible models. As the dimension

of b changes across different model specifications, to have the Bayes Factors

well defined, we are not allowed to set flat prior for b [see Bartlett (1957)

and O’Hagan (1995) for details]. Therefore, following Strachan and van Dijk

(2006), we set weakly informative conditional proper prior for b as:

P (b|Σ, β, γ, c,Mω) ∝ N(0, η−1Ik)

where b = vec(B), k = 2(r + 1 + np). η is the shrinkage prior as proposed

by Ni and Sun (2003). As practiced in Koop, Leon-Gonzalez and Strachan

(2006), we draw η from the Gibbs sampler. In our case, we set the relatively

uninformative prior distribution of η as Gamma with mean µη, and degrees

of freedom νη, where µη=10, νη=0.001.

Following the arguments of Koop, Strachan, van Dijk and Villani (2006),

we elicit the uninformative prior of β and βz indirectly from the prior ex-

pressed upon the cointegration space. In particular, following Strachan and

Inder (2004), for r ∈ (0, 4), we specify β′β = Ir and βz′βz = Ir for the
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purpose of normalization.7 Moreover, in line with Koop, Leon-Gonzalez and

Strachan (2005), we set the prior for bβ∗ as p(bβ∗|η) ∼ N(0, η−1I2nr) in order

to obtain a Normal form for the posterior.

To avoid the Davies’ problem in the nuisance parameter space, following

Lubrano (1999a, 1999b) and Gefang and Strachan (2007), we set the prior

distribution for γ as Gamma, which exclude a priori the point γ = 0 from

the integration range. Since the nonlinear part of b can still be a vector of

zeros as γ > 0, the prior specification of γ does not render model (3.1) in

favor of the nonlinear effect. In empirical work, we use Gamma(1,0.001) to

allow the data information to dominate the prior of γ.

As to the prior of c, to make more sense in the context of economic

interpretation, we elicit the conditional prior of c as uniformly distributed

between the middle 80% ranges of the transition variables.

3.2.3 Posterior Computation

Using the priors just identified and the likelihood functions in (3.5) and

(3.11), we obtain the full conditional posteriors as follows.

Conditional on β, βz, γ, c, and b, the posterior of Σ is Inverted Wishart

(IW) with scale matrix E ′E, and degree of freedom T ; Conditional on Σ,

β, βz, γ, and c, the posterior of b is Normal with mean b = V bV
−1b̂ and

covariance matrix V b = Σ ⊗ (X ′X + ηIk)
−1. Conditional on Σ, b, γ, and c,

7Note that the priors over the cointegration spaces of β and βz are proper. See James
(1954), Strachan and Inder (2004) for further explanation on the uniform distribution of
the cointegration space.
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the posterior of bβ∗ is Normal with mean b̄β∗ = V β∗V
−1
β∗ b̂β∗ and covariance

matrix V β∗ = [V −1
β∗ + ηInr]

−1.

To obtain the conditional posterior for η, we combine the prior and like-

lihood to obtain the expression

p(η|b,Σ, γ, c, y, x) ∝ η
νη+nk−2

2 exp(−
ηνη

2µη

− 1

2
b′bη) (3.12)

Thus with a Gamma prior, the conditional posterior distribution of η is

Gamma with degrees of freedom νη = nk + νη, and mean µη =
νηµη

νη+µηb′b
.

The posterior distributions for the remaining parameters, γ and c, have

nonstandard forms. However, we can use Metropolis-Hastings algorithm

[Chib and Greenberg (1995)] within Gibbs to estimate γ, and the Griddy

Gibbs sampler [Ritter and Tanner (1992)] to estimate c.

Following Koop, Leon-Gonzalez and Strachan (2005), we construct the

collapsed Gibbs sampler as following.

1. Initialize (b,Σ, bβ, γ, c);

2. Draw Σ|b, bβ, γ, c from IW (E ′E, T );

3. Draw b|Σ, bβ, γ, c from N(b, V b);

4. Calculate α∗ = (αα′)−
1
2α, αz∗ = (αzαz′)−

1
2αz;

5. Create x̃0;

6. Draw bβ∗|Σ, b, γ, c, x̃0 from N(bβ∗ , V β∗);
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7. construct κ = (β∗
′
β∗)

1
2 , calculate β = β∗κ−1. Construct α = κα∗. Use

the same procedure to derive βz and αz;

8. Draw γ|Σ, b, bβ, c using M-H algorithm;

9. Draw c|Σ, b, bβ, γ using Griddy-Gibbs sampler;

10. Repeat steps 2 to 9 for a suitable number of replications.

We consider a wide range of models to investigate the causal effects from

money to output. Alternative models are distinguished by the number of

the long run cointegration relationships, the lag length of the autoregressive

process, the existence of the nonlinear effects, and the transition variable

triggering regime changes.

Similar to Rothman, van Dijk and Frances (2001), we specify that if

money does not Granger-cause output, the lagged money variables do not

enter the equation for output, and money can not be identified as the transi-

tion variable triggering regime changes. Moreover, enlightened by Hill (2007),

we define that if money does not Granger-cause output, the lagged money

does not enter the equations for price and interest rate.8 In terms of long-

run causality, following Hall and Wickens (1993), Hall and Milne (1994) and

Granger and Lin (1995), we specify that if money does not appear in any

cointegration relationships which enter the output equation, money is not

8As explained in Hill (2007), the situation that A causes B and B causes C implies A
eventually causes C.
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long-run causal (or weakly causal) for output.9

Bayesian methods provide us a formal approach to evaluating the support

for alternative models by comparing posterior model probabilities. These

posterior probabilities can be used to select the best model for further infer-

ence, or to use the information in all or an important subset of the models

to obtain an average of the economic object of inference by Bayesian Model

Averaging. The posterior odds ratio - the ratio of the posterior model proba-

bilities - is proportional to the Bayes factor. Once we know the Bayes factors

and prior probabilities, we can compute the posterior model probabilities.

The Bayes Factor for comparing one model to a second model where each

model is parameterized by ζ = (ζ1, ζ2) and ψ respectively, is

B12 =

∫
`(ζ)p(ζ)d(ζ)∫
`(ψ)p(ψ)d(ψ)

,

where `(.) is the likelihood function and p(.) is the prior density of the pa-

rameters for each model.

If the second model nests within the first at the point ζ2 = ζ∗, then,

subject to further conditions, we can compute the Bayes factor B12 via

the Savage-Dickey density ratio [see, for example, Koop and Potter (1999a),

Koop, Leon-Gonzalez and Strachan (2006) for further discussion in this class

of models]. For the simple example discussed here, the Savage-Dickey density

9See Hall and Wickens (1993), Hall and Milne (1994) and Granger and Lin (1995) for
details.
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ratio is:

B12 =
p(ζ2 = ζ∗|Y )

p(ζ2 = ζ∗)
,

where the numerator is the marginal posterior density of ζ2 for the unre-

stricted model evaluated at the point ζ2 = ζ∗, and the denominator is the

prior density of ζ2 also evaluated at the point ζ2 = ζ∗.

Since the conditional posterior of b is Normal, it is easy to incorporate

the estimation of the numerator of the Savage-Dickey density ratio in the

Gibbs sampler. As to the denominator of the Savage-Dickey density ratio,

using the properties of the Gamma and Normal distributions, we derive the

marginal prior for a sub-vector of b evaluated at zeros as

{(
µη

πνη

)ω/2Γ(
ω + νη

2
)}/[Γ(

νη

2
)]

where Γ(.) is the Gamma function, and ω is the number of elements in b

restricted to be zeros.

Note that Bayes factors enable us to derive the posterior probabilities for

restricted models nested in different unrestricted models. A simple restriction

in our application to choose is the point where all lag coefficients are zero,

i.e., Γh = Γz
h = 0, at which point we have the model with p = 0. This

restricted model is useful as it nests within all models. Once we have the

Bayes factor for each model to the zero lag model, via simple algebra we can

back out the posterior probabilities for all models.

Taking a Bayesian approach we have a number of options for obtaining
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inference. If a single model has dominant support, we can model the data

generating process via this most preferred model. However, if there is con-

siderable model uncertainty then it would make sense to use Bayesian Model

Averaging and weight features of interest across different models using pos-

terior model probabilities [as suggested by Leamer (1978)].

3.3 Empirical Results

In empirical work, we allow the cointegration rank of the unrestricted model

(3.1) to vary from 1 to 3.10 For unrestricted models with a specific cointegra-

tion rank, we allow for 5 types of possible transition variables to trigger the

regime changes, namely the lagged annual output growth, the lagged annual

money growth, the lagged annual inflation rates, the lagged annual changes

in interest rates and lagged annual growth rates in oil prices, respectively.

Among these models, both the maximal order of the autoregressive process

and longest lag length of the transition indicator are allowed to be 6. In

total, we investigate the causal effects from money to output in the postwar

US data by estimating 90 unrestricted LSTVECM models.

Altogether, we run 90 Gibbs sampling schemes. Each Gibbs sampler

is run for 12,000 passes with the first 2,000 discarded. The convergence

of the sequence draws is checked by the Convergence Diagnostic measure

10We don’t consider unrestricted models with rank 0 since they can be derived by im-
posing zero restrictions on the long-run adjustment parameters of the unrestricted models
with rank 1, 2 or 3. In addition, we rule out the possibility that the cointegration rank is
equal to 4 for that can only happen when the time series it, mt, pt and rt are stationary.
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introduced by Geweke (1992). We use the MATLAB program from LeSage’s

Econometrics Toolbox [LeSage (1999)] for the diagnostic.

3.3.1 Model Comparison Results

In this section, we report the results relating to the posterior model proba-

bilities associated with a set of 2766 possible models nested in the original

90 unrestricted models.11 Assuming the 2766 models are mutually exclusive,

in calculating the Bayes Factors, we have each of the 2766 models receive an

a priori equal weight.

We find compelling evidence that money does not long-run cause output

in the postwar US data. First, assuming all the 2766 models are mutually ex-

clusive and exhaustive, we find money long-run non-causality models jointly

account for 95.16% of the posterior mass.12 Second, assuming all models

nested in the unrestricted models with the same number of cointegration

ranks are mutually exclusive and exhaustive, we observe that money long-

run non-causality models are predominant in all the three cases. Specifically,

for models nested in the unrestricted LSTVECM models with only one coin-

tegration relationship, money long-run non-causality models jointly account

11Altogether, we examine 66 linear models and 2700 nonlinear models. Namely 6 linear
VARs, 6 linear VARs with money Granger non-causality restriction, 18 linear VECMs,
18 linear VECMs with money Granger non-causality restriction, 18 linear VECMs with
money long-run non-causality restriction, 540 nonlinear VARs, 540 nonlinear VARs with
money Granger non-causality restriction, 540 nonlinear VECMs, 540 nonlinear VECMs
with money Granger non-causality restriction, and 540 nonlinear VECMs with money
long-run non-causality restriction.

12In the remainder of the chapter, we use money long-run non-causality model to indicate
the restricted model where money does not long-run cause output.
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for 96.06% of the posterior probabilities; for models nested in the unrestricted

LSTVECM models with two cointegration relationships, overall, money long-

run non-causality models receive 97.68% of the posterior mass; for models

nested in the unrestricted LSTVECM models with three stationary cointe-

gration relationships, money long-run non-causality models altogether get

95.16% of the posterior probability. Finally, if we assume models nested in

each of the 90 unrestricted LSTVECM models are mutually exclusive and

exhaustive, we find that in each cases, money long-run non-causality models

are constantly overwhelmingly supported over other types of models.13

Assuming models nested within LSTVECMs with the same number of

cointegration ranks (from 1 to 3) to be exhaustive, we reports the top 10

models with the highest posterior model probabilities in table 1. Note that

the top 10 models of all the 2766 models are exactly the same as the top

10 models nested in the LSTVECM models with three cointegration rela-

tionships, for nonlinear models of rank 3 get nearly 100% of the posterior

mass among all the 2766 models. Table 1 reinforces the substantial support

for money long-run non-causality models. It is worth noting that the most

preferred models for all cases are nonlinear money long-run non-causality

models. Another interesting finding is that there is no pronounced model

uncertainty if we focus on all the 2766 possible models or a subset of mod-

els nested within the unrestricted LSTVECM models with 2 or 3 stochastic

13The model comparison results for models nested in each of the 90 unrestricted
LSTVECM models are available upon request.
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trends. Yet, more evidence of model uncertainty emerges if we pre-impose

the cointegration rank of the unrestricted models to be 1. Finally, note that

the most preferred model among all the possible 2766 models is the restricted

money long-run non-causality LSTVECM of rank 3, order 6, and with lagged

2 inflation rates as the transition indicator.

Overall, we find little support for models indicating money is not Granger-

causal for output. The posterior mass for all models (linear types of VAR,

VECM models and nonlinear types of LSTVAR, LSTVECM models) with

zero restrictions on the lagged money in the equations for output, price and

interest rates is nearly negligible. Furthermore, observing that the total

posterior model probability associated with the unrestricted LSTVECMs and

the restricted money long-run non-causality LSTVECMs is almost 100%, we

find that money nonlinearly Granger-causes output, which is in accord with

the in-sample evidence in Rothman, van Dijk and Frances (2001).

Given the substantial support for nonlinear models, it is interesting to

examine which transition variable plays a more important role in triggering

regime changes. Examining all the possible nonlinear models, we find that

lagged annual inflation rates consistently predominate over other candidate

transition variables in driving regime changes. All together, nonlinear models

with lagged inflation rates as transition variables receive 89.17% of the poste-

rior mass. The next important triggers for regime changes are lagged annual

output growth rates. Note that nonlinear models with regime shifting gov-

erned by the lagged annual output growth rates account for 10.83% of the
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posterior mass. Last, compared with lagged inflation and output growth,

lagged changes in money, interest rates and oil prices play trivial roles in

triggering regime changes.

To highlight the nonlinear feature of the interrelationship among money,

output, prices and interest rates, in figure 3.1 we plot the values of the logistic

smooth transition function over time for the most preferred model chosen

from all the 2766 candidate models.14 Observe that although the plot is quite

volatile, the values of the transition function are almost always bounded by

0.4 and 0.6 throughout the time. This result implies that the regime changes

in the postwar US money-output relationship are quite modest, which is in

line with the findings of Primiceri (2005) and Sargent, Williams and Zha

(2006). However, given the compelling support for nonlinear models over

linear models, it is worth stressing that we find it improper to model the

post-war US money-output relationship in linear models.

Table 2 contains the estimates of the cointegration vectors and transi-

tion parameters for the most preferred models nested in the unrestricted

LSTVECM models of rank 1, 2, 3, respectively. Recall that the most pre-

ferred model among the whole set of 2766 candidate models is exactly the

same most preferred model selected from all the possible models nested in

the unrestricted LSTVECM models of rank 3.

To aid in interpretation, in table 2, we normalize the cointegration vectors

on output and money, respectively. Assuming that the cointegration rank is

14The whole set of the time profiles of the transition functions are available upon request.
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1, we find the parameters for output, money and price levels appear to have

reasonable economic interpretations. For example, inflation brings about

(nominal) higher output level. Yet, it is not so straightforward to explain

why effects of interest rates are quite different between the lower and upper

regimes. Focusing on the model with 2 cointegration relationships, we find

that in each regime, the first cointegrating vectors could be said to correspond

to the theory of the (log) quasi-velocity of money as defined in Rothman,

van Dijk and Frances (2001), while it is hard to find an economic theory to

explain the second long-run equilibrium relationship. For the most preferred

model among all the possible 2766 models (or the most preferred model

among all the models nested in LSTVECMs of rank 3), we find it even more

difficult to find a theory-based explanation for the long-run cointegrating

interrelationships. Yet, it is clear that there are enormous differences in the

cointegration vectors between the upper and lower regimes.

The estimated values of the smoothing parameter γ presented in table 2

are relatively small. With the speed of the transition determined by γ, small

value of γ indicates that the transition between regimes is rather smooth. As

to the estimated value of c, recall that for all cases, the transition variable

is the lagged inflation rates. In our sample, the mean of inflation rates is

0.0352. Given the threshold c is greater than 0.05 for each cases, it is seen

that the upper regimes only become active when the transition variable is

very large.

Finally, it is illuminating to look into the model comparison results in
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the linear framework. Assuming the 66 linear models are exhaustive, we find

that the unrestricted linear VECM of rank 3 and order 6 receives nearly

100% of the posterior mass. Thus, models denoting long-run money non-

causality are no longer supported in the linear frameworks. Furthermore, we

find unrestricted VECM of order 6 dominates money long-run non-causality

models when we pre-specify the rank of the cointegration space to be 1 or 2.

Nevertheless, these results prove that ignoring nonlinear effects can lead to

quite misleading conclusions, such as money is long-run causal for output.

3.3.2 Impulse Response Analysis

To shed further light on the causal effects from money to output, we ana-

lyze the impulse responses of output given a shock to money. The nonlinear

LSTVECM allows for asymmetries in the behaviour of the money-output

linkages. In this study, we are interested in two types of asymmetric ef-

fects. First, whether positive and negative shocks to money have unbalanced

effects on real output. Second, whether big and small money shocks have

disproportionate effects.

It is acknowledged that the impulse response functions of the nonlinear

models are history- and shock- dependent [e.g. Potter (1994), Koop, Pe-

saran and Potter (1996)]. We use the generalized impulse response function

proposed in Koop, Pesaran and Potter (1996) to examine the response of

output to a money shock. In particular, we examine the generalized impulse
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response functions of GIP for a shock, υt, and a history, ωt−1 as follows

GIP (n, υt, ωt−1) = E[Pt+n|υt, ωt−1]− E[Pt+n|ωt−1] (3.13)

where n is the time horizon. By averaging out the future shocks, in (3.13),

we treat the impulse responses as an average of what might happen given

what has happened. Using Bayesian approach, we calculate the generalized

impulse responses by averaging out the history uncertainties, future uncer-

tainties and parameter uncertainties.

In each replication of the Gibbs Sampler after the initial burning runs,

we calculate the generalized impulse response functions for all the alternative

models as follows.

1. Randomly draw an ωt−1 in the observed sample as the history.

2. For a pre-specified shock that hits money, randomly draw from Σ the

corresponding shocks hitting the other three variables at time t.

3. Set the maximum horizon as n and randomly sample n+1 four by one

vectors of innovations from Σ.

4. Calculate the expected realizations of output using the shocks calcu-

lated in step 2 and the last n innovations in step 3.

5. Calculate the shock-independent expected realizations of output using

all the n+ 1 innovations in step 3.
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6. Take the difference of the results from step 4 and step 5 to generate

the impulse responses of output for the current draw.

At the end of the Gibbs sampling scheme, we derive the generalized im-

pulse response functions for each possible model by integrating out all the

parameter uncertainties. Note that if there is a great deal of model uncer-

tainty, we can also average across models to derive the impacts of money on

output weighting by the posterior model probabilities.

We set the magnitudes of the initial shocks amounting to ±1 and ±2

times the standard deviation of monthly money growth rates, namely ±1

and ±2 units of shocks. The time horizon of the impulse responses is set as

600 months (50 years). Given the large number of models and four different

shocks, we only present the impulse response functions for the most preferred

model among all the 2766 models in figures 3.2 - 3.3. For comparison, both

the impulse response functions of output (nominal output) and real output

are provided. The following observations are noteworthy in figures 3.2 - 3.3.

1. Positive and negative money shocks of the same magnitude appear

to have asymmetric affects on both nominal output and real output.

Observe that the time path of the impulse responses to positive shocks

never mirror that of the impulse responses to negative shocks.

2. Impacts on both nominal output and real output appear to vary dis-

proportionately with the size of the shock to money.
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3. Impacts on nominal output appear to steadily increase in the same

direction of the initial shocks in the first 10 years. After that, the

impact responses become more volatile.

4. Compared with the responses of nominal output, the impact responses

of real output to a money shock are rather volatile. More strikingly, the

total effect on real output appears to be negative in the next 50 years

after a shock to money, regardless of the size and sign of the shock.

3.4 Conclusion

This chapter investigates the causal effects from money to output using post-

war US data. We develop a Bayesian approach to catch the interrelationship

among money, output, prices and interest rates in a LSTVECM model. Dif-

ferent from similar nonlinear modeling method in the literature, we jointly

estimate the cointegration relationship and nonlinear effects in a single step

without pre-imposing any theory based restrictions.

Our model comparison results indicate that the postwar US money-output

relationship is nonlinear. Yet, we find that the transition between regimes

is rather smooth, and it is improper to use any abrupt transition framework

to model the money-output linkage. Through model comparison, we find

substantial evidence in favor of money long-run non-causality for output. In

addition, we find little evidence against Granger causality from money to

output. More precisely, our result strongly support that money nonlinearly
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Granger-causes output during the postwar period in the US.

Our impulse response analysis sheds further light on the nonlinear causal

effects from money to output. An important finding is that although a pos-

itive money shock can increase nominal output, we have to be cautious in

using money as a policy instrument, for it appears that a shock to money

will have negative cumulative effects on real output over the next fifty years,

regardless of the size and sign of the shock.
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Granger, C. and T. Teräsvirta, (1993). ‘Modelling Nonlinear Economic

Relationships’, Oxford University Press: New York.

Hall, S. G. and A. Milne (1994). ‘The Relevance of P-Star Analysis to UK

Monetary Policy’, Economic Journal, Vol. 104(424), pp. 597-604.

Hall, S.G. and M. R. Wickens (1993). ‘Causality in Integrated Systems’,

D.P. no. 27C93, Centre for Economic Forecasting, London Business

School.

Hamilton, J. D. (1989). ‘A New Approach to the Economic Analysis of



LIST OF REFERENCES 117

Nonstationary Time Series and the Business Cycle’, Econometrica, Vol.

57, pp. 357-384.

Haug, A. A. and J. Tam (2007). ‘A Closer Look at Long-Run U.S. Money

Demand: Linear or Nonlinear Error-Correction With M0, M1, or M2?’

Economic Inquiry, Vol. 45(2), pp. 363-76.

Helbling, T. F. and T. A. Bayoumi (2003). ‘Are They All in the Same

Boat? The 2000-2001 Growth Slowdown and the G-7 Business Cycle

Linkages’, Manuscript, IMF.

Hill, J. B. (2007). ‘Efficient tests of long-run causation in trivariate VAR

processes with a rolling window study of the money-income relation-

ship’, Journal of Applied Econometrics, Vol. 22(4), pp. 747-65.

Inklaar, R. and J. de Haan (2001). ‘Is There Really a European Business

Cycle?: A Comment’ , Oxford Economic Papers, Vol. 53, pp. 215-20.

James, A. T. (1954). ‘Normal multivariate analysis and the orthogonal

group’, Analysis of Mathematical Statistics, Vol. 25, pp. 40-75.

Johansen, S. (1992). ‘Testing weak exogeneity and the order of cointegration

in UK money demand data’, Journal of Policy Modeling, Vol. 14(3),

pp. 313-34.

Kapetanios, G., Y. Shin and A. Snell (2006). ‘Testing for cointegration

in nonlinear smooth transition error correction models’, Econometric

Theory, Vol. 22, pp. 279-303.



LIST OF REFERENCES 118

King, R. G. and M. W. Watson (1997). ‘Testing long-run neutrality’, Eco-

nomic Quarterly, Federal Reserve Bank of Richmond, Vol. 83, pp.

69-101.

Koop, G., R. Leon-Gonzalez and R. W. Strachan (2005). ‘Efficient Pos-

terior Simulation for Cointegrated Models with Priors On the Cointe-

gration Space’, Discussion Papers in Economics 05/13, Department of

Economics, University of Leicester, revised Apr 2006.

Koop, G., R. Leon-Gonzalez and R. W. Strachan (2006). ‘Bayesian infer-

ence in a cointegration panel data model’, Discussion Papers in Eco-

nomics 06/2, Department of Economics, University of Leicester.

Koop, G., M. H. Pesaran and S. M. Potter (1996). ‘Impulse Response

Analysis in Nonlinear Multivariate Models’, Journal of Econometrics,

Vol. 74, pp. 491-99.

Koop, G. and S. M. Potter (1999a). ‘Bayes factors and nonlinearity: Ev-

idence from economic time series’, Journal of Econometrics, Vol. 88,

pp. 251-81.

Koop, G. and S. M. Potter (1999b). ‘Dynamic Asymmetries in US Unem-

ployment’, Journal of Business and Economic Statistics, Vol. 17, pp.

298-313.

Koop, G. and S. M. Potter (2000). ‘The Vector Floor and Ceiling Model’,

Working Paper No 04/15, Department of Ecomomics, University of



LIST OF REFERENCES 119

Leicester.

Koop, G., S. M. Potter and R. W. Strachan (2005). ‘Re-examining the

consumption-wealth relationship: the role of model uncertainty’, Dis-

cussion Papers in Economics 05/3, Department of Economics, Univer-

sity of Leicester.

Koop, G., R. W. Strachan, H. van Dijk and M. Villani (2006). ‘Bayesian

Approaches to Cointegration’, in T. Mills and K. Patterson (eds) The

Palgrave Handbook of Econometrics, Volume 1: Theoretical Econo-

metrics, Palgrave-Macmillan: Basingstoke.

Leamer, E. E. (1978). ‘Specification Searches’, John Wiley, New York.

Leeper, E. M. and T. Zha (2003). ‘Modest policy interventions’, Journal of

Monetary Economics, Vol. 50(8), pp. 1673-1700.

LeSage, J. (1999). ‘Applied econometrics using MATLAB’, http://www.spatialeconometrics.com/.

Li, K. (1999). ‘Testing symmetry and propotionality in PPP: a panel-data

approach’, Journal of Business and Economic Statistics, Vol. 17, pp.

409-18.

Lopez, C., C. J. Murray and D. H. Papell (2005). ‘State of the Art Unit

Root Tests and Purchasing Power Parity’, Journal of Money, Credit

and Banking, Vol. 37(2), pp. 361-69.



LIST OF REFERENCES 120

Lopez, C. and D. H. Papell (2006). ‘Convergence to Purchasing Power

Parity at the Commencement of the Euro’, Review of International

Economics, Vol. 14, pp. 1-16.

Lothian, J. R. (1997). ‘Multi-counry evidence on the behaviour of pur-

chasing power parity under the current float’, Journal of International

Money and Finance, Vol. 16, pp. 19-35.

Lothian, J., R. and M. P. Taylor (1996). ‘Real Exchange Rate Behavior:

The Recent Float from the Perspective of the Past Two Centuries’,

Journal of Political Economy, Vol. 104(3), pp. 488-509.

Lubrano, M. (1999a). ‘Bayesian Analysis of Nonlinear Time Series Mod-

els with a Threshold’, Nonlinear Econometric Modelling, Cambridge

University Press, Cambridge.

Lubrano, M. (1999b). ‘Smooth Transition GARCH Models: A Bayesian

Perspective’, Universite Aix-Marseille III G.R.E.Q.A.M. 99a49.
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