
Edward Brooksbank 
1 

 
 
 
 
 

 
POD ANALYSIS AND PREDICTION OF 

CAVITY FLOW INSTABILITY 
 

Edward J. Brooksbank, Aldo Rona 
Department of Engineering, University of Leicester, Leicester, LE1 7RH, UK 

Email: ejb13@leicester.ac.uk 

 
Abstract 
 
Aircraft with internal store bays are subject to large amplitude pressure oscillations that, 
at certain flow conditions, may damage both the bay and the stores. To control these 
oscillations, a method is required to predict in real-time the store bay flow conditions 
and use these predictions as feed-back to a control device. This study addresses the 
design of such a flow predictor, based on a Proper Orthogonal Decomposition (POD) 
approach. 

A time dependent numerical model has been developed to investigate the 
instability of a Mach 1.5 cavity flow. The numerically generated flow history is analysed 
through the use of POD. Using the methods of snapshots, the large-scale features of the 
cavity flow can be captured in only a few eigenmodes. A novel method is presented 
whereby the flow can be accurately predicted, beyond the initial flow history, by 
decomposing the coefficients applied to the eigenmodes into a short discrete Fourier 
series. 

Results are presented for the flow state predicted 10 fundamental instability mode 
periods beyond the end of the initial flow history. The method is shown to be very 
effective and predicted pressures at the downstream edge of the cavity are in excellent 
agreement with a comparative CFD computation. The accuracy of the prediction is 
shown to be dependent on the number of snapshots taken for the POD analysis. When 
a small non-optimal number of snapshots is used, the pressure fluctuation amplitude is 
not adequately predicted. Even so, the error in phase is small and the general structure of 
the pressure trace is still captured, making the current method a good candidate for 
active flow control. 

 
INTRODUCTION 

 
Large amplitude flow instabilities commonly affect the compressible flow in and around 
a rectangular enclosure. The unsteady flow in the enclosure, or cavity, is characterised by 
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large amplitude pressure oscillations, an unsteady vorticity field, and flow recirculation in 
the enclosure (Fig. 1). This leads to a sustained aerodynamic loading, pressure drag, and 
noise. In an „open‟ cavity,1 the flow instability is driven by the fluctuations of a shear 
layer that spans across the enclosure.2 The interaction of the shear layer with the rear 
bulkhead is part of a feed-back loop which self-sustains the instability. 

Cavity flows are an established interest of the academic community.3,4,5 Numerical, 
analytical, and experimental models have been developed to investigate the essential 
physics of the cavity flow instability and to assess suppression methods. An overview of 
past work is given in Grace.6 Research work initiated at Cambridge7 and then continued 
at the University of Southampton2,8,9 highlighted the use of time-dependent two-
dimensional numerical models to reproduce the large-scale convecting instabilities that 
characterise the unsteady shear layer over the cavity opening. 

The use of active controllers to suppress the cavity flow instability and minimise 
pressure fluctuations requires the implementation of control devices. In order to design 
an implementable feed-back controller to drive these devices, it is necessary to have a 
low order real-time control algorithm that is computationally efficient. Such a controller 
requires a flow predictor as input to the system. 

The POD method,10 also known as principal component analysis or Karhunen-
Loève expansion, is a technique used to capture the overall behaviour of a dynamic 
system and is used in the current study as a flow predictor. The method generates an 
eigenvector matrix that captures the non-linearity of the input system with the 
advantages that the eigenvector elements are ordered from the first element with the 
highest average energy to the element with the lowest average energy. This is an optimal 
basis from which to reconstruct the flow, as the first elements contain most of the 
energy of the flow. In this approach, a desired energy level can be specified and only 
those eigenvectors or basis elements needed to achieve such a level are stored to project 
the flow prediction in time. 

 
FLOW CONDITIONS AND NUMERICAL MODEL 

 
A rectangular enclosure is tested at transonic flow conditions, as shown diagrammatically 
in Fig. 1. The cavity length to depth ratio is 3 and the inlet flow Mach number is 1.5. The 
geometry and inflow parameters are designed to match the experimental conditions of a 
selected test in Zhang.7 At these conditions, the flow develops large amplitude 
fluctuations and the unsteady shear layer re-attaches on the downstream edge, giving an 
„open‟ cavity regime.1 A turbulent boundary layer develops above the upstream cavity 
edge. All dimensions are normalised by the 15mm cavity depth D. At the computational 
domain inlet boundary b1, the boundary layer thickness 99 is 0.333D. Above the 
boundary layer, the uniform free stream speed U, Mach number M, density , static 
pressure p, and static temperature T are 425.2m/s, 1.5, 0.9373kg/m3, 53.801kN/m2, 
and 200K respectively. All cavity flow results are normalised by the above free stream 
values and D/U normalises time.  

The shear layer is characterised by a coupled motion of shear layer flapping in the 
transverse direction, due to the shear layer instability, and of vortex convection in the 
streamwise direction, with vortices impinging on the rear bulkhead. The interaction of 
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the shear layer with the cavity downstream edge establishes a feed-back loop resulting in 
a self-sustained stationary flow oscillation in the cavity. A detailed description of the 
cavity flow dynamics is given in Rona & Brooksbank3 and in the references therein. 

The numerical method that is being used is an extension of the scheme by Rona & 
Dieudonné,11 where a laminar cavity model at a similar flow regime was presented. The 
extended finite volume method is based on the discrete time-dependent Reynolds 
averaged Navier-Stokes equations with k- turbulence closure, including  cross-
diffusion.12 Details are reported in Rona & Bennett13 and in Rona & Brooksbank.3 

 
PROPER ORTHOGONAL DECOMPOSITION 

 
A method is presented whereby the data required to predict the unsteady flow in the 
cavity at a given time t > t0 can be generated from a Proper Orthogonal Decomposition 
of a finite cavity flow history 0 < t < t0. In the current study, the pressure field has been 
used to determine the L2 norm and rank the POD eigenmodes to give a POD basis. The 
effects of using alternative variables for the L2 norm have been discussed in Freund et 
al.14 

Given a series of two-dimensional snapshots of the flow field, a matrix of 
dimension (M,N ) is constructed: 

  
jixX  (1) 

where i corresponds to the ith snapshot, a vector representation of the two-dimensional 
spatial pressure field, and j corresponds to the jth element of snapshot i. N is the 
number of snapshots and M is the number of elements in each snapshot. Each column 
vector i of the matrix X can be expressed as: 

  TMiiii xxx 21X  (2) 

A mean field is constructed from all the snapshots: 

 



N

i

i
N 1

1
XX  (3) 

and a new zero mean data set is constructed: 

 XXX  ii

~
 (4) 

The auto-correlation matrix is formed by 

 XXC
~~T  (5) 

and C is diagonalised using a singular value decomposition to give: 

 C = VV
T
 (6) 

The trace of the diagonal matrix  gives the eigenvalues 1  2    N and V is the 
matrix of the associated eigenvectors. A POD basis matrix is constructed from the 
eigenvectors: 

 VX
~

Φ  (7) 

where 

  
jkΦ  (8) 

constitutes the POD basis and kΦ  corresponds to the kth POD basis vector: 
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  TMkkkk  21Φ  (9) 

A coefficient matrix is constructed from 

 A = CV (10) 

where 

  ikA  (11) 

where k corresponds to the kth POD mode and i corresponds to the ith snapshot 
coefficient of POD mode k. Each snapshot i can then be reconstructed by 

 



P

k

kiki

1

ˆ ΦXX  (12) 

If P = N and N is the number of original snapshots, the data is reconstructed exactly. An 
approximation can be achieved, to an accuracy of Q%, by taking the first P < N 
eigenvectors such that:14 

 
10011

QN

n

n

P

n

n 


  (13) 

 

CAVITY FLOW RECONSTRUCTION 
 

A POD basis has been constructed from 406 snapshots containing approximately 2.0 
periods of the cavity flow history. Figure 2 shows the percentage of L2 pressure 
contained within the first few eigenvalues, added-up according to Eq. 13. For the current 
study, a bounding value of Q = 99.9% was chosen. This is achieved by summing the first 
9 eigenvalues. The cavity flow reconstruction over a complete period is given in Fig. 4. 
The POD time mean pressure field and the first 4 modes corresponding to the 4 most 
energetic eigenvalues are given in Figs. 5 (a-e). The coefficients associated with the first 4 
modes are shown in Fig. 6. The reconstructed pressure fields in Fig. 4 are in excellent 
agreement with computed snapshots,3 shown in Fig. 3, with the main features of the 
flow being distinctly captured. However, due to the truncation of the higher frequencies 
present within the flow, there is some smearing of the shock waves.  

 

CAVITY FLOW EXTRAPOLATION 
 

A method to extrapolate the cavity flow state beyond the original snapshots is presented. 
Figure 6 indicates that the time-dependent coefficients ik vary in a periodic form. These 
coefficients can be represented by a truncated discrete Fourier series to give an 
approximate set of coefficients ik~ : 

     



R

l

lklklklklkik titi
1

,,,,, sincos~   (14) 

where k denotes the number of the POD basis vector. l is the lth Fourier coefficient of 
mode k and R is the total number of Fourier modes. In this study, R = 6. Provided the 
flow is sufficiently stationary, Eq. 14 can be used to predict the time-dependent history 
of the coefficients beyond the original data-set time Nt. This is obtained by substituting 
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i > N into Eq. 14 to give ik~  at the later time it > Nt. The approximation ik~  is then 
placed in Eq. 12 replacing ik  to obtain a projection iX̂  of the pressure field at time it. 

 

ERROR ANALYSIS 
 

To validate the POD extrapolation of the cavity flow, 18 periods of flow history 
generated with the numerical code have been used as a comparison, totalling 4147 
snapshots of the flow field. Approximately 230 snapshots of the flow constitute 1 period 
T of flow oscillation. 

The timeline defined by the 18 periods of flow history is subdivided into 3 sections 
of lengths 7T, 10T, and 1T, as shown in Fig. 7. The first section of length 7T is used to 
construct the POD basis. This is based on s periods of flow history beginning at t = (7-
s)T and ending at t = 7T. In this study, 0 < s < 5.5. The POD prediction begins at t = 
7T and continues to the end of the computed flow history. An error indicator to measure 
the accuracy of the prediction is introduced as the L2 norm of the difference between the 
extrapolated and the computed pressure at the downstream edge (x=3.0D, y=0.0) 
constructed over the last period, 17T < t < 18T: 

  
2

1
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2
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e
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Φ  (15) 

where p(t) is the pressure at the downstream edge at time t extrapolated from the POD 
basis, p(t) is the pressure at the downstream edge that is computed by time-marching the 
CFD model to time t, and t = T/230. 

As can be seen in Fig. 8, the error indicator is generally decreasing as the number 
of snapshots used to construct the POD basis increases. Interestingly, a larger error is 
obtained when an integer number of periods is used to construct the POD modes, while 
the minima occur at every odd half-period. This is verified by the extrapolations based 
on 2.5 and 3.0 periods of data. Pressure traces of these predictions are compared to 
pressure data obtained from advancing the CFD computation in time in Figs. 9 and 10. 
Figure 11 shows the pressure traces over the last period. It can clearly be seen that the 
POD prediction formed from the 2.5 periods of data (dashed line) overlaps the 
computed pressure trace (dotted line). The prediction using 3.0 periods of data (solid 
line) is less in agreement with the CFD benchmark. It is thought that the improved 
accuracy of the half-period basis is due to the algorithm being more successful at 
preventing sub-harmonic waveforms that may cause a „beating‟ effect in the POD 
prediction. 

 

CONCLUSIONS 
 

A method has been presented for the prediction of cavity flow using a POD analysis. In 
the current study, the POD analysis reduces the information to a dataset of only 10 
vectors, consisting of the mean field and 9 POD basis vectors. Although the generation 
of the basis is computationally expensive, the reconstruction of any snapshot requires a 
computational effort that is significantly lower than time-marching a CFD solution. The 
reconstructed flow field is in excellent agreement with the CFD computations. The 
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computational efficiency of the POD flow prediction has been further enhanced by 
reducing the coefficients matrix to a sum of Fourier series pairs from which the flow 
field is extrapolated in time. The pressure traces of the extrapolated flow field are also in 
excellent agreement with the CFD computations, with only minor degradation as the 
projected time increases. The reduction in computational effort required by a POD 
reconstruction to predict stationary cavity flow indicates that this method may be able to 
produce real-time projections. This promising feature suggests that the POD scheme 
may be able to be system-inverted to be used in a feed-back control loop for the cavity 
flow. 
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Fig. 1 Cavity geometry and computational domain 

 

 
Fig. 2 Energy captured in the first P eigenvalues 
generated from a 2.0 period analysis. 

 
Fig. 3 Computed pressure contours over one time 

period T from Ref. 3: (a) t = 0.0, (b) t = 0.5T. 

p = 0.003 2

U . 

 
 
 

 
Fig. 4 Reconstructed pressure contours over one time 

period T, from 9 POD modes: (a) t = 0.0, (b) t = 

0.025T, (c) t = 0.5T, (d) t = 0.75T. p = 

0.003 2

U . 
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Fig. 5 POD modes: (a) mean pressure field, (b-e) 
the first 4 most energetic modes. 

 
Fig. 6 Coefficients for the first 4 POD modes, 
generated from 2.0 periods of data, corresponding to 

Fig. 5: () b, ( ) c, () d, () e. 

 
Fig. 7 Subdivision of the 18 period timeline. 

 
Fig. 8 Non-dimensional error over the last period. 

 
Fig. 9 Comparison of computed ( ) and 

extrapolated () pressure at downstream edge 
based on a POD basis generated from 2.5 periods 
of data. 

 
Fig. 10 Comparison of computed ( ) and 

extrapolated () pressure at downstream edge 
based on a POD basis generated from 3.0 periods 
of data. 

 
Fig. 11 Comparison of computed () and 
extrapolated pressure at downstream edge based on 

POD bases generated from 2.5 ( ) and 3.0 () 
periods of data. The dashed and the dotted lines 
overlap. 


