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Abstract

Uraemia in end-stage renal disease patients leads to wasting of lean
tissue, partly through the effects of acidosis that induce negative protein
balance. Insulin resistance in these patients is also a major cause of
muscle wasting, suggesting that low pH has a significant effect on insulin
signalling in uraemic muscle. The pH sensitive SNAT2 amino acid
transporter has been implicated in this because it is strongly inhibited by
low pH, and amino acids are a well-established stimulus for the key
protein kinase mTOR which regulates protein synthesis. The aims of
this study were to determine: (a) the effects of amino acids, (especially
L-GIn), and acidosis on insulin signalling and global protein
synthesis/proteolysis rates; (b) whether these effects are mimicked by
selective inhibition of SNAT2, and (c) whether intracellular amino acid
depletion is sufficient to account for the functional effects of SNAT2
inhibition.

In the L6 skeletal muscle cell-line, inhibition of SNAT2 with the non-
metabolisable SLC38 substrate methylaminoisobutyrate, metabolic
acidosis (pH 7.1), or silencing of SNAT2 expression with small-
interfering RNAs, all decreased intracellular amino acid concentrations,
mTOR activation, and global protein synthesis; and increased global
proteolysis. Acidosis and small-interfering RNA inhibition both decreased
phosphatidylinositol-3-kinase and protein kinase B activation, even
though this is not regarded as an amino acid sensitive pathway.
Extracellular amino acid depletion yielded decreases in intracellular
amino acid levels similar to those observed during SNAT2 inhibition, but
this failed to mimic the impairment of mTOR signalling observed when
SNAT2 was inhibited.

It is concluded that, in this muscle model, SNAT2 is able to regulate
mTOR activation and protein synthesis rates; and that SNAT2 links
acidosis, activity of the phosphatidylinositol-3-kinase/PKB signalling
pathway and proteolysis, suggesting that SNAT2 is a key player in the
acid-induced insulin resistance which is a prime cause of cachexia in
acidotic uraemic patients.
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Chapter 1: Introduction

1.1 The clinical problem

The kidneys work to excrete waste products from the blood into the urine and
to resorb water and solutes back into the blood in order to allow all other
bodily organs to function in a normal extracellular environment. These
processes include the excretion of acid and resorption of bicarbonate.
Consequently the disruption of this process in patients suffering from end—
stage renal failure frequently leads to metabolic acidosis which can cause
fatigue, growth retardation in children, (1), inflammation, cardiac disease,

bone disease and cachexia, (2).

1.2 Normal kidney function

The kidneys are situated in the region of the lower back. Each kidney is
approximately 12cm long and weighs around 150g. Despite making up less
than 0.5% of total body weight the kidneys receive approximately 25% of the

cardiac output meaning that the kidneys filter over 1L of blood/min, (3).

Each kidney has two distinct regions; the outer cortex and the darker inner
medulla, (Figure 1.1). Within the medulla lie the renal pyramids, at the point of
which there is located a region known as the papilla where urine is collected
from the nephron and drained into the minor calyces, then into the major
calyces, and eventually into the pelvis which leads to the ureter, where urine

is drained into the bladder, (3).



The functional units of the kidney which produce the urine that drains into the
papilla are called the nephrons, (Figure 1.2). There are two different types of
nephron; the cortical nephrons, which are situated in the cortex and do not
enter the medulla at all or only protrude a short way into it, and the
juxtamedullary nephrons which protrude deeply into the medulla, (3).
Nephrons are made up of several distinct regions; Bowman’s capsule and the
glomerulus, the proximal tubule, the loop of Henle, the distal tubule and the
collecting duct. Blood flowing into the kidneys via the renal artery passes
along the afferent arteriole and then into a series of capillaries, that are
collectively known as the glomerulus, (3), which is situated in Bowman’s

capsule, (Figure 1.2).

1.2.1  The glomerular filter

The capillaries of the glomerulus are supported on one side by the
Mesangium allowing blood flowing through the glomerular capillaries to be
unidirectionally filtered into the nephrons in order to facilitate primary urine
production. The glomerular filtration unit consists of three layers; the
fenestrated endothelial cells of the capillary wall, the glomerular basement
membrane and the epithelial cell layer (or podocytes), which make up the
filtration surface partly surrounded by Bowman’s capsule, (4), (Figure 1.3).
Small positively charged molecules pass more easily through the glomerular
filter than large negatively charged molecules. This is owing to the size
restriction determined by the fenestrations in the endothelial cells and the slit-
diaphragm, (see below), and the negatively charged endothelium and

glomerular basement membrane, (as a result of the presence of negatively



charged proteoglycans), (5). Although both the capillary endothelial cells and
the glomerular basement membrane are able to filter solutes dependent on
their size and charge, the main filtration barrier is now thought to be the
podocyte cell layer, (4,5). Podocytes are specialised epithelial cells that have
large cell bodies with elongated projections called trabeculae, from which
smaller foot processes called pedicels are projected. These pedicels
interdigitate to encircle the capillaries, leaving small gaps called filtration slits
in which the main filtration barrier is thought to arise from a complex of
junction proteins (e.g. nephrin, (6)) which are known collectively as the slit
diaphragm. The slit diaphragm prevents any molecules of approximately
70kDa or greater passing through into Bowman’s space and the tubular
lumen. As each of the filtration layers is negatively charged, proteins smaller
than 70kDa, such as albumin, may be largely prevented from passing through
the filter as they are repelled, but some positively charged molecules with a
molecular weight greater than 70kDa may pass through, (5). Therefore at this
stage the glomerular filtrate still contains some low molecular weight proteins,
such as insulin, and contains small molecules and ions, such as; glucose,
amino acids, urea, sodium and potassium, in concentrations almost equal to
those in blood plasma. Therefore further processing of the glomerular filtrate
must occur before primary urine in Bowman’s space is drained into the
papilla. After passing through Bowman’s space the glomerular filtrate, or the
tubular fluid, as it will be referred to from this point onwards, passes into the
proximal tubule. The small proteins which are able to pass through the filter in
a healthy kidney are efficiently taken up in the proximal tubular epithelial cells

by receptor-mediated endocytosis via the megalin-cubulin complex. They are
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Figure 1.1: Frontal section through the kidney.

This figure shows a frontal section through the kidney with all
major components, as discussed in section 1.2 in the text,
labelled for clarity.

Copied from Wikimedia Commons free access figures.
http://commons.wikimedia.org/wiki/Image:lllu kidney2.jpg last accessed 27.9.08.
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Figure 1.2: A nephron

This figure depicts a nephron and shows the distinct functional regions as
discussed in the text in section 1.2. The situation of the glomerulus within
Bowman’s capsule is also shown.

Copied from Wikimedia Commons free access figures.
http://commons.wikimedia.org/wiki/Image:Nephron_blank.svg last accessed 27.9.08



Primary urine

Figure 1.3: The filtration unit

Schematic drawing of the glomerulus and its four major layers, (4).

This figure shows the filtration slits in the podocyte layer (Podo), the
glomerular basement membrane (BM), and the endothelium cell wall
of the capillaries (Endo) and the endothelial cell surface layer
(Glycocalyx), (which are referred to collectively as the endothelial cell
layer in the text). Described in the text in section 1.2.1

Diagram taken from Haraldsson, B. and Sérensson, J. (2004), (4).



then degraded in the lysosomes before being released back into the
circulation as amino acids, (4). Therefore appearance of these small proteins
in the urine is referred to as tubular proteinuria, as they result from damage to
the tubular epithelia cells and not to the glomerular filter, (5). The presence of
large proteins in the urine is referred to as glomerular proteinuria as an

indicator of glomerular damage and inefficient protein filtration, (5).

1.2.2 Transport processes within the nephron

In the tubules the two processes of resorption, (whereby solutes and water
are transported into the cells of the tubular walls and then into the blood), and
secretion, (whereby solutes are transported from the cells of the tubular wall
into the tubular fluid for excretion), are very important as they allow the
tubules to control the volume and composition of the urine and therefore the
volume, osmolality, composition and pH of the extracellular fluid, (3). The
proximal tubule consists of an initial convoluted segment followed by a
straight segment which goes down into the medulla and eventually becomes
the loop of Henle. Virtually all of the glucose and amino acids and about 67%,
(3), of the filtered water, Na*, CI', K" and other solutes are reabsorbed from
the proximal tubular lumen in the initial convoluted segment. In this region of
the tubule, Na* enters the cells from the tubule either via a Na*™-H" antiporter,
(using intracellular H* which is in ready supply owing to the production of H*
and HCOj3; from CO, and H»O, catalysed by carbonic anhydrase), or via
symporter mechanisms whereby Na* is transported into the cell with glucose,
amino acids, Pi, or lactate, (3). The Na'-K*-ATPase which is situated in the

basolateral membrane removes Na* from the tubular epithelial cells into the



intercellular space in exchange for K*. The operation of this transporter allows
HCOg3', glucose and other organic solutes to leave the cell via passive
diffusion and leads to water passing from the tubular fluid into the blood via
osmosis. This movement of water leads to an increased concentration of CI
within the proximal tubule, (3). This is removed in the second part of the
tubule where a Cl'-anion antiporter in the cell membrane facilitates entry of CI
into the cell at the apical membrane whilst a CI-K*™ symport allows CI removal
at the basolateral membrane. In addition to this, the high CI levels in the
tubule mean that NaCl can passively diffuse through the tight junctions
between the cells that make up the tubule wall. This is known as paracellular
transport. Transport of NaCl is evenly split between the cellular and
paracellular routes and leads to further movement of water from the tubules

into the blood, (3).

As the tubular fluid proceeds down into the loop of Henle, the majority of
resorption of water and solutes back into the blood has already taken place.
Any resorption of solutes in the loop of Henle occurs in the thick ascending
limb, and water resorption occurs in the thin descending limb as the thin
ascending limb is impermeable to water and has a low resorptive capacity,
(3). As in the second half of the proximal tubule, cationic solute transport in
the loop of Henle is evenly split between cellular and paracellular transport.
This is due to the positive electrical potential of the tubular fluid, relative to the
blood. Cellular transport is again mediated in part by the Na*-H" antiporter on
the apical membrane and the Na*K*ATPase on the basolateral membrane,

but, in addition to this, there exists, on the apical membrane, a Na*2CI'K*



symport, and separate CI, K" and HCOj transporters on the basolateral

membrane, (3).

The final sections of the nephron are the distal tubule and the collecting duct
which resorb approximately 7% of total NaCl and secrete variable levels of K*
and H*. The early section of the distal tubule is impermeable to water, but
between 8-17% of the filtered water is resorbed in the late distal tubule and
collecting duct, dependent on the plasma levels of the anti-diuretic hormone
(ADH)/vasopressin which increases the permeability of the collecting duct to
water, (3). The late distal tubule and collecting duct both consist of two
different types of cells called principal cells and intercalated cells. In the
principal cells the resorption and secretion of solutes is again driven by the
Na*K*ATPase in the basolateral membrane. The activity of this transporter
leads to high levels of K* in the cells so K* is excreted into the tubular fluid,
and as Na' is resorbed this leads to a negative electrical potential in the
tubular lumen which drives CI" resorption via paracellular pathways, (3). The
intercalated cells resorb some of the K™ that is secreted by the principal cells;
either by coupling to secretion of H" into the tubular fluid, or by resorption of
HCOj3 into the blood, making these cells very important in the regulation of

acid-base balance (see Section 1.3).

It is by these mechanisms of solute and water resorption in the nephrons that
the kidneys are able to generate 180L of filtrate per day but excrete less than

1% of the filtered water and solutes in the urine, (3).



1.3 The kidneys and pH homeostasis

In addition to ensuring adequate resorption of water and solutes, the kidneys
also maintain the pH of extracellular fluid. In arterial blood this is usually
stated to fall within a tight range of 7.35-7.45. However, even in healthy
individuals, this pH can be affected by several factors, most notably end
products of cellular metabolism, and acid and alkali ingested from the diet or
generated from dietary components. On a conventional Western diet, the high
intake of animal protein, rich in sulphur amino acids, leading ultimately to
generation of sulphuric acid, (7), is thought to be a significant factor in
depressing the extracellular pH even in individuals with healthy renal function,
(8). A significant daily acid load (~40-70mEq of H* per day, (8)) must
therefore be excreted in order for there to be stringent control of pH. The
lungs and, more controversially, the liver also play a role in pH homeostasis,
but here the discussion will focus on the dominant role played by the kidneys
and on non-volatile acid (i.e. not carbonic acid, which is a volatile acid owing

to its ability to generate CO,, after dehydration).

Acids do not circulate the body as free acid but are immediately buffered to
produce salts (principally sodium salts), a process which consumes NaHCO3'.
This is rectified by the kidneys excreting an amount of acid equal to the acid
produced (in the form of sodium and ammonium salts) and reabsorbing much
of the filtered HCOj3. Net acid excretion (NAE) is the rate of excretion of
titratable acid, excreted as salts of acids e.g. sodium salts, and NH;