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Abstract 

This project comprises a critical exploration and development of methods for the synthesis of 
evidence, using a chain of evidence approach, from diverse, yet inter-related, sources. The 
methodologies were explored through the development of a comprehensive decision model to 
assess different health policies in respect to screening for type 2 diabetes mellitus (T2DM). 
Four strategies were compared which were, no screening (current policy), screening for 
T2DM alone allowing for early diagnosis and treatment of the condition, and two strategies 
whereby both impaired glucose tolerance (IGT) and T2DM were screened for, allowing for 
early treatment of T2DM and for either lifestyle or pharmacological interventions to be 
applied to those with IGT in an attempt to delay the onset of T2DM.  

 

The comprehensive decision model developed here was innovative when compared to current 
published models in a number of ways.  Firstly the entire model was encompassed within a 
single flexible framework, which has a number of advantages, and secondly as much of the 
available data as was feasible to use, was incorporated into the model inputs. A number of 
methodological issues and techniques were explored during the development of the 
comprehensive decision model. These included mixed treatment comparison analyses, 
assessment of baseline risk on intervention effects and the use of individual patient data. A 
number of sensitivity analyses and model extensions were carried out to assess the parameters 
with most influence on model results, and to adapt the model to different screening scenarios. 

 

The results of the model provide evidence that a screening strategy for IGT and T2DM, 
followed by appropriate treatment and interventions appears to be a cost-effective screening 
strategy. Uncertainty still surrounds the cost-effectiveness of screening for T2DM alone and 
further research is required. Running decision models within a Bayesian, comprehensive 
decision modelling framework, allows for model flexibility and has advantages over more 
conventional modelling techniques. 
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1. INTRODUCTION 

1.1 Aims of the thesis 

The aim of this thesis was to review, critically appraise, and where appropriate develop, 

methods for modelling the screening/treatment/disease pathway of chronic health 

conditions using comprehensive decision models, with the complete disease pathway 

from screening through to treatment, further complications and death, incorporated 

within a single framework. The principle clinical example for this thesis was that of 

screening for impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM), 

although other clinical settings of major health importance were also considered, and 

the methodological issues surrounding them discussed. To develop the comprehensive 

decision model, with a view to assessing both clinical and cost-effectiveness, evidence 

had to be combined from a number of sources, resulting in a number of methodological 

issues that needed to be resolved. A background to the clinical and methodological 

issues that justify the need for this project are discussed in sections 1.2, 1.3 and 1.4 of 

this Chapter, with further details given in Chapters 2 and 3. 

 

1.2 T2DM and IGT, a growing health problem 

An estimated 171 million people worldwide in 2000, had diabetes and cases are 

projected to double by 2030 (Wild et al., 2004). Individuals with diabetes have a life 

expectancy that may be shortened by as much as 15 years (Donnelly et al., 2000) and 

incur around 5% of total NHS resources and 10% of hospital in-patient resources 

(Department of Health, 2001). Currently there is no systematic or structured screening 

policy for T2DM in the United Kingdom. One approach to screening would be to screen 

for T2DM only, which will allow for early diagnosis and treatment. This may be 

important as early detection and treatment may prevent future microvascular and 

macrovascular complications associated with T2DM. It is estimated that around 50% of 

individuals with diabetes are currently undiagnosed (King et al., 1998) and at 

presentation around  20-30% of individuals have already developed complications (The 

DECODE study group, 1999). An alternative screening approach would be to lower the 

threshold of the screening test and to screen for both IGT and T2DM together. IGT can 

be thought of as a precursor to T2DM, therefore screening for both conditions allows 
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for early diagnosis of T2DM and for interventions to be administered to persons 

identified with IGT, in order to attempt to delay or prevent the onset of T2DM. A more 

detailed description of the clinical definitions and issues, which are referred to 

throughout this thesis, is given in Chapter 3. 

 

1.3 Assessing potential screening policies for IGT and T2DM 

As no definitive trials assessing the effectiveness of screening for T2DM or IGT have 

been carried out (Waugh et al., 2007, Davies et al., 2004), assessment of such policies 

have so far been conducted through simulation studies. A number of decision models, 

reviewed in Chapter 5, have been developed that have assessed the clinical and cost-

effectiveness of either screening for T2DM or interventions to prevent T2DM, however 

conclusive evidence is still not available for the cost-effectiveness of such strategies. In 

addition, the previous models that have assessed interventions assume an already 

identified IGT population, and do not include the costs and clinical issues involved with 

the identification of such individuals by screening. Also models have so far either 

assessed either screening for T2DM or interventions for T2DM prevention, but not a 

comparison of the two policies. The limitations and conclusions of previous models are 

discussed in detail in Chapter 5. The comprehensive decision model developed for this 

thesis has directly addressed the limitations of previous models, to produce a more 

comprehensive assessment of screening and intervention policies for T2DM.  

 

1.4 Methodological issues concerning decision models 

To assess the clinical and cost-effectiveness of potential screening and intervention 

strategies for IGT and T2DM, a decision model needs to be developed which addresses 

a number of inter-related questions. These are: 

 

i) Who to screen for early stage disease or a precursor?  

ii) How to screen them?  

iii) What interventions to use for those individuals identified?  
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Answering all three questions simultaneously from one single study is impossible, and 

therefore evidence from a variety of sources needs to be synthesized within a coherent 

and flexible modelling framework. A decision model uses mathematical relationships to 

define a series of possible consequences, which would flow from a set of alternative 

options being evaluated. Appropriate sources of uncertainty and correlation need to be 

accounted for in the model, and clinical evidence needs to be integrated with evidence 

on costs and utilities (Cooper et al., 2004). Decision models are discussed in general, 

along with a review of comprehensive decision models, in Chapter 2. 

 

The information on screening, precursors to disease, interventions and disease 

progression can be thought of as forming a ‘chain of evidence’ (Ades, 2002). Figure 1.1 

illustrates the components in such a chain both generally and specifically for IGT and 

T2DM. 

 

Figure 1.1: Illustration of how the screening/disease pathway allows for a chain of 
evidence approach to the decision model 

 

 

 

 

 

 

 

 

 

Whilst the use of a ‘chain of evidence’ synthesis approach yields an overall assessment 

of the clinical effectiveness of different public health policies, evidence on cost and 

utilities also needs to be included within the modelling framework, in order for the most 

cost-effective policy to be identified (Cooper et al., 2004). To allow for appropriate 

sources of uncertainty and correlation in the model inputs to be accounted for, a 
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Bayesian approach to fitting the decision model was utilised for this thesis, specifically 

using Markov Chain Monte Carlo (MCMC) methodology as detailed in Chapter 2.  

 

Advantages of using a Bayesian approach for the decision model are that all parameter 

uncertainty can be allowed for in the model, pertinent information that would be 

excluded from a more traditional analysis can be included, correlations induced by the 

same study contributing to more than one part of the model can be accounted for, and 

the model has the ability to be extended to accommodate more complex scenarios, such 

as mixed treatment comparisons. In addition a Bayesian framework allows for 

probability statements to be made directly regarding quantities of interest, for example 

the probability that intervention A is superior to intervention B (Sutton and Abrams, 

2001). Advantages of using a Bayesian, comprehensive approach are discussed further 

in Chapter 2. 

 

Three methodological issues regarding evidence synthesis commonly occur in a setting 

such as this. Firstly heterogeneity in the data available for the model may be present. 

This may include clinical heterogeneity, such as patient or treatment differences 

between studies, methodological heterogeneity, such as differences in the statistics 

chosen to report results or methodologies used, and statistical heterogeneity, such as 

sampling error, both within and between studies. Secondly there may be both direct and 

indirect evidence regarding quantities of interest available and finally both individual 

patient data (IPD) and published summary evidence may be available to inform model 

parameters.   

 

For example, when considering evidence on interventions for T2DM prevention, a 

number of issues needed to be addressed. Firstly studies are heterogeneous in terms of 

their population composition for age, ethnicity and baseline risk of developing diabetes. 

This raises methodological issues with respect to both generalisability to, and 

consideration of, the effectiveness of interventions in specific subgroups. Therefore 

information had to be combined and interpreted carefully. Intervention studies also 

considered a variety of lifestyle and pharmacological interventions both individually 
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and in combination, whereby direct comparisons could only be made between some 

forms of interventions using mixed treatment comparison methods (Caldwell et al., 

2006).  Mixed treatment comparison (MTC), is an expansion of a standard pair-wise 

meta-analyses, say for trials comparing A vs. B, to an analysis that includes trials that 

may for example, compare A vs. B, B vs. C, or A vs. C (Lu and Ades, 2004). Indirect 

treatment comparison is a subgroup of mixed treatment comparisons, and whereas a 

complete mixed treatment comparison could include all trials that considered A or B or 

C, indirect comparisons would be restricted to those only containing A, B and C. 

Published evidence concerning transition rates from different glucose tolerance status 

were also diverse in terms of ethnic population and age range considered. All the 

methodological issues concerning evidence synthesis are discussed in more detail, in 

relation to the comprehensive decision model, in future chapters. 

 

1.5 Overview of the thesis 

This thesis comprises a critical exploration, and where appropriate development of, 

methods for the synthesis of evidence, using a chain of evidence approach, within a 

comprehensive decision modelling framework. How to contend with common issues 

that arise when combining heterogeneous evidence sources are explored and discussed. 

The model developed uses the highly relevant example, considering current health 

issues and policies, of screening for IGT and T2DM, although screening for two other 

chronic conditions will also be considered briefly to assess the generalisability of the 

methods (chapter 8). 

The model developed compares three active screening strategies comprising of: 

i) A one-off screening for T2DM, allowing for early diagnosis and treatment of the 

condition.  

ii) A screening for both IGT and T2DM and intervening with lifestyle interventions in 

those diagnosed with IGT, and early diagnosis and treatment for those with T2DM. 

iii) As for ii) but using pharmacological interventions.  
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All three active screening strategies were compared against a fourth strategy of no 

screening (current practice). The full pathway from screening to intervention and 

treatment for T2DM, all the way through to death, is modelled. This is the first model to 

directly compare the two alternative approaches of either screening for T2DM alone or 

screening for both IGT and T2DM together. By carrying out a number of sensitivity 

analyses the essential elements that affect the cost and clinical effectiveness of different 

screening policies can be fully understood. 

To briefly outline the thesis, Chapters 2 and 3 will provide a more detailed introduction 

to the clinical terminology and issues surrounding this project. Chapter 4 will outline a 

comprehensive systematic review and meta-analysis that was undertaken to assess 

interventions for the prevention or delay of T2DM. Chapters 5 and 6 will summarise the 

structure of the comprehensive decision model, followed by a detailed description of the 

data used for the primary model and how it was developed. Chapter 7 will discuss the 

thorough model checks and sensitivity analyses that were carried out on the primary 

model, and Chapter 8 outlines a number of extensions that were made to the model. 

Chapter 9 will describe how the methodologies developed for this case study of 

screening for T2DM and IGT could be applied to other clinical examples, and finally 

Chapter 10 will give an overview of the conclusions of the decision model, with a 

discussion on the more significant methodological issues encountered, as well as 

opportunities for further work. 

Overall, the model developed and described in this thesis is the most comprehensive 

ever attempted in the field of T2DM screening, and maybe even that of decision 

modelling in general. As much of the published data relevant to the model was 

incorporated as possible, many of the methods utilised are original, developed 

specifically for this example, and the general approach took into consideration, and 

attempted to overcome, common issues that occur frequently in evidence synthesis and 

decision models applied to common chronic conditions. The model was hybrid in that it 

incorporated both a decision tree and a Markov model, and included previously 

published models from the UKPDS trial within its framework. Although the model was 

complex in structure, the methods utilised and developed are both applicable and 

accessible for use in future comprehensive decision models, for a variety of chronic 

health conditions. 
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2. INTRODUCTION TO THE METHODOLOGY 
 

2.1 Chapter overview 
 

A variety of statistical techniques were utilised and developed during the compilation of 

this thesis. This chapter gives a brief introduction to the techniques used, describing 

what they are, why they were chosen and outlining any assumptions or limitations of 

each methodology. Firstly the terms used to define the model compiled for this thesis 

are described. Secondly the methodologies utilised within the model, such as meta-

analysis, meta-regression and mixed treatment comparisons are discussed. Thirdly 

information on how the cost-effectiveness of different screening strategies was 

incorporated into the model and how health economic techniques can be used to 

effectively interpret the results is outlined, and finally a brief description of the 

terminology used when assessing the efficiency of screening tests is provided. The 

novel aspect of this thesis is the simultaneous use of the methodologies discussed here, 

within a single, coherent framework. 

 

2.2 Types of Models Utilised  

2.2.1 Decision trees 

The screening stage of the comprehensive decision model was structured in the form of 

a decision tree. A decision tree flows from left to right beginning with an initial clinical 

choice or decision, indicated by a box, on a defined cohort of patients (Drummond et 

al., 2005). As a result of the decision made, there will be outcomes of given prior 

probabilities, so for this model the decision was whether to screen or not, and the 

outcome was the probability of being diagnosed with IGT or T2DM, dependent on the 

screening strategy adopted. The main drawback of decision trees is that they can 

quickly become unwieldy as the number of clinical decisions and outcomes you wish to 

model increase (Briggs et al., 2006), also as probabilities are needed for each branch of 

the tree, as the number of braches increase the ability to obtain reliable data decreases. 

An example of a decision tree is given in figure 2.1 and illustrates a model whereby the 

impact of screening a population for a disease is assessed by comparing two strategies 
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of either screening or not screening. The probabilities of testing negative or positive if 

screened, along with complication rates if the disease is left unidentified or if it is 

treated, can then be applied at each of the relevant nodes of the decision tree. The model 

would therefore allow a comparison of complication rates in an unscreened and hence 

untreated population, compared to a scenario where screening and treatment takes place. 

The structure of the decision tree utilised for this model is described in chapters 5 and 6. 

The use of decision trees in practice are varied as they are easily applied to numerous 

clinical situations, for example Grau et. al (2007) utilised a decision tree to model the 

clinical effectiveness of different treatments for micro-organisms, and Todorova et al. 

(2007) assessed the cost-effectiveness of different treatments for gestational diabetes 

(Grau et al., 2007, Todorova et al., 2007). 

Figure 2.1: A diagrammatic example of a decision tree 

 

 

 

 

 

 

 

 

2.2.2 Markov models  

Markov models have been extensively used in cost-effectiveness analysis as they enable 

long-term outcomes to be modelled (Spiegelhalter et al., 2004). A Markov model 

assumes that in each cycle (often representing one year), an individual is in one of a 

finite set of states, with a probability of transferring to another state by the next cycle. 

The transition probabilities govern both the direction and speed of transitions between 

disease states (Briggs et al., 2006), with absorbing states, such as death, having 

transition probabilities to other states of 0. Utilities and annual costs can then be 

attached to each state, at each cycle, and hence the long-term cost and clinical 
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effectiveness of different scenarios estimated. Markov models were used in the decision 

model developed in this thesis, to model long-term glucose tolerance status, 

development of T2DM, and the associated complications, of a cohort of individuals for 

each screening strategy. The model is outlined in detail in Chapter 5.  

 

Markov models have some very useful properties. They are dynamic, probabilistic and 

can address problems in which events and decisions are occurring, subject to chance, 

over time (Eddy, 2006). Also the use of discrete states and the notion that people 

progress between states fits in well with our society’s notion of diseases and how they 

are classified. Markov states and transitions are useful model components on which to 

attach costs and utilities, although definition of, and characterisation of states in terms 

of costs and utilities needs to be clinically meaningful. An additional advantage of 

Markov models is that the basic mathematical structure is easy to understand and 

interpret.  

 

Although Markov models generally offer greater flexibility than decision trees, they do 

have some limitations. Markov models are restrictive in that they have a ‘memoryless’ 

property. Once a simulated individual has moved from one state to another, the model 

will have ‘no memory’ of where the patient has come from or the timing of that 

transition (Briggs et al., 2006). It can also be argued that the use of discrete states may 

be too simplistic, as health states can often be measured on a continuous scale (Eddy, 

2006). Furthermore the transition rates from one state to the next may be difficult to 

quantify, especially when numerous metabolic factors may influence the transition.  
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Figure 2.2: A diagrammatic example of a Markov model 

 

 

 

 

 

* States are normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and 
Type 2 diabetes mellitus (T2DM) 

A simple example of a Markov model, whereby movement between glucose tolerance 

states is modelled over time, is given in figure 2.2. Four Markov states are modelled 

whereby transition rates determine the movements between states at each cycle, or the 

probability of remaining within a state. Death is an absorbing state in this example, as 

no movement is allowed out of this state. 

 

2.2.3 Comprehensive decision models 

A decision model uses mathematical relationships to define a series of possible 

consequences, that would flow from a set of alternative options (Briggs et al., 2006). 

Each consequence has an expected cost and outcome, enabling the clinical and cost 

effectiveness of each of the options to be evaluated. Decision models can be structured 

using a variety of methodologies, with both decision trees and Markov models being 

utilised for the model described in this thesis. The model compiled here was defined as 

a comprehensive decision model for two reasons. Firstly, where appropriate, all sources 

of available data were included in the model. For example where interventions for the 

prevention of diabetes were considered, a full systematic review and meta-analysis was 

carried out to identify all relevant trials. Secondly all parts of the model were carried out 

within a single framework. That is, for example, if a meta-analysis of several studies 

was needed for one of the model parameters, the meta-analysis was carried out within 

the decision model, as opposed to separately with the pooled effect size added as data 

into the decision model. This would only be possible with a Bayesian approach. Using a 

NGT IGT

T2DMDeath
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single model framework facilitates the inclusion of uncertainty and correlations within 

the model. The main advantages can be summarised as (Cooper et al., 2003):  

 

i) The incorporation of more appropriate parameter uncertainty by allowing for 

the fact that both the overall population effect of μ and between-study precision 

τ2 in the meta-analyses have both been estimated by the data. 

 

ii) The ability to make direct probability statements and thus direct answers to 

the question of interest (e.g. Bayesian meta-analysis can give a probability that 

the effect is above or below a particular value). 

 

iii) External evidence from expert opinions can easily be incorporated within the 

modelling framework. 

 

iv) The actual posterior distributions from the meta-analyses are used, as 

opposed to making assumptions of normality (or some other parametric form) 

which is necessary for a classical analysis. 

 

v) Correlation, where one study may contribute to more than one part of the 

model, can be accounted for more easily. 

 

2.2.4 A review of current comprehensive decision models  

Conventional methods to developing Markov models and decision trees would use a 

two-stage approach, whereby firstly a series of meta-analyses would be performed to 

obtain model parameter estimates, and these would then be entered into the model 

(Cooper et al., 2004). An alternative approach is to use a comprehensive framework, 

whereby a single, coherent model is developed, incorporating all the analysis. This has 

many advantages as discussed in section 2.2.3. Despite the benefits of using a 
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comprehensive approach, few such models have been developed in practice (Cooper et 

al., 2004). The models that have been described in the literature will be detailed and 

appraised in this section. 

 

The first publications to advocate a Bayesian, comprehensive approach for modelling 

the assessment of health technologies were by Eddy et al. (Eddy, 1989, Eddy, 1990). 

They described a Bayesian method for interpreting, adjusting and combining evidence 

from a number of diverse sources, to estimate a probability distribution for a parameter 

of interest (Eddy, 1990). They applied the methodology to a number of basic examples, 

including the assessment of the effect of thrombolytic agents on 1-year survival post 

heart attack (Eddy, 1989). These methods have been expanded in more recent years, 

with more complex models being fitted. A review of the literature found eight 

comprehensive decision models (Cooper et al., 2003, Cooper et al., 2002, Matchar et al., 

1997, Parmigiani et al., 1997, Samsa et al., 1999, Sendi et al., 1999, Spiegelhalter and 

Best, 2003, Nixon and Duffy, 2002). The two models by Cooper and colleagues 

assessed the cost-effectiveness of taxane use in advanced breast cancer, and the use of 

prophylactic antibiotics during caesarean sections to reduce the risk of wound infection. 

Both models were developed in WinBUGS, using a Bayesian, Markov Chain Monte 

Carlo (MCMC) approach (this software and these methodologies are described in detail 

in section 2.3).  

 

The taxane/breast cancer model (Cooper et al., 2003) consisted of four health states, and 

pooled estimates of transition probabilities were obtained from random effects meta-

analyses, run within the model, with data from between 1 and 4 studies being combined 

for each transition. Limitations of this study were the relatively small number of studies 

used to estimate transition rates and the fact that correlations, where one study provided 

information for multiple parts of the model, were not accounted for. The 

antibiotics/caesarean model (Cooper et al., 2002), used a similar framework to the 

above example, although for this example, a decision tree format was used. A published 

systematic review of prophylactic antibiotic treatment on infectious complications in 

women undergoing caesareans was utilised and re-analysed within the model, using 

Bayesian methods. Both these models clearly highlighted the advantages of using a 
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comprehensive approach, particularly in the flexibility of the framework and the ability 

to include all parameter uncertainty. 

 

Nixon and Duffy (2002) used MCMC methods to combine information from studies 

addressing different but clinically related questions, specifically the relationships 

between breast cancer, tamoxifen and genetic susceptibility. Meta-analyses were 

utilised for data inputs, where they had been previously published, otherwise single 

studies were used. The model was complex in structure containing numerous states, and 

a hierarchal structure. Spiegelhalter et al (2003) described a Markov model, consisting 

of five Markov states to assess the cost-effectiveness of total hip replacement, using 

multiple sources of evidence (Spiegelhalter and Best, 2003). Although many of the 

model inputs were taken from single studies, the analysis was thorough in that a number 

of sensitivity analyses were carried out to investigate the modelling of heterogeneity 

and uncertain model parameters.  

 

Three of the comprehensive decision models in the literature assessed treatment and/or 

prevention of stroke (Matchar et al., 1997, Parmigiani et al., 1997, Samsa et al., 1999). 

The model by Parmigiani was by far the most detailed and complex, whereby two 

approaches were used, Bayesisan inference and resampling techniques, to model the 

four states of healthy, transient ischaemic attack, stroke and death, and the transition 

rates between these states. The methodologies used were complex and therefore not 

easily transferable to other clinical examples. 

 

The final comprehensive decision model found in the literature assessed the cost-

effectiveness of azithromycin for preventing Myobacterium avium complex in HIV 

positive patients (Sendi et al., 1999). They used a Bayesian approach to develop a 

Markov model consisting of four health states, to assess the clinical and cost 

implications of the Myobacterium avium complex. The model was comprehensive in 

that all the analyses were conducted within one framework, but the data sources utilised 

were limited. 
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Whilst comprehensive decision models improve on conventional decision models, they 

do not always utilise all available sources of data. The model developed here 

incorporates all available data sources where feasible, and whilst the model is more 

complex than any previous model, the methodologies used are easily transferable to 

other clinical examples. A comprehensive decision model has never been applied to the 

clinical area of screening for T2DM. 

 

2.2.5 Problems with current decision models 

To demonstrate how the model developed in this thesis will build and improve on 

current methods commonly used to fit decision models, it is important to understand the 

flaws and limitations that often exist in current published models.  

Criticisms that commonly arise for decision models: 

i)  Model inputs often consist of just one estimate from a readily available 

source. 

ii)  In reference to non-comprehensive models, where more than one source is 

used to estimate a model parameter, the mean and standard error from a meta-

analysis are entered into the model, therefore not all uncertainty is included, and 

assumptions are made on the distribution of the estimate.   

iii)  Correlation between model inputs are not always considered. 

iv) A classical analysis may comprise of a rigid framework, which is difficult to 

adapt to different scenarios, or to model complex issues, for example the use of 

indirect evidence to inform model parameters. 

v) Model assumptions and model structure are often not clearly reported, 

although good practice guidelines have recently been published (Philips et al., 

2006). 

vi) The implications of combining data from different populations, with different 

demographics and different risk of disease/complications are often not fully 

considered. 
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vii) Model parameters are often kept uniform over the time horizon of the model 

due to ease of implementation, when in fact it would be more realistic if they 

were allowed to change over time. 

viii) Model checks and sensitivity analyses are often limited, and not fully 

undertaken. It is vital to check issues such as model convergence, the effects of 

prior distributions, and model data inconsistency, if the conclusions of the model 

are to be considered credible. 

The model developed for this thesis will aim to address all of these issues, and by doing 

so produce a comprehensive decision model that can be considered robust, with realistic 

results that are relevant to a U.K. population. Decision models specific to T2DM and 

related health issues, all of which were non-comprehensive, are discussed and critically 

appraised in chapter 5. 

 

2.3 Methodologies utilised within the model 

2.3.1 Bayesian methods 

The concept of Bayes theorem originates from a posthumous publication by Thomas Bayes in 

the 18th century. The basic concept is that data is supplemented using external prior beliefs or 

evidence, in that the likelihood (defined as the support for different values of the study outcome, 

based solely on data from the new study) is combined with a prior distribution (that is a 

reasonable opinion concerning the plausibility of different values of the study outcomes, 

excluding evidence from the current study). Once combined, a final belief is formed termed the 

posterior distribution. The combining of the two data sources is done using Bayes’ theorem, 

which essentially weights the likelihood from the data with the relative plausibilities defined by 

the prior distribution (Spiegelhalter et al., 2004). Bayesian methods therefore differ from 

frequentist ones in that both the data and the model are assumed to be random quantities 

(Spiegelhalter et al., 1999). Equation 2.1 summarises the Bayesian framework, where θ  is the 

parameter of interest, Y is the data, )|( Yp θ  is the posterior distribution of the parameter after 

including the data, )|( θYp  is the conditional likelihood of the data given the parameter (i.e. 

the likelihood function), and )(θp  is the prior distribution of the parameter of interest. 
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Yp
pYpYp θθθ =         [Equation 2.1] 

   and        ∫= )()|()( θθ pYpYp   θd       i.e. an integrating constant 

 

Results from a Bayesian analysis are conventionally reported with 95% credible intervals, 

which are comparable to the 95% confidence intervals reported for classical analyses. Although 

credible intervals (CrI) and confidence intervals (CI) are similar, they differ in a number of 

important ways (Spiegelhalter et al., 2004). The key difference is that they are interpreted 

differently. There is a 95% possibility that the true θ lies with in a 95% credible interval, but 

when interpreting confidence intervals it is only correct to say that in a long series of confidence 

intervals 95% will contain θ. Also, whilst the width of a confidence interval is governed by the 

standard error of the estimator, the width of credible intervals is determined by the posterior 

standard deviation. 

 

Advantages of using a Bayesian approach for the decision model are that all parameter 

uncertainty can be allowed for in the model, pertinent external information that would 

be much more difficult to include within a classical analysis, can be easily included, and 

the model has the ability to be extended to accommodate more complex scenarios, such 

as mixed treatment comparisons A Bayesian framework also allows for probability 

statements to be made directly regarding quantities of interest, for example the 

probability that intervention A is superior to intervention B (Sutton and Abrams, 2001). 

Although it has been argued that these probability statements can be made classically 

(Burton, 1994), it could not be done with the same ease that is possible with a Bayesian 

framework, or on a formal basis. A final advantage is that as a predictive distribution for 

the parameter of interest, based on the posterior distribution (Spiegelhalter et al., 2004), 

can be obtained, prediction of a new study or generalisation to a new patient population 

is relatively straight forward. 

 

Disadvantages of Bayesian methods include the fact that there is no automatic, easily 

interpretable measure of statistical significance from a Bayesian analysis, such as a p-

value (Sutton and Abrams, 2001). Also the use of a prior belief means the analysis is no 
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longer completely objective, and defining a prior distribution can be a difficult task, for 

which at present there are no guidelines. Where the inclusion of prior beliefs may be 

inappropriate or indefinable, vague prior distributions may be used, so that the data will 

effectively dominate the prior distribution. However, defining an appropriate vague 

prior can be a difficult task in itself, and it has been shown that the choice of ‘vague’ 

prior can lead to marked variation in results, particularly for variance parameters 

(Lambert et al., 2005, Browne and Draper, 2000). It is therefore important when using a 

Bayesian framework to assess the specification of prior distributions through sensitivity 

analyses. Commonly used prior distributions are discussed in detail in section 2.3.3.  

 

The principle reason for using a Bayesian approach for this thesis was not to allow 

inclusion of prior information, but because of the computational advantages of using the 

Bayesian software package WinBUGS. This provides a very flexible framework, within 

which complex and computationally intensive models can be specified. WinBUGS is 

discussed in more detail in section 2.3.2. 

 

2.3.2 Markov Chain Monte Carlo and WinBUGS 

The comprehensive decision model was fitted using the software package WinBUGS 

(Spiegelhalter et al.). WinBUGS uses Gibbs sampling, a particular form of Markov 

Chain Monte Carlo methodology (MCMC)(Gilks et al., 1996). In broad terms, Markov 

chains are processes describing trajectories where successive quantities are described 

probabilistically according to the values of their immediate predecessors. MCMC 

techniques enable simulation from a distribution by embedding it as a limiting 

distribution of a Markov chain and simulating from the chain until it reaches 

equilibrium (Gamerman, 1997). Gibbs sampling generates samples from the conditional 

posterior densities, which eventually converge to the desired marginal posterior 

densities. So for example, if the joint posterior distribution is given by P(θ)=

)|,....,,( 21 dataP pθθθ , then let |( jP θ θ(-j), data) represent the full conditional 

posterior distribution of parameter j, given the value of the other parameters and the 

data. The Gibbs sampler starts with initial values for the parameters (θ0) = 
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),,.....,,( 00
2

0
1 pθθθ then successive random observations are made from the full conditional 

posterior distributions |( jP θ θ(-j),data),j=1…p. 

 

The sampling then starts as detailed below: 

 1
1θ from ,,....,|( 00

21 pP θθθ  data) 

1
2θ from ,,....,,|( 00

3
1
12 pP θθθθ  data) 

…… 

1
pθ from ,,....,|( 1

1
1
1 −ppP θθθ  data) 

 

Hence (θ0) = ),.....,,( 00
2

0
1 pθθθ  has been changed to (θ1) = ),.....,,( 11

2
1
1 pθθθ . Repeatedly 

applying the algorithm m times will produce a series of observations 

),...,(),...,,....( 1
1

1
11

m
ppp

m θθθθθθ == , which are realisations from a Markov chain with a 

distribution equivalent to the joint posterior distribution. 

WinBUGS is a useful package for fitting a wide range of complex and computationally 

intensive models. It needs to be used with care though, and a number of issues, 

including convergence of model parameters and problems of autocorrelation between 

simulations, need to be assessed (Brooks and Gelman, 2007, Cowles and Carlin, 1996). 

These are discussed further in Chapter 7, where a full range of model checks carried out 

on the comprehensive decision model are described and discussed. 

 

2.3.3 Prior and sampling distributions 

For the comprehensive decision model a number of distributions were used for 

specifying both sampling distributions, that is the distribution of individual data points 

or summary statistics which contribute to the likelihood of the Bayesian model, or prior 

distributions for the parameters, which define the range of plausible values that a 

parameter could feasibly take (Spiegelhalter et al., 2004). One of the most difficult 



Chapter 2                     Introduction to the methodology 
______________________________________________________________________ 

______________________________________________________________________ 
- 19 - 

tasks, when carrying out a Bayesian meta-analysis, is the choice of prior distribution for 

the between study standard deviation (τ). Where external evidence is not being utilised 

it is usually required that the distribution specified is vague, that is of a density that is 

sufficiently diffuse and gives a similar prior probability to a wide but plausible range of 

values. In reality any prior distribution will exert some influence on the posterior 

distribution, particularly where data is sparse. Therefore the real aim is to find a 

posterior distribution that has minimal effect on the final inference relative to the data 

(Bernando and Smith, 1994). For all the meta-analyses carried out for this thesis, 

sensitivity analyses were carried out to check the influence of the choice of prior 

distribution on τ, using a range of commonly used distributions. Both the uniform and 

half normal distributions were used in this thesis as prior distributions for τ, and these 

are described below along with some of the more unusual prior and sampling 

distributions utilised within the comprehensive decision model. 

 

Beta distribution 

Beta distributions are useful for defining quantities constrained to lie between 0 and 1, 

and therefore are often used as a prior distribution for an unknown proportion 

(Spiegelhalter et al., 2004). Where Y ~ Beta[a,b]  the distribution will have the 

properties as outlined in equation 2.2, where Γ  represents the gamma function, in that 

)!1()( −=Γ aa , if a is an integer. 

 

 11 )1(
)()(
)(),|( −− −

ΓΓ
+Γ
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babayp ;     )1,0(∈y       [Equation 2.2] 
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Dirichlet distribution 

The dirichlet distribution is the multivariate generalisation of the beta distribution, and it 

is commonly used as a prior distribution for proportions where there are more than two 

possible categories (K). This distribution was used for the prior distribution on 

prevalences and test results, as detailed in Chapter 6. Where Y ~ Dir(α ) and 

∑
=

=
K

i
i

1
0 αα , then the properties of the distribution can be described as in equation 2.3 

(Briggs et al., 2003). 
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Gamma distribution 

Gamma distributions are used for quantities that need to be constrained to positive 

values, such as costs, and were utilised in the decision model for time taken to carry out 

a screening test. Y ~ Gamma[a,b] represents a distribution with the properties as outline 

in equation 2.4 (Spiegelhalter et al., 2004). 
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Half-normal distribution 

The half-normal distribution arises by folding a normal distribution around 0, such that 

if  Y ~ N[0,σ2], then |Y| ~ HN[σ2] (Spiegelhalter et al., 2004). The properties of the 

distribution are given in equation 2.5. It is a useful distribution for expressing support 

for values near 0, with σ determining the upper range of supported values, and is a 

distribution often used for standard deviations. This distribution was used when 

carrying out sensitivity analyses on the prior distributions placed on the between study 

standard deviation (τ), for the four meta-analyses carried out for the decision model. 
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Log-normal distribution 

The log-normal is a distribution over positive values and is used as a sampling 

distribution for positive observations such as costs, or as a prior distribution for positive 

parameters such as variances. This distribution was used to model the transition 

probabilities and the intervention effects. Where Y ~ LN(μ, σ2), the distribution will have 

properties as specified in equation 2.6. 
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Uniform distribution 

A uniform distribution, sometimes also known as a rectangular distribution, is a 

distribution that has constant probability. It is usually adopted for an unknown 

parameter Y ~ Unif[a,b], and specifies that Y has an equal probability of taking any 

value between a and b. The distribution is used to express indifference concerning the 

prior plausibility of a range of values (Spiegelhalter et al., 2004), and was used for the 

sensitivity analyses carried out on the prior distribution specified for the between study 

standard deviation (τ). Details of the distribution are given in equation 2.7. 
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2.3.4 Meta-analysis 

Meta-analysis can be defined as the statistical analysis of a large collection of results 

from individual studies for the purpose of integrating the findings (Glass, 1976). Meta-

analyses provided an important methodology for the decision model, in that where there 

was more than one reported estimate for a model parameter, the data could be combined 

into a pooled estimate for the model. 

 

Meta-analysis models can be defined as either fixed effect or random effect models, 

depending on how the variability between study results is treated (Sutton et al., 2000). 

The fixed effect model assumes no heterogeneity between studies, that is, all studies 

estimate the same true underlying effect size, with the estimates differing only because 

of random variation. In the random effects model the studies are assumed to estimate 
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different underlying effect sizes due to differences between studies. A random term for 

the effect sizes is included in the model to account for the extra variability represented 

by study heterogeneity. Equation 2.8 shows the random effects model expressed 

algebraically. 

 

  ),(~ 2
iii sNy θ ,  with  ),(~ 2τμθ Ni                     [Equation 2.8]                                          

 

iy  is an estimate of effect size, iθ  is the underlying true effect size and 2
is  is the 

estimated variance of iy  for study i, μ  is the pooled estimate of effect size, and 2τ is 

the random effects variance, which represents the between study variance. When 2τ is 0, 

the random effects model will reduce to the fixed effect model (Sutton et al., 2000). 

Compared to fixed effect models, random effects models are more conservative and 

produce wider confidence intervals, as they give lower weight to larger studies. A 

random effects meta-analysis may still produce a confidence interval for τ2 which is too 

narrow, in that τ2 is assumed known in the calculation of the standard error of μ (Hardy 

and Thompson, 1996). This is easily addressed in Bayesian meta-analysis by placing a 

prior distribution on τ2, although classical methods are also available which use 

likelihood based methods to produce a confidence interval for θ which accounts for the 

fact that τ2 has had to be estimated from the data (Hardy and Thompson, 1996). 

 

The use of a Bayesian approach to the meta-analyses within the decision model has a 

number of advantages, including some discussed previously. Bayesian methods allow 

for the inclusion of uncertainty in all parameters and for all sources of evidence, for 

direct probability statements of model outcomes to be assessed. (Sutton et al., 2000).  

 

When carrying out a meta-analysis, using either classical or Bayesian methods, a 

number of issues need to be considered. Firstly the quality of studies included in the 

meta-analysis needs to be assessed, with the primary concern being that combining 

study results of poor quality, may lead to biased and misleading pooled estimates 

(Sutton et al., 2000). The problem can be overcome by restricting the meta-analysis to 
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sources of high quality data, by referring to a hierarchy of sources of best evidence. 

Well designed randomised controlled trials are considered the best evidence, with 

population studies and other sources of evidence more prone to bias, listed further down 

the hierarchy (Deeks et al., 1996). The quality of randomised controlled trials can also 

be assessed using a quality score such as the Jadad (Jadad et al., 1996), which rates 

studies by factors such as adequacy of randomisation and blinding. For the systematic 

meta-analysis carried out on intervention trials, the meta-analysis was restricted to 

randomised controlled trials only, all trials were assessed for quality using the Jadad 

score, and sensitivity analyses were carried out to investigate the effect of study quality 

on the estimated intervention effect. This is described in detail in Chapter 4. 

 

Another consideration is publication bias. Although the publication of large, high 

quality studies is not thought to be influenced by the statistical significance of the 

results, it is thought that the publication of small studies may be more likely, if they 

show a statistically significant, rather than a non-significant result. This is termed 

publication bias (Sutton et al., 2000), and its presence is assessed by either visual 

assessment of a funnel plot, whereby the effect size of each study is plotted against the 

inverse of its standard error, and an asymmetrical plot around the mean effect size 

indicates the presence of publication bias, or through a test such as Begg’s (Begg and 

Mazumdar, 1994) or Egger’s (Egger et al., 1997). An adjustment can be made to 

account for publication bias, using the ‘trim and fill’ method (Duval and Tweedie, 

2000). This is a simple rank-based data augmentation technique, whereby the outlying, 

‘asymetric’ part of the funnel plot is trimmed off, the symmetric remainder is then used 

to estimate the ‘true’ centre of the funnel plot, and then the trimmed studies and their 

missing counterparts around the centre, are replaced. The pooled estimate is 

recalculated using the ‘filled’ funnel plot. The ‘trim and fill’ method was utilised in 

Chapter 4, to assess the implications of possible publication bias on the meta-analyses 

of intervention trials. 

 

A final important consideration when carrying out a meta-analysis is the issue of 

heterogeneity. Although the extent of heterogeneity may be measured by estimating τ2, 

its interpretation is then specific to a particular treatment effect metric (Higgins and 
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Thompson, 2002). Measures of the impact of heterogeneity have been developed that 

are independent of the number of studies used in the meta-analysis and the treatment 

effect metric, and these include the I2 statistic (Higgins and Thompson, 2002, Higgins et 

al., 2003). The I2 statistic is interpreted as the proportion of total variation in study 

estimates that is due to heterogeneity, and is utilised for the meta-analyses carried out in 

Chapter 4.  

 

A random effects meta-analysis will allow for heterogeneity between studies, and the I2 

statistic will quantify it, but neither will explain it. Study estimates of an effect size may 

vary for a number of reasons. For example the studies may be heterogeneous in terms of 

age, sex, weight and ethnicity of their participants, follow-up times may vary between 

studies and the dose or intensity of the treatment may vary. Sources of heterogeneity 

can be investigated using meta-regression techniques as discussed in section 2.3.5. 

 

2.3.5 Meta-regression 

To examine whether heterogeneity between study results can be explained by one or 

more factors across studies, meta-regression analyses can be performed (Sutton et al., 

2000). For example, if there are k studies, each with effect sizes 1Y ,…., KY , and 

underlying effect size parameters 1θ ,…., Kθ , and there are p known predictor 

variables, 1x ,…, Px , that may be related to the effect size, then the meta-regression 

model used to assess any interactions is presented in equation 2.9 
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      [Equation 2.9] 

 

Meta-regression is a useful tool for exploring why treatment effects may differ between 

studies. As only study level characteristics, such as mean age and mean weight of the 

study sample, are utilised for the analysis, results need to be interpreted with care, as 

although a relationship may appear to exist at the study level, this may not be true at the 
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individual participant level. To truly understand relationships between treatment effect 

and metabolic variables, individual patient data is required (Riley et al., 2007). Meta-

regression analyses also have low power to detect an association between study 

characteristics and treatment effect, as demonstrated in a simulation study by Lambert et 

al. (2002) that compared summary patient-level covariates with individual patient data, 

and concluded that the statistical power of meta-regression was dramatically and 

consistently lower than that of individual patient data analysis, with little agreement 

between estimates obtained from the two methods (Lambert et al., 2002). Therefore, 

although meta-regression analysis is a useful tool for exploring sources of 

heterogeneity, the results need to be interpreted with care. The issues associated with 

meta-regression are discussed in an applied context in Chapter 4. 

 

Meta-regression analyses are not suitable for the assessment of interactions between 

baseline risk of a disease or outcome, and treatment effect on the disease or outcome, 

due to correlation between the two and the fact that the uncertainty in the baseline risk 

would not be accounted for. Specialist methods have been developed for assessment of 

baseline risk effects (Sharp and Thompson, 2000), and these are explored further in 

Chapter 4, where an assessment of baseline risk was carried out. 

 

2.3.6 Mixed treatment comparisons 

Mixed treatment comparison (MTC) meta-analysis is an expansion of a standard pair-

wise meta-analyses, say for trials comparing A vs. B, to an analysis that includes trials 

that may for example, compare A vs. B, B vs. C, or A vs. C (Lu and Ades, 2004). 

Indirect comparisons are a subset of MTC, and whilst an MTC should theoretically 

contain all trials that assessed either A or B or C alongside any number of other 

treatments, indirect comparisons are restricted to those that only compared A, B or C. 

The advantage of such an analysis is that firstly you strengthen inference concerning the 

relative efficacy of two treatments, as you are able to include both direct and indirect 

evidence, and secondly it allows for simultaneous comparison of all treatments, which 

enables the ‘best’ treatment to be identified (Lu and Ades, 2004). 
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The key assumption for a fixed effect MTC analysis is that the relative effect of one 

treatment compared with another is the same across all trials. In a random effects model 

it is assumed that although the effect sizes may differ between trials, they are from a 

common population distribution that is the same across trials (Caldwell et al., 2006). 

 

These assumptions are extremely similar to those made for a standard pair-wise meta-

analysis. The only difference is that the similarity of the relative effects of treatments is 

for the entire set of trials, irrespective of which treatments were actually evaluated. To 

assess this assumption imagine all trials have assessed the same two treatments and 

decide whether they are sufficiently similar to justify combining them in a meta-

analysis. This is an important assumption to consider as different interventions may 

have been trialled on very different populations, for example treatment B may have 

been compared against the standard treatment of A in individuals who have an 

additional complication of hypertension, whereas C may have been compared against A 

in a relatively young age group. In this case combining all trials would not be a useful 

exercise and the assumption of similar treatment differences across all trials would 

probably not hold.  

 

In addition the MTC analysis assumes an additive scale of measurement, in that the 

relative effect of A vs. C can be predicted from A vs. B and B vs. C. Therefore an 

appropriate measure of effect, such as the log odds ratio or risk difference, needs to 

have been chosen (Deeks, 2002). Also a common τ is usually assumed, rather than if 

individual meta-analyses were carried out for different interventions, with a different τ 

modelled for each meta-analysis. Finally, if a comprehensive MTC analysis is carried 

out, containing all relevant studies that contained at least one of the treatments of 

interest, the size of the network may become a problem, with parts of the network being 

unconnected. This will result in the unconnected parts of the network having to be 

excluded from the analyses. 

 

An MTC analysis was carried out in Chapter 4 of this thesis, to enable trials comparing 

lifestyle interventions against controls, and/or pharmacological interventions against 
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controls, to be combined, enabling a direct comparison of lifestyle vs. pharmacological 

interventions. The MTC was also incorporated within the full comprehensive decision 

model, as a model extension in Chapter 8. A number of MTCs exist in current published 

literature, with recent examples including studies on stroke prevention and treatments 

for rheumatoid arthritis (Cooper et al., 2006, Nixon et al., 2007). 

 

2.4 Assessing clinical and cost-effectiveness  

2.4.1 Quality adjusted life years and utilities 

To assess the clinical effectiveness of the different screening strategies simulated by the model, 

quality adjusted life years (QALYs) were calculated. A comparison of life years between two 

health policies will just give an estimate of the difference in mortality between the two, whereas 

QALYs allow for both morbidity and mortality occurrence to be assessed, this is because 

QALYs reflect an individual’s length of life and their health-related quality of life in a single 

measure (Briggs et al., 2006). QALYs are a useful statistic in that they allow all health care 

interventions to be put on a common scale, which allows direct comparisons of very different 

health policies with very different outcomes. QALYs are calculated by applying health state 

preference scores, or utility weights, to each life year. Utilities usually take a value between 0 

and 1, where 1 represents perfect health and 0 death. Values less than 0 are possible, 

representing a health state worse than death, though these are rarely used in practice. So for 

example if T2DM is believed to have a utility of 0.75 and an individual is followed up for five 

years over the course of a study until death, their QALYs for that time period will be 5 years 

multiplied by 0.75, which is equivalent to 3.75 QALYs. 

 

Not all QALYs are the same, as utilities may be based on a variety of measures including visual 

analogue scales, estimates by physicians or researchers, or questionnaire health scores, such as 

the EuroQol-5D or the Health Utilities Index (Drummond et al., 2005). These health scores 

measure health-related quality of life and by polling members of a healthy ‘reference’ 

population, utility estimates can be assigned to each combination of responses to the 

questionnaire. The two principle advantages of using health indexes to generate utilities is that 

the questionnaires are easily completed by study participants, and the utilities they generate 

represent community or societal preferences (Hunink and Glasziou, 2001). 

                                                                                                                                                                                    

Arguments against the use of QALYs range from those claiming them to be over-complicated, 
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with utilities being difficult to estimate, to those claiming QALYs are over simplistic 

(Drummond et al., 2005), but despite criticism they are still the most frequently used measure in 

cost-effectiveness analyses (Briggs et al., 2006), and the preferred statistic, when comparing the 

cost-effectiveness of different health policies, as recommended by NICE (National Institute for 

Clinical Excellence, 2004). 

 

2.4.2 Numbers needed to treat 

The idea of measuring clinical effectiveness by determining number needed to treat (NNT), that 

is the number needed to be treated with a new treatment versus a standard treatment, for one 

additional patient to benefit, was first introduced by Laupacis (Laupacis et al., 1988). It is 

calculated from the absolute risk reduction (ARR) between the proportion with an adverse 

outcome on a new treatment (pN), compared to the proportion on a standard treatment (pS), 

equation 2.10 (Altman, 1998). It is a useful estimate of clinical effectiveness and is discussed 

further in Chapter 4. 

 

  ARR= pN - pS     [Equation 2.10] 

  NNT = 1/ARR 

 

2.4.3 Ascertaining costs 

When assessing potential health policies and treatments, it is important to include predicted 

costs in the evaluation. The National Health Service in the U.K. has a fixed budget, and 

therefore the policies that provide the maximum health gain for the available, limited resources, 

need to be identified. In practice when estimating costs, people often collect resource use data, 

and then apply a unit cost to the different resources, to calculate total costs. Difficulties in 

identifying and modelling relevant costs are discussed further, with reference to the 

comprehensive decision model, in Chapter 6. 

 

2.4.4 Incremental cost-effectiveness ratio  

The incremental cost-effectiveness ratio (ICER) allows the comparison of two treatments or 

health policies in terms of both their clinical and cost effectiveness. It is calculated by dividing 
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the difference in costs between two treatments by the difference in their clinical effectiveness 

(usually in terms of quality adjusted life years) (equation 2.11).  

  ICER= EC ΔΔ /     [Equation 2.11] 

 

The ICER therefore represents the cost of each additional unit of clinical effect gained, and can 

thus be used to determine the preferred strategy, depending on how much decision makers are 

willing to pay to gain an additional unit of effect (Briggs et al., 2006). Calculating a confidence 

interval for the ICER can be problematic, as because it is a ratio, there is a probability of 

obtaining a zero or near zero value on the denominator. This suggests that moments of the ICER 

will be undefined (Heitjan et al., 1999), unless all the simulations of the ICER fall into the same 

quadrant of the cost-effectiveness plane (described in section 2.4.5). Although solutions have 

been put forward for constructing a viable confidence interval around the ICER (Severens et al., 

1999), for this thesis the ICERs are reported without confidence intervals and instead 

uncertainty around cost-effectiveness is expressed using cost-effectiveness acceptability curves 

and probabilities of cost-effectiveness at different willingness-to-pay thresholds, as described in 

the following two sections.  

 

2.4.5 The cost-effectiveness plane 

The cost-effectiveness plane is a plot of the difference in clinical effectiveness between two 

treatments for each patient, plotted against the difference in costs per patient. The slope of the 

line joining any point on the plane to the origin is equivalent to the ICER (Briggs et al., 2006). 

The cost-effectiveness plane, which can be thought of as having four separate quadrants (NW, 

NE, SW, SE), is presented in figure 2.3. A difference in clinical effect greater than 0 indicates 

that A is better than B (x-axis), similarly a difference in costs greater than 0 indicates A is more 

costly than B (y-axis). 

Consider an example where the position on a cost-effectiveness plane, for a comparison of two 

treatments A and B, is known with no uncertainty, then a number of conclusions can be drawn. 

If one treatment is less costly and more beneficial than the other, i.e. the estimate falls into the 

NW or SE quadrant, it is said to dominate, and the choice between the two treatments is clear. If 

the comparison of the two treatments fall into one of the other two quadrants (NE or SW), then a 

trade-off between costs and benefits needs to be made, and a decision must be taken on how 

much policy makers are willing to spend for every unit of clinical effectiveness gained. 
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Figure 2.3: The cost-effectiveness plane 

 

 

 

 

 

 

 

 

 

 

For the example given in Figure 2.3, it can be seen that treatment A costs £5000 more than 

treatment B, but gives an additional 10 units, for example quality adjusted life years, of clinical 

benefit. Thereby the ICER (the slope of the line joining the origin and Z) is £500 per quality 

adjusted life year, and therefore treatment A appears to be of clinical benefit, with only a small 

additional cost. 

When the willingness-to-pay threshold (λ ), that is the costs per QALY that a funding body is 

prepared to pay for a superior treatment, is known, then the assessment of cost-effectiveness can 

be expressed as in equation 2.12, in that the superior treatment is deemed cost effective if:  

   

   λ<ΔΔ EC /  

  or 0>Δ−Δ CEλ     [Equation 2.12] 

 

The second equation specified above represents the net monetary benefit (NMB) (Drummond et 

al., 2005).  
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Figure 2.4: An estimated joint cost-effectiveness density                                             

 

 

 

 

 

 

 

 

 

Unfortunately it would be unusual to known the exact position of a treatment comparison on a 

cost-effectiveness plane and in practice the output of probabilistic models will give a 

distribution of both cost and clinical effectiveness, and the joint cost-effect distribution (Briggs 

et al., 2006). Therefore in reality the results from a decision model are likely to produce a plot 

on the cost-effectiveness plane as given in figure 2.4. A line of best fit can be drawn through the 

origin, allowing the ICER to be estimated. A further step would be to take the uncertainty into 

account and plot cost-effectiveness acceptability curves (Drummond et al., 2005), as discussed 

in section 2.4.6. 

2.4.6 Cost-effectiveness acceptability curve  

The cost-effectiveness acceptability curve (CEAC) shows the probability that an intervention is 

more cost-effective than its comparator at different willingness-to-pay values (Drummond et al., 

2005, Van Hout et al., 1994). They are calculated by firstly producing a scatter plot, as 

presented in figure 2.4. A number of lines are then drawn on the plot, each representing a 

different ICER value the decision maker may be willing to pay for every unit of clinical 

effectiveness gained. The plotted points below the line will represent estimates where the cost 

per clinical effectiveness unit gained will be less than what the decision maker is willing to pay, 

and points above the line will be estimates where the costs are greater than the willingness-to-

pay threshold. The percentage of points that fall on or below the line therefore can be 

interpreted as the probability the intervention is cost-effective compared to its comparator, at 

that particular willingness-to-pay threshold (λ). This is the same as assessing the number of 

points with an NMB > 0.  

Cost difference (A-B)

Effect difference (A-B)

. … .. ……….  … . . . ..     
. … .. ……….  … . . . ..     

. … .. ……….  … . . . ..     . … .. ……….  … . . . ..     . … .. ……….  … . . . 
..     .    . ……….  … . . . ..     

. …
.. 

…
…

…
.  

…
. .

 . 
.. 

   
 

. …
…

…
…

.  
…

. .
 . 

.. 
   

 
. …

.. 
…

…
…

.  
…

. .
 

. .
.  

   

. …
.. 

…
…

…
.  

…
. .

 . 

.. 
   

 . …
.. 

…
…

…
.  

…
. .

 . 
.. 

   
 

. …
.. 

…
…

…
.  

…
. .

 . 
.. 

   
 

. …
.. 

…
…

…
.  

…
. .

 . 
.. 

   
 

…...
…...

…...…..
.

…...…...

…...

. …
.. …

…
…

.  …
. . 

. ..
    

 . …
.. …

…
…

.  …
. . 

. ..
    

 

. …
.. …

…
…

.  …
. . 

. ..
    

 
. …

.. …
…

…
.  …

. . 

. ..
    

 
. …

.. …
…

…
.  …

. . 

. ..
    

 

. …
.. …

…
…

.  …
. . 

. ..
    

 
. …

.. …
…

…
.  …

. 

. . 
..  

   

. …
.. …

…….  …
. . 

. .. 
    

. …
.. …

…….  …
. . 

. .. 
    . …

.. …
…….  …

. . 

. .. 
    

. …
.. …

…….  …
. . 

. .. 
    

. …
.. …

…….  …
. . 

. .. 
    

…
.. …

…….  …
. . .

 

..   
  ……

……
……

……
……

………………
……

……
……

……

……

……

……

……
……

……

……

……

……

……
…………

……
…………

……
……

……

…………
…………

……
……

…………

…
…

…
…

…
…

…
…

…
…

…
…

…
……

…
…

…

…
…

…
…

…
…

…
…

…
……

…
…

…
…

… …
……

…

…
……

…

…
…

…
…

…
…

…
………

…
…

…
…

…
……

… …
…



Chapter 2                     Introduction to the methodology 
______________________________________________________________________ 

______________________________________________________________________ 
- 33 - 

By calculating the probabilities for a number of thresholds, a cost-effectiveness acceptability 

curve can be constructed (figure 2.5). The graph in turn can then be used to visually assess the 

cost-effectiveness of a screening strategy compared to a standard treatment and the probability 

of cost-effectiveness at different willingness-to-pay thresholds can be read from the graph. For 

example, when considering new treatments and programmes NICE usually use a willingness-to-

pay threshold of between £20,000 to £30,000. Therefore any programmes with an ICER less 

than £20,000 are usually recommended and any between £20,000 to £30,000 considered 

(National Institute for Clinical Excellence, 2004).  

 

Figure 2.5: An example of a cost-effectiveness acceptability curve 
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2.4.7 Adjusting costs from different years 

Where cost data collected for the model was from different years, the effect of price inflation 

needed to be accounted for.  This can be done by either inflating the data from an earlier year to 

the chosen year or by deflating the data from a later year, using published cost indices.  As the 

costs utilised were associated with the medical care sector the Hospital and Community Health 

Service (HCHS) pay and prices index was used (Curtis and Netten, 2006).  The use of HCHS 

index, as presented in equation 2.13, allows medical costs to be measured in a constant 

currency; that is, in the currency of a fixed (base) year. 

 

Base year price = ×
yearactualindexHCHS

yearbaseindexHCHS
 price actual year      [Equation 2.13] 

 

2.4.8 Discounting 

Discounting is an adjustment to model outcomes, whereby both costs and benefits may be 

reduced by a certain percent each year, such that the costs and benefits of the first year of the 

model have a greater weight than costs and benefits in the future. The National Institute of 

Clinical Excellence (NICE) currently recommend that cost-effectiveness analyses should 

discount both costs and benefits at a rate of 3.5% per year (National Institute for Clinical 

Excellence, 2004).  

 

There are a number of reasons why immediate benefits should be seen as preferential to future 

benefits. Firstly individuals often have a short-term view of life, in that they ‘live for today 

rather than for the future’. Secondly, the future is uncertain, thereby making immediate benefits 

more advantageous. Thirdly, costs are discounted as, due to positive economic growth in recent 

decades, individuals may expect to be more wealthy in the future, therefore a pound today is 

more important than in the future when you are likely to be wealthier (Drummond et al., 2005). 

When carrying out a cost-effectiveness analysis, it is usual to report both discounted and 

undiscounted results (Drummond et al., 2005). 
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2.5 Assessing the effectiveness of screening tests 

A series of diagnostic tests are available for identifying the presence of IGT or T2DM. The tests 

themselves are detailed in chapter 3, but the terminology used to portray the effectiveness of 

diagnostic tests will be described here. Table 2.1 (adapted from Altman, 1991) shows a general 

representation of a diagnostic test that has a binary result, negative or positive, based on a 

binary diagnosis, e.g. presence or absence of a disease. 

 

Table 2.1: A general representation of a diagnostic test 

                      Disease status 

 Positive Negative Total 

Test Result Positive a b a + b 

Negative c d c + d 

Total a + c b + d N 

 

The sensitivity of a screening test is defined as the proportion of true positives (diseased) that 

are correctly identified by the test, that is the probability of testing positive given you have the 

disease, which from the table is computed as a/(a + c). The specificity of a test is the proportion 

of true negatives (non-diseased) that are correctly identified by the test, in other words the 

probability of testing negative given you do not have the disease, which using the table is d/(b + 

d).  

 

In clinical practice it is often more useful to know the probability a test is giving the correct 

diagnosis. For this predictive probabilities can be used, whereby a positive predictive value is 

the probability of having the disease given you have had a positive screening test result, that is 

a/(a + b) and the negative predictive value is the probability of not having the disease given you 

had a negative screening test result, that is d/(c + d) (Altman, 1991). Although they may be 

more clinically useful, predictive values have the disadvantage that unlike sensitivity and 

specificity, they are affected by the prevalence of a disease. Therefore if a screening study is 

carried out the sensitivity and specificity of the test can be generalised to all populations, but the 

predictive values can only be interpreted in terms of the prevalence of disease in the study 

sample. 
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To overcome this, the sensitivity and specificity of a screening test can be used to calculate the 

predictive values of the test, for any disease prevalence, using the formulae given in equations 

2.14 and 2.15 (Altman, 1991). For the comprehensive decision model the positive and negative 

predictive values were required, and as diagnostic results are more commonly reported using 

sensitivity and specificity values, the two equations given below, and the prevalence of the 

screened population, were utilised to specify the first part of the model.  

 

                       

Positive predictive value=
)1()1( prevalenceyspecificitprevalenceysensitivit

prevalenceysensitivit
−×−+×

×

         [Equation 2.14] 

    

Negative predictive value=
)1()1(

)1(
prevalenceyspecificitprevalenceysensitivit

prevalenceyspecificit
−×+×−

−×
 

         [Equation 2.15] 

 

 

Receiver operating characteristic (ROC) curves, that is plots of sensitivity against 1-specificity 

(Altman, 1991), were utilised to obtain optimum cut-offs for screening tests, and these are 

described in more detail in Chapter 6. 

 

2.6 Summary 

This chapter has introduced the statistical theory and methodologies that are utilised throughout 

this thesis, with more detail given in further chapters where they are employed. A critical review 

of current comprehensive decision models has been given, to put into context the work that has 

been carried out for this thesis. Using the methodologies described in this chapter, this work 

aims to improve on current comprehensive decision models, and produce a fully comprehensive 

model, whilst developing methodologies that are applicable to other clinical scenarios. The 

model developed here is the first comprehensive decision model to be developed in the area of 

diabetes.
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3. OVERVIEW OF CLINICAL ISSUES 
 

3.1 Chapter overview 
 

The aim of this chapter is to provide details of the clinical issues relating to IGT and T2DM, 

which are referred to throughout the thesis. Definitions of the clinical terminology are provided 

and current screening tests used for IGT and T2DM are described. Important ongoing clinical 

trials in T2DM are outlined and the growing health problem that is T2DM is discussed, 

including a brief description of disease progression and possible complications.  

 

3.2 Clinical definitions of glucose tolerance status 

Glucose tolerance is measured on a continuous scale, where individuals are either in a fasting or 

postprandial (that is after a meal or a glucose load) state. Although the scale is continuous, the 

results are interpreted clinically by categorising the scale. As studies usually report glucose 

tolerance on a categorical scale and society as a whole has a better understanding, and can 

interpret the categorical rather than the continuous scale, then this study is restricted to 

modelling glucose tolerance by category. This has benefits in that it fits easily into the Markov 

model structure, although it is acknowledged that information is lost, particularly concerning 

risk of developing further complications associated with T2DM and risk of mortality. The 

clinical states used for defining glucose tolerance are normal glucose tolerance (NGT), impaired 

fasting glucose (IFG), IGT, T2DM and other forms of diabetes. These are now all described. 

 

3.2.1 Normal glucose tolerance 

Individuals with NGT can be thought of as having a healthy glucose metabolism. NGT, IGT and 

T2DM are mutually exclusive states, such that as glucose tolerance worsens an individual will 

pass from NGT to IGT to T2DM. As NGT is the state below which IGT is diagnosed it can be 

defined as a two-hour plasma glucose level after an oral glucose tolerance test of <7.8mmol/l. 

3.2.2 Impaired glucose tolerance and impaired fasting glucose 

Impaired glucose regulation, that is either IGT or impaired fasting glucose (IFG), both refer to a 

metabolic state intermediate between normal glucose homeostasis and diabetes, one in a fasting 

state and one post-prandial (World Health Organisation, 1999). IGT and IFG are not 
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interchangeable terms though, and represent distinct forms of abnormal glucose regulation. IGT 

can be defined as a two-hour plasma glucose level after an oral glucose tolerance test of 

between 7.8 and 11mmol/l and IFG as a fasting plasma glucose concentration of ≥ 6.1 and 

<7.0mmol/l. The two conditions are not mutually exclusive and it is possible to be diagnosed as 

having both.  

 

The determinants of elevated fasting glucose and 2-h plasma glucose in an oral glucose 

tolerance test (2-HPG) levels differ. Raised hepatic glucose output and a defect in early insulin 

secretion are characteristic of the former, and peripheral insulin resistance is most characteristic 

of the latter. Therefore, it is not surprising that the concordance between the categories of IFG 

and IGT is limited. In all prevalence studies to date only half or less of people with IFG have 

IGT, and even a lower proportion (20-30%) with IGT also have IFG (Unwin et al., 2002). In the 

majority of populations studied, IGT is more prevalent than IFG, and there is a difference in 

phenotype and gender distribution between the two categories. IFG is substantially more 

common amongst men and IGT slightly more common amongst women. The prevalence of IFG 

tends to plateau in middle age whereas the prevalence of IGT rises into old age (Unwin et al., 

2002). 

 

3.2.3 Type 2 diabetes mellitus 

The term diabetes mellitus describes a metabolic disorder characterized by chronic 

hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism, resulting from 

defects in insulin secretion, insulin action, or both (World Health Organisation, 1999). T2DM 

accounts for approximately 85 to 95 percent of all diagnosed cases of diabetes and is usually 

characterized by insulin resistance, in that target tissues do not use insulin properly (Narayan et 

al., 2006). The definition of T2DM was revised in the late 1990s after separate 

recommendations from both the American Diabetes Association (American Diabetes 

Association, 1997) and the World Health Organisation (World Health Organisation, 1999). 

Currently an individual with a fasting plasma glucose concentration of 7.0mmol/l and above is 

classified as having T2DM (previously the cut-off was higher at ≥ 7.8mmol/l). 
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3.2.4 Other forms of diabetes 

In addition to T2DM, there are a number of other clinical forms of diabetes. Type 1 diabetes 

mellitus results from the destruction of beta cells in the pancreas, leading to absolute insulin 

deficiency (Narayan et al., 2006). It usually occurs in children and young adults and requires 

insulin treatment, unlike T2DM which can often initially be controlled by diet alone. 

Gestational diabetes is first recognised during pregnancy. It does not exclude the possibility that 

glucose intolerance may pre-date the start of the pregnancy, just that it was previously 

undiagnosed. Once the pregnancy is over the woman is reclassified as either NGT, IGT or 

T2DM (World Health Organisation, 1999). Women who have had gestational diabetes are at a 

higher risk of developing T2DM. Other rare types of diabetes include those caused by genetic 

conditions (e.g. maturity-onset diabetes of youths), surgery, drug use, malnutrition, infections, 

and other illnesses (Narayan et al., 2006). 

 

3.2.5 Metabolic syndrome 

The metabolic syndrome can be thought of as a cluster of cardiovascular risk factors associated 

with insulin resistance. It has been defined (NCEP, 2001) as the presence of three or more of the 

following: 

 

i) Abdominal obesity, waist circumference > 100cm in men and >90cm in women 

ii) Triglycerides over 1.68 mmol/l 

iii) HDL cholesterol < 1.03 mmol/l in men and < 1.29mmol/l in women. 

iv) Blood pressure 130 or more systolic, 85 or more diastolic 

v) Fasting glucose > 6.1 mmol/l 

 

Hypertension and diabetes are both common components of the metabolic syndrome with about 

40% of persons with the metabolic syndrome having diabetes (Waugh et al., 2007). Individually 

each component of the metabolic syndrome increases an individuals cardiovascular disease risk, 

but in combination they become more powerful (Kaplan, 1989). Therefore management of 

persons with the metabolic syndrome should focus not only on controlling their blood glucose 

but also on reducing their other risk factors (World Health Organisation, 1999).  

If a screening policy for T2DM is introduced in the UK it may produce greater clinical benefit if 

additional components of the metabolic syndrome are screened for, with a view to treating 
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them, concurrently. This was not considered for the model developed here, but could provide an 

extension to the model as briefly discussed in Chapter 9. 

 

3.3 Natural history of IGT, IFG and T2DM  

Diabetes is one of the most costly and burdensome chronic diseases of our time and is a 

condition that is increasing throughout the world, particularly in westernised societies (King et 

al., 1998), and the prevalence of diabetes is projected to increase dramatically by 2025 

(International Diabetes Federation, 2006). The increase in diabetes is associated with lifestyle 

changes that have led to an increase in obesity and a decrease in physical activity levels. 

 

The complications resulting from diabetes are significant in terms of morbidity and mortality 

and include damage or failure of the eyes, kidneys and nerves. Individuals with T2DM are also 

at a significantly higher risk of coronary heart disease, peripheral vascular disease and stroke 

(American Diabetes Association and National Institute of Diabetes and Digestive and Kidney 

Diseases, 2002). The World Health Organisation estimates that, in 2001, 959,000 deaths 

worldwide were attributable to diabetes, accounting for 1.6% of all deaths, although their more 

recent estimates suggest actual numbers may be triple this (Narayan et al., 2006).  

 

Risk factors for diabetes include a family history of the disease, obesity, physical inactivity, 

dietary, increasing age, and exposure to diabetes in-utero, with the strongest and most consistent 

risk factor, across different populations, being obesity and weight gain (Narayan et al., 2006). A 

study by Lindström et al., whereby a random sample of 4,435 subjects were followed up for 10 

years, found a BMI greater than 30kg/m2 nearly tripled the odds of developing diabetes, odds 

ratio 2.99 (95% CI: 1.31 to 6.81), and a waist circumference greater than 102cm in men and 

88cm in women, gave an increased odds of developing diabetes of 3.86 (1.93 to 7.71) 

(Lindstrom and Tuomilehto, 2003). Many intervention studies have focused on reducing 

modifiable risk factors through lifestyle interventions, and these are discussed in detail in 

Chapter 4. 

 

The transition from the early metabolic abnormalities of IFG and IGT to T2DM may take many 

years, although it is estimated that up to 70% of these individuals will eventually develop 

diabetes (Nathan et al., 2007). Although data is limited it appears that individuals with IGT may 
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have a faster progression to T2DM than IFG individuals (World Health Organisation, 1999) and 

because IGT has a greater prevalence than IFG in most populations, it is more sensitive for 

identifying people who will develop diabetes (Unwin et al., 2002). Due to these reasons studies 

investigating T2DM prevention have focused more on IGT rather than IFG individuals, and as a 

result the model developed here focuses on IGT also. The model could be extended to include 

IFG as discussed further in Chapter 10. Individuals with IGT and IFG have a moderate increase 

in their risk of cardiovascular disease, although the risk is much smaller than that of individuals 

with T2DM (Nathan et al., 2007). 

 

With prevalence of T2DM increasing, interventions which aim to prevent or delay T2DM need 

to be considered for future health policies. Obviously not all risk factors for T2DM, such as age 

and genetic factors, can be modified. Obesity and physical activity are risk factors that could be 

addressed using intensive lifestyle interventions aimed at improving these risk factors. Intensive 

lifestyle interventions may encompass a range of initiatives including dietary advice, group 

exercise and counselling sessions. Pharmacological interventions have also been considered in 

intervention studies. For example metformin or acarbose may prevent or delay T2DM in 

individuals at risk of T2DM, by controlling blood glucose levels, thereby addressing the 

symptoms rather than the underlying cause. The majority of intervention studies have so far 

been conducted in individuals with IGT, who are known to be at high risk of developing T2DM. 

The long-term effect on incidence of diabetes complications, if T2DM is delayed, is still 

unknown, and this issue in relation to modelling screening effects, is discussed further in 

Chapter 6. Chapter 4 of this thesis discusses a systematic review and meta-analysis of all 

relevant intervention studies for diabetes prevention, and directly compares the effectiveness of 

lifestyle against pharmacological interventions.  

 

3.4 Diagnostic and screening tests for glucose tolerance 

3.4.1 Screening tests 

There are a number of blood tests available which include the oral glucose tolerance test 

(OGTT), the fasting plasma glucose test (FPG) and the glycated haemoglobin test (HbA1c). 

Although there is no consensus on the most accurate screening test for detection of diabetes 

(Bennett et al., 2007), the OGTT is often considered the gold standard of glucose tolerance tests. 

It is administered in the morning following an overnight fast of between eight to fourteen hours. 

75g of anhydrous glucose in 250-300ml of water is consumed over the course of 5 minutes and 
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blood samples are then collected two hours later. As the OGTT is costly, time-consuming and 

labour intensive, it is not appropriate to use as an initial screening test for T2DM, but can be 

used to confirm diabetic status after an initial screening test. 

 

The FPG test also requires a blood sample to be taken after an overnight fast, although is 

slightly less time consuming than the OGTT. The accuracy of both the OGTT and the FPG test 

may be affected by the individuals adherence to the overnight fast (Bennett et al., 2007). The 

HbA1c test has the advantage over the other two blood tests in that it can be taken at any time of 

day, regardless of food intake, and it is a quick and convenient test, HbA1c levels represent a 2-

3month average of blood glucose concentrations.  

 

An alternative screening strategy for diabetes is the use of risk scores, such as the Cambridge 

risk score (CRS)(Griffin et al., 2000), which is based on data that is often available in general 

practice records, such as age, weight, family history of diabetes and smoking status. Individuals 

found to be at high risk based on the risk score, could then be invited to receive a diagnostic 

test. 

 

3.4.2 Diagnosis of IGT and T2DM 

Currently no systematic screening of T2DM is carried out in the UK and a diagnosis of T2DM, 

is at present, usually made in general practice. If an individual presents with symptoms such as 

increased thirst and urine volume, recurrent infections, unexplained weight loss, blurred vision, 

drowsiness, and tingling and numbness in hands and feet, then diagnosis of T2DM can be 

confirmed by a single FPG test. If no symptoms are present, so for example if a general 

population were being screened, then diagnosis is made by either two FPG tests on different 

days, or one FPG and one OGTT.  IGT is usually diagnosed using an OGTT test (Waugh et al., 

2007). Studies that have modelled the cost and clinical effectiveness of different screening tests, 

are discussed in detail in Chapter 5. 

3.5 Current studies 

A substantial amount of research has been carried out in the field of T2DM. This section aims to 

give some background information on a few of the key studies which provided data for 

parameters within the decision model. The interventions studies will not be described here as 
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they are described in detail in Chapter 4, where an account of the systematic review and meta-

analysis carried out on these studies is given.  

 

3.5.1 STAR  

The Screening those at risk (STAR) study was designed to identify the prevalence of 

undiagnosed diabetes. The study was conducted in Leicestershire and all individuals aged 40-75 

years (Caucasians) or 25-75 years (Non-Caucasians), who had at least one recognised risk factor 

for diabetes, from 15 general practices, were invited for screening. Risk factors were identified 

from general practice computer records and included a known history of coronary heart disease, 

hypertension, dyslipidaemia, cerebrovascular disease, peripheral vascular disease, IGT or IFG, a 

first degree relative with T2DM and a body mass index greater than 25 kg/m2. Further risk 

factors in females included previous gestational diabetes or polycystic ovary syndrome in those 

that were overweight. Individuals were screened using both a HbA1c and an OGTT test, and 

those found to have glucose results within the diabetic range were invited for a repeat OGTT to 

confirm diagnosis. 

 

Results from the STAR study are yet to be published but individual patient data from the study 

was made available for our model. The STAR results provided data on screening tests and 

prevalences of IGT and T2DM, which were useful for the decision model, as discussed in 

Chapter 6 (Davies M et al., 2003). 

 

3.5.2 ADDITION 

The ADDITION study is a multi-centre trial in which over 80,000 participants, aged 40-60 

years, have had risk scores for T2DM calculated. Over 8,000 at a raised risk of T2DM have so 

far been invited and attended their GP practices for diabetes screening, with the long-term aim 

of assessing the clinical benefits of early diagnosis and treatment of T2DM using intensive 

multi-factorial treatments (Lauritzen et al., 2000). The study is ongoing and in recent years has 

been extended to clinical practices in the Leicestershire region. As well as assessing the clinical 

impact of screening for T2DM, the study will also collate important data on prevalence rates, 

and rates of transition from IGT to T2DM through a series of screenings (Srinivasan et al., 

2007). Individual patient data was made available from the Leicester arm of the ADDITION 

study, for this thesis. It was utilised to provide information on the utilities of T2DM, which were 

needed for the comprehensive decision model.  
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3.5.3 UKPDS 

The UK Prospective Diabetes Study (UKPDS) was a 20-year trial which recruited 5,102 

patients with T2DM in 23 clinical centres based in England, Northern Ireland and Scotland (UK 

Prospective Diabetes Study (UKPDS) Group, 1991). The primary objective of the trial was to 

investigate whether tight glucose and blood pressure control in individuals newly diagnosed 

with T2DM, lowered the risk of diabetes related complications compared to standard treatment. 

The major results were published in 1998 (UK Prospective Diabetes Study (UKPDS) Group, 

1998b, UK Prospective Diabetes Study (UKPDS) Group, 1998a), although subsequent papers 

on complication rates associated with diabetes (Clarke et al., 2004) and estimated utility rates 

for diabetes and its complications (Clarke et al., 2002), provided very useful information for 

populating the decision model. Results from the UKPDS study were utilised to model both costs 

of T2DM and costs of associated complications, and also to model the utility of T2DM over 

time. This was done by factoring in the effect of increasing complications associated with 

duration of T2DM, and the resulting effect of complications on the decrement in the utility 

values.  How this was achieved is described in detail in section 6.5. 
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3.5.4 DECODE  

The DECODE study group (Balkau, 1999, Balkau, 2000) invited researchers in Europe who had 

carried out population based studies or large studies in occupational groups, of the standard 2-

hour OGTT, to participate in a large collaborative data analysis. Only studies with prospective 

data on mortality and at least 20 sex-specific deaths were analysed. 13 centres provided 

mortality data, encompassing 25,364 individuals, 1275 who had previously been diagnosed with 

T2DM. The duration of follow-up was truncated to ten-years to allow comparability between 

centres. The analysis of data from all 13 centres allowed for assessment of the effect of glucose 

tolerance status on risk of mortality. The DECODE study provided data for T2DM mortality 

rates within the decision model. 

 

3.6 Suitability of IGT and T2DM for a screening health programme 

Probably the most important clinical issue to address before going forward with this thesis, was 

whether the conditions of IGT and T2DM meet the requirements necessary for a viable 

screening policy to be implemented. The UK National Screening Committee (NSC) has 

compiled a list of criteria for evaluating potential screening programmes, and the full list is 

available on their website http://www.nsc.nhs.uk/pdfs/criteria.pdf.  

 

Criteria fall under four headings; the condition, the test, the treatment and the screening 

programme. For the condition requirements include that it is an important health problem, that 

the epidemiology and natural history is adequately understood, and that a detectable latent 

period or early symptomatic stage exists. The screening tests need to be simple, safe, validated, 

precise and acceptable to the public and there should be effective treatment or interventions for 

individuals identified through screening. There needs to be evidence that a screening 

programme is effective in reducing morbidity and mortality, and that the benefits of screening 

outweigh harms and risks. 

 

A full investigation as to whether screening for T2DM and IGT fit all the NSC criteria has 

previously been carried out (Waugh et al., 2007). It was concluded that of 22 criteria only three 

were not fulfilled, although a further three were uncertain. Those not met were: 
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Clinical management of the condition and patient outcomes should be optimised in all 

healthcare providers prior to participation in a screening programme. 

Unfortunately many individuals with T2DM are not well controlled, although measures are 

being taken to improve this (Waugh et al., 2007). 

 

There should be evidence from high-quality randomised controlled trials (RCTs) that the 

screening programme is effective in reducing morbidity and mortality. 

As yet no RCTs have been carried out assessing the effects of T2DM screening, although the 

ADDITION study is currently in progress and will report on this. Hopefully simulation studies, 

such as that being carried out here, can provide an evaluation of the clinical and cost-

effectiveness of screening programmes when there is a gap in the clinical data. 

 

Adequate staffing and facilities for testing, diagnosis, treatment and programme management 

should be available prior to the commencement of the screening programme. 

Primary care services and diabetes clinics are already under pressure, therefore a screening 

policy would need to be brought in slowly.  

 

All three NSC criteria that were not met for the conditions of IGT and T2DM are issues that can 

be overcome or resolved. Therefore overall IGT and T2DM appear to be suitable conditions for 

a screening policy, at least in theory, if such a policy could be proved to be clinically and cost-

effective. This thesis aims to determine if screening would be preferential to no screening if 

costs and clinical outcomes are compared, and if so the decision model will aim to identify the 

optimum screening policy, in terms of the cut-off for glucose tolerance and the target population 

for screening. 
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3.7 Summary 

This chapter has discussed the clinical issues surrounding this thesis, including the disease 

pathway from NGT, to IGT and T2DM and subsequent complications, and the current and 

published research that provided information to populate the comprehensive decision model. 

The suitability of IGT and T2DM was considered, and whilst current information indicates it is 

a suitable condition for screening, further information on the effects of early diagnosis and 

treatment is needed. 
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4. INTERVENTIONS FOR THE PREVENTION OR DELAY OF 
TYPE 2 DIABETES MELLITUS 

 

4.1 Chapter overview 

For the decision model a pooled statistic, for example a hazard ratio and its associated 

distribution, that summarised the effect of intervening in IGT individuals to delay T2DM was 

required. This was considered a key component of the decision model, and therefore both time 

and effort were taken to estimate this statistic. This chapter will first briefly outline a literature 

search that was carried out to try and identify such summary statistics in the current published 

literature. As no relevant statistics were found, a systematic review of intervention studies was 

carried out for the purpose of this thesis. This review is described here, along with the analyses 

that were conducted to obtain the statistics necessary for the decision model. The analyses 

included meta-analyses to obtain pooled estimates of intervention effects, as well as an 

assessment of the effect of baseline risk on the intervention effect. A mixed treatment 

comparison analyses was also carried out to enable a direct comparison between different types 

of interventions, namely lifestyle and pharmacological. The systematic review described in this 

chapter has been published in the British Medical Journal (Gillies et al., 2007). Further details 

and an expansion of the analyses are described here. 

  

4.2 Current literature and reviews 

For the comprehensive decision model a key parameter was the estimated effect of any 

interventions on the transition rate from IGT to T2DM. What was required was a relative effect 

measure, such as a hazard ratio and its associated distribution, that could then be applied to the 

estimated baseline transition rate from IGT to T2DM. A search of the literature was undertaken 

to identify all previous reviews or meta-analyses of individuals with IGT, with the aim that 

these may provide data that could be used for the decision model. Embase, Medline and the 

Cochrane library were searched using the strategy detailed in appendix 1.1. From the literature 

search five reviews that had considered interventions for the prevention or delay of T2DM 

(Angelo et al., 2005, Davies et al., 2004, Norris et al., 2005a, Norris et al., 2005b, Padwal and 

Laupacis, 2004, Prisant, 2004), and one meta-analysis (Yamaoka and Tango, 2005) were 

identified. They were generally positive about the benefits of interventions. Norris et al. 

reported that weight loss interventions produced a significant decrease in T2DM incidence 

among persons with pre-diabetes. Angelo et al (2005) reported that dietary intervention and 
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enhanced physical activity are the most effective methods for preventing or delaying the onset 

of T2DM, whereas pharmacological interventions may be effective in specific high risk 

individuals, and Padwal and Laupacis (2004) concluded from their review of drug therapies, 

that currently no single agent could definitively be recommended for diabetes prevention. None 

of the reviews reported summary statistics on the effectiveness of interventions that could be 

used for the decision model. The one meta-analysis identified from the literature search 

combined evidence on lifestyle interventions, but not pharmacological. They concluded lifestyle 

education compared to controls reduced 1 year incidence of T2DM by nearly 50%, relative risk 

0.55 (95% CI: 0.44 to 0.69). As they had included individuals with impaired fasting glucose, 

their pooled estimate of the intervention effect was not suitable for the comprehensive decision 

model being developed here. Consequently it was necessary to carry out a further systematic 

review and meta-analyses of all intervention studies, to obtain the data on intervention effects 

needed for the model.  

 

4.3 Systematic review 

A systematic review was undertaken which aimed to consolidate all the evidence from 

published intervention trials that had aimed to prevent or delay T2DM. Both lifestyle and 

pharmacological interventions were considered and meta-analyses of any relevant trials was 

undertaken to provide summary statistics of intervention effects that could be utilised in the 

decision model.   

 

4.3.1 Literature search 

Both Medline (1966 to July, week 3, 2006) and Embase (1980 to week 29, 2006) were searched. 

The search strategies used were developed by combining: (i) phase 1 and 2 of the Cochrane 

Collaboration’s randomised controlled trials filter (Higgins and Green, 2005), (ii) search terms 

covering both T2DM and prevention, and (iii) clinical terms for IGT. Additionally the Cochrane 

central register of controlled trials was searched (2006, Issue 2), and expert opinion on relevant 

trials was sought from Professor Kamlesh Khunti and Professor Jaako Tuomilehto, who are 

both specialists in the field of diabetes. The references of any articles that met the inclusion 

criteria, as well as published reviews that considered prevention of T2DM, were also checked. 

This included a search of the Cochrane library of systematic reviews (2006, Issue 2). The search 

strategy used is given in detail in appendix 1.2. 
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Study selection was restricted to randomised controlled trials, to ensure only high quality 

evidence was included. Studies were selected where an intervention had been applied with the 

aim of delaying or preventing T2DM in a sample or sub-sample of individuals with IGT. 

Development of T2DM was a required outcome measure. Trial inclusion was determined by 

consensus between myself and both my supervisors (Professor Keith Abrams and Dr Paul 

Lambert). Foreign language papers with relevant titles or English abstracts were assessed jointly 

by myself, Professor Keith Abrams and a translator. All translators were familiar with medical 

literature and terminology. 

 

11,383 articles were identified by the Medline and Embase searches (figure 4.1). The titles and 

abstracts were assessed and the full articles obtained for any that were potentially relevant for 

this review. 27 of the papers were in English and examination showed they reported 22 trials. A 

further study, the Early Diabetes Intervention Trial (EDIT) (Holman et al., 2003, Holman et al., 

2000), was identified in a published review (Davies et al., 2004). Six of these 22 studies were 

excluded after obtaining the full papers, either because the treatment allocation process had not 

been fully randomised (Sartor et al., 1980, Swinburn et al., 2001, Eriksson and Lindgarde, 1991, 

Eriksson and Lindgarde, 1998), or the primary aim of the administered intervention was not to 

prevent T2DM (Niklason et al., 2004, Tenenbaum et al., 2004, Yusuf et al., 2001). Ten foreign 

language papers were assessed, four Chinese, three Japanese, one Spanish, one Russian and one 

German. Four were excluded as they were discussion papers rather than presenting original 

findings (Costa, 2002, Anonymous, 1996, Mkrtumian, 2002, Hirose, 2005) and one was 

excluded as although it met most of our inclusion criteria, T2DM was not a reported outcome 

(Cao, 2004). Of the five remaining relevant articles two reported results from the Japanese 

Diabetes Prevention Program (JDPP) (Kuzuya, 2004, Sakane, 2005) and three were results from 

three separate Chinese studies (Fang et al., 2004, Fan et al., 2004, Tao et al., 2004), and these 

four trials were included in the review. 
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Figure 4.1: Flow chart of literature search and meta-analysis 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 
* The EDIT trial was identified from checking existing reviews, not from Medline or Embase 

Medline (5313)  Embase (8242) 

Embase and Medline searches merged, and abstracts 
assessed. 22 foreign language papers were ordered, and after 
closer inspection 10 of these papers were translated. (11,383) 

Duplicates removed 
(2172) 

Progression to T2DM reported as a study outcome for 27 trials, covered by 32 publications 

Progression to T2DM 
not reported as a 
study outcome (163) 

Did not satisfy the 
selection criteria 
(11,188) 

Satisfied the selection criteria of randomised controlled trial, 
IGT sample or sub‐sample (195) 

21 trials, reported in 25 publications, were included in the 
systematic review, 17 trials provided sufficient data and 
were suitable for the meta‐analyses: 
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Malmö  
Sartor 

Swinburn  
Tenenbaum 
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4.3.2 Study characteristics 
 

21 trials met the inclusion criteria for this systematic review (Pan et al., 1997, Knowler 

et al., 2005, Knowler et al., 2002, Lindstrom et al., 2003a, Eriksson et al., 1999, Fan et 

al., 2004, Fang et al., 2004, Jarrett et al., 1984, Jarrett et al., 1979, Kosaka et al., 2005, 

Heymsfield et al., 2000, Liao et al., 2002, Li et al., 1999, Pan et al., 2003, Chiasson et 

al., 1998, Chiasson et al., 2002, Tao et al., 2004, Buchanan et al., 2002, Wein et al., 

1999, Kuzuya, 2004, Sakane, 2005, Keen et al., 1973, Torgerson et al., 2004, Eriksson 

et al., 2006, Ramachandran et al., 2006). 17 trials, containing 8084 participants provided 

sufficient information to be included in the meta-analyses (table 4.1). The reasons for 

not including trials in the meta-analyes are given in section 4.3.3. The trials included 

were heterogeneous in terms of interventions and participant ethnicity, weight at 

baseline and age.  

 

Due to the time period covered by the trials, 1979 to 2005, a number of definitions for T2DM 

and IGT had been used (World Health Organisation Expert Committee, 1994, World Health 

Organisation Expert Committee, 1980, World Health Orgnisation Expert Committee, 1985, 

American Diabetes Association, 1997, Alberti and Zimmet, 1998). The majority of definitions 

are similar, for T2DM they involve a plasma glucose reading two hours after a 75g glucose load 

of ≥ 11.1mmol/l and a fasting plasma glucose level of ≥ 7.8mmol/l. For IGT the definition is 

that of a two hour post glucose load reading of ≥ 7.8 and ≤ 11.1mmol/l. In 1997 the American 

Diabetes Association revised the criteria (American Diabetes Association, 1997) and the fasting 

plasma glucose level was lowered for the definition of T2DM from ≥ 7.8mmol/l to ≥ 7.0mmol/l. 

The WHO endorsed this reduction and seven of the more recent studies in this review used this 

lower threshold (table 4.1). The implication of this is that the more recent studies have a less 

strict definition of T2DM. 

 

Three relevant studies, Keen et al.(Keen et al., 1973), the EDIT trial (Holman et al., 2003, 

Holman et al., 2000), and the JDPP trial (Kuzuya, 2004, Sakane, 2005) were not used in the 

meta-analyses as they reported insufficient data. Contact details for trial authors could only be 

found for the two most recent trials (EDIT and JDPP), but although further information was 

requested, none was forthcoming.  
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Interventions in this review fell into two main types, (i) lifestyle, comprising diet and exercise 

interventions, and (ii) pharmacological and herbal, comprising oral anti-diabetic agents, the 

anti-obesity agent orlistat and a Chinese herbal remedy called Jiangtang bushen recipe. 

 

4.3.3 Studies not included in the meta-analyses 

Due to a number of reasons not all the studies identified by the literature search were included 

in the meta-analyses. The Tripod (Buchanan et al., 2002) study and the arm of the DPP trial 

(Knowler et al., 2005) that assessed troglitazone were omitted from the meta-analyses as, due to 

safety concerns, troglitazone is no longer a viable intervention for delaying T2DM. Both had 

shown a significant reduction in development of T2DM with troglitazone. Three trials provided 

insufficient data for inclusion in the meta-analyses, EDIT (Holman et al., 2003, Holman et al., 

2000), Keen (Keen et al., 1973) and JDPP (Sakane, 2005, Kuzuya, 2004). The JDPP trial is 

ongoing but the preliminary results that have been published report a halving of risk of T2DM 

in individuals who received diet and exercise advice. The results of the EDIT and Keen trials 

were less conclusive than the meta-analyses reported here. EDIT (Holman et al., 2003, Holman 

et al., 2000) found the relative risk of T2DM was significantly reduced by acarbose (0.66, 

p=0.046), but not metformin (1.09, p=0.70) or combination therapy (0.72, p=0.27). No 

confidence intervals were reported around these estimates. Keen et al. concluded there was no 

evidence that either tolbutamide or a carbohydrate restricted diet reduced incidence of T2DM. 
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Table 4.1: Characteristics of studies included in the review 
Trial 
 

Population  Interventions  Definitions of IGT and 
T2DM 

Lifestyle interventions 
 
DA Qing impaired 
glucose tolerance 
and diabetes study, 
China (1997) 

 

577 Chinese with 
IGT. All >25 years, 
283 males and 247 
females 

Diet group received individual and 
group counselling sessions, those 
with body mass index >25kg/m2 
were encouraged to lose weight. 
Exercise group were encouraged 
to increase their daily exercise. 
Diet and exercise group received 
both interventions as above. 
Control group received routine 
advice 

World Health Organisation 
(WHO) 1985 criteria 

Diabetes Prevention 
Study (DPS) 
Finland (2003) 

522 overweight 
subjects with IGT, 
67% female 

Control group received limited 
advice on diet and exercise, while 
the intervention group were given 
tailored, detailed advice on diet, 
weight reduction and exercise 

WHO 1985 criteria 

JDPP 
Japan (2005) 

240 participants 
with IGT, 49% 
female, mean age 
51 years, mean 
BMI 25 kg/m2 

Control group received standard 
diet and exercise advice. The 
intervention group were 
encouraged to lose weight if 
necessary, walk for 700 kcals 
worth per week, and change their 
diet with the help of a dietician 

WHO 1999 criteria 

Kosaka 
Japan  (2005) 

356 men with IGT, 
all between 30 and 
70 years of age 

Control group were advised to 
lose weight if BMI=>24kg/m2 and 
intervention group if 
BMI>=22kg/m2 by eating smaller 
meals and increasing physical 
activity. Advice repeated every 6 
months for controls and 3-4 
months for the intervention group 

WHO criteria in 1980 

Liao  
USA (2002) 

70 Japanese 
Americans with 
IGT. 55% female 

Intervention group were put on the 
American Heart Association step 
2 diet, plus 1hr endurance exercise 
3 times a week. Control group 
were recommended the less 
intensive step 1 diet and stretching 
exercises three times a week 

WHO criteria in 1998 

Tao 
China (2004) 

60 individuals with 
IGT. 43% female, 
aged 34 to 65 
years, with a mean 
age of 51 

Both groups received dietary 
advice. The intervention group 
also received regular moderately 
intensive exercise training 

WHO 1999 criteria  

Wein  

Australia (1999) 

200 women with 
previous 
gestational diabetes 
and currently with 
IGT 

The intervention group received 
advice on intensive dietary 
modification, while the controls 
were given routine advice 

WHO 1985 criteria 
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Table 4.1 continued: 
 

Pharmacological/ herbal interventions 
 
EDIT  
UK (2003)     

631 subjects, some 
with IGT. 49% 
male, 94% white 
Caucasian  

Factorial trial. Subjects 
randomised to acarbose (50mg 
three times daily) or placebo and 
either metformin (500mg three 
times daily) or placebo 

WHO 1985 criteria 

Eriksson  
Finland (2006) 

34 individuals with 
IGT and a first 
degree relative with 
T2DM.  35 to 70 
years of age, BMI 
25 to 35kg/m2, 
74% female 

Randomised to either placebo or 
2.5mg glipizide daily 

WHO criteria in 2006 

Fan  
China (2004) 

51 subjects with 
IGT, over 35 years 
of age, BMI >19 
kg/m2 

All received standard diet and 
exercise advice. The intervention 
group additionally took the 
jiangtang bushen recipe 2-3 times 
a week 

WHO 1999 criteria 

Heymsfield  
USA and Europe 
(2000) 

675 obese adults 
(120 with IGT), 
BMI 30-43kg/m2 

Everyone was recommended a 
low-energy diet then randomised 
to either placebo or 120mg 
Orlistat, three times daily 

WHO 1985 criteria 

Li  
China (1999) 

 

90 subjects with 
IGT. All between 
30 and 60 years of 
age  

250mg of metformin or placebo 
three times a day for 12 months 

WHO 1985 criteria 

Pan 
China (2003) 

261 subjects with 
IGT, aged 35-70 
years, BMI>19 and 
<=34kg/m2, 60% 
female 

50mg of acarbose or placebo three 
times a day 

American Diabetes Association 
(ADA) 1997 criteria 

STOP-NIDDM 
Canada, Germany, 
Austria, Norway, 
Denmark, Sweden, 
Finland, Israel and 
Spain (2002) 

1429 patients, with 
IGT, 40-70 years, 
BMI of between 25 
and 40kg/m2 

100mg of acarbose or placebo 
three times a day 

WHO 1985 criteria 

TRIPOD 
USA (2002) 

266 insulin 
resistant (167 with 
IGT), Hispanic 
women with 
previous 
gestational diabetes  

400mg troglitazone or placebo 
once a day, all received standard 
diet and exercise  

IGT diagnosed if the sum of 5 
OGTT was >=625mg/dl. T2DM 
defined by ADA 1997 criteria 
 

XENDOS 
Sweden (2004) 

3277 patients, 694 
of who had IGT, 
age 30-60years, 
minimum BMI 
30kg/m2 

120mg orlistat or placebo three 
times a day, all patients prescribed 
a low-cal diet and exercise  

WHO 1994  
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Table 4.1 continued: 
 

Both pharmacological and lifestyle interventions 
 
Diabetes Prevention 
Programme (DPP)  
USA (2002) 

3234 subjects with 
IGT, all 25 years or 
over. Minimum 
BMI 24 kg/m2 (22 
in Asians).  32.3% 
male, 54.7% white.  
 
 

 

Four interventions; standard 
lifestyle recommendations plus 
placebo, standard lifestyle 
recommendations plus metformin 
(850mg twice daily), standard 
lifestyle recommendations plus 
troglitazone (400mg daily)  and an 
intensive programme of lifestyle 
modification. The troglitazone 
arm was discontinued early due to 
safety reasons. 

ADA 1997 criteria. 

Fang  
China (2004) 

178 subjects with 
IGT, 55% male. 

Four interventions; standard 
prevention education, education 
and monitoring of diet and 
exercise, acarbose 25-50mg 3 
times a day, or flumamine 125-
250mg 3 times a day. 

WHO 1985 criteria 

Indian Diabetes 
Prevention 
Programme (IDDP) 
India (2006) 

531 native Asian 
Indians with IGT, 
aged 35-55 years. 
21% female. 

Four interventions, standard 
lifestyle advice, lifestyle 
modification, metformin (500mg 
twice daily, dropping to 250mg 
twice daily after a median of 40 
days) and fourthly a combination 
of lifestyle modification and 
metformin. 

WHO 1999 criteria 

Jarrett  
UK (1979) 

204 men with IGT. Factorial trial. Patients received 
either 50mg phenformin daily or 
placebo, and were also 
recommended to either limit their 
carbohydrate intake to 120g/day 
or just to limit sucrose (table 
sugar).  

IGT defined as a) survey blood 
glucose 6.1-11.0mmol/l and b) 
OGTT peak blood 
glucose>=10mmol/l and 2hr 
blood glucose 6.7-11.0mmol/l; 
or 2 values>10mmol/l; or peak 
blood glucose>=10.0and mean 
2hr glucose>=6.7 
 
T2DM defined as 2 successive 
2-hour post glucose blood 
glucose levels>11.1; 3 non-
successive 2hr tests>11.1; the 
development of symptoms and 
elevated glucose 

Keen  
UK (1982) 

241 subjects with 
IGT 

Factorial trial. Patients were 
randomised to tolbutamide (0.5g 
twice daily) or placebo and either 
dietary teaching to restrict 
carbohydrate intake to 120g/day 
or advice to restrict table sugar. 

IGT defined as blood glucose 
levels between 6.7-11.1mmol/l 
2 hours after an oral glucose 
load of 50g. 
T2DM defined as a 2 hour post 
load glucose reading 
>11.1mmol/l 
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4.3.4 Data extraction  

From the trials which could be included in the meta-analyses, myself and a colleague (Professor 

Kamlesh Khunti) independently extracted data concerning progression to T2DM, body mass 

index (BMI) at baseline, and age. Disagreements were resolved through discussion. Meta-

analyses were conducted on the log hazard ratio scale. Not all the trials reported the necessary 

summary statistics directly, hence some transformation of and estimation from the reported data 

was necessary (Parmar et al., 1998, Clayton and Hills, 1993).   

 

Where the hazard ratio (HR) and a confidence interval were reported, as in the DPS, STOP-

NIDDM and Wein studies,  the SE of the Ln(HR) was obtained using equation 4.1. UppCI and 

LowCI are the value for the upper and lower ends of the confidence interval for Ln(HR), 1−Φ  is 

the inverse cumulative normal distribution function andα is the percent for the confidence 

interval. 
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One study (Xendos) reported only a HR along with a p-value from the log-rank test, but no 

confidence interval. The SE of the Ln(HR) was calculated using the formula given in equation 

4.2, where p is the reported (two-sided) p-value. 
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Six studies (Heymsfield, Jarrett, Kosako, Liao, Li and Pan) did not report results in the form of 

hazard ratios but instead reported the percentage that developed T2DM. Incidence rates were 

calculated using information on person years of follow-up (number of cases of diabetes divided 

by total person years of follow-up). Incidence rate ratios (IRRs) could then be calculated to 

compare the two intervention groups. Where person years of follow-up was not reported it was 
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estimated by assuming drop-outs, deaths and development of T2DM had occurred on average 

half-way through the trial and therefore these individuals added half the trial length to the total 

person years of follow-up. Those who continued to the end of the trial attributed the full trial 

length to the total. The IRRs could therefore be estimated. IRRs can be considered 

approximations of HRs, although both are modelled under different assumptions. For HRs 

calculated from a Cox regression model (Collett, 1994), the only assumption is that the HR is 

constant over time, whereas IRRs additionally assume constant hazards in each of the 

comparison groups (Clayton and Hills, 1993). This is not an ideal scenario but is the only 

solution where results are reported as described above. The IRRs were transformed to the log 

scale for the meta-analyses, and the standard error of the estimated Ln(IRR)s was calculated 

using equation 4.3, where dT and dC were the numbers who developed T2DM in the treatment 

and control arms respectively. 

 

 
CT dd

IRRLnSE 11)]([ +≈    [Equation 4.3] 

 

When data was extracted from the Da Qing trial, the fact that they had assessed three different 

lifestyle interventions needed to be accounted for, as entering all three intervention effects in to 

the lifestyle meta-analysis would result in multiple use of the same control group. To adjust for 

this the number of cases of diabetes and estimated person years for the control group was 

divided by three, the number of interventions from the trial, and the IRRs then calculated, 

effectively using a proportion of the control group. Furthermore, as the Da Qing study was 

randomised at the clinic level, the consequential clustering effect was adjusted for by 

reanalysing the reported data by fitting a Poison regression model, with clinic included as a 

random effect )(γ  (Equation 4.4). As number of events (E) is modelled, rather than rate, person 

years of follow-up are entered as an offset in the linear predictor (Y), t representing treatment 

group (control or intervention),  j clinic and the intervention effect is represented byβ , with x 

as a dummy variable taking the value 0 for the control group and 1 for the intervention group.  
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All studies included in the meta-analyses were assessed for quality, using the Jadad score (Jadad 

et al., 1996). The Jadad score is a simple tool that assesses the quality of a clinical trial by 

giving a total mark out of 5 for the three following questions; 

 

i) Was the study described as randomised? 

ii) Was the study described as double blind? 

iii) Was there a description of withdrawals and dropouts? 

 

A more detailed description of the Jadad score is given in appendix 2. As it is an important 

aspect of quality not included in the Jadad score, concealment of allocation was also assessed as 

an additional measure of trial quality.  

 

4.4 Analyses and Results 

A number of analyses were carried using data from the identified studies, including meta-

analyses (methodology described in section 2.3.4) of the intervention trials, using both a 

Bayesian and a traditional frequentist approach, a mixed treatment comparison analysis 

(methodology described in section 2.3.6), an assessment of sources of study heterogeneity 

through meta-regression analyses (methodology described in section 2.3.5) and an assessment 

of baseline risk on the effectiveness of interventions. The analyses were carried out using either 

maximum likelihood estimation (MLE) in Stata (StataCorp, 2001), or MCMC methodologies in 

WinBUGS (Spiegelhalter et al., 2000). 

 

4.4.1 Meta-analyses of the intervention trials 

Meta-analyses were carried out to combine the hazard ratios (HR) from each study into pooled 

estimates. As the trials varied considerably in terms of participants and intervention duration, 

random effect models were fitted to allow for the presence of between study heterogeneity 

(equation 4.5, i represents study, iHR  is an estimate of effect size, iθ  is the true effect size and 

2
is  is the observed variance of iy  for study i, μ  is the pooled estimate of effect size, and 2τ  

represents the between-study variance) (Sutton et al., 2000). 
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),(~)( 2
iii sNHRLn θ      [Equation 4.5] 

  ),(~ 2τμθ Ni  

 

Meta-analyses were carried out separately for lifestyle interventions, anti-diabetic agents and 

anti-obesity agents in both Stata and WinBUGS (code in Appendix 3.1). The lifestyle 

interventions were further stratified by whether the intervention consisted of diet alone, exercise 

alone, or a combination of diet and exercise regimes. The pharmacological intervention 

troglitazone was not included in the meta-analyses as this drug has been withdrawn from a 

number of markets worldwide due to problems of liver toxicity (Knowler et al., 2005). The data 

used for the meta-analyses is given in table 4.2. Sensitivity analyses, using both half normal and 

uniform distributions, were carried out to check whether the prior distribution placed on the 

between study variance (τ2), was influencing the results of the meta-analyses, with the results 

discussed in section 4.4.2. Distributions commonly used for τ2, and the importance of carrying 

out sensitivity analyses on this prior, are discussed in detail in Chapter 2. 

 

Additionally the pooled hazard ratios from the meta-analyses, together with the pooled hazards 

of developing T2DM from the control arms of the trials, were used to estimate the difference 

intervening would make in 5 year probability of developing T2DM (P) and the associated 

number needed to treat, under the assumption of a constant hazard (equation 4.6, where μ  

represents the log HR of T2DM from the meta-analyses, α  the baseline hazard of T2DM in the 

control groups of the intervention trials and δ the absolute difference in 5 year probability of 

T2DM). The WinBUGS code for this is given in Appendix 3.2, more detail on NNT is given in 

Chapter 2. The results of the meta-analyses and NNT calculations are presented in section 4.4.2. 
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Table 4.2: Information used for the meta-analyses 

Trial and intervention Log hazard 
ratio (SE)* 

Mean 
BMI 
(kg/m2) 

Mean age 
(years) 

Average follow-up 
(years) 

Baseline 
risk†  

Quality assessment** 
Concealed 
allocation 

Randomised Blinded Dropouts Jadad  
score  

Lifestyle           
Da Qing, Diet -0.45 (0.22) 25.8 45.6 4.51* 15.7 No 1 0 1 2 
Jarrett , Diet  -0.17 (0.39) 26.2 56.7 4.39* 2.6 No 1 0 1 2 
Wein, Diet -0.46 (0.30) 25.4 38.7 4.25 7.1 No 1 0 1 2 
Da Qing, Exercise -0.64 (0.23) 25.8 45.3 4.62* 15.7 No 1 0 1 2 
Tao, Diet and exercise -1.20 (0.57) 25.4 51.0 2.58 17.0 No 1 0 1 2 
Da Qing, Diet and exercise -0.49 (0.23) 26.3 45.5 4.52* 15.7 No 1 0 1 2 
DPP, Diet and exercise -0.87 (0.11) 34.0 50.4 2.80 11.0 No 1 0 0 1 
DPS, Diet and exercise -0.92 (0.22) 31.2 55.0 3.20 7.4 No 1 0 0 1 
Fang, Diet and exercise -0.29 (0.39) 25.0 48.0 3.88* 10.0 No 2 0 1 3 
IDDP, Diet and exercise -0.47 (0.20) 25.8 45.9 2.50 18.3 No 1 0 1 2 
Kosaka, Diet and exercise  -1.24 (0.60) 23.8 51.5* 3.64 2.6 No 1 0 1 2 
Liao, Diet and exercise -0.66 (1.22) 26.1 54.0 1.83* 3.1 No 1 0 1 2 
Pharmacological/herbal           

Fang, Acarbose -1.31 (0.55) 24.8 48.7 4.14* 10.0 No 2 0 1 3 
Pan, Acarbose -0.51 (0.48) 25.7 54.5 0.37 30.0 No 1 2 0 3 
STOP, Acarbose -0.29 (0.09) 30.9 54.5 3.30 12.6 Yes 2 0 1 3 
Fang, Flumamine -0.84 (0.49) 25.0 48.7 4.06* 10.0 No 2 0 1 3 
Eriksson, Glipizide -1.74 (1.10) 28.1 56.5. 1.32 23.8 No 1 2 1 4 
DPP, Metformin -0.37 (0.10) 34.0 50.6 2.80 11.0 No 1 1 0 2 
IDDP, Metformin -0.43 (0.20) 25.8 45.9 2.50 18.3 No 1 0 1 2 
Li, Metformin -0.72 (0.71)  26.2 49.5 0.92 7.1 No 1 1 1 3 
Jarrett, Phenformin 0.01 (0.39) 26.2 56.7 4.36* 2.6 No 1 1 1 3 
Heymsfield, Orlistat -0.95 (0.35) 35.8 44.1 1.59 4.8 No 1 1 0 2 
Xendos, Orlistat -0.73 (0.31) 37.3 43.0 2.78 5.9 Yes 1 2 0 3 
Fan, Jiangtang bushen recipe -1.14 (1.15) 25.5 56.0 0.90* 13.3 No 2 0 1 3 
*estimated from, or a transformation of, the original data  † incidence of T2DM per 100 person years in the control group 

** Quality was assessed by allocation of concealment and the Jadad score. The Jadad score comprised of randomisation and blinding (both marked out of 2), and the description of 
withdrawals and dropouts (marked out of 1). The total Jadad score was therefore out of 5. 
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4.4.2 Results of the meta-analyses  

The results of the meta-analyses and sensitivity analyses are given in table 4.3. The MLE 

models were fitted in Stata and the MCMC models in WinBUGS. All the MLE meta-analyses, 

apart from the one trial that had assessed a herbal intervention, provided overwhelming 

evidence to support the benefit of interventions to prevent or delay T2DM. The pooled effect for 

all forms of lifestyle interventions gave a hazard ratio of 0.51 (95% confidence interval, 0.44 to 

0.60), p<0.001 (figure 4.2), indicating a relative 49% reduction in risk of developing T2DM. 

When diet, exercise, and diet and exercise in combination were considered separately, they all 

showed a similar reduction in risk, hazard ratios 0.67 (0.49 to 0.92), p=0.013, 0.49 (0.32 to 

0.74), p=0.001, and 0.49 (0.40 to 0.59), p<0.001, respectively.  

 

Both forms of pharmacological intervention, oral anti-diabetic agents and the anti-obesity agent, 

also showed a highly significant benefit of intervention compared to control, hazard ratios 0.70 

(0.62 to 0.79), p<0.001, and 0.44 (0.28 to 0.69), p<0.001, respectively (figure 4.3). The one trial 

that assessed a herbal intervention had a hazard ratio favourable to the intervention, although 

this was non-significant, 0.32 (0.03 to 3.07), p=0.323.  

 

The pooled estimates were robust to varying the distribution of the between study standard 

deviation (τ) (Table 4.3). All the MCMC estimates had greater uncertainty around the pooled 

hazard ratio compared to the MLE analyses, due to their inclusion of uncertainty around τ, and 

also because a larger value of τ increases the uncertainty around the pooled estimate. For a 

number of the MLE analyses τ was estimated as 0. This is the minimum allowed by Stata, 

although in fact the data may have supported a value < 0. For the MCMC analyses, as a positive 

value of τ is sampled for each iteration, the mean value estimated must always be > 0.  

 

Where several studies were combined in the meta-analyses, for example the analyses of lifestyle 

interventions, varying the prior distribution of τ had minimal impact on the pooled hazard ratio. 

The meta-analyses where only two studies were combined were more sensitive to the prior 

distribution on τ. This is to be expected as where there are fewer studies to estimate the 

variance, the prior distribution on τ will have a greater impact, and therefore problems occur if 

vague priors are used for meta-analyses with few studies (Browne and Draper, 2000, Lambert et 

al., 2005). The largest prior used in the sensitivity analyses of  τ ~ Uniform(0,10), covers an 

extremely large range of possible values for the hazard ratio, as demonstrated by (Spiegelhalter 
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et al., 2004). From table 4.3 it can be seen that the pooled estimates from the MLE and MCMC 

analyses, were most similar for the overall pooled effect of lifestyle interventions, which were 

the meta-analyses containing the most number of studies. For the comprehensive decision 

model, the prior distribution used for the intervention meta-analyses was τ ~ Uniform(0,2). 



 

 

Table 4.3: Results of the meta-analyses 

 

Intervention Study  
N 

Model Hazard ratio  
(95% CI/CrI) 

Between study standard deviatio
(95% CrI) 

Anti-diabetic  
agents  

9 MLE 0.70 (0.62, 0.79) 0.00 
9 MCMC, τ ~ Uniform(0,2) 0.66 (0.47, 0.83) 0.20 (0.014, 0.656) 
9 MCMC, τ ~ Uniform(0,10) 0.66 (0.47, 0.82) 0.19 (0.003, 0.656) 
9 MCMC, τ ~ Normal(0,1)I(0,) 0.67 (0.49, 0.82) 0.17 (0.001, 0.588) 

Anti-obesity  
agent 

2 MLE 0.44 (0.28, 0.69) 0.00 
2 MCMC, τ ~ Uniform(0,2) 0.56 (0.10, 1.86) 0.70 (0.023, 0.550) 
2 MCMC, τ ~ Uniform(0,10) 0.44 (0.01, 81.08) 2.33 (0.036, 9.039) 
2 MCMC, τ ~ Normal(0,1)I(0,) 0.52 (0.13, 1.33) 0.52 (0.018, 1.749) 

Lifestyle (all) 12 MLE 0.51 (0.44, 0.60) 0.08 
12 MCMC, τ ~ Uniform(0,2) 0.53 (0.43, 0.64) 0.16 (0.015, 0.438) 
12 MCMC, τ ~ Uniform(0,10) 0.53 (0.43, 0.65) 0.16 (0.015, 0.438) 
12 MCMC, τ ~ Normal(0,1)I (0,) 0.53 (0.43, 0.64) 0.17 (0.012, 0.423) 

Diet only 3 MLE 0.67 (0.49, 0.92) 0.00 
3 MCMC, τ ~ Uniform(0,2) 0.74 (0.31, 1.57) 0.43 (0.016, 1.604) 
3 MCMC, τ ~ Uniform(0,10) 0.69 (0.18, 2.84) 0.73 (0.014, 4.864) 
3 MCMC, τ ~ Normal(0,1)I (0,) 0.73 (0.34, 1.29) 0.35 (0.010, 0.235) 

Exercise only 2 MLE 0.49 (0.32, 0.74) 0.00 
2 MCMC, τ ~ Uniform(0,2) 0.57 (0.09, 1.89) 0.77 (0.03, 1.90) 
2 MCMC, τ ~ Uniform(0,10) 0.44 (0.01, 119.9) 2.64 (0.065, 9.089) 
2 MCMC, τ ~ Normal(0,1)I (0,) 0.53 (0.12, 1.41) 0.59 (0.017, 0.454) 

Diet and exercise 
combined 

7 MLE 0.49 (0.40, 0.59) 0.10 
7 MCMC, τ ~ Uniform(0,2) 0.50 (0.37, 0.70) 0.25 (0.014, 0.810) 
7 MCMC, τ ~ Uniform(0,10) 0.50 (0.36, 0.71) 0.27 (0.017, 0.845) 
7 MCMC, τ ~ Normal(0,1)I (0,) 0.50 (0.37, 0.69) 0.24 (0.013, 0.675) 
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Figure 4.2: Meta-analysis of the effect of lifestyle interventions on the risk of 

developing T2DM 

                                                                  Hazard ratio

0 1 2 3

Hazard Ratio
(95% CI)

Study Favours
Intervention

Favours
Control

Diet
Da Qing, 1997 0.64 (0.41, 0.99)
Jarrett, 1979 0.85 (0.40, 1.81)
Wein, 1999 0.63 (0.35, 1.14)
Pooled effect

0.67 (0.49, 0.92)MLE
0.74 (0.31, 1.57)MCMC

Exercise
Da Qing, 1997 0.53 (0.34, 0.82)
Tao, 2004 0.30 (0.10, 0.93)
Pooled effect

MLE 0.49 (0.32, 0.74)
0.57 (0.09, 1.89)MCMC

Diet and Exercise
Da Qing, 1997 0.61 (0.39, 0.95)
DPP, 2002 0.42 (0.34, 0.52)
DPS, 2003 0.40 (0.26, 0.61)
Fang, 2004 0.75 (0.35, 1.60)
IDDP, 2006 0.62 (0.42, 0.92)
Kosaka, 2005 0.29 (0.09, 0.94)
Liao, 2002 0.52 (0.05, 5.69)
Pooled effect

MLE 0.49 (0.40, 0.59)
MCMC 0.50 (0.37,0.70)

Overall Pooled Effect
MLE 0.51 (0.44, 0.60)

0.50 (0.37, 0.70)MCMC
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Figure 4.3: Meta-analyses of the effect of pharmacological and herbal 

interventions on the risk of developing T2DM 

 

                                                                           Hazard ratio

0 1 2 3

Hazard Ratio
(95% CI)

Study Treatment Favours
Intervention

Favours
Control

Oral Anti-diabetic Agents

Fang, 2004 Acarbose 0.27 (0.09, 0.79)
Pan, 2003 Acarbose 0.60 (0.24, 1.53)
STOP-NIDDM, 2002 Acarbose 0.75 (0.63, 0.90)
Fang, 2004 Flumamine 0.43 (0.16, 1.14)
Eriksson, 2006 Glipizide 0.18 (0.02, 1.50)
DPP, 2002 Metformin 0.69 (0.57, 0.84)
IDPP, 2006 Metformin 0.65 (0.44, 0.96)
Li, 1999 Metformin 0.49 (0.12, 1.95)
Jarrett, 1979 Phenformin 1.01 (0.48, 2.15)

Pooled Effects 0.70 (0.62, 0.79)MLE
0.66 (0.47, 0.83)MCMC

Anti-obesity Agent
Heymsfield, 2000 Orlistat 0.39 (0.19, 0.78)
Xendos, 2004 Orlistat 0.48 (0.26, 0.88)

Pooled Effects 0.44 (0.28, 0.69)MLE
0.56 (0.10,1.86)MCMC

Herbal

Fan, 2004 Jiangtang Bushen
Recipe

0.32 (0.03, 3.07)
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Combining the baseline rate of  T2DM in the control arms of all 17 trials gave a probability of 

developing T2DM over 5 years of 37.1%, which is in line with previously reported estimates 

(de Vegt et al., 2001, Edelstein et al., 1997b). Using the pooled hazard ratios from the meta-

analyses, as detailed in equation 4.6, the absolute difference in probability of T2DM in terms of 

percentage points would be -16 (95% credible interval, -12 to -20) by the lifestyle intervention, -

9 (-6 to -12) by oral anti-diabetic agents, -18 (-13 to -24) for orlistat and -20 (-38 to 12) for the 

jiangtang bushen recipe (table 4.4). These were used to calculate numbers needed to treat 

(NNT), where NNTB infers a benefit, that is the number needed to be treated with the 

intervention compared to the control treatment to prevent or delay one case of T2DM, and 

NNTH infers a harming effect of the intervention, that is the number needed to be treated by the 

control treatment compared to intervention, to prevent or delay one case of T2DM (Altman, 

1998). NNT were, for lifestyle 6.4 (95% credible interval, NNTB 5.0 to NNTB 8.4), oral anti-

diabetic agents 10.8 (NNTB 8.1 to NNTB 15.0), orlistat 5.4 (NNTB 4.1 to NNTB 7.6) and 

jiangtang bushen recipe 4.0 (NNTH 16.9 to NNTB 24.8). 

 

Table 4.4: Results from the number needed to treat analysis 

Intervention 5-year probability 
of developing 
T2DM in all 
control group (PC)  

5-year probability 
of developing 
T2DM in the 
intervention group 
(PT)  

Absolute 
difference (δ) 

Number needed 
to treat (η ) 

Anti-diabetic 
agents 

0.37 (0.27, 0.48) 0.27 (0.20, 0.37) 0.09 (0.06, 0.12) 10.8 (8.1, 15.0) 

Anti-obesity 
agents 

0.37 (0.27, 0.48) 0.19 (0.12, 0.26) 0.18 (0.13, 0.25) 5.4 (4.1. 7.6) 

Lifestyle 0.37 (0.27, 0.48) 0.21 (0.15, 0.29) 0.16 (0.12, 0.20) 6.4 (5.0, 8.4) 
Herbal remedy 0.37 (0.27, 0.48) 0.17 (0.03, 0.49) 0.20 (-0.12, 0.38) 4.0 (-16.9, 24.8) 
* values in parenthesis are 95% CrI 

 

4.4.3 Factorial trials 

The factorial trials present in the review were interesting in that the results they provided meant 

they were dealt with differently in the standard meta-analyses compared to the mixed treatment 

comparisons. The trial by  Jarrett et al. (Jarrett et al., 1979) used a factorial design, assessing 

one pharmacological and one lifestyle intervention. For the standard meta-analyses it was 

assumed there was no interaction between treatments, and groups were combined, so that all 

individuals were entered into both the pharmacological and lifestyle meta-analyses. As the 

lifestyle and pharmacological meta-analyses were carried out separately, then there was no 
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issues over double counting, where individuals were used in both. For the MTC analyses the 

four groups, placebo and control diet, placebo and intensive diet, phenformin and control diet 

and phenformin and intensive diet, were entered separately. 

 

The IDDP trial (Ramachandran et al., 2006) included an arm that combined treatments in that 

individuals were randomised to a control, lifestyle intervention, metformin and  finally a 

combination of lifestyle and metformin. For the standard meta-analyses the hazard ratios 

reported for the three arms assessing individual treatments were used. For the MTC analyses 

incidence rates per 100 person years were calculated for each of the four treatment groups. This 

second method has the limitation that constant incidence rates must be assumed. 

 

The Da Qing trial (Pan et al., 1997) also included an arm that combined treatments. Treatment 

groups were control, diet, exercise and then diet and exercise combined. For the standard meta-

analyses incidence rate ratios were used for each of the three lifestyle interventions compared to 

the controls, allowing for the multiple use of the control arm. For the MTC all three treatment 

groups were combined and compared against controls. The MTC analysis is discussed further in 

section 4.4.4. 

 

4.4.4 Mixed treatment comparison (MTC) analyses 

To enable a direct comparison between lifestyle and anti-diabetic interventions a mixed 

treatment comparison (MTC) model was fitted in WinBUGS (appendix 3.3). MTC meta-

analysis is a generalization of standard pair wise meta-analysis for A vs. B trials, to more 

complex data structures such as A vs. B, B vs. C and A vs. C, as described in section 2.3.6. 

MTC facilitates simultaneous comparisons of all treatments to allow the selection of the best 

treatment. The model allows for correlation between treatment arms from the same study )( ijρ  

(Lu and Ades, 2004), α represents the log hazard rate in the control group, and γ  the difference 

in log hazard between an intervention and the controls, i represents study and t intervention. 

Thus the model can be specified as in equation 4.7, where iα  is the study effect, τ is the 

between study standard deviation, 
i

dβ is the baseline treatment in study i and Tid is the 

comparator treatment: 
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with vague prior distributions specified as:  
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The graph in figure 4.4 represents the network of treatment comparisons made by the 17 trials 

included in the meta-analyses. For example eight trials compared standard advice against a 

lifestyle intervention, and two trials compared orlistat with placebo. Where the evidence is 

linked in such a manner, i.e. a pathway can be traced between all treatments, then indirect 

comparisons can be made between treatments that were not compared directly within a trial. For 

the purposes of the MTC, the three control groups (placebo, standard advice and both placebo 

and standard advice) in graph 4.4 were combined. 

 

As different baselines (placebo, standard lifestyle advice etc.) were combined in the model, an 

initial assessment, using maximum likelihood estimation, was carried out to make sure baseline 

risk did not differ between forms of controls. For example trials involving placebos might have 

been associated with patient groups at greater risk of T2DM. Three separate meta-analyses were 

carried out to combine the log incidence rate of diabetes in control groups that had received 

standard lifestyle advice, those that had received placebo and those that had received both. The 

comparison showed all three types of baseline groups had similar baseline risk, standard 

lifestyle advice (11 studies) pooled log incidence rate per 100 person years 2.48 (95% CI: 2.37 

to 2.59), placebo (6 studies) 2.46 (2.36 to 2.57) and control groups receiving both standard 

advice and placebo (5 studies) 2.44 (2.38 to 2.50). All had significant within group 

heterogeneity, but between group heterogeneity was non-significant, p=0.327. With the control 

groups combined in the model, an indirect comparison of lifestyle against anti-diabetic drugs 
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resulted in a non-significant hazard ratio of 1.061 (95% CrI: 0.704 to 1.461). Therefore there is 

currently no evidence to support one intervention being more effective than the other. 

 

The above model also allowed for an assessment of the presence of an interaction effect for 

when interventions were administered in combination. Lifestyle and anti-diabetic treatments 

were administered together in both the Jarrett and IDDP trials. The hazard ratio of lifestyle and 

anti-diabetic agents in combination, versus controls, compared to the effect of lifestyle and the 

effect of anti-diabetic agents simply added together (when added on the log scale), was 1.406 

(95% CrI: 0.6794 to 2.538). The credible interval is wide as only two studies assessed the effect 

of giving lifestyle and anti-diabetic treatments in combination. This suggests that although the 

null value of 1 is within the 95% credible interval, a synergistic effect if treatments are 

administered in combination, cannot be ruled out.  

 



 

 

Placebo Standard Advice Standard Advice 
and Placebo

Lifestyle

Anti-diabetic drugs
Acarbose (3)
Flumamine (1)
Glipizide (1)
Metformin (3)
Phenformin (1)

Anti-obesity 
drugs
Orlistat (2)

Anti-diabetic 
drugs and 
lifestyle

Figure 4.4: Network of type 2 diabetes prevention trials
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4.5 Exploration of heterogeneity, study quality and publication bias 

Further analyses, as described below, were conducted separately for lifestyle interventions, oral anti-

diabetic agents, orlistat and jiangtang bushen recipe, although not all analyses could be carried out for 

the last two categories due to the small number of trials.  

 

4.5.1 Assessment of heterogeneity  

Between study heterogeneity was quantified by the I2 statistic, as described in Chapter 2, which 

measures the proportion of inconsistency in individual studies that cannot be explained by chance 

(Higgins et al., 2003), and explored through meta-regression models (Sutton et al., 2000), where the 

study level covariates mean age, mean body mass index and length of follow-up were individually 

assessed (WinBUGS code detailed in appendix 3.4). A generic meta-regression model is given in 

equation 4.8, where Yi represents the intervention effect, i study, x the covariate of interest, iθ  is the 

true effect size when x=0, 2
is  is the observed variance of iY , μ  is the pooled estimate of effect size, 

and 2τ  represents the between-study variance. 

 

),(~ 2
iiii sxNY βθ +     [Equation 4.8] 

  ),(~ 2τμθ Ni   

 

The I2 statistics indicated that 0% of the variation in the anti-obesity agents and the oral anti-diabetic 

agents meta-analyses, and just 8.8% in the lifestyle meta-analysis, was due to between study 

heterogeneity. The results of the meta-regression analyses are reported in table 4.5 and figures 4.5 and 

4.6, where the size of the circle represents the SE of the Log hazard ratio and the weight given to each 

study estimate.  For lifestyle interventions each 1 kg/m2 increase in the mean body mass index of a 

study at baseline, led to a decrease in the hazard ratio of -7.3% (-13.6 to -0.9), p=0.029. This provides 

evidence that as the average trial body mass index at baseline increased, the effectiveness of the 

lifestyle intervention also increased, meaning that lifestyle interventions were more effective in trials 

that recruited participants with higher body mass index values. From graph 4.5 a) though, it can be 

seen that two studies with high mean BMI, appeared to have high leverage, and hence were possibly 

influencing this result. 
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The between study standard deviation (τ), which was estimated as 0 for anti-diabetic agents in the 

MLE meta-analysis, and 0.08 for lifestyle interventions (table 4.3), was reduced to 0 for lifestyle 

interventions in the meta-regression analyses, when some of the between study heterogeneity was 

accounted for (table 4.5). For anti-diabetic agents, the between study standard deviation could not be 

reduced further, and was estimated as 0 for the meta-regression analyses. 

 

Table 4.5: Results of the meta-regression analyses 

Intervention 
 

Covariate Coefficient*  
(95% CI) 

Percentage change 
in the hazard ratio 
(95% CI) 

τ P-value 

Lifestyle Mean BMI 
(kg/m2) 

-0.04 (-0.08, -0.01) -7.3 (-13.6, -0.9) 0 0.029 

Mean age 
(yrs) 

-0.03 (-0.07, 0.01) -3.8 (-8.6, 1.0) 0 0.106 

Follow-up 
(yrs) 

0.15 (-0.04, 0.35) 9.5 (-3.3, 30.0) 0 0.108 

Anti-diabetic 
agents 

Mean BMI 
(kg/m2) 

0.02 (-0.03, 0.07) 1.9 (-4.1, 7.8) 0 0.482 

Mean age 
(yrs) 

0.03 (-0.02, 0.08) 1.5 (-1.4, 4.4) 0 0.257 

Follow-up 
(yrs) 

0.08 (-0.17, 0.33) 13.1 (-30.0, 56.3) 0 0.495 

* the coefficient represents the change in the log hazard ratio for a 1 unit increase in the covariate. 

 

 

The meta-regression analyses were carried out using aggregated patient data, in that it was the study 

level mean BMI at baseline, mean age and mean length of follow-up that were utilised in the analyses, 

and not individual patient data. This is problematic, as discussed in section 2.3.5, in that not only do 

meta-regression analyses lack power to identify interactions between study level covariates and 

estimated intervention effects, interpreting results can lead to incorrect conclusions. Problems of 

‘ecological bias’ may be introduced, in that although a relationship may appear to exist at the study 

level, it may not be found to be true if individual patient data was assessed (Lambert et al., 2002). So 

although it appears intervention effects increase with the mean BMI of a study, if individual patients 

within a trial were examined it may be found intervention effects actually decrease with BMI, or in 

fact no relationship exists. Methods have recently been developed that combine the use of both IPD 

and summary data to assess sources of heterogeneity (Jackson et al., 2006).  
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Figure 4.5: Association between study level covariates and the effectiveness of lifestyle 
interventions 

a) Mean study BMI (Kg/m2) 
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b) Mean age of study participants (years) 
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c) Mean length of follow-up (years) 
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Figure 4.6: Association between study level covariates and the effectiveness of  anti-diabetic 
interventions 

a) Mean study BMI (Kg/m2) 
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b) Mean age of study participants (years) 
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Due to heterogeneity in the trial populations, the underlying rate of development of T2DM varied 

between trials. The effect of this baseline risk on effectiveness of interventions was assessed by fitting 

a Bayesian meta-analysis model, accounting for both the uncertainty in the baseline risk and the 

inherent correlation between the baseline risk and hazard ratios (Sharp and Thompson, 2000), the 

code for which is given in appendix 3.5. The model was fitted as given in Equation 4.9, where t
id and 

c
id represents the number of cases of T2DM in both the control group and intervention group for each 

study (i), y represents the person-years of follow-up, and γ  the natural log of the incidence rate ratio 

at the mean rate (
_
α ), where the

_
α varies from one iteration to the next. The effect of baseline is 

represented byβ . 

 

  )(~ c
i

c
i Poissond μ  and )(~ t

i
t
i Poissond μ  

i
c
i

c
i yLnLn αμ += )()(    [Equation 4.9] 
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Baseline risk of T2DM varied greatly between trials, from 2.6 to 30.0 cases per 100 person years 

(table 4.2). Assessments of the data showed no indication of an interaction between the underlying 

baseline risk and the effect of lifestyle interventions (figure 4.7), with only a small change in the log 

hazard ratio for a one unit increase in the log baseline risk, and the 95% credible intervals containing 

the null value of zero, -0.01 (95% CrI: -0.31 to 0.34). The assessment of baseline risk for anti-diabetic 

agents showed more of an interaction with their effectiveness (figure 4.8), although again the null 

value of 0 was contained within the credible interval, -0.13 (95% CrI: -0.72 to 0.43).  

 

Sensitivity analyses, using maximum likelihood estimation, were undertaken to assess the effect of 

different definitions of IGT and T2DM used by different trials, by removing the studies using the 

newer, lower threshold for fasting plasma glucose from the meta-analyses. Removing the trials that 

had used the newer diagnosis criteria for IGT or T2DM had minimal effect on the results, with the 
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pooled hazard ratio and 95% confidence interval for anti-diabetic drugs changing to 0.66 (0.46 to 

0.94) and for lifestyle interventions to 0.55 (0.45 to 0.66).  

 

 

Figure 4.7: Effect of baseline risk on the effectiveness of lifestyle interventions 
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Figure 4.8: Effect of baseline risk on the effectiveness of anti-diabetic agents 
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To investigate individual study influence on the hazard ratio, again using maximum likelihood 

estimation methods, the effect of removing each study individually from the meta-analyses was 

examined. Results of the pooled intervention effects, with each study removed, are presented in table 

4.6. It can be seen that no single study was greatly influencing the meta-analyses results. 

 

Table 4.6: Pooled intervention effects with each study individually removed 

Lifestyle Interventions 
 

Anti-diabetic interventions 

Study removed Pooled intervention effect 
(95% CI) 

Study removed Pooled intervention effect 
(95% CI) 

Da Qing 0.49 (0.41, 0.60) DPP 0.69 (0.57, 0.83) 
DPP 0.56 (0.48, 0.68) Eriksson 0.70 (0.62, 0.79) 
DPS 0.53 (0.45, 0.62) Fang 0.71 (0.63, 0.80) 
Fang 0.51 (0.44, 0.59) IDPP 0.70 (0.61, 0.81) 
IDDP 0.50 (0.43, 0.58) Jarrett 0.69 (0.62, 0.78) 
Jarrett 0.50 (0.43, 0.57) Li 0.70 (0.61, 0.79) 
Kosako 0.52 (0.44, 0.60) Pan 0.70 (0.61, 0.80) 
Liao 0.52 (0.44, 0.61) STOP-NIDDM 0.66 (0.57, 0.78) 
Tao 0.52 (0.45, 0.61) All studies 0.70 (0.62, 0.79) 
Wein 0.51 (0.44, 0.60)   
All studies 0.51 (0.44, 0.60)   

 

4.5.2 Study quality and publication bias 

Impact of study quality was considered using both the overall Jadad score (as reported in table 4.2), as 

well as each component separately. A cumulative analysis approach was used by firstly meta-

analysing all the highest scoring, followed by inclusion of those which scored one point less, 

continuing until all studies were included. The pooled effect sizes at each step were then compared. 

Concealment of allocation was assessed by removing the trials that had reported this from the meta-

analyses. The three meta-analyses, lifestyle, anti-diabetic and anti-obesity, varied minimally when 

studies that had scored low on the Jadad were omitted, or when the individual components of the 

Jadad score were assessed individually through sensitivity analyses. For example, for the anti-diabetic 

meta-analysis removing the two studies that only scored 2 on the Jadad score, gave a pooled estimate 

of 0.71 (95% CI: 0.61 to 0.84). Removing the lowest scoring lifestyle studies, that is the two studies 

which only scored 1 on the Jadad score, gave a pooled intervention effect of 0.60 (0.50 to 0.72). 

Concealment of allocation had potentially only been carried out by two studies, STOP-NIDDM 

(Chiasson et al., 2002) and XENDOS (Torgerson et al., 2004), although this was difficult to assess in 

many studies due to poor reporting.  
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Publication bias, as discussed in chapter 2, was assessed using both Begg’s and Egger’s tests (Sutton 

et al., 2000). Publication bias was not identified for the lifestyle meta-analysis, Begg’s test p=0.945 

and Egger’s test p=0.340. For the anti-diabetic meta-analysis Begg’s test was statistically significant, 

p=0.012 and Egger’s tests, although not statistically significant, still indicated a problem may be 

present, p=0.058, especially as this test has low power. The funnel plots for both forms of 

interventions, which allow for a visual assessment of publication bias, are presented in figures 4.9 and 

4.10, and also indicate publication bias may be a problem for the anti-diabetic studies. Pseudo 

confidence interval limits are plotted to assist in interpreting the funnel plot, these are plotted at the 

+/- z  x SE of theta, where z is the standard Normal variate for the 95% confidence level.  

 

To assess the implications of publication bias on the estimated intervention effect, a ‘trim and fill’ 

methodology was used, as described in more detail in section 2.3.4. This estimates the number of 

missing studies by adding studies to make the funnel plot symmetrical. Using the metatrim command 

in STATA, three additional studies were added to the meta-analysis. The adjusted intervention effect 

was estimated as 0.72 (95% CI: 0.60 to 0.84), compared to the unadjusted MLE estimate of 0.70 (0.62 

to 0.79). Therefore although publication bias appears to be present, because a few large studies are 

dominating the intervention effect, it does not appear to be adversely affecting the meta-analysis 

results, i.e. the inputed studies are small and have little influence on the pooled estimate. The funnel 

plot with the three added studies is given in figure 4.11. 
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Figure 4.9: Funnel plot for lifestyle interventions 
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Figure 4.10: Funnel plot for anti-diabetic interventions 
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Figure 4.11: Trim and filled funnel plot for the anti-diabetic meta-analysis 
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4.5.3 Adverse events 
When considering the feasibility of possible interventions to delay/prevent T2DM, it is important to 

consider any possible side effects caused by the interventions. No adverse events were reported in the 

lifestyle intervention studies, those reported for pharmacological interventions are summarised in 

table 4.7. The majority of adverse events thought to be directly related to the intervention drugs were 

gastrointestinal or, in the case of troglitazone, a decline in liver functioning. Although the occurrence 

of adverse events varied widely between trials, all were higher in the intervention than the placebo 

groups. 
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Table 4.7: Reported adverse events possibly caused by the pharmacological interventions 

 

Active Intervention Trial 
 

Event Intervention 
Group 

Placebo Group 

Acarbose Fang Gastrointestinal side effects 8.0 0.0 

Pan Gastrointestinal side effects 35.7 18.2 

STOP  Gastrointestinal side effects 13.0 2.5 

Flumamine Fang Gastrointestinal side effects 6.3 0.0 
Glipizide Eriksson Hypoglycaemic symptoms 41.0 32.0 

Troglitazone DPP Liver function test >=3 4.3 3.6 
Liver function test >=10 1.2 0.2 

Metformin 
 

DPP Gastrointestinal symptoms  77.8* 30.7* 

IDDP Hypoglycaemia 8.4 0.0 

Gastrointestinal symptoms 1.9 0.0 

Li Gastrointestinal side effects 4.4 0.0 

Orlistat XENDOS At least one gastrointestinal event 
in the first year 

91.0 65.0 

At least one gastrointestinal event 
in the fourth year 

36.0 23.0 

Withdrawals due to adverse 
events 

4.0 8.0 

Figures are percentages except * which indicate number of events per 100 person years 

 

 

4.6 Discussion 

All of the meta-analyses show there is great potential for intervening to reduce the risk of T2DM in 

individuals with IGT, and lifestyle interventions appear to be at least as effective as pharmacological 

interventions. Both an increase in obesity and a decrease in physical activity in some westernised 

societies in recent years, are strongly linked with the increase in the prevalence and incidence of 

T2DM (Davies et al., 2004). Lifestyle interventions, which aim to reduce obesity and/or increase 

physical activity, help to directly address these risk factors. With T2DM affecting an estimated 171 

million people worldwide in the year 2000 and a projected doubling of cases by 2030 (Wild et al., 

2004), interventions to prevent T2DM will play an important role in future health policies. This 

analysis excluded studies that had assessed the effect of interventions on individuals with IFG. This 

was because the decision model developed here concentrates on the transition from IGT to T2DM, as 

more is known about progression between these two states. An assumption could have been made that 
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intervention effects would be the same in both IGT and IFG individuals, but as the trials containing 

IFG individuals were limited, minimal data was lost by their exclusion. 

 

For the decision model the effect of interventions will be modelled over a number of years, therefore 

the long-term effectiveness of interventions and compliance to them is an important consideration. 

The DPP trial reported progression to T2DM after withdrawal from troglitazone and metformin 

(Knowler et al., 2005, Diabetes Prevention Program Research, 2003). Results showed the treatment 

effect was not sustained following discontinuation, therefore the effectiveness of pharmacological 

interventions is reliant on compliance and a long-term commitment to the treatment. It is essential 

therefore that individuals are comfortable on the intervention and even minor adverse effects, such as 

the gastrointestinal problems summarised here, take on greater importance if interventions have to be 

taken for life. Generally it would be fair to assume that lifestyle interventions would incur fewer and 

less serious side effects than pharmacological, but as with the pharmacological interventions, their 

effect may not be permanent and dietary and exercise advice may need to be reinforced on a regular 

basis. Additionally, although compliance was high in these trials where it was reported, it is still to be 

determined whether compliance could be maintained outside of a trial setting. When using the 

intervention effects in the decision model assumptions of both compliance and whether the 

intervention effects are likely to decrease over time need to be considered. The effect of reducing 

compliance to interventions was assessed in the comprehensive decision model, as described in 

Chapter 8. 

 

Poor reporting of results in some of the intervention trials, made their inclusion in the meta-analyses 

either impossible or difficult. Most of the hazard ratios and incidence rate ratios included in the meta-

analyses were unadjusted, except those used for Wein (Wein et al., 1999), STOP-NIDDM (Chiasson 

et al., 2002) and IDDP (Ramachandran et al., 2006). As trial arms were similar at baseline for 

unadjusted and adjusted characteristics, it is unlikely adjustment introduced any inconsistency into the 

meta-analyses. 

 

An MTC analysis was carried out to enable trials comparing lifestyle interventions against controls, 

and/or pharmacological interventions against controls, to be combined, enabling a direct comparison 

of lifestyle vs. pharmacological interventions. The key assumptions made for a random effects MTC 

analysis are that although the effect sizes may differ between trials, they are from a common 

distribution, that is the same across trials (Caldwell et al., 2006) and that an additive scale of 
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measurement is being modelled, in that the relative effect of A vs. C can be predicted from A vs. B 

and B vs. C (Deeks, 2002), that is the indirect estimate is the same as would have been obtained from 

a head to head randomised control trial. Hazard ratios on the log scale were modelled, which is likely 

to be more appropriate for the second assumption. The first assumption is more difficult to check so 

sources of heterogeneity between study results were investigated as far as possible.   

 

From the meta-regression results it appears lifestyle interventions may have a greater impact the 

higher the mean baseline body mass index of a group of individuals. It is acknowledged though that 

using study-level data can lead to problems of aggregation bias, where there appears to be a 

relationship when in fact one does not exist at an individual level (Sutton et al., 2000). To conduct a 

more conclusive assessment individual person data would be needed. Baseline risk of T2DM was not 

shown to affect the effectiveness of the interventions, showing that the intervention effects should be 

consistent across populations with different risks of developing T2DM.  

 

The assessment of publication bias indicated that it might be an issue for the anti-diabetic agents 

meta-analysis, in that the funnel plot was asymmetric, with the smaller studies all showing large 

intervention effects. Re-estimating the effect size after using ‘trim and fill’ methods to correct for 

publication bias, only changed the pooled estimate minimally though. 

 

There was great diversity in study quality, with the lifestyle trials generally scoring lower on the Jadad 

score, where blinding of treatment was not possible. The Heymsfield (Heymsfield et al., 2000) trial 

combined data from three randomised controlled trials, so technically was not a true single study. It 

was treated as such for the purposes of these analyses, as results were not available for each trial 

individually. All three trials were almost identical in their design, and the trials had not been 

individually powered to assess incidence of T2DM as an outcome.  

 

Since the literature search was carried out for this review, a further relevant trial has been published, 

the Diabetes Reduction Assessment with Ramipril and Roglitazone Medication (DREAM) trial 

(DREAM trial investigators, 2006a, DREAM trial investigators, 2006b). Unfortunately a request for 

relevant data to enable this trial to be included in this review was unsuccessful. This trial only 

reported combined results for individuals with either IGT or impaired fasting glucose, so it is not 

directly comparable with our meta-analyses here, but in summary they found the ace-inhibitor 
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ramipril did not significantly reduce incidence of T2DM, hazard ratio 0.91 (95% confidence interval, 

0.80 to 1.03) but roglitazone, an oral anti-diabetic agent, did 0.38 (0.33 to 0.44), although there has 

been some concern expressed over the rate of cardiovascular events in the roglitazone group 

(Heneghan et al., 2006). 

 

4.7 Summary 

A systematic review and meta-analysis has been described here, with the purpose of obtaining pooled 

effect estimates, and associated distributions, of both lifestyle and pharmacological interventions for 

the decision model. Whilst substantial evidence has been found to support the clinical effectiveness of 

both lifestyle and pharmacological interventions in significantly reducing the risk of developing 

T2DM, a number of issues remain. For pharmacological interventions adverse effects need to be fully 

understood to enable potential harms and benefits to be assessed. There is also the issue of whether 

what is fundamentally a lifestyle problem should really be treated with a lifelong course of 

medication. For lifestyle interventions, compliance is the key to their success, therefore strategies to 

assist compliance need to be carefully thought through and implemented. All these issues will affect 

the long-term effectiveness of interventions which is an important consideration for the decision 

model. 

 

A great deal of effort has been used to ensure the meta-analyses of intervention trials are both 

comprehensive and systematic, with further analyses carried out to check for sources of heterogeneity 

and bias. Still the possibility of intervention effects being mis-specified has to be considered within 

the comprehensive decision model, particularly in terms of compliance and their long term 

effectiveness. Therefore an extension to the model, described in chapter 8, explores reduced 

compliance and hence reduced effectiveness of interventions, on the cost-effectiveness of the 

screening strategies where they are included. 

  

Finally, the evidence meta-analysed here is on patients already identified as having IGT. The overall 

effectiveness and cost-effectiveness of a policy of T2DM prevention/delay must consider how 

different identification and screening strategies would impact on the overall evaluation of such 

policies. This will be done using the comprehensive decision model described in the next chapter.
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5. MODELLING THE SCREENING AND INTERVENTION 
PATHWAY 

 

5.1 Chapter overview 

Before the comprehensive decision model was developed, decisions had to be made on how to 

structure the model. To do this a number of issues had to be considered, including clinical 

aspects of the IGT and T2DM disease pathway, and the likely approach that would be taken in 

the implementation of a screening strategy. The aim of this chapter is to explain the thought 

process that led to the structure of the final model. The actual data needed for the model will not 

be discussed here, but in detail in chapter 6. This chapter will firstly give a summary of how 

similar models have been constructed and their results, and then the model for this thesis is 

described along with an account of the decisions taken to determine the model structure. 

 

5.2 Existing work 

A literature search was carried out to identify previous decision models that had assessed 

screening for IGT or T2DM and models that had assessed interventions to delay T2DM in 

individuals at risk. The databases Medline, Embase and the Cochrane library were searched, as 

well as the ScHARR (School of Health and Related Research) website which has a section on 

reviewing modelling methods for the evaluation of screening programs. Models fell into three 

types, those that had considered screening tests, those that had assessed interventions for 

preventing T2DM, and those that had modelled the impact of screening and early diagnosis of 

T2DM. 

 

5.2.1 Previous models that have considered screening tests for IGT and/or T2DM 

Four studies were identified that had carried out economic evaluations comparing different 

screening tests for identifying individuals with IGT and/or T2DM (Zhang et al., 2003, Zhang et 

al., 2005, Shirasaya et al., 1999, Icks et al., 2004). Study characteristics are presented in table 

5.1. Model structures were simple in that they were based solely on costs of screening tests and 

test sensitivities and specificities. 
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The study by Icks et al. (2007) considered four screening strategies for T2DM, using 

population-based data on subjects aged 55 to 74 years. They ran a decision analytic model for a 

time horizon of one year and compared the following screening tests: fasting glucose testing, 

fasting glucose followed by OGTT, OGTT only, and HbA1c followed by OGTT. The main 

outcomes were costs, true-positive T2DM cases and incremental cost-effectiveness ratios. They 

found that a HbA1c test followed by an OGTT in those with a HbA1c value >5.6% identified the 

most cases of T2DM, but was also the most expensive strategy at €21.44 per patient. OGTT 

alone was the cheapest strategy at €4.90 per patient. They concluded that the decision regarding 

which is the most favourable approach to screening depends on whether the goal is to identify a 

high number of cases, or to incur lower costs at reasonable effectiveness. 

  

Shirasaya et al. carried out an economic evaluation of three screening tests for IGT and T2DM 

that do not require the subjects to fast beforehand. 891 men between 26 and 80 years of age 

were each screened using three tests, which were 1,5-anhydroglucitol (1,5-AG), HbA1c, and 

fructosamine (FRA). The primary health outcomes of the study were the number of IGT and 

T2DM diagnoses, the sensitivity and specificity of each test, and the area under the ROC curve 

for each test. Clinically no test gave an outstanding performance for detecting IGT and T2DM 

cases, with area under the ROC curves of 66.85%, 66.25% and 60.28% for each test 

respectively. Test efficiency was better when testing for T2DM alone, with area under the ROC 

curves of 90.83%, 88.72% and 78.49% respectively. The most cost-effective indicator was 

found to be FRA, although it was not clear how this was determined as the statistical analyses 

used to assess cost-effectiveness was not reported. 

 

Zhang et al. (2003) looked at cost and efficiency of screening for pre-diabetes using five 

detection strategies; OGTT, FPG, HbA1c, capillary blood glucose (CBG) and a risk assessment 

questionnaire. Main outcomes were proportion of cases identified, total costs and cost per case 

identified. They simulated a population based on the demographics of a U.S. population, aged 

between 45 to 74 years, who had visited a health care provider at least once in the last year. 

Data from a number of sources was utilised, including the Third U.S. National Health and 

Nutritional Examination Survey, the 2000 census, Medicare and published literature. They 

found that the cost per case of pre-diabetes or undiagnosed T2DM identified ranged from $176 

to $236, with HbA1c being the most expensive strategy and the risk assessment questionnaire, 

and CBG test being the cheapest. It was concluded that a trade-off must be made between 

clinical and cost-effectiveness when choosing an appropriate screening test strategy.  
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A similar economic evaluation was conducted by the same study group a few years later (Zhang 

et al., 2005), but in this study three screening tests were assessed; FPG, HbA1c and CBG. Tests 

were evaluated for screening for T2DM alone, or both T2DM and pre-diabetes combined,  and 

the cost-effectiveness of eight cut-off points for each test were evaluated. Again a U.S. 

population aged 45 to 74 years of age was simulated for the model. The number of cases 

identified by each test, at each cut-off was estimated using prevalence data, and test sensitivity 

data. The cost of opportunistic screening was estimated by multiplying the cost of screening one 

individual by the number of individuals who would be eligible for screening in the U.S. For all 

three screening tests cost per case identified first decreased and then increased as the cut-off 

value was increased. Using the most efficient cut-offs, FPG proved to be the cheapest test, 

followed by the CBG test, and the HbA1c test was the most expensive. 

 

In summary, the results of studies that have assessed the cost-effectiveness of different 

screening tests highlight the fact that it is still unclear which tests would be the most cost-

effective for screening for IGT and T2DM. The more accurate tests such as OGTT are also the 

more expensive, but as all tests are relatively cheap in terms of health care costs, then clinical 

effectiveness, ease of use and acceptability of a test to a population, are likely to be the most 

important factors for determining which screening tests to adopt. Overall though it is difficult to 

assess the cost-effectiveness of screening tests, without considering the clinical and cost 

implications of subsequent treatments and interventions. 
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Table 5.1: Studies of economic evaluations of screening tests for IGT and/or T2DM 

Study and 
Population 

Evaluated Analysis Data  Conclusions  

Icks (2004) 

 

1353 
participants 

55-74 years 

Germany 

Four screening 
strategies for T2DM; 
fasting glucose, 
fasting glucose and 
OGTT, HbA1c and 
OGTT, and OGTT 
alone. 

Calculated true 
positive cases 
identified, total 
costs and cost 
per patient 

Screening and 
population data from 
the KORA 2000 study. 
Costs came from the 
German healthcare 
system. 

HbA1c and OGTT 
was the most 
effective but the 
most expensive at 
€21.44 per patient. 
OGTT alone was 
the cheapest at 
€4.90 per patient. 

Shirasaya 
(1999)  

 

891 men 

26-80 years 
Japan 

Three screening tests 
for IGT and T2DM: 
1,5-anhydroglucitol, 
HbA1c and 
fructosamine. 

Economic 
evaluation based 
on sensitivity 
and specificity 
using optimal 
cut-offs. 

Screening data 
collected as part of this 
study. Cost data was 
obtained from external 
sources. 

FRA is the most 
cost-effective 
screening test for 
IGT and T2DM 

Zhang 
(2003) 

 

45-74 years 
U.S.A. 

5 detection strategies 
for IGT and T2DM: 

OGTT, FPG, HbA1c, 
capillary blood test 
(CBG) and a risk 
assessment 
questionnaire 

Calculated cases 
identified, total 
costs and cost 
per case 
identified. 

2000 census, Medicare, 
published literature and 
the U.S. national heath 
and nutrition 
examination survey 

CBG and the risk 
assessment 
questionnaire are 
the cheapest for 
cost per case 
identified.  

Zhang 
(2005) 

 

45-74 years 
U.S.A. 

Three screening tests 
for IGT and T2DM, 
FPG, HbA1c, CBG, 
each evaluated over a 
range of cut-off. 

Calculated cases 
identified, total 
costs and cost 
per case 
identified. 

2000 census, Medicare, 
published literature and 
the U.S. national heath 
and nutrition 
examination survey 

FPG is the cheapest 
test and HbA1c the 
most expensive for 

cost per case 
identified. 

 

 

5.2.2 Previous models that have considered interventions for T2DM prevention 

Eight studies were identified that had carried out economic evaluations of the clinical and cost-

effectiveness of intervening in individuals with IGT to try and prevent T2DM (Avenell et al., 

2004, Caro et al., 2004, Eddy et al., 2005, Herman et al., 2005, Icks et al., 2007, Jacobs-van der 

Bruggen et al., 2007, Palmer et al., 2004, Segal et al., 1998). These are summarised in table 5.2. 
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Seven of the models fitted were Markov models whereby a simulated population was moved 

between various states using estimated transition rates. One study used what they termed the 

Archimedes model (Eddy et al., 2005), which instead of modelling states, models what are 

termed ‘objects’. Eddy defines ‘objects’ as being any relevant factors that affect model 

outcomes which in this example included fasting plasma glucose, basal hepatic glucose 

production, blood pressure and body mass index. Numerous differential equations are then used 

to model how all the objects change and interact continuously over time. 

 

Only four of the studies gave diagrams of the model structure, allowing the configuration of the 

model to be fully understood. Figure 5.1 is reproduced from Avenell et al. (2004), and shows 

how their Markov model was based on three states. The model by Caro et al, (2004) followed a 

similar structure, although they included a fourth state of NGT. Both the papers by Icks and 

Palmer represented their models through fairly complex decision tree diagrams.  

 

The simulated populations varied between models, often they were characterised to represent a 

national population, for example, Jacobs-van der Bruggen (2007) based their model on the 

population demographics of the Netherlands, whereas other studies used the sample 

characteristics of the clinical trials from which they were deriving the intervention effect, for 

example Caro (2004) used the baseline characteristics from the STOP-NIDDM trial.  

 

Figure 5.1: Structure of the model as described and fitted by Avenell et al. 
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To briefly summarise some of the more important model assumptions made. The model by 

Avenell et al. was comprised of three Markov states of IGT, T2DM and death. It was assumed 

that individuals could not leave the model by reverting to NGT, and transition rates were used to 

move individuals between states on a yearly basis. The intervention assessed was lifestyle, 

which reduced the transition rate from IGT to T2DM when applied. The model by Caro et al 

was more complex and included an NGT state, in addition to IGT, T2DM and death, and 

included costs for identifying individuals with IGT. Their model cycled over 6 monthly periods 

and included a diabetes sub-model whereby the experience in the T2DM state was dependent 

upon the characteristics of an individual when they entered that state, such as HbA1c, age and 

gender. The model by Icks limited the time horizon of their model to just three years as this 

represented the length of follow-up of the trial data being utilised (DPP study). This was 

unusual and most models extrapolated trial data for longer than the follow-up of the trial. The 

model by Palmer included the three states, IGT, T2DM and death. Probability of death was 

dichotomised and dependent on whether individuals were diagnosed at onset of T2DM, or after 

an average 8 years remaining undiagnosed. Both the models by Segal and Jacobs-van der 

Bruggen used age specific mortality rates, but in many of the models it was unclear how 

transitions were changed over time. 

 

Data sources were varied with the models using a variety of sources from published trials, 

epidemiological studies and national statistics.  The time span, or time horizon, over which the 

models were run, ranged from just three years post intervention, up to the expected lifetime of 

the model population. Costs attached to the models were often country specific and of the eight 

studies only three included costs of identifying individuals with impaired glucose tolerance 

(Caro et al., 2004, Herman et al., 2005, Segal et al., 1998).  In general the data sources for the 

models were limited to a few sources. No attempt was made by any of the models to include all 

available data, so for example when modelling intervention effects using the results from just 

one trial was the norm. 

 

All models compared a strategy of interventions against no interventions, rather than screening 

for impaired glucose tolerance followed by interventions, in comparison to no screening. All but 

one model simulated populations where all individuals had impaired glucose tolerance at the 

start of the model and the end state was development of diabetes, or death, hence only a limited 

section of the disease pathway was modelled. The models did not take into account that 

screening for IGT will at the same time allow individuals with undiagnosed T2DM to be 

identified, allowing for early treatment. Also individuals with IGT who receive interventions are 
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likely to be closely monitored, so that if they go on to develop T2DM, again appropriate 

treatment can begin early. Both situations may lead to reduced complication rates associated 

with T2DM. Hence, whilst these studies offer an assessment of the cost-effectiveness of 

interventions for diabetes prevention, none assess the impact of screening followed by 

interventions on the whole disease pathway.  

Table 5.2: Decision models that assessed interventions to prevent or delay T2DM 

Study and 
Population 

Evaluated Model Data  Conclusions  

Avenell (2004) 

 

IGT, 55 years, 
33% male and 
BMI ≥ 30kg/m2 

Diet and 
exercise 
interventions 

Markov model 
with 3 states: IGT, 
T2DM and death. 6 
year horizon. 

Transition rates 
taken from DPS. 
UK mortality rates 
from WHO. Costs 
based on UK 
figures. 

Lifestyle interventions vs. 
no intervention cost 
£13,389 per QALY 
gained. 

Caro (2004) 

 

Population 
characteristics of 
the STOP-
NIDDM trial. 

Acarbose, 
intensive 
lifestyle 
modification and 
metformin. 

 

Markov model 
with 4 states, IGT, 
NGT, T2DM and 
death. 10 year 
horizon. 

 

DPP, DPS and 
STOP-NIDDM 
trials. Mortality 
rates from 
Canadian life table 
data. 

 

Lifestyle vs. no 
intervention cost $749 per 
LYG.  Metformin and 
acarbose vs. no treatment 
cost -$999 and -$897 per 
LYG. 

Eddy (2005) 

 

IGT individuals 
with BMI ≥ 
25kg/m2 

 

 

4 strategies; no 
intervention, 
metformin or 
lifestyle 
interventions in 
individuals with 
IGT and lifestyle 
interventions  
once T2DM 
develops 

Archimedes model, 
time horizons of 5-
30 years. 

Published 
epidemiological 
studies, DPP trial 
and Kaiser 
permanente 
administrative data 

Compared to no 
intervention cost per 
QALY gained was 
$143,000 for lifestyle 
interventions in IGT, 
$24,500 for lifestyle 
interventions in T2DM 
and $35,400 for 
metformin. 

Herman (2005) 

 

Individuals with 
IGT, > 25 years 

Lifestyle and 
metformin 
interventions. 

Markov model,  

lifetime horizon 

Transition rates 
and costs from the 
DPP trial and 
published reports. 

Compared to placebo 
lifestyle interventions cost 
$1124 and  metformin 
$31,286 per QALY 
gained. 

Icks (2007) 

 

Individuals with 
IGT, 60-74 
years, BMI ≥ 

Lifestyle and 
metformin 
interventions. 

Decision analytical 
model, horizon 3 
years. 

Population data 
from the KORA 
study. Intervention 
effects from DPP 
trial. German 
healthcare costs. 

Lifestyle was more cost 
effective than metformin, 
£3127 and  £12,731 per 
case of T2DM prevented 
respectively  
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25kg/m2 

Jacobs-van der 
Bruggen (2007) 

 

A community 
population and a 
population of 
obese adults 

A general 
community 
intervention and 
a healthcare 
lifestyle 
intervention (in 
the obese 
population). 

Markov model, 
horizon 20 years. 

Published literature 
and the 
Netherlands 
National Institute 
of Public Health. 

Compared to no 
intervention, community 
intervention cost €3,100 to 
€3,900 and healthcare 
intervention €3,900 to 
€5,500 per QALY. 

Palmer (2004)  

 

Overweight 
individuals with 
IGT 

Lifestyle or 
metformin 
interventions.  

Markov model 
with 3 states, IGT, 
T2DM or death. 
Lifetime horizon. 

Costs of 
interventions and 
their effect from 
DPP trial. National 
mortality tables. 

 

Lifestyle was more cost 
effective than metformin,  
€17,900 and €47,200 per 
LYG compared to 
controls. 

Segal (1998)  

 

High risk 
groups, e.g. 
obese/previous 
gestational 
diabetes. 

6 programmes; 
intensive diet, 
surgery, GP 
advice, media 
campaign and 
group 
behavioural 
modification. 

Several Markov 
sub-models. 25 
year horizon. 

Transition matrices 
derived from the 
Swedish study 
(Eriksson, 1992). 
Mortality rates and 
costs from the 
Australian Bureau 
of Statistics. 

Group programme, media 
campaign, behavioural 
programme and diet were 
all cost-effective (gross 
costs of A$500 to A$5900 
per LYG). Surgery 
performed poorest, 
A$12,300 per LYG. 

Due to variability in the models and the fact that costs from different countries were used, it is 

difficult to directly compare model results. All except the model by Eddy et al. concluded 

lifestyle interventions were likely to be cost effective at reducing cases of T2DM compared to 

no intervention.  Eddy concluded that although lifestyle modification is likely to have important 

effects on the morbidity and mortality associated with T2DM, the intervention used by the DPP 

study may be too expensive for implementation as a national program. Of the four models that 

compared both pharmacological and lifestyle interventions, two found pharmacological 

interventions to be more cost-effective (Caro et al., 2004, Eddy et al., 2005), whilst two 

favoured intensive lifestyle interventions (Herman et al., 2005, Palmer et al., 2004). Icks (2007) 

who considered prevention of T2DM in a real-world setting, found cost-effectiveness was very 

sensitive to uptake of screening and compliance to the interventions by the population.   

 

Time horizons varied between models which may affect their conclusions. It might be expected 

that models run for longer horizons would find the interventions to be more cost effective, due 

to the high initial costs of lifestyle interventions and the fact that it will take a few years for the 

negative costs of T2DM to gather pace.  
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Only two of the models assessed the cost-effectiveness of interventions in a U.K. setting. 

Avenell (2004) considered the effectiveness of lifestyle interventions in the obese, whilst Icks 

(2007) looked at lifestyle and metformin interventions in individuals with IGT between the ages 

of 60 to 74 years. Avenell concluded lifestyle interventions cost £13,389 per QALY gained, 

therefore appearing cost-effective, whilst Icks found interventions were fairly costly, at £3127 

and £12,731 per case of T2DM prevented for lifestyle and metformin respectively.  

 

5.2.3 Previous models that have considered screening for T2DM 

Early diagnosis of T2DM allows for treatment to begin earlier and this is thought to lower the 

future risk of complications, although no randomised controlled trials have yet published results 

to support this hypothesis. Five simulation studies were found that considered the cost and 

clinical implications of screening for diabetes (CDC Diabetes Cost-Effectiveness Study Group, 

1998, Chen et al., 2001, Glumer et al., 2006, Hoerger et al., 2004, Waugh et al., 2007). Most 

looked at the impact of early treatment on cardiovascular events, but some also included micro-

vascular events such as retinopathy.  The studies are summarised in table 5.3.  

 

The model by CDC Study group consisted of a screening module, whereby test sensitivity and 

specificity affected number of cases identified, and a disease progression module whereby both 

diagnosed and undiagnosed diabetics were modelled in terms of complication rates for 

micorvascular complications including retinopathy and nephpropathy. They found the benefits 

of early detection and treatment accrued more from postponement of complications, and the 

resulting improvement in QALYs, than from additional life years gained.  

 

The model by Chen et al. compared three strategies of no screening, 5 yearly screening and 

biennial screening. They utilised a Markov model to model the natural history of T2DM 

progression to complications and death. Complications were modelled by three states, 

retinopathy, nephropathy and neuropathy. The transition rates to complications increased as 

duration of T2DM increased. Incidence and mortality rates of cardiovascular disease were taken 

from the Framingham Heart Study and also included in the model. It was concluded that five-

year screening appeared more cost-effective than biennial, and that screening younger 

individuals (30-39), was more cost-effective than screening the elderly. 
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Glumer et al. (2006) claimed their model was the only one developed so far to include 

uncertainty around model inputs, and by doing so produce confidence intervals around their 

results. The main model outcome was CHD risk, with the model utilising data from the Danish 

Inter 99 study and the UKPDS study. Compliance to screening was assumed to range between 

30% to 75%. It was concluded that there was considerable uncertainty around the cost-

effectiveness of screening for T2DM, with the most important, but still uncertain parameter, 

being the effect of early treatment of T2DM.  

 

The model developed by Hoerger et al. utilised data from the UKPDS study and the 

Hypertension Optimal Treatment trial (HOT), to model progression of diabetics to nephropathy, 

neuropathy, retinopathy, coronary heart disease and stroke. It was assumed that individuals who 

were not screened would develop T2DM 10 years after its onset, and individuals screened 

would be diagnosed five years after onset. Earlier detection and treatment was modelled as 

lower HbA1c and subsequently lower transition rates to complications. Conclusions from this 

model were that screening for T2DM is more cost-effective if targeted at hypertensives than 

compared to universal screening. 
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Table 5.3: Decision models that assessed screening for T2DM 

Study and 
Population 

Evaluated Model Data  Conclusions  

CDC (1998) 
 
Demographic 
characteristics of 
U.S. population, 
≥25 years. 

1 time 
opportunistic 
screening 
ofT2DM. 

Markov 
model with a 
lifetime 
horizon. 

Clinical trials, 
epidemiological 
studies and 
population surveys. 

Screening vs. no 
screening cost $56,649 
per QALY gained. 

Chen (2001) 
 
>30 years, 
Demographic 
characteristics of 
Taiwanese 
population. 

No screening, 
biennial screening 
and 5 year 
screening. 

Markov 
model with a 
30 year 
horizon. 

Clinical trials, 
epidemiological 
studies and 
demographic 
statistics of the 
Taiwanese 
population. 

Biennial screening cost 
$17,833 and 5 year 
screening $17,113 per 
QALY gained compared 
to no screening. 

Glümer (2006) 
 
Demographic 
characteristics of 
Danish 
population, 35-
60 years. 

No screening vs. 
screening and 
treatment of 
T2DM.  

Markov 
model with 
uncertainty 
accounted 
for. 5 year 
horizon. 

Danish inter99 
population studies 
and clinical trials 
including UKPDS. 

Screening costs £40,700 
(95% CI: 23,300 to 
82,000) per QALY 
gained compared to no 
screening. 

Hoerger (2004) 
 
Demographic 
Characteristics 
of U.S. 
population 

No screening, 
universal screening 
and targeted 
screening at those 
with hypertension. 

Markov 
model with a 
lifetime 
horizon. 

UKPDS, 
Hypertension 
Optimal Treatment 
trial and recent cost 
data. 

At age 55 yrs, targeted 
screening cost $34,375 
and universal screening 
cost $360,966 per 
QALY gained compared 
to no screening. 

Waugh (2007)  
 
40-70 years 

No screening vs. a 
one-off universal 
screening. 
Sensitivity 
analyses looked at 
different age-
groups and 
hypertensive and 
obese sub-groups 
 

Decision tree 
and Markov 
model with a 
lifetime 
horizon. 

Clinical trials 
including UKPDS. 
NHS cost data. 

For all age groups the 
cost per QALY gained 
for screening vs. no 
screening was £2266. 
The cost was highest for 
the youngest age group, 
40-49 years, £10,216. 
Cost per QALY was 
lower in the two risk 
groups, £1,505 for 
hypertensive and £1,046 
for obese individuals. 
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The final model by Waugh et al. fitted a baseline scenario whereby the cost-effectiveness of a 

single screening of a population aged 40 to 70 years was assessed, and then ran a number of 

sensitivity analyse to assess different sub-groups including limiting the screening to different 

ten year age bands and targeting hypertensives or obese individuals. The model by Waugh was 

the only model that was hybrid in structure, as the model developed for this thesis is, in that it 

was comprised of both a decision tree and a Markov model. The model was fitted as one 

component of a Health Technology Assessment on screening for T2DM. In conclusion they 

stated that there was a strong case for screening for T2DM, although more clinical data was 

needed.  

 

Overall most of the models produced favourable results for T2DM screening, but cost-

effectiveness varied depending on age group screened and the population targeted for screening. 

Both the CDC Diabetes Cost-effectiveness Study group and Chen et al. (2001) found the 

incremental costs of screening increased with the age of the proposed screened population, 

although Waugh et al. (2007) found costs decreased with age. Both Hoerger et al (2004) and 

Waugh et al (2007) concluded targeted screening of individuals with hypertension or those who 

were obese, was more cost-effective than a universal screening program. 

 

5.2.4 How the model developed for this thesis will add to current knowledge 
 

As discussed a number of decision models already exist that have considered delaying T2DM 

through interventions or screening and early detection of T2DM to reduce risk of complications. 

Despite this, conclusive evidence is still not available for the cost-effectiveness of such 

strategies, as model results are conflicting. Only one of the models discussed here included 

uncertainty in their model inputs, data sources used was often limited, assumptions varied 

greatly and were often not clear and costs included were often not relevant for a U.K. health 

setting.  

 

The model developed for this thesis aims to build on previous work by modelling the full 

pathway from screening for IGT, intervening to delay or prevent T2DM, right through to the 

development of T2DM, complications and death. It will therefore provide a much more 

comprehensive and useful overview than previous models, as it is difficult to assess the full 

impact of intervening to delay T2DM, unless the costs and clinical implications of screening for 

IGT are also considered. For example even extremely effective interventions for delaying 
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T2DM will have little impact if screening tests for identifying individuals at high risk of 

developing T2DM prove to have very low sensitivities and specificities, or to think of matters in 

different way, good screening tests are inconsequential if interventions or treatments for 

individuals identified are ineffective.  

 

This is also the first model to consider both screening for IGT followed by appropriate 

intervention, and screening for T2DM, which will allow a comparison of the two scenarios. This 

is important if a decision on the most effective approach to screening for T2DM is to be 

reached. Current models are also improved upon by using as much of the available data relevant 

for the model as possible, where appropriate, rather than basing the model on results from a 

limited number of trials or sources. Further, by carrying out a number of sensitivities 

considering populations to be screened, accuracy of screening tests and model horizons, then the 

main drivers of the model can be fully understood and clearer conclusions concerning what an 

effective screening policy should encompass can be made. Additionally, carrying out a thorough 

series of sensitivity analyses will enable the identification of where further research is needed in 

the field.  

 

5.3 The proposed model 

The comprehensive decision model developed for this thesis is a hybrid model, which consists 

of a decision tree and a Markov model (Figure 5.2). The decision tree is structured to model the 

screening component of the health policy. Test sensitivities, specificities and prevalences of 

disease states are used to identify the number of individuals in a screen population who will be 

correctly identified as having IGT and T2DM. From the decision tree the numbers starting in 

each state of the Markov model can be identified. The Markov model models disease status of a 

screened population over a number of years. By attaching costs and utilities to each Markov 

state the cost-effectiveness of different screening strategies can be assessed. The implications of 

complications associated with T2DM on both costs and utilities, were modelled by 

incorporating UKPDS data within the model. 
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Figure 5.2: The proposed screening and intervention model 
 
 

Decision tree              Markov model                                     
Prevalences are required for each arm, along                                   Incidence rates required for each  
along with sensitivities and specificities of a                                       transition, adjusted for intervention 
given screening test.  The decision tree determines              and treatment effects. 3 Markov model 
the starting numbers in each Markov state   run, 1 for each screening strategy 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1 Structuring the decision tree 
 

One of the research questions assessed for this thesis, focuses on whether screening for IGT and 

subsequently intervening to try and delay or prevent T2DM is a clinically and cost effective 

policy. To try and answer this, three possible approaches to screening are considered in this 

model. An option of no screening was included, as currently there is no systematic screening of 

the population by the NHS for IGT or T2DM and any new screening policy needs to be 

compared against current practice. To answer the research question an assessment of screening 

for IGT needs to be made. As glucose levels are measured on a continuous scale it is impossible 

to screen for IGT without picking up previously undiagnosed individuals with T2DM, 

consequently a strategy considering screening for both IGT and T2DM was included in the 
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model. The model could have been kept as a comparison of these two approaches, but if 

screening for IGT and T2DM was proved to be an effective strategy then policy makers would 

be interested in knowing if most of the benefit was coming from screening and intervening in 

the IGT patients, or in just from identifying undiagnosed T2DM cases. Hence the inclusion of 

the third screening strategy, which considers screening for undiagnosed T2DM only. This arm 

will have a higher threshold for the screening test than the IGT and T2DM combined screening 

test, and hence will pick up slightly fewer T2DM cases, due to lower sensitivity, although it will 

have a higher specificity for T2DM. Where T2DM alone is screened for, IGT patients may still 

be identified. As this screening programme is not aimed at identifying such individuals, they are 

treated as receiving standard advice and not a tailored intervention for prevention of T2DM.  

 

These three screening scenarios are therefore what are compared in the model. The sensitivities 

and specificities of different screening tests are determined against the ‘gold standard’ oral 

glucose tolerance test (OGTT). The screening test to be used and the specific population to be 

screened were not set in the model structure but were changed between different versions of the 

model to allow for the assessment of different screening policies. Excluded from the screening 

programmes were any individuals who have already been diagnosed with T2DM. 

 

5.3.2 Outline of the decision tree 

As discussed above the decision tree is comprised of three main arms, representing three 

possible screening approaches which are no screening, screening for undiagnosed T2DM and 

screening for both IGT and undiagnosed T2DM. Individuals who have already been identified 

as having T2DM were excluded from the screening process. The same population can be 

entered into each of the three screening arms and the results then compared to assess the 

different screening strategies in terms of both costs and clinical effectiveness.  

 

The decision tree uses prevalences of IGT and T2DM of a population of interest, for example a 

Southern Asian population or an older population have greater prevalences of IGT and T2DM 

compared to a Caucasian or younger population respectively. By utilising estimated prevalence, 

along with sensitivities and specificities of a proposed screening test, where the sensitivities are 

given in terms of NGT, IGT and T2DM, the model estimates the true status of screened 

individuals. This was done as specified in equation 5.1, where the positive predictive values 

(PPV) and negative predictive values (NPV) are calculated using sensitivities, P(T+|i), and 
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specificities, P(T-|i), with i representing either NGT, IGT or undiagnosed T2DM, and iλ  the 

prevalence of each glucose tolerance state. For the arm of the model where no screening is 

assessed, prevalences alone were used to predict the true status of individuals in the population. 

An example of how the decision tree works in practice is given in chapter 6, using data from the 

STAR study. 
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In practice only those who test positive during the screening test will go forward to receive a 

‘gold standard’ test to verify their condition. Therefore it is possible for individuals with IGT 

and T2DM to remain unidentified by the screening process. False positives at screening will 

receive an OGTT to confirm their true status. For each of the two strategies where screening 

takes place, screened individuals fall into six categories defined by their test result (negative or 

positive) and by their true glucose tolerance status (NGT, IGT or T2DM) as illustrated in figure 

5.2.  

 

The test result and their predicted true status will affect the starting state of an individual in the 

Markov model, as specified by the true status labels on each arm of the decision model in figure 

5.2. All individuals with NGT start in the NGT state, the only consequence of incorrectly testing 

positive in the screening test is that they incur the extra costs of an OGTT test. Individuals with 

IGT start in the undiagnosed IGT state (IGTu) if they tested negative at screening, or if no 

screening took place. They start in the diagnosed IGT state (IGTd) if they tested positive during 

the screening tests. Individuals with T2DM at time of screening start in the screen detected 

T2DM state (T2DMs) if they have a positive screening test and undiagnosed T2DM (T2DMu) 

otherwise. No individuals start in the clinically detected T2DM state (T2DMc) or the death 

state, as these can only be entered as the model progresses. 

 

The diagnosed and undiagnosed states of IGT and T2DM were used to model whether a diabetic 

receives appropriate treatment, or whether an individual with IGT receives an intervention to try 
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and delay T2DM. For example if an individual is in the one of the diagnosed states they will 

either receive an intervention to delay T2DM, or treatment for diabetes, whichever is 

appropriate. Alternatively if they are undiagnosed, they will not receive an intervention or 

treatment. 

 

5.3.3 Structuring the Markov model 

As will be described in section 5.3.4, there are seven possible states within the Markov model, 

and individuals were moved between states depending on expected transition rates. The decision 

was made not to allow individuals to move from NGT to any of the T2DM states without 

passing through IGT first as glucose tolerance can be thought of as a continuous scale, whereby 

IGT is passed through on the way to T2DM. As the model is run for yearly cycles it is clinically 

unlikely that an individual would move from NGT to T2DM within a year, therefore to have no 

direct transition between NGT and T2DM is clinically justifiable.  

 

Individuals cannot move backwards in the model, so those defined as T2DM cannot move back 

into the IGT state. This is clinically correct, as once an individual is diagnosed with T2DM, 

even if their glucose tolerance improves, they are still clinically defined as diabetic. 

Additionally individuals are unable to move from IGT to NGT in the model. This was a difficult 

decision to make, but on balance it was decided that once an individual had suffered from 

impaired glucose tolerance, even if their glucose tolerance improved, their future risk of 

diabetes was probably more similar to individuals with IGT than individuals who had always 

been clinically NGT.  

 

5.3.4 Outline of the Markov model 

The Markov model consists of seven states into which an individual can be categorised. These 

are NGT, undiagnosed IGT (IGTu), diagnosed IGT (IGTd), undiagnosed T2DM (T2DMu), 

screen diagnosed T2DM (T2DMs), clinically diagnosed T2DM (T2DMc) and death. Those 

screen diagnosed represent individuals picked up by the initial screening programme, or those 

diagnosed with IGT through the initial screening programme who go on to receive 

interventions, as these individuals are monitored for their glucose tolerance status as part of the 

intervention programme. Clinically diagnosed individuals with T2DM are individuals diagnosed 

through standard clinical practice, as is currently the norm, and are therefore individuals who 

are diagnosed and move from the undiagnosed T2DM state. 
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The decision tree determines how many individuals from a given population start in each state. 

Four Markov models were run simultaneously, one for each of the screening strategies. 

Diagnosed IGT and T2DM individuals receive relevant treatments or interventions, whereas 

those undiagnosed do not receive anything and were modelled accordingly in terms of 

complications and death rates. No individuals start in the death state, or the clinically detected 

T2DM state.  

 

The idea of the Markov model is that incidence rates were used to move individuals between 

states. For example if you know the yearly transition rates between states, you could run the 

model ten times to predict how many people you would expect to have T2DM in ten years time. 

For individuals with IGT, transition to T2DM will differ depending on if the individual is 

receiving an intervention or not. Transition rates may be age or time dependent, and therefore 

may vary over the time horizon of the model. Specific details of the transition rates used and 

how they were modelled, is given in Chapter 6. 

 

Transition from T2DM to death was affected by whether an individual was undiagnosed, was 

diagnosed through screening, or was detected clinically. Undiagnosed individuals will have the 

highest age specific death rates, as these individuals will not be receiving appropriate treatment 

for their condition. Screen diagnosed individuals with T2DM, will have the lowest death rates 

of diabetics, as they would have been detected early, and therefore an assumption can be made 

that their blood glucose will be better controlled leading to fewer complications, than if they had 

been clinically diagnosed, as is currently the norm.  

 

Output from the Markov model gives total person years spent in each of the seven states for a 

given population and time period, for each of the four screening strategies. Cost and utilities of 

each state can then be used, along with costs of screening, to assess the clinical and cost 

implications of each of the screening strategies, as shown in detail in Chapter 6. Complications 

associated with T2DM, which increase with duration of the disease, are modelled generally in 

terms of their implications on costs and QALYs, using published data from the UKPDS study.   
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5.4 Chapter summary 
 

A number of cost-effectiveness analyses have been published that consider strategies for 

screening or prevention of T2DM, with inconclusive and often conflicting results. Data utilised 

has often been limited to a minimal number of sources, rather than trying to encompass all 

available data. Models assessing interventions have been limited in that they only considered a 

small part of the disease pathway between IGT and T2DM, so that the costs or effectiveness of 

screening for IGT was often not included in the decision model, or the effect of screening and 

interventions once T2DM had developed. Also no current model has directly compared the two 

active screening strategies of screening for T2DM followed by treatment, or screening for both 

IGT and T2DM followed by interventions and treatment.  

 

This study adds to current research by providing a full overview of the screening and 

intervention pathway, using all appropriate data sources where possible. The model provides the 

first direct comparison of no screening, screening for T2DM alone and screening for IGT and 

T2DM together. The structure of the model developed here was determined using clinical 

information on the IGT and T2DM disease pathway and was based on plausible future health 

policies for T2DM prevention. The meta-analyses carried out for Chapter 4 were incorporated 

within the full comprehensive decision model, to provide estimates of intervention effects. 

Details of the data utilised for the model, how the data was managed and combined, and how it 

was used to model different screening scenarios, is explained in full in Chapter 6.
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6. DEVELOPMENT OF A PRIMARY MODEL 

6.1 Chapter overview 

This chapter describes the development of a base case, primary model. A detailed description of 

the data sources to be used is given, along with information on data extraction and 

transformations, and how these feed into the model. The assumptions made for the purpose of 

the primary model are described and discussed and the initial results from the primary model 

presented. The primary model is then expanded, improved upon and explored through further 

analyses in chapters 7 and 8. The primary model was initially run for a time horizon of 50 years, 

for a Caucasian population, who are 45 years of age at the start of the model. Figure 6.1 is a 

reminder of the proposed model structure.  

 
Figure 6.1: The proposed screening and intervention model 

 
              Decision tree              Markov model                                     
Prevalences are required for each arm, along                               Incidence rates required for each  
with sensitivities and specificities of a given                                 transition, adjusted for intervention and 
screening test.  The decision tree determines                    treatment effects. 3 Markov models will  
  the starting numbers in each Markov state          be run, 1 for each screening strategy 
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6.2 Screening data and prevalences  

For the decision tree component of the model data was needed on the accuracy of a chosen 

screening test and the prevalence of NGT, IGT and T2DM in the population to be modelled. 

This information will enable the probabilities of starting in each of the Markov states to be 

determined. For the primary model information on screening tests and prevalences were taken 

from IPD available from the STAR study. For this study individuals aged 40-75 years 

(Caucasians) or 25-75 years (Non-Caucasians), who had at least one recognised risk factor for 

T2DM, from 15 general practices in Leicestershire, were invited for screening. Risk factors 

included a known history of coronary heart disease, hypertension, dyslipidaemia, 

cerebrovascular disease, a first degree relative with T2DM and a body mass index greater than 

25 kg/m2. Therefore the screening data included in the primary model was from a population 

considered to be ‘at risk’ of T2DM. 

 

The STAR study examined use of both the FPG test and the HbA1c test as potential screening 

tools, with the true glucose tolerance status of the participant being confirmed using an OGTT. 

The receiver operating characteristic (ROC) curves for both tests, when testing for either T2DM 

alone or IGT and T2DM in combination, are given in figures 6.2 and 6.3. These curves are a 

plot of sensitivity against 1-specificity, at each possible cut-off  of the screening test (Altman, 

1991). If the ‘cost’ of a false negative result is considered to be the same as that of a false 

positive, then the optimum cut-off for the screening test can be identified as the cut-off that 

maximises the sum of the sensitivity and specificity, which is the point on the ROC curve 

nearest the top left hand corner (Altman, 1991).  

 

From the ROC curves it can be seen that the FPG test was more accurate than the HbA1c for 

both scenarios, and therefore the FPG test was assumed to be the screening test used for our 

initial model. Both tests performed better when testing for T2DM alone, rather than IGT and 

T2DM in combination. STAR examined a mixed population of both Asians and Caucasians. As 

our initial model was to assess a Caucasian ‘at risk’ population, just the data on Caucasians was 

used, although the data on Asians was used for a model extension investigating model results 

for different ethnic cohorts. For the two active screening strategies (screening for T2DM only, 

or screening for both IGT and T2DM) cut-offs for the FPG test were taken as optimal values, 

i.e. the point on the curve nearest the top left hand corner, as circled, on the respective ROC 

curve.  
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Figure 6.2: ROC curves for screening tests for T2DM 
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Figure 6.3: ROC curves for screening tests for IGT and T2DM combined 
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Table 6.1 displays the results of the STAR study for the FPG test in Caucasian adults over the 

age of 45 years. The area under the curve (AUC) are given, which represents how effective the 

test is at distinguishing between individuals with or without the disease. The area measures 

discrimination, that is, the ability of the test to correctly classify those with and without the 

disease. For example, if two individuals are randomly picked, one from a diseased group and 

one from a healthy group, and both are tested, the patient with the more abnormal test result 

should be the one from the diseased group. The area under the curve is the percentage of 

randomly drawn pairs for which this is true. A perfect test would have an AUC of 1, whilst a 

poor test has an AUC of 0.5. It can be seen that the use of traditional diabetes tests to screen for 

IGT is not ideal, with an area under the ROC curve of just 0.85 (95% CI: 0.82, 0.87) and low 

sensitivity at the optimum cut-off of just 59.4%. It is likely that a screening programme for IGT 

would have to include a questionnaire or risk score to improve sensitivity. This is explored 

further in Chapters 7 and 8, where sensitivity analyses are carried out on both test sensitivity 

and prevalence of IGT and T2DM. 

 

 

Table 6.1: Performance of the FPG in the STAR study 
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 T2DM only IGT and T2DM  

Optimal cut-off >=6.0 mmol/l >=5.7 mmol/l 

Sensitivity 90/105 (85.7%) 219/369 (59.4%) 

Specificity 1957/2111 (92.7%) 1626/1847 (88.0%) 

Area under ROC curve (95% CI) 0.95 (0.92, 0.98) 0.85 (0.82, 0.87) 

 

 

Table 6.2: Results of the FPG test in the STAR study 

 

 True status as confirmed by OGTT,  N(%) 

FPG result (mmol/l) NGT IGT T2DM Totals 

<5.7    1626 (88.0) 142 (53.8) 8 (7.6) 1776 

>=5.7 and <6.0  138 (7.5) 51 (19.3) 7 (6.7) 196 

>=6.0 83 (4.5) 71 (26.9) 90 (85.7) 244 

Totals 1847 (83.3) 264 (11.9) 105 (4.7) 2216 

 

 

Table 6.2 displays the STAR data in terms of participant numbers and FPG results. Individuals 

with a test result of FPG < 5.7 would test negative for both screening scenarios, that is they 

would test negative if they were screened for T2DM or both IGT and T2DM. Individuals with 

an FPG >=6.0mmol/l would test positive for both active screening scenarios, and those falling 

in between would test positive if they were being screened for both IGT and T2DM and 

negative if they were just being screened for T2DM only. The middle row is therefore combined 

with the top or bottom row depending on the screening scenario considered. 

 

Table 6.2 was entered as data into the model with the three test outcomes (j) modelled under a 

multinomial distribution for each of the three true glucose tolerance status categories (i). A 

vague dirichlet prior distribution was placed on each of the three test probabilities, expressing 

the belief that each test outcome was equally likely within each glucose tolerance status 
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(equation 6.1, where rij  represents the numbers for each of the three test outcomes (j) and for 

each of the three glucose tolerance states (i), πij represents the probabilities of each of the three 

tests results, and Ni represents the total number in each of the three states) (Briggs et al., 2003). 

The multinomial distribution is a generalization of the binominal distribution, and the dirichlet 

an extension of the beta distribution, both for when there are more than two outcomes (as 

described in more detail in section 2.3.3). 

 

rij ~ multinomial(rij, Ni)  [Equation 6.1] 

   πij ~ dirichlet(1,1,1)   

   and    πi1+ πi2+ πi3 =1 

From table 6.2 sensitivities and specificities for either screening scenario can be computed, e.g. 

P(test positive for T2DM|true status is T2DM). For the model though predictive values were 

needed, e.g. P(true status is T2DM|test positive for T2DM).  Predictive values for each 

screening scenario were computed using equation 6.2, with i representing either NGT, IGT or 

undiagnosed T2DM, and iλ  the prevalence of each glucose tolerance state, where 

1321 =++ λλλ  . For the primary model prevalences were taken from the Caucasians involved 

in the STAR study and were as follows; NGT = 1847/2216 = 83%, IGT = 264/2216 = 12%, 

T2DM = 105/2216 = 5%. The prevalences were modelled using a dirichlet distribution. The 

WinBUGS code for the screening decision tree is given in box 1. 
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Table 6.3 displays the predictive values computed and utilised by the primary model 

As the predictive values sum to 1 for each test result (T- or T+) an overall probability was 

calculated, which was the predictive probability multiplied by the probability of the test result 

(both calculated using data in table 6.2). The overall probabilities can then be used to determine 
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the probabilities of starting in each of the Markov states for each of the three screening 

scenarios (table 6.3 and 6.4). From table 6.3 it can be seen that when both IGT and T2DM were 

screened for, 50% of the positive tests were actually in individuals with NGT, which dropped to 

34% when only T2DM was screened for. Of those who tested negative for the IGT and T2DM 

screen, 9% were misclassified as negative when they actually had IGT or T2DM, and for the 

T2DM screening of those who tested negative only 1% had T2DM. 

 

 

Table 6.4 shows the probability of starting in each of the seven states, for each of the three 

screening possibilities; no screening, screening for T2DM only and screening for IGT and 

T2DM in combination. Where a strategy of no screening is modelled no individuals start in the 

diagnosed IGT or T2DM states (IGTd and T2DMd). Screening for IGT and T2DM leads to a 

greater number of T2DM individuals being identified, due to the lower cut-off of the screening 

test. Although individuals with IGT are identified when only T2DM is screened for, the model 

was structured so that they did not receive any interventions, as discussed in Chapter 5. This 

was because it was considered that a policy of screening for T2DM only would not lead to 

preventative interventions being presented to individuals identified with IGT. The probability of 

starting in the death state at time 1 was set to 0 for all three screening scenarios. 

 

Table 6.3: Predictive values and overall probabilities  

 Predictive value 
P(i|T) 

Probability of 
test result 

Overall probability for 
each screening strategy 

Screening for both IGT and T2DM  
P(NGT|T+) 0.50 T+=0.20 0.100 (0.098, 0.102) 
P(IGT|T+) 0.28 0.056 (0.049, 0.062) 

P(T2DM|T+) 0.23 0.046 (0.036, 0.052) 
P(NGT|T-) 0.91 T-=0.80 0.728 (0.720, 0.747) 
P(IGT|T-) 0.08 0.064 (0.057, 0.072) 

P(T2DM|T-) 0.01 0.004 (0.003, 0.004) 
Screening for T2DM only 

P(NGT|T+) 0.34 T+=0.11 0.037 (0.036, 0.038) 
P(IGT|T+) 0.29 0.032 (0.029, 0.036) 

P(T2DM|T+) 0.39 0.043 (0.033, 0.049) 
P(NGT|T-) 0.89 T-=0.89 0.793 (0.781, 0.812) 
P(IGT|T-) 0.10 0.088 (0.077, 0.097) 

P(T2DM|T-) 0.01 0.005 (0.006, 0.008) 
No Screening 

Prev(NGT) - - 0.833 (0.818, 0.849) 
Prev(IGT) - 0.119 (0.106, 0.133) 

Prev(T2DM) - 0.047 (0.039, 0.057) 
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Table 6.4: Probabilities of starting in each Markov state  
Markov 

State 
Screening for IGT and 

T2DM 
Screening for T2DM 

only 
No screening 

NGT 0.833 (0.818, 0.849) 0.833 (0.818, 0.849) 0.833 (0.818, 0.849) 
IGTu 0.064 (0.057, 0.072) 0.087 (0.077, 0.097) 0.119 (0.106, 0.133) 
IGTd 0.056 (0.049, 0.062) 0.032 (0.029, 0.036) 0 
T2DMu 0.004 0.003, 0.004) 0.007 (0.006, 0.008) 0.047 (0.039, 0.057) 
T2DMd 0.044 (0.036, 0.052) 0.041 (0.033, 0.049) 0 
Death 0 0 0 
 

For the primary model the number screened was set to 1, so that results could be interpreted as 

effects for a single individual. The cut function in WinBUGS was used between the decision 

tree and the Markov model to prevent information entered into the Markov model, influencing 

the results of the decision tree. The cut function forms a valve in the code, such that prior 

information is allowed to flow downwards through the cut, but likelihood information is 

prevented from flowing upwards. The WinBUGS code for the whole decision tree, used to 

model the screening part of the comprehensive decision model, is given in Box 1. Information 

from the three possible screening scenarios, provided starting numbers for four possible 

screening strategies; no screening, screening for T2DM alone and screening for IGT and T2DM 

in combination, followed by either lifestyle of pharmacological interventions. 
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Box 1: WinBUGS code for the decision tree 
 
Status 1 NGT, 2 IGT, 3 T2DM, N[status] = N, T+ shows a positive result for both cut-offs, T- a 

negative result for both cut-offs and T0 a positive result for the high cut-off (T2DM only) and a 

negative result for the low cut-off  (T2DM and IGT). Hence r[status,1] is pr(T- |status),   

r[status,2]  is pr(T0|status), and  r[status,3]  is pr(T+|status) 
 
for (status in 1:3) { 
  N[status] <- sum(x[status,1:3])      
  x[status,1:3] ~ dmulti(r[status,1:3],N[status]) 
  r[status,1:3] ~ ddirch(prior_r[status,1:3])  
      } 
 prev[1:3] ~ ddirch(preva[1:3])  
 
Positive and negative predictive probabilities, neglow  n(status | T-.low), poslow  n(status | 

T+.low), neghigh n(status |T-.high ), poshigh  n(status | T+.high) 

for (status in 1:3) { 
neglow[status] <- (x[status,1]/N[status]*prev[status])*Nscreen  
poslow[status] ((x[status,2]/N[status]*prev[status])+(x[status,3]/N[status]*prev[status]))*Nscreen 
neghigh[status] ((x[status,1]/N[status]*prev[status])+(x[status,2]/N[status]*prev[status]))*Nscreen  
poshigh[status] <- (x[status,3]/N[status]*prev[status])*Nscreen} 
 
Numbers for each of three screening scenarios, T2DM only screening (high cut-off )[1], IGT 

and T2DM screening (low cut-off )[2], and no screening [3], in terms of whether a diagnosis 

will be made for each of the three glucose tolerance states (NGT, IGT and T2DM). 

D=diagnosed and U=undiagnosed. 

 
 NGT[1] <- poshigh[1]+neghigh[1] 
 IGTD[1] <- poshigh[2] 
 IGTU[1] <- neghigh[2] 
 T2DMD[1] <- poshigh[3] 
 T2DMU[1] <- neghigh[3] 
 
 NGT[2] <- poslow[1]+neglow[1] 
 IGTD[2] <- poslow[2] 
 IGTU[2] <- neglow[2] 
 T2DMD[2] <- poslow[3] 
 T2DMU[2] <- neglow[3] 
 
 NGT[3] <- prev[1]*Nscreen 
 IGTU[3] <- prev[2]*Nscreen 
 T2DMU[3] <- prev[3]*Nscreen 
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Box 1 continued. 
Starting numbers in each state for each of the four strategies, at the start of the model 
(strategy,state,time=1). Where strategy 1=T2DM screening, 2=IGT & T2DM screening with 
lifestyle intervention, 3=IGT & T2DM screening with metformin intervention and 4=no 
screening. States, 1=NGT, 2=IGTu, 3=IGTd, 4=T2DMu (undiagnosed), 5=T2DMs (screen 
diagnosed), 6=T2DMc (clinically diagnosed) and 7=death 

 
number[1,1,1] <- cut(NGT[1]) 

  number[1,2,1] <- cut(IGTU[1]) 
  number[1,3,1] <- cut(IGTD[1]) 
  number[1,4,1] <- cut(T2DMU[1]) 
  number[1,5,1] <- cut(T2DMD[1]) 
  number[1,6,1] <- 0 
  number[1,7,1] <- 0 
     number[2,1,1] <- cut(NGT[2]) 
  number[2,2,1] <- cut(IGTU[2]) 
  number[2,3,1] <- cut(IGTD[2]) 
  number[2,4,1] <- cut(T2DMU[2]) 
  number[2,5,1] <- cut(T2DMD[2]) 
  number[2,6,1] <- 0 
  number[2,7,1] <- 0 
  number[3,1,1] <- cut(NGT[2]) 
  number[3,2,1] <- cut(IGTU[2]) 
  number[3,3,1] <- cut(IGTD[2]) 
  number[3,4,1] <- cut(T2DMU[2]) 
  number[3,5,1] <- cut(T2DMD[2]) 
  number[3,6,1] <- 0 
  number[3,7,1] <- 0 
  number[4,1,1] <- cut(NGT[3]) 
  number[4,2,1] <- cut(IGTU[3]) 
  number[4,3,1] <- 0 
  number[4,4,1] <- cut(T2DMU[3]) 
  number[4,5,1] <- 0 
  number[4,6,1] <- 0 
  number[4,7,1] <- 0 
 

 

 

6.3 Transition probabilities  
 

Once the probability of starting in each state for each of the three screening strategies was 

established, a Markov model could be run for each strategy using annual transition rates to 

move individuals between states over a number of cycles. Information on each transition rate is 

described below. Transition rates were taken from studies that observed similar populations to 

those considered in the primary model. Although numbers starting in each state differ by 

screening strategy, transition rates were the same for each strategy, with the only exception 

being the transition from diagnosed IGT to screen diagnosed T2DM. For the two screening 
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strategies where no screening or T2DM only screening was implemented, the transition rate was 

the same as that from undiagnosed IGT to undiagnosed T2DM, and was the estimated 

population transition rate from IGT to T2DM. For the screening strategy where both IGT and 

T2DM were screened for, for individuals identified as having IGT, the transition rate was 

reduced from the population average by the estimated intervention effect of either lifestyle or 

pharmacological interventions. Therefore the transition rate was lower between diagnosed IGT 

and screen diagnosed T2DM for this screening strategy. 

 

Transition rates were transformed, so that they were all in the same format of per 100 person 

years on the natural logarithm scale. The standard error (s) of the log transition rate per 100 

person years was calculated as in equation 6.3 (Clayton and Hills, 1993), where d represents the 

number of events over 100 person years.  Where there was just one estimate of the transition 

rate (λ), it was modelled using a normal distribution on a log scale (equation 6.4). If there was 

more than one estimate of a transition rate they were combined using a random effects meta-

analysis, and the pooled mean rate (μ) was used in the model (equation 6.5) (Sutton et al., 

2000). The rate/pooled rate was then exponentiated and divided by 100 to give a rate per single 

person year. As transition rates represent the instantaneous potential for change, whereas the 

yearly probabilities or risk of individuals moving between states were required for the model, 

rates were converted to probabilities (γ) using equation 6.6 (Miller and Homan, 1994), which 

assumes a constant rate within each cycle.  

 

d
s 1
=      [Equation 6.3] 

),(~)( 2sNLn μλ     [Equation 6.4] 

 

),(~)( 2
iii sNLn θλ     [Equation 6.5] 

  ),(~ 2τμθ Ni  

μγ −−= e1       [Equation 6.6] 
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6.3.1 NGT to undiagnosed IGT 

Two studies were identified that reported transition rates from NGT  

to IGT, these were the Baltimore longitudinal study of aging  

(Meigs et al., 2003) and the Isle of Ely study (Wareham et al., 1999).  

The results are reported in Table 6.5. As the transition rates appeared  

to differ between age groups, in that the mean transition was estimated 

as 12.06 cases (e-2.49) per 100 person years for the over 65s and just  

5.26 (e-1.66) for the under 65s, only the Baltimore data was used in the primary model. This 

enabled different transition rates to be used when modelling individuals under 65 years of age or 

those 65 years and over. The transition rate was used to model the transition from NGT to IGTu, 

and not IGTd, as the transition would occur in the model post screening, therefore development 

of IGTu would remain undetected. 

 

Table 6.5: Studies reporting transition rates from NGT to IGT 

 

Study Year Location N and 
Follow-up 

Population Log transition 
rate per 100pyrs 
(SE) 

Baltimore 
study 

1979-88 US 488 
11 years 

96% Caucasian 
60.7% male 
Age 52.9 (16.6) 

All: 1.86 (0.06) 
≥65yrs: 2.49 (0.11) 
<65yrs 1.66 (0.08) 

Isle of Ely 
study 

1990- UK 767 
4.44 years 

Caucasians 
42% male 
Age 54.9 

0.54 (0.13) 

* Mean age in years reported, with SD given in parenthesis where available 

 

6.3.2   Undiagnosed IGT to diagnosed IGT 

The transition rate from undiagnosed to diagnosed IGT will be zero  

unless a re-screening strategy is assumed, whereby the initial  

population is re-screened every set number of years allowing for  

further IGT patients to be identified. In the primary model it will be  

assumed that only one round of screening will take place and this  

will be at the start of the model and will allow the identification of  

IGTd

T2DMc

DEATH

NGT

IGTu

T2DMu

T2DMs

IGTd

T2DMc

DEATH

NGT

IGTu

T2DMu

T2DMs
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individuals starting in the diagnosed IGT state. As no further rounds of screening will be 

incorporated into the primary model the transition rate from undiagnosed to diagnosed IGT will 

be set to zero. A policy of multiple screening rounds is explored in chapter 8. 

 

6.3.3 Undiagnosed IGT to undiagnosed T2DM 

The transition rate from undiagnosed IGT to undiagnosed T2DM is  

the transition with the most data available. 24 studies were  

found that reported this transition, comprising of 10 epidemiological  

studies (Bonora et al., 2004, de Vegt et al., 2001, Edelstein et al., 1997a, 

Meigs et al., 2003, Rasmussen et al., 2006, Wareham et al., 1999) and the 

control groups of 14 trials investigating lifestyle and  

anti-diabetic drug interventions, as used in the meta-analyses in Chapter 4 (Chiasson et al., 

2002, Eriksson et al., 2006, Fang et al., 2004, Jarrett et al., 1984, Knowler et al., 2002, Kosaka 

et al., 2005, Li et al., 1999, Liao et al., 2002, Lindstrom et al., 2003b, Pan et al., 2003, Pan et al., 

1997, Ramachandran et al., 2006, Tao et al., 2004, Wein et al., 1999). 

 

As control groups were being combined from both lifestyle and drug trials, where potentially 

the study populations may differ between the two types of trials, the control groups were 

compared to check they did not differ in terms of their risk of T2DM using the MTC model 

described in Chapter 4. The risk of T2DM did not differ significantly between the two types of 

controls, hazard ratio 1.032 (95% CI: 0.402 to 2.174). 

 

The 24 studies were very diverse in terms of their study populations, therefore interactions 

between transition rate and mean age, ethnicity or gender were investigated by fitting meta-

regression models in WinBUGS (both WinBUGS and meta-regression are described in Chapter 

2, and the code is given in Appendix 3.4). Gender was entered as percentage of the study 

sample that were male, and age was entered as mean age of the study group in years. The 

studies were a mixture of seven broad ethnic categories, therefore categories were combined and 

ethnicity was dealt with by coding studies as of being an ethnic group at high risk of developing 

T2DM (Asian Indians, Mexican-Americans, Pima Indians, Hispanics, Micronesians, Japanese 

and Chinese), or at low risk (Caucasians), depending on the predominant ethnicity of the study. 

IGTd

T2DMc

DEATH

NGT
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T2DMu
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There was no evidence to suggest an interaction between gender and the log transition rate from 

IGT to T2DM; gradient of the meta-regression line -0.002 (95% CrI: -0.001 to 0.006). Similarly 

with age, the meta-regression results showed a decrease in the log transition rate of -0.001 (95% 

CrI: -0.007 to 0.005) for an increase in the mean age of the study participants of 1 year, again 

indicating no association as the credible interval contains the null value of 0. For ethnicity, 

where studies of low risk ethnic groups were compared against studies of higher risk groups, the 

log transition rate was slightly higher in the high risk group, although the credible interval again 

contained the null value of 0, meta-regression results of 0.0003 (95% CrI: -0.095 to 0.095). 

However, as discussed in Chapter 2, meta-regression analyses have low power to detect any 

effect (Lambert et al., 2002), and ideally individual patient data is needed to fully investigate 

and understand the impact of participant characteristics on transition rates. 

 

Figure 6.4: Relationship between mean age of study participants and the log transition 
rate from IGT to T2DM 
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For illustration of the meta-regressions figure 6.4 shows the meta-regression model fitted for 

age and the log transition rate. Many studies have reported increasing transition rates from NGT 

to T2DM as age increases (Meigs et al., 2003). Although evidence was found supporting an 

increase in the transition rate from NGT to IGT as age increases, no evidence was found 

supporting an increase in IGT to T2DM transition rates as age increases. Therefore it was 

decided to combine all relevant information into one mean transition rate and to use this for all 

ages in the model. 

 

Although no evidence was found to support a difference in risk of developing diabetes between 

different ethnic populations, evidence is available supporting the fact that transition rates from 

IGT to T2DM differ between different ethnic groups. As the primary model was based on a 

Caucasian cohort, and as the data was available to enable transition rates to be modelled by 

ethnic group, only the 12 studies where Caucasians attributed to over 50% of the study sample 

(Table 6.6) were used to calculate the mean transition rate for the primary model, which was 

estimated as a mean log rate of 1.956 (0.252) per 100 person years.  

 

The forest plot detailing this meta-analysis of transition rates from IGT to T2DM is given in 

figure 6.5 and here study results are reported as cases per 100 years, to allow ease of 

interpretation and comparison between studies. The population studies tended to have narrower 

confidence intervals than the control arms on intervention trials. This is probably because the 

follow-up time was generally longer in the population studies, and therefore the number of 

events (cases of T2DM) tended to be greater. The estimated transition rate varied greatly 

between studies, with an estimated between study standard deviation of 0.76 (0.45, 1.33), 

although as already described meta-regression analyses failed to identify sources of 

heterogeneity. To fully understand why the transition rate estimates varied, IPD data would be 

required. The meta-analyses of transition rates from IGT to T2DM was carried out in 

WinBUGS, within the full comprehensive decision model, and therefore was an MCMC 

analysis. Details of convergence and autocorrelation tests, as well as sensitivity analyses for the 

prior distribution of the between study variance, are detailed in Chapter 7. Other ethnic groups 

and mixed ethnic populations were considered in extensions of the primary model in Chapter 8.  
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Table 6.6: Studies reporting transition rates from IGT to T2DM 

 

Study Year Location N and 
Follow-up

Population* Log transition 
rate per 100 pyrs 
(SE) 

 
Population studies 
Addition 2001-

2003 
Denmark 503 

12.5 
months 

Caucasian 
44.9% male 
Age 61.3  

2.93 (0.103) 

Baltimore 
study 

1979-
1988 

US 265 
11 years 

96% Caucasian 
60.7% male 
Age 52.9 (16.6)  

1.528 (0.099) 

Bruneck 
study 

1990-
2000 

Italy 837 
10 years 

Caucasians 
51% male 
Age 59 (11) 

0.955 (0.243) 

Hoorn study 1989-
1992 

Netherlands 111 
6.4 years 

Caucasian 
45% male 
Age 60.3 (6.9) 

1.771 (0.167) 

Isle of Ely 
study 

1990 UK 170 
4.44 years 

Caucasian 
42% male 
Age 54.85 

0.872 (0.242) 

Rancho 
Bernardo 
study 

1984-
1996 

US 186 
6.60 years 

Caucasian 
35.5% male 
Age 68.0 

1.386 (0.143) 

 
Control arms of intervention trials 
DPP 1996-

2002 
USA 335 

2.80 years 
54.7% Caucasian 
32.3% male 
Age 50.6  

2.398 (0.302) 

DPS 1993-
2004 

Finland 257 
3.20 years 

Caucasian 
33% male 
Age 55.0 

1.998 (0.130) 

Eriksson 2006 Finland 17 
1.32 years 

Caucasian 
26% male 
Age 56.5 

3.170 (0.447) 

Jarrett 1968-
1980 

UK 53 
4.36 years 

Caucasian 
100% male 
Age 56.7 

1.187 (0.258) 

STOP-
NIDDM 

1998-
2001 

Canada, Europe 
and Israel 

715 
3.30 years 

97% Caucasian 
49% male 
Age 54.5 

2.533 (0.059) 

Wein 1989-
1991 

Australia 100 
4.25 years 

Caucasian 
0% male 
Age 38.7 

1.952 (0.192) 

* Mean age in years reported, with SD given in parenthesis where available 
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Figure 6.5: Meta-analyses of transition rates from IGT to T2DM

 

                                                           Cases per 100 pyrs

0 10 20 30

Cases per 100 pyrs (95% CI)Study

Population studies

Addition 18.73 (15.30, 23.05)

Baltimore 4.61 (3.80, 5.60)

Bruneck 2.60 (1.61, 4.18)

Hoorn 5.88 (4.24, 8.15)

Ely 2.39 (1.49, 3.84)

Rancho 3.99 (3.02, 5.29)

Trial controls

DPP 11.00 (6.09, 19.88)

DPS 7.37 (5.72, 9.51)

Eriksson 23.81 (9.91, 57.18)

Jarrett 3.28 (1.98, 5.43)

STOP-NIDDM 12.59 (11.22, 14.13)

Wein 7.04 (4.83, 10.26)

Pooled Effect 7.07 (4.31, 11.59)
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6.3.4 Diagnosed IGT to screen diagnosed T2DM  

This is the one transition rate that varies between the three screening  

strategies. An assumption was made that all individuals identified  

as having IGT by the initial screening programme, would have their  

blood glucose monitored as part of the intervention programme, and  

therefore would be diagnosed with T2DM when it developed. There  

was therefore no movement between diagnosed IGT and undiagnosed  

T2DM, and individuals in the diagnosed IGT state moved straight to the state of screen 

diagnosed T2DM .  

 

For the strategy where no screening takes place and for the screening strategy aimed at 

identifying individuals with T2DM only, then this transition rate will be the same as for from 

undiagnosed IGT to undiagnosed T2DM. For the screening strategy where both IGT and T2DM 

are screened for then it will be assumed that all the individuals identified as having IGT will 

receive an appropriate intervention, to try and prevent or delay T2DM. Therefore this transition 

rate will be the same as for from undiagnosed IGT to undiagnosed T2DM but with an 

intervention effect applied.  

 

For the primary model both lifestyle interventions and anti-diabetic agents will be assessed, 

with both meta-analyses of intervention trials incorporated within the decision model. The 

pooled hazard ratio for lifestyle interventions, as described in chapter 4, is 0.53 (95% CrI: 0.44 

to 0.65), and for anti-diabetic agents it is 0.66 (0.47 to 0.83). All available data was used for the 

pooled hazard ratios as interactions between intervention effect and baseline risk and age had 

been tested for and no strong evidence of effect was found, as detailed in Chapter 4. The hazard 

ratios, and there associated distributions, were applied to the transition rate before they were 

converted into probabilities. Figures 6.6 and 6.7 detail the two intervention meta-analyses run 

within the decision model. Details of convergence and autocorrelation tests for these two meta-

analyses, as well as sensitivity analyses for the prior distribution of the between study variance, 

are described in Chapter 7. 
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Figure 6.6: Meta-analysis of lifestyle interventions run within the decision model 

 

                                                                  Hazard ratio

0 1 2 3

Hazard Ratio
(95% CI)

Study Favours
Intervention

Favours
Control

Diet
Da Qing, 1997 0.64 (0.41, 0.99)
Jarrett, 1979 0.85 (0.40, 1.81)
Wein, 1999 0.63 (0.35, 1.14)

Pooled effect 0.67 (0.49, 0.92)

Exercise
Da Qing, 1997 0.53 (0.34, 0.82)
Tao, 2004 0.30 (0.10, 0.93)

Pooled effect 0.49 (0.32, 0.74)

Diet and Exercise
Da Qing, 1997 0.61 (0.39, 0.95)
DPP, 2002 0.42 (0.34, 0.52)
DPS, 2003 0.40 (0.26, 0.61)
Fang, 2004 0.75 (0.35, 1.60)
IDDP, 2006 0.62 (0.42, 0.92)
Kosaka, 2005 0.29 (0.09, 0.94)
Liao, 2002 0.52 (0.05, 5.69)

Pooled effect 0.49 (0.40, 0.59)

Overall Pooled Effect 0.53 (0.44, 0.65)
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Figure 6.7: Meta-analysis of anti-diabetic agents run within the decision model 

 

                                                                                     Hazard ratio

0 1 2 3

Hazard Ratio

(95% CI)

Study Treatment Favours

Intervention

Favours

Control

Fang, 2004 Acarbose 0.27 (0.09, 0.79)

Pan, 2003 Acarbose 0.60 (0.24, 1.53)

STOP-NIDDM, 2002 Acarbose 0.75 (0.63, 0.90)

Fang, 2004 Flumamine 0.43 (0.16, 1.14)

Eriksson, 2006 Glipizide 0.18 (0.02, 1.50)

DPP, 2002 Metformin 0.69 (0.57, 0.84)

IDPP, 2006 Metformin 0.65 (0.44, 0.96)

Li, 1999 Metformin 0.49 (0.12, 1.95)

Jarrett, 1979 Phenformin 1.01 (0.48, 2.15)

Pooled Effect 0.66 (0.47, 0.83)
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A further consideration was whether the intervention effect being entered into the model, was 

relevant to the estimated transition rate from IGT to T2DM. To determine this the results from 

the baseline risk models detailed in Chapter 4 were assessed. Figures 6.8 and 6.9 show the 

intervention effect (Log incidence rate ratio) plotted against the baseline risk (Log incidence 

rate in the control group) for each trial, for both anti-diabetic agents and lifestyle interventions. 

Each circle represents one trial and the size of the circle represents the weight given to the trial 

in the baseline risk model, with trials being weighted using the inverse of the SE of the 

incidence rate ratio. The plotted lines represent the effect of baseline risk on the intervention 

effect as estimated by the baseline risk models.  

 

The pooled log transition rate from IGT to T2DM that will be entered into the overall model is 

1.96 (95% CrI: 1.51 to 2.44), as described in section 6.3.3. Using the graph in figure 6.8, the 

effect of lifestyle interventions where the baseline risk of diabetes is a log incidence rate of 

1.96, can be read from the graph as an incidence rate ratio on the log scale of -0.637. When 

exponentiated this is 0.529 and is close to the value used in the model for lifestyle intervention 

effect, which was 0.53 (95% CrI: 0.43 to 0.65). For anti-diabetic agents (figure 6.9), an 

incidence rate of 1.96 predicts an intervention effect on the log scale of -0.510, which when 

exponentiated gives an IRR of 0.60, as compared to the figure used in the decision model which 

was 0.66 (95% CrI: 0.47 to 0.83). Therefore both the baseline risk models predict a similar 

intervention effect when the baseline risk of the model population is accounted for, compared 

to those used within the comprehensive decision model, as estimated from the intervention 

trials. The impact of a reduction in intervention effects, on the decision model conclusions is 

explored in chapter 8, where models are run with reduced compliance to interventions. 
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Figure 6.8: Effect of baseline risk on the effectiveness of lifestyle interventions 
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Figure 6.9: Effect of baseline risk on the effectiveness of anti-diabetic agents 
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6.3.5   Undiagnosed T2DM to clinically diagnosed T2DM 

 

The transition rate from undiagnosed to clinically diagnosed T2DM  

was the most difficult transition to find information on. A few studies  

were found that reported the number of diabetes cases diagnosed each  

year, which would give the probability of being diagnosed from a  

study population, but understandably no studies reported the  

probability of being diagnosed given you already had undiagnosed T2DM. Therefore 

information was collated on the mean time a diabetic individual can expect to stay undiagnosed 

(t) and, assuming an exponential distribution, this was converted to a yearly transition rate (γ) 

(equation 6.7). 

 

t
1

=γ     [Equation 6.7] 

      

Only one relevant paper was identified (Harris et al., 1992). The paper described how 

retinopathy is usually the first observable vascular condition specific to diabetes to develop in 

diabetic patients. Prevalence of retinopathy increases linearly with longer duration of diabetes 

and by extrapolating this linear relationship, time when retinopathy prevalence was estimated to 

be zero can be approximated. Onset of retinopathy was estimated to have occurred 4 to 7 years 

before diagnosis of diabetes in two populations.  Specifically, for a Wisconsin study group 6.5 

years (95% CI: 4.1 to 9.9) and for an Australian study group 4.2 years (95% CI: 2.1 to 7.4). 

Although other data indicates diabetes may be present up to 5 years before onset of retinopathy, 

this was the best estimate of delay to diagnosis that could be located. These two estimates were 

pooled on the log scale within WinBUGS, to distribution for the transition rate which had a 

mean of 0.22 (SE 0.218). 

 

6.3.6 Mortality rates 

Mortality rates were taken from Department of Health statistics for  

England and Wales for the year 2000. They were taken as known and  

no uncertainty was placed around them in the model. As the model was  

run for 50 years, starting with one 45 year old, different mortality rates  

were used for different cycles, depending on the predicted age of the  

individual for that Markov cycle. Mortality rates per 100 person years  
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by age were 45 to 54 years of age 0.32, 55 to 64 years 0.84, 65 to 74 years 2.36, 75 to 84 years 

6.09, 85+ years 15.68.  

 

Mortality rates were assumed to be the same as population mortality rate from NGT, and both 

the IGT states. From the three T2DM states the mortality rates for each age group were 

increased using a hazard ratio of increased mortality of type 2 diabetics as reported by the 

DECODE study (The DECODE study group, 1999), hazard ratio 2.13 (95% CI: 1.79 to 2.52), 

showing a greater than doubling of the mortality rate in diabetics compared to non-diabetics. 

HbA1c levels represent a measure of blood glucose control, and mortality rates in diabetics have 

been shown to be linked with HbA1c levels, in that a 1% increase in HbA1c is associated with an 

increase risk in the hazard of mortality, hazard ratio 1.11 (95% CI: 1.03 to 1.20) (Rossing et al., 

1996). Although the DECODE study did not directly report the HbA1c of their study population, 

it was assumed the sample most directly represented the individuals with clinically detected 

diabetes in this model. Therefore the death rates for screen diagnosed T2DMs and undiagnosed 

T2DM were adjusted further depending on their predicted difference in HbA1c compared to the 

clinically diagnosed group.  

 

HbA1c levels for individuals with T2DM within the decision model were predicted from results 

taken from the UKPDS study (UK Prospective Diabetes Study (UKPDS) Group, 1998a). The 

UKPDS study is composed of clinically detected individuals where one group received standard 

therapy, whilst a second group received intensive therapy for both glucose and blood pressure 

control.  For the clinically detected group, an average value over time was needed, for a group 

of conventionally detected and treated individuals with T2DM. Therefore the HbA1c levels of 

the group receiving standard therapy in the UKPDS study was used, 7.9 (Inter-quartile range 

(IQR): 6.9 to 8.8) (UK Prospective Diabetes Study (UKPDS) Group, 1998a).  

 

For the model state of undiagnosed T2DM, it would be expected that HbA1c would be higher, as 

individuals in this state would not be receiving any medication to control their blood glucose 

levels. For this state the HbA1c levels of individuals clinically detected at entry to the UKPDS 

study, before T2DM treatment commenced, was used, HbA1c  9% (IQR: 7.5 to 10.5)(UK 

Prospective Diabetes Study (UKPDS) Group, 1991). No long term statistics of average HbA1c 

levels in individuals detected through a screening programme were available. So for the 

decision model an assumption was made that a screen detected population would have a long 

term HbA1c level similar to the arm of the UKPDS trial who were receiving intensive therapy, 
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which was reported as an average of 7.0 (IQR: 6.2 to 8.2), (UK Prospective Diabetes Study 

(UKPDS) Group, 1998a). 

As HbA1c levels were reported using medians and IQRs, for the purposes of the decision model 

normality of the data was assumed, with the median taken as being equivalent to the mean and 

the standard deviation calculated, using the standard normal distribution, as the IQR divided by 

1.349. 

 

Using the above data, the probabilities of dying (M) for all the Markov states were estimated for 

each of the five age groups (45-54, 55-64, 65-74, 75-84 and 85+) as follows: 

NGT and IGT states   jeM λ−−= 1   [Equation 6.8] 

 Clinically diagnosed T2DM         ).(1 γλ jeM −−=     

 Screen diagnosed T2DM      )..(1
δκγλ jeM −−=   

Undiagnosed T2DM   )..(1
δκγλ jeM −−=   

Where jλ is the mortality rate in age group j,  γ is the increased mortality risk of an individual 

with T2DM, κ is the increased mortality rate for a one unit increase in HbA1c and δ is the 

difference in HbA1c between predicted HbA1c levels of screen diagnosed or undiagnosed 

individuals with T2DM, and those clinically diagnosed. 

  

6.3.7 Calculating the number in each state at each cycle 

For each of the three Markov models (one for each screening strategy), the number in each of 

the seven states, for each yearly cycle of the model, was calculated using the inprod command 

in WinBUGS, along with transition rates between states, and the numbers estimated to be in 

each state at the previous time/cycle. The code to run this in WinBUGS is specified in box 2. 
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Box 2: WinBUGs code for calculating the numbers in each state at each time point, for 
each strategy: 

for (strategy in 1:4){          
for (state in 1:7){         

 for (time in 2:10) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,1,1:7,state]) 
 } 
 for (time in 11:20) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,2,1:7,state]) } 
 for (time in 21:30) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,3,1:7,state]) 

} 
for (time in 31:40) { 

number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,4,1:7,state]) 
 } 

for (time in 41:50) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,5,1:7,state]) 
 } 
 total[strategy,state] <- sum(number[strategy,state,1:horizon])   
 

The code works by estimating the number of individuals, for each of the four screening 

strategies that could be predicted to be in each of the Markov states for each cycle (time) of the 

model horizon. This is done by taking the number of individuals in each of the seven Markov  (

Mn ) states at the previous time point (t), multiplying these by the probabilities they will move 

to a different state (p, where pabt is the probability of moving from a to b at time t) and then 

summing results to estimate the number in each state at the new time point (t+1), as specified 

below. 
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For example at year two the number in the death state would be the sum of: 

 

number in state NGT at year 1 x probability of moving from NGT to Death + 

number in state IGTu at year 1 x probability of moving from IGTu to Death + 

number in state IGTd at year 1 x probability of moving from IGTd to Death + 

number in state T2DMu at year 1 x probability of moving from T2DMu to Death + 

number in state T2DMd at year 1 x probability of moving from T2DMd to Death 

 

The transition rates were varied where necessary between strategies, as discussed above. 

Transition rates were also changed depending on the year cycle of the model, to mimic the 

effect of the screened population aging, from 45 years of age at the start of the model to 90 

years of age by the 50th cycle. This is why the code is split into 10 year time bands, so that the 

transition rates could be varied. 

 

6.4 Costs 
 

To allow for an assessment of cost effectiveness between the screening strategies, costs were 

added into the model for screening, interventions and clinical status of the screened population. 

As described in chapter 2, costs were obtained by estimating resource use and then applying a 

unit cost. 

 

6.4.1 Cost of screening 

When screening for IGT the opportunity is often taken to screen for a number of additional 

clinical problems, for example high cholesterol. For the initial model it was decided just to cost 

the necessary tests for screening and confirming glucose tolerance status. Therefore the costs 

added to the model were 40p for every FPG test carried out and £1.30 for every OGTT test 

(costs provided by University Hospitals of Leicester NHS Trust, 2006).  
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The nurse’s time to used to carry out the tests was also costed, based on an estimated cost for a 

nurse in a GP practice of £26 per hour of patient contact (Curtis and Netten, 2006) and an 

estimated time for the nurse to carry out an FPG test of 5 minutes and an OGTT of 30 minutes. 

Uncertainty was placed around the time taken to complete each test, such that the time to 

complete an FPG test was estimated as 5 minutes, with a variance of 2 minutes, and the OGTT 

as 30 minutes with a variance of five minutes. They were modelled using a gamma distribution 

to restrict simulations to positive values as specified in Equation 6.9. The parameters of these 

gamma distributions were estimated using method of moments techniques, which use the 

properties of the gamma distribution as detailed in chapter 2. 

   

)5.5,150(~
)5.2,5.12(~

gammaT
gammaT

OGTT

FPG   [Equation 6.9] 

6.4.2 Cost of interventions 

The costs of pharmacological interventions were taken from costs published by the NHS 

Northern & Yorkshire regional drug and therapeutics centre (2006). Metformin at a dose of 

250mg three times a day will have an annual cost of £16.10 per patient. Acarbose at a dose of 

50mg 3 times a day will cost £80.30 annually. The doses used for costings were the most 

commonly given dosages in the intervention trials. 

Lifestyle interventions were much more problematic to cost, as the intensity and form of a 

lifestyle intervention can vary widely and none of the published trials that had considered 

lifestyle interventions for T2DM prevention had used U.K. costs. A study was found that had 

assessed the effects of lifestyle interventions for reducing obesity in a U.K. setting, where the 

lifestyle intervention had been modelled on the intervention used in the DPS trial (Avenell et al., 

2004). The costs were for 2001 and included dietician costs (7 visits in the first year and 4 visits 

annually thereafter) and supervised group exercise sessions twice weekly. Assuming a class size 

of 20 participants and a 60% attendance rate, total costs will be £324 per person in the first year 

of the intervention and £228 in subsequent years. As costs of lifestyle interventions were 

difficult to predict, sensitivity analyses will be carried out in Chapter 8 to assess the impact of 

different estimated costs on lifestyle interventions on model outcomes. 

 

6.4.3 Costs of undiagnosed T2DM 

Although individuals undiagnosed with T2DM are not incurring any specific treatment costs 

related to T2DM, it has been found that five years before a diabetes diagnosis is made 
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individuals start to consult their general practitioner (GP) more frequently and receive more 

prescription items, compared to individuals that do not go on to receive a T2DM diagnosis 

(Gulliford et al., 2005). Using average U.K. costs of a GP of £21 per 10 minute surgery 

consultation and average prescription costs per consultation of £34.60 (Curtis and Netten, 2006) 

and using predicted increased rates of GP visits of 3.05 the year before diabetes is diagnosed 

and an average rate of 1.39 for the four years previous to that (Gulliford et al., 2005), then 

additional costs incurred by undiagnosed T2DM can be calculated as:  

 

Year before diagnosis: 2.05 x (£21 + £34.60) = £113.98 

  Years >1 before diagnosis: 0.39 x (£21 + £34.60) = £21.68 

 

6.4.4 Costs of diagnosed T2DM 

The additional costs that a diabetic patient compared to a non-diabetic patient will incur to the 

NHS, was derived from the UKPDS study (Clarke et al., 2004b). The UKPDS study reported 

costs of T2DM treatment, implementation (e.g. retinopathy screening and GP visits), and 

complications (e.g. amputations and blindness) (table 6.7), for each of the two treatment arms 

within the trial, which consisted of those on conventional treatment, and those on intensive 

treatment for blood glucose control and hypertension.  

 

Costs attached to the model were varied for the diagnosed T2DM state, in that those clinically 

detected were modelled to incur costs of complications as reported for the UKPDS participants 

on conventional treatment. For those screen detected in the diagnosed T2DM state, for whom 

treatment begins earlier thereby reducing future complications, the costs quoted for intensive 

treatment of UKPDS participants was used. These individuals had better controlled blood 

glucose and fewer complications which is more representative of a screen detected population. 

The UKPDS also quoted costs of hypertensive treatment but as this is not a cost solely 

attributable to diabetics, it was not included in this decision model.  
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Table 6.7 Costs incurred by T2DM over the course of the UKPDS trial 

 T2DM clinically detected (£) T2DM screen detected (£) 
Anti-diabetic treatment 640 (997) 640 (997) 
Cost of implementation 674 (193) 674 (193) 
Cost of complications 27,350 (46,842) 24,585 (36,609) 
Total cost 28,644 (SE 656.2) 25,899 (SE 554.3) 
Average annual cost+ 2754 (SE 63.1) 2490 (SE 53.3) 

* Figures reported are mean (SD) unless otherwise stated 

+ As the UKPDS trial lasted 10.4 years, annual costs are total cost divided by 10.4. 

 

 

6.4.5 Standardising costs to 2006 

As the costs collated for the model were from different years they needed to be standardised to 

the same year, as described in section 2.4.7, to make sure the results from the model were 

accurate and interpretable. Standardisation can be done by using hospital and community health 

service pay and price inflation indices (Curtis and Netten, 2006) to either inflate the data from 

an earlier year to the chosen year, or to deflate the data from a later year. Costs for this model 

were standardised to 2006, as the majority of the costs were already relevant for this year (table 

6.8).  

 

Table 6.8: Standardisation of costs to 2006 using price inflation indices 

Item Cost Year 2006 Cost 
Screening tests 
     FPG test 
     OGTT test 

 
40p 
£1.30 

 
2006 

 
40p 
£1.30 

Nurse cost per hour £26 2006 £26 
Pharmacological interventions 
      Acarbose (per annum) 
      Metformin (per annum) 

 
£80.30 
£16.10 

 
2006 

 
£80.30 
£16.10 

Lifestyle intervention 
     Year 1 
     Subsequent years  

 
£324 
£228 

 
2001 
 

 
£398  
£280  

Undiagnosed T2DM 
     Year before diagnosis 
     Years 2 to 5 before diagnosis 

 
£113.98 
£21.68 

 
2006 

 
£113.98  
£21.68  

Diagnosed T2DM 
      Screen detected (per annum) 
      Clinically detected (per annum) 

 
£2490 
£2754 

 
2004 

 
£2672  
£2945  
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Taking costs of  T2DM as an example, to inflate these costs from 2004 to 2006, the pay and 

prices indices from these years are taken from the report by Curtis and Netten, and the 2006 

value is divided by that of 2004 (241.3/224.8 =1.073). The costs from 2004 are then multiplied 

by 1.073 to estimate the 2006 costs (£2490 x 1.073 = £2672). Chapter 7 details sensitivity 

analyses on all cost data that was estimated with uncertainty, to assess the impact of changing 

estimated costs on model outcomes. 

 

6.5 Utilities 
 

For the states of NGT, undiagnosed IGT and diagnosed IGT, the utility was assumed to be that 

of full health and was set at 1. There has been some research to show that IGT may carry a 

reduced health utility but reported estimates are varied, so for the purposes of keeping the 

primary model simple, the assumption of complete health was made. 

 

Utilities for individuals with undiagnosed T2DM and screen detected T2DM were calculated 

using individual patient data made available by the Leicester arm of the ADDITION study 

(Srinivasan et al., 2007). The ADDITION study collected quality of life data, using EQ-5D 

questionnaires, on a screen detected population. The EQ-5D utility score was calculated for 140 

individuals who were identified as having T2DM when screened at the start of the ADDITION 

study, using the MVH-A1 algorithm (Dolan, 1997). This algorithm was developed using a study 

in which direct valuations were elicited for 42 EuroQol health states (using the time trade-off 

method) from a representative sample of the UK population. A "tariff" of EuroQol values was 

then developed from this, to represent each of the 243 possible health states the EuroQol index 

generates. After applying the MVH-A1 algorithm to the ADDITION data, the mean utility was 

calculated as 0.788 (SE 0.020). For those undiagnosed the utility was kept constant for all years 

spent in this state, as it was assumed that to remain undiagnosed the presence of complications 

or ill health would not be present. The screen and clinically detected utility was decreased each 

year in line with predicted complication rates and their estimated effect on health utility, as will 

be described in more detail later. 

 

For people with clinically diagnosed T2DM utilities were taken from those reported by the 

UKPDS study, as entry to this study was at time of clinical diagnosis. The utility of the trial arm 

receiving conventional therapy was used, which was a reported value, when complications were 
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adjusted for, of 0.725 (SE 0.035) (Clarke et al., 2002).  This is lower than the value used for 

undiagnosed and screen diagnosed T2DM, which is realistic as it could be expected that 

symptoms of T2DM would be more severe. 

 

For both the screen diagnosed and clinically diagnosed T2DM states in the decision model, 

utility was decreased for each year spent in the state, to account for increasing complications 

and a decline in health due to duration of T2DM. This was done by combining data from two 

UKPDS papers, one of which reported complication rates (Clarke et al., 2004a) and another 

which reported the effects of complications on utility values (Clarke et al., 2002). At 

development of T2DM, the utility value assuming no complications, was different depending on 

whether it was undiagnosed, screen diagnosed or clinically diagnosed.  

 

Although there is currently no trial evidence on the long-term effects of screening and early 

detection of T2DM, it is generally believed that early detection would lead to better long-term 

glucose control and general health. Therefore the complication rates for the conventionally 

treated group in the UKPDS study were used for modelling the utility value in the clinically 

diagnosed T2DM group and the complication rates for the UKPDS arm receiving intensive 

treatment was utilised for the model state of screen diagnosed T2DM. (Clarke et al., 2002, 

Clarke et al., 2004a). Therefore the utility value decreased more rapidly in individuals clinically 

diagnosed, compared to those who were screen detected. Utility values were decreased by 

duration of T2DM using figures reported by the UKPDS study. One published paper reported 

results of a model forecasting the occurrence of diabetes-related complications, using data on 

3642 patients who had been followed up for over 10 years during the course of the study 

(Clarke et al., 2004a). They fitted a series of Weibull proportional hazards regression models, 

which estimated the occurrence of several complications associated with T2DM, these included 

ischaemic heart disease (IHD), myocardial infarction (MI), coronary heart disease (CHD), 

stroke, amputation and blindness in one eye due to diabetes retinopathy.  

The model fitted to each of these outcomes is given in equation 6.10, where t is time to event, j 

is complication, λ is the scale parameter, γ is the shape parameter, and β represents the effect of 

HbA1c, and the parameters of each of these six models, as published by Clarke, 2004a), are 

given in table 6.9. HbA1c appears to be strongly linked with complication rates, in that a lower 

HbA1c value, indicating better glucose level control, is associated with lower complication rates. 

As the decision model predicts different HbA1c levels for the two diagnosed T2DM states 

(screen and clinically diagnosed), complication rates and their effect on utilities were modelled 
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accordingly. Consequently higher complication rates were predicted in clinically detected 

individuals compared to those screen detected. As discussed previously the utility rate was not 

decreased in the undiagnosed T2DM state as it was assumed that a diagnosis would be made as 

soon as any complications developed. This assumption is a reasonable one, particularly for 

severe complications. 

 

))exp(exp()( jtxtS jjj
γβλ−=    [Equation 6.10] 

 

Using the estimated survival for each complication, the cumulative probability of developing 

the complication at time tk, can be estimated Cj(tk), and hence the probability for each year of 

duration of T2DM can also be specified (Dj(tk) (equation 6.11). 

 

)(1)( kjkj tStC −=     [Equation 6.11] 

)1()()( −−= kjkjkj tCtCtD  

 

The cumulative probabilities for each of the six complications, over 20 years of duration with 

T2DM, are displayed in figure 6.10. It can be seen that MI has the highest probability, reaching 

25% at 20 years of T2DM duration.  

 

To consider an example, using the parameters in table 6.9, the 5-year survival for IHD, 

cumulative probability of IHD after 5-years duration of T2DM, and the probability of IHD in 

year five post-development of T2DM, can be calculated as: 
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SIHD(5) = exp(-exp(-5.310) x exp(0.125 x HbA1c) x 51.150=0.965 

  CIHD(5) = )5(1 IHDS− =0.035 

  DIHD,5 = CIHD(5) - CIHD(4) = 0.035 – 0.027 = 0.008 

 

Therefore the cumulative probability of IHD up to five years duration of T2DM is 3.5% and the 

probability of having IHD in the fifth year of duration with T2DM is 0.8%. 

 

 

6.9: Data from the UKPDS study on complication rates and associated utility decrements 

Complication Scale 
parameter 

(log λ)  

Shape 
parameter  

(γ) 

HbA1c  
effect 
 (β) 

Utility decrement 
Previous yr 

(Y) 
Prior to 

previous yr (X) 
IHD -5.310 (0.174) 1.150 (0.067) 0.125 (0.035) -0.141 (0.060)* -0.079 (0.020)*

MI -4.977 (0.160) 1.257 (0.060) 0.118 (0.025) -0.081 (0.052) -0.044 (0.021)*

CHF -8.018 (0.408) 1.711 (0.158) 0.157 (0.057) -0.058 (0.066) -0.134 (0.038)*

Stroke -7.163 (0.342) 1.497 (0.126) 0.128 (0.042) -0.131 (0.073) -0.199 (0.035)*

Amputation -8.718 (0.613) 1.451 (0.232) 0.435 (0.066) -0.451 (0.131)* -0.335 (0.068)*

Blindness -6.464 (0.326) 1.154 (0.121) 0.221 (0.075) -0.074 (0.070)* -0.080 (0.029)*

* statistically significant decrements in utility 

 

 

The models reported above, included other covariates which were centred, and therefore the 

model is for a population with a BMI of 27.77kg/m2, HbA1c 7.09%, systolic blood pressure of 

135.09 mm Hg, and total HDL cholesterol 5.23.mmol/l. The influence of HbA1c was the only 

value included in the decision model, to adjust complication rates between the three T2DM 

states. A second paper from the UKPDS study reported the estimated utility decrements that 

were associated with each complication (table 6.9), as predicted from EQ-5D data collected on 

the same group of patients (Clarke et al., 2002). The decrement in utility differed, depending on 

if the complication had occurred in the previous year, or prior to the previous year. Therefore 

the total decrement in the utility value (Uj(tk)), for each year of duration (tk), for each 

complication (j), can be calculated as in equation 6.12, where the annual probability of a 

complication (Dj(tk)) is multiplied by the utility decrement for the complication occurring in the 

past year (Yj), and is added to the probability of the complication occurring prior to the previous 

year  
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(Cj(tk-1)) multiplied by the utility decrement if the complication occurred prior to the previous 

year (Xj). The IHD example is extended further to show how the figures in table 6.9 are used in 

the calculation. 

 

( ) )( 1 jjtjjtjt XCYDU ×+×= −    [Equation 6.12] 

002461.0)079.0027.0()141.0008.0(5, −=−×+−×=IHDU  

 

Therefore the total decrement in utility, in year 5 of duration of T2DM, associated with the 

probability of IHD is -0.002461. Hence, by combining data from the two papers it was possible 

to estimate the total utility decrement that could be associated with each year of duration of 

T2DM (tk) due to all complications (∑
J

kj tU
1

)( ), and therefore the expected overall utility 

value. All the parameters in the model included uncertainty, as specified in table 6.9. The 

QALY for each year of duration with T2DM was then calculated by subtracting the expected 

decrement due to all six complications, from the baseline utility of T2DM that was estimated for 

diabetics with no complications. The WinBUGS code used to calculate the utilities is given in 

box 3. As the utility decrements are calculated for each year of duration of T2DM, transitions in 

the model had to be tracked, so that the probability of moving into a T2DM state at each cycle 

could be monitored, and then followed through future cycles to allow duration of T2DM to be 

estimated. 
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Figure 6.10: Cumulative probability of six complications over 20 years of duration with 
T2DM 
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Box 3: WinBUGs code for modelling complication rates and their effect on utility 
for (comp in 1:6) { 
 for (det in 1:2) { 
 s[det,comp,1] <- 1  #All start complication-free 
 c[det,comp,1] <- 0   
} 
  

lambda[comp] <- exp(beta0[comp])  #Distribution on scale parameter 
 beta0.p[comp] <- 1/pow(beta0.se[comp],2) 
 beta0[comp] ~ dnorm(beta0.m[comp],beta0.p[comp]) 
 
 rho[comp] <- exp(gamma[comp]) #Distribution on shape parameter  
 gamma.m[comp] <- log(rho.m[comp]) 
 gamma.p[comp] <- pow(rho.m[comp],2)/pow(rho.se[comp],2) 
 gamma[comp] ~ dnorm(gamma.m[comp],gamma.p[comp]) 

uy.p[comp] <- 1/pow(uy.se[comp],2)  #Distributions on utility decrements 
 uy[comp] ~ dnorm(uy.m[comp],uy.p[comp]) 
 upy.p[comp] <- 1/pow(upy.se[comp],2) 
 upy[comp] ~ dnorm(upy.m[comp],upy.p[comp]) 
  
 gender.p[comp] <- 1/pow(gender.se[comp],2) 
 gender[comp] ~ dnorm(gender.m[comp],gender.p[comp]) 
 hba1c.p[comp] <- 1/pow(hba1c.se[comp],2) 
 hba1c[comp] ~ dnorm(hba1c.m[comp],hba1c.p[comp]) 
} 
ufemale ~ dnorm(ufemale.m,ufemale.p)   

#Utility from UKPDS expressed as female baseline and male effect 
ufemale.p <- 1/pow(ufemale.se,2) 
umale ~ dnorm(umale.m,umale.p) 
umale.p <- 1/pow(umale.se,2) 
clin.ubase <- ufemale + (0.5*umale) 
screen.ubase ~ dnorm(uscreen.m,uscreen.p)  
uscreen.p <- 1/pow(uscreen.se,2)   
 
for (dur in 2:horizon) { 
     for (comp in 1:6) { 
 s[1,comp,dur] <- exp(-
lambda[comp]*(exp(0.5*gender[comp]*adjust[comp])*pow(dur,rho[comp])))    
     #Weibull survival model for screen detected 
 
s[2,comp,dur] <- exp(-lambda[comp]*(exp((0.5*gender[comp]*adjust[comp]) + 
(0.9*hba1c[comp]))*pow(dur,rho[comp]))) 
    #Weibull survival model for clinically detected (higher hba1c) 
 
for (det in 1:2) {          
 c[det,comp,dur] <- 1 - s[det,comp,dur]   #Cumulative probability of complication 
 d[det,comp,dur] <- c[det,comp,dur] - c[det,comp,dur-1]    

#Probability of complication in previous yr 
 py[det,comp,dur] <- c[det,comp,dur] - d[det,comp,dur]   

Probability of complications  in yrs prior to previous yr 
 ud[det,comp,dur] <- d[det,comp,dur]*uy[comp] + py[det,comp,dur]*upy[comp]   
  }}    
 tud[1,dur] <- sum(ud[1,1:6,dur])  
 tud[2,dur] <- sum(ud[2,1:6,dur])   #Total utility decrement for all complications 
 clin.qaly[dur] <- clin.ubase + tud[2,dur]   #Total QALY in each year duration in T2DMc 
 screen.qaly[dur] <- screen.ubase + tud[2,dur]   

#Total QALY for each year duration in T2DMs 
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6.6 Model outcomes 

Additional code was incorporated within the model to compute outcomes concerning both 

clinical and cost estimates, which would enable an assessment of the cost-effectiveness of each 

of the four screening strategies. Total life years were calculated for each of the four screening 

strategies, by summing the time spent in each of the Markov states apart from death. QALYs 

were calculated by adjusting time spent in each of the Markov states by the appropriate utility 

decrement. Costs of T2DM and interventions were applied to each state as appropriate and then 

summed with screening costs, to allow the total cost for each strategy over the time horizon of 

the model to be computed.  

 

Additional clinical outcomes of interest included the total number of clinically diagnosed 

T2DM cases and screen diagnosed cases, which was calculated by tracking the number of 

individuals who entered this state at each cycle, and then summing this over the whole time 

horizon. The total number of T2DM cases was calculated by tracking individuals as they moved 

into the undiagnosed T2DM state and screen diagnosed state and summing these together. 

Those clinically diagnosed did not have to be incorporated into this calculation, as these are 

individuals who already have T2DM but have moved from the undiagnosed state.  

 

Finally diabetes-free life years was calculated by summing years spent with NGT or IGT. All 

clinical and costs outcomes were calculated for each of the four screening strategy, and the 

differences in outcomes between each of the three active screening strategies compared to the 

strategy of no screening were also computed. As well as undiscounted results, both costs and 

QALYs were calculating incorporating an annual discount of 3.5%. The WinBUGS code for 

calculating model outcomes is given in box 4. 
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Box 4: WinBUGS code for model outcomes 
 
#Clinical Outcomes     
totalIGT[strategy] <- sum(total[strategy,2:3]) 
totalT2DM[strategy] <- sum(total[strategy,4:6]) 
totallife[strategy] <- sum(total[strategy,1:6]) 
totaldiabfree[strategy] <- sum(total[strategy,1:3]) 
totallifedis[strategy] <- sum(lifedis[strategy,1:50]) 
totaldiabfreedis[strategy] <- sum(diabfreedis[strategy,1:50]) 
 
for (time in 1:50) { 

 lifedis[strategy,time] <- sum(number[strategy,1:6,time])*pow(0.965,time-1)  
  diabfreedis[strategy,time] <- sum(number[strategy,1:3,time])*pow(0.965,time-1) } 
 
difflife[strategy] <- totallife[strategy] - totallife[4] 
diffdiabfree[strategy] <- totaldiabfree[strategy] - totaldiabfree[4] 
diffcases[strategy] <- totalcases[strategy] - totalcases[4] 
difflifedis[strategy] <- totallifedis[strategy] - totallifedis[4] 
diffdiabfreedis[strategy] <- totaldiabfreedis[strategy] - totaldiabfreedis[4]    
  
    
#Diabetes cases       
casesT2DM[strategy,1] <- number[strategy,4,1] + number[strategy,5,1] + number[strategy,6,1]  
 
for (time in 2:horizon) { 
 allcases[strategy,time] <- (number[strategy,2, time-1]*trans[strategy,1,2,4]) +  
 (number[strategy,3,time-1]*trans[strategy,1,3,5])  
  

clincases[strategy,time] <- number[strategy,4, time-1]*trans[strategy,1,4,6] 
  screencases[strategy,time] <- number[strategy,3, time-1]*trans[strategy,1,3,5]  
    }  
 allcases[strategy,1] <- number[strategy,4,1] + number[strategy,5,1] 
 clincases[strategy,1] <- number[strategy,6,1] 
 creencases[strategy,1] <- number[strategy,5,1] 
 totalcases[strategy] <- sum(allcases[strategy,1:horizon]) 
 totalclincases[strategy] <- sum(clincases[strategy,1:horizon])  
 totalscreencases[strategy] <- sum(screencases[strategy,1:horizon])   
 } 
 

 

To assess the cost-effectiveness of each of the three active screening strategies compared to no 

screening, the incremental cost-effectiveness ratios (ICERs), as well as cost-effectiveness 

acceptability curves were calculated. The ICER is simple the difference in costs between two 

strategies, divided by the difference in QALYs, as detailed in Chapter 2. The CEACs were 

calculated by estimating the probability of a strategy being cost-effective compared to another, 

at a number of different willingness-to-pay thresholds (these were £100, £1000, £2500, £5000, 

£7500, £10000, £20000, £25000, £30000 and £50000). The methods for this were described in 

more detail in Chapter 2, sections 2.4.4 and 2.4.6. 
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Box 5: WinBUGS code for calculating the ICERs for each active strategy minus no 
screening, and the CEACs 
  

diffcost[1] <- (totalcost[1] -  totalcost[4])  
 diffcost[2] <- (totalcost[2] -  totalcost[4])  
 diffcost[3] <- (totalcost[3] -  totalcost[4])  
 diffqaly[1] <- (qaly[1] - qaly[4]) 
 diffqaly[2] <- (qaly[2] - qaly[4]) 
 diffqaly[3] <- (qaly[3] - qaly[4]) 
 inccost[1] <- diffcost[1]  / diffqaly[1] 
 inccost[2] <- diffcost[2]  / diffqaly[2] 
 inccost[3] <- diffcost[3]  / diffqaly[3]  
 
for(k in 1:NK) { 
 Q[1,k] <- step(1- ( (totalcost[1] -  totalcost[4]) - K[k] * (qaly[1] - qaly[4]) )) 
 Q[2,k] <- step(1- ( (totalcost[2] -  totalcost[4]) - K[k] * (qaly[2] - qaly[4]) )) 
 Q[3,k] <- step(1- ( (totalcost[3] -  totalcost[4]) - K[k] * (qaly[3] - qaly[4]) )) 
 
Where k = c(100,1000,2500,5000,7500,10000,20000,25000,30000,50000)   
 

6.7 Running the model 

A summary of all the model inputs are given in tables 6.10 and 6.11.  Four Markov models were 

run simultaneously, one for each of the screening/intervention strategies of no screening, 

screening for T2DM only, screening for IGT and T2DM, with lifestyle interventions 

administered to individuals with IGT to attempt to prevent T2DM, and lastly as above but with 

pharmacological interventions. Each model cycle represents one year and the model for the base 

case scenario was run for a time horizon of 50 years. Model results include both clinical and 

cost-effectiveness outcomes, with cost per quality adjusted life year being the primary outcome. 

The model was implemented within WinBUGS using a Bayesian comprehensive decision 

modelling approach (Cooper et al., 2004). The full WinBUGS code written to implement the 

model, comprising of over ten pages with additional code to what has been presented in this 

chapter, is given in Appendix 3.6. As described vague prior distributions were assumed for all 

model parameters where they were required, that is for the diagnostic data for the decision tree 

and the four meta-analyses of transition rates and intervention effects within the decision model. 

The influence of these ‘vague’ priors are explored further in Chapter 7. Model parameters were 

estimated by using Markov Chain Monte Carlo simulation methods (Spiegelhalter et al.).  

Results are based on a sample of 20,000 simulations, following a ‘burn-in’ of 10,000 

simulations. Convergence of the Markov chain was assessed, as discussed further in Chapter 7.  
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Table 6.10: Summary of clinical model inputs 

Parameter Distribution Value (SE) Source(s) 
Data for the decision tree 
Prevalences Dirichlet NGT= 1847/2216= 83% 

IGT= 264/2216= 12% 
T2DM= 105/2216= 5% 

STAR study 

Screening test efficiency Multi-nominal Entered as 3 x 3 table, which 
represents:  
For T2DM: 
Sensitivity 89.5% 
Specificity 91.3% 
For IGT and T2DM: 
Sensitivity 59.4% 
Specificity 88.0% 

STAR study 

Transition rates (per 100 person years) 
NGT to IGT 
  <65yrs 
  ≥65yrs 

 
Log normal 
Log normal 

 
1.66 (0.08) 
2.49 (0.11) 

 
Baltimore study 

IGT to T2DM Log normal 1.956 (0.252) 12 studies
Time spent with undetected 
diabetes (years) 

Log normal 1.647 (0.181) Harris 

Mortality rates (per 100 person years) 
45-54 years 
55-64 years  
65-74 years 
75-84 years 
85+ years  

- 
- 
- 
- 
- 

0.32 
0.84 
2.36 
6.09 
15.68 

Department of 
Health statistics 
(2000) 

Increased risk of death if have 
diabetes (hazard ratio) 

Log normal 0.756 (0.087) DECODE

Increased risk of death for 1% 
increase in HbA1c (hazard ratio) 

Log normal 0.104 (0.039) Rossing 

Intervention effects on risk of developing type 2 diabetes (hazard ratio) 
Lifestyle vs. standard treatment  Log normal -0.646 (0.099) 12 studies
Anti-diabetic drugs vs. placebo  Log normal -0.425 (0.141) 9 studies
HbA1c    
Undiagnosed T2DM Normal 9.0% (0.056) UKPDS
Screen detected T2DM Normal 7.0% (0.028) UKPDS
Clinically detected T2DM Normal 7.9% (0.042) UKPDS
Utilities    
Undetected T2DM Normal 0.788 (0.020)† ADDITION
Screen detected T2DM Normal 0.788 (0.020)‡ ADDITION
Clinically detected T2DM Normal 0.771 (0.035)‡  UKPDS

† Utility kept constant for duration undiagnosed 

‡ Baseline value only and Utility decreased with every year of duration of T2DM 
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Table 6.11: Summary of model costs 

 

Parameter 
 

Distribution Value (SE) Source(s) 

Costs* 
Screening tests 
   FPG test 
   OGTT test 

 
- 
- 

 
40p per person 
£1.30 per person 

 
NHS (2006) 

Nurse cost - £26 per hour Curtis 

Metformin intervention - £16.10 per annum NHS (2006) 
Lifestyle intervention 
   Year 1 
   Subsequent years  

 
- 
- 

 
£398 per annum 
£280 per annum 

 
Avenell 

Undiagnosed diabetes 
   Year before diagnosis 
   Years 2 to 5 before diagnosis 

 
- 
- 

 
£114 per annum 
£22 per annum 

 
Gulliford  
Curtis 

Diagnosed diabetes 
   Screen detected 
   Clinically detected  

 
Normal 
Normal 

 
£2490 (53.3) per annum  
£2754 (63.1) per annum 

 
UKPDS 

 

 

6.8 Results 

Tables 6.12 and 6.13 present a summary of the results of the decision model for the base case 

scenario, where the effects of different screening and intervention strategies are assessed for 45 

year old, Caucasian adults, for a time horizon of 50 years. At the time of screening 83% have 

NGT, 12% IGT and 5% T2DM. Although in reality a population would be screened, results are 

presented as costs and clinical outcomes of one individual, to enable ease of interpretation. 

 

From table 6.12 it can be seen the average cost over 50 years, per person, for each of the four 

screening/intervention strategies varies between £17,290 for no screening to £18,040 for 

screening for T2DM only. The majority of costs are incurred in the diagnosed T2DM states, due 

to costs of treatment, screening and complications, hence the strategy of no screening has a 

lower cost than that of screening for T2DM, due to a longer period spent in the undiagnosed 

state. The total costs of the two intervention strategies are lower than the screening for T2DM 

only strategy, due to the delay in T2DM progression, and the fact that the intervention costs are 

relatively low.  

 

The estimated probability of developing T2DM for the model population, which was an ‘at risk’ 

population, was approximately 68% over the 50 year time horizon. The majority of cases would 
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be clinically rather than screen diagnosed. This is probably due to the model incorporating only 

one screening programme at the start of the model, rather than a strategy of re-screening a 

population at regular intervals. The impact of implementing more than one screening 

programme is investigated as a model extension in Chapter 8. 

 

The clinical effects of each strategy appear to vary very little. The total life years is slightly 

increased in the active screening/intervention strategies, no screening 30.34 years (95% CrI: 

27.75 to 32.86), screening for T2DM only 30.40 years (27.82 to 32.93) and screening for both 

IGT and T2DM with lifestyle interventions 30.49 years (27.90 to 33.01) and pharmacological 

interventions 30.46 years (27.88 to 32.99). In terms of all the clinical outcomes the strategy of 

no screening performed the worse, followed by screening for T2DM only. Both the screening 

strategies which involved interventions to delay T2DM performed the best, with lifestyle 

interventions slightly outperforming pharmacological interventions, due to the fact that the 

transition rate from IGT to T2DM was decreased a fraction more by lifestyle rather than 

pharmacological interventions.   

 

Table 6.13 reports the absolute differences in terms of cost and clinical outcomes between the 

strategy of no screening and the three other screening/intervention strategies, and also reports 

the relative cost-effectiveness outcomes. The estimated cost for each QALY gained compared to 

a strategy of no screening was £8,681 for screening for T2DM only, £2,863 for screening and 

lifestyle interventions and £3,429 for screening and pharmacological interventions.  

 

Both the IGT and T2DM screening/intervention strategies had a high probability that they were 

cost-effective compared to no screening at the willingness-to-pay threshold of £20,000, with the 

strategy incorporating lifestyle interventions having a probability of 0.986, and that using 

pharmacological interventions of 0.947. Screening for T2DM compared to no screening only 

had a probability of being cost-effective of 0.681 at £20,000 and 0.765 at the £30,000 per 

QALY willingness-to-pay threshold, indicating that more uncertainty surrounded the 

comparison of the two strategies, compared to the intervention strategies compared to no 

screening.  
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As well as comparing the three active screening strategies to the current practice of no 

screening, the two strategies that screened for both IGT and T2DM were also compared directly 

to the strategy of screening for T2DM alone. As both the intervention strategies had a lower 

overall cost and better clinical outcomes in terms of QALYs, the incremental costs were -£794 

per QALY gained for the strategy involving lifestyle interventions compared to T2DM only 

screening, and -£1485 per QALY gained for the strategy involving pharmacological 

interventions compared to no screening. The probabilities of cost-effectiveness also highly 

favoured the two intervention strategies, with probabilities of 0.99 for both at the £20,000 

willingness-to-pay threshold. 

 

Figure 6.11 shows the cost-effectiveness planes, as described in section 2.4.5, for each of the 

three active screening strategies compared to no screening. All three plots show the majority of 

estimates lie in the top-right quadrant, which represents that a trade-off between costs and 

benefits needs to be assessed. For the cost-effectiveness plane of screening for T2DM only 

compared to no screening, the estimates are close to the axis, showing both the difference in 

clinical effectiveness and the difference in costs between screening for T2DM and no screening 

are small. The cost-effectiveness acceptability curves (Figure 6.12) plot the probability of cost-

effectiveness against the willingness-to-pay threshold for each of the three active strategies 

compared to no screening, and the low probabilities achieved by T2DM screening indicates 

uncertainty around the cost-effectiveness of this strategy. Both the screening/intervention 

strategies achieve a high-probability of their cost-effectiveness at a fairly low willingness-to-pay 

threshold, supporting the cost-effectiveness of such strategies.  

 

 



 

 
  

Table 6.12: Outcomes of the decision model by screening strategy 

 

 No screening Screening for T2DM 
only 

Screening for T2DM and 
IGT, lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

 
Years spent in different model states 
Total life years 30.34 (27.75, 32.86) 30.40 (27.82, 32.93) 30.49 (27.90, 33.01) 30.46 (27.88, 32.99) 
QALYs 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23) 28.22 (23.69, 32.18) 
Years T2DM free 20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 21.17 (10.66, 29.79) 21.07 (10.54, 29.66) 
Years IGT 9.06 (1.95, 14.87) 9.06 (1.95, 14.87) 9.40 (2.28, 15.21) 9.27 (2.15, 15.10) 
Years T2DM 9.49 (3.38, 18.01) 9.55 (3.45, 18.08) 9.31 (3.19, 17.85) 9.49 (3.38, 18.01) 
 
Probability of developing T2DM (%) 
T2DM 68.40 (18.02, 91.83) 68.40 (18.02, 91.83) 67.46 (17.09, 91.09) 67.89 (17.41, 91.42) 
Clinically detected 49.24 (13.60, 82.42) 43.19 (7.94, 75.77) 41.23 (6.21, 73.55) 41.23 (6.21, 73.55) 
Screen detected 0 6.80 (5.96, 7.70) 8.13 (6.83, 9.41) 8.53 (7.21, 9.77) 
 
Costs (GBP) 
Total cost 17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
Screening 0 3.95 (2.96, 5.38) 5.12 (4.06, 6.56) 5.12 (4.06, 6.56) 
Intervention 0 0 295.40 (212.20, 377.60) 14.57 (9.93,19.81) 
Undiagnosed T2DM 121 (35, 228) 106 (21.00, 207) 101 (16, 201) 101 (16, 201) 
Screen diagnosed T2DM 0 4,147 (3,504, 4,868) 4,655 (3,851 5,568) 4,900 (4,046, 5,842) 
Clinically diagnosed T2DM 17,170 (5,653, 39,440) 13,700 (3,046, 35,460) 12,810 (2,289, 34,330) 12,810 (2,289, 34,330) 
All T2DM states 17,290 (5,746, 39,580) 18, 030 (7,080, 39,970) 17,630 (6,793, 39,470) 17,880 (7,037, 39,700) 
    

   

  

 



 

 
  

Table 6.13: A comparison of cost and clinical outcomes between screening strategies 

 

 No screening Screening for T2DM 
only 

Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

 Mean (95% CrI) Mean difference from, or in comparison to, no screening (95% CrI) 
Total life years 30.34 (27.75, 32.86) 0.06 (0.02, 0.12) 0.15 (0.08, 0.22) 0.13 (0.06, 0.20) 
QALYs 28.06 (23.49, 32.01) 0.07 (-0.03, 0.18) 0.22 (0.08, 0.36) 0.17 (0.03, 0.32) 
Years T2DM free 20.85 (10.36, 29.45) - 0.33 (0.21, 0.43) 0.20 (0.10, 0.37) 
Lifetime risk of T2DM (%) 64.55 (18.02, 91.83) - -0.98 (-0.50, -1.42) -0.54 (-0.21, -1.17) 
Total cost  17,290 (5,746, 39,580) 730 (-9, 2,341) 610 (-373, 2,693) 579 (-428, 2,658) 
Cost per life year gained - 11,460 4,179 4,768 
Cost per QALY gained - 8,681  2,863  3,429 
Cost per case prevented - - 62,810 105,000 
Probability of cost- effectiveness at  
willingness-to-pay per QALY:  
               £20,000  
               £30,000  

-  
 
 
0.681 
0.765 

 
 
 
0.986 
0.996 

 
 
 
0.947 
0.973 
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Figure 6.11: Cost-effectiveness plots 
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Figure 6.12: Cost-effectiveness acceptability curves 
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6.9 Discussion 

As discussed in detail in chapter 5 previous studies have compared the cost and clinical 

effectiveness of intervening in IGT individuals to delay T2DM (Avenell et al., 2004, Caro et al., 

2004, Eddy et al., 2005, Herman et al., 2005, Icks et al., 2007, Jacobs-van der Bruggen et al., 

2007, Palmer et al., 2004, Segal et al., 1998). Results of the models were all favourable in terms 

of cost and clinical effectiveness, but as the models were designed to assess the effectiveness of 

interventions rather than screening and intervening, the models only considered a population of 

IGT individuals, only part of the disease pathway was modelled, and it was assumed that 

management of T2DM started as soon as the disease developed. The model developed here 

models the whole screening and intervention pathway from screening to death, and offers the first 

comparison of different approaches to T2DM screening and prevention at the population level, 

and is totally probabilistic, allowing for all sources of uncertainty. 

 

From the results presented here it appears that screening for IGT, in addition to T2DM, and 

intervening with either lifestyle or pharmacological interventions is a cost-effective health policy. 

Although screening for T2DM alone gave a relatively low predicted incremental cost per QALY 

of £8,681, due to uncertainty in the model the probability of this strategy being cost effective was 

only 77% at the £30,000 willingness-to-pay threshold. Therefore uncertainty remains as to 

whether screening for T2DM alone would be a viable policy. 

 

Differences in clinical outcomes between the no screening strategy and the three active screening 

strategies were small. This is partly because results were reported as an average for a screened 

population of mixed glucose tolerance, where only 12% had IGT and 5% T2DM at the time of 

screening. Also the sensitivity of the test for IGT was fairly low. Therefore screening a 

population with higher prevalences of glucose intolerance, implementing a screening strategy 

whereby the population is re-screened at regular intervals, or improving the efficiency of the 

screening test will probably lead to an improvement in the clinical outcomes. This will be 

explored further in Chapters 7 and 8 through a series of sensitivity analyses and model 

extensions. Also worth noting is that microvascular and macrovascular outcomes were not 

measured individually in this model, and as these may show benefits from the early detection or 

delay of T2DM, additional clinical benefits in terms of these outcomes are plausible.  
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The model described here makes a number of assumptions, as detailed in section 5.3. No 

transition was allowed from NGT to T2DM without first passing through IGT. This is because it 

is clinically unlikely that an individual would change from NGT to T2DM within a year, which is 

one model cycle. No transition was allowed from T2DM back to IGT or from IGT to NGT. This 

is clinically accurate, as once an individual is diagnosed with T2DM, even if their glucose 

tolerance improves, they are still clinically defined as having diabetes. Also once an individual 

has suffered from IGT, even if their glucose tolerance improves, their future risk of T2DM is 

probably more similar to individuals with IGT rather than those who have always had NGT.  

 

Another assumption was that the HbA1c of those with diabetes who were clinically diagnosed 

would be similar to the 10 year average of an intensively treated group of people with T2DM 

from the UKPDS study (UK Prospective Diabetes Study (UKPDS) Group, 1998a). This 

assumption was made in the absence of long-term clinical data on individuals whose diabetes was 

screen detected. Although 10 year averages of HbA1c levels were used for diagnosed diabetics, 

where our model was run for longer time horizons the HbA1c levels were potentially 

underestimated, which means complication rates and their effects on utilities and mortality rates 

may also be moderately underestimated. Further data is needed on how HbA1c could be expected 

to increase over time to allow for more accurate modelling.  

 

Complications associated with T2DM, in terms of both costs and their effect on quality of life, 

were modelled using data from the UKPDS study. They had fitted and reported Weibull models 

for six complications, aswell as, in a separate paper, the effects of complications on utility values. 

The use of both this cost and utility data was assuming that the intensive treatment arm of the 

UKPDS trial was representative of a screen detected T2DM population. It was also assumed that 

the Weibull models fitted by UKPDS, were appropriate for the data, and that both model fit and 

model assumptions had been checked. The use of WinBUGS and a Bayesian framework, for the 

comprehensive decision model, provided a flexible framework that enabled the model of 

complication rates and their effects on utilities to be incorporated within the full model, which 

enabled the incorporation of all the uncertainty around complication rates and their effects to be 

included also. A limitation of this decision model is that the model parameters were considered 

independent, when ideally the potential correlation between different parts of the model needs to 

be accounted for. 
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As the model was run for a time horizon of 50 years, the screened population (aged 45 years at 

the start) aged with each cycle of the model, thus, where possible, time dependent model 

parameters were incorporated. However, for some model parameters, such as the treatment 

intervention effects, it was assumed that the effect was constant over time. The effects on model 

outcomes of compliance to treatment and screening, will be explored further in Chapter 8. 

 

Most of the data utilised for the model came from studies where the majority of the study 

population were Caucasian adults. The meta-analyses of intervention effects was the most diverse 

in terms of the ethnicities of study populations, but as a previous analysis discussed in Chapter 4 

showed no interaction between ethnicity and intervention effect, no bias should have been 

introduced to the model. The results are therefore most relevant for Caucasian populations.  

 

 

6.10 Chapter summary 

In conclusion, a policy of a one-off screening for both T2DM and IGT, with appropriate 

intervention for those identified with IGT, appears to be cost-effective. However, given the 

uncertainty in the results presented here, particularly for the assessment of T2DM screening, 

further research is needed on the long term clinical effects of early diagnosis of T2DM. 

Furthermore, to model more accurately the two strategies that involved interventions, additional 

information on long-term compliance to interventions and their potential harms and benefits, is 

required.  

 

This model builds on previous work by utilising a comprehensive decision modelling framework 

that included as much of the relevant, available evidence as was feasible, was probabilistic in 

terms of model inputs and all uncertainty was included where relevant. The model was complex, 

incorporating four meta-analyses, and a series of Weibull survival models, for modelling 

complication rates and their associated utilities. It was also the first model to directly compare 

screening for T2DM alone, to screening for IGT and T2DM in combination, and it was the first 

decision model to contain the full screening/treatment/disease pathway, from NGT through to 

death.
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7: MODEL CHECKING AND SENSITIVITY ANALYSES 

7.1 Chapter overview  

Once the primary, base case model had been developed, as described in the previous chapter, it 

was essential to carry out a thorough check of the model and its assumptions. This involved 

checking convergence of the model parameters, considering the effect of distributions given to 

data and parameters within the model, and verifying that the vague prior distributions utilised 

were not influencing the results. In addition a number of sensitivity analyses were carried out on 

several model parameters including prevalence of NGT, IGT and T2DM, test efficiency and the 

time horizon of the model. This was to enable a better understanding of the model, particularly 

to identify which model parameters had the greatest effect on the cost-effectiveness of different 

screening strategies. By identifying the model parameters that have the greatest influence on the 

model results, the most important factors that need to be considered when implementing a 

screening strategy can be ascertained. In addition sensitivity analyses are useful in that they can 

help to identify clinical areas where further research is needed. This chapter will describe and 

present results for all the model checks and the sensitivity analyses that were carried out on the 

primary model. 

 

7.2 Convergence of model parameters 

7.2.1 Graphics utilised 

When assessing models that have been fitted using Markov Chain Monte Carlo (MCMC) 

methodology, as in this example, a number of issues need to be considered when investigating 

the validity of the model (Brooks and Gelman, 2007, Cowles and Carlin, 1996). MCMC 

methods aim to successively sample values from a convergent Markov chain and they are not 

without their problems, in particular there are three primary concerns that need to be assessed.  

 

Firstly, as the chain requires starting values, the choice of initial values will influence the early 

part of the chain. The initial part of the chain, before the model settles, is called the burn-in and 

is discarded, with the results of the model being taken from later iterations. Therefore the first 

check to make is whether the burn-in was long enough, and whether chains with different initial 

values will culminate in the chains converging before the end of the burn-in. This can be 

assessed visually by plotting a number of chains, with a range of different initial values, against 
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model simulation. Good convergence will produce a plot whereby the chains all converge early 

on in the simulation run. 

 

Secondly an assessment of whether the chain has been run for long enough to allow for 

convergence of model parameters, needs to be made. Whilst some models converge quickly, 

others, usually when there is high autocorrelation, will require 100,000s of simulations before 

convergence is adequately achieved. Convergence can be assessed using trace plots. Trace plots 

also allow for an assessment of how well the chain is mixing across all possible values. Trace 

plots are produced by plotting the value of the model parameter for each model simulation, 

thereby enabling the parameter to be monitored across simulations and any problems to be 

identified. A problem with convergence may be identified if the trace plot drifts rather than 

remaining stable, and problems of mixing can be identified if the chain appears to ‘stick’ at or 

near one value for several iterations, rather than showing a rapid movement across all possible 

values. 

 

Density plots, as well as assessing if the distributions of model parameters are as expected, can 

also be used to assess convergence. By dividing a chain into two halves and plotting each half, 

as well as the whole chain, onto one axis, convergence will be shown if all three densities are 

similar to each other. A measure of convergence (D) was calculated from the density plots, 

whereby D represents the maximum distance between two densities as a percentage of the 

maximum height of the combined density (Thompson et al., 2006). A value of D less than 20 

represents reasonable agreement and a value less than ten shows good agreement and 

convergence.  

 

The third issue that needs to be assessed is correlation between successive values in a chain. 

High autocorrelation between successive iterations means that values in the chain cannot be 

treated as a random sample from the posterior, a problem that can be overcome by running the 

model for an increased number of iterations to obtain an adequately random sample. Problems 

of correlation within chains can be assessed using autocorrelation plots. Autocorrelation plots 

comprise of the correlation between two points in a chain plotted against their distance from 

each other within the chain (lag). 

To assess the primary model, plots of overlaid chains with different initial values were drawn 

for all parameters within the model that required initial values to be specified. These were the 
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three prevalences of NGT, IGT and T2DM, the values of the three by three table that 

determined the sensitivity and specificity of the screening tests and the means and standard 

deviations of the four meta-analyses run within the model. From the four meta-analyses mu1 

and sd1 represent the mean and between study standard deviation of the meta-analysis for the 

IGT to T2DM transition, mu2 and sd2 the meta-analysis performed for the pharmacological 

interventions, mu3 and sd3 the lifestyle interventions and mu4 and sd4 the transition from 

undiagnosed to diagnosed T2DM. Autocorrelation and trace plots were also compiled for the 

above parameters and in addition, to assess parameters computed within the model, both the 

QALYs and the total costs for each of the four strategies were plotted. Lastly density plots on 

the aforementioned parameters were constructed to monitor both converge and the distributions 

of these model parameters, to allow for the assessment of any anomalies. 

 

7.2.2 Results of convergence checks 

The diagnostic graphs are presented in figures 7.1 to 7.4, with additional graphs given in 

Appendix 4. The base case model, and all subsequent sensitivity analyses and model extensions, 

were run with a burn-in of 10,000 iterations, with results being taken from a subsequent 20,000 

iterations. From figure 7.3, where four chains comprising of different initial values chosen to 

represent the full plausible range of the parameter, were run, it can be seen that convergence of 

chains occurs within the first few iterations of the model. This indicates that the initial values 

were not influencing the end results computed by the model, and that the length of burn-in was 

more than adequate.   

 

All of the trace plots showed no problems with any of the parameters drifting over the course of 

the simulations (figure 7.1). Both the autocorrelation plots and the trace plots for the means and 

standard deviations of the four meta-analyses run within the decision model, highlighted that 

there was an issue with correlation between values in concurrent simulations, particularly for 

mu2 and mu3 which were the mean values from the lifestyle interventions and pharmacological 

interventions meta-analyses. Auto-correlation is not a problem if enough iterations are run to 

enable results to be drawn from a random sample. The WinBUGs code was run for 20,000 

iterations for all models, running the base case model for a further 20,000 iterations did not 

change the estimated means and standard deviations from the four meta-analyses, or their 

estimated uncertainty, therefore it was concluded that all models had been run for sufficient 

iterations for correlation between simulations not to influence the results. 
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All the density plots, given in Figure 7.4 along with the corresponding D value, also indicated 

adequate convergence of model parameters. Splitting the chains into two and plotting both 

halves showed good agreement between the two halves and the D values assessing agreement 

were all below twenty, representing either reasonable or good agreement.  

 

When assessing the density plots it was noted that the plots for the QALYs for each of the four 

strategies, followed an unusual distribution (Figure 7.4). To investigate this further, as the 

QALYs were composed of time spent in each of the Markov model states, individual density 

plots were drawn for each of the seven states. The plots for the seven states for the T2DM 

screening strategy are displayed in Figure 7.5, while the plots for the other three strategies are 

given in Appendix 4. All four strategies had similar plots for each of the seven states. From the 

plots it can be seen that the plots varied widely between states, due to different transition rates 

moving to and from states. For example for the NGT state there was only movement to 

undiagnosed IGT or death, with the death rates being relatively low and the movement to 

undiagnosed IGT being stratified by two age groups (below or equal to and above 65 years), 

although constant within age group. Due to the transition to undiagnosed IGT dominating the 

distribution the density curve effectively represents two exponential survival distributions, one 

for each age range, whereby the distributions are exponential due to risk or ‘hazard’ of moving 

to undiagnosed IGT being constant. The diversity in the density plots for each of the six ‘alive’ 

Markov states, leads to the unusual distribution when they are used to form QALYs for each 

strategy. 



Chapter 7  Model checking and sensitivity analyses
______________________________________________________________________ 

______________________________________________________________________
 - 160 - 

Figure 7.1: Trace plots of the means and standard deviations from the  

four meta-analyses 
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Figure 7.2: Auto-correlation plots of the means and standard deviations from the four 
meta-analyses 
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Figure 7.3: Overlaid chains, each with a different initial value, plotted for the mean values 
from the four meta-analyses 
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Figure 7.4: Density plots of the mean values from the four meta-analyses and QALY 
estimates 
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Figure 7.4 continued: 
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Figure 7.5: Density plots for each state for the T2DM screening strategy 
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7.3 Distributions of model data 

A number of the parameters entered into the decision model had distributions placed around 

them to allow for any uncertainty present in their estimation. These are described in detail in 

Chapter 6. For this decision model both costs and utilities were modelled with normal 

distributions, although it is common practice to model costs using a gamma or log normal 

distribution, to avoid the range of possible values including negative values, and to model 

utilities on a beta distribution to ensure the range of possible values have an upper limit of 1. It 

was attempted to model costs with a gamma distribution and utilities with a beta distribution but 

due to the small standard errors of these data inputs, method of moments estimation could not 

provide sensible parameter estimates that could be used to specify the distributions. As all the 

costs and utilities do have small standard errors though, modelling them normally should not 

have posed a problem as the plausible range will still fall within an appropriate range for these 

parameters. 

 

7.4 Prior distributions 

For the decision model only vague rather than informative priors were used, to allow the data to 

dominate model results. When incorporating vague priors it is important to check that the choice 

of prior is not affecting or influencing the results in any way (Lambert et al., 2005). Therefore 

several models were run with different prior distributions used for the between study standard 

deviation (τ) of the four meta-analyses which comprised part of the decision model. Although 

some checks on prior distributions for the two intervention meta-analyses were carried out and 

reported in chapter 4, they are expanded here and the effect on the model results, in terms of the 

incremental costs per QALY, rather than just the meta-analysis were considered.  

 

In the base case model the distribution applied to all the four τ values, within the meta-analyses, 

were uniform(0,2). Each of the four prior distributions were altered one at a time to either a half 

normal or a gamma distribution and the effects on the model are reported in table 7.1. The 

distributions used are described in detail in Chapter 2, 

 

 



 

 

Table 7.1: The effects of changing the prior distributions 

Meta-analysis Prior distribution for  
the between study  
standard deviation (τ) 

Mean 
(95% CrI) 

Cost per QALY gained compared to the strategy of  
no screening (GBP) 

Screening for T2DM 
only 

Screening for T2DM and 
IGT, lifestyle 
interventions 

Screening for T2DM and 
IGT, pharmacological 
interventions 

Pharmacological interven Uniform(0,2) -0.39 (-0.21, -0.71) 8,681 2,863  3,429 
Gamma(0.1,0.1) -0.38 (-0.27, -0.49) 8,822 2,829 3,613 
Normal(0,1)I(0,) -0.39 (-0.20, -0.61) 8,709 2,848 3,453 

Lifestyle  
interventions 

Uniform(0,2) -0.65 (-0.43, -0.82) 8,681 2,863  3,429 
Gamma(0.1,0.1) -0.67 (-0.51,-0.79) 8,828 2,797 3,376 
Normal(0,1)I(0,) -0.65 (-0.43, -0.86) 8,800 2,810 3,452 

Transition from 
IGT to T2DM  

Uniform(0,2) 1.96 (1.46, 2.46) 8,681 2,863  3,429 
Gamma(0.1,0.1) 1.95 (1.49, 2.42) 8,694 2,776 3,362 
Normal(0,1)I(0,) 1.95 (1.48, 2.43) 8,735 2,802 3,355 

Transition from  
T2DMu to T2DMc 

Uniform(0,2) 1.70 (0.15, 3.15) 8,681 2,863  3,429 
Gamma(0.1,0.1) 1.73 (0.22, 2.98) 8,759 2,903 3,582 
Normal(0,1)I(0,) 1.70 (0.49, 2.84) 8,715 2,881 3,486 
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From the results it can be seen that although changing the prior distributions of the between 

study standard deviation had some effect on both the mean values of the meta-analyses and the 

estimated incremental costs of each of the three active screening strategies compare to no 

screening, the effects were minimal and did not change the overall conclusions of the decision 

model.  

 

7.5 Economic sensitivities 

Once a thorough check of the model and its assumptions had been carried out, extensive 

sensitivity analyses were run on the model. By carrying out numerous sensitivity analyses and 

comparing model results, a fuller understanding of the importance of model parameters, and the 

clinical implications of different approaches to a screening/intervention programme, can be 

fully understood. A number of sensitivity analyses were carried out on both economic and 

clinical model inputs and assumptions. The economic sensitivity analyses will be described and 

interpreted here with the clinical sensitivity analyses discussed in detail in section 7.6. 

 

7.5.1 Discounting costs and benefits 

The first sensitivity analyses assessed the impact of discounting both costs and benefits, on the 

conclusions of the model. Economic evaluation studies often report results from discounted 

models as it can be argued that more emphasis should be given to more immediate costs and 

benefits, rather than long-term implications, as described in more detail in Chapter 2. The 

National Institute of Clinical Excellence (NICE) currently recommend that cost-effectiveness 

analyses should discount both costs and benefits at a rate of 3.5% per year (National Institute for 

Clinical Excellence, 2004), therefore these were the values used to discount the primary model. 

There has been dispute over these discounts rates though, with some advocating a return to 

differential discounting, whereby effects are discounted at a lower annual rate than costs, so that 

future health effects are not discounted so heavily (Brouwer et al., 2005). All other parameters 

remained unchanged from the base case scenario. 

 

The results from a model with both costs and benefits discounted at 3.5% per annum are 

presented in table 7.2. When both costs and benefits were discounted, as expected both the total 

cost of each of the four screening/intervention strategies, as well as the estimated QALYs, were 

reduced. Total costs were reduced dramatically by over half, which is unsurprising, as because 
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the majority of costs are incurred once T2DM develops, the bulk of the costs are accrued in the 

later years of the model.  

 

The more interesting results to compare between discounted and undiscounted models are the 

incremental cost-effectiveness ratios, that is the estimated cost for each QALY gained, and the 

probabilities of a strategy being cost-effective at a certain willingness-to-pay threshold. From 

table 7.2 it can be seen that for each of the three active screening/intervention strategies 

compared to no screening, the incremental costs increased when costs and benefits were 

discounted. The results for the T2DM screening strategy increased from £8,681 to £14,150 per 

QALY, screening followed by lifestyle interventions increased from £2,863 to £6,242  per 

QALY, and screening with pharmacological interventions from  £3,429 to £7,023 per QALY. 

This is because the discounted analysis gives more weight to the years immediately after 

screening, when the clinical effect is small. Although the incremental costs were higher, they 

were still relatively low and both the screening and intervention strategies still retained a high 

probability of being cost-effective at the £20,000 willingness-to-pay threshold, with screening 

and lifestyle interventions having a probability of 0.93 and screening with pharmacological 

interventions a probability of 0.85. The strategy of screening for T2DM only though, when costs 

and benefits were discounted, had a probability of cost-effectiveness of 0.49 at the £30,000 

threshold and 0.61 at the £20,000 threshold, making this strategy borderline as to whether it 

would be an acceptable health policy for implementation.  

 

Figure 7.6 presents the cost-effectiveness acceptability curves for each of the three active 

screening/intervention policies compared to no screening, for both discounted and undiscounted 

results. It can be seen that discounting both costs and benefits reduces the probability of each 

strategy being cost-effective, over a range of willingness-to-pay thresholds.  

 

 



 

 

Table 7.2: A comparison of results from an undiscounted model and a model discounted at 3.5% per annum for both costs and benefits 

 No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

 
Undiscounted (base case results) 
Total life years 30.34 (27.75, 32.86) 30.40 (27.82, 32.93) 30.49 (27.90, 33.01) 30.46 (27.88, 32.99) 
QALYs 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23) 28.22 (23.69, 32.18) 
Years T2DM free 20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 21.17 (10.66, 29.79) 21.07 (10.54, 29.66) 
Total cost (GBP) 17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
Cost per life year gained (GBP) - 11,460 4,179 4,768 
Cost per QALY gained (GBP) - 8,681 2,863  3,429 
Probability of cost- effectiveness at  
willingness-to-pay per QALY:  
               £20,000  
               £30,000  

-  
 
0.681 
0.765 

 
 
0.986 
0.996 

 
 
0.947 
0.973 

 
Discounted at 3.5% per year for both costs and benefits 
Total life years 18.19 (17.25, 18.98) 18.22 (17.28, 18.96) 18.25 (17.31, 18.98) 18.19 (17.25, 18.93) 
QALYs 17.13 (15.02, 18.49) 17.16 (15.07, 18.51) 17.22 (15.14, 18.58) 17.20 (15.12, 18.56) 
Years T2DM free 13.69 (7.99, 17.08) 13.69 (7.99, 17.08) 13.86 (8.16, 17.26) 21.07 (10.54, 29.66) 
Total cost (GBP) 7,636 (2,636, 19,370) 8,244 (3,702, 19,690) 8,260 (3,789, 19,590) 8,199 (3,710,  19,570) 
Cost per life year gained (GBP) - 23,710  10,900  11,690 
Cost per QALY gained (GBP) - 14,150  6,242 7,023 
Probability of cost- effectiveness at  
willingness-to-pay per QALY:  
               £20,000  
               £30,000 

-  
 
0.486  
0.608 

 
 
0.930 
0.974 

 
 
0.850 
0.916 
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Figure 7.6: Cost-effectiveness acceptability curves for discounted and undiscounted results 
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7.5.2 Sensitivity analyses for costs 

In the decision model costs were attached to screening tests, interventions applied to individuals 

with IGT, and estimated costs incurred by T2DM which differed for undiagnosed, clinically 

diagnosed and screen diagnosed.  As the costs of screening tests were relatively low (40p for a 

FPG test and £1.30 for an OGTT), and the accuracy of these costs relatively assured, they were 

not adjusted in sensitivity analyses. Sensitivity analyses were carried out though on both 

intervention costs and the costs incurred by T2DM, through monitoring, treatment and 

complications of the disease. 

 

For the primary, base case model intervention costs were estimated as, for lifestyle interventions 

£398 in the first year and £280 in subsequent years, and for pharmacological interventions 

£16.10 per annum. In particular the lifestyle interventions were very difficult to cost, as 

described in Chapter 6, and costs could vary depending on the intensity of the intervention 

adopted. To assess the effect on model conclusions if these estimates had been incorrectly 

specified, particularly as costs were estimated from clinical trial settings, and may be higher in 

practice, models were run with intervention costs at two, five and ten times the base case rate. 

The results of these models are given in table 7.3. As the strategy incorporating screening only 

for T2DM involved no interventions, the results of this strategy remained unchanged from the 

base case scenario, although they are still included in table 7.3 to enable comparisons with the 

two intervention strategies.  

 

Total costs for the screening and lifestyle intervention strategy increased from £17,910 (95% 

CrI: 7,124 to 39,740) for the base case scenario to £20,580 (95% CrI: 9,895 to 42,010) if 

intervention costs were increased ten fold. Correspondingly the strategy involving 

pharmacological interventions increased from £17,900 (95% CrI: 7,061, 39,710) to £18,030 

(95% CrI: 7,206 to 39,580). Therefore in terms of overall costs of each strategy, increasing 

intervention costs had relatively little impact. This is because the total cost of each strategy was 

dominated by the costs of T2DM.  

 

In terms of cost-effectiveness the incremental costs increased from £2,863 to £15,410 per 

QALY, for the strategy of screening with lifestyle interventions when lifestyle costs were 

increased ten fold, and the probability of cost-effectiveness at the £30,000 willingness-to-pay 

threshold reduced from 1.00 to 0.97. For the strategy involving pharmacological interventions 
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cost per QALY increased from £3,429 to £4,231 and the probability of cost-effectiveness at the 

£30,000 threshold remained unchanged at 0.97. The impact of increasing costs of lifestyle 

interventions was greater than that of increasing pharmacological, as the lifestyle costs were 

much greater per annum in the base case model. Increasing intervention costs though had little 

effect on the overall cost-effectiveness of the two strategies involving interventions, meaning 

their results are robust to any potential inaccuracies in the estimated costs of interventions, or 

for future increases. 

 

As well as carrying out sensitivity analyses for intervention costs, the costs attached to T2DM 

were also assessed. Base case costs for the primary model were estimated as £133.98 for 

undiagnosed T2DM for the year prior to diagnosis and £21.68 for previous years, £2490 per 

annum for screen detected T2DM and £2756 per annum for clinically detected T2DM. Models 

were run with the costs attached to each of the three T2DM states increased by two, five and ten 

fold, and the results are presented in table 7.4. 

 

As the majority of the total costs of each screening strategy are attributable to T2DM, increasing 

the costs of T2DM increased the total costs of each strategy by a similar factor. As the costs of 

all four strategies were increased, impacts on the comparisons of the three active strategies 

compared to no screening were less dramatic. Doubling T2DM costs resulted in an increase in 

the costs per QALY to £17,310 for T2DM only screening, £4,281 for screening and lifestyle 

interventions and £6,696 for screening and pharmacological interventions and increasing T2DM 

costs ten-fold resulted in costs per QALY of £86,240, £15,640 and £32,869 for each active 

strategy respectively. After doubling the cost of T2DM, both the intervention strategies still had 

a high probability of cost-effectiveness at the £20,000 willingness-to-pay per QALY threshold, 

whilst the cost-effectiveness of the T2DM only screening strategy looked uncertain at these 

costs. Increasing the costs five-fold introduced uncertainty into the cost-effectiveness of all 

three screening strategies, although the likelihood of costs reaching such levels, that is an 

estimated average annual cost of £13,780 for a clinically detected and £12,450 for screen 

detected diabetics, in clinical practice seems unlikely.  

 

A series of sensitivity analyses were also carried out to assess the cost-effectiveness of each 

screening strategy over a number of time horizons, the results of which are in table 7.5. The 

results show that the three active strategies appear to become more cost-effective the longer 
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they are monitored. So at five years the cost per QALY gained was £112,400 for T2DM 

screening, £90,490 for IGT and T2DM screening followed by lifestyle interventions, and 

£93,320 for IGT and T2DM screening followed by pharmacological interventions. These costs 

were reduced steadily as the time horizon increased, until at a horizon of 50 years the costs were 

£8,681, £2,863 and £3,429 per QALY, for each of the three active screening strategies 

respectively. This is because the clinical impact of screening and/or intervening occurs in later 

years of the model, when T2DM is either delayed, or complications of T2DM are reduced 

through early diagnosis and treatment. 

 

The benefits of any screening strategy are therefore likely to be more apparent in the long rather 

than the short term, which emphasises the need to monitor the long-term effects when assessing 

the benefits of any new screening strategy, particularly as it is the long-term effects for which 

there is currently the least evidence. Figure 7.7 shows the effect of increasing the time horizon 

of the model on the incremental cost-effectiveness ratios for the three active screening strategies 

compared to a strategy of no screening, and how the three active screening strategies appear 

more cost-effective the longer the follow-up. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 7.3: Effect of changing intervention costs on model outcomes 

  No screening Screening for T2DM only Screening for T2DM and 
IGT, lifestyle interventions 

Screening for T2DM and 
IGT, pharmacological 
interventions 

Total cost (GBP) Base case  17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
Costs x 2 17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 18,210 (7,443, 40,000) 17,920 (7,077, 39,720) 
Costs x 5 17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 19,100 (8,368, 40,750) 17,960 (7,128, 39,760) 
Costs x 10 17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 20,580 (9,895, 42,010) 18,030 (7,206, 39,580) 

Cost per case prevented 
(GBP) 

Base case  - - 62,810 105,000 
Costs x 2 - - 93,310 107,800 
Costs x 5 - - 184,800 115,900 
Costs x 10 - - 337,400 129,300 

Cost per QALY gained 
(GBP) 

Base case - 8,681  2,863  3,429 
Costs x 2 - 8,681 4,254 3,516 
Costs x 5 - 8,681 8,487 3,785 
Costs x 10 - 8,681 15,410 4,231 

Probability cost effective at 
willingness-to-pay of £20,000 
/ £30,000 per QALY 

Base case - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
Costs x 2 - 0.68 / 0.76 0.98 / 0.99 0.95 / 0.97 
Costs x 5 - 0.68 / 0.76 0.94 / 0.98 0.94 / 0.97 
Costs x 10 - 0.68 / 0.76 0.73 / 0.92 0.94 / 0.97 

* Base case costs for the primary model were, for lifestyle £398 in the first year and £280 in subsequent years, and for pharmacological interventions £16.10 per annum 



 

 

Table 7.4: Effect of changing T2DM costs on model outcomes 

 

  No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Total cost (GBP) Base case 17,290 (5,746, 39,580) 18,040 ( 7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
Costs x 2 34,530 (11,520, 79,110) 36,050 (14,170, 79,890) 35,540 (13,920, 79,180) 35,770 (14,100, 79,300) 
Costs x 5 86,310 (28,810, 197,900) 90,070 (35,430, 199,500) 88,440 (34,260, 197,300) 89,410 (35,200, 198,300) 
Costs x 10 172,600 (57,620, 395,500) 180,200 (70,860, 398,900) 176,700 (68,230, 394,600) 178,700 (70,350, 396,400) 

Cost per case 
prevented (GBP) 

Base case - - 62,810 105,000 
Costs x 2 - - 94,520 206,900 
Costs x 5 - - 145,300 512,300 
Costs x 10 - - 345,900 1,020,000 

Cost per QALY 
gained (GBP) 

Base case - 8,681  2,863  3,429 
Costs x 2 - 17,310 4,281 6,696 
Costs x 5 - 43,140 8,537 16,480 
Costs x 10 - 86,240 15,640 32,860 

Probability cost 
effective at 
willingness-to-pay 
of £20,000 / 
£30,000 per QALY 

Base case - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
Costs x 2 - 0.46 / 0.60 0.93 / 0.97 0.85 / 0.92 
Costs x 5 - 0.15 / 0.27 0.77 / 0.87 0.56 / 0.71 
Costs x 10 - 0.07 / 0.11 0.57 / 0.70 0.33 / 0.46 

* Base case costs for the primary model were for undiagnosed T2DM £133.98 for the year prior to diagnosis and £21.68 for previous years, and £2490 for screen detected 
T2DM and £2756 for clinically detected T2DM per annum 

  

  



 

 

Table 7.5: Effect of changing the time horizon on model outcomes 

 Horizon 
(years) 

No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

QALY 5 4.89 (4.80,4.91) 4.89 (4.81, 4.91) 4.89 (4.81, 4.92) 4.89 (4.80,4.92) 
10 9.61 (9.16, 9.71) 9.62 (9.17, 9.71) 9.63 (9.18, 9.72) 9.63 (9.18, 9.72) 
20 18.15 (16.46, 18.70) 18.17 (16.49, 18.71) 18.21 (16.55, 18.75) 18.20 (16.53, 18.74) 
30 24.48 (21.32, 26.04) 24.53 (21.39, 26.07) 24.62 (21.49, 26.16) 24.60 (21.46, 26.14) 
40 27.50 (23.24, 30.56) 27.56 (23.34, 30.61) 27.69 (23.48, 30.74) 27.65 (23.44, 30.70) 
50 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 

Total cost (GBP) 5 249 (76, 895) 635 (514, 869) 730 (609, 952) 669 (545, 895) 
10 1,244 (405, 3,886) 1,768 (1,258, 4,198) 1868 (1,403, 4,264) 1,791 (1,309, 4,193) 
20 5,392 (1,869, 17,410) 6,091 (3,227, 17,760) 6,117 (3,367, 17,670) 6,053 (3,267, 17,630) 
30 11,730 (3,922, 31,510) 12,520 (5,404, 31,900) 12,450 (5,491, 31,670) 12,410 (5,411, 31,660) 
40 16,370 (5,483, 38,600) 17,140 (6,823, 38,880) 17,040 (6,864, 38,610) 17,040 (6,792, 38,640) 
50 17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 

Cost per QALY gained 
(GBP) 

5 - 112,400 90,490 93,320 
10 - 42,190 34,050 34,980 
20 - 16,610 10,220 10,820 
30 - 10,610 4,467 5,043 
40 - 8,903 3,055 3,631 
50 - 8,681 2,863 3,429 

Probability cost effective at 
willingness-to-pay of £20,000 
/ £30,000 per QALY 

5 - 0.01 / 0.03 0.02 / 0.04 0.02 / 0.05 
10 - 0.08 / 0.15 0.20 / 0.40 0.20 / 0.36 
20 - 0.33 / 0.45 0.76 / 0.86  0.67 / 0.77 
30 - 0.54 / 0.63 0.93 / 0.97 0.86 / 0.91 
40 - 0.65 / 0.74 0.98 / 0.99 0.93 / 0.96 
50 - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 

* the base case model was run for a time horizon of 50 years 

  



 

 

Figure 7.7: The effect of increasing the time horizon of the model on the incremental cost-effectiveness ratios for the three active screening strategies 
compared to a strategy of no screening 
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7.6 Clinical sensitivities  

A number of sensitivity analyses were carried out on the clinical parameters within the decision 

model. Firstly the test sensitivities of the screening tests were changed for both T2DM and the 

test for IGT and T2DM combined. Test specificities were not assessed by sensitivity analyses as 

poor test specificity would result in a greater number of confirmatory OGTT tests being carried 

out, but as this test is relatively cheap (£1.30 per test) the impact on the total costs of each 

strategy would be minimal.  Secondly the prevalence of both IGT and T2DM were increased in 

unison to assess the predicted results of each screening strategy if populations with different 

risks of glucose intolerance were targeted.  

 

Lastly two models were run with either a population who all suffered from T2DM, and then a 

population who all had IGT. The models were run with screening tests with 100% sensitivity, 

and therefore the results of the model were actually showing the predicted effects of either 

identifying T2DM early, compared to the strategy of no screening whereby they would just be 

identified clinically, or the effect of the interventions compared to no interventions in 

individuals with IGT. As with the economic sensitivity analyses, sensitivity analyses were 

carried out with all other model parameters remaining constant and at the same levels as the 

base case scenario. 

 

7.6.1 Test sensitivity 

The test sensitivities utilised in the base case model were taken from the STAR study. They 

were for the fasting plasma glucose test (FPG) which was shown to have a sensitivity of 86% 

when testing for T2DM alone, and 59% when testing for both IGT and T2DM in combination. 

Due to the poor sensitivity when testing for both IGT and T2DM it was important to understand 

the effect of the present unavailability of an efficient test, and the impact any improvement in 

the screening test for IGT and T2DM would have. The sensitivities of both test, T2DM alone 

and IGT and T2DM in combination, were increased in unison encompassing a range from just 

20% to 100%. Test specificities were kept constant, as sensitivity was changed. 

 

Results of the sensitivity analyses are presented in table 7.6. Comparing two scenarios with 

either just 20% test sensitivities to that of 100% test sensitivities, all the estimated costs per 

QALY were higher when the test sensitivity was lower. So for T2DM only screening the cost 
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per QALY was £7,784 at a test sensitivity of 20% and £7,449 at a test sensitivity of 100%. 

Changing test sensitivity therefore had little impact on the comparison of T2DM screening, 

compared to no screening, probably because only 5% of the screened population had T2DM at 

the time of screening. Also, as test sensitivity was changed, the change in the positive predictive 

values of a test, which were used in the decision tree, were less dramatic. For example for 

T2DM screening, the PPV was 19% at a screening test sensitivity of 20% and 44% at 100% test 

sensitivity. For IGT and T2DM screening with lifestyle interventions the costs were £3,498 at 

20% and £1,935 at 100%, and for IGT and T2DM screening with lifestyle interventions the 

costs were £4,120 at 20% and £2,351 at 100%. It can be seen by looking at the QALYs for these 

strategies, that reducing the test sensitivity decreases the numbers with IGT that receive 

interventions, and leads to a reduction in QALYs. Costs show less of a pattern as whilst 

intervention costs decrease as test sensitivity decreases, costs associated with T2DM will 

increase. The overall conclusions of the cost-effectiveness of each of the three active screening 

strategies compared to no screening, were not altered when test sensitivity was changed, with 

the probabilities of cost-effectiveness remaining relatively constant. Test sensitivity would have 

more of an impact though, in populations where the prevalence of IGT and T2DM were higher 

than in this base case scenario, or when repeat screenings of a population were undertaken. 

 

7.6.2 Prevalence of glucose tolerance status 

The base case model was run for prevalences of 83% for NGT, 12% for IGT and 5% for T2DM. 

These prevalences were taken from the STAR study, which was an analysis of individuals with 

at least one risk factor for T2DM, and therefore represents prevalences of a population with a 

slightly increased risk of T2DM. To allow for a comparison between the screening for T2DM 

only strategy and the strategies of screening for both IGT and T2DM followed by either lifestyle 

and pharmacological interventions, it made sense to increase both the prevalences of IGT and 

T2DM in unison, keeping the proportion between the two states roughly constant. Models were 

therefore run with the base case prevalences of 83%, 12% and 5% for NGT, IGT and T2DM 

respectively and then 70%, 20% and 10%; 40%, 40% and 20%; and finally 10%, 60% and 30%. 

Increasing the prevalences of IGT and T2DM, represent the affect of targeting populations for 

screening with, a greater the risk of developing T2DM. Results of the models are presented in 

table 7.7. 

 

As would be expected lifetime risk of T2DM increased as prevalence of both IGT and T2DM 

increased. The total costs of each of the four strategies increased fairly dramatically as 
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prevalence of IGT and T2DM increased, this is because the majority of costs incurred by each 

strategy are due to the costs of treating and monitoring patients with T2DM. QALYs, on the 

other hand, decreased as prevalence of IGT and T2DM increased, which is unsurprising as the 

T2DM state was modelled with a decreased utility value and an increased risk of death.  

 

As all four strategies increased in costs and decreased in QALYs, when comparing the three 

active strategies with no screening, increasing the prevalence of glucose intolerance in the 

screened population had little impact, and both the estimated costs per QALY gained, and the 

probability of cost-effectiveness, remained fairly constant. For example for T2DM screening the 

cost per QALY varied between £8,451 and £8,681 as prevalences were changed, for screening 

followed by lifestyle interventions cost varied between £2,863 and £3,201, and for screening 

followed by pharmacological interventions costs varied between £3,429 and £3,809 per QALY. 

Therefore although targeting populations with different risks of glucose intolerance will affect 

the overall costs of different screening strategies, the decision as to which strategy is the best 

approach for screening and/or intervening will not alter. 

 

 

 



 

 

Table 7.6: Results of models run for different screening test sensitivities 

  No screening Screening for T2DM only Screening for T2DM and 
IGT, lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

QALY 100% 28.05 (23.47, 32.01) 28.10 (23.54, 32.07) 28.47 (23.93, 32.43) 28.36 (23.81, 32.34) 
80% 28.09 (23.47, 32.02) 28.13 (23.53, 32.07) 28.42 (23.86, 32.36) 28.34 (23.77, 32.28) 
60% 28.09 (23.47, 32.02) 28.13 (23.51, 32.05) 28.36 (23.75, 32.27) 28.29 (23.70, 32.21) 
40% 28.00 (23.47, 32.04) 28.02 (23.50, 32.06) 28.18 (23.68, 32.21) 28.13 (23.56, 32.12) 
20% 28.04 (23.46, 32.04) 28.05 (23.47, 32.04) 28.15 (23.58, 32.14) 28.00 (23.47, 32.04) 

Total cost (GBP) 100% 17,580 (5,730, 39,470) 18,120 (6,753, 39,620) 18,520 (7,567, 39,400) 18,450 (7,453, 39,420) 
80% 17,130 (5,551, 39,650) 17,550 (6,475, 39,820) 17,900 (7,356, 39,680) 17,890 (7,235, 39,770) 
60% 17,120 (5,585, 39,530) 17,450 (6,282, 39,600) 17,760 (7,139, 39,600) 17,740 (7,045,39,660) 
40% 17,460 (5,670, 39,420) 17,690 (6,123, 39,490) 18,000 (6,871, 39,489) 17,980 (6,805, 39,510) 
20% 17,290 (5,685, 39,520) 17,390 (5,893, 39,950) 17,690 (6,558, 39,610) 17,660 (6,510, 39,640) 

Cost per QALY gained 
(GBP) 

100% - 7,449 1,935 2,351 
80% - 7,582 2,119 2,624 
60% - 7,611 2,302 2,781 
40% - 7,488 2,617 3,132 
20% - 7,784 3,498 4,120 

Probability cost effective at 
willingness- to-pay of 
£20,000 / £30,000 per QALY 

100% - 0.69 / 0.76 1.00 / 1.00 0.98 / 0.99 
80% - 0.68/ 0.75 1.00 / 1.00 0.97 / 0/99 
60% - 0.68/ 0.76 0.99 / 1.00 0.97 / 0.99 
40% - 0.68 / 0.75 0.99 / 1.00 0.95 / 0.98 
20% - 0.68 / 0.76 0.97 / 0.98 0.92 / 0.95 

* the base case model had screening test sensitivities of 86% for T2DM and 59% for IGT and T2DM combined 

 



 

 

Table 7.7: Results of models run for different prevalences of glucose tolerance status 

 Prevalence 
(NGT/IGT/ 
T2DM) 

No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Lifetime risk of T2DM (%) 83/12/5 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 67.5 (17.1, 91.1) 67.9 (17.4, 91.4) 
70/20/10 71.9 (29.5, 92.4) 71.9 (29.5, 92.4) 70.3 (27.8, 91.2) 70.9 (28.5, 91.8) 
40/40/20 80.1 (55.2, 93.6) 80.1 (55.2, 93.6) 76.8 (51.5, 91.2) 78.2 (53.1, 92.2) 
10/60/30 87.8 (77.6, 94.9) 87.8 (77.6, 94.9) 82.8 (71.5, 91.7) 84.9 (73.6, 93.3) 

QALY 83/12/5 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
70/20/10 28.26 (24.72, 31.18) 28.26 (24.79, 31.14) 28.47 (25.02, 31.34) 28.41 (24.96, 31.29) 
40/40/20 25.44 (22.58, 27.86) 25.71 (22.95, 28.10) 26.21 (23.46, 28.57) 26.05 (23.31, 28.43) 
10/60/30 23.75 (21.82, 25.58) 24.16 (22.40, 25.85) 24.91 (23.15, 26.55) 24.67 (22.89, 26.35) 

Total cost (GBP) 83/12/5 17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
70/20/10 21,320 (9,132, 41,270) 22,780 (12,470, 41,840) 22,620 (12,650, 41,370) 22,560 (12,540, 41,420) 
40/40/20 30,200 (15,030, 44,890) 32,930 (23,140, 46,060) 32,530 (23,840, 45,190) 32,460 (23,540, 45,210) 
10/60/30 38,440 (19,740, 49,690) 42,580 (32,660, 51,190) 41,980 (33,990, 49,980) 41,830 (33,530, 50,090) 

Cost per QALY gained 
(GBP) 

83/12/5 - 8,681 2,863 3,429 
70/20/10 - 8,617 3,203 3,809 
40/40/20 - 8,451 3,161 3,791 
10/60/30 - 8,464 3,148 3,781 

Probability cost effective at 
willingness-to-pay of 
£20,000 / £30,000 per 
QALY 

83/12/5 - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
70/20/10 - 0.68 / 0.76 0.98 / 0.99 0.93 / 0.96 
40/40/20 - 0.69 / 0.77 0.98 / 0.99 0.93 / 0.96 
10/60/30 - 0.68 / 0.76 0.98 / 0.99 0.93 / 0.96 

* the base case model had prevalences of 83% for NGT, 12% for IGT and 5% for T2DM 
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7.6.3 Multi-way sensitivity analyses 

The sensitivity analyses discussed so far have assessed the impact of changing model 

parameters individually, on model results. It is possible however for multi-way sensitivity 

analyses to be carried out, whereby a number of model inputs are varied simultaneously. To 

demonstrate this, a sensitivity analysis was performed whereby costs of T2DM, that is the costs 

attributed to the undiagnosed, clinically diagnosed and screen diagnosed T2DM states, were 

doubled, and prevalence of glucose intolerance was raised (NGT=40%, IGT=40% and 

T2DM=20%).  The results are displayed in Table 7.8. 

 

From the results it can be seen that raising the prevalence of glucose intolerance impacts on the 

clinical outcomes of lifetime risk of T2DM and QALYs, and unsurprisingly raising the costs 

attributable to T2DM does not. Both increasing prevalence and increasing costs of T2DM, 

affect the total costs of each strategy. Increasing these two parameters in unison, leads to a 

greater difference in costs between the three active screening strategies and no screening. This is 

because, as the prevalence of T2DM is increased, the numbers undiagnosed with T2DM in the 

no screening strategy increases. Undiagnosed T2DM costs either £133.98 or £21.68 per annum 

in the base case scenario, whilst diagnosed T2DM costs £2490 or £2756 per annum. Increasing 

these costs, whilst increasing the prevalence of T2DM, increases the differences in total costs 

between strategies, by adding more benefit to T2DM remaining undiagnosed.  

 

Due to an increased difference in total costs between the three active screening strategies and no 

screening, the incremental costs are raised and the probabilities of cost-effectiveness are 

reduced dramatically. This example highlights the importance of multi-way sensitivity analyses, 

as whilst model parameters may have minimal impact when changed individually, changing 

them in unison may have a multiplicative rather than additive effect. Although multi-way 

sensitivity analyses are an important consideration, they have to be well planned. For example if 

sensitivity analyses are carried out on five parameters, each with three possible values, the total 

number of different possible scenarios for multi-way sensitivity analyses is 35=243.  

 



 

 

Table 7.8: Results of models run for both high prevalences of glucose tolerance status, and double T2DM costs 

 Prevalence 
(NGT/IGT/ T2DM) 

No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Lifetime risk of 
T2DM (%) 

Base case 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 67.5 (17.1, 91.1) 67.9 (17.4, 91.4) 
Prev (40,40,20) 80.1 (55.2, 93.6) 80.1 (55.2, 93.6) 76.8 (51.5, 91.2) 78.2 (53.1, 92.2) 
T2DM costs x 2 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 67.5 (17.1, 91.1) 67.9 (17.4, 91.4) 
Prev (40,40,20) and 
costs x 2 

80.1 (55.2, 93.6) 80.1 (55.2, 93.6) 76.8 (51.5, 91.2) 78.2 (53.1, 92.2) 

QALY Base case 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
Prev (40,40,20) 25.44 (22.58, 27.86) 25.71 (22.95, 28.10) 26.21 (23.46, 28.57) 26.05 (23.31, 28.43) 
T2DM costs x 2 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
Prev (40,40,20) and 
costs x 2 

25.44 (22.58, 27.86) 25.71 (22.95, 28.10) 26.21 (23.46, 28.57) 26.05 (23.31, 28.43) 

Total cost (GBP) Base case 17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
Prev (40,40,20) 30,200 (15,030, 44,890) 32,930 (23,140, 46,060) 32,530 (23,840, 45,190) 32,460 (23,540, 45,210) 
T2DM costs x 2 34,530 (11,520, 79,110) 36,050 (14,170, 79,890) 35,540 (13,920, 79,180) 35,770 (14,100, 79,300) 
Prev (40,40,20) and 
costs x 2 

43,600 (24,360, 62,310) 54,000 (40,830, 71,190) 54,461 (42,390,71,550) 55,400 (42,840, 72,480) 

Cost per QALY 
gained (GBP) 

Base case - 8,681 2,863 3,429 
Prev (40,40,20) - 8,451 3,161 3,791 
T2DM costs x 2 - 17,310 4,281 6,696 
Prev (40,40,20) and 
costs x 2 

- 38,600 19,100 25,790 

Probability cost 
effective at 
willingness-to- pay 
of £20,000 / £30,000 

Base case - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
Prev (40,40,20) - 0.69 / 0.77 0.98 / 0.99 0.93 / 0.96 
T2DM costs x 2 - 0.46 / 0.60 0.93 / 0.97 0.85 / 0.92 
Prev (40,40,20) and 
costs x 2 

 0.12 / 0.24 0.44 / 0.77 0.24 / 0.55 
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7.6.4 Models with populations of either 100% T2DM or 100% IGT 

To remove any influence of screening test efficiency or population prevalences, and to assess 

solely the model estimated effects for either the interventions or the effect of identifying 

individuals with T2DM early, two further models were run. To assess early identification of 

T2DM a model was run with a population comprised solely of individuals with T2DM, and the 

screening test sensitivity was set at 100%, so that for the strategy of screening for T2DM only 

all individuals were diagnosed in the first year and entered the T2DM screened diagnosed state, 

followed by death as the model iterations progressed. This strategy was compared to no 

screening, whereby all individuals started in the undiagnosed T2DM state and gradually moved 

to the clinically diagnosed state or death over the course of the model. The results of this model 

are presented in table 7.9. It can be seen from the results that the model predicts a gain in over 

one QALY if individuals are screened and diagnosed with T2DM early. The estimated costs per 

QALY is £7,333 and the probability of cost-effectiveness is 0.78 at the £30,000 willingness-to-

pay threshold. The screening strategy therefore appears more cost-effective in this model 

compared to the base case, probably because clinical effects are not averaged across a whole 

population, some of which have a healthy glucose tolerance, and no individuals are screened 

unnecessarily. 

 

The results of the model whereby a population with 100% IGT was simulated are presented in 

table 7.10. It can be seen that the model predicts an increase in QALYs if interventions are 

implemented, so for the strategy where no screening, and hence no interventions were 

administered the QALYs were estimated as 24.25 (95% CrI: 22.64 to 26.92), for lifestyle 

interventions 27.89 (95% CrI: 25.68 to 29.80) and for pharmacological interventions 27.01 

(95% CrI: 24.77 to 29.16). Lifetime risk of T2DM and years spent free from diabetes were also 

improved in both the intervention strategies, and the cost per QALY was just £900 for lifestyle 

interventions and £964 for pharmacological interventions, as although pharmacological 

interventions are cheaper their clinical effect was smaller than lifestyle. As with the previous 

model the active screening strategies showed a much greater impact on clinical outcomes than 

in the base case model, primarily because the results are average effects for a population with 

IGT, rather than averaged across a population where just 12% had IGT and the majority were 

healthy.  



 

 

Table 7.9: Predicted results if a population with a 100% prevalence of T2DM is targeted 

 No screening 
 

Screening for T2DM only 

Lifetime risk of T2DM (%) 100 100 
Years diabetes free 0 0 
QALY 20.02 (18.09, 21.94) 21.19 ( 19.55, 22.93) 
Total cost (GBP) 58,990 (31,290, 70,970) 69,510 (64,660, 74,560) 
Cost per QALY gained (GBP) - 7,333 
Probability cost effective at willingness-to-pay of £20,000 / £30,000 per QALY - 0.71 /  0.78 

 

  

  

Table 7.10: Predicted results if a population with a 100% prevalence of IGT is targeted 

 No screening/ interventions Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Lifetime risk of T2DM (%) 86.4 (73.0, 94.3) 68.5 (50.6, 84.4) 76.2 (57.5, 89.5) 
Years diabetes free 12.67 (8.52, 17.42) 18.74 (13.52, 23.40) 16.42 (11.26, 21,71) 
QALY 24.75 (22.64, 26.91) 27.89 (25.68, 29.80) 27.01 (24.77, 29.16) 
Total cost (GBP) 31,960 (14,890, 44,400) 34,820 (26,790, 44,500) 34,350 (23,680, 45,310) 
Cost per QALY gained (GBP) - 900 964 
Probability cost effective at willingness-to-pay of £20,000 
/ £30,000 per QALY 

- 0.999 / 1.000 0.995 / 0.998 
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7.7 Chapter summary 

The decision model developed for this thesis was thoroughly assessed using a range of 

diagnostic checks, to ensure the model had both sound assumptions and that convergence of 

model parameters had occurred. Results all indicated that the model was converging well, and 

although correlation between simulations may be an issue for a few of the model parameters, a 

large number of iterations were run before collating results, so that results should effectively be 

drawn from a random sample of simulations.  

 

A number of both economic and clinical sensitivity analyses were carried out to enable a better 

understanding of the model. It was found that costs of either interventions or T2DM, prevalence 

of glucose intolerance or screening test sensitivity did not effect model conclusions.  Both the 

time horizon of the model and discounting costs and benefits, did effect the cost-effectiveness of 

different screening strategies and therefore would impact on the choice of the most cost-

effective approach to screening. Considering the impact of screening over a longer term (i.e. a 

longer time horizon) provided more evidence in support of a screening programme, than if only 

short-term benefits were considered. Unfortunately the long-term effects of screening 

programmes are still unclear and more trial evidence is needed to strengthen the model results, 

particularly for the assessment of screening for T2DM alone.  As the model results were fairly 

robust to most changes in data inputs, this indicates that the results should be robust to any 

inaccuracies in model estimates. The multi-way sensitivity analyses carried out for prevalence 

and costs of T2DM, did show a greater impact on model results. This highlights the importance 

of multi-way sensitivity analyses, and more would have been carried out if time had allowed. 

For this model further multi-way analyses that would be of particular interest, would be the 

effect of changing either test sensitivities or costs of interventions, with prevalence of glucose 

intolerance, as it would be interesting to assess the effect of changing important model 

parameters for different ‘at risk’ populations that may be targeted by a screening programme. 

When considering a possible screening strategy, it would be useful to carry out more sensitivity 

analyses on the population of interest, to investigate the estimated effect of model parameters 

for that particular population.
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8. MODEL EXTENSIONS 

8.1 Chapter Overview 

This chapter describes a number of additional extensions to the model that were carried out to 

demonstrate the flexibility of the framework, as well as to assess further options that may need 

to be considered when implementing a screening/treatment strategy. Further extensions included 

utilising the mixed treatment comparison analysis of interventions, rather than the meta-

analyses as used in the primary model, assessing the effect of screening and intervention 

strategies on an Asian and an ethnically mixed population, considering the effects of 

compliance to both screening and interventions, assessing the effects of multiple screenings 

rather than just a one-off screening, the inclusion of additional information on screening tests, 

and assessing the value of obtaining perfect information for the model. The methods and results 

of each of the extensions to the primary model will now be described.  

 

8.2 Utilising the mixed treatment comparison analysis in the decision 

model 

In Chapter 4 a systematic review and meta-analysis was carried out incorporating all relevant 

trials that had investigated the effectiveness of interventions for the prevention or delay of 

T2DM. The trials had been analysed using conventional Bayesian meta-analysis methods for 

lifestyle and pharmacological interventions separately, and using a mixed treatment comparison 

analysis framework, whereby data from all trials was included within a single model rather than 

a series of pair-wise comparisons. As described in Chapter 4 the data from factorial trials had to 

be treated differently by the two methods, in that in the mixed treatment comparison an 

additional group who received both lifestyle and pharmacological interventions was created, 

which allowed for the assessment of any interaction between pharmacological and lifestyle 

treatments.  

 

In table 8.1 the results of both the individual meta-analyses and the mixed treatment comparison 

analyses are presented. Although the estimated effects of lifestyle and pharmacological 

interventions are similar between the two methods, they vary slightly as some of the data 

incorporated in the individual analyses was utilised in the separate category of both lifestyle and 

pharmacological interventions in the mixed treatment comparison. As no interaction effect was 

found between lifestyle and pharmacological interventions as discussed in Chapter 4, utilising 
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the data from the separate meta-analyses appears to make best use of the available data, so this 

was the approach taken for the primary model. To demonstrate the flexibility of the decision 

model framework the first extension to the model undertaken was to incorporate the mixed 

treatment comparison analyses within the decision model, and to take the estimated pooled 

effect sizes of both lifestyle and pharmacological interventions from this analysis to predict the 

effectiveness of each of the screening and intervention strategies.  

 

Table 8.1: Intervention effects estimated by different methods 

 Individual meta-analysis Mixed treatment comparison 
analysis 

Lifestyle Interventions 0.53 (0.43, 0.64) 0.63 (0.48, 0.85) 
Anti-diabetic interventions 0.66 (0.47, .83) 0.67 (0.47, 0.89) 
Both interventions - 0.57 (0.31, 0.99) 

 
Table 8.2: Results of the decision model using the different intervention analyses 

 Model of 
intervention 
effects 

Screening for T2DM and 
IGT, lifestyle interventions 

Screening for T2DM and 
IGT, pharmacological 
interventions 

QALY Meta-analysis 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
MTC 28.23 (23.68, 32.21) 28.22 (23.67, 32.20) 

Total cost (GBP) Meta-analysis 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
MTC 18,190 (7,265, 39,760) 18,010 (7,039, 39,630) 

Cost per QALY gained 
(GBP) 

Meta-analysis 2,863 3,429 
MTC 4,385 3,303 

Probability cost effective 
at willingness-to-pay per 
QALY of 
£20,000/£30,000  

Meta-analysis 0.99 / 1.00 0.95 / 0.97 
MTC 0.94 / 0.97 0.94 / 0.97 

 
The assumptions of the mixed treatment comparison model were discussed in more detail in 

Chapter 4. Due to the added assumptions, it is better in practice, to only use MTC 

methodologies where there is insufficient direct evidence (National Institute for Clinical 

Excellence, 2004). The MTC analysis differs from carrying out individual meta-analyses, in that 

a common τ is assumed across all studies, whereas each individual meta-analysis would have a 

separate τ. For the individual meta-analyses, τ was estimated as 0.20 (95% CrI:0.01 to 0.66) for 

anti-diabetic interventions, and 0.16 (0.02 to 0.44) for lifestyle interventions. For the MTC 

analysis the estimate of τ was slightly larger; 0.32 (0.11 to 0.62), but as both lifestyle and 

pharmacological trials were combined in this analysis, then the between study standard 

deviation could probably be expected to be greater. As expected the results of the decision 

model are similar as to when the individual meta-analyses were utilised within the model, 
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although cost-effectiveness is slightly reduced due to a slight reduction in the estimated 

intervention effects.  

 

8.3 Modelling different ethnic cohorts 

8.3.1 Adapting the model for different ethnicities 

For the base case model prevalences of NGT, IGT and T2DM were taken from the Caucasian 

participants in the STAR study, and were as follows NGT = 83.3%, IGT = 11.9% and T2DM = 

4.7%. As it is suspected that rate of transition from the IGT state to T2DM varies by ethnicity, 

with some ethnic groups having a higher risk of T2DM, the transition rate between IGT to 

T2DM was estimated using data derived from studies on populations where the majority were 

Caucasian, for the primary model. The purpose of the decision model though was to assess the 

cost-effectiveness of IGT and T2DM screening and intervention policies on a U.K. population, 

it was therefore important to consider other ethnic groups where data was available. The STAR 

study had assessed both Caucasians and Southern Asians, as it was based in Leicestershire 

where the population has a large component that are of South Asian decent. From the STAR 

data the prevalence of each glucose tolerance state could be estimated for an Asian population, 

for use in the decision model, these were estimated as NGT = 77.9%, IGT = 15.6% and T2DM 

= 6.5%, which show a higher risk of T2DM compared to Caucasians, where the prevalences 

were 83.3%, 11.9% and 4.7% respectively. Only one study reported a transition rate from IGT 

toT2DM for an Asian population and this was the Indian Diabetes Prevention Program (IDDP). 

From the control group monitored in this intervention trial, the estimated transition rate from 

IGT to T2DM was 26.36 (95% CI: 21.01 to 33.06) cases per 100 person years, which is higher 

than the estimated rate for Caucasians used in the primary model of 7.07 (95% CI: 4.31 to 

11.59). It would have been more appropriate to use U.K. based estimates of intervention effects 

on an Asian population, as lifestyles here may be very different to those in India, but 

unfortunately this was not available. 

 

Using the STAR data, diagnostic tables for an FPG screening test could be constructed for both 

an Asian and a Caucasian population (table 8.3), and this in turn could be used to predict the 

efficiency of FPG as a screening test for the two ethnic groups. From table 8.4 it can be seen 

that the FPG test performed better in Caucasians than Southern Asians, with the test sensitivity, 

specificity and area under the ROC curve all being higher in the Caucasian population. Using all 

the STAR data on both Caucasians and Asians a diagnostic table could also be constructed for a 
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population of mixed ethnic origin, which in the case of the STAR study was 29% Southern 

Asian and 71% Caucasian. This is reflective of the City of Leicester population as a whole, 

where in the 2001 census 29.92% of people classed themselves as belonging to Indian, Pakistani 

or Bangladeshi ethnic groups.  

 

Table 8.3: Results of the FPG test in the STAR study by ethnic group 

 

 True status as confirmed by OGTT 
Caucasians 
FPG result (mmol/l) NGT IGT T2DM Totals 
<5.7    1626 142 8 1776 
>=5.7 and <6.0  138 51 7 196 
>=6.0 83 71 90 244 
Totals 1847 264 105 2216 
South Asians 
FPG result (mmol/l) NGT IGT T2DM Totals 
<5.7    596 71 8 675 
>=5.7 and <6.0  62 25 3 90 
>=6.0 35 43 47 125 
Totals 693 139 58 890 
Mixed 
FPG result (mmol/l) NGT IGT T2DM Totals 
<5.7    2222 213 16 1744 
>=5.7 and <6.0  200 76 10 206 
>=6.0 118 114 137 266 
Totals 2540 403 163 3106 
 

 
Assessing a population of mixed ethnic origin, whereby 29% of the population are assumed 

Southern Asian and 71% Caucasian, could be approached in two ways using the available data. 

Firstly a model could be run using the 3x3 diagnostic table of all the Caucasian and Southern 

Asian participants of the STAR study, and using a transition probability from IGT to T2DM that 

is a combination of the two transition rates for the two ethnic groups, weighted by their 

proportions. Therefore as the transition rate for Caucasians is 7.3 (95% CrI: 4.3 to 11.6) cases 

per 100 person years and for Asians 26.4 (21.0 to 32.9), the transition rate for a mixed 

population, weighted to comprise of 29% Southern Asians and 71% Caucasians, is 12.8 (10.2 to 

16.3). Using the diagnostic data of the FPG test, STAR data for prevalences and the averaged 

transition rate, the model could then be run for a mixed population, whereby the mixing of data 

takes place at the start of the model.  
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Table 8.4: Efficiency of the FPG screening test by ethnic group 

 

 T2DM only 
(>=6.0 mmol/l) 

IGT and T2DM  
(>=5.7 mmol/l) 

Sensitivity 
   Caucasians 
   Asians 
   Mixed 

 
90/105 (85.7%) 
47/58 (81.0%) 
137/163 (84.0%) 

 
219/369 (59.4%) 
118/197 (59.8%) 
337/566 (59.5%) 

Specificity 
   Caucasians 
   Asians 
   Mixed 

 
1957/2111 (92.7%) 
754/832 (90.6%) 
2711/2943 (92.1%) 

 
1626/1847 (88.0%) 
596/693 (86.0%) 
2222/2540 (87.5%) 

Area under ROC curve (95% CI) 
   Caucasians 
   Asians 
   Mixed 

 
0.95 (0.92, 0.98) 
0.93 (0.89, 0.97) 
0.94 (0.92, 0.97) 

 
0.85 (0.82, 0.87) 
0.80 (0.77, 0.84) 
0.80 (0.78, 0.82) 

 

Alternatively the data could be combined at the end of the model. To achieve this the model was 

run for both a Caucasian population and an Asian population individually and the results from 

20,000 simulations of the model were monitored and saved for several outcomes of interest. The 

data from these simulations was then transferred to Stata, whereby the results where merged for 

every simulation, to represent a mixed population for a number of outcomes of interest, which 

included lifetime risk of T2DM, years T2DM free, QALYs and total cost for each strategy. 

They were merged using equation 8.1, where Mi represents the mixed, Ci Caucasian and Ai 

Southern Asian estimate for every simulation (i).  

 

  Mi = (Ci x 0.71) + (Ai x 0.29)    [Equation 8.1] 

  

Using the merged variables representing total cost of each strategy and total QALYs the 

incremental cost effectiveness ratios and the cost-effectiveness acceptability curves could then 

be computed. 

 

8.3.2 Results for different ethnic cohorts 

The results from the four ethnic models, which were 100% Caucasian, 100% Southern Asian, 

mixed with data combined at the start of the model and mixed where data is combined at the 

end of the model simulations, are displayed in table 8.5. Firstly if Caucasian and Asian results 

are compared, it can be seen that estimated lifetime risk and costs were higher in Asians, whilst 
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QALYs and years T2DM free were lower. This is unsurprising as the prevalence of IGT and 

T2DM was slightly higher in the Asian population, as was the transition rate from IGT to 

T2DM.  

 

When the data was mixed the estimated outcomes fell in-between the 100% Caucasian and 

100% Asian cohorts. Whether the data for the two ethnicities were combined at the start or the 

end of the model simulations did affect the results. Where data were mixed at the start of the 

model the lifetime risk of T2DM was higher, which in turn affected the outcomes of years 

T2DM free, QALYs and costs. When investigated further it was found that combining the data 

at the end of the model simulations predicted an average time spent in the undiagnosed IGT 

state of 5.84 years, but in the model where data was combined at the start estimated time spent 

with undiagnosed IGT was 5.76 years.  

 

It therefore appears that combining data at the start leads to slight underestimation of time spent 

with IGT and overestimation of time spent with T2DM. This could be due to the effect of 

applying the weighted combined transition rate from IGT to T2DM, to a population with mixed 

risk of T2DM. Individuals of Asian ethnicity may be expected to leave the IGT state earlier than 

Caucasians due to their increased risk, meaning that in later model simulations the proportion of 

Caucasians in the IGT state has increased, and applying the combined transition rate 

overestimates the transition. A similar phenomenon can be induced in survival models, whereby 

populations with varying ‘frailties’ need to be considered carefully when deciding on the 

appropriate model (Hougaard, 1995).   



 

 

Table 8.5: Clinical and cost-effectiveness of each screening strategy for different ethnic cohorts 

 Ethnicity No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Lifetime risk of T2DM (%) Caucasian 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 67.5 (17.1, 91.1) 67.9 (17.4, 91.4) 
S. Asian 86.8 (26.4, 98.4) 86.8 (26.4, 98.4) 86.6 (26.1, 98.3) 86.7 (26.2, 98.4) 
Mixed- start 78.8 (21.4, 95.9) 78.8 (21.4, 95.9) 78.3 (20.8, 95.4) 78.6 (21.0, 95.7) 
Mixed- end 71.6 (28.9, 90.6) 71.6 (28.9, 90.6) 70.8 (27.4, 90.6) 71.2 (27.7, 90.2) 

Years diabetes free Caucasian 20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 21.17 (10.66, 29.79) 21.07 (10.54, 29.66) 
S. Asian 14.01 (4.36, 26.47) 14.01 (4.36, 26.47) 14.24 (4,58, 26.72) 14.15 (4.48, 26.61) 
Mixed- start 17.68 (7.52, 28.27) 17.68 (7.52, 28.27) 18.01 (7.82, 28.59) 17.88 (7.68, 28.46) 
Mixed- end 18.41 (10.55, 25.75) 18.41 (10.55, 90.58) 18.71 (10.85, 26.04) 18.59 (10.73, 25.92) 

QALY Caucasian 28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
S. Asian 25.24 (20.65, 30.79) 25.35 (20.83, 30.91) 25.47 (20.96, 31.02) 25.43 (20.92, 30.98) 
Mixed- start 26.70 (20.04, 31.53) 26.78 (22.16, 31.60) 26.92 (22.32, 31.74) 26.88 (22.27, 31.70) 
Mixed- end 27.10 (23.79, 30.31) 27.18 (23.88, 30.39) 27.32 (24.02, 30.53) 27.27 (23.99, 30.53) 

Total cost (GBP) Caucasian 17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
S. Asian 28,250 (10,170, 55,120) 29,390 (12,270, 55,490) 29,420 (12,500, 55,220) 29,480 (12,550, 55,270) 
Mixed- start 22,180 (7,359, 47,310) 23,080 (9,147, 47,570) 22,940 (9,176, 47,210) 22,990 (9,196, 47,300) 
Mixed- end 22,145 (8,345, 41,657) 23,051 (9,820, 42,131) 22,973 (9,809, 41,962) 22,976 (11,885, 42,006) 

Cost per QALY gained 
(GBP) 

Caucasian - 8,681 2,863 3,429 
S. Asian - 8,168 4,657 5,643 
Mixed- start - 8,452 3,093 4,095 
Mixed- end - 8,523 3,555 4,497 

Probability cost effective at 
willingness- to-pay of 
£20,000 / £30,000 per 
QALY 

Caucasian - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
S. Asian - 0.68 / 0.75 0.89 / 0.94 0.83 / 0.88 
Mixed- start - 0.69 / 0.76 0.97 / 0.99 0.92 / 0.95 
Mixed- end - 0.69 / 0.77 0.98 / 0.99 0.96 / 0.98 
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This example highlights the issue that combining data or taking averages for use in decision 

models needs to be done with extreme care. Although the interpretation of both the mixed 

models carried out here would probably lead to the same conclusions, the estimated outcomes 

did vary by each approach. The effects of heterogeneity in ethnicity could be explored in this 

example, due to the availability of data by ethnic sub-groups, but not all sources of 

heterogeneity could be explored. To fully assess the impact of using averages across sub-groups 

IPD would be required.  

 

8.4 Compliance to screening 

8.4.1 Adapting the model to assess compliance to screening 

For the base case scenario it had been assumed that, for the three strategies that incorporated a 

screening component, the whole population of interest had been screened. In a real life situation 

though, it is likely that if individuals are offered a screening test, or invited for screening, a 

percentage will refuse or fail to take-up the opportunity. It was therefore important to assess the 

potential impact of different compliance rates to screening, in particular whether a low uptake to 

screening would reduce the cost-effectiveness of the three active screening strategies compared 

to no screening.  

 

To assess compliance to screening, the 3x3 diagnostic table entered at the start of the decision 

model was modified, so that as compliance to screening was reduced the proportion of 

individuals identified by the screening test was reduced accordingly, and the number of 

individuals with IGT and T2DM remaining unidentified increased. Also the initial screening 

costs entered into the model were reduced to correspond with the compliance rates.  

 

For the purposes of this model it was assumed that individuals who refused screening were the 

same in terms of their risk of IGT and T2DM as those who agreed to be screened. This may not 

have been the case, for example individuals leading unhealthy lifestyles with a greater risk of 

T2DM may refuse screening for fear of what they may find out, or conversely attendees may 

comprise individuals with a greater risk of T2DM, such as those who have relatives with the 

disease, as they may be more aware of the benefits of early diagnosis. If data had been available 

on individuals who had refused T2DM screening, particularly in terms of their risk of IGT and 

T2DM, the model could have been modified to include this. As no data was available though 
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the assumption of no differences between individuals who agreed or refused screening was 

made. The results from the models where compliance to screening was changed are reported in 

table 8.6.  

 



 

 

Table 8.6: The effect of compliance to screening on model outcomes 

 

 Compliance to 
screening (%) 

Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

QALY 100 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
90 28.09 (23.54, 32.08) 28.23 (23.69, 32.22) 28.19 (23.63, 32.18) 
80 28.18 (23.54, 32.07) 28.30 (23.67, 32.19) 28.26 (23.63, 32.16) 
70 28.07 (23.52, 32.05) 28.17 (23.64, 32.16) 28.14 (23.60, 32.13) 
60 28.09 (23.52, 32.06) 28.19 (23.63, 32.15) 28.16 (23.60, 32.13) 
50 28.04 (23.51, 32.04) 28.13 (23.61, 32.13) 28.10 (23.59, 32.11) 

Total cost (GBP) 100 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
90 18,010 (6,894, 39,840) 17,990 (6,984, 39,640) 17,930 (6,943, 39,630) 
80 17,740 (6,818, 39,820) 17,730 (6,984, 39,650) 17,700 (6,926, 39,650) 
70 18,070 (6,777, 39,800) 18,080 (6,957, 39,620) 18,070 (6,907, 39,710) 
60 17,790 (6,580, 39,570) 17,830 (6,851, 39,630) 17,800 (6,810, 39,630) 
50 17,870 (6,409, 39,750) 17,930 (6,705, 39,680) 17,910 (6,671, 39,690) 

Cost per QALY gained (GBP) 100 8,681 2,863 3,429 
90 8,836 2,942 3,465 
80 8,739 3,014 3,583 
70 8,732 3,112 3,800 
60 8,632 3,283 3,876 
50 8,743 3,515 4,192 

Probability cost effective at 
willingness-to-pay per QALY of 
£20,000/£30,000  

100 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
90 0.68 / 0.76 0.98 / 1.00 0.94 / 0.97 
80 0.68 / 0.76 0.98 / 0.99 0.94 / 0.97 
70 0.69 / 0.77 0.98 / 0.99 0.93 / 0.96 
60 0.68 / 0.77 0.97 / 0.99 0.92 / 0.96 
50 0.68 / 0.77 0.97 / 0.98 0.92 / 0.95 
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8.4.2 Results for varying screening compliance rates 

From table 8.6 it can be seen that varying screening compliance rates from 100% to just 50% 

did not significantly affect the cost-effectiveness of each of the three strategies that involved a 

screening component, compared to no screening. The probability of cost-effectiveness only 

varied marginally, and the estimated incremental costs per QALY gained were always within 

£1000 of those estimated assuming 100% compliance. From these results it appears that 

compliance to screening is not an important issue that needs to be considered to achieve a cost-

effective screening strategy. This may not be the case if populations with greater prevalence of 

T2DM were considered though, or if a strategy of multiple screens was implemented, and this 

could be investigated through multi-way sensitivity analyses, as demonstrated in chapter 7. 

 

 

8.5 Compliance to interventions 

8.5.1 Adapting the model to assess compliance to interventions 

As discussed in Chapter 4, compliance to interventions was described as high where it was 

reported, although many of the intervention trials did not formally assess or even discuss 

compliance when they reported trial results. Compliance to interventions under trial conditions 

may be very different though, to levels of compliance that will be achieved in a real-life setting, 

therefore it was important to assess the cost-effectiveness of the two intervention strategies 

assuming different levels of compliance. To do this, the estimated intervention effects from the 

trial data was assumed to show the effectiveness of interventions at 100% compliance. The 

effectiveness of the interventions on delaying the transition rate from diagnosed IGT to T2DM 

was then reduced depending on the compliance rate being assumed (equation 8.2, where 

RLogHR is the reduced log hazard ratio accounting for compliance, FLogHR is the full log 

hazard ratio and C is the compliance rate. 

  )1(1()( CCLogHRLogHR FR −×+×=  [Equation 8.2] 

Costs remained constant, as although costs may be reduced in an individual with poor 

compliance, this may not always be the case and it was impossible to predict any changes in 

costs. For example the individual may still receive the pharmacological intervention but fail to 

take it, or lifestyle interventions, such as group counselling sessions and exercise classes, may 
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still take place but with fewer attendees. As with screening compliance, rates of between 50% 

and 100% were assumed, and the results are displayed in table 8.7. 

 

8.5.2 Results for varying intervention compliance rates 

Results show that reducing compliance to interventions reduces the predicted QALYs for the 

two strategies that involved interventions, and increases costs. Consequently the costs per 

QALY gained also increase, from £2,863 where 100% compliance is assumed for lifestyle 

interventions to £5,775 if compliance is assumed to be just 50%, and from £3,429 to £6,243 for 

pharmacological interventions. From the probabilities of cost-effectiveness though it can be 

seen that both the intervention strategies are still cost-effective, even when compliance is 

reduced to just 50%. 
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Table 8.7: The effect of compliance to interventions on model outcomes 

 Compliance to 
intervention (%) 

Screening for T2DM and 
IGT, lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Years T2DM free 100 21.17 (10.66, 29.79) 21.07 (10.54, 29.66) 
90 21.13 (10.61, 29.75) 21.04 (10.52, 29.64) 
80 21.09 (10.57, 29.71) 21.02 (10.49, 29.61) 
70 21.05 (10.54, 29.67) 20.99 (10.48, 29.59) 
60 21.01 (10.51, 29.63) 20.97 (10.46, 29.56) 
50 20.98 (10.47, 29.59) 20.95 (10.44, 29.54) 

QALY 100 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
90 28.25 (23.72, 32.21) 28.21 (23.68, 32.17) 
80 28.23 (23.70, 32.19) 28.22 (23.67, 32.16) 
70 28.22 (23.69, 32.18) 28.19 (23.66, 32.15) 
60 28.20 (23.67, 32.16) 28.18 (23.65, 32.14) 
50 28.19 (23.66, 32.15) 28.17 (23.64, 32.13) 

Total cost (GBP) 100 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
90 17,990 (7,203, 39,820) 17,950 (7,109, 39,770) 
80 18,070 (7,272, 39,900) 17,990 (7,163, 39,820) 
70 18,140 (7,343, 39,950) 18,040 (7,209, 39,880) 
60 18,210 (7,404, 39,980) 18,080 (7,253, 39,920) 
50 18,261 (7,455, 40,050) 18,120 (7,302, 39,960) 

Cost per QALY 
gained (GBP) 

100 2,863 3,429 
90 3,493 3,950 
80 4,189 4,470 
70 4,947 5,039 
60 5,775 5,637 
50 6,634 6,243 

Probability cost 
effective at 
willingness-to-  pay 
per QALY of 
£20,000/ £30,000  

100 0.99 / 1.00 0.95 / 0.97 
90 0.98 / 0.99 0.93 / 0.96 
80 0.96 / 0.98 0.91 / 0.95 
70 0.94 / 0.97 0.89 / 0.94 
60 0.91 / 0.95 0.87 / 0.92 
50 0.88 / 0.93 0.84 / 0.90 
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8.6 Re-screening  

8.6.1 Adapting the model to assess the effects of more than one screening 

The primary model that has been developed considers the effects of a one-off screening for 

individuals at risk of T2DM, at 45 years of age. In practice a screening health policy may 

involve a series of screenings taking place at a number of ages, for example 45, 55 and 65 years 

of age. The model was therefore adapted to assess the impact of having more than one screening 

of a population, on the cost-effectiveness of the screening and intervention strategies. Adapting 

the model was complex as the numbers in each state at each time had been calculated in the 

primary model by using the inprod command which utilised matrices of the transition rates and 

number in each state at time-1 to calculate the number in each state at time.  

 

The model was adapted by firstly changing the scenario so that instead of a one-off screening, 

the sample population were re-screened 5 years later, at the age of 50. Therefore at cycle six the 

numbers in the undiagnosed T2DN and undiagnosed IGT states were reduced and the numbers 

in the diagnosed IGT and screen diagnosed T2DM increased, to reflect the amount that would 

be detected by a second screening. This was calculated by using the relevant sensitivities (the 

probabilities of testing positive given you have the disease, P(T+| D+)) from the 3 x 3 diagnostic 

table entered at the start of the model. It was assumed that everyone in the NGT, undiagnosed 

IGT and undiagnosed T2DM states would receive the FPG test, and everyone testing positive 

would receive and OGTT, and the costs of these tests were added into the model.  

 

To assess the impact of screening on more than one occasion the results from the base case 

model, where screening at age 45 years was modelled, were compared to two scenarios whereby 

two screenings took place at ages 45 and 50 years, or three screenings took place at ages 45, 50 

and 55 years of age. The results of these model extensions are in table 8.8.



 

 

Table 8.8: The effect of multiple screenings of the model population on predicted outcomes 

 Number of 
screenings* 

No screening Screening for T2DM only Screening for T2DM and IGT, 
lifestyle interventions 

Screening for T2DM and IGT, 
pharmacological interventions 

Lifetime risk of T2DM (%) 1  68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 67.5 (17.1, 91.1) 67.9 (17.4, 91.4) 
2 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 65.3 (16.6, 87.2) 66.6 (17.1, 89.3) 
3 68.4 (18.0, 91.8) 68.4 (18.0, 91.8) 63.7 (16.5, 85.7) 65.5 (17.0, 88.5) 

Years diabetes free 1  20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 21.17 (10.66, 29.79) 21.07 (10.54, 29.66) 
2 20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 21.69 (12.04, 29.91) 21.40 (11.35, 29.74) 
3 20.85 (10.36, 29.45) 20.85 (10.36, 29.45) 22.05 (12.42, 29.96) 21.64 (11.58, 29.77) 

QALY 1  28.06 (23.49, 32.01) 28.12 (23.58, 32.08) 28.26 (23.74, 32.23)  28.22 (23.69, 32.18) 
2 28.06 (23.49, 32.01) 28.13 (23.74, 32.06) 28.56 (24.74, 32.30) 28.44 (24.45, 32.24) 
3 28.06 (23.49, 32.01) 28.15 (23.86, 32.16) 28.80 (25.04, 32.32) 28.62 (24.70, 32.26) 

Total cost (GBP) 1  17,290 (5,746, 39,580) 18,040 (7,083, 39,970) 17,910 (7,124, 39,740) 17,900 (7,061, 39,710) 
2 17,290 (5,746, 39,580) 18,850 (7,491, 40,980) 19,300 (7,570, 41,160) 19,150 (7,468, 41,150) 
3 17,290 (5,746, 39,580) 19,670 (7,735, 42,110) 20,220 (7,740, 42,210) 19,860 (7,621, 42,210) 

Cost per QALY gained 
(GBP) 

1  - 8,681 2,863 3,429 
2 - 9,544 2,777 3,317 
3 - 10,360 2,966 3,517 

Probability cost effective at 
willingness- to-pay of 
£20,000 / £30,000 per 
QALY 

1  - 0.68 / 0.76 0.99 / 1.00 0.95 / 0.97 
2 - 0.57 / 0.66 0.99 / 1.00 0.96 / 0.98 
3 - 0.54 / 0.64 0.99 / 1.00 0.97 / 0.99 

* If one screening was made it was done at age 45years, 2 screenings 45 and 50 years, and 3 screenings 45, 50 and 55 years of age. 
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8.6.2 Results for additional screenings  

Figures 8.1 and 8.2 show how adding additional screenings at cycles 6 and 11, increase the 

probabilities of having screen detected diabetes or diagnosed IGT, at each of these cycles. It can 

be seen that for IGT, the additional screening at 50 years of age would identify more cases, than 

the additional screening at 55 years of age, due to there being more individuals with 

undiagnosed IGT at this time point. The probability of having IGT reduces over time as 

individuals go on to develop T2DM or die. 

 

From table 8.8 it can be seen that increasing the number of screens of the population leads to an 

increase in the estimated QALYs for the strategy of T2DM screening. The years T2DM free and 

lifetime risk of T2DM remain constant, as the increased screens only results in more cases being 

diagnosed and less time being spent undiagnosed. As would broadly be expected, for the two 

screening and intervention strategies, QALYs, years diabetes free and estimated lifetime risk of 

T2DM, all improved as the number of screenings increased. For the T2DM only screening 

strategy the estimated cost per QALY gained compared to no screening, increased as number of 

screenings increased, and the probability of cost-effectiveness decreased. For the two screening 

and intervention strategies the probability of their cost-effectiveness changed very little. It 

appears that clinical outcomes rather than cost-effectiveness may therefore be the deciding 

factor as to how many screenings are adopted for a UK health policy. 
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Figure 8.1: The probability of having screen diagnosed T2DM at each cycle, for 
programmes of either one, two or three screenings 
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Figure 8.2: The probability of having screen diagnosed T2DM at each cycle, for 
programmes of either one, two or three screenings 
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8.7 Alternative sources of diagnostic data 

For the primary model the FPG screening test was modelled using individual patient data 

available from the STAR study. Additional information on screening tests had been sourced by 

carrying out a search of both Medline and Embase databases as detailed in Appendix 1.4. Due 

to how the results were reported in these studies, including the additional data in the model was 

not straight forward. Therefore the primary model was based solely on STAR data, and how the 

inclusion of additional data could be achieved will instead be discussed briefly here. 

 

The table of results needed for the decision model is given in table 8.9, whereby for each of the 

three glucose tolerance states (NGT, IGT and T2DM), and for each of two possible cut-offs (a 

lower cut-off for when both IGT and T2DM are screened for and a higher cut-off for when 

T2DM alone is screened for), the probabilities of testing negative for both cut-offs (T-), testing 

positive for both cut-offs (T+), or falling in between the two cut-offs (T0), are needed. An 

example of how data is typically reported in the literature is a study by Shirasaya (Shirasaya et 

al., 1999) which assessed the efficiency of three potential screening tests for IGT and T2DM, 

which were 1,5-anhydroglucitol (1,5-AG), glycosolated haemoglobin (HbA1c) and fructosamine 

(FRA). 1,5-AG proved the most accurate of the three screening tests, so the results of this test 

will be considered here.  

 

This study reported sensitivity and specificity of the test for two cut-offs, a lower cut-off 

whereby both IGT and T2DM were screened for, and a higher cut-off, whereby just T2DM was 

screened for. From these results two diagnostic tables could be defined (tables 8.10 and 8.11).  

From this data alone the 3x3 diagnostic table needed for the model could not be fully compiled, 

with the only data known given in table 8.12. This pattern was repeated in other screening 

studies, whereby the sensitivity and specificity of a test was reported for one or two cut-offs and 

the full 3x3 diagnostic table could not be specified. What can be done though is that both the 

collapsed tables given in table 8.10 and 8.11, can have each cell probability written in terms of 

the probabilities needed for the 3x3 table (i.e. in terms of a to i). These assumptions can then be 

used to estimate the missing cell frequencies. 
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Table 8.9: A break-down of the 3x3 diagnostic table 

 NGT IGT T2DM  
T- a b c R1 
T0 d e f R2 
T+ g h i R3 
 C1 C2 C3 N 

 
 

Table 8.10: Results for the lower cut-off of the 1,5-AG screening test 
 NGT (n) IGT or T2DM (n) Totals 
Tested negative  421 (a) 75 (b+c) 496 (a+b+c) 
Tested positive 269 (d+g) 126 (e+f+h+i) 395 (d+e+f) 
 690 (a+d+g) 201 (b+e+h+c+f+i) 891 (g+h+i) 

 
 

Table 8.11: Results for the higher cut-off of the 1,5-AG screening test 
 NGT or IGT (n) T2DM (n) Totals  
Tested negative 722 (a+b+d+e) 6 (b+c+e+f) 728 (a+b+c) 
Tested positive 132 (g+h) 31 (h+i) 163 (d+e+f) 
 854 (a+b+d+e+g+h) 37 (b+c+e+f+h+i) 891 (g+h+i) 

 
 

Table 8.12: Shirasaya data available for the model 
 NGT IGT T2DM Totals 
Tested negative 421 - - 496 
Test result between the two cut-offs - - - 232 
Tested positive - - 31 163 
 690 164 37 891 

 

 

A model was derived in WinBUGS to estimate the missing data (code given in Appendix 2.3). 

This was done by using the assumptions that can be drawn from the two 2x2 tables, as specified 

in tables 8.10 and 8.11. For each of the three groups (j), NGT, IGT and T2DM, the following 

definitions, representing the possible testing scenarios, were modelled, whereby T+ represents 

testing positive for the high cut-off, T- testing negative for the lower cut-off and T0 test result is 

between the two cut-offs;  

 

 probability( T+ | j)       = p[1,j]        

probability( T0 | T0 or T-)      = p[2,j]        

probability( T0 | j)       = p[3,j]  = p[2,j](1-p[1,j]) 

probability( T- | j)                 = p[4,j]  = 1 – p[1,j] – p[3,j] 
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probability( T+ or T0 | j)    = p[5,j]  = p[1,j] + p[3,j] 

probability(T0 or T- | j )      = p[6,j]  = p[3,j] + p[4,j]  

 

where p[1,j] and p[2,j] are basic parameters, and the rest are functional, in that they can be 

written in terms of the two basic parameters. The known data from tables 8.10 and 8.11 were 

then entered into the model as follows: 

 

854/]))2,1[164(])1,1[690((1 pp ×+×=π     

),(~ 111 NBinr π  where   854&132 11 == Nr  

 

201/]))3,4[37(])2,4[164((2 pp ×+×=π  

),(~ 222 NBinr π  where  201&75 22 == Nr   

 

where ]|[1 NGTorIGTTp +=π  and |[2 −= Tpπ IGTorT2DM] which represent two of the 

cells that combined groups in the Shirasaya data (tables 8.10 and 8.11), that is cells g+h and 

b+c respectively. From the Shirasaya data, two cells in the 3x3 table are known (table 8.12), 

and these can be modelled directly as follows: 

 

37&31
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where p[4,1] is the p[T-|NGT] and p[1,3] is the p[T+|T2DM]. Distributions were then placed on 

the probabilities to ensure the three probabilities that comprised testing positive summed to 1, as 

did the three that comprised testing negative or having a test result between the two cut-offs. 

Also assumptions were made on the probabilities in terms of their relative magnitude. So, for 

example, p[1,1] was forced to be between 0 and p[1,2], which is assuming that the probability 

of T+ if you have NGT, will be smaller or equal to the probability of testing positive if you have 
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IGT. This can be done by putting constraints on the prior distributions of the following 

probabilities: 

 

)1],2,2[(~]3,2[
)1],2,1[(~]3,1[

])3,2[],1,2[(~]2,2[
])3,1[],1,1[(~]2,1[

])2,2[,0(~]1,2[
])2,1[,0(~]1,1[

pUnifp
pUnifp

ppUnifp
ppUnifp

pUnifp
pUnifp

 

The remaining probabilities, which are functions of p[1,j] and p[2,j], were the same for each 

glucose tolerance state (j) and were specified as: 

 

],4[],3[],6[
],3[],1[],5[

],3[],1[1],4[
]),1[1(],2[],3[
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By placing limits on the probabilities, as well as using the assumptions listed above and 

specifying the two known cell values for the 3x3 table, as well as the row and column totals, 

estimates of the missing data could be made (table 8.13). Using the same programme to estimate 

the 3x3 table for the STAR data, if it assumed that only the values available from the reported 

Shirasaya paper were known, shows the method closely replicates the actual results (tables 8.14 

and 8.15). 

Table 8.13: Estimated values for the Shirasaya data 

 NGT IGT T2DM Totals 

Tested negative 422.2 71.5 2.0 495.7 

Test result between the two cut-offs 179.1 48.2 4.6 231.9 

Tested positive 88.7 44.3 30.3 163.3 

 690 164 36.9 890.9 
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Table 8.14: Actual STAR results 

 NGT IGT T2DM Totals   

Tested negative 2014 177   12 2203 

Test result between the two cut-offs 384 101 8 493 

Tested positive 142 125 143 410 

 2540 403 163 3106 

 

Table 8.15: STAR results as predicted by the WinBUGS program 

 NGT IGT T2DM Totals   

Tested negative 2014.0 181.6  6.8 2202.4 

Test result between the two cut-offs 378.6 101.0 13.9 493.5 

Tested positive 147.5 120.4 142.2 410.1 

 2540.1 403 162.9 3106 

 

 

Using the estimated Shirasaya test data in the comprehensive decision model gave similar 

results as the primary model when the STAR data was used. The estimated QALYs were 28.08 

(95% CrI: 23.5 to 32.02) for no screening, 28.15 (23.6 to 32.08) for T2DM only screening, 

28.33 (23.8 to 32.27) for screening and lifestyle interventions and 28.27 (23.73 to 32.21) for 

screening and pharmacological interventions. The incremental cost per QALY gained were 

£8817 for T2DM screening, £2575 for screening and lifestyle interventions and £3188 for 

screening and pharmacological interventions, as compared to no screening.  

 

The methods described in this section would enable the use of data that would otherwise be 

excluded. If a number of studies described the same test, then data could be meta-analysed to 

obtain pooled estimates. As diagnostic studies may vary in terms of cut-offs used and 

populations studied though, this could be difficult to achieve in practice (Hellmich et al., 1999). 
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8.8 Value of information 

8.8.1 Methods for assessing value of information 

A cost-effectiveness analysis, as has been carried out in this thesis, utilises evidence on 

numerous parameters relating to treatment effects, utilities and costs. Ideal data will never exist 

on all of these parameters, and this has been incorporated into the model here by including all 

appropriate uncertainty within the decision model. Having imperfect data though raises the 

question as to whether further research to improve data sources would be a useful utilisation of 

resources. This key question can be answered by carrying out a value of information analyses 

on the decision model (Claxton and Sculpher, 2006, Sculpher and Claxton, 2005). 

 

Value of information analyses centre around the calculation of the expected value of perfect 

information (EVPI), that is the difference between the expected net benefit of having perfect 

information compared to the current information (net benefit was described in section 2.4.5). 

For example if there are two alternative interventions (j=1,2), with unknown parameters θ , 

then the optimal decision is the intervention that generates the maximum expected net benefit, 

maxj {Eθ NB(j,θ)]}. This is the maximum net benefit over all the iterations from the Monte Carlo 

simulations, with each iteration representing a possible future realisation of existing uncertainty 

of θ. With perfect information the value of θ would be known, and the expected value of a 

decision taken with perfect information can be found by averaging the maximum net benefits 

over the distribution of θ, i.e.  Eθ [maxj {NB(j,θ)}]. The EVPI for a single patient is then simply 

the difference between the expected value of the decision model with perfect information about 

the uncertain parameter θ, and the decision made on the basis of existing evidence: 

 

 EVPI = Eθ [maxj {NB(j,θ)}] – maxj {Eθ [NB(j,θ)]}  [Equation 8.2] 

 

The EVPI effectively gives a ceiling to the maximum amount that should be spent on further 

research. The individual patient EVPI can be extended to represent a population, and if this 

“population” EVPI exceeds the expected cost of additional research, then it is potentially cost-

effective to conduct further research. Alternatively if the cost of further research exceeds the 

EVPI, then further work is not cost-effective. Obviously an assessment of current resource 

availability and the importance of conflicting demands for resources will need to be made, 

before a final decision on the feasibility of further research can be reached.  
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This idea of EVPI can be extended to assess the cost-effectiveness of reducing the uncertainty 

of a group of parameters within the model, rather than uncertainty around all model parameters. 

For example, it may be of interest to assess the EVPI for all the economic parameters in the 

model, or for just the utilities. This is termed the expected value of perfect partial information 

(EVPPI) (Claxton and Sculpher, 2006). 

 

For the decision model developed in this thesis the EVPI was calculated for a number of 

willingness-to-pay thresholds, As the EVPI is calculated using a comparison of a new versus 

standard treatment, three EVPIs were calculated, one for each of the three active screening 

strategies compared to no screening. Additionally the population EVPI was also calculated for 

each of the three active screening strategies. Equation 8.3 shows how this was done, adjusting 

the individual EVPI, as defined in equation 8.2, to represent the current and future population of 

England and Wales. (Spiegelhalter et al., 2004).  

 

EVPIpop= EVPI.∑
=

−+

T

t
t

tI
1

1)1( δ
   [Equation 8.3] 

 

T represents the time horizon of a healthcare intervention, which for this example was taken as 

50 years, It represents the annual incidence for year t, and δ is the annual discount rate, which 

for this example was taken as 3.5%, as recommended by NICE (National Institute for Clinical 

Excellence, 2004). For the analyses described here the annual incidence was the number of 

individuals turning 45 years of age in a given year, and therefore becoming eligible for 

screening and able to enter the model. The annual incidence was taken from national statistics 

for England and Wales, whereby it was estimated that 797,400 individuals turned 45 years of 

age in 2007. The incidence rate was assumed constant over the time horizon of the model. The 

WinBUGS code used to estimate the EVPI is given in Appendix 3.8. 
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8.8.2 Results of value of information analyses 

The EVPI is intended for use in deciding whether to pursue a research programme, how to 

design it, and when to stop (Spiegelhalter et al., 2004). Using the methods as detailed above, the 

individual patient EVPIs and population EVPIs are presented in table 8.16. 

 

 

Table 8.16: Expected value of information estimates 

 Screening for T2DM 
only 

Screening for T2DM 
and IGT, lifestyle 
interventions 

Screening for T2DM 
and IGT, 
pharmacological 
interventions 

 
Individual EVPI at different willingness-to-pay thresholds (GBP) 
£5000 814.6 738.1 710.0 
£10,000 814.5 737.7 709.7 
£20,000 814.4 737.5 709.5 
£30,000 814.3 737.1 709.2 
 
Population EVPI at different willingness-to-pay thresholds (results in million GBP) 
£5000 18,880 17,110 16,460 
£10,000 18,880 17,100 16,450 
£20,000 18,880 17,100 16,440 
£30,000 18,880 17,090 16,440 
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From table 8.16 it can be seen that EVPI when considering an individual patient vary minimally 

by willingness-to-pay threshold, and range between £709 and £815. The assessment of T2DM 

only screening had the greatest EVPI value, which is unsurprising as it has already been seen 

that a lot of uncertainty surrounded the assessment of this screening strategy. Evaluating the 

EVPI for a whole population is probably a more useful exercise than just considering the 

individual EVPI, and these results are also presented in table 8.16. The costs are reported in 

millions (GBP). At the £20,000 willingness-to-pay threshold per QALY, the three active 

screening strategies had EVPI of £18,880,000,000 for T2DM screening, £17,100,000,000 for 

IGT and T2DM screening followed by lifestyle interventions and £16,440,000,000 for IGT and 

T2DM screening followed by pharmacological interventions. Although these are considerably 

larger, they are still comparable to other EVPI estimates. A number of EVPIs calculated for a 

range of health care programmes (Claxton and Sculpher, 2006), estimated an EVPI of £865 

million for stroke prevention interventions and £710 million for screening to prevent myocardial 

infarction. These are smaller than our estimates, partly because the populations they would 

impact on are smaller. 

 

The EVPIs calculated here indicate that a lot of uncertainty surrounds the parameters within the 

model. The EVPI for T2DM only screening was the highest as this was the strategy for which 

there was most uncertainty, as shown by the results presented in Chapter 6, where the 

probability of the strategy being cost-effective at the £20,000 willingness-to-pay threshold, was 

just 68% . As the EVPIs are high, continuing a research programme that will provide further 

data on the effects of screening and early treatment, interventions for the delay of T2DM, 

transition rates between different glucose tolerance states and the costs and utilities associated 

with T2DM, should be encouraged. A considerable amount of research will need to be 

conducted before the EVPI will be close to being exceeded by the cost of conducting an 

additional study.  

 

The population EVPIs estimate here are inflated by the fact that the annual incidence of turning 

45 years of age was used. Strictly speaking the model was constructed to model the effects of 

screening in individuals 45 years of age, who are ‘at risk’ of developing T2DM. Unfortunately 

the proportion ‘at risk’ could not easily be estimated. For example though, if just 25% of 45 

year olds could be considered at risk and therefore eligible for screening, the EVPIs are for 

T2DM screening £4,720,000,000, for IGT and T2DM screening followed by lifestyle 
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interventions £4,274,000,000 and for IGT and T2DM screening followed by pharmacological 

interventions £4,112,000,000. 

The population EVPIs calculated here are extremely high, probably due to the fact that the 

model has been constructed in such a way at to include all predicted uncertainty around 

parameters where they are not known for certain. Comprehensive decision models that do not 

correctly model all parameter uncertainty may under estimate the EVPI, which could result in 

further research being stopped, when in fact it would be a cost-effective exercise. 

 

8.9 Discussion and chapter summary 

This chapter explored the versatility of the modelling framework developed for this thesis by 

carrying out a number of extensions to the model. All were fairly straight forward to implement, 

indicating that once a decision model has been set up using methodologies as described in 

chapter 6, it is unproblematic to manipulate the model to consider different scenarios and 

outputs.  

 

A number of model extensions were considered. These included utilising different data sources, 

such as described for incorporating the mixed treatment comparison of interventions, and the 

additional data on diagnostic tests. The model was also run for different ethnic groups, and this 

extension highlighted the very important issue of when data should be combined when 

compiling a comprehensive decision model. Using averages to model transition rates and other 

model parameters may lead to misleading results, so the construction of decision models needs 

to be carefully thought through, and sensitivity analyses carried out where possible. Importantly 

data may not be available on different groups and therefore the effect of using an average value 

in a model may be very difficult to assess. IPD data would allow the impact of the use of 

averages to be explored fully. 

 

The model was adapted to assess both compliance to screening and interventions. These are 

important considerations as in a real-life setting 100% compliance will never be achieved. 

Results from the model suggest that compliance to either screening or interventions did not 

change qualitatively the conclusions when considering the cost-effectiveness of the three active 

screening strategies.  
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A further extension to the model considered a policy of re-screening the population of interest at 

ages additional to the one-off screening at 45 years of age that was modelled in the primary 

model. The results predict that screening on more than one occasion will not increase the cost-

effectiveness of the three active screening strategies, in fact their cost-effectiveness decreased 

slightly if additional screenings were introduced to the model, probably due to the fact that costs 

of T2DM were higher once a diagnosis was made.  

 

The final model extension assessed the expected value of perfect information, and it was 

identified that it would definitely be cost-effective to carry out further research to reduce 

uncertainty in the decision model parameters. The analysis could have been taken one step 

further and EVPPI for different groups of parameters could have been calculated. This may 

have helped identify where further research was most needed, that is the parameter groups with 

the highest EVPPI values. This was not carried out due to the complexity of the analysis and 

time limitations. 

  

Overall the model extensions were all very informative in terms of both clinical considerations 

for the implementation of a screening strategy, and for developing a deeper understanding of 

drivers within the decision model. When a decision model has been developed it therefore 

seems prudent to consider further extensions, to enable the most information and benefit to be 

gained from the model. 
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9. APPLYING THE METHODOLOGY TO OTHER CLINICAL 
EXAMPLES 

9.1 Chapter overview 

The methodologies utilised and developed in previous chapters can be expanded from screening 

and prevention of T2DM to other examples. This chapter outlines two additional clinical 

situations and discusses how the methods from the diabetes model could be applied, and also 

how distinctive features specific to each clinical example would affect the modelling. Firstly the 

example of screening to identify individuals at high risk of coronary heart disease (CHD) and 

intervening to reduce risk of coronary events will be considered and secondly an example 

assessing the impact of screening for precursors for colon cancer will be described.  

 

9.2 Screening cholesterol levels and intervening to reduce risk of CHD 

9.2.1 CHD  

CHD results from the accumulation of fatty deposits of cholesterol and waste substances which 

form plaque and clog up the arteries (NHSDirect, 2007). This makes them narrower and 

restricts blood flow, increasing blood pressure and putting a strain on the heart. Most 

individuals with CHD show no evidence of the disease for decades, and often a sudden heart 

attack is the first indication of the problem. There are approximately 270,000 heart attacks every 

year in the UK (NHSDirect, 2007).   

 

9.2.2 Identifying individuals at high risk 

Risk factors for CHD include modifiable ones such as high cholesterol (specifically serum low 

density lipoprotein (LDL) concentrations), smoking, hypertension, hyperglycaemia, obesity and 

physical inactivity. Unalterable risk factors include a family history of heart disease, age, gender 

and ethnicity (Ward et al., 2007). Much attention has been focused on screening people for 

CHD risk by measuring blood cholesterol concentrations, but although blood cholesterol is an 

important risk factor, by itself it is a relatively poor predictor of who will go on to have a CHD 

event (Ebrahim et al., 1998). Identifying those at risk by considering a number of risk factors 

together provides a much more reliable prediction of CHD risk. One of the most widely used 

tools for assessing risk is the Framingham risk score, which scores an individual depending on 

their age, gender, systolic blood pressure, ratio of total cholesterol to high density lipoprotein 

(HDL) cholesterol, presence of diabetes, and smoking habits (Ramachandran et al., 2000). It 
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gives a predicted ten year risk of CHD and cardio-vascular disease (CVD). The Framingham 

risk score was developed using a Caucasian population and therefore predicts CHD risk most 

accurately in Caucasians. Recently though it has been recalibrated so that the score can now be 

additionally used to assess seven British black and minority ethnic groups (Brindle et al., 2006).  

 

9.2.3 Intervening to prevent CHD 

Individuals identified as being at high risk of CHD can be treated in a number of different ways. 

Risk can be significantly reduced by lifestyle changes such as increasing exercise, eating a 

healthier diet and stopping smoking. Pharmacological treatments can also play an important 

role, especially in those at highest risk, and include statins to lower LDL cholesterol, blood 

pressure lowering medications such as beta-blockers and angiotensin converting enzyme (ACE) 

inhibitors, and low dose aspirin to help prevent the blood from clotting and reduce the risk of a 

heart attack and angina (Ebrahim et al., 1998). Lowering cholesterol levels through either diet or 

pharmacological interventions, can lead to a significant reduction in CHD risk. It has been 

estimated from clinical trials of statins that CHD risk is reduced by 15% for every 10% 

reduction in plasma LDL cholesterol (Gould et al., 1998). 

 

9.2.4 Modelling the information 

An outline of how screening and intervening to reduce CHD risk could be modelled is given in 

figure 9.1. The model compares no screening with screening, where any screening test for 

which data is available could be considered. Firstly, a decision tree determines how many 

individuals would be detected through screening and have an intervention applied. A Markov 

model is then used to model yearly transitions from a healthy state to one representing 

occurrence of a CHD event, with two Markov models being run simultaneously, one for a 

screened population and one for an unscreened population. Transition rates could then be 

reduced where high risk individuals have been identified and interventions have been applied to 

reduce CHD risk.  As with screening a number of different interventions could be considered, 

providing the data is available quantifying their effect on CHD risk.  

 

Figure 9.1: Model outline of screening for CHD risk and intervening to reduce risk 

Decision tree      Markov model 
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Once a CHD event has occurred, in the next cycle the Markov model moves an individual to a 

state that represents those who have a history of CHD events. Transition rates to a second CHD 

event or to death are higher from this state than from the healthy state. Both CHD death and 

non-CHD death are absorbing states. Additional event states could be included in the model, 

such as stroke or diabetes, but this would be dependent on data availability. As with the diabetes 

example, costs and utilities could be applied to each state, to allow for the assessment of both 

clinical and cost-effectiveness of screening for CHD risk. 
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9.3 Screening and prevention of colorectal cancer 
 

 

9.3.1 Colorectal cancer 

Colorectal cancer (CRC) or colon cancer is amongst the most common malignancies and 

remains a leading cause of cancer related morbidity and mortality (Gill and Sinicrope, 2005). 

Overall about one half of patients diagnosed with CRC ultimately die of the disease and this 

poor prognosis is primarily due to late detection of the disease by which time available 

treatments are limited and less effective (Sangha et al., 2004). Colorectal cancer is a multi-step 

process characterized by molecular and cellular alterations, that begins when normal mucosa 

changes to an adenomatous polyp. This adenoma is an easily identifiable precursor lesion that if 

untreated will eventually progress to carcinoma (Gill and Sinicrope, 2005).  Due to the high 

prevalence of CRC, it’s long asymptomatic phase, and the presence of a treatable precancerous 

lesion, CRC meets the criteria for screening (Sonnenberg et al., 2000). 

 

9.3.2 Screening for precursors of colon cancer 

Most colorectal cancer develops from precursor lesions which can be used as a target for early 

detection and therapy (Ramsoekh et al., 2007). Unlike other cancers there are several options for 

screening for CRC.  The most extensively reviewed method is faecal occult blood testing 

(FOBT) and this has been shown, if offered biennially, to reduce mortality from CRC by as 

much as 20% (Atkin, 2003). Screening alternatives include flexible sigmoidoscopy and 

colonoscopy. Colonoscopy has the advantage over the other two techniques in that it allows the 

whole of the colon to be examined, but unfortunately it is also the most resource intensive and 

expensive method of screening (Ramsoekh et al., 2007).  

 

A number of studies have been carried out to assess the cost-effectiveness of different screening 

approaches. One study used a Markov decision model to compare FOBT alone, FOBT 

combined with flexible sigmoidoscopy, flexible sigmoidoscopy alone and colonoscopy (Vijan et 

al., 2001). All screening strategies were found to be cost-effective when compared to no 

screening and twice-lifetime colonoscopy proved to be the most cost-effective screening 

strategy overall. The assessment of all screening strategies was very sensitive to assumed 

compliance levels.  
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9.3.3 Interventions 

Once an adenomatous polyp has been identified the most effective intervention to prevent 

cancer is a polypectomy, which is a surgical removal of the abnormal growth (Sangha et al., 

2004). Alternatively, or in addition to resection, various agents can be prescribed for 

chemoprevention of CRC. These include non-steroidal anti-inflammatory drugs (NSAIDs) such 

as aspirin, which inhibit tumorigenesis, and other agents such as folate, calcium, vitamins, anti-

oxidants and fibre. The effectiveness of some of these agents is still speculative and research is 

very much on-going. Strong evidence already exists to support the therapeutic benefit of aspirin 

though, which has been found to be associated with significant reductions in both colorectal 

adenomas and carcinoma incidence (Gill and Sinicrope, 2005). 

 

9.3.4 Modelling the information   
A possible model for assessing the benefits of screening for precursors to colon cancer is given 

in figure 9.2. The model compares no screening vs. screening for pre-cancerous lesions, using 

two Markov models whereby yearly transition rates are used to model a theoretical population 

between states. 

 

 

Where no screening occurs it is assumed that individuals with adenomas will not be identified 

and therefore will not receive a surgical resection or any interventions. The problem will only 

be identified once cancer has developed. Treatment of the cancer may be successful, returning 

the individual to a cancer free state or death due to cancer may occur. Where a screening 

programme is assumed the model allows for identification of individuals at the adenoma stage. 

Identification rates depend on uptake rates of screening, accuracy of the screening test and 

frequency of screening. These can all be altered within the model to assess their impact. 

Individuals identified with adenomas receive treatment and may move back to the cancer free 

state, or if treatment fails they may go on to develop cancer. 
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Figure 9.2: Model outline of screening for precursors to colon cancer 

 

 

 

 

 

 

 

 

 

 

 

9.4 Comparison of the three models 
 

In many ways the three decision models of diabetes prevention, CHD risk reduction and colon 

cancer prevention are very similar. They all rely on the availability of relevant data on screening 

tests and effectiveness of interventions before constructing a decision model can even be 

considered, and often what can be modelled will be restricted by data availability. All three 

models had a choice of possible screening tests and interventions that could be modelled. To 

assess the viability of different screening tests several models can be run, one for each screening 

test, and then the results compared.  

Comparing interventions can be a little more complicated, as already shown with the diabetes 

example. To directly compare interventions where they may not have been compared directly in 

clinical trials, a mixed treatment comparison is needed. As it is unclear from the literature which 

interventions are the most effective in the two examples described in this chapter, there is great 

potential for using mixed treatment comparisons to try and identify the best treatments. Mixed 

treatment comparisons were used to directly compare pharmacological and lifestyle 

interventions using both direct and indirect evidence. The assumptions made for this type of 

analysis are discussed in chapter 4.  
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Many of the issues identified during the compilation of the diabetes model would also be 

important factors for the two models described in this chapter. The assessment of data quality is 

important for all three models, as the accuracy of model results is dependent on inputs entered 

into the model. For the diabetes model clinical trials were assessed for quality using the Jadad 

score and the same would be recommended for the trials utilised for these two models. As with 

the diabetes model, correlations, where one trial may provide data for more than one part of the 

model, need to be considered and modelled appropriately, and data has to be combined carefully 

if it has been derived from different populations. The availability of IPD for all three examples, 

would provide greater opportunities for modelling sub-groups within the decision model. For all 

decision models, sensitivity analyses on distributions and assumptions are very important, to 

enable a full understanding of the model, including the identification of the key parameters that 

are driving and influencing the results. 

 

The three examples also have pronounced differences that effect how they are modelled. 

Screening for both CHD and IGT can be done simply by a blood test or by using a risk score. 

The most common screening tests for CRC though are faecal occult blood testing, colonoscopy 

or flexible sigmoidoscopy. These are more invasive and disagreeable to the individuals involved 

and therefore uptake rates of screening are likely to have a greater impact for this example, and 

therefore need to be taken account of and modelled realistically.  

 

Unlike interventions for diabetes and CHD, the intervention of adenoma removal for CRC 

prevention is not a continuous treatment, and therefore it can be a state that is passed through in 

the model, instead of being modelled just as an effect on transition rates. Also, because 

intervention may not be a continuous process, then re-screening may be a more important issue 

in the cancer model, interventions in individuals at risk of diabetes and CHD may permanently 

reduce the risk if compliance is high, but once an adenoma has been removed an individual may 

still be at higher risk of future CRC than an individual who has had no precancerous lesions.  

 

9.5 Chapter Summary 

By considering two further examples it has become clear that many of the issues that have been 

considered for the diabetes model will be important issues for the majority of decision models. 

Synthesising data from a number of sources has the potential for many pitfalls and has to be 

carefully thought through if unbiased, accurate and interpretable results are to be produced.
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10: DISCUSSION AND CONCLUSIONS 

10.1 Summary 

This thesis reviews the methods utilised for evidence synthesis, developing them further where 

appropriate, through the development of a comprehensive decision model to assess different 

health policies in respect to screening for T2DM. Four strategies were compared which were, no 

screening (current policy), screening for T2DM alone, screening for IGT and T2DM, with 

lifestyle interventions applied to those with IGT in an attempt to delay the onset to T2DM, and 

finally screening for both IGT and T2DM with pharmacological interventions applied to 

individuals with IGT. The model was structured to monitor the impact of carrying out a one-off 

screening of individuals aged 45 years of age and the impact this would have over a 50 year 

time horizon. The model was thoroughly checked for problems associated with MCMC 

analyses, and numerous sensitivity analyses and model extensions were considered, to explore a 

number of screening scenarios. The work carried out for this thesis needs to be interpreted in 

terms of both its methodological and clinical implications. 

 

10.1.1 Methodological summary 

The comprehensive decision model constructed here is innovative when compared to current 

published models.  Firstly the entire model, including all evidence synthesis, was encompassed 

within a single flexible framework. This has many advantages including, all uncertainty can 

easily be incorporated within model parameters and assumptions on posterior distributions of 

summary estimates do not need to be made if they are being combined within the model 

(Cooper et al., 2004). Secondly a Bayesian approach was taken to the analysis, and the model 

was developed within the statistical package WinBUGS. This has the advantage over many 

traditional software packages in that it is relatively simple to specify and run computationally 

intensive and complex models, whilst accounting for all uncertainty and sources of correlation 

between model inputs. Also, although not utilised in this example, it allows subjective prior 

beliefs to be included within the model. Running the model in WinBUGS, which simulates 

parameters over thousands of iterations, has the additional advantage that direct statements can 

be obtained, such as the probability of one parameter being higher than another.  

 

The model developed here sought to improve on current published decision models by 

incorporating as much published data as was relevant to the model as was feasible. For example 
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to estimate the effectiveness of interventions, a full systematic review was carried out. This 

involved the assessment of over ten thousand published abstracts, including foreign language 

papers, in an attempt to locate all randomised controlled trials, which had assessed interventions 

aimed at delaying or preventing T2DM. To allow a direct comparison of lifestyle and 

pharmacological interventions, an MTC analysis was carried out. This systematic review, meta-

analysis and MTC were described in detail in Chapter 4, and were published in the British 

Medical Journal (Gillies et al., 2007).  

 

To endeavour to make the model as realistic as possible, parameters were changed over time 

where relevant within the comprehensive decision model, e.g. transition rates and utilities were 

modified over the model horizon. Individual patient data (IPD) as well as summary data was 

utilised for the model. IPD was particularly useful for constructing the screening test decision 

tree, due to difficulty in extracting data from published reports as discussed in Chapter 8. 

Methods to extract data on screening tests, where only collapsed tables were reported, i.e. when 

groups are combined over rows or columns, was investigated and discussed in Chapter 8. To 

model the effects of complications associated with T2DM on quality of life, complication rates 

were estimated using a series of Weibull survival models, which were run within the decision 

modelling framework. Once the model had been compiled a full assessment of parameter 

convergence, and a number of model checks were carried out (Cowles and Carlin, 1996), as 

described in detail in Chapter 7. Therefore not only was the model the most comprehensive in 

comparison to previous models developed in the area of T2DM screening, it was also the most 

complex in its structure. 

 

10.1.2 Clinical summary 

The comprehensive decision model developed here was the first to assess a strategy of 

screening and intervening in individuals with IGT, and the first to compare screening for T2DM 

alone with a strategy of screening for both IGT and T2DM in combination. From the model 

results it appears that there is evidence to support strategies where both IGT and T2DM are 

screened for, followed by an intervention comprising of either a lifestyle programme or a course 

of prescription drugs for individuals diagnosed with IGT, and early treatment for individuals 

diagnosed with T2DM. Both the two strategies that included interventions had a high 

probability of being cost-effective at fairly low willingness-to-pay thresholds. Screening for 

T2DM alone compared to no screening was more difficult to assess in terms of its cost-

effectiveness. A lot of uncertainty surrounded the model results and therefore although the 
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predicted cost per QALY gained for this strategy was fairly low, the probability of it being cost-

effective, only exceeded 80% at a willingness-to-pay threshold of £40,000. 

 

As both the strategies concerning lifestyle and pharmacological interventions gave similar 

results, this raises the question as to which is best. Lifestyle had a higher cost per annum than 

pharmacological, but the intervention effect on reduction to progression to T2DM was greater in 

these trials. Both have further issues aside from cost-effectiveness. With lifestyle interventions 

it may be difficult to maintain compliance outside of a trial setting, which will reduce their 

effectiveness. Alternatively lifestyle interventions which lead to an increase in exercise and an 

improved diet may have benefits additional to the reduction of T2DM risk, which would not be 

the case for pharmacological interventions. Pharmacological interventions have disadvantages 

in that their use will mean the medicalisation of what is fundamentally a lifestyle problem rather 

than an illness, and it may encourage individuals to continue with unhealthy lifestyles, rather 

than directly address the cause of their ill-health. As discussed in chapter 4, pharmacological 

interventions have issues of adherence if side effects become problematic, especially as they 

have been shown be effective for only as long as they are taken, with the benefit stopping when 

the medication is withdrawn.  Also, as the RCTs of interventions averaged only 4 to 5 years of 

follow-up, the long-term effectiveness of both lifestyle and pharmacological interventions in 

unknown. 

 

Overall the model results were very robust to changes in model inputs, as explored through 

extensive sensitivity analyses and model extensions, as described in chapters 7 and 8. In the 

base case model compliance to both screening and interventions was assumed to be 100%. This 

is unrealistic, and would not be the case in a real-life setting. Therefore sensitivity analyses were 

carried out to assess the effects of reducing compliance to both screening and interventions, and 

although reducing compliance did reduce the cost-effectiveness of the three active screening 

strategies, the overall conclusions of the decision model were unchanged.  

 

One-way sensitivity analyses on most of the model inputs only minimally affected the model 

outcomes and did not effect the model conclusions. For example, changing the prevalence of 

each glucose tolerant state, or screening test sensitivity, had little impact on the cost-

effectiveness of each screening strategy. Therefore decisions on how a screening strategy in a 

U.K. setting should be structured can be based on the most viable and publicly acceptable 

options. Although as models with higher prevalences of IGT and undiagnosed T2DM (that is to 
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say populations with higher risk of T2DM) had better clinical outcomes, then possibly a 

screening programme should be aimed at targeting specific groups. Previous models that have 

assessed screening or intervention strategies often advocated the targeting of high risk groups, 

such as the obese, or individuals diagnosed with hypertension, as discussed in Chapter 5. The 

multi-way sensitivity analysis, carried out on costs of T2DM and prevalence of glucose 

tolerance status, had more of an impact on model outcomes, resulting in the three active 

screening strategies being less cost-effective when both costs and prevalence were high. This 

highlights the importance of multi-way sensitivity analyses, whereby model parameters may not 

impact on results during one-way sensitivity analyses, but may impact when changed 

simultaneously.  

 

 

10.2 Discussion and limitations of this work 

10.2.1 Methodological discussion 

The model fitted here improved on current decision models in a number of ways. The model 

was comprehensive in that the complete model, including any meta-analyses carried out to 

compute pooled estimates, was contained within one framework. This has a number of 

advantages as already discussed. An additional advantage not fully explored by this thesis, is 

that it enables correlations to be included within the model, if one data source or trial 

contributes data to more than one part of the model. In this model, this issue only occurred when 

estimating the effectiveness of interventions, and the transition rate between IGT and T2DM, 

where the control groups of some of the randomised trials were utilised. As the same trials were 

used to inform both estimates, induced correlations could have been incorporated within the 

modelling framework. This was not investigated due to time constraints.  

 

To model the effects of screening over a time horizon of fifty years, some assumptions were 

made. Model inputs were varied where data was available, so for example transition rates to 

death were increased over the model cycles, to simulate the effects of an aging population. 

Other model inputs were more difficult to adjust, for example the effectiveness of interventions. 

In the base case model the intervention effects remained constant over the full time horizon. As 

most of the data was taken from trials that had followed up participants for an average of just 

four or five years, the estimated intervention effects were effectively extrapolated over a much 
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longer time frame, but because the average time spent with diagnosed IGT was approximately 

seven years, the assumption should not have resulted in inaccurate results. 

 

The decision model utilised meta-analyses methods to estimate pooled estimates for both 

lifestyle and pharmacological interventions. The use of meta-analyses, and meta-regression 

methodologies, raise a number of issues, including publication bias, the quality of included data, 

the prior distribution placed on the between study heterogeneity, and the use of summary data 

(Sutton et al., 2000). These were explored where appropriate and discussed in detail in Chapters 

4 and 7. Sources of bias in the intervention meta-analyses were assessed, in terms of both 

publication and study quality. Also the possibility that one study may be greatly influencing the 

results was checked, by removing each study individually from the meta-analyses and 

comparing pooled estimates. Further model-data consistency checks could have been carried 

out, if time had allowed, whereby individual studies are removed from each meta-analyses, and 

then the meta-analyses used to predict the result of the missing study (Ades, 2002).  

 

A problem highlighted by the extension considering different ethnic groups, is the use of 

averages within decision models and the problems this can cause. Combining data on different 

ethnic groups at the start of the model, and using average transition rates within the Markov 

model, resulted in inaccurate results. This is because where a population with different risks of 

an event are modelled using an average risk, the effects of these ‘frailties’ can give misleading 

results as discussed in more detail in Chapter 8 (Hougaard, 1995). Although the problem with 

the ethnic data was overcome by combining results at the end of the model, it raises concerns 

for other averages utilised within the model. Where enough data was available checks were 

made, so for example the effect of baseline risk of T2DM and intervention effects were assessed 

for any interaction between the two. An alternate model structure, which would eliminate the 

risks involved with using averages, is to model a population by simulating each individual 

separately within the model and then combine the data at the end. Obviously this method is 

much more computational intensive and time-consuming than the more conventional decision 

model.  

 

A limitation of the work carried out here, is that all model uncertainty was not considered. 

Model uncertainty may be structural, e.g. what branches to include in a decision model or states 

in a Markov Model, or statistical, e.g. the choice of statistical model to use to obtain input 

distributions for probabilities, hazard ratios, costs and utilities. Model uncertainty can be 
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investigated using sensitivity analyses or Bayesian model averaging methodologies (Hoeting et 

al., 1999).  

 

Finally, the estimation of hazard ratios entered into the model was modelled using a posterior 

distribution. It has been suggested that, due to heterogeneity in patient groups, the mean 

treatment effect from a random effects meta-analysis will seldom be an appropriate 

representation of the efficacy expected in a future implementation (Ades et al., 2005, Welton et 

al., 2007). It has therefore been suggested that a more appropriate approach to modelling 

treatment effects would be to use a predictive distribution for a future treatment effect. The 

predictive distribution would be centred on the same value as a posterior, but would be wider; 

therefore its use would result in more model uncertainty. 
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10.2.2 Clinical discussion 

Results show that screening for IGT and T2DM followed by interventions, and possible 

screening for T2DM alone, are potential cost-effective health policies. This raises the question 

as to whether such screening programmes would be viable in practice. In Chapter 7 the 

requirements necessary for a condition to be appropriate for screening were discussed, for 

example acceptable screening tests should be available. T2DM was found to meet most of the 

necessary requirements, although probably the most problematic issue is that benefits of early 

detection and treatment of undiagnosed T2DM are yet to be proved (Wareham and Griffin, 

2007). Information to rectify this short fall in knowledge is currently being collated by on-going 

studies. Disadvantages and implications of screening are also important and should be 

considered before a health policy is implemented. Also the best use of limited NHS resources 

needs to be considered as perhaps it could be argued that the clinical management of people 

with established T2DM needs to be optimised before a screening programme is contemplated.  

 

The model described here improves considerably on previous models assessing either 

interventions or screening for T2DM. The models were described in detail in Chapter 5, but 

briefly the major problems were the fact that often only a limited part of the treatment/disease 

pathway was modelled, and data sources were very limited, with the model usually based on 

data drawn from as few sources as possible. The model here considers the complete disease 

pathway, from NGT through to death, and by doing so is able to model the long-term outcomes 

of any screening strategy. It also allows a full assessment of an intervention strategy, as just 

assessing the effectiveness of interventions, without the costs of identifying the individuals. 

More importantly this is the first decision model that has directly compared a strategy of 

screening for T2DM alone or screening for IGT and T2DM in unison, which surely would be a 

key question that would need to be addressed if a screening policy was considered. 

 

An evaluation of EVPI indicated there is still a need for further research in the area of T2DM 

screening and prevention. A great deal of  research is already in progress, as T2DM is a growing 

health problem in the U.K., due to westernised lifestyles, and therefore is a health priority of 

national importance.  

10.3 Further work 

A number of extensions have already been carried out to extend the primary model, as described 

in Chapter 8. These included incorporating a mixed treatment comparison within the model, 
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extending the model to investigate the effects of implementing multiple screens rather than just 

a one-off screening, extracting further diagnostic data from the literature, and running the model 

for both an Asian population and a population of both Caucasian and Southern Asian origin.  

 

Further work could include the extension of the model to incorporate more indirect evidence 

sources. The primary model utilised information on the transition rate from NGT to IGT, and 

IGT to T2DM, but additional, indirect, evidence is available on the transition from NGT to 

T2DM. This could be incorporated into the model to inform the NGT to IGT and IGT to T2DM 

transitions.  Additionally, this model was based on the states of IGT and T2DM, but it would be 

interesting to also include the state of IFG. This was excluded in the primary model due to 

limited information on the disease pathway from IFG to T2DM, but the model could be 

extended when more data is available. 

 

One of the extensions considered was an assessment of the EVPI. This could be extended in 

further work to assess the expected cost of perfect partial evidence (EVPPI). This takes EVPI 

one step further and investigates the costs of obtaining perfect information on specific groups of 

parameters. So for example the EVPPI for economic inputs to the model could be assessed, or 

the EVPPI for the transition rates. Obtaining this additional information would help to target 

future research, for example if the transition rates had a low EVPPI then it may not be worth 

investing further money in studies aimed at assessing incidence rates for IGT or T2DM. 

 

The most difficult part of the decision model to develop was that of the effects of early 

diagnosis and treatment of T2DM through screening. This is because there are currently no 

large scale clinical trials that have assessed the impact of early diagnosis of T2DM, on factors 

such as complication rates and quality of life. For this model assumptions were made in that 

trial data from the UKPDS study was used and it was assumed individuals identified clinically, 

but who were placed on intensive treatment, would have similar complication rates and utility 

values to individuals diagnosed early. This was a strong assumption but made the most of the 

data available. The ADDITION study is currently assessing the impact of screening and early 

diagnosis of T2DM, and it would be interesting to update the model with these results when 

they are published. 
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The model developed for this thesis could be extended further by including more states, and 

increasing its complexity. For example, at the moment complication rates are only modelled in 

terms of their impact on costs and utilities, within the state of T2DM. The model could be 

extended to include states for each complication, including both microvascular and 

macrovascular outcomes, to fully assess the impact of screening on individual complication 

rates, and to fully model the inter-relationships between complications. To do this further 

clinical information on the disease pathway post-screening is needed. The model could also be 

improved by carrying out full systematic reviews for all model inputs, this was only done for 

some of the model inputs due to time limitations. Additionally, if IPD was available, a full 

assessment of the use of averages across sub-groups, or the impact of different screening 

strategies for different sub-groups, could be fully explored. 

 

Other further work could involve applying the methodologies developed here to further clinical 

examples. This was discussed theoretically in Chapter 9, where the examples of screening for 

coronary heart disease, or for colon cancer were considered. As T2DM is associated with other 

components of the metabolic syndrome, such as hypertension, cholesterol and coronary heart 

disease, it would be interesting to extend the model to include screening and interventions for 

several components of the metabolic syndrome in unison. This would be very complex as not 

only would the model have to incorporate several screening tests, the interventions post 

screening would be likely to impact on several outcomes. Although it would be interesting to 

assess further examples, as different clinical conditions would raise different issues, as the 

literature searching, data extraction and model compilation developed here took three years to 

carry out thoroughly, applying the methodologies to another example in the same detail would 

obviously be a very time consuming endeavour.  

  

10.4 Conclusions 

In conclusion the comprehensive decision model developed for this thesis improved on both 

published models in the clinical area of type 2 diabetes, and published decision models in 

general. The results of the model provide evidence that a screening strategy for IGT and T2DM, 

allowing for preventative interventions to be given to individuals with IGT and early treatment 

to be provided for individuals with T2DM, would be a cost-effective screening strategy. 

Uncertainty still surrounds the cost-effectiveness of screening for T2DM alone and further 

research is required. Running decision models within a Bayesian, comprehensive framework, 

allows for model flexibility and has advantages over more conventional modelling techniques. 
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APPENDIX 1: SEARCH STRATEGIES 
1.1 The search strategy for reviewing all previous meta-analyses and systematic reviews in 

the area of impaired glucose tolerance 

This search strategy combines the systematic reviews and meta-analysis search filter from CRD 
report number 4, (appendix 1) with a search for IGT and related terms (from Cochrane protocol 
‘Lifestyle interventions for preventing type 2 diabetes mellitus’) 

Medline (1966 to 20/12/04) and Embase (1980 to 20/12/04), Cochrane database- for protocols 
and systematic reviews (including DARE/HTA) 

1. (systematic$ adj5 review$).tw. 
2. (data adj synthesis).tw. 
3. (published adj studies).ab. 
4. (data adj extract$).ab. 
5. metaanalysis/ 
6. meta analysis/ 
7. (meta analys$ or metaanalys$).tw. 
8. comment.pt. 
9. letter.pt. 
10. editorial.pt. 
11. animal/ 
12. human/ 
13. 11 not (11 and 12) 
14. "prediabetic-state"/ 
15. ((prediabet$ or pre diabet$) adj5 state).ti,ab. 
16. glucose intolerance/ 
17. (impaired glucose tolerance or glucose intoleran$ or insulin$ resist$).ti,ab. 
18. impaired fasting glucose.ti,ab. 
19. (IGT or IFG).tw. 
20. (metabolic syndrome or syndrome x).mp. [mp=title, original title, abstract, 
name of substance, mesh subject heading] 
21. "hyperinsulinemia"/ 
22. (hyperinsulin$ or hyper insulin$).ti,ab. 
23. glucose tolerance test.tw. 
24. impaired fasting blood glucose.tw. 
25. (impaired fasting glycaemia or impaired fasting glycemia).tw. 
26. (impaired glucose stat$ or impaired glucose respons$ or impaired glucose 
control$).tw. 
27. (impaired glucose regul$ or impaired glucose metab$).tw. 
28. (impaired glucose homeost$ or reduced glucose metab$).tw. 
29. (reduced glucose toleran$ or glucose intolerant$).tw. 
30. (prediabet$ or praediabet$).tw. 
31. (borderline diabet$ or mild diabet$).tw. 
32. (impaired insulins secret$ or reduced insulin secret$).tw. 
33. or/14-32 
34. 33 not (8 or 9 or 10 or 13) 
35. or/1-7 
36. 34 and 35 
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1.2 Search strategy for the systematic review of interventions to prevent or delay type 2 
diabetes in individuals with IGT 

Search strategy 
Both Medline (1966 to July, week 4, 2005) and Embase (1980 to week 32, 2005) databases 
were searched using the following search terms: 
RCT filter 
1. randomized controlled trial.pt. 
2. controlled clinical trial.pt. 
3. Randomized Controlled Trials/ 
4. random allocation/ 
5. double blind method/ 
6. single-Blind Method/ 
7. clincial trial.pt. 
8. clinical trials/ 
9. clinical trial.tw. 
10. ((singl$ or doubl$ or trebl$ or tripl$) and (mask$ or blind$)).tw. 
11. PLACEBOS/ 
12. placebo$.tw. 
13. random$.tw. 
14. (clin$ adj5 trial$).ti,ab. 
15. or/1-14 
16. (animals not human).sh. 
17. 15 not 16 
Type II diabetes 
18. diabetes-mellitus,-non-insulin-dependent/ 
19. insulin-resistance/ 
20. obesity-in-diabetes.mp. or Obesity in Diabetes/ 
21. (MODY or DM2 or NIDDM or IIDM).ti,ab. 
22. (non insulin$ depend$ or noninsulin$ depend$).ti,ab. 
23. (("typ$ 2" or typ$ II) adj10 (diabet$ or DM)).ti,ab. 
24. (insulin$ defic$ adj5 relativ$).ti,ab. 
25. (adult$ onset or matur$ onset or late$ onset).mp. [mp=title, original title, abstract, name of 
substance, mesh subject heading] 
26. 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 
 
Prevention combined with type II diabetes (using and) 
27. "PREVENTIVE MEDICINE"/ 
28. "PREVENTIVE-HEALTH-SERVICES"/ 
29. (PREVENT$ or PROPHYLA$ or AVOID$ or DELAY$).ti,ab. 
30. 26 and (27 or 28 or 29) 
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Exclusions 
31. "dermatomyositis".mp. or DERMATOMYOSITIS/ 
32. "myotonic-dystrophy"/ 
33. exp Diabetes Insipidus/ 
34. mellitus.ti,ab. 
35. 33 not (18 or 34) 
36. (diabet$ adj5 (insipidus not mellitus)).ti,ab. 
37. ((keto$ resist$ or nonketo$ or non keto$ or slow onset or stabl$) adj5 (diabet$ or DM or 
DM2)).mp. [mp=title, original title, abstract, name of substance, mesh subject heading] 
38. (fragil$ X or X linked).mp. [mp=title, original title, abstract, name of substance, mesh 
subject heading] 
39. (plurimetabolic$ syndrom$ or pluri metabolic$ syndrom$).mp. [mp=title, original title, 
abstract, name of substance, mesh subject heading] 
40. "PREGNANCY-IN-DIABETES".ti,ab. 
41. (pregnan$ adj5 diabet$).ti,ab. 
42. 31 or 32 or 35 or 36 or 37 or 38 or 39 or 40 or 41 
43. 30 not 42 
 
IGT and similar conditions 
44. "prediabetic-state"/ 
45. ((prediabet$ or pre diabet$) adj5 state).ti,ab. 
46. "glucose-intolerance"/ 
47. (impaired glucose tolerance or glucose intoleran$ or insulin$ resist$).ti,ab. 
48. impaired fasting glucose.ti,ab. 
49. (IGT or IFG).tw. 
50. (metabolic syndrome or syndrome x).mp. [mp=title, original title, abstract, name of 
substance, mesh subject heading] 
51. "hyperinsulinemia"/ 
52. (hyperinsulin$ or hyper insulin$).ti,ab. 
53. glucose tolerance test.tw. 
54. impaired fasting blood glucose.tw. 
55. (impaired fasting glycaemia or impaired fasting glycemia).tw. 
56. (impaired glucose stat$ or impaired glucose respons$ or impaired glucose control$).tw. 
57. (impaired glucose regul$ or impaired glucose metab$).tw. 
58. (impaired glucose homeost$ or reduced glucose metab$).tw. 
59. (reduced glucose toleran$ or glucose intolerant$).tw. 
60. (prediabet$ or praediabet$).tw. 
61. (borderline diabet$ or mild diabet$).tw. 
62. (impaired insulin secret$ or reduced insulin secret$).tw. 
63. 44 or 45 or 46 or 47 or 48 or 49 or 50 or 51 or 52 or 53 or 54 or 55 or 56 or 57 or 58 or 59 or 
60 or 61 or 62 
 
IGT + ((diabetes and prevention)-exclusions) 
64. 63 or 43 
Above combined with RCT (using and) 
65. 64 and 17 
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1.3 Search strategy for published economic evaluation studies of screening for impaired 
glucose tolerance and/or intervening to prevent type 2 diabetes 

 

Search strategy for Medline and Embase: 

1. (IGT or impaired glucose tolerance).mp. 
2. ((IGT or impaired glucose tolerance) and screen$).mp. 
3. (prevent$ and (non-insulin dependent diabetes or NIDDM or type II diabetes mellitus or type 
2 diabetes mellitus or T2DM)).mp. 
4. 1 or 2 or 3 
5. (economic evaluation or Markov or cost-effective$).tw. 
6. 4 and 5 

 

MEDLINE (1966 to February Week 2 2005) 

EMBASE (1980 to week 7 2005) 

 

Search strategy for Cochrane: 

((IGT or impaired glucose tolerance) or ((IGT or impaired glucose tolerance) and screening) or 
(prevention and (non-insulin dependent diabetes or NIDDM or type II diabetes))) and 
(economic evaluation or Markov or cost-effectiveness)  

in All Fields, from 1800 to 2005 in The Cochrane Database of Systematic Reviews" 

 

The ScHARR website ‘reviewing modelling methods for the evaluation of screening 
programmes’ was also searched. 
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1.4 Search strategy for studies that had evaluated screening tests for type 2 diabetes and/ 
or impaired glucose tolerance  

 

 
Search Strategy for Medline and Embase: 
 
1. sensitivity.mp. or exp "Sensitivity and Specificity"/ (237893) 
2. DIAGNOSIS/ (990) 
3. specificity.mp. (217633) 
4. exp DIAGNOSIS/ (1227511) 
5. 1 or 3 or 4 (1436847) 
6. Glucose Intolerance/ or impaired glucose tolerance.mp. (3086) 
7. IGT.mp. (894) 
8. 6 or 7 (3161) 
9. 5 and 8 (2271) 
10. screen$.mp. (124704) 
11. 9 and 10 (266) 
12. limit 11 to (english language and abstracts) (217) 
 
 
MEDLINE (1966 to January Week 4 2005) 

EMBASE (1980 to week 4 2005) 
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APPENDIX 2: FORM USED TO CALCULATE JADAD QUALITY 
SCORE 

 
Study name and paper used for assessment of quality (study design paper): 
 
 Yes=1, No=0 
1. Was the study described as randomised? 
(this includes words such as randomly, random and randomisation) 

 

Give 1 additional point if the method to generate the sequence of 
randomisation was described and it was appropriate (e.g. random 
number tables, computer generated). 

 

Deduct 1 point if the method of randomisation was described but was 
inappropriate (e.g. alternate allocation, date of birth, hospital number). 

 

2. Was the study described as double blind?  
Give 1 additional point if the method of double blinding was described 
and it was appropriate (identical placebo, active placebo, dummy etc.) 

 

Deduct 1 point if the study was described as double blind but the 
method of blinding was inappropriate (e.g. comparison of tablet vs. 
injection with no double dummy). 

 

3. Was there a description of withdrawals and dropouts?  
Total  
 
Guidelines for Assessment 
 
1. Randomisation 
A method to generate the sequence of randomisation will be regarded as appropriate if it 
allowed each study participant to have the same chance of receiving each intervention and the 
investigators could not predict which treatment was next. Methods of allocation using date of 
birth, date of admission, hospital numbers, or alternation should not be regarded as appropriate. 
 
2. Double blinding 
A study must be regarded as double blind if the words ‘double blind’ are used. The method will 
be regarded as appropriate if it is stated that neither the person doing the assessments or the 
study participant could identify the intervention being assessed., or if in the absence of such a 
statement the use of active placebos, identical placebos, or dummies is mentioned. 
 
3. Withdrawals and dropouts 
Participants who were included in the study but did not complete the observation period or who 
were not included in the analysis must be described. The number and the reasons for withdrawal 
in each group must be stated. If there were no withdrawals, it should be stated in the article. If 
there is no statement on withdrawals, this item must be given no points. 
 
Additional Question: Was allocation concealed?   Yes/No/Unclear 
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APPENDIX 3: WinBUGS CODE 
 

3.1 Code for the three intervention meta-analyses of lifestyle, anti-diabetic agents and anti-
obesity agents 

 
Lifestyle 
 
Model{ 
for(i in 1:n) 
{ 
prec[i] <- 1/(SElogHR[i]*SElogHR[i]) 
LogHR[i] ~ dnorm(theta[i],prec[i]) 
theta[i] ~ dnorm(mu,tau) 
HR[i] <- exp(theta[i]) 
} 
mu ~ dnorm(0,0.001) 
tau <- 1/(sd*sd) 
sd ~ dunif(0,2) 
pooledHR <- exp(mu) 
} 
Data 
(Da Qing (diet), Wein, Da Qing (exercise), DPP (lifestyle), DPS, Da Qing (exercise + diet), Kosaka, 
Jarrett, Liao (diet),Fang (d&e), IDDP(d&e), Tao(d&e)) 
 
list(LogHR=c(-0.451,-0.4557,-0.638,-0.8675,-0.916,-0.492,-1.244,-0.1669,-0.6619,-0.288,-0.4732,-
1.1980) 
SElogHR=c(0.223,0.298,0.226,0.1084,0.216,0.226,0.603,0.3873,1.225,0.387,0.2005,0.5718),n=12) 
 
Inits 
list(mu=0,sd=0.5,theta=c(0,0,0,0,0,0,0,0,0,0,0,0)) 
 
 
Oral anti-diabetic agents 
 
Model 
{ 
for(i in 1:n) 
{ 
prec[i] <- 1/(SElogHR[i]*SElogHR[i]) 
LogHR[i] ~ dnorm(theta[i],prec[i]) 
theta[i] ~ dnorm(mu,tau) 
HR[i] <- exp(theta[i]) 
} 
mu ~ dnorm(0,0.001) 
tau <- 1/(sd*sd) 
sd ~ dunif(0,2) 
 
pooledHR <- exp(mu) 
} 
Data 
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(DPP (metformin), Li (metformin), Pan (acarbose), STOP (acarbose), Jarrett (phenformin), 
Fang(acarbose), Fang(flumamine), Eriksson(glipizide), IDDP (metformin)) 
 
list(LogHR=c(-0.3711,-0.7172,-0.506,-0.2877,0.0128,-1.3106,-0.8353,-1.7430,-0.4292),  
SElogHR=c(0.0959,0.7071,0.4754,0.091,0.3852,0.5477,0.4944,1.0954,0.1969),n=9) 
 
Inits 
list(mu=0,sd=0.5,theta=c(0,0,0,0,0,0,0,0,0)) 
Anti-obesity agents 
 
Model 
{ 
for(i in 1:n) 
{ 
prec[i] <- 1/(SElogHR[i]*SElogHR[i]) 
LogHR[i] ~ dnorm(theta[i],prec[i]) 
theta[i] ~ dnorm(mu,tau) 
HR[i] <- exp(theta[i]) 
} 
mu ~ dnorm(0,0.001) 
tau <- 1/(sd*sd) 
sd ~ dunif(0,10) 
pooledHR <- exp(mu) 
} 
 
Data 
(Xendos, Heymsfield) 
 
list(LogHR=c(-0.7298,-0.9447),  
SElogHR=c(0.3066,0.3536),n=2) 
 
Inits 
list(mu=0,sd=0.5,theta=c(0,0)) 
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3.2 Code for calculating the absolute difference between treatments and the NNT 
 
Model 
{ 
for(i in 1:17) 
{ 
prec[i] <- 1/(var[i]) 
logH[i] <- log(H[i]/100) 
logH[i] ~ dnorm(theta[i],prec[i]) 
theta[i] ~ dnorm(mu1,tau1) 
} 
 
logdelta ~ dnorm(mu2,tau2) 
mu1 ~ dnorm(0,0.001) 
tau1 ~ dgamma(0.01, 0.01) 
 
baseH<- exp(mu1) 
 
CI.B <- 1- exp(-baseH*5) 
CI.I  <- 1- exp(-baseH*exp(logdelta)*5) 
diff <- CI.B - CI.I 
NNT <- 1/diff 
} 
 
 
 
Data 
#17trials:DaQing,Jarrett,DPS,Pan,Li,Heymsfield,STOP,Xendos,Wein,Fan,Tao,Kosako,Fang,Liao,DPP,Er
iksson, IDDP 
 
Anti-diabetic agents: mu2=-0.358, tau2=564 
Anti-obesity agents: mu2=-0.821, tau2=90.1 
Lifestyle: mu2=-0.666, tau2=674 
Herbal: mu2=-1.143, tau2=1.7 
 
List 
(mu2=as detailed above,tau2=as detailed above, 
H=c(15.7,2.61,7.38,30.03,7.14,4.77,12.63,5.91,7.05,13.33,16.99,2.55,10,3.08,11,23.8,18.3), 
var=c(0.011,0.1667,0.017,0.08,0.1667,0.25,0.0035,0.02,0.037,0.33,0.077,0.03 
,0.0667,0.5,0.003,0.2,0.0133)) 
 

 
Inits 
list(mu1=0,tau1=1,logdelta=0.1,theta=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) 
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3.3 Code for the mixed treatment comparison analysis 
 
Notes 
16 trials (including four that considered both lifestyle and pharmacological interventions),  
39 data points 
Treatments:  
         1=control (placebo and/or standard diet and exercise advice) 
         2=lifestyle 
         3=anti-diabetic 
         4=both lifestyle and antidiabetic 
         5=anti-obesity 
         6=pharmacological where there are 2 pharm trts in 1 trial 
 
 
 
model{ 
 
# Model for log-hazards of diabetes 
  for(i in 1:16){  
   w[i,1] <- 0 
   delta[i,t[i,1]] <- 0 
   mu[i] ~ dnorm(0,.0001)      
  #vague priors for baseline 
     
   for (k in 1:na[i]){  
    LH[i,t[i,k]] ~ dnorm(theta[i,t[i,k]],prec[i,t[i,k]]) 
    prec[i,t[i,k]] <- 1/(se[i,t[i,k]]*se[i,t[i,k]]) 
    theta[i,t[i,k]]<-mu[i] + delta[i,t[i,k]] 
    } 
     
   for (k in 2:na[i]){ 
    delta[i,t[i,k]] ~ dnorm(mu2[i,t[i,k]],taud[i,t[i,k]]) 
    mu2[i,t[i,k]] <- d[t[i,k]] - d[t[i,1]] + sw[i,k] 
    taud[i,t[i,k]] <- tau*2*(k-1)/k 
    w[i,k] <- (delta[i,t[i,k]] - d[t[i,k]]  + d[t[i,1]])/(k-1) 
    sw[i,k] <- sum(w[i,1:k-1])/(k-1) 
   } 
 } 
 d[1] <- 0 
 for (k in 2:5){ 
   d[k] ~ dnorm (0,.0001) 
    } 
 d[6] <- d[3]     
 tau ~ dgamma(0.001, 0.001) 
  
  
# interaction between lifestyle and pharmacological in factorial trials 
int <- d[4] - (d[3] + d[2])  
expint <- exp(int) 
 
# All pairwise log hazard ratios and hazard ratios 
 for (c in 1:4){ 
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  for (k in (c+1):5){ 
   LogHR[c,k] <- d[k] - d[c]     
   HR[c,k] <- exp(LogHR[c,k])  
    
   } 
  } 
prob <- step(LogHR[2,3]) 
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3.4 Meta-regression models fitted to explore sources of heterogeneity in the transition rate 
from IGT to T2DM 

 
 
Model  #(3 models adjusted for age/gender/ethnicity) 
 
for(i in 1:24){ 
 prec[i] <- 1/(SEID[i]*SEID[i]) 
 LogIRID[i] ~ dnorm(theta[i],prec[i]) 
 #theta[i] <- theta.star + beta*(age[i]-age.bar) 
 #theta[i] <- theta.star + beta*(male[i]-male.bar) 
 theta[i] <- theta.star + beta*(ethnic.risk[i]) 
    } 
 beta ~ dnorm(0,0.0001) 
 theta.star ~ dnorm(0,0.0001) 
 #age.bar <- mean(age[]) 
 #male.bar <- mean(male[]) 
 IGTtoT2DM <- exp(theta.star)     #pooled rate per 100 pyrs at the mean age/percent male or if 
ethnic.risk=1 
}  
  
(Study order, n=24: Baltimore, Rancho, SanAntonio, Nauru, SanLuis, Pima, Hoorn, Ely, DaQing, DPP, 
DPS, Kosako, Jarrett, Liao, Wein, Tao, Fang, IDDP, Li, Pan, STOP, Erikkson,Addition,Bruneck) 
  
Data-.age 
list(LogIRID=c(1.528,1.386,1.468,1.837,1.987,2.167,1.77,0.872, 2.76, 2.398,1.998, 
0.936,1.187,1.124,1.952, 2.833, 2.303, 3.272, 2.683, 3.402, 2.533, 3.17,2.93,0.955),  
SEID=c(0.099, 0.143, 0.097, 0.084, 0.156, 0.048, 0.167, 0.242, 0.106, 0.302, 0.130, 0.174, 0.258, 0.707, 
0.192, 0.277, 0.258, 0.116, 0.408, 0.289, 0.059, 0.447,0.103,0.243),  
age=c(52.9, 68, 48.3, 37.3, 59.7, 43.2, 60.3, 54.9, 45.5, 50.4, 55, 51.5, 56.7, 54, 38.7, 51, 48.7, 45.9, 49.5, 
54.5, 54.5, 56.5,59.8,59)) 
 
 
Data-.male 
list(LogIRID=c(1.528,1.386,1.468,1.837,1.987,2.167,1.77,0.872, 2.76, 2.398,1.998, 
0.936,1.187,1.124,1.952, 2.833, 2.303, 3.272, 2.683, 3.402, 2.533, 3.17,2.93,0.955),  
SEID=c(0.099, 0.143, 0.097, 0.084, 0.156, 0.048, 0.167, 0.242, 0.106, 0.302, 0.130, 0.174, 0.258, 0.707, 
0.192, 0.277, 0.258, 0.116, 0.408, 0.289, 0.059, 0.447,0.103,0.243),  
male=c(61,36, 36, 46, 40, 37, 45, 42, 53, 32, 33, 100, 100, 45, 0, 57, 55, 79, 71, 40, 49, 26, 45,51)) 
 
Data.ethnicity 
list(LogIRID=c(1.528,1.386,1.468,1.837,1.987,2.167,1.77,0.872, 2.76, 2.398,1.998, 
0.936,1.187,1.124,1.952, 2.833, 2.303, 3.272, 2.683, 3.402, 2.533, 3.17,2.93,0.955),  
SEID=c(0.099, 0.143, 0.097, 0.084, 0.156, 0.048, 0.167, 0.242, 0.106, 0.302, 0.130, 0.174, 0.258, 0.707, 
0.192, 0.277, 0.258, 0.116, 0.408, 0.289, 0.059, 0.447,0.103,0.243),  
ethnic.risk=c(1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1,1,1)) 
 
#ethnic.risk, 1=low risk, 2=high risk 
#ethnic=c(1, 1, 2, 3, 4, 5, 1, 1, 6, 1, 1, 7, 1, 7, 1, 6, 6, 8, 6, 6, 1, 1,1,1) 
#(mostly 1=caucasian, 2=mexican American, 3=micronesian, 4=hispanic, 5=pima indian, 6=chinese, 
7=Japanese, 8=Asian Indians)    
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Inits   list(beta=0,theta.star=0) 
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3.5 Code for the assessment of baseline risk on the intervention effect 
 

Model 
{ 
    for(i in 1 : 9)  
 { 
     d1[i] ~ dpois(mu1[i]) 
     d2[i] ~ dpois(mu2[i]) 
  log(mu1[i]) <- log(Py1[i]) + alpha[i] 
  log(mu2[i]) <- log(Py2[i]) + alpha[i]  + delta[i]  #alpha=log(mu) - 
log(py)=log rate in control grp 
    delta[i] <- delta.star[i] + beta*(alpha[i]-alpha.bar)   # delta.star= logIRR at mean alpha 
    delta.star[i] ~ dnorm(gamma,prec) 
  alpha[i] ~ dnorm(0.0,0.0001) 
} 
    gamma ~ dnorm(0.0,0.0001) 
    beta ~ dnorm(0.0,0.0001) 
    prec <- 1/(tau*tau) 
    tau ~ dunif(0,10)  
    IRR <- exp(gamma) 
    alpha.bar <- mean(alpha[]) 
 } 
    
Data for anti-diabetic agents 
d1[] d2[] Py1[] Py2[]  
11 7.8    1.00 1.00 
14 13     4.325    4.575 
6 3    0.41 0.42 
12 7    0.3996 0.3866 
285 221    22.638   22.506 
7.5   9   0.75   2.075 
7.5   6   0.75   2.225 
74.8   53.9   2.838   3.1815 
5  1  0.21  0.24 
 
Data for lifestyle interventions 
d1[] d2[] Py1[] Py2[]  
30 62 1.8897 6.20 
30 58 1.8897 6.988 
30 58 1.8897 6.042 
11 4.8     1.00 1.00 
59 27      8.00 8.192 
33 3      12.94 3.88 
15 12     4.575 4.325 
2 1          0.65 0.63 
27 26      3.832 4.7368 
13     4        0.765     0.78 
15     12      1.50       1.60 
74.8   52.3   2.838    3.2055 
 
Initial Values 
list(alpha=c(0,0,0,0,0,0,0,0,0), 
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delta.star=c(0,0,0,0,0,0,0,0,0),gamma=0,tau=0.5,beta=0)
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3.6 Code for the full decision model 
 
model{ 
#Screening decision tree 
# status 1 NGT, 2 IGT, 3 T2DM, N[status] = N, T+ shows a positive result for both cut-offs, T- a negative 
result for both cut-offs and T0 a positive result for the high cut-off (T2DM only) and a negative result for 
the low cut-off  (T2DM and IGT). r[status,1] pr(T- |status),   r[status,2] pr(T0|status),   r[status,3] 
pr(T+|status) 
 
for (status in 1:3) { 
  N[status] <- sum(x[status,1:3])  

x[status,1:3] ~ dmulti(r[status,1:3],N[status]) 
  r[status,1:3] ~ ddirch(prior_r[status,1:3])  
  prev[1:3] ~ ddirch(preva[1:3])  
 
#positive and negative predictive probabilities, neglow  n(status | T-.low), poslow  n(status | T+.low), 
neghigh n(status |T-.high ), poshigh  n(status | T+.high) 
 
for (status in 1:3) { 

neglow[status] <- (x[status,1]/N[status]*prev[status])*Nscreen  
poslow[status] <- ((x[status,2]/N[status]*prev[status])+(x[status,3]/  

N[status]*prev[status]))*Nscreen 
neghigh[status] <((x[status,1]/N[status]*prev[status])+(x[status,2]/ 

N[status]*prev[status])) *Nscreen  
poshigh[status] <- (x[status,3]/N[status]*prev[status])*Nscreen 

       } 
 
# Starting numbers for Markov model for each screening strategies, high cut-off [1], low cut-off & 
intervention [2], none [3]. D=detected, U=undetected 
 NGT[1] <- poshigh[1]+neghigh[1] 
 IGTD[1] <- poshigh[2] 
 IGTU[1] <- neghigh[2] 
 T2DMD[1] <- poshigh[3] 
 T2DMU[1] <- neghigh[3] 
 
 NGT[2] <- poslow[1]+neglow[1] 
 IGTD[2] <- poslow[2] 
 IGTU[2] <- neglow[2] 
 T2DMD[2] <- poslow[3] 
 T2DMU[2] <- neglow[3] 
 
 NGT[3] <- prev[1]*Nscreen 
 IGTU[3] <- prev[2]*Nscreen 
 T2DMU[3] <- prev[3]*Nscreen 
 
#Starting numbers in each state (strategy,state,time=1): 
#strategy 1=DM screening, 2=IGT & DM screening, lifestyle intervention, 3=IGT & DM screening, 
metformin intervention, 4=no screening  
#states, 1=NGT, 2=IGTu, 3=IGTd, 4=T2DMu, 5=T2DMscreen.d, 6=T2DMclin.d  7=death 
#agegrp, 1=45-54, 2=55-64, 3=65-74, 4=75-84, 5=85+ 
 
  number[1,1,1] <- cut(NGT[1]) 
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  number[1,2,1] <- cut(IGTU[1]) 
  number[1,3,1] <- cut(IGTD[1]) 
  number[1,4,1] <- cut(T2DMU[1]) 
  number[1,5,1] <- cut(T2DMD[1]) 
  number[1,6,1] <- 0 
  number[1,7,1] <- 0 
      number[2,1,1] <- cut(NGT[2]) 
  number[2,2,1] <- cut(IGTU[2]) 
  number[2,3,1] <- cut(IGTD[2]) 
  number[2,4,1] <- cut(T2DMU[2]) 
  number[2,5,1] <- cut(T2DMD[2]) 
  number[2,6,1] <- 0 
  number[2,7,1] <- 0 
  number[3,1,1] <- cut(NGT[2]) 
  number[3,2,1] <- cut(IGTU[2]) 
  number[3,3,1] <- cut(IGTD[2]) 
  number[3,4,1] <- cut(T2DMU[2]) 
  number[3,5,1] <- cut(T2DMD[2]) 
  number[3,6,1] <- 0 
  number[3,7,1] <- 0 
  number[4,1,1] <- cut(NGT[3]) 
  number[4,2,1] <- cut(IGTU[3]) 
  number[4,3,1] <- 0 
  number[4,4,1] <- cut(T2DMU[3]) 
  number[4,5,1] <- 0 
  number[4,6,1] <- 0 
  number[4,7,1] <- 0 
   
 
# Markov model 
for (strategy in 1:4){   #transition probabilities 
 for (agegrp in 1:5){        
  trans[strategy,agegrp,1,1] <- 1 - (trans[strategy,agegrp,1,2] +  

trans[strategy,agegrp,1,7])     
#transition from 1 (NGT) to 2 (IGTu) different by age, see below 
 trans[strategy,agegrp,1,3] <- 0 
 trans[strategy,agegrp,1,4] <- 0 
 trans[strategy,agegrp,1,5] <- 0 
 trans[strategy,agegrp,1,6] <- 0 
 trans[strategy,agegrp,2,1] <- 0 
 trans[strategy,agegrp,2,2] <- 1 - (trans[strategy,agegrp,2,4] + trans[strategy,agegrp,2,7]) 
 trans[strategy,agegrp,2,3] <- 0 
 trans[strategy,agegrp,2,4] <- 1 - exp(-IGTtoT2DM) 
 trans[strategy,agegrp,2,5] <- 0 
 trans[strategy,agegrp,2,6] <- 0 
 trans[strategy,agegrp,3,1] <- 0 
 trans[strategy,agegrp,3,2] <- 0 
 trans[strategy,agegrp,3,3] <- 1 - (trans[strategy,agegrp,3,5] + trans[strategy,agegrp,3,7]) 
 trans[strategy,agegrp,3,4] <- 0 
#transition from 3 (IGTd) to 5 (T2DMd) different for each strategy, see below 
 trans[strategy,agegrp,3,6] <- 0 
 trans[strategy,agegrp,4,1] <- 0    
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 trans[strategy,agegrp,4,2] <- 0 
 trans[strategy,agegrp,4,3] <- 0 
 trans[strategy,agegrp,4,4] <- 1 - (trans[strategy,agegrp,4,6] + trans[strategy,agegrp,4,7]) 
 trans[strategy,agegrp,4,5] <- 0 
 trans[strategy,agegrp,4,6] <- 1 - exp(-T2ud)     
 trans[strategy,agegrp,5,1] <- 0    
 trans[strategy,agegrp,5,2] <- 0 
 trans[strategy,agegrp,5,3] <- 0 
 trans[strategy,agegrp,5,4] <- 0 
 trans[strategy,agegrp,5,5] <- 1 - trans[strategy,agegrp,5,7] 
 trans[strategy,agegrp,5,6] <- 0 
 trans[strategy,agegrp,6,1] <- 0    
 trans[strategy,agegrp,6,2] <- 0 
 trans[strategy,agegrp,6,3] <- 0 
 trans[strategy,agegrp,6,4] <- 0 
 trans[strategy,agegrp,6,5] <- 0 
 trans[strategy,agegrp,6,6] <- 1 - trans[strategy,agegrp,6,7] 
 trans[strategy,agegrp,7,1] <- 0    
 trans[strategy,agegrp,7,2] <- 0 
 trans[strategy,agegrp,7,3] <- 0 
 trans[strategy,agegrp,7,4] <- 0 
 trans[strategy,agegrp,7,5] <- 0 
 trans[strategy,agegrp,7,6] <- 0 
 trans[strategy,agegrp,7,7] <- 1  }  
           
       
 trans[strategy,1,1,2] <- 1 - exp(-NGTtoIGT1)  #NGT to IGT increase with age (<65s) 
 trans[strategy,2,1,2] <- 1 - exp(-NGTtoIGT1)      
 trans[strategy,3,1,2] <- 1 - exp(-NGTtoIGT2)     #(>65s) 
 trans[strategy,4,1,2] <- 1 - exp(-NGTtoIGT2)  
 trans[strategy,5,1,2] <- 1 - exp(-NGTtoIGT2)  
 trans[strategy,1,1,7] <- 1- exp(-0.0032)  

#mortality probabilities- increase as age increases 
 trans[strategy,1,2,7] <- 1- exp(-0.0032)     
 trans[strategy,1,3,7] <- 1- exp(-0.0032)  
 trans[strategy,1,4,7] <- 1- exp(-0.0032*HRdeathdiab*pow(HRhba1c,(hba1cu-hba1cc)))
 trans[strategy,1,5,7] <- 1- exp(-0.0032*HRdeathdiab*pow(HRhba1c,(hba1cs-hba1cc))) 
 trans[strategy,1,6,7] <- 1- exp(-0.0032*HRdeathdiab)  
 trans[strategy,2,1,7] <- 1- exp(-0.0084)     
 trans[strategy,2,2,7] <- 1- exp(-0.0084)      
 trans[strategy,2,3,7] <- 1- exp(-0.0084)  
 trans[strategy,2,4,7] <- 1- exp(-0.0084*HRdeathdiab*pow(HRhba1c,(hba1cu-hba1cc)))
 trans[strategy,2,5,7] <- 1- exp(-0.0084*HRdeathdiab*pow(HRhba1c,(hba1cs-hba1cc))) 
 trans[strategy,2,6,7] <- 1- exp(-0.0084*HRdeathdiab) 
 trans[strategy,3,1,7] <- 1-exp(-0.0236) 
 trans[strategy,3,2,7] <- 1-exp(-0.0236) 
 trans[strategy,3,3,7] <- 1-exp(-0.0236) 
 trans[strategy,3,4,7] <- 1-exp(-0.0236*HRdeathdiab*pow(HRhba1c,(hba1cu-hba1cc))) 
 trans[strategy,3,5,7] <- 1-exp(-0.0236*HRdeathdiab*pow(HRhba1c,(hba1cs-hba1cc))) 
 trans[strategy,3,6,7] <- 1-exp(-0.0236*HRdeathdiab) 
 trans[strategy,4,1,7] <- 1-exp(-0.0609) 
 trans[strategy,4,2,7] <- 1-exp(-0.0609) 
 trans[strategy,4,3,7] <- 1-exp(-0.0609) 
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 trans[strategy,4,4,7] <- 1-exp(-0.0609*HRdeathdiab*pow(HRhba1c,(hba1cu-hba1cc)))
 trans[strategy,4,5,7] <- 1-exp(-0.0609*HRdeathdiab*pow(HRhba1c,(hba1cs-hba1cc))) 
 trans[strategy,4,6,7] <- 1-exp(-0.0609*HRdeathdiab)   
 trans[strategy,5,1,7] <- 1-exp(-0.1568) 
 trans[strategy,5,2,7] <- 1-exp(-0.1568) 
 trans[strategy,5,3,7] <- 1-exp(-0.1568)  
 trans[strategy,5,4,7] <- 1-exp(-0.1568*HRdeathdiab*pow(HRhba1c,(hba1cu-hba1cc))) 
 trans[strategy,5,5,7] <- 1-exp(-0.1568*HRdeathdiab*pow(HRhba1c,(hba1cs-hba1cc))) 
 trans[strategy,5,6,7] <- 1-exp(-0.1568*HRdeathdiab) 
         }  
for (agegrp in 1:5){ 
 trans[1,agegrp,3,5] <- 1 - exp(-IGTtoT2DM) 
 trans[2,agegrp,3,5] <- 1 - exp(-IGTtoT2DM*LifeHR) 
 trans[3,agegrp,3,5] <- 1 - exp(-IGTtoT2DM*PharmHR) 
 trans[4,agegrp,3,5] <- 1 - exp(-IGTtoT2DM) 
   } 
    
for (strategy in 1:4){          
for (state in 1:7){          
for (time in 2:10) {  
 number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,1,1:7,state])} 
for (time in 11:20) { 
 number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,2,1:7,state])} 
for (time in 21:30) { 
 number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,3,1:7,state])} 
for (time in 31:40) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,4,1:7,state])} 
for (time in 41:50) { 
number[strategy,state,time] <- inprod(number[strategy,1:7, time-1], trans[strategy,5,1:7,state])} 
 
total[strategy,state] <- sum(number[strategy,state,1:horizon]) }   
     #sum up the total person years spent in each state 
            
#Clinical Outcomes     
 
totalIGT[strategy] <- sum(total[strategy,2:3]) 
totalT2DM[strategy] <- sum(total[strategy,4:6]) 
totallife[strategy] <- sum(total[strategy,1:6]) 
totaldiabfree[strategy] <- sum(total[strategy,1:3]) 
totallifedis[strategy] <- sum(lifedis[strategy,1:50]) 
totaldiabfreedis[strategy] <- sum(diabfreedis[strategy,1:50]) 
 for (time in 1:50) { 
  lifedis[strategy,time] <- sum(number[strategy,1:6,time])*pow(0.965,time-1)  
  diabfreedis[strategy,time] <- sum(number[strategy,1:3,time])*pow(0.965,time-1) } 
  
difflife[strategy] <- totallife[strategy] - totallife[4] 
diffdiabfree[strategy] <- totaldiabfree[strategy] - totaldiabfree[4] 
diffcases[strategy] <- totalcases[strategy] - totalcases[4] 
difflifedis[strategy] <- totallifedis[strategy] - totallifedis[4] 
diffdiabfreedis[strategy] <- totaldiabfreedis[strategy] - totaldiabfreedis[4]    
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#Diabetes cases       
casesT2DM[strategy,1] <- number[strategy,4,1] + number[strategy,5,1] + number[strategy,6,1]  
for (time in 2:horizon) { 
 allcases[strategy,time] <- (number[strategy,2, time-1]*trans[strategy,1,2,4]) +   
   (number[strategy,3,time-1]*trans[strategy,1,3,5])  
 clincases[strategy,time] <- number[strategy,4, time-1]*trans[strategy,1,4,6] 
 screencases[strategy,time] <- number[strategy,3, time-1]*trans[strategy,1,3,5] }  
 allcases[strategy,1] <- number[strategy,4,1] + number[strategy,5,1] 
 clincases[strategy,1] <- number[strategy,6,1] 
 screencases[strategy,1] <- number[strategy,5,1] 
 totalcases[strategy] <- sum(allcases[strategy,1:horizon]) 
 totalclincases[strategy] <- sum(clincases[strategy,1:horizon])  
 totalscreencases[strategy] <- sum(screencases[strategy,1:horizon])  }  
           
      
 
#Costs 
# coded as costs[strategy,i] where i=1 for screening costs, 2 for intervention costs, 3 for undiagnosed 
diabetes costs and 4 for diagnosed diabetes costs 
# screening tests costs (cost[strategy,1]): FPG=40p, OGTT=£1.30, everyone who tests positive with the 
fpg test will have an OGTT. Nurse costs £26 per hour. Costs calculated for the each screening strategy 
(high and low cut-offs) 
 
cost[1,1] <- (sum(poshigh[1:3])*(1.70+(26*(timefpg+timeogtt)/60)))  
            + (sum(neghigh[1:3])*(0.40+(26*timefpg/60))) 
cost[2,1] <- (sum(poslow[1:3])*(1.70+(26*(timefpg+timeogtt)/60)))            
 +(sum(neglow[1:3])*(0.40+(26*timefpg/60))) 
cost[3,1] <- (sum(poslow[1:3])*(1.70+(26*(timefpg+timeogtt)/60)))     
 +(sum(neglow[1:3])*(0.40+(26*timefpg/60))) 
cost[4,1] <- 0 
 
timefpg ~ dgamma(12.5,2.5) #E(timefpg)=r/m=5 mins and Var(timefpg)=r/m^2= 2 
timeogtt ~ dgamma(150,5.5) #E(timeogtt)=r/m=30 mins and Var(timeogtt)=r/m^2= 5 
 
 
#intervention costs (cost[strategy,2])  lifestyle £398 in first yr, £280 thereafter , £16.10 metformin, per 
person per yr (this will need to be updated if a rescreening strategy is assessed so that more people move 
to IGTd) 
cost[1,2] <- 0 
cost[2,2] <- (398*number[2,3,1]) + ((total[2,3] - number[2,3,1])*280) 
cost[3,2] <- total[3,3]*16.1 
cost[4,2] <- 0 
 
# costs of undiagnosed diabetes (£133.98 in last year, £21.68 previous years) 
for (strategy in 1:4){ 
  for (time in 1:horizon-1){ 

costT2DMu[strategy,time] <- ((number[strategy,4,time] -   
clincases[strategy,time+1])*21.68) + (clincases[strategy,time+1]*133.98)} 

 costT2DMu[strategy,horizon] <- number[strategy,4,horizon]*21.68 
  cost[strategy,3] <- sum(costT2DMu[strategy,1:horizon]) }  
            
# costs of detected diabetes, screen diagnosed and clinically diagnosed 
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 for (strategy in 1:4){ 
  for (time in 1:horizon){ 
   costT2DMs[strategy,time] <- number[strategy,5,time]*diabcosts 
   costT2DMc[strategy,time] <- number[strategy,6,time]*diabcostc   } 
cost[strategy,4] <- sum(costT2DMs[strategy,1:horizon]) + sum(costT2DMc[strategy,1:horizon]) 
 }              
 diabcosts ~ dnorm(2490,0.0004)     
 diabcostc ~ dnorm(2756,0.0003)      
 
for (strategy in 1:4) 

{ totalcost[strategy] <- sum(cost[strategy,1:4]) } # total costs for each strategy 
  
 
# discounted costs (3.5% per year) 
#screening costs happen at start so don't need to be discounted 
#discount intervention costs (for strategies 2 & 3) and diagnosed diabetes costs (for all 4 strategies) 
discost[2,2,1] <- (398*number[2,3,1]) 
for (time in 2:horizon) { 
 discost[2,2,time] <- number[2,3,time]*(280*pow(0.965,time-1))  } 
for (time in 1:horizon){ 
 discost[3,2,time] <- number[3,3,time]*(16.1*pow(0.965,time-1)) 
      for (strategy in 1:4) { 
 discostu[strategy,time] <- costT2DMu[strategy,time]*pow(0.965,time-1) 
 discosts[strategy,time] <- costT2DMs[strategy,time]*pow(0.965,time-1) 
 discostc[strategy,time] <- costT2DMc[strategy,time]*pow(0.965,time-1) 
 discost[strategy,3,time] <- discostu[strategy,time] + discosts[strategy,time] +  
          discostc[strategy,time] }} 
sumdiscost[1,2] <- 0  
sumdiscost[2,2] <- sum(discost[2,2,1:horizon]) 
sumdiscost[3,2] <- sum(discost[3,2,1:horizon]) 
sumdiscost[4,2] <- 0 
sumdiscost[1,3] <- sum(discost[1,3,1:horizon]) 
sumdiscost[2,3] <- sum(discost[2,3,1:horizon]) 
sumdiscost[3,3] <- sum(discost[3,3,1:horizon])  
sumdiscost[4,3] <- sum(discost[4,3,1:horizon])   
  
for (strategy in 1:4) {  
       totdiscost[strategy]<-cost[strategy,1] +sumdiscost[strategy,2] +sumdiscost[strategy,3] } 
   
#Utilities 
 
#calculating yearly utilities from UKPDS complications model 
# Ignores renal as no utility decrement reported in UKPDS 62 
# Assumes utility decrements associated  with complications are Normal 
 
for (comp in 1:6) { 
  for (det in 1:2) { 
 s[det,comp,1] <- 1 # All start complication-free 
 c[det,comp,1] <- 0  } 
 lambda[comp] <- exp(beta0[comp])  # Distribution on scale parameter 
 beta0.p[comp] <- 1/pow(beta0.se[comp],2) 
 beta0[comp] ~ dnorm(beta0.m[comp],beta0.p[comp]) 
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 rho[comp] <- exp(gamma[comp])  # Distribution on shape parameter  
 gamma.m[comp] <- log(rho.m[comp]) 
 gamma.p[comp] <- pow(rho.m[comp],2)/pow(rho.se[comp],2) 
 gamma[comp] ~ dnorm(gamma.m[comp],gamma.p[comp]) 
 
 uy.p[comp] <- 1/pow(uy.se[comp],2) 
 uy[comp] ~ dnorm(uy.m[comp],uy.p[comp]) 
 upy.p[comp] <- 1/pow(upy.se[comp],2) 
 upy[comp] ~ dnorm(upy.m[comp],upy.p[comp]) 
  
 gender.p[comp] <- 1/pow(gender.se[comp],2) 
 gender[comp] ~ dnorm(gender.m[comp],gender.p[comp]) 
 hba1c.p[comp] <- 1/pow(hba1c.se[comp],2) 
 hba1c[comp] ~ dnorm(hba1c.m[comp],hba1c.p[comp]) 
} 
ufemale ~ dnorm(ufemale.m,ufemale.p)   

#utility from UKPDS expressed as female baseline and male effect 
ufemale.p <- 1/pow(ufemale.se,2) 
umale ~ dnorm(umale.m,umale.p) 
umale.p <- 1/pow(umale.se,2) 
clin.ubase <- ufemale + (0.5*umale) 
screen.ubase ~ dnorm(uscreen.m,uscreen.p)  
uscreen.p <- 1/pow(uscreen.se,2)   
 
 
for (dur in 2:horizon) { 
  for (comp in 1:6) { 
 s[1,comp,dur] <- exp(-
lambda[comp]*(exp(0.5*gender[comp]*adjust[comp])*pow(dur,rho[comp])))    
      # Weibull survival model for screen detected 

s[2,comp,dur] <- exp(-lambda[comp]*(exp((0.5*gender[comp]*adjust[comp]) +  
      (0.9*hba1c[comp]))*pow(dur,rho[comp]))) 
    # Weibull survival model for clinically detected (higher hba1c) 
for (det in 1:2) {         c[det,comp,dur] 
<- 1 - s[det,comp,dur]      # Cumulative prob of complication 
 d[det,comp,dur] <- c[det,comp,dur] - c[det,comp,dur-1]     

# prob. of complication in previous yr 
 py[det,comp,dur] <- c[det,comp,dur] - d[det,comp,dur]   

# prob. of comp. in yrs prior to previous yr 
 ud[det,comp,dur] <- d[det,comp,dur]*uy[comp] + py[det,comp,dur]*upy[comp]  }} 
 tud[1,dur] <- sum(ud[1,1:6,dur])  
 tud[2,dur] <- sum(ud[2,1:6,dur])         

# total utility decrement for all complications 
 clin.qaly[dur] <- clin.ubase + tud[2,dur]      

# total qaly in each yr duration in clinically detected  
screen.qaly[dur] <- screen.ubase + tud[1,dur-4]    

 # total qaly for each yr duration in screened detected  
}  
clin.qaly[1] <- clin.ubase    # set utilities for 1st year duration of T2DM 
screen.qaly[1] <- screen.ubase 
 



                                                                                                                             Appendix 
______________________________________________________________________ 

______________________________________________________________________
 - 255 - 

for (strategy in 1:4){ 
 for (time in 1:10){ 
  for (dur in 1:11-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,1,5,7], 
dur-1)*screen.qaly[dur] 
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,1,6,7], 
dur-1)*clin.qaly[dur] } 

for (dur in 12-time:21-time){ 
qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,1,5,7],10-time)*pow(1-

 trans[strategy,2,5,7],dur-(11-time))*screen.qaly[dur] 
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,1,6,7],10-time)*pow(1- 

 trans[strategy,2,6,7],dur-(11-time))*clin.qaly[dur]   } 
for (dur in 22-time:31-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,1,5,7],10-time)*pow(1-
 trans[strategy,2,5,7],10)*pow(1-trans[strategy,3,5,7],dur-(21-time))*screen.qaly[dur] 

qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,1,6,7],10-time)*pow(1- 
 trans[strategy,2,6,7],10)*pow(1-trans[strategy,3,6,7],dur-(21-time))*clin.qaly[dur]   } 
for (dur in 32-time:41-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,1,5,7],10-time)*pow(1-
 trans[strategy,2,5,7],10)*pow(1-trans[strategy,3,5,7],10)*pow(1-trans[strategy,4,5,7],dur-(31-
 time))*screen.qaly[dur] 

qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,1,6,7],10-time)*pow(1- 
 trans[strategy,2,6,7],10)*pow(1-trans[strategy,3,6,7],10)*pow(1-trans[strategy,4,6,7],dur-(31- 
 time))*clin.qaly[dur] } 
for (dur in 42-time:51-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,1,5,7],10-time)*pow(1-
 trans[strategy,2,5,7],10)*pow(1-trans[strategy,3,5,7],10)*pow(1- 
 trans[strategy,4,5,7],10)*pow(1-trans[strategy,5,5,7],dur-(41-time))*screen.qaly[dur] 

qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,1,6,7],10-time)*pow(1- 
 trans[strategy,2,6,7],10)*pow(1-trans[strategy,3,6,7],10)*pow(1-  
 trans[strategy,4,6,7],10)*pow(1- trans[strategy,5,6,7],dur-(41-time))*clin.qaly[dur] }} 
      
for (time in 11:20){ 
for (dur in 1:21-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,2,5,7],dur-
1)*screen.qaly[dur]     
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,2,6,7],dur-
1)*clin.qaly[dur]} 

for (dur in 22-time:31-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,2,5,7],20-time)*pow(1-
 trans[strategy,3,5,7],dur-(21-time))*screen.qaly[dur] 

qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,2,6,7],20-time)*pow(1- 
 trans[strategy,3,6,7],dur-(21-time))*clin.qaly[dur]   } 
for (dur in 32-time:41-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,2,5,7],20-time)*pow(1-
 trans[strategy,3,5,7],10)*pow(1-trans[strategy,4,5,7],dur-(31-time))*screen.qaly[dur] 
 qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,2,6,7],20-time)*pow(1- 
 trans[strategy,3,6,7],10)*pow(1-trans[strategy,4,6,7],dur-(31-time))*clin.qaly[dur]   } 
for (dur in 42-time:51-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,2,5,7],20-time)*pow(1-
 trans[strategy,3,5,7],10)*pow(1-trans[strategy,4,5,7],10)*pow(1-trans[strategy,5,5,7],dur-(41- 
 time))*screen.qaly[dur] 

qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,2,6,7],20-time)*pow(1- 
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 trans[strategy,3,6,7],10)*pow(1-trans[strategy,4,6,7],10)*pow(1-trans[strategy,5,6,7],dur-(41- 
 time))*clin.qaly[dur] }} 
 
for (time in 21:30){ 
for (dur in 1:31-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,3,5,7],dur-
1)*screen.qaly[dur] 
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,3,6,7],dur-
1)*clin.qaly[dur] } 

for (dur in 32-time:41-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,3,5,7],30-time)*pow(1-
 trans[strategy,4,5,7],dur-(31-time))*screen.qaly[dur] 
 qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,3,6,7],30-time)*pow(1- 
 trans[strategy,4,6,7],dur-(31-time))*clin.qaly[dur]   } 
for (dur in 42-time:51-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,3,5,7],30-time)*pow(1-
 trans[strategy,4,5,7],10)*pow(1-trans[strategy,5,5,7],dur-(41-time))*screen.qaly[dur] 
 qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,3,6,7],30-time)*pow(1- 
 trans[strategy,4,6,7],10)*pow(1-trans[strategy,5,6,7],dur-(41-time))*clin.qaly[dur]   }} 
 
for (time in 31:40){ 
for (dur in 1:41-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,4,5,7],dur-
1)*screen.qaly[dur] 
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,4,6,7],dur-
1)*clin.qaly[dur] } 

for (dur in 42-time:51-time){ 
 qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,4,5,7],40-time)*pow(1-
 trans[strategy,5,5,7],dur-(41-time))*screen.qaly[dur] 
 qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,4,6,7],40-time)*pow(1- 
 trans[strategy,5,6,7],dur-(41-time))*clin.qaly[dur]   }} 
   
for (time in 41:50){ 
for (dur in 1:51-time){ 

qs[strategy,time,dur] <- screencases[strategy,time]*pow(1-trans[strategy,5,5,7],dur-
1)*screen.qaly[dur] 
qc[strategy,time,dur] <- clincases[strategy,time]*pow(1-trans[strategy,5,6,7],dur-
1)*clin.qaly[dur] }} }}  

   
for (cycle in 1:horizon){  
 for (time in 1:cycle){  
  zs[strategy,cycle,time] <-qs[strategy,time,cycle+1-time]  
  zc[strategy,cycle,time] <-qc[strategy,time,cycle+1-time] } 
 timeqs[strategy,cycle] <- sum(zs[strategy,cycle,1:cycle]) 
 timeqc[strategy,cycle] <- sum(zc[strategy,cycle,1:cycle])} 
totqs[strategy] <- sum(timeqs[strategy,1:horizon])  
totqc[strategy] <- sum(timeqc[strategy,1:horizon])  
    
 
# undiscounted utilities 
 T2DMqalytot[strategy] <- totqs[strategy] + totqc[strategy] + (total[strategy,4]*screen.ubase) 
  qaly[strategy] <- sum(total[strategy,1:3]) + T2DMqalytot[strategy] }  
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#discounted utilities (3.5% per year) 
for (strategy in 1:4){ 
for (time in 1:horizon){ 

disqaly[strategy,time] <- (sum(number[strategy,1:3,time]) + timeqs[strategy,time] + 
timeqc[strategy,time]  + (number[strategy,4,time]*screen.ubase))*pow(0.965,time-1) }  

      totdisqaly[strategy] <- sum(disqaly[strategy,1:horizon]) } 
 
 
 
Costs per QALY 
 
for (strategy in 1:4){ 
 costperqaly[strategy] <- totalcost[strategy] / qaly[strategy]  
     discostperqaly[strategy] <- totdiscost[strategy] / totdisqaly[strategy]  
       } 
#incremental cost effectiveness ratio (ICER) for each active strategy minus no screening 
 diffcost[1] <- (totalcost[1] -  totalcost[4])  
 diffcost[2] <- (totalcost[2] -  totalcost[4])  
 diffcost[3] <- (totalcost[3] -  totalcost[4])  
 diffqaly[1] <- (qaly[1] - qaly[4]) 
 diffqaly[2] <- (qaly[2] - qaly[4]) 
 diffqaly[3] <- (qaly[3] - qaly[4]) 
 inccost[1] <- diffcost[1]  / diffqaly[1] 
 inccost[2] <- diffcost[2]  / diffqaly[2] 
 inccost[3] <- diffcost[3]  / diffqaly[3] 
  
#incremental cost effectiveness ratio (ICER) for each active strategy minus no screening 
 diffdiscost[1] <- (totdiscost[1] -  totdiscost[4])  
 diffdiscost[2] <- (totdiscost[2] -  totdiscost[4])  
 diffdiscost[3] <- (totdiscost[3] -  totdiscost[4])  
 diffdisqaly[1] <- (totdisqaly[1] - totdisqaly[4]) 
 diffdisqaly[2] <- (totdisqaly[2] - totdisqaly[4]) 
 diffdisqaly[3] <- (totdisqaly[3] - totdisqaly[4]) 
 inccostdis[1] <- diffdiscost[1]  / diffdisqaly[1] 
 inccostdis[2] <- diffdiscost[2]  / diffdisqaly[2] 
 inccostdis[3] <- diffdiscost[3]  / diffdisqaly[3] 
  
#incremental cost effectiveness ratio (ICER) for lifestyle vs. pharmacological 
 #inccost[5] <- (totalcost[2] - totalcost[3])  / (diffqaly[2] - diffqaly[3]) 
 #inccostdis[5] <- (totdiscost[2] - totdiscost[3])  / (diffdisqaly[2] - diffdisqaly[3]) 
  
#Cost-effectiveness acceptibility curve 
for(k in 1:NK) { 
 Q[1,k] <- step(1- ( (totalcost[1] -  totalcost[4]) - K[k] * (qaly[1] - qaly[4]) )) 
 Q[2,k] <- step(1- ( (totalcost[2] -  totalcost[4]) - K[k] * (qaly[2] - qaly[4]) )) 
 Q[3,k] <- step(1- ( (totalcost[3] -  totalcost[4]) - K[k] * (qaly[3] - qaly[4]) )) 
 Qdis[1,k] <- step(1- ( (totdiscost[1] -  totdiscost[4]) - K[k] * (totdisqaly[1] - totdisqaly[4]) )) 
 Qdis[2,k] <- step(1- ( (totdiscost[2] -  totdiscost[4]) - K[k] * (totdisqaly[2] - totdisqaly[4]) )) 
 Qdis[3,k] <- step(1- ( (totdiscost[3] -  totdiscost[4]) - K[k] * (totdisqaly[3] - totdisqaly[4]) )) 
 Qlvd[1,k] <- step(1- ( (totalcost[2] -  totalcost[1]) - K[k] * (qaly[2] - qaly[1]) ))   } 
   
#cost per life year 
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for (strategy in 1:3){ 
 costlifeyr[strategy] <- diffcost[strategy] / difflife[strategy] 
 costlifeyrdis[strategy] <- diffdiscost[strategy] / difflifedis[strategy] } 
costcase[2] <- diffcost[2] / diffcases[2] 
costcase[3] <- diffcost[3] / diffcases[3] 
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#Transition rates  
 
#NGTtoIGT 
logNGTtoIGT1 ~ dnorm(1.66,0.075) 
logNGTtoIGT2 ~ dnorm(2.49,0.109) 
NGTtoIGT1 <- exp(logNGTtoIGT1)/100 
NGTtoIGT2 <- exp(logNGTtoIGT2)/100  # pooled rates per 1 person year 
 
#IGTtoT2DM       #studies of mostly caucasians only 
for(i in 1:11){ 
 prec1[i] <- 1/(SEID[i]*SEID[i]) 
 LogIRID[i] ~ dnorm(theta1[i],prec1[i]) 
 theta1[i] ~ dnorm(mu1,tau1) 
    } 
 mu1 ~ dnorm(0,0.001) 
 tau1 <- 1/(sd1*sd1) 
 sd1 ~ dunif(0,2) 
 IGTtoT2DM <- exp(mu1)/100    # pooled rate per 1 person year 
  
#Pharmacological intervention meta (anti-diabetic drugs) 
for(i in 1:9){ 

prec2[i] <- 1/(SEPH[i]*SEPH[i]) 
LogHRPH[i] ~ dnorm(theta2[i],prec2[i]) 
theta2[i] ~ dnorm(mu2,tau2) 

    } 
mu2 ~ dnorm(0,0.001) 
tau2 <- 1/(sd2*sd2) 
sd2 ~ dunif(0,2) 
PharmHR <- exp(mu2) 

 
#Lifestyle intervention meta 
for(i in 1:12){ 

prec3[i] <- 1/(SELI[i]*SELI[i]) 
LogHRLI[i] ~ dnorm(theta3[i],prec3[i]) 
theta3[i] ~ dnorm(mu3,tau3) 

    } 
mu3 ~ dnorm(0,0.001) 
tau3 <- 1/(sd3*sd3) 
sd3 ~ dunif(0,2) 
LifeHR <- exp(mu3) 

 
#Transition from T2DMu to T2DMd  
for(i in 1:2){ 
 prec4[i] <- 1/(SEud[i]*SEud[i]) 
 LogT2ud[i] ~ dnorm(theta4[i],prec4[i]) 
 theta4[i] ~ dnorm(mu4,tau4) 
    } 
 mu4 ~ dnorm(0,0.001) 
 tau4 <- 1/(sd4*sd4) 
 sd4 ~ dunif(0,2) 
 T2ud <- 1/exp(mu4) # pooled rate per person year, mu4 is time spent undiagnosed 
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#HR for increased risk of death if diabetic 
LogHRdeathdiab ~ dnorm(0.756,132)   
HRdeathdiab <- exp(LogHRdeathdiab) 
 
#HR for increased risk of death with increasing HbA1c 
LogHRhba1c ~ dnorm(0.10436,658) 
HRhba1c <- exp(LogHRhba1c) 
 
#HbA1c values 
hba1cu ~ dnorm(hba1cu.m,hba1cu.p) 
hba1cu.p <- 1/pow(hba1cu.se,2) 
hba1cc ~ dnorm(hba1cc.m,hba1cc.p) 
hba1cc.p <- 1/pow(hba1cc.se,2) 
hba1cs ~ dnorm(hba1cs.m,hba1cs.p) 
hba1cs.p <- 1/pow(hba1cs.se,2) }       
 
 
  
Data        
list((x=structure(.Data=c(1626,138,83,142,51,71,8,7,90),.Dim=c(3,3)),    
 preva=c(1847,264,105),Nscreen=1, horizon=50, 
 LogIRID=c(1.528,1.386,1.77,0.872, 2.398,1.998,1.187,1.952, 2.533, 3.17,2.93), 
 SEID=c(0.087, 0.143, 0.167, 0.242, 0.302, 0.130, 0.258, 0.192, 0.059, 0.447,0.103),  

LogHRLI=c(-0.451,-0.4557,-0.638,-0.8675,-0.916,-0.492,-1.244,-0.1669,-0.6619,-0.288,-
0.4732,-1.1980), 

 SELI=c(0.223,0.298,0.226,0.1084,0.216,0.226,0.603,0.3873,1.225,0.387,0.2005,0.5718), 
LogHRPH=c(-0.3711,-0.7172,-0.506,-0.2877,0.0128,-1.3106,-0.8353,-1.7430,-0.4292),  

 SEPH=c(0.0959,0.7071,0.4754,0.091,0.3852,0.5477,0.4944,1.0954,0.1969), 
 LogT2ud=c(1.872,1.435),SEud=c(0.225,0.321), 
 NK = 10, K = c(100,1000,2500,5000,7500,10000,20000,25000,30000,50000), 
 prior_r=structure(.Data=c(1,1,1,1,1,1,1,1,1),.Dim=c(3,3)), 

beta0.m=c(-5.310,-4.977,-8.018,-7.163,-8.718,-6.464), 
 beta0.se=c(0.174,0.160,0.408,0.342,0.613,0.326,0.939), 
 rho.m=c(1.150,1.257,1.711,1.497,1.451,1.154), 
 rho.se=c(0.067,0.060,0.158,0.126,0.232,0.121), 
 uy.m=c(-0.141,-0.081,-0.058,-0.131,-0.451,-0.074), 
 uy.se=c(0.060,0.052,0.066,0.073,0.131,0.070), 
 upy.m=c(-0.079,-0.044,-0.134,-0.199,-0.335,-0.080), 
 upy.se=c(0.020,0.021,0.038,0.035,0.068,0.029), 
 ufemale.m=0.725,ufemale.se=0.035, 
 umale.m=0.092,umale.se=0.009, 

uscreen.m=0.788,uscreen.se=0.020, 
 hba1c.m=c(0.125,0.118,0.157,0.128,0.435,0.221), 
 hba1c.se=c(0.035,0.025,0.057,0.042,0.066,0.050), 
 gender.m=c(-0.471,-0.826,1,-0.516,1,1), 
 gender.se=c(0.143,0.103,1,0.171,1,1), 
 hba1cu.m=9.0,hba1cu.se=0.056, 

hba1cc.m=7.9,hba1cc.se=0.050, 
 hba1cs.m=7.0,hba1cs.se=0.046, 
 adjust=c(1,1,0,1,0,0)) 
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Inits 
 
list(prev=c(0.80,0.15,0.05), r=structure(.Data=c(0.4,0.3,0.3,0.4,0.3,0.3,0.3,0.3,0.4),.Dim=c(3,3)),  
mu1=0,sd1=0.5,theta1=c(0,0,0,0,0,0,0,0,0,0,0), 
mu2=0,sd2=0.5,theta2=c(0,0,0,0,0,0,0,0,0),  
mu3=0,sd3=0.5,theta3=c(0,0,0,0,0,0,0,0,0,0,0,0), 
mu4=0,sd4=0.5,theta4=c(0,0), 
gamma=c(0,0,0,0,0,0), 
uy=c(0,0,0,0,0,0), 
upy=c(0,0,0,0,0,0)) 
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3.7 WinBUGS code for estimating the 3x3 diagnostic table when data is missing 
 
model{ 
# pr( T+ | T+ or T0 or T-, group)         p1       basic parameter 
# pr( T0 | T0 or T-)                               p2       basic parameter 
# pr( T0 | T+ or T0 or T-)                     p3 = p2(1-p1) 
# pr( T- | T+ or T0 or T-)                      p4 = 1 - p1 - p3 
# pr( T+ or T0 | T+ or T0 or T-)           p5 = p1 + p3 
# pr(T0 or T- | T+ or T0 or T- )            p6 = p3 + p4  
 
# groups               j=1 NGT,              j=2 IGT,            j =3 T2DM 
 
p[1,1] ~ dunif(0,  p[1,2]) 
p[2,1] ~ dunif(0,  p[2,2]) 
p[1,2] ~ dunif(p[1,1],  p[1,3])  
p[2,2] ~ dunif(p[2,1],  p[2,3]) 
p[1,3] ~ dunif(p[1,2],   1) 
p[2,3] ~ dunif(p[2,2],  1) 
 
for (j in 1:3) { 
p[3,j] <- p[2,j] * (1 - p[1,j]) 
p[4,j] <- 1 - p[1,j] - p[3,j] 
p[5,j] <- p[1,j] + p[3,j] 
p[6,j] <- p[3,j] + p[4,j] 
} 
 
r41 ~ dbin(p[4,1],n41) 
r13 ~ dbin(p[1,3],n13) 
 
pa <- (690 * p[1,1]    +  164 * p[1,2] )  /  854 
ra ~ dbin(pa,na) 
 
pb <- (164 * p[4,2]    + 37 * p[4,3] ) / 201 
rb ~ dbin(pb,nb) 
 
a <- p[4,1]*690 
b <- p[4,2]*164 
c <- p[4,3]*37 
d <- p[3,1]*690 
e <- p[3,2]*164 
f <- p[3,3]*37 
g <- p[1,1]*690 
h <- p[1,2]*164 
i <- p[1,3]*37 
dg <- p[5,1]*690 
eh <- p[5,2]*164 
fi <- p[5,3]*37 
ad <- p[6,1]*690 
be <- p[6,2]*164 
cf <- p[6,3]*37 
} 
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list( 
r41=421,n41=690, 
r13=31,  n13=37, 
ra=132,na=854, 
rb=75,nb=201) 
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3.8 WinBUGS code incorporated within the full decision model to estimate the expected 
value of perfect information (EVPI) 

 
#differences in costs and QALYs for each active strategy minus no screening 
 diffcost[1] <- (totalcost[1] -  totalcost[4])  
 diffcost[2] <- (totalcost[2] -  totalcost[4])  
 diffcost[3] <- (totalcost[3] -  totalcost[4])  
 diffqaly[1] <- (qaly[1] - qaly[4]) 
 diffqaly[2] <- (qaly[2] - qaly[4]) 
 diffqaly[3] <- (qaly[3] - qaly[4]) 
  
  
# net benefits and EVPI 

for (strategy in 1:3){ 
  for(k in 1:NK) { 
   inb[strategy,k] <- (diffqaly[strategy]*k) - diffcost[strategy] 
   evpi[strategy,k] <- max(-inb[strategy,k],0) 
   popevpi[strategy,k] <- evpi[strategy,k]*totadj 
}} 
for (time in 1:50){ 
 adj[time] <- 797400/pow((1 + 0.025),(time-1))    

# 797,400 is the incidence of turning 45, England & Wales, 2007 
}    # discounted at 2.5% per annum 
totadj <- sum(adj[1:50]) 
 
 
#where K = c(100,1000,2500,5000,7500,10000,20000,25000,30000,50000), 
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APPENDIX 4: DIAGNOSTIC GRAPHS 

4.1 Trace plots 
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4.2 Density plots 
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4.3 Autocorrelation plots 
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4.4 Overlaid plots of chains with different initial values 
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APPENDIX 5: PUBLICATIONS, PRESENTATIONS AND POSTERS 
ASSOCIATED WITH THIS THESIS 

 

This appendix contains details of the dissemination of findings resulting from the work 
carried out for this thesis, and includes the following: 

 

Clare L Gillies, Keith R Abrams, Paul C Lambert, Nicola J Cooper, Alex J Sutton, Ron 
Hsu, Kamlesh Khunti. Pharmacological and Lifestyle Interventions to Prevent or Delay 
Type 2 Diabetes Mellitus in Individuals with Impaired Glucose Tolerance: A 
Systematic Review and Meta-analysis.   British Medical Journal, 2007; 334: 299. 

Clare L Gillies, Paul C Lambert, Keith R Abrams, Alex J Sutton, Nicola J Cooper Ron 
Hsu, Kamlesh Khunti. A cost-effectiveness analysis for different strategies for the 
screening and prevention of type 2 diabetes mellitus. Invited submission to the BMJ, 
currently under consideration. 

Clare Gillies, Keith Abrams, Paul Lambert, Kamlesh Khunti. Lifestyle changes and 
pharmacological interventions are both effective in protecting against type 2 diabetes 
mellitus but which approach is best? GP magazine. May, 2007. 

CL Gillies. Screening for impaired glucose tolerance and intervening to delay type 2 
diabetes mellitus: Is this an effective health policy? Cambridge Diabetes Seminar, 2006.  

Clare L Gillies, Keith R Abrams, Paul C Lambert, Nicola J Cooper, Alex J Sutton, Ron 
Hsu, Kamlesh Khunti. Development of Evidence Synthesis Methods for the Assessment 
of Health Policies Involving Screening and Intervention. The International Society of 
Clinical Biostatistics, Geneva 2006. 

Clare L Gillies, Keith R Abrams, Paul C Lambert, Nicola J Cooper, Alex J Sutton, Ron 
Hsu, Kamlesh Khunti. Pharmacological and Lifestyle Interventions to Prevent or Delay 
Type 2 Diabetes Mellitus in Individuals with Impaired Glucose Tolerance: A 
Systematic Review and Meta-analysis. Diabetes UK Annual Professional Conference, 
Birmingham, 2006. 

CL Gillies, KR Abrams, PC Lambert, NJ Cooper, AJ Sutton, K Khunti, R Hsu. Issues 
in evidence synthesis for comprehensive decision models: An illustration using 
impaired glucose tolerance. The International Society of Clinical Biostatistics, Szeged 
2005. 
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