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Accretion onto stellar mass black holes
by

Patrick Deegan

Abstract

I present work on the accretion onto stellar mass black holesin several scenarios.

Due to dynamical friction stellar mass black holes are expected to form high density

cusps in the inner parsec of our Galaxy. These compact remnants may be accreting cold

dense gas present there, and give rise to potentially observable X-ray emission. I build a

simple but detailed time-dependent model of such emission.Future observations of the

distribution and orbits of the gas in the inner parsec of Sgr A∗ will put tighter constraints

on the cusp of compact remnants.

GRS 1915+105 is an LMXB, whose large orbital period implies avery large ac-

cretion disc and explains the extraordinary duration of itscurrent outburst. I present

smoothed particle hydrodynamic simulations of the accretion disc. The models includes

the thermo-viscous instability, irradiation from the central object and wind loss. I find

that the outburst of GRS 1915+105 should last a minimum of 20 years and up to∼ 100

years if the irradiation is playing a significant role in thissystem. The predicted recur-

rence times are of the order of104 years, making the duty cycle of GRS 1915+105 to be

a few0.1%.

I present a simple analytical method to describe the observable behaviour of long pe-

riod black hole LMXBs, similar to GRS 1915+105. Constructing two simple models for

the surface density in the disc, outburst and quiescence times are calculated as a function

of orbital period. LMXBs are an important constituent of theX-ray light function (XLF)

of giant elliptical galaxies. I find that the duty cycle can vary considerably with orbital

period, with implications for modelling the XLF.
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Chapter 1
Introduction

“They can chew you up, but they gotta spit

you out.”
- McNulty

The Wire: Collateral Damage [2.02]
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Introduction: 1.1 Black holes

The work in this thesis deals with accretion onto black holes. In this section I will begin

by introducing the concept of black holes and discuss the evidence for their existence. I

will then spend some time going over the mechanism of the accretion process in detail:

the concepts discussed here will be used throughout this volume. Finally I will cover two

situations in which accretion onto black holes can take place: low mass X-ray binaries

and in the Galactic Centre.

1.1 Black holes

1.1.1 Theoretical argument

Of the four forces in nature (the strong force, weak force, the electromagnetic force and

gravity) gravity is the weakest. However, it is the dominantforce in the Universe on

large scales. The effects of gravity are most prominent around the objects known as

black holes. In 1705, Isaac Newton’s Opticks was published:it stated that light was of a

particle nature. If this was the case, light should be influenced by gravity. This thought

occurred to the amateur astronomer John Michell (Michell 1784). He calculated that if a

star existed with a radius 500 times that of the Sun and the same average density, then its

escape velocity would be equal to the speed of light. Simply equating the escape velocity

of a star to the speed of light results in an expression for theradius of a star.

vesc =

√
2GM

R⋆
⇒ R⋆ =

2GM

c2
, (1.1)

wherec, vesc, M andR⋆ are the speed of light, escape velocity, mass and radius of the

star respectively. Equation (1.1) produces answers that, at the time, seemed absurdly

small and this generated little interest among the scientific community. For example, the

Sun’s mass (M⊙ ∼ 2 × 1033g) results inR⋆ ∼ 29 km.

The idea of what were to become known as black holes was not revisited until the20th

century. By 1915 Albert Einstein had developed his theory ofgeneral relativity (Einstein

1915) and had argued that gravity does influence light, due tothe curvature of spacetime1.

Karl Schwarzschild solved Einstein’s field equations to describe the gravitational field

outside a spherical, non-rotating mass and showed that a black hole was theoretically

possible. However, the process leading up to their formation was still a mystery.

1N.B. Einstein used entirely different arguments to the onesused by Michell (1784)
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Introduction: 1.1 Black holes

In the 1930s several physicists, such as Chandrasekhar and Oppenheimer, were work-

ing on the ultimate fate of stars. Oppenheimer and Snyder described the gravitational col-

lapse of a star that had exhausted all of its nuclear fuel (Oppenheimer & Snyder 1939).

Subsequently Oppenheimer & Volkoff (1939) theorised that there may be a limit on the

mass of a neutron star (the most dense object known at the time) and a star exceeding

this limit may have a final collapse. As a consequence, black holes are thought to be the

ultimate stage of development in the evolution of massive stars.

A thorough examination of black holes is beyond the scope of this work, however

some general facts will be useful. The radius described in eq. (1.1) is known as the

Schwarzschild radius,RSchw. This can be thought of as the surface of a black hole,

called the event horizon. Within the event horizon all of themass is located at a single

point: the singularity. This is a point of infinite density where spacetime is infinitely

curved, which nothing (including light) can escape from.

1.1.2 Observational evidence for black holes

By the 1940s the theory behind black holes was, for the most part, understood. There

was one problem however: there was no evidence for them. Thisis unsurprising since

by their very nature black holes are impossible to observe directly. It was not until

the 1970’s that indirect observational evidence began to emerge2. The first black hole

candidate was in the system Cygnus X-1 (Cyg X-1). Discoveredin X-rays in 1964,

Cyg X-1 is one of the brightest X-ray sources that can be seen from Earth with X-ray

luminosities of4.6 × 1037 erg s−1 in the 0.7-300 keV band (Makishima et al. 2008).

The optical counterpart was subsequently discovered to be ablue supergiant variable

star, incapable of producing a significant X-ray flux. If the blue supergiant could not pro-

duce the observed X-rays something else must. The first cluesthat Cyg X-1 contained

some sort of compact object was from the satellite Uhuru (Odaet al. 1971). Extended ob-

servations showed that the source of the X-rays was rapidly varying. This suggested that

the source must be small due to the speed of light restricting“communication” between

differing regions. This led to speculation that Cyg X-1 was abinary system consisting

of a giant star and a compact object of some description. Webster & Murdin (1972) and

Bolton (1972) discovered a 5.6 day orbital period of the supergiant; based on the period,

the mass function and the mass of the supergiant (obtained from its spectral identifica-

2This observational evidence was the result of matter accreting onto black holes, see§1.2
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Introduction: 1.2 Accretion

tion3) the mass of the compact object was found to be too large for a neutron star4. The

most recent mass estimate of the compact object is8.7 M⊙ (Iorio 2008). The only way

the X-rays could be produced is for some material to fall ontowhat is now widely re-

garded as a black hole. This process is known as accretion andis discussed in§1.2.1. It

appears that Cyg X-1 consists of a black hole accreting from asupergiant star. A second

candidate, LMC X-3, for a black hole was identified by Cowley et al. (1983). Cyg X-1

and LMC X-3 are just two examples of a class of objects called X-ray binaries, which all

consist of a compact object (a neutron star or black hole) accreting in some manner from

a secondary star. The subclasses of X-ray binaries will be discussed in§1.3.

1.2 Accretion

1.2.1 Accretion as an energy source

In §1.1.2 it was alluded to that accretion was the source of the high energy X-rays ema-

nating from the source Cyg X-1. Accretion is an efficient source of energy and powers

many of the highest energy sources in the Universe. Considera body of massM and ra-

diusR⋆, the gravitational potential energy extracted by a massm falling onto its surface

is,

∆Eacc =
GMm

R⋆
. (1.2)

It is clear from eq. (1.2) that the efficiency of the accretionprocess is dependent on

the ratio ofM/R⋆. This ratio is greatest when dealing with compact objects such as

neutron stars and black holes. Assuming all of the energy released by infalling matter

is converted into radiation at the stellar surface and matter accretes at a ratėM , the

accretion luminosity produced is

Lacc =
GMṀ

R⋆
(1.3)

Equation (1.3) is only valid when the accretor has a solid surface, such as a white dwarf

or neutron star. When the accretor is a black hole, eq. (1.3) is not strictly valid, some

3A star’s mass can be estimated by looking at its spectra. The temperature of the star’s atmosphere is
related to the mass of the star. The temperature also affectsthe ionisation states of atoms in its atmosphere
resulting in differing stellar spectra.

4In a neutron star the weight of the star is supported by short-range repulsive interactions between
neutrons governed by the strong force and quantum degeneracy pressure of the neutrons. If a compact
object has a mass greater than∼ 1.5− 3.0 M⊙ these forces will be unable to prevent the object collapsing
to some denser form.
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Introduction: 1.2 Accretion

of the material can simply fall in past the event horizon and add to the black hole mass

rather than producing observable radiation. This uncertainty can be parameterised by the

inclusion of a dimensionless quantityη (the accretion efficiency)

Lacc =
2ηGMṀ

R⋆

= ηṀc2, (1.4)

whereR⋆ was replaced with the Schwarzschild radius from eq. (1.1) and η has a typical

value∼ 0.1 (see§7.8 in Frank, King & Raine (2002)).

The simplest astrophysical accretion problem is steady, spherically symmetric ac-

cretion onto a star of massM . This situation was considered by Hoyle & Lyttleton

(1939), Bondi & Hoyle (1944) and Bondi (1952); it is a reasonable approximation to a

star accreting from a gas cloud or the interstellar medium and it provides a useful upper

estimate of the accretion rate on a star. The derivation begins with the equations of gas

dynamics, specifically the continuity equation for a steadyflow

1

r2

d

dr
(r2ρv) = 0, (1.5)

wherer, v andρ are position, velocity and density of the gas. This integrates to,

r2ρv = C

4πr2ρ(−v) = Ṁ. (1.6)

asρ(−v) is an inward flux of material the integration constantC can be can be related

to an accretion ratėM . If all gas within a distance ofracc is assumed to be captured and

accreted by the star then

Ṁ = 4πr2
accρ(−v). (1.7)

There are two extreme conditions that can determine the sizeof racc: when the motion of

the star in the gas is supersonic and when the star is at rest with respect to the gas. Hoyle

& Lyttleton (1939) studied the first regime and foundracc ∼ 2GM/v2, while Bondi

(1952) foundracc ∼ 2GM/c2s in the second regime, wherecs is the sound speed of the

5



Introduction: 1.2 Accretion

gas. There are now two forms for the mass accretion rate5

Ṁ = 4πρ
(GM)2

v3

Ṁ = 4πρ
(GM)2

c3s
. (1.8)

Finally Bondi (1952) proposed an interpolation formula to bridge the gap between the

two extremes

Ṁ = 4πρ
(GM)2

(∆v2 + c2s )
3/2

, (1.9)

where∆v2 is the relative velocity between the star and the gas. Further details of the

derivation can be found in the papers cited above or alternatively in Frank et al. (2002).

The above is only valid if the infalling gas has no intrinsic angular momentum. In

general this is not the case and the specific angular momentumcauses the gas to orbit

around the accretor: this will result in an accretion disc. The specific angular momentum

of a body in orbit of radiusR about a cental body of massM is

j = (GMR)1/2. (1.10)

As a body moves closer to the central mass its angular momentum decreases, conversely

if R increasesj also rises. Since the total angular momentum of the disc has to be

conserved, the angular momentum loss of the mass falling onto the accretor has to be

accompanied by an angular momentum gain of the mass in the outer disc, i.e, angular

momentum needs to be transported outwards for matter to accrete.

Accretion discs occur in a wide variety of phenomena and on varying size scales,

from active galactic nuclei (AGN) to gamma ray bursts and binary systems. Accretion

discs are also thought to be necessary for star and planet formation. In this thesis I am

mainly concerned with discs around stellar mass black holescontained within binary

systems. The mechanics of binary systems and accretion discs are discussed in the fol-

lowing sections of this introduction.

1.2.2 Eddington limit

The form of eqs. (1.3) and (1.4) suggests that the luminosityof an object will increase

indefinitely if Ṁ rises. This fails to account for the effect the radiation of the accretor

5The velocity in eq. (1.7) differs depending on the conditions. In the supersonic casev is the relative
velocity of the gas. When the star is at restv → cs.
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Introduction: 1.2 Accretion

has on the infalling matter, which imposes a limit onṀ . Assuming the infalling matter

is comprised entirely of ionised hydrogen, the gravitational force on the electron-proton

pairs is,

F =
GM(mp +me)

r2
∼ GMmp

r2
, (1.11)

wheremp andme are the mass of the proton and the electron respectively (mp ≫ me).

This inward force is opposed by the outward force of radiation pressure on the ions.

The radiation pressure mainly affects the electrons through Thomson scattering6. The

attractive Coulomb force between the ions means that the electrons will drag the protons

outward. The force on the electrons is equal to the rate at which they absorb momentum,

F =
LσT

4πcr2
, (1.12)

whereσT is the Thomson scattering cross-section for electrons andL is the luminosity.

Equating eqs. (1.11) and (1.12),

LEdd =
4πGMmpc

σT
∼ 1.3 × 1038(M/M⊙)erg s−1, (1.13)

gives the value for the luminosity at which the gravitational force and the radiative force

are equal. This is known as the Eddington limit and imposes a maximum limit on the

accretion rate onto any object. Note this is only an order of magnitude estimate assuming

a steady spherically symmetric accretion flow. The mass accretion rate at the Eddington

limit for black holes is given by combining eqs. (1.4) and (1.13),

ṀEdd =
1.3 × 1038

ηc2
M

M⊙

g s−1, (1.14)

1.2.3 Viscosity

When some material is gravitationally captured by a massivebody it will not be accreted

immediately. This is due to the angular momentum of the material, which will go into

orbit about the body forming what is known as an accretion disc. Figure 1.1 depicts the

general idea behind the accretion disc. Around the central accretor there is a rotating disc

of gas moving with a characteristic angular velocity. In addition to this, viscous forces

cause the disc to spread in the radial direction. The mechanism by which gas ends up in

an accretion disc is discussed in§1.3.1. In this and following sections I will go into some

details about the mechanisms behind accretion discs. For a more in depth discussion the

6When charged particles elastically scatter photons
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Introduction: 1.2 Accretion

ΩK(R)

ΩK(R)

Accretion disc

Central star

FIGURE 1.1. Standard picture of an accretion disc. Solid arrows depict the direction
of motion of the disc.

reader is referred to Frank et al. (2002) or Pringle (1981). The mass of an accretion disc

is typically much smaller than that of the accretor. If this is indeed the case, the self

gravity of the accretion disc can be ignored and the disc orbits the central body of mass

M with a Keplerian angular velocity,

ΩK(R) =
(
GM

R3

)1/2

, (1.15)

whereR is the distance fromM . This implies differential rotation in the accretion disc

i.e. material closer toM will have a higher angular velocity than material at a larger

radius. When two neighbouring annuli slide past each other,random thermal motions of

the gas result in angular momentum transport perpendicularto the circular velocity of

the gas. This process is calledshear viscosity.

Assuming a speed̃v for the random motions and a typical length scale between ele-

ment interactionλ, the kinematic viscosity is,

ν = λṽ. (1.16)

A large shear viscosity is necessary for the angular momentum transport during the life-

time of an accretion disc. However the process behind the viscosity is still open for

debate. TheReynolds numberis a ratio of the inertial and viscous forces in a fluid. If a

fluid is dominated by viscous forces the Reynolds number is less than one. For an accre-

tion disc, which relies on molecular collisions, the Reynolds number has been calculated

to be as high as1014. It appears that molecular collisions are insufficient to provide the

shear viscosity needed. There is a critical value of the Reynolds number in every system

above which turbulent motions begin. The large values calculated for accretion discs

suggest that the material in an accretion disc is turbulent,which could provide the nec-

8



Introduction: 1.2 Accretion

essary shear viscosity. Assuming that turbulence is the cause of the shear viscosity in

accretion discs eq. (1.16) can be modified,

νturb = λturbvturb. (1.17)

The valuesλturb andvturb represent the size and velocity of the largest turbulent mo-

tions respectively. This does not at first appear to be any improvement on eq. (1.16),

indeed, a complete description of turbulence is still elusive. Shakura & Sunyaev (1973)

parameterised all of the ignorance involving turbulence intheir relation,

ν = αcsH, (1.18)

known as theα-prescriptionof shear viscosity. Shakura and Sunyaev reasoned that the

largest turbulent motions cannot exceed the height of the discH and that the motions

cannot be supersonic, hence a maximum speed is the sound speed of the gascs. Equa-

tion (1.18) is a useful form for the shear viscosity, it has encouraged the comparison

between theory and experiment to determine the magnitude ofα. The magnitude ofα

while expected to be. 1 is still the subject of much debate. The physical mechanism

behind viscosity also remains uncertain. The magnetorotational instability (Balbus &

Hawley 1991, Balbus 2003) (MRI) is the current favoured model to explain the viscosity

in accretion discs. Consider a rotating disc in the presenceof a vertical magnetic field.

Two neighbouring fluid elements can behave as though they areconnected by a ‘spring’,

due to the magnetic tension. In a Keplerian disc the inner fluid element has a larger

velocity than the outer element, causing the “spring” to stretch. The inner fluid element

is then forced by the spring to slow down, hence reducing its angular momentum and

causing the inner fluid element to move a lower orbit. The outer fluid element is forced

by the spring to speed up, increasing its angular momentum and will therefore move to

a higher orbit. Theoretically this could provide the necessary viscosity to explain the

observed accretion rates in accretion discs.

1.2.4 Viscous spreading in an accretion disc

Viscous torque

In §1.2.3 the concept of shear viscosity was introduced. I shallnow briefly explain

the mechanism by which a ring of matter spreads due to this viscous force. Consider

the situation depicted in fig. 1.2. There are two neighbouring annuli each of width

9
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A

R

B

R +

R −

λ

λ

FIGURE 1.2. Mass transfer between adjacent annuli in an accretion disc.

λ, the average distance between interactions of the gas elements. When gas elements

are exchanged across the surfaceR they carry differing amounts of angular momentum.

Element A will on average carry the angular momentum equivalent to a position ofR +

λ/2. Similarly, element B has an angular momentum equivalent toa position ofR−λ/2.

Matter crosses the surfaceR equally in both directions due to chaotic motions. For every

unit arc length the mass flux in both directions is of the orderHρṽ, whereρ is the mass

density. While the mass flux is identical in both directions,the same cannot be said

for the angular momentum. This results in a transport of angular momentum due to the

random motions. The difference of the outward and inward angular momentum flux

gives the torque exerted on the outer annulus by the inner annulus per unit arc length and

is of the order−HρṽλR2Ω′, whereΩ′ = dΩ/dR (Frank et al. 2002) . The total torque

exerted by the outer annulus on the inner annulus is therefore,

G(R) = 2πRνΣR2Ω′, (1.19)

where eq. (1.16) has been used and thesurface densityof the disc is defined as

Σ =
∫ H

0
ρ dz = ρH, (1.20)

for a constant density. Assuming a Keplerian angular velocity (see eq. (1.15))Ω′ is

always negative. From the form of eq. (1.19), the inner annulus loses angular momentum

to the outer annulus.

10
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Dissipation

Now consider a ring of gas of thicknessdR at a distanceR from a massM . The inner

and outer edges of the disc will experience different torques, the net of which is,

G(R+ dR) −G(R) =
∂G

∂R
dR. (1.21)

This torque is acting in the presence of the angular velocityΩ(R), hence a rate of work

being performed (power)

Ω
∂G

∂R
dR =

[
∂

∂R
(GΩ) −GΩ′

]
dR. (1.22)

The termGΩ′dR represents the rate at which mechanical energy is lost to thegas. The

energy lost ends up as heat energy, i.e. the torque causes dissipation in the accretion disc

and locally heats the gas. Defining the dissipation rate per unit surface areaD(R) so that

D(R) =
GΩ′

4πR
=

1

2
νΣ(RΩ′)2. (1.23)

Where each ring has a surface area of2 × 2πRdR and eq. (1.19) has been used. If a

Keplerian velocity is assumed eq. (1.15) then

D(R) =
9

8
νΣ

GM

R3
. (1.24)

Viscous ring

Consider a thin (close toz = 0) disc in a Keplerian orbit about a central star of massM .

The disc will have a circular velocity of,

vφ = RΩK(R). (1.25)

In addition to the circular velocity, there is a small radialdrift velocity vr, which is

negative for smallR due to matter falling towardsM . The expression for the mass of an

annulus of the disc of widthλ is,

∆m = 2πRΣλ. (1.26)

11
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Similarly the angular momentum of the annulus is given by2πRΣR2ΩKλ. Again fol-

lowing Frank et al. (2002), the rate of change of mass for an annulus is,

∂

∂t
(2πRλΣ) =

vr(R, t)2πRΣ(R, t)

−vr(R+ λ, t)2π(R+ λ)Σ(R+ λ, t).
(1.27)

In the limit λ→ 0, eq. (1.27) reduces to

R
∂Σ

∂t
+

∂

∂R
(RΣvr) = 0. (1.28)

When considering the angular momentum, the net effects of the viscous torques need to

be included,

∂

∂t
(2πRλΣR2ΩK) =

vr(R, t)2πRΣ(R, t)R2ΩK(R)

− vr(R+ λ, t)2π(R+ λ)Σ(R+ λ, t)

× (R+ λ)2ΩK(R+ λ) +
∂G

∂R
λ.

(1.29)

Again in the limitλ→ 0,

R
∂

∂t
(ΣR2ΩK) +

∂

∂R
(RΣvrR

2ΩK) =
1

2π

∂G

∂R
. (1.30)

Combining eqs. (1.28), (1.30) and (1.19) results in,

∂Σ

∂t
=

3

R

∂

∂R

(
R1/2 ∂

∂R
(νΣR1/2)

)
. (1.31)

This is the basic equation describing the time evolution of the surface density in a Kep-

lerian disc. Assuming thatν is a constant enables a relatively simple analytic solution.

Provided an initial mass distribution of

Σ(R, t = 0) =
m

2πR0

δ(R− R0), (1.32)

i.e. a ring of matter at radiusR0 and following the method outlined in Frank et al. (2002)

an expression for the surface density is,

Σ(x, τ) =
m

πR2
0

τ−1x−1/4e−
(1+x

2)
τ I1/4(2x/τ). (1.33)

Wherex = R/R0 andτ = 12νtR−2
0 andI1/4 is a modified Bessel function. Figure 1.3

shows the form of eq. (1.33) for several values ofτ . The viscosity of the disc, has the

12
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FIGURE 1.3. A ring of matter of massm placed in a Keplerian orbit (atR = R0)
spreads out due to viscosity. The surface density is given byeq. (1.33)

effect of spreading the ring on a time scale

tvisc ∼
R2

ν
. (1.34)

Examining fig. 1.3, it is possible to gain an insight into how an accretion disc functions.

After a long time,τ > 1, the vast majority of the mass originally in the disc has been

accreted onto the central object. The angular momentum of the mass in the disc has been

carried away to a large radii by a small fraction of the mass. This is the basic principle

behind all accretion discs, whether they are found around stellar mass black holes, AGN

or protostars.
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Introduction: 1.3 Low mass X-ray binaries

1.3 Low mass X-ray binaries

1.3.1 Binary systems

A binary star is a system that consists of two stars orbiting around their centre of mass. It

has been suggested that a large percentage of stars are part of systems with two or more

stars (Duquennoy & Mayor 1991, Fischer & Marcy 1992). Binarystar systems are of

large importance, by observing their orbits it is possible to calculate orbital period of the

system. This information can used to determine the masses ofthe individual stars7. The

stars in binary systems can also influence each other’s evolution producing many and

varied astrophysical objects.

Binary Geometry

Before discussing the specifics of low mass X-ray binaries, Idescribe the basic geometry

of a binary star system. Consider the system depicted in fig. 1.4, containing two stars of

massM1 andM2 (in this work it is assumed thatM1 > M2) respectively orbiting about a

centre of mass (COM). The separation of the starsa can be determined by Kepler’s third

law,

4π2a3 = G(M1 +M2)P
2
orb, (1.35)

wherePorb is the orbital period in the binary. The total potential of the system has three

constituent parts; the gravitational potential of the two stars and the effect of the Coriolis

force. The potential at a pointr in a binary with an angular velocity ofΩ is described by

the Roche potential

Φ(r) = − GM1

|r − r1|
− GM2

|r − r2|
− 1

2
(Ω ∧ r)2 (1.36)

wherer1andr2 are the position vectors of the centres ofM1 andM2 respectively. Figure

1.5 shows eq. (1.36) plotted on the line of centres of the system. Three local maxima are

apparent in the potential: they are known as the first three Lagrangian points.

Further insight into accretion problems in binary systems can be gained by plotting

equipotentials ofΦ(r) in the orbital plane, fig. 1.6. The equipotentials are heavily de-

pendent on the mass ratioq = M1/M2. When a test particle is close to either of the stars,

its motion is largely determined by the nearest star. Similarly a test particle at a large

7Provided the radial velocities of the stars are known and theinclination of the system with respect to
the observer is known.
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COM

2

1

M

M

a

FIGURE 1.4. A binary system consisting of a compact starM1 and a secondary
starM2 orbiting around their COM with a binary separationa. Arrows indicate the

direction of motion.

FIGURE 1.5. Roche potentialΦ(r) along the line of centres (the line connecting the
centres of mass) for a binary system with a mass ratioq = 1/4, shown are theL1,

L2 andL3 points and the positions ofM1 andM2.
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distance from the primary only feels the force from a single mass centred on the centre

of mass (COM) of the system. More important is the area surrounding theL1 point, the

equipotentials in this region resembling a figure-of-eight. The critical equipotential sur-

rounding both stars and passing through theL1 point is known as theRoche lobe. If the

secondary star somehow fills its Roche lobe, matter may be transferred to the primary

star via theL1 point. As demonstrated by fig. 1.5 the “path of least resistance” is via

theL1 point, an unstable local maxima (actually a saddle point in 3D). Matter is then

transferred, in a process called Roche lobe overflow (RLO), to the primary’s Roche lobe.

To examine the Roche lobes in more detail a measure of their size is needed. Due

to the form of eq. (1.36) the lobes are not spherical. A commonapproximation is to

consider a sphere of radiusR2 that has the same volume as the lobe. The non trivial

nature of eq. (1.36) means there is no exact formula describingR2, but Eggleton (1983)

describes a analytic approximation for all values ofq,

R2

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (1.37)

This calculates the radius of the lobe sphere for the secondary. In the rangeq . 0.8 a

simpler form (Paczyński 1971) is

R2

a
=

2

34/3

(
q

1 + q

)1/3

. (1.38)

An interesting consequence of this: combining eqs. (1.35) and eq. (1.38), the average

density of a lobe filling star is determined by the orbital period of the binary (expressed

in hours),

ρ̄ =
3M2

4πR3
2

=
35

8

π

GP 2
orb

∼ 110P−2
orb(hr) g cm−3 (1.39)

Mass transfer

The means of mass transfer onto the primary depends on the evolution of the secondary

star, which is largely determined by its mass. If the secondary is a high mass star such

as an O or B type it will have a significant stellar wind. A fraction of this wind can be

captured by the primary, form an accretion disc and subsequently accrete onto the pri-

mary. For a lower mass secondary, mass transfer cannot proceed until the star, somehow,

fills its Roche lobe. Then, mass can be transferred via theL1 point. Gas initially at the

L1 point settles into an orbit of radiusRcirc around the primary with the same angular

momentum that it possessed at theL1 point. The material settles into the lowest energy
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FIGURE 1.6. Roche equipotentialsΦ(r) = constant, for a binary system with a mass
ratio q = 1/4. Shown are the five Lagrangian pointsL1 - L5. The inner Lagrangian
pointL1 is a saddle point in the potential surface. If the secondary star evolves and
fills its Roche lobe, mass can be transferred to the primary star. The colour scale

represents−log10(Φ) and is in units of erg s−1.

orbit for a given angular momentum i.e. circular, because ofdissipation when the stream

of matter interacts with itself. From the conservation of angular momentum,

Rcircvφ(Rcirc) = RL1v⊥ (1.40)
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FIGURE 1.7. A particle simulation of disc formation in the system GRS 1915+105
with a ∼ 7.5 × 1012 cm, Porb = 33.5 days, M1 = 14M⊙ andM2 = 1.0. The cross
represents the position ofM1, the secondary red giant is not shown. Particles are

emitted from theL1 point.

whereRL1 is the distance fromM1 toL1, vφ(Rcirc) is the circular velocity atRcirc, given

by

vφ(Rcirc) =
(
GM1

Rcirc

)1/2

(1.41)

andv⊥ is the velocity (in a non-rotating frame) perpendicular to the line of centres at the

L1 point. As gas is transferred from the secondary, it accumulates atRcirc forming a ring

which spreads out due to collisions, shocks and viscous dissipation to form an accretion

disc, the mechanics of which have been discussed in§1.2.4. An example of a numerical

simulation showing the formation of an accretion disc is shown in fig. 1.7.

For the process of mass transfer via Roche lobe overflow to begin one of two things

must occur. The lobe of the star can shrink until it is equal tothe stellar radius or the star

can expand to fill the Roche lobe. Starting by looking at the orbital angular momentum,
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J , of the binary

J = (M1a
2
1 +M2a

2
2)

2π

Porb

. (1.42)

Wherea1 = (M2/M1)a anda2 = (M1/M2)a are the distances ofM1 andM2 from the

COM respectively, simplifying withMT = M1 +M2 and using eq. (1.35) gives

J = M1M2

(
Ga

MT

)1/2

. (1.43)

If it is assumed that all of the mass lost by the secondary (Ṁ2 < 0) is gained by the

primary then,ṀT = 0 andṀ1 = −Ṁ2. Logarithmic differentiation of eq. (1.43) then

gives
ȧ

a
=

2J̇

J
− 2Ṁ2

M2

(1 − q). (1.44)

Due toq < 1 andṀ2 < 0, for conservative mass transfer (no loss of mass or angular

momentumJ̇ = 0) the LHS of the equation is always positive and the orbital separation

must increase. Logarithmic differentiation of eq. (1.38) gives

Ṙ2

R2

=
ȧ

a
+

Ṁ2

3M2

, (1.45)

combing this with eq. (1.44) gives an expression for the change in the lobe radius of the

secondary
Ṙ2

R2

=
2J̇

J
− 2Ṁ2

M2

(
5

6
− q

)
. (1.46)

Again for conservative mass transfer any system withq < 5/6 will result in the Roche

lobe expanding away from the star, stopping any mass transfer if the star does not simi-

larly expand.

1.3.2 X-ray binaries

A simple approximation of a blackbody spectrum allows an estimate of the optimum

wavelength an accreting black hole should be observable in.Define a temperatureTbb

that the black hole would have if it radiated as a blackbody,

Tbb =

(
Lacc

4πR2
⋆σ

)1/4

, (1.47)

whereσ is the Stefan-Boltzmann constant. Assuming a black hole mass of 5M⊙, us-

ing eq. (1.1) and assuming the luminosity is equal to its Eddington luminosity (6.5 ×
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FIGURE 1.8. Distribution of HMXB (filled circles) and LMXB (empty circles)
within the Milky Way (Grimm et al. 2003).

1038erg s−1), givesTbb ∼ 4 × 107 K. This temperature would result in photons with an

energy ofkTbb ∼ 1 keV (wherek is the Boltzmann constant). At this energy, a black

hole is a source of X-rays. A note of caution, this result is nomore than an order of

magnitude estimate. Assuming the Eddington luminosity in eq. (1.47) is only viable

because of the insensitivity ofTbb to the luminosity. Similar arguments can be used to

show neutron stars also radiate largely in X-rays. The previous sections have shown that,

accretion can be a source of energy (§1.2.1), mass can be transferred from a secondary

star to a primary compact star (§1.3.1) and that this mass will form an accretion disc that

will spread due to viscosity (§1.2.4). In addition the emitted spectrum of black holes

and neutron stars will be in the X-ray band. This has led systems containing a black

hole/neutron star accreting from a secondary star to be classified as X-ray binaries.

X-ray binaries are typically separated into two categories: high mass X-ray binaries

(HMXB) and low mass X-ray binaries (LMXB). HMXBs typically consist of a black

hole/neutron star and a high mass companion. Accretion can take place due to the wind

of the massive companion star or due to Roche lobe overflow. They have a hard X-ray

spectra (kT & 15 keV) and are known to be concentrated in the Galactic plane (see fig.

1.8). LMXBs are binaries where a neutron star/black hole is present, along with a low

mass main sequence star, or a evolved giant star filling its Roche lobe. Mass can only

be transferred to the primary via Roche lobe overflow. The mass ratioq in these systems

can be low, referring to eq. (1.46) the secondary star must expand8 for mass transfer to

proceed. In contrast to HMXBs, LMXBs have a softer X-ray spectra (kT . 10 keV) and

are associated with the Galactic bulge. The lifetime of an O or B type star is of the order

of 106−7 yrs, resulting in HMXB being found in star forming regions (i.e.the Galactic

8Assuming thatJ̇ = 0, which is not always the case, particularly in systems with alow orbital period
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FIGURE 1.9. Orbital period distribution of 33 well defined LMXB (White et al.
1995)

plane). The lifetime of LMXBs on the other hand is much longer(∼ 1010 yrs); therefore

LMXBs are found throughout the Galaxy and are also associated with globular clusters

(Clark 1975).

Figure 1.9 shows the orbital distribution of 33 well measured LMXBs. The peak in

the distribution appears to be∼ 10 hrs. This is in contrast to orbital periods in main

sequence binaries which are of the order of years. The process of forming a LMXB

must decrease the orbital separation and hence decrease theorbital period. Assuming

a binary begins with two main sequence stars, the more massive primary star evolves

quicker and enters the giant phase first. As the primary star expands it will transfer mass

to the secondary via theL1 point (see§1.3.1). As the primary continues to expand the

secondary becomes engulfed resulting in a common envelope phase. Frictional forces

between the stars and the common envelope causes the orbitalseparation to shrink and

the common envelope to be ejected. The end result is a reducedorbital separation and

a primary star that is now a helium core, which will in turn collapse into a neutron

star/black hole in a supernova. If the binary survives the supernova it will consist of a
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FIGURE 1.10. 1.5-12 keV light curve of 4U 1608-522 at a 2-week time resolution
(Keek et al. 2008)

compact object and a main sequence star, the progenitor of anLMXB. This also explains

the few LMXBs with longer orbital periods: these systems never entered the common

envelope phase and they remained at a large orbital separation.

Some LMXBs exhibit transient behaviour: they show long periods of inactivity in-

terrupted by periods of increased luminosity. Figure 1.10 shows the X-ray lightcurve of

the LMXB 4U 1608-522. The X-ray flux can increase by an order ofmagnitude or more

for short periods. Referring to eq. (1.3), the mass accretion onto the compact object

must be somehow be increased. The two possibilities to achieve this are an increase in

the mass transfer from the secondary star or an increase in the mass being transported

in the disc. The first possibility can be ruled out based on observations of the secondary

star and the hot spot (where the gas stream impacts the disc) in the disc. The second

possibility explains the transient behaviour of LMXBs via an instability in the accretion

disc which temporarily increaseṡM through the disc. This model which became known

as the disc instability model (DIM) has had great success explaining the observations of

LMXBs along with other outbursting systems such as cataclysmic variables.

1.3.3 The disc instability model

The disc instability model was first proposed by H ōshi (1979) to explain dwarf novae.

It has since been developed for LMXBs, for a review see Lasota(2001) and Dubus,

Hameury & Lasota (2001). Firstly I will go over the basic ideas involved in the DIM
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and how it explains outbursts. Secondly the mathematical reasoning underpinning the

DIM will be discussed. A relation between the surface density of the discΣ and the

temperatureT results in theS-curveshown in fig. 1.11. The curve represents the regime

in which an annulus of the disc can remain in thermal equilibrium. To the right of the

curve energy generation due to viscosity is greater than theenergy losses from the surface

of the disc, hence the disc heats up. The opposite is true on the left of the curve.

Heating

Cooling

maxmin

T

Σ
ΣΣ

High Viscosity, Hot state

Low Viscosity, cold state

FIGURE 1.11. TheS-curvefor a given annulus of an accretion disc. The annulus has
a limit-cycle behaviour between hot and cold states.

The physical mechanism that underlines the DIM is the ionisation of hydrogen and

the extreme sensitivity of the opacity function in this temperature region which results

in an instability. In theS-curvethe lower cold state corresponds to low opacity neutral

hydrogen, while the higher hot state corresponds to high opacity ionised hydrogen. The

critical value for the surface density above which the hydrogen in the disc is ionised

(T ∼ 6500 K) is denotedΣmax. The solution which has a negative gradient (∂T/∂Σ < 0)

is unstable, resulting in limit-cycle behaviour when the disc heats and cools at the critical

pointsΣmax andΣmin.
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The changes in the annulus are assumed to be followed by a change in the viscosity.

An increase in the ionisation of an annulus could in theory result in an increased viscos-

ity, if the viscosity is wholly or partially the result of magnetic fields. The increase in

viscosity is associated with an increase of angular momentum transfer within the disc.

This causes a matter wave to propagate in the disc pushing thesurface density of neigh-

bouring annuli aboveΣmax. Thus, the instability is likewise propagated through the disc.

An increase in the mass transferred within the disc would account for the increasingṀ

and hence the increase in luminosity during the hot states. The DIM has been successful

in explaining many astrophysical phenomena. However the uncertainty over the physi-

cal mechanism behind viscosity in accretion discs means itsvalidity remains uncertain.

Nevertheless the fact remains that the DIM is the currently the only theory to success-

fully explain observations of CVs and LMXBs. As mentioned in§1.2.3 the effect of

magnetic fields on the disc is expected to give rise to the MRI leading to viscosity in the

disc. Simulations using magnetohydrodynamics (MHD) may provide further evidence

backing this theory (for a review see Balbus & Hawley (2003)).

The central premise of the DIM is theS-curve. To understand the origin of the curve

I will follow the reasoning of Frank et al. (2002). Starting with eq. (1.31), letµ = νΣ

and perturb the surface density so thatΣ = Σ0 + ∆Σ resulting in,

∂∆Σ

∂t
=

3

R

∂

∂R

(
R1/2 ∂

∂R
(∆µR1/2)

)
. (1.48)

Frank et al. (2002) show that the viscosityν is a function of the surface density and

radius only, henceµ is also, meaning

∆Σ =
∂Σ

∂µ
∆µ. (1.49)

Using this in eq. (1.48) gives a relation describing how the perturbation inµ evolves with

time,
∂∆µ

∂t
=
∂µ

∂Σ

3

R

∂

∂R

(
R1/2 ∂

∂R
(∆µR1/2)

)
. (1.50)

The important result from this is that∂∆µ/∂t ∝ ∂µ/∂Σ. If ∂µ/∂Σ > 0 then eq.

(1.50) exhibits behaviour similar to that shown in fig. 1.3, i.e. the perturbation decays

on a viscous timescale. However the perturbations grow if the condition∂µ/∂Σ < 0 is

satisfied.

To gain a better understanding of this instabilityµ must be related to a more intuitive

quantity. Use the conservation equations for mass eq. (1.28) and angular momentum
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eq. (1.30) and assume a steady state(∂/∂t = 0) disc rotating with a Keplerian velocity.

From eq. (1.28) and using the same arguments used as in eq. (1.6) gives

RΣvR = C

2πRΣ(−vR) = Ṁ. (1.51)

Similarly from eq. (1.30) and using eq. (1.19) gives

−νΣΩ′
K = Σ(−vR)ΩK +

C

2πR3
, (1.52)

whereC is a constant of integration. The second term on the RHS is identified as rate at

which angular momentum is lost from the disc to the accretor.At the beginning of the

boundary layerΩ′
K = 0 andΩK ∼ ΩK(R⋆), whereR⋆ is the radius of the accretor. Along

with eq. (1.51) this gives the value of the integration constant asC = −Ṁ(GMR⋆)
1/2.

Finally, using eq. (1.15) relatesµ to the local mass transfer rate

νΣ = µ =
Ṁ

3π

(
1 −

(
R⋆

R

)1/2
)
. (1.53)

Therefore the instability is in the region where∂Ṁ/∂Σ < 0. This describes the be-

haviour of the disc in the unstable regime: whenΣ decreases the local mass transfer rate

increases, leading to the fragmentation of the disc as unstable regions are emptied of

mass.

To show the dependency of the instability on the opacity of the disc the mass accre-

tion rate needs to be related the temperature of the disc. If the disc is assumed to be

optically thick in thez direction then it will radiate as a blackbody. This energy loss will

be equal to the viscous dissipation in the disc

σT 4(R) =
9

8
νΣ

GM

R3
, (1.54)

where eq. (1.24) has been used. To obtain the desired relation, substitute eq. (1.53) into

the above

T 4(R) =
3ṀGM

8πR3σ

(
1 −

(
R⋆

R

)1/2
)
. (1.55)

MeaningṀ ∝ T 4(R), this recovers the instability condition originally stated and de-

picted in fig. 1.11, namely∂T/∂Σ. To proceed any further a relation betweenΣ andT
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is needed. Given an opacity ofκR ∝ ρT n
c Frank et al. (2002) show that

T ∝ Σ
13−2n

4(7−2n) , (1.56)

for a given central temperature(z = 0). The gradient of which is negative when7/2 <

n < 13/2, given the form of the opacity above this corresponds to the range in which

hydrogen is ionised, giving the physical cause of theS-curve. The simpleS-curvein fig.

1.11 is an idealised version to explain the basics of the DIM.In reality there are two

S-curvescorresponding to the different values ofα. This was implemented early in the

development of the DIM to explain the duration of outbursts in dwarf nova. An example

of a calculatedS-curveis shown in fig. 1.12.

FIGURE 1.12. An example of a calculatedS-Curve. The dashed lines have a constant
α and the solid line is the result with differentα’s on the upper and lower parts of

the curve (Lasota 2001).

1.4 The Galactic centre

In §1.3 the black holes in question are no more than severalM⊙ in mass. There are

however black holes in existence which are several orders ofmagnitude more massive.

Lynden-Bell & Rees (1971) speculated that there may be a large central mass within the

Galaxy which would probably be a black hole. The first evidence for this central black

hole was a bright radio source in the central parsec (Balick &Brown 1974). It has since

been namedSagittarius A*(Sgr A*) and is now widely believed to be a∼ 4 × 106M⊙

black hole (Schödel et al. 2002). Sgr A* is part of a group of aptly named objects called

super massive black hole (SMBH) believed to reside in the centre of most if not all

galaxies.
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Introduction: 1.4 The Galactic centre

FIGURE 1.13. Paα in the Galactic centre showing the feature known as the Min-
ispiral. The gray scale units are1016 erg cm−2 s−1 per pixel, and spatial offsets are

relative to Sgr A* (Scoville et al. 2003).

The central parsec around Sgr A* contains thousands of stars. Most are old red main

sequence stars. Within the central half-parsec however thepower output is dominated

by young massive stars (Krabbe et al. 1995) which appear to have been formedin situ

despite the large tidal shear due to Sgr A*. More puzzling is the so called S-stars9 which

are found∼ 0.03 parsecs form Sgr A*. How such young stars formed isotropically

around Sgr A* is still open to debate. In addition to these massive young stars there

is the strong possibility that a significant number of compact remnants are located in

the nucleus of the Galaxy. Dynamical friction should resultin massive stellar remnants

transferring closer to Sgr A* and less massive stars being ejected from the Galactic centre

entirely (Morris 1993).

In addition to stars and compact objects the inner few parsecs of the Galaxy also con-

9The S-stars were first described by Eckart & Genzel (1997). They are young (< 10 Myr), a factor of
10 closer to the SMBH than the closest stellar population previously known, and move around Sgr A* on
randomly oriented orbits that are highly eccentric.
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Introduction: 1.4 The Galactic centre

tains a significant amount of ionised gas. In projection the gas features appear to have

a spiral shape (see fig. 1.13), resulting in the collective name the Minispiral. The struc-

ture of the Minispiral is believed to consist of as many as nine components (Paumard,

Maillard & Morris 2004). The origin of the gas is still unclear, the hyperbolic orbits

(Yusef-Zadeh, Roberts & Biretta 1998) of the feature known as the northern arm sug-

gest that some of the gas is a temporary feature in the inner Galaxy. The presence of

the Minispiral and the expected compact objects leads to thepossibility that black holes

(and neutron stars) could accrete gas from the Minispiral, via Bondi-Hoyle accretion (eq.

(1.9)), and be observable. I consider this possibility in Chapter 3.
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Chapter 2
Numerical methods

“The bigger the lie, the more they believe.”
- Bunk

The Wire: More With Less [5.01]
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Numerical methods: 2.1 Smoothed Particle Hydrodynamics

2.1 Smoothed Particle Hydrodynamics

In this chapter I will introduce the concept of smoothed particle hydrodynamics (SPH)

which will be used extensively in§4. There are two basic ways to computationally model

fluid flows, with and without a grid. The standard grid method involves a fixed grid in

space where fluid quantities and derivatives are computed using finite difference meth-

ods. This approach runs into resolution difficulties when itis confronted with problems

that span many orders of magnitude in space or density. This leads to a refinement of the

standard grid approach: the adaptive mesh refinement (AMR) method solves many of

the problems that plague the fixed grid method by refining the grid in regions of interest.

In the SPH approach, instead of using a grid the fluid quantities are carried by sev-

eral interpolation points called particles. These particles trace the fluid motion and fluid

quantities and derivatives are calculated by interpolating over neighbouring particles.

This method became known as smoothed particle hydrodynamics. The Lagrangian na-

ture (the coordinates move with the particles) inherent to SPH is extremely useful in

problems that grid codes had difficulty with because the resolution of the SPH method

is automatically adjusted with respect to the particle positions. SPH was first described

by Lucy (1977) and Gingold & Monaghan (1977) and has been usedin a wide variety of

astrophysical problems:

• Supernovae explosions

• Star formation

• Galaxy collisions

• Gas dynamics

• Planet formation

• Star collisions

• Accretion discs

In this thesis I use an SPH code written by James Murray (Murray 1995, Murray

1996). The code has been modified by myself for this work and others (Truss et al.

2000, Murray, Truss & Wynn 2002). For a comprehensive reviewof SPH see Monaghan

(1992). In the following section, I describe the SPH formalism and how it is implemented

in the code.
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Numerical methods: 2.2 SPH Derivation

2.2 SPH Derivation

2.2.1 Interpolant

Start with the trivial identity

Q(r) =
∫
Q(r′)δ(|r − r′|)dr′, (2.1)

whereδ is the Dirac delta function andQ is a function that is defined in the coordinates

r. This can be approximated using,

lim
h→0

W (r − r′, h) = δ(r− r′), (2.2)

whereW is a smoothing kernel with a characteristic smoothing lengthh. Q is then given

by

Q(r) =
∫
Q(r′)W (|r− r′|, h)dr′ + O(h2), (2.3)

whereW has been expanded in a Taylor series aboutr and is normalised to

∫
W (r − r′, h)dr′ = 1. (2.4)

The integral in eq. (2.3) is then changed to a sum over a set of discrete points (the par-

ticles) which the interpolation is performed over and the mass elementρdV is replaced

with the particle massm

Q(r) =
∫
Q(r′)

ρ(r′)
W (r− r′, h)ρ(r′)dr′ + O(h2)

∼
N∑

i=1

mi
Qi

ρi

W (r− r′, h), (2.5)

wherei refers to quantity being evaluated at the position of particle i. Equation (2.5) is

the basis for SPH, as it allows us to find an approximation to any physical quantity of a

fluid. A common example of the SPH method is finding the densityat any point in the

fluid. LetQ(r) → ρ(r) then eq. (2.5) becomes,

ρ(r) =
N∑

i=1

miW (r− r′, h). (2.6)

This is the origin of the term SPH, the mass of each particle issmoothed over the smooth-

ing length resulting in a continuous density distribution of the fluid.
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2.2.2 Derivative

Using eq. (2.5) the derivative of the fluid quantities can be obtained. This is highly

desirable, calculating the derivatives at points in the fluid enables calculation of pressure

and viscous forces within the fluid. The particle positions are then updated according to

these forces. From eq. (2.3),

∇Q(r) =
∫
∇Q(r′)W (r− r′, h)dr′, (2.7)

integration by parts gives

∇Q(r) =
∫

S
Q(r′)W (r − r′, h) nda +

∫
Q(r′)∇W (r− r′, h)dr′, (2.8)

wheren andda are the unit normal and area element respectively of a surface S. The

first term on the LHS of the equation is a surface integral and in practice can be ignored

as long as eitherQ(r) or W are zero at some point in space. With this assumption in

mind and changing the integral to a series of interpolation points as before results in,

∇Q(r) =
N∑

i=1

mi

ρ(r)
Q(r)∇W (r− r′, h). (2.9)

Assuming that the derivative of the kernel is non zero, the derivative of any physical

quantity can be calculated.

2.2.3 The kernel

When SPH was first developed the kernels used were simple Gaussian functions of the

form

W (r, h) =
1

π3/2h3
e−x2

, (2.10)

wherer = r − r′ andx = r/h (Gingold & Monaghan 1977). This approach, however,

implies that all of the particles in the simulation are used to evaluate a physical quantity,

no matter how little a given particle contributes. This is a waste of computing resources

and motivated the use of spline kernels in later work (Monaghan & Lattanzio 1985),

W (r, h) =
σ

hν






1 − 3
2
x2 + 3

4
x3 where0 6 x < 1

1
4
(2 − x)3 where1 6 x 6 2

0 wherex > 2

(2.11)
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whereν is the number of dimensions andσ is a normalisation factor given by,

σ =





2
3

whenν = 1

10
7π

whenν = 2

1
π

whenν = 3.

(2.12)

From eq. (2.11) the derivative of the kernel follows

∇W (r, h) =
σ

hν





3x+ 9
4
x2 where0 6 x < 1

−3
4
(2 − x)2 where1 6 x 6 2

0 wherex > 2.

(2.13)

This ensures that only neighbouring particles within2h contribute to a quantity. As-

suming the smoothing length has been chosen correctly, onlyparticles with significant

contributions are used when performing any calculation. This dramatically reduces the

cost in computing time.

2.2.4 Smoothing length

The accuracy and speed of any SPH calculation is heavily dependent on the choice of

the smoothing length. Ifh is too great the number of neighbours of the particles in high

density regions is unnecessarily large and the calculationis computationally expensive.

Conversely if the smoothing length is too small, particles in areas of low density may find

themselves with no other particles within2h, causing the SPH calculation to break down.

To resolve this, it is necessary to introduce variable smoothing lengths, specific to each

particle. This approach would ensure areas of high density have high spatial resolutions

while areas of low density are also accounted for. The errorsintroduced by allowing the

smoothing length to vary are shown to be of the order ofh2, the same as those when

making the initial SPH approximation (Hernquist & Katz 1989). The smoothing length

is generally adjusted so that each particle has a given number of neighbours within2h.

One caveat when varying the smoothing length, to ensure thatmomentum is conserved,

it is necessary to ensure that the smoothing length used to calculate the force on particle

i due to particlej is the same as that used to calculate the force on particlej due to

particlei. This is achieved by using the average smoothing length of the two particles

(Benz 1990).

hij =
hi + hj

2
. (2.14)
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2.3 Fluid Equations

2.3.1 Equations of fluid dynamics

Consider a fluid with densityρ and a velocityv. The behaviour of the gas can be de-

scribed by three conservation equations: mass, momentum and energy. The conservation

of mass is described by the continuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.15)

The∂ρ/∂t term describes the density changing with time and the∇·(ρv) term describes

the flux of mass into a volume. For an incompressible flow eq. (2.15) reduces to∇ ·v =

0. The conservation of momentum is described by the Euler equation

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇P + f , (2.16)

wheref represents external forces acting on the fluid andP is the pressure at a given

point. In the vast majority of astrophysical problemsP can be expressed using the perfect

gas law, an equation of state relating the pressure, densityand the temperatureT of the

fluid

P =
ρkT

µmH
, (2.17)

µ is the mean molecular weight andmH is the mass of hydrogen. Equation (2.16) is

analogous to Newton’s second law, i.e. forces on the fluid result in an acceleration.

From the discussion in§1 viscosity is an important consideration for accretion discs. The

Navier-Stokes equation describes a compressible fluid witha constant shear viscosityν

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇P + f + ν∇2v +

1

3
ν[∇(∇ · v)]. (2.18)

Finally the conservation of energy is governed by

∂

∂t

(
1

2
ρv2 + ρψ

)
+ ∇ ·

[(
1

2
ρv2 + ρψ + P

)]
= f · v −∇ · Frad −∇ · q. (2.19)

Hereψ is the internal energy per unit mass for the fluid. The quantity 1/2ρv2 + ρψ

is the energy of a gas element and has two constituents: the kinetic energy per unit

volume(1/2ρv2) and the internal energy per unit volume(ρψ). On the right hand side

of the equation there are several source/sink terms due to radiation (∇ · Frad) and a

conductive flux of heat(∇ · q). The above equations can completely describe a fluid in
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an astrophysical system.

2.3.2 SPH equations in an accretion disc

I have introduced the equations of fluid dynamics and will nowdetail how they are imple-

mented in SPH. Mass conservation is an inherent property of SPH so an explicit SPH ex-

pression for the continuity equation is unnecessary. To obtain an expression that governs

how particles behave we start with the momentum conservation (eq. (2.16)), neglecting

any external forces
∂v

∂t
+ (v · ∇)v = −∇P

ρ
. (2.20)

Using the techniques in§2.2,

∫ (
∂v

∂t
+ (v · ∇)v

)
W (|r − r′|, h)dr′ = −

∫ ∇P
ρ
W (|r − r′|, h)dr′ (2.21)

and proceeding in a way identical to (Benz 1990) we achieve anexpression for momen-

tum conservation suitable for implementation in SPH,

dvi

dt
= −

N∑

j=1

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iW (|r− r′|, h), (2.22)

where∇i denotes the gradient with respect to the coordinates of particle i. Similarly

dψi

dt
=
Pi

ρ2
i

N∑

j=1

mjvij · ∇iW (|r− r′|, h) (2.23)

is the SPH energy conservation equation (Benz 1990).

2.3.3 Artificial Viscosity

Equation (2.22) is only valid for a inviscid fluid. In a real fluid the viscosity allows the

conversion of kinetic energy into heat. This is especially important in the treatment of

shocks, which is where viscosity is most significant in astrophysical problems. In SPH

an artificial viscosity is introduced to attempt to model forthis

dvi

dt
= −

N∑

j=1

mj

(
Pi

ρ2
i

+
Pj

ρ2
j

+ Πij

)
∇iW (|r − r′|, h). (2.24)
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The total energy is not conserved by eq. (2.23) when artificial viscosity is included.

Another term must be included that accounts for the heating of the fluid due to shocks,

dψi

dt
=
Pi

ρ2
i

N∑

j=1

mjvij · ∇iW (|r− r′|, h) +
1

2

N∑

j=1

mjΠijvij · ∇iW (|r− r′|, h). (2.25)

Several forms ofΠij have been tried with the most widely used being

Πij =






−αcijµij + βµ2
ij

ρij
wherevij · rij < 0

0 wherevij · rij > 0,

(2.26)

where

µij =
hvij · rij

r2
ij + η

, (2.27)

andcij andρij are the average sound speed and density of two particles. Thenumerical

factor η preventsµij becoming singular whenrij → 0 and is set toη = 0.01h2. The

quantitiesα1 andβ are free parameters that control the strength of the viscosity. The

α term primarily deals with the bulk viscosity of the fluid, while the second orderβ

term becomes significant in shocks. From eq. (2.26),Πij 6= 0 only whenvij · rij < 0,

i.e. the viscous force only acts when two particles are approaching one another. This

formalism is used whenΠij was only necessary in the treatment of shocks. In this work

we are interested in the shear viscosity so receding and approaching particles do interact.

Therefore eq. (2.26) is changed to,

Πij =






−
αcijµij + βµ2

ij

ρij
wherevij · rij < 0

−αcijµij

ρij

wherevij · rij > 0.
(2.28)

1N.B. This is not equivalent to theα described in§1.2.3. The link between the artificial viscosityα and
the Shakura-Sunyaevα is discussed in§2.7
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2.4 Nearest Neighbours

With the introduction of a kernel of the form of eq. (2.11) we only consider particles

within 2h of any particlei. These particles are known as the nearest neighbours of

particlei. There are many ways to find the nearest neighbours of a given particle,

1. Neighbour table

2. Monotonic logical Grid

3. A Tree

4. Link list

I will present the basics of the first three methods and give anexample of the link list

used by the code.

2.4.1 Neighbour table

For every particlei, all the labels of neighbouring particles within2h are stored in an

array. If we haveN particles and every particle hasNn nearest neighbours, then an array

of dimensionN ×Nn is needed. This array has to be updated after every time step in the

simulation, unless the particles’ positions are not changing significantly with time. IfN

andNn are large the resulting size of the array may be problematic.

2.4.2 Monotonic logical Grid

Similar to the neighbour table, this method relies on storing information about the parti-

cles neighbours in an array. All of the properties of the particles are stored in an array,

the order they are stored in the array relates to their physical position in the simulation.

Therefore finding the nearest neighbours is simply a matter of searching through the

array.

2.4.3 Hierarchical Tree

This approach is mainly used in problems that require self gravity. Indeed the informa-

tion used to calculate the self gravity in a fluid is the same asthat required for the nearest
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FIGURE 2.1. A simple example of a hierarchical tree, note the numberof particles
N = 7 and the number of nodes2N − 1 = 13.

neighbours. In a tree, particles are grouped together in nodes, these nodes then interact

with one another. Once a node has been formed, its position isdefined as the centre of

mass of all the internal nodes/particles contained within it. The number of nodes depends

on the number of particles,2N − 1, see fig. 2.1.

A node is considered to be an effective “particle” in its own right. This is only

accurate when considering particles some distance from thenode. When considering a

node particle interaction it may be necessary to open up the node to reveal its constituent

parts, (see fig. 2.2). When

Rn

Rpn

< θcrit, (2.29)

the node is opened up and the particles interaction is considered with all the nodes con-

stituents. Trees effectively cut down the computing time needed when considering parti-

cle particle interactions fromON2 to ON logN . Whenθcrit → 0 all nodes are open and

the calculation returns toON2.

2.4.4 Link list

When using this method a grid is overlaid on the computational domain. The particles

are assigned to a cell and a list is constructed with the labels of every particle in that

cell. Finding the nearest neighbours then consists of searching through neighbouring

cells for particles. The link list consists of two arrays onewhich records the label of the

last particle in that cell, if there arencell cells, this array needs to be of lengthncell. The

second array is of lengthN and records the label of the previous particle in that cell.

A combination of these two arrays records what cell every particle is in. This method

38



Numerical methods: 2.4 Nearest Neighbours

Particle
n

pnNode

θ

R
R

FIGURE 2.2. Diagram showing node opening angle,Rpn is the distance between the
node and particle andRn is the radius of the node.

is very memory efficient when compared to a Neighbour Table, however setting up and

accessing the link list are recursive operations.

2.4.5 Link list example

Figure (2.3) shows a simplified 2D example with 8 particles. Firstly we want to know

the extent of the computational domain. The particles 1, 3, 5and 8 define the maximum

extent of the domain in thex, y plain,

xside = xmax − xmin

yside = ymax − ymin.
(2.30)

The lengthsxside andyside are divided by2hmax, wherehmax is the maximum smoothing

length allowed for a particle. This gives the size of the computational domain in terms

of the maximum smoothing length,

lx = xside/2hmax = 4

ly = yside/2hmax = 3

lxy = lxly = 12.

(2.31)

The resulting grid is “unpacked” into a 1D array using the relation,

lcell = lxcell + (lycell − 1)lx + (lzcell − 1)lxy, (2.32)
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FIGURE 2.3. Simplified 2D computational domain with 8 particles. A grid has been
overlaid as described in section (2.4.4).

where
lxcell = N

{
(x(i) − xmin)/2hmax

}
+ 3

lycell = N

{
(y(i) − ymin)/2hmax

}
+ 3

lzcell = N

{
(z(i) − zmin)/2hmax

}
+ 3.

(2.33)

The valuesx(i), y(i) and z(i) refer to thex, y and z coordinates of the i’th particle.

Equations (2.33) locates which grid square each particlei is located. The + 3 accounts

for the fact that the initial two values oflxcell and lycell denote cells which are never

occupied. The link list itself is simple to construct, usingtwo arrays,ll, andihoc. The

code to implement the link list is relatively simple and is shown below.

do i = 1 , n

ll( i) = ihoc(lcell)

ihoc(lcell) = i

end do
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We proceed as follows:

1. first loopi = 1

lxcell = 5

lycell = 3

lzcell = 3





⇒ lcell = 37

Particle 1 is in cell number 37. We now update the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 01

FIGURE 2.4. Link list after particle 1

2. Second loopi = 2

lxcell = 5

lycell = 3

lzcell = 3





⇒ lcell = 37

Particle 2 is in cell number 37, the same as particle 1, again we update the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

1

2

FIGURE 2.5. Link list after particle 2

3. Third loopi = 3

lxcell = 4

lycell = 5

lzcell = 3





⇒ lcell = 44

Particle 3 is in cell number 44, we now update the link list

4. Fourth loopi = 4

lxcell = 5

lycell = 4

lzcell = 3





⇒ lcell = 41

Particle 4 is in cell number 41, we now update the link list
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ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

3020

00

00

FIGURE 2.6. Link list after particle 3

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

3020

00

4 0

FIGURE 2.7. Link list after particle 4

5. Fifth loopi = 5

lxcell = 6

lycell = 4

lzcell = 3





⇒ lcell = 42

Particle 5 is in cell number 42, we now update the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

35020

00

4

FIGURE 2.8. Link list after particle 5

6. Sixth loopi = 6

lxcell = 5

lycell = 4

lzcell = 3





⇒ lcell = 41

Particle 6 is in cell number 41, the same as particle 4, we now update the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

020

04

56 3

FIGURE 2.9. Link list after particle 6
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7. Seventh loopi = 7

lxcell = 5

lycell = 4

lzcell = 3





⇒ lcell = 41

Particle 7 is in cell number 42, the same as particle 6 and particle 4, we now update

the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

35

4 6

7020

FIGURE 2.10. Link list after particle 7

8. Eighth loopi = 8

lxcell = 3

lycell = 3

lzcell = 3





⇒ lcell = 35

Particle 8 is in cell number 35, we now update the link list

ihoc =

ll =
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46

0 0 0 0 0

0 0 0 0 0 0

1

35

4 6

708 2

FIGURE 2.11. Link list after particle 8

To calculate the nearest neighbours of, for example, particle 6 is as follows. Firstly

we look at the cell at which particle 6 is in, looking at element 41 in the arrayihoc we

see the last particle that was known to be in the cell was particle 7. Now look at the

seventh element in the arrayll , we see the particle 6 was in the cell previously. Look at

the sixth element ofll we can see that previously to particle 6, particle 4 was in thecell.

Finally looking at the fourth element ofll , which is zero, we see that particle 4 was the

first particle in the cell. We now know that particles 7, 6 and 4are in the cell labelled 41.

Now we examine the neighbouring cells, in this simplified example there are 8 cells

surrounding the home cell of particle 6. In 3D this increasesto 26 neighbouring cells.

The neighbouring cells are: 36, 37, 38, 40, 42, 44, 45 and 46. Looking in the arrayihoc

we can see that elements 36, 38, 40, 45 and 46 are equal to zero;meaning that these cells
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currently have no particles in. Looking at the cells 42 and 44, we see inihoc that particles

5 and 3 are in these cells respectively. Looking at arrayll we see that these particles are

the only ones in these cells. The remaining cell is 37, proceeding in a manner similar to

cell 41 we know that particles 1 and 2 are in this cell. Hence, the nearest neighbours of

particle 6 which are particles 1, 2, 3, 4, 5 and 7.

2.5 Time stepping

The accretion discs that have been described thus far evolvedue to two forces: viscous

forces that have the effect of viscously spreading the disc and pressure forces. As seen in

§1.2.4 the viscous forces act to spread the disc on a time scalegiven by eq. (1.34). The

dynamics of the disc are also influenced by gravity. For a typical time scale due to the

force of gravity, consider a test partialm in a Keplerian orbit about a central objectM

(M ≫ m) at a distance ofR. Using eq. (1.35) the orbital period at a pointR is

Porb ∼ 2π

(
R3

GM

)1/2

. (2.34)

This can be the basis for a dynamical gravitation timetgrav. Typically the dynamical time

scale is much shorter than the viscous/pressure time scalesand an accretion disc can vary

in radial extent by several orders of magnitude resulting ina large range of dynamical

times. This difference intgrav creates problems when considering the length of the time

step in a simulation. The vast majority of the mass in the disc(and therefore most of the

particles) will be located in the outer disc. Here the orbital velocities are low. If a global

time step was chosen appropriate for the few particles in theinner disc which need their

positions and velocities to be updated frequently, the positions of particles in the outer

disc would be updated needlessly.

To avoid such inefficient use of computing resources the SPH code uses a method

called operator splitting. An important part of this methodis using the fact that the

gravity calculation2 is relatively simple (only a few lines of code are needed). Far more

computational time is needed to calculate the nearest neighbours, density and viscosity.

From the discussion above, the dynamical time scale is much shorter than the viscous

time scale. This suggests it is possible to reduce the frequency with which the pressure

and viscosity forces are calculated but still calculate thegravity as required. This is the

origin of the name operator splitting. On each particle there are two accelerations acting

2In the standard thin disc approximation the self gravity of the disc is ignored. Particles in all the
simulations presented here have no particle-particle gravitational interaction.
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on it. One is the acceleration due to the pressure/viscous forcesap and the other is the

acceleration due to gravityagrav,

dv

dt
= ap + agrav (2.35)

The quantityagrav is easy to calculate whereasap is more involved. Operator splitting

ensures that calculation ofap is minimised. The scheme used by Murray in his SPH code

is a drift-kick-drift scheme. Firstly the velocity of the particles are integrated over a half

pressure force time step,∆tp,

vl+ 1
2
− vl

1
2
∆tp

= ap(rl, vl), (2.36)

where the initial time istl. The positions of the particles are not updated at this stage.

Now a full pressure time step is taken to update the positionsand velocities using only

the gravity force. During this stage the code goes through many dynamical time steps.

The initial velocity atk = 0 is equal tovl+ 1
2
.

rk+1 − rk

∆tgrav
= vk+1 (2.37)

vk+1 − vk

∆tgrav
= agrav(rk, vk). (2.38)

Due to∆tgrav ≪ ∆tp the code goes through several iterations ofk for eachl. After nk

gravity time steps the code has advanced one pressure time step, wheren is an integer.

Finally a second half pressure time step using only the pressure forces is calculated using

the positions and velocities from the last gravity time step.

vl+1+ 1
2
− vnk

1
2
∆tp

= ap(rnk, vnk). (2.39)

While the operator splitting can be performed in two stages,one for the pressure

forces and one for the gravity force, this approach with three stages is used. This three

step approach conserves physical quantities more accurately over long integrations. The

pressure calculations are performed using a simple leapfrog integrator. This calculates

positions and velocities alternately, resulting in them “leaping” over each other. The

gravity calculations are performed with a fourth order Runge-Kutta integration scheme.

This is accurate toOdt4, which is more than adequate. A scheme with greater accuracy

(Press et al. 1992), but a corresponding increasing in the use of computing resources
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is unnecessary. The limiting factor is the use of the kernel (see§2.2.1) in the pressure

calculation, which is only accurate toOh2.

2.5.1 Courant-Friedrichs-Lewy condition

The Courant-Friedrichs-Lewy (CFL) condition is to ensure the time step of a simulation

is less than a certain time to prevent unphysical effects. For example, if a particle is

moving a characteristic lengthL, then the time stepdtmust be less than the time required

for the particle to move a distance equal toL. WhenL is reduced, the upper limit for the

time step is correspondingly decreased. Simply put the CFL condition is a characteristic

length scale of a simulation divided by a characteristic velocity,

dt <
L

vp
, (2.40)

where the particle has a speedvp. In Murray’s SPH code, the CFL condition for the

viscosity time control takes the form

dt =
h

cs + 0.6(2αcs + βµij)
, (2.41)

α andβ are the artificial viscosity parameters,cs is the sound speed,h is the smoothing

length andµij is given by eq. (2.27).

2.6 SPH code overview

In previous sections I have gone into some detail about SPH ingeneral and specifically

how the code by Murray works. I will now give an overview of thecode to show how all

the constituent “parts” fit together.

• Select the system parameters. All masses are scaled to the system mass and all

lengths are scaled to the binary separation,a. The code is also scaled so that the

orbital angular frequency is equal to one,2π/Porb = 1. This results in a velocity

unit of 2πa/Porb.

• All particles are initially set to the cold (less viscous) state.

• A particle is injected from theL1 point.
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• The positions of the primary and secondary stars are locatedand changed as needed.

• The link list is built.

• Solve the momentum and thermal energy equation for each particle using all neigh-

bouring particles within2h. Neighbours are located via the link list.

• The velocity of all the particles is advanced a half pressuretime step using only

the pressure forces.

• The gravity force is now used to update both positions and velocities forwards one

pressure time step.

• A new link list is built to sort the new positions of the particles.

• The density at each particle is calculated using all particles within2h. If conditions

are satisfied then the particles have their viscosities switched into the hot state. For

more detail on how this is achieved see§4.

• Again the velocities of all the particles are advanced a halfpressure time step using

only the pressure forces.

• Any particles that are within0.04a of the primary are considered to be accreted

and are removed from the system. If any return to the secondary’s Roche lobe or

if they are at a distancer > a with a velocity greater than the escape velocity they

are also removed.

• Particles that are considered to be accreted provide a mass transfer rate onto the

primary. This is used to calculate an irradiation radius, which also switches parti-

cles contained within into the hot state. Further details are in §4.

• Finally a new link list is created and particles are located.

• Another particle is injected from theL1 point and the process repeats itself.

2.7 Viscous Particle ring

In §2.3.3 the concept of artificial viscosity was introduced. Inorder to compare the

artificial viscosityα to the Shakura-Sunyaevαss
3, I look at the problem of a ring of

matter which spreads due to viscous forces. This problem hasa relatively simple analytic

3The Shakura-Sunyaevα has been renamed toαss in this section to prevent confusion
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solution and can be compared to results from the SPH code, see§1.2.4. As introduced in

§1.2.3 theα-prescription (Shakura & Sunyaev 1973) is as follows,

ν = αsscsH (2.42)

Using eq. (1.33) it is possible to equate the artificial viscosity introduced in section

(2.3.3) toαss. Figure (2.12) shows a simulation of 20000 particles placedin a thin ring

of width 1/40 of the initial smoothing length of the particles. The ring spreading can be

clearly seen. During the simulation theβ term in the artificial viscosity was set to zero, as

there are no shocks in this problem, only the viscous torque exerted on the inner ring by

the outer ring. The surface density of the ring simulation was compared to theoretically

derived curves using eq. (1.33) with sound speed of7.8 × 105 cm s−1 and a disc scale

height given by,

H =
cs
Ω
. (2.43)

Figure 2.13 shows the results of the comparisons for four different values ofαss after

eight equally spaced time intervals, between 2250 and 7500 time steps. As can be seen

from fig. 2.13, none of the values ofαss exactly fit the curve generated by the SPH code.

To quantitatively state which value ofαss best fits the SPH code result, aχ2 test was

performed, (see fig. 2.7. This determined that an SPHα = 1.0 was best described by an

αss ∼ 0.9, i.e. there is almost a one to one relation between the twoαs.
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FIGURE 2.12. Snapshots of the evolution of a ring of matter in a Keplerian orbit
about a central mass, the ring was at an initial radius of0.3a
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(a)αss=0.5 (b) αss=0.7

(c) αss=0.9 (d) αss=1.1

FIGURE 2.13.α = 1.0 disk evolution (△) plotted at 2250 to 7500 time steps com-
pared to a normalised theoretical derived density curve (solid lines).

FIGURE 2.14.χ2 test comparing a SPHα to various values of Shakura-Sunyaevαss.
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Chapter 3
Constraining the number of compact
remnants near Sgr A∗

“You cannot lose if you do not play.”
- Marla Daniels

The Wire: The Detail [1.02]
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3.1 Introduction

Theoretical calculations predict a cusp of∼ 20000 stellar mass black holes in the central

parsec of our Galaxy (Morris 1993, Miralda-Escudé & Gould 2000) and a similar number

of neutron stars (Freitag, Amaro-Seoane & Kalogera 2006, Hopman & Alexander 2006).

X-ray observations reveal a highly significant overabundance of transients in the same

region (Muno et al. 2005b) when compared with the region of∼ several tens of parsecs

from Sgr A∗, the super-massive black hole (SMBH) of massMsmbh ∼ 4 × 106M⊙ in

the Galactic Centre (GC) (Schödel et al. 2002, Ghez et al. 2003). Several methods to

constrain the population of these remnants are discussed inthe literature. In particular,

one might look for dynamical signatures of these remnants onthe orbits of stars near

Sgr A∗(Rubilar & Eckart 2001, Mouawad et al. 2005, Alexander & Livio 2004) and

by gravitational lensing (Chanamé, Gould & Miralda-Escudé 2001, Alexander & Loeb

2001). Also young neutron stars might be detectable as pulsars (Chanamé & Gould

2002, Pfahl & Loeb 2004). Each of these methods come with its own set of observational

difficulties and limitations.

Nayakshin & Sunyaev (2007) proposed an alternative method to detect the compact

remnant’s cusp. They suggested that these compact remnantsmay be accreting gas at

relatively high rates when they happen to travel through a dense ionised gas observed to

exist in the GC (Morris 1993). They calculated a simple time-averaged model for X-ray

emission from such a cusp, and concluded that the total emission of the cusp could be as

high as >∼ 1035 erg s−1, i.e. very significant observationally.

On the other hand, a time-independent treatment does not take into account the com-

plexity of the problem. Despite the high total number of black holes, due to a small

volume filling fraction of cold gas in the GC, only a few of the black holes will be mov-

ing within the gas clouds and possess a small enough relativevelocity to be visible to

Chandra1. Here I extend the model of (Nayakshin & Sunyaev 2007) in several ways.

Firstly, I allow time-dependency in the problem by explicitly following realistic Keple-

rian orbits of the compact objects. Secondly, the formationand evolution of small scale

accretion discs around the accretors is modelled, as such discs will form due to the excess

angular momentum of the accreting gas. An attempt is made to model (in a rather basic

manner) the observed distribution of ionised gas from whichthe compact objects might

be accreting,“the Minispiral” (see§1.4). Non-circular gas orbits are also considered with

a simplified approach.

1Chandrais a X-ray Observation satellite launched in 1999. It was a great improvement over previous
X-ray telescopes with an angular resolution of 0.5 arcsecond, several orders of magnitude greater than the
first orbiting X-ray telescopes.Chandraoperates in the 0.1 - 10 keV band.
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The model shows a large intrinsic time-dependence of the accretion on the compact

objects and the X-ray emission it produces. Despite that, and despite uncertainties in

the model (exact gas orbits, circularisation radius parameter, radiative efficiency, etc.),

certain conclusions can be drawn. In particular, with the∼ 20000 compact remnants ex-

pected in the central parsec, at least several X-ray sourceswith X-ray luminosity greater

than1033 erg s−1 should be present. Such sources, which could be called “fakeX-ray

binaries”, can potentially contribute to the sources observed by (Muno et al. 2005b) in

the central parsec. Conversely, it appears that a cusp significantly more populous, i.e.,

with 40000 compact remnants, would over-produce the X-ray emission as compared to

the observations, and should thus be ruled out.

3.2 Numerical approach

A stellar mass black hole of massMbh travelling through a gas cloud or a disc with

densityρ is capturing gas in asmall scale disc about it(see below) at the Bondi-Hoyle

accretion rate (Bondi & Hoyle 1944):

Ṁcapt = 4πρ
(GMbh)

2

(∆v2 + c2s)
3/2

, (3.1)

introduced in§1.2 wherecs and∆v are the gas sound speed and the relative velocity

between the black hole and the gas, respectively. The above picture is complicated by

the presence of the SMBH. The area of influence of the stellar mass black holes is limited

by the Hill radius. The Hill radius is a measure of the extent of a body’s gravitational

influence on its surroundings. For an order of magnitude estimate, equate the orbital

velocity around the black holeΩbh to the orbital velocity of the black hole around the

SMBH Ωsmbh. This gives the radius at which the gravitational influence of the black hole

and the SMBH are equal, using eq. (1.15),

√
GMbh

r3
H

=

√
GMsmbh

R3
, (3.2)

hence

rH = R
(
Mbh

Msmbh

)1/3

(3.3)

whereR is the distance between the stellar mass black hole and the SMBH. A rigorous

derivation gives Hill’s radius to be,rH = R(Mbh/3Msmbh)
1/3 (Hamilton & Burns 1991).

This imposes a limit on the capture rate, given by the Hill accretion rate,ṀH = 4πr2
Hρcs.
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Hence,

Ṁcapt = min[Ṁcapt, ṀH] (3.4)

whereṀcapt on the right hand side of the equation is defined in eq. (3.1).

3.2.1 Time-dependent disc accretion

The captured gas may have a net angular momentum resulting inthe formation of a disc

around the stellar mass black hole. The disc size is of the order of the circularisation

radius for the gas flow,rc, which is unknown. The maximum value ofrc is the capture

radius,rcapt, which is

rcapt = min

[
rH,

GMbh

∆v2 + c2s

]
. (3.5)

I thus parametrise the circularisation radius as

rc = ζrcapt , (3.6)

whereζ is a parameter less than unity. The viscous time scale in sucha disc around the

stellar mass black hole is (Pringle 1981)

tvisc =
1

αΩd

(
rc

h

)2

, (3.7)

whereα is the viscosity parameter,Ωd =
√
GMbh/r3

c is the angular velocity of the

disc andh is the scale height of the disc. Numerically using the standard resultsh =

csr
3/2
c /(GMbh), c2s = P/ρ andP = ρkT/µmp (see§5.2 in Frank et al. (2002)),

tvisc = 1.5 × 103 yrsα−1
0.01µdr

1/2
c,12 T

−1
d,3 , (3.8)

whereTd,3 is the disc temperature in units of103 K, the viscosity parameter isα =

0.01α0.01, µd is the mean molecular mass in units of hydrogen mass (mp) andrc,12 is

the circularisation radius in1012 cm. This is to be compared with the period (the orbital

time) about the SMBH:

P =
2π

ΩK

= 2900 yrsR3/2
0.1M

−1/2
6 . (3.9)

Here,ΩK is the Keplerian angular frequency for the black hole orbiting the super-massive

one:ΩK =
√
GMsmbh/R3. The corresponding Keplerian velocity isvK = RΩK.

Thus, the gas captured in the small-scale disc accretes on the black hole after a delay
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of a fraction of to a few (black hole around the SMBH) orbital times. The evolution of

the disc mass is given by the rate at which the mass is added,Ṁcapt, minus the mass

accreted onto the black hole,̇Macc:

dMd

dt
= Ṁcapt − Ṁacc. (3.10)

The black hole accretion rate is calculated as

Ṁacc =
Md

tvisc

e−tvisc/12t (3.11)

(see§5.2 in Frank et al. (2002)). Finally, the luminosity of the accretion flow is modelled

in the same way as in Nayakshin & Sunyaev (2007). Namely, I write LX = ηṀaccc
2,

whereη is given by

η = 0.01
Ṁacc

Ṁ0 + Ṁacc

, (3.12)

whereṀ0 = 0.01MEdd is the critical accretion rate where the switch from the radiatively

efficient to radiatively inefficient regime occurs (Esin, McClintock & Narayan 1997). It

is also assumed that X-ray emission visible in theChandraband constitutes 10% of the

bolometric efficiency, which would be a lower limit for typical spectra of X-ray binaries

in their hard state.

3.2.2 Orbital evolution of accretors

The velocity and space distribution of stellar mass black holes is modelled as a cusp that

follows the Bahcall & Wolf (1976) distribution for heavier species in a mass-segregated

cusp. This distribution results in the black hole number density and velocity distribution

obeying power laws of the formR−7/4 andf0 respectively, where,

f0 ∝ R−1/4

(
1 − v2

v2
esc

)1/4

. (3.13)

Both space and velocity distributions are isotropic. The most recent Monte-Carlo sim-

ulations (Freitag et al. 2006) broadly support these classical results. However a recent

Fokker-Planck study (Hopman & Alexander 2006) predicts a somewhat steeper power-

law density dependence for the black hole cusp,ρBH ∝ R−2. However, this level of

detail is left for future investigations.

The black hole cusp is sharply cut atR = 0.7 pc (Miralda-Escudé & Gould 2000).

The artificial cut of the black hole distribution at the outercusp radius is a crude ap-
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proximation to the more complicated broken power-law structure of the cusp found by

(Freitag et al. 2006). It is also not entirely self-consistent as black holes do follow their

orbits hence changing their radial position. To determine the significance of this the

structure of the cusp was examined104 years after it was set up (see fig. 3.1). The

density profile did in fact change. Some black holes on eccentric orbits with large semi-

major axes were found at radii much larger than the outer cuspradius. However, the

maximum change in the black hole density profile was no more than 30%. Furthermore,

the black holes on very eccentric orbits will be those that accrete gas at a low rate unless

the gas in the inner parsec moves on similar eccentric orbits. Therefore, emission from

these black holes might be neglected in any event.

Generating a series of orbits consistent with this space-velocity distribution, the ini-

tial phases of the black holes were randomly set along their orbits, and then their spatial

motion was followed. The instantaneous gas capture rate foreach black hole was also

recorded. When one of these orbits intersects the disc of theMinispiral, the black hole

in question starts capturing gas and builds up a disc around it as described in§3.2.1.

3.2.3 The model for the Minispiral

Paumard et al. (2004) suggests that the Minispiral is a dynamical feature in a state of

almost free fall onto Sgr A∗. However, if this was the case then Sgr A∗ itself would

be accreting from the Minispiral. This would result in accretion rates far above that

from the stellar winds (Cuadra et al. 2006), and would contradict the X-ray observations

(Baganoff et al. 2003). More realistically, the gas in the Minispiral follows an eccentric

orbit which does not enter the inner arcsecond (∼ 0.03 parsec) of the GC.

In my simple model, the Minispiral is modelled as half of a disc in a local Keplerian

circular rotation around Sgr A∗ with the total gas mass ofMdisc = 50M⊙, in accord with

estimates in Paumard et al. (2004). It extends from a radius of 0.1 pc from the SMBH

to a radius of 0.5 pc. The disc scale height,H, is assumed to have a fixed ratio to the

radius,R: H/R = 0.1. The gas density is given byρ(R) = Mdisc/(2πR
2H).

The dynamical age of the Minispiral is a few thousand years. Therefore, the calcu-

lations ran for 3000 years with these assumptions, and then the Minispiral was instan-

taneously “removed”. This is done as a rough model of time evolution of the system

in the case where the gas apocenter is larger than 0.5 parsecs, so that the Minispiral

would leave the inner 0.5 parsec after a dynamical time. In§3.3.4 I vary some of the

above assumptions about the structure of the Minispiral to estimate the sensitivity of
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FIGURE 3.1. Density profile of the black hole cusp; the solid line andthe dotted line
correspond tot = 0 andt = 104 yr respectively

my results to these assumptions. In future work, a more complicated, but unavoidably

model-dependent dynamics of the Minispiral should be included.

3.3 Results

3.3.1 Emission from individual black holes

To motivate the study of X-ray emission from black hole cuspsin this work, the emission

from individual black holes was examined. For simplicity ofdiscussion in this section

only, the “half-disc” described in§3.2.3 is replaced with a full disc, with other parameters

unchanged, the only exception being the mass of the Minispiral, which was doubled. The
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black holes follow Keplerian orbits (§3.2.2) that are characterised by the values of the

semi-major axis and the eccentricity (see Table 3.1). The inclination of the orbit to the

midplane of the disc,i, is also essential in determining the accretion history of the black

hole in question. The orbital parameters of the test cases are summarised in Table 3.1.

Figure 3.2 shows the resulting light curves for the four tests explored. The circularisation

parameter is fixed atζ = 0.1 for all of the tests.

Table 3.1. Orbital parameters of individual black hole orbits (see§3.3.1). The incli-
nation of the orbit is with respect to the midplane of the Minispiral. The last column

shows the time-averaged X-ray luminosity of the source.

Black Inclination Eccentricity Semi-major < Lx >
hole axis

(o) (pc) erg s−1

T1 6 0.1 0.1 1.78 × 1036

T2 11 0.2 0.1 2.97 × 1034

T3 1 0.6 0.3 1.34 × 1034

T4 29 0.5 0.08 1.28 × 1032

T1 in Table 3.1 is shown with the solid curve in fig. 3.2 is the most luminous case.

Low inclination and eccentricity of the orbit ensure that the black hole spends all of its

time inside the disc. The near circular orbit ensures a low relative velocity between the

black hole and the gas in the disc. Hence, the gas capture rateis relatively high, as is the

X-ray luminosity. The few kinks in the lightcurve are causedby periodic variations in

the relative velocity due to the eccentricity of the orbit.

The black hole in test T2 is on a slightly more eccentric and more inclined orbit. The

relative black hole-gas velocity is larger than in test T1, and hence the gas capture rate

is reduced (see eq. (3.1)). The black hole spends a significant amount of time inside the

disc, but there are periods of time when it exits the disc through one of its faces. Half of

the dips in the lightcurve correspond to time spent outside the disc, and the other to the

time when the relative velocity∆v reaches the highest value along the trajectory. Due

to a relatively large size of the accretion disc (the “small scale” one discussed in§3.2.1)

that builds up around the black hole, the viscous time is comparable to the duration of

time spent outside of the disc, and hence the dips are relatively minor. The X-ray light

curve of the source reaches a quasi-steady state with the luminosityLx ∼ few× 1034 erg

s−1 after∼ 104 years.

In test T3, the black hole is on a more eccentric orbit, with eccentricity e = 0.6,

and a larger semi-major axis. The high eccentricity of the orbit results in a high relative
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FIGURE 3.2. X-ray light curves of the four individual black holes described in
§3.3.1; the solid, dotted, dashed and dotted-dashed lines correspond to T1, T2, T3,

and T4 respectively.

velocity which limits the gas capture rate. For most of the orbit, LX < 1033 erg s−1. The

luminosity of the black hole increases dramatically att ∼ 8000 years. At this moment in

time, the relative velocity is near a minimum while the gas density in the disc is close to

the maximum reached on this orbit, yielding the maximum capture rate. The accretion

luminosity approaches that of case T2.

Finally, test T4 is close to the worst case scenario as far as the gas capture rate is

concerned. A high inclination and eccentricity orbit implythat the black hole spends

little time inside the disc. Accumulation of gas in the smallscale accretion disc happens

in a burst-like manner when the black hole is inside the disc.Also note that since the
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relative velocity is high, the gas capture radius (see eq. (3.5)) is smaller than it is in

tests T1 and T2, and hence the disc viscous time is shorter (see eq. (3.8)). This results

in shorter decay times for the “bursts” in the lightcurve. The X-ray luminosity is never

larger than few×1032 erg s−1.

These simple tests indicate that the black holes may be expected to produce a de-

tectable X-ray emission in one of the two following ways: (i)a few black holes may

be on orbits essentially co-moving with the gas, producing afew bright point sources;

(ii) the dim majority of high inclination and/or high eccentricity orbits may not produce

individually bright sources but may be collectively bright, producing an unresolvable

“diffuse” X-ray emission.

To estimate an upper-limit of the mass accreted by these black holes over the lifetime

of the Minispiral assume that all the black holes have capture rates equal to T1 (highly

unlikely). T1 is the most luminous case and has a capture rateof ∼ 10−9 M⊙ yrs−1. If

one were to assume the lifetime of the Minispiral was∼ 1000 yrs then 20000 black holes

would accrete∼ 0.02M⊙, negligible compared to the total mass of the Minispiral.

3.3.2 Representative cases

Having considered the individual accretors’ case in the previous section we move on to

the problem of the total black hole cusp emission with the Minispiral model. A black

hole distribution consistent with the (Bahcall & Wolf 1976)distribution as described

in §3.2.2 is generated. The orientation of orbits is drawn randomly from an isotropic

distribution.

The upper panels in fig. 3.3 display the total X-ray luminosity of a cluster ofN =

5000 black holes as a function of time for two values of the circularisation radius param-

eter,ζ , 0.1 and0.001, left and right, respectively. The lower panels show the number of

X-ray sources with luminosity higher than1033 erg s−1 for the tests shown in the panels

above. Such sources could be observed byChandra. Several conclusions can be made.

With a larger value ofζ = 0.1, the accretion discs around black holes are larger, and

thus viscous times are long. As a result, the X-ray emission varies smoothly with time,

first increasing as the discs are built up, and then decreasing on∼ a thousand years time

scale. Thus the sources are rather steady in time, and are also dim.

For the smaller value ofζ = 0.001, viscous times in small scale discs are much

shorter. Therefore, the X-ray emission from the sources varies on much shorter time

scales, i.e., of a few years to tens of years. The sources are also brighter as the peak
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accretion rates are higher – each individual source shines much brighter for a shorter

time, as compared with the largerζ case. Both the upper and the lower panels provide

us with largely independent predictions which may be compared to X-ray observations.

Figure 3.4 shows the same experiments as fig. 3.3 but for 20000black holes. Com-

parison between the two different values ofζ shows similar trends as before. It is in-

teresting to compare the figs. 3.3 and 3.4. While the results depend significantly on the

unknown value ofζ , both low and highζ tests show the same tendency of a significant

luminosity increase with increase in the number of black holes. In fact, the luminosity

increased by a larger factor than the black hole number did. The higher the number of

accretors, the larger the chance to have sources with small∆v, hence increasing the lu-

minosity of the cusp with increasingN in a non-linear fashion. The number of sources

above the chosen luminosity threshold also increased. These tendencies hold for all val-

ues ofζ . This suggests that by performing tests across all reasonable parameter space

for ζ the maximum allowed number of stellar mass black holes in thecusp may be de-

termined.

3.3.3 Search in theN , ζ parameter space

Following this idea, a number of models for a range of values of ζ and for the total

black hole numbers ofN = 5, 10, 20 and40 thousand were tested. During the time

period modelled, the results vary considerably in each test. For example, it is possible

for just one single source to dominate the X-ray luminosity output of the cluster. In

order to reduce and estimate the statistical noise of the results, for each of the values of

ζ and the total black hole number considered here, the tests were repeated three times,

each time generating a new random black hole orbit distribution. The mean value for

the observables for the three runs were calculated as were the deviations from the mean

values. The averaging was done between time2000 < t < 3000 years to look at a state

that may be similar to the present state of the Minispiral, given its estimated dynamical

time.

A summary of the results is presented in Table 3.2. Several quantities were defined

specifically, the average total X-ray luminosity of the black hole cluster and the number

of black holes brighter than1033 erg s−1,NX, as such sources would have been resolved

by Chandra into separate point sources. Time-dependent variants of these quantities

were plotted in figs. 3.3 and 3.4. In addition to these, the probabilities that the total
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FIGURE 3.3. X-ray light curves (top panels) and number of individual sources (bot-
tom panels) whereLx > 1033 erg s−1, when the total number of black holes in the
inner parsec is 5000. The left and right panels correspond toζ = 0.1 andζ = 0.001

respectively.

luminosity of the cusp exceeds 1035 and 1036 erg s−1 were defined:

P (LX > 1035) =
1

tf − ti

∫

LX>1035
dt , (3.14)

and similarly for 1036 erg s−1, ti and tf are 2000 and 3000 years respectively. The

probability of the number of individual sources brighter thanLX > 1033 being larger
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FIGURE 3.4. X-ray light curves and number of individual sources whereLx > 1033

erg s−1, when the total number of black holes in the inner parsec is 20000. The left
and right panels correspond toζ = 0.1 andζ = 0.001 respectively.

than 3, 10 and 20 at a given time is defined in a similar way, e.g.,

P (NX > 10) =
1

tf − ti

∫

NX>10
dt. (3.15)

These values can be compared to the number of discrete X-ray sources in the inner parsec

as detected byChandra.

Observations of the inner parsec byChandrahave placed upper limits on the total

luminosity of sources of approximately1035 erg s−1 (Baganoff et al. 2003) and the num-

ber of individual X-ray sources with a luminosity greater than1033 erg s−1 of a dozen or
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so (F. Baganoff, private communication,Galactic Centre Workshop 2006). With these

constraints in mind the possibility that the cusp contains 40000 black holes can be im-

mediately ruled out. For any reasonable value ofζ , the total luminosity and the number

of individual sources withLX > 1033 erg s−1 are too large compared to observations. A

cusp containing 20000 black holes is not very likely but cannot be ruled out completely

at this time. In particular, only the largerζ case is acceptable forN = 20000. Even

though the average total cusp luminosity is∼ 1036 erg s−1 for this test, i.e., too large, the

probabilityP (LX > 1035) is only∼ 0.66. Cusps withN = 5000 or 10000 black holes

is well within the limits imposed by observations.

3.3.4 Sensitivity of results to the properties of the Minispiral

A rather simple model for the Minispiral is used (§3.2.3), partially because it is not yet

clear what a better model for this gas would be. Currently theorigin of this gaseous fea-

ture and the precise three-dimensional distribution of gasand velocity field is unknown

(Paumard et al. 2004).

To test the sensitivity of the conclusions to the propertiesof the Minispiral, several

of the assumptions made in§3.2.3 were varied. Table 3.3 summarises these tests. In

particular, in one of the series of tests the Minispiral was assumed to be three times

more massive, i.e., contain150M⊙ of gas, with all other assumptions unchanged. In this

case the luminosity of the cusp increases significantly at a given number of black holes,

and even theN = 104 case is too luminous for the smaller values of the circularisation

parameterζ . Hence the upper limit on the number of black holes is around104.

Another likely complication is that the gas may be on a parabolic or an eccentric

trajectory rather than a circular one, as assumed in this work until now. For such orbits,

the gas velocity can be both larger and smaller than the localKeplerian value, depending

on where exactly on the orbit the gas is. Observationally, the Minispiral seems to be

closer to the pericenter of its orbit rather than the apocenter (Paumard et al. 2004). To test

the significance of non-Keplerian orbits, the gas velocity was set to 1.2 and 1.4 times the

local Keplerian value in the two series of tests presented inTable 3.3. Clearly this model

is not geometrically self-consistent as the half-disc we use for the Minispiral should then

deform in a complicated way. The larger gas velocity should result in a decrease in the

number of black holes travelling at a low relative speed through the Minispiral, which

should reduce the average gas capture rate (eq. 3.1).

Table 3.3 shows that increasing the gas velocity to 1.2 of thelocal Keplerian value

results in a marked drop in average luminosity of black holes, to the point that a cusp
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containing 40000 black holes cannot be ruled out for the larger value of the circulari-

sation parameter,ζ = 0.1. On the other hand, realistically, the sources would have a

distribution in values ofζ , and hence a fair number of sources would haveζ ∼ 0.01 or

less, which would then be ruled out.

Moving on to the gas velocity1.4vK, a further drop in the luminosity of the cusp and

the number of sources detectable byChandra(Table 3.3) is noted. Even theN = 40000

is allowed. However this model strongly over-simplifies thesituation in the Galactic

Centre. The Minispiral should be a feature bound to Sgr A∗ (or else the fact that it is

crossing the innermost region of the parsec now would be a coincidence), and hence

it is rather implausible that the gas is on a radial trajectory for which one would have

v =
√

2vK ∼ 1.4vK. I believe the case wherev = 1.2vK is the one that better represents

reality

Finally, the last entries in Table 3.3 are the tests with the Minispiral mass ofMdisc =

150M⊙ andv = 1.2vK. A cusp of 40000 black holes is clearly inconsistent with the

observations, whereas theN = 20000 is not completely ruled out.

3.3.5 Comparison to related previous work and result uncertainties

Blaes & Madau (1993) and Perna et al. (2003) considered the related question of observ-

ing isolated neutron stars of the Galaxy in X-rays as they accrete gas passing through

molecular clouds. Agol & Kamionkowski (2002) studied the same issue for isolated

stellar mass black holes. In particular, the latter study concluded that radiative efficiency

of accreting black holes needs to be very small, i.e.,η = 10−5, in order to not contradict

the available X-ray data.

My model differs from Agol & Kamionkowski (2002) in two important aspects.

Firstly, the viscous disc evolution is modelled in a simplified manner whereas these au-

thors assumed that the instantaneous Bondi-Hoyle capture rate is also the instantaneous

accretion rate onto the black hole. If the disc viscous time is long, my model predicts a

smaller accretion rate onto the black hole but for a longer period of time. Thus, with the

same radiative efficiency, I would in general predict fewer high luminosity sources but a

higher number of low luminosity sources.

Secondly, rather than use a constant radiative efficiency factor, eq. (3.12) is used,

in which η ∝ Ṁ for Ṁ ≪ 0.01. While this prescription is quite reasonable on both

theoretical and observational grounds (Esin et al. 1997), it is by no means the only one

possible. To assess the magnitude of the possible changes inthe results, a cusp ofN =
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40000 was considered, in a similar test to those in Table 3.2. With the constantη = 10−4

value, and an instantaneous accretion model as in Agol & Kamionkowski (2002), the

number of detectable sources was about15, and the cusp total average luminosity was

around2 × 1035 erg s−1. The number of detectable sources is thus comparable to whatI

find with my standard assumptions.

On the other hand, if one uses the radiative efficiency as low asη = 10−5, then there

is onlyNX ∼ 3 observable sources. Such a low radiative efficiency would hence allow

a cusp withN = 40000 black holes. However,η = 10−5 is extreme and is unlikely at

least for the sources with higher accretion rates as these are in the parameter space of

observed moderately bright accreting X-ray binaries, whereη is clearly larger than10−5

(Esin et al. 1997).

3.3.6 A neutron star cusp

The mechanism that produces an overabundance of black holesin the Galactic Centre

also applies to neutron stars, as they are also more massive than an average star. Sim-

ulations by Freitag et al. (2006) predict that a cusp of neutron stars will have a number

density profile quite similar to that of stellar mass black holes. These neutron stars would

be accreting gas in a similar manner to the black holes, with modifications only due to

the smaller mass (Mns = 1.4M⊙) and the existence of a surface.

Using the method outlined in§1.3.2 I approximate the emission of an accreting

neutron star as a black-body with temperatureTns from the surface area4πR2
ns, where

Rns = 10 km is the radius of the neutron star. Most of the radiation fluxwill be emitted

at wavelengths corresponding to photon energyE = 3kTns:

E ∼ 0.8 L
1/4
34 keV , (3.16)

whereL34 is the X-ray luminosity in units of1034 erg s−1. Due to the quite large ab-

sorbing column density to the GC,NH ∼ 1023 cm−2 (Baganoff et al. 2003), soft X-ray

emission below∼ 1keV is practically unobservable. Hence the minimum observable

total X-ray luminosity of a neutron star was set at1034 erg s−1, rather than1033 erg s−1

for the black hole case.

Assuming that the radiative efficiency of an accreting neutron star with negligible

magnetic fields is constant atη ∼ 0.1, the luminosity of an accreting neutron star is

simply

LX = 0.1Ṁaccc
2 . (3.17)
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With these modifications, I can use the method developed in§3.2 to calculate the X-ray

emission from the cusp containing neutron stars. The results are presented in a way

identical to the black hole cusp in Table 3.4. As with the black hole cusp case, the

N = 40000 case is strongly ruled out on account of too large a number of detectable

point sources,NX, and the total X-ray luminosity of the cusp. TheN = 20000 cusp

also appears to be a bit too high in terms of both the total luminosity and the number of

sources.

However, the assumption that all of the captured material makes it onto the neutron

star surface (see eq. (3.17)) is uncertain. It is well known that the “propeller effect”

may reduce the X-ray luminosity of neutron stars by disrupting the flow far from the

stellar surface (Menou et al. 1999). In fact Perna et al. (2003) showed that the radiative

efficiency of accreting isolated neutron stars in the Galaxyshould not exceedη ∼ 10−3

on average, or else observational constraints would be violated. Ifη ∼ 10−3 is adopted,

the total X-ray luminosity of the neutron star cusp withN = 40000 is only few×1034 erg

s−1. Hardly any individual sources would radiate above the chosen detection threshold

of 1033 erg s−1.

3.4 Conclusions

Stellar mass black holes and neutron stars are predicted to clutter the central parsec of

our Galaxy (Morris 1993, Miralda-Escudé & Gould 2000, Freitag et al. 2006, Hopman

& Alexander 2006). While these predictions seem to be very robust, observational con-

firmation of the existence of a stellar remnant cusp is only indirect at the moment (Muno

et al. 2005b). Nayakshin & Sunyaev (2007) suggested that these sources,accretingcold

gas episodically from the Minispiral or other molecular or ionised gas features found in

the central parsec, may be bright enough both collectively and individually to be observ-

able withChandra. I performed a more elaborate study, where a time-dependentdisc

accretion onto the compact sources was considered. Also taken into account was the fact

that at low accretion rates, the radiative efficiency of black holes appears to be drastically

reduced (Esin et al. 1997), and I used a Monte-Carlo like approach to randomly initialise

the cusp of compact remnants.

The main effort in this work was to set the upper limit on the number of compact

remnants. Whereas the models have internal uncertainties,such as the value of cir-

cularisation parameterζ , and observational uncertainties (the mass and precise orbit

of the Minispiral), a cusp of black holes withN >∼ 40000 seems to be ruled out, bar-
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ring the possibility that radiative efficiency of these sources is extremely low. A cusp

with N ∼ 20000 black holes, as theoretically predicted (Freitag et al. 2006, Hopman

& Alexander 2006), is broadly consistent with the data. Future efforts should improve

these upper limits. The constraints on the neutron star cuspare weaker as the propeller

effect could realistically make radiative efficiency too small for most sources.

On the basis of my calculations, it is quite realistic that some of the X-ray sources

visible in the central parsec (Baganoff et al. 2003, Muno et al. 2005b) may be isolated

black holes and neutron stars accreting gas from the Minispiral. Such sources should be

preferentially found close to the Minispiral if the viscoustime is short (ζ is small). In

addition, binary systems containing a black hole and a normal low mass star can also

accrete gas in roughly the same way as I calculated here. In the case of low values of

circularisation parameter,ζ , the size of the disc around the primary (the black hole) can

be smaller than the size of the binary itself. Thus, these systems may appear as “fake

X-ray binaries”, where the gas supply comes from outside rather than from the low mass

secondary. Observational signatures of such systems mightbe warped and out of binary

plane accretion discs, “too short” or “too weak” accretion outbursts for the size of the

binary.
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Table 3.2. Characteristics of black hole cusp averaged between 2000–3000 years (see§3.3.3).
Numbera ζb < LX >

c P(LX > 1036)d P(LX > 1035)e < NX >f P(NX >20)g P(NX >10)h P(NX >3)i

[103] [1035erg s−1]
5 0.001 1.85± 0.51 0 0.53± 0.46 2.76± 0.75 0 0 0.33± 0.8
5 0.01 2.75± 1.33 0.42± 0.2 0.72± 0.1 4.2± 0.4 0 0 0.63± 0.13
5 0.1 0.73± 0.6 0 0.24± 0.21 2.23± 0.2 0 0 0.18± 0.11
10 0.001 15.91± 2.70 0.33± 0.13 0.90± 0.07 4.44± 0.28 0 0 0.71± 0.06
10 0.01 1.03± 0.24 0 0.45± 0.16 5.36± 0.26 0 0 0.90± 0.04
10 0.1 0.51± 0.28 0 0.31± 0.22 4.53± 1.52 0 0.01± 0.00 0.45± 0.21
20 0.001 19.97± 5.87 0.57± 0.05 0.99± 0.01 8.87± 0.81 0 0.19± 0.11 1.00± 0.00
20 0.01 9.67± 1.94 0.34± 0.14 0.99± 0.00 12.26± 1.40 0.01± 0.01 0.69± 0.17 1.00± 0.00
20 0.1 9.88± 4.49 0.34± 0.22 0.66± 0.23 13.11± 1.25 0.01± 0.00 0.74± 0.16 1.00± 0.00
40 0.001 40.37± 1.75 1.00± 0.00 1.00± 0.00 19.40± 0.37 0.34± 0.05 1.00± 0.00 1.00± 0.00
40 0.01 100.53± 62.13 0.77± 0.08 0.99± 0.00 24.66± 0.50 0.85± 0.05 1.00± 0.00 1.00± 0.00
40 0.1 6.50±1.83 0.20± 0.14 1.00± 0.00 24.59± 2.18 0.72± 0.14 1.00± 0.00 1.00± 0.00

The columns list:
a Total number of black holes in the cusp
b Circularisation parameter (§3.2.1)
c Time-averaged luminosity of the cusp
d−e Probability that the total luminosity of the cusp is greaterthan1036 or 1035 erg s−1, respectively.
f Average number of sources with X-ray luminosity greater than 1033erg s−1(NX)
g−i Probability thatNX is greater than 20, 10 and 3, respectively

6
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Table 3.3. Same as Table 3.2, but for different models of the Minispiral
Number ζ < LX > P(LX > 1036) P(LX > 1035) < NX > P(NX >20) P(NX >10) P(NX >3)
[103] [1035erg s−1]

3 Mgasa

5 0.01 28.13± 11.54 0.62± 0.15 0.84± 0.08 5.81± 0.95 0 0.03± 0.02 0.84± 0.06
5 0.1 1.53± 4.45 0 0.67± 0.40 7.04± 0.47 0 0.06± 0.04 1.00± 0.00
10 0.01 35.21± 12.01 0.63± 0.17 1.00± 0.00 9.24± 0.93 0 0.36± 0.13 1.00± 0.00
10 0.1 2.06± 0.74 0 0.56± 0.16 14.12± 0.51 0.02± 0.00 0.98± 0.01 1.00± 0.00
20 0.01 24.53± 6.02 0.77± 0.13 1.00± 0.00 18.95± 1.25 0.40± 0.16 1.00± 0.00 1.00± 0.00
20 0.1 5.47± 0.41 0.01± 0.00 1.00± 0.00 29.38± 2.06 0.90± 0.07 1.00± 0.00 1.00± 0.00

1.2vb

K
5 0.01 0.93± 0.55 0.02± 0.01 0.14± 0.07 1.85± 0.36 0 0 0.10± 0.04
5 0.1 0.05± 0.03 0 0 0.44± 0.20 0 0 0
10 0.01 0.45± 0.10 0 0.13± 0.05 3.47± 0.42 0 0 0.49± 0.13
10 0.1 0.38± 0.25 0 0.17± 0.12 2.45± 1.42 0 0 0.31± 0.22
20 0.01 4.86± 1.63 0.14± 0.05 0.43± 0.15 6.65± 0.08 0 0.03± 0.01 0.91± 0.04
20 0.1 0.35± 0.07 0 0 4.24± 0.08 0 0 0.76± 0.07
40 0.01 40.65± 1.66 0.56± 0.14 0.94± 0.04 13.42± 0.23 0.02± 0.01 0.74± 0.06 1.00± 0.00
40 0.1 1.05± 0.37 0 0.18± 0.13 10.27± 0.62 0 0.44± 0.80 1.00± 0.00

1.4vc

K
5 0.01 0.07± 0.02 0 0 0.71± 0.15 0 0 0
5 0.1 0.02± 0.00 0 0 0.37± 0.26 0 0 0
10 0.01 0.12± 0.04 0 0 1.17± 0.21 0 0 0
10 0.1 0.05± 0.01 0 0 0.83± 0.32 0 0 0
20 0.01 0.32± 0.48 0 0.03± 0.02 3.66± 0.43 0 0 0.49± 0.13
20 0.1 0.03± 0.00 0 0 0.11± 0.05 0 0 0
40 0.01 0.64± 0.14 0 0.18± 0.09 5.37± 0.60 0 0.04± 0.01 0.72± 0.07
40 0.1 0.12± 0.03 0 0 1.34± 0.36 0 0 0.01± 0.01

3 Mgas & 1.2vd

K
20 0.01 9.79± 0.93 0.34± 0.06 1.00± 0.00 15.47± 0.25 0.07± 0.02 0.98± 0.01 1.00± 0.00
20 0.1 2.89± 1.03 0.09± 0.06 0.86± 0.10 13.72± 0.25 0.04± 0.01 0.91± 0.03 1.00± 0.00
40 0.01 12.17± 0.96 0.59± 0.02 1.00± 0.00 25.02± 0.78 0.90± 0.05 1.00± 0.00 1.00± 0.00
40 0.1 6.43± 1.76 0.29± 0.10 0.93± 0.05 19.63± 1.82 0.50± 0.16 1.00± 0.00 1.00± 0.00

a Mass of the Minispiral has been tripled to 150M⊙
b Velocity of the gas has been increased to 1.2vK, wherevK is the local Keplerian velocity
c Velocity of the gas has been increased to 1.4vK
d Mass of the Minispiral has been tripled to 150M⊙ and the velocity of the gas has been increased to 1.2vK
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Table 3.4. Same as Table 3.2 but for a neutron star cusp.
Numbera ζb < LX >

c P(LX > 1036)d P(LX > 1035)e < NX >
f P(NX >20)g P(NX >10)h P(NX >3)i

[103] [1035erg s−1]
5 0.001 3.23± 5.24 0.08± 0.06 0.79± 0.11 2.84± 0.43 0 0 0.32± 0.10
5 0.01 2.43± 0.76 0 0.67± 0.12 2.78± 0.81 0 0 0.38± 0.16
5 0.1 1.44± 0.18 0 0.85± 0.11 2.90± 0.67 0 0 0.34± 0.20
10 0.001 4.17± 0.90 0.02± 0.01 0.99± 0.01 6.25± 0.45 0 0.03± 0.02 0.94± 0.02
10 0.01 5.89± 1.38 0.18± 0.08 0.99± 0.01 4.53± 0.34 0 0 0.72± 0.10
10 0.1 6.69± 3.59 0.30± 0.21 0.83± 0.12 3.32± 0.15 0 0 0.47± 0.05
20 0.001 8.13± 1.34 0.27± 0.11 1.00± 0.00 11.52± 1.15 0 0.57± 0.15 1.00± 0.00
20 0.01 9.73± 1.73 0.32± 0.12 1.00± 0.00 7.32± 0.30 0 0.11± 0.08 0.97± 0.02
20 0.1 7.17± 2.15 0.27± 0.19 1.00± 0.00 9.00± 0.35 0 0.19± 0.05 1.00± 0.00
40 0.001 41.60± 12.71 0.99± 0.01 1.00± 0.00 21.99± 0.52 0.69± 0.07 1.00± 0.00 1.00± 0.00
40 0.01 18.62± 4.46 0.87± 0.07 1.00± 0.00 15.82± 0.48 0.04± 0.02 0.99± 0.00 1.00± 0.00
40 0.1 17.91± 3.74 0.86± 0.10 1.00± 0.00 21.34± 0.34 0.66± 0.05 1.00± 0.00 1.00± 0.00

a − e see Table 3.2 caption.
f Average number of neutron stars with LX greater than1034erg s−1(NX). Only sources with LX > 1034 are visible, see§3.3.6.
g − i see Table 3.2 caption.
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Chapter 4
GRS 1915+105

“Don’t matter how many times you get

burnt, you just keep doin’ the same.”
- Bodie

The Wire: Time after Time [3.01]
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4.1 Introduction

GRS 1915+105 is a member of a class of objects called low mass X-ray binaries (LMXB).

As described in§1.3, they consist of a black hole/neutron star primary and a low mass

secondary star which is filling its Roche lobe. Mass is transferred from the secondary

star via the L1 point and forms an accretion disc around the primary. The accretion disc

may become unstable due to the thermal-viscous instabilityresulting in an increase in

the accretion rate onto the primary. These sudden accretionevents lead to a brightening

of the source in X-rays for several months.

GRS 1915+105 is one of the brightest X-ray sources visible inthe sky. It was first

discovered in 1992 (Castro-Tirado, Brandt & Lund 1992) whenit went into outburst and

has been extensively studied ever since (for a review see Fender & Belloni (2004)). The

outburst which led to the system’s detection in 1992 is stillproceeding to this day, lasting

20 times longer than for any other LMXB. The X-ray light curveof GRS 1915+105 is

one of the more complex that has been observed with large variability on a variety of

time scales (Greiner, Morgan & Remillard 1996, Belloni et al. 1997).

A radio counterpart was observed by Mirabel et al. (1993) andwas discovered to have

components moving away from GRS 1915+105 with an apparent superluminal velocity

(Mirabel & Rodriguez 1994). This, combined with a distance estimate of 12.5 kpc,

means that GRS 1915+105 became the first source in our Galaxy to exhibit superluminal

motion. This had previously only been associated with jets from super-massive black

holes in active galactic nuclei and lead to GRS 1915+105 being classed as a microquasar.

Identification of the optical counterpart to GRS 1915+105 was hindered by over 30

magnitudes of absorption in the optical band separating us from the source (Mirabel

et al. 1994). Infrared spectroscopy identified the secondary as a K or M type giant

(Greiner et al. 2001), which confirmed that GRS 1915+105 was aLMXB. Radial ve-

locity measurements confirmed the presence of a black hole of∼ 14M⊙ and obtained

a orbital period of 33.5 days (Greiner, Cuby & McCaughrean 2001). The most recent

observations suggest a 14.0± 4.4 M⊙ black hole and a secondary of 0.8± 0.5 M⊙

(Harlaftis & Greiner 2004). The longevity of GRS 1915+105 outbursts can possibly be

explained by its long orbital period which results in an extremely large accretion disc

forming around the black hole,Rdisc ∼ 2 × 102 cm (Truss & Done 2006). This ensures

there is a large reservoir of mass in the disc and results in the long outburst time observed.

In this work I concentrate on the long term behaviour of GRS 1915+105, specifically
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the duty cycle, i.e. the fraction of the time the system is in outburst,

duty cycle =
tout

tout + tq
. (4.1)

Wheretout and tq are the outburst and quiescent times respectively. Additionally the

recurrence time will also be discussed in this worktrec = tout + tq. Analytic estimates

of the duration of an outburst were performed by Truss & Done (2006). However these

simplified estimates could not include effects such as tidalinteractions and mass loss

from the disc, which may dramatically effect any outburst.

The mass transfer rate,−Ṁ2, from the secondary is significantly smaller than the

accretion rate onto the black hole during an outburst. As a result the time between

outbursts is expected to be far larger than the outburst itself: the disc is depleted during

an outburst and needs to build up in mass again before anotheroutburst is triggered.

Hence GRS 1915+105 and other systems like it are expected to spend most of their lives

in the quiescent phase and will be difficult to detect. This raises the question, how many

GRS 1915+105 like objects are in our Galaxy and the local Universe?

In section 4.3 I present the features of the smooth particle hydrodynamics (SPH) code

I use and introduce the parameters that determine the behaviour of the simulations. In

section 4.4 I will present the results and determine the parameters effects on the duty

cycle. Finally in section 4.5 the implications of the work are discussed.

4.2 Physical ingredients

In this section I will go into the physical ingredients used in the code in some detail. The

SPH code by Murray (1995) has been modified to include the following physical effects:

the disc instability model (DIM), irradiation of the accretion disc by a central source of

X-rays and Eddington wind loss from the disc.

4.2.1 The disc instability model

This was introduced in§1.3.3 and was devised to explain the outbursts in dwarf novae.

The disc vertical equilibrium solution, at a given radius, results in a relation between the

surface density of the discΣ and the temperatureT , theS-curveshown in fig. 1.11. The

solution is unstable on the middle branch resulting in limit-cycle like behaviour when the
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disc heats and cools at the critical densitiesΣmax andΣmin. Such a solution is calculated

using the Shakura-Sunyaev viscosity prescription, see§1.2.3,

ν = αcsH , (4.2)

whereα is a free parameter.

Historically, in order to reproduce observed outbursts, the two-α model was intro-

duced:α takes different values (αh andαc) on the hot and cold branch of the S-curve.

This translates intoΣmax = Σmax(R,αc) andΣmin = Σmin(R,αh). If somewhere in the

discΣ(R) > Σmax(R), the annulus enters the hot, high-viscous state, which propagates

to nearby annuli. The front propagating inward forces the disc into the hot viscous state

on its way. The high viscosity implies a high accretion rate onto the central object, lead-

ing to an X-ray outburst. The disc returns to quiescence (lowviscosity, small accretion

rate) onceΣ(R) < Σmin. It has been found by integration of the vertical disc structure

thatΣmax andΣmin scale linearly with radius (Cannizzo, Shafter & Wheeler 1988):

Σmax(R) = 11.4R1.05
10 M−0.35

1 α−0.86
c g cm−2 , (4.3)

and

Σmin(R) = 8.25R1.05
10 M−0.35

1 α−0.8
h g cm−2 , (4.4)

whereM1 is the primary mass in solar masses, andR10 is the radius in units of1010 cm.

Equations (4.3) and (4.4) are used in our numerical setup, but it is noted that some slightly

different prescriptions exist, e.g. Dubus et al. (2001).

4.2.2 Irradiation

As stated above, whereverΣ(R) > Σmax(R) the disc is in the hot viscous state. However,

these are not the only grounds for the disc entering the hot state. The X-ray radiation

generated when matter falls into the back hole (see§1.3) can keep the hydrogen ionised

and the disc in the hot state out to a certain radiusRirr. This does not take place in dwarf

novae which typically do not emit significantly in X-rays andhave smaller luminosities

than LMXBs.

To estimate the region of the disc that is affected by irradiation of the central source,

the ionisation temperature of hydrogen,TH , is used in the Stefan-Boltzmann law

ǫLX = 4πσR2
irrT

4
H , (4.5)
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whereσ is the Stefan-Boltzmann constant andǫ is a constant containing all of the un-

known information about the nature of the X-ray source, the geometry of the disc and

the albedo of the gas within the disc. If no assumptions aboutthe accretion or irradiation

efficiency are made then

Rirr =

(
ǫηṀc2

4πσT 4
H

)1/2

= 2.7 × 1011

(
ǫ

10−3

)1/2 ( η

0.1

)1/2

Ṁ
1/2
18 cm. (4.6)

whereǫ is defined as the irradiation efficiency,η is the accretion efficiency anḋM18 is

the central accretion rate in units of1018 g s−1.

4.2.3 Wind Loss

Local mass loss due to the local mass transfer rate exceedingthe Eddington limit is also

included. The local accretion rate at radiusR is given by,

Ṁ(R) = −2πRvR(R)Σ(R) (4.7)

wherevR(R) is the radial velocity. The Eddington rate at the same radiusis,

ṀEdd(R) = λ
RLEdd

Gm1

, (4.8)

whereLEdd is the Eddington luminosity,m1 is the black hole mass andλ is a free param-

eter usually set to 1. IfṀ(R) > ṀEdd(R) a wind carries away the excess mass at a rate

Ṁwind. The parameterλ allows us to depart from the Eddington limit1 (whenλ = 1):

the smallerλ, the easier it is to remove particles from the disc. This is just a simple way

to parametrise the wind efficiency. These three mechanisms contain the free parameters

that are varied throughout this work in order to reveal theirrelative effects, namely:αh,

αc, ǫ andλ. Note also that the expressions forΣmax andΣmin are estimates only and that

I allow for a change in their normalisations which results intwo extra parameters. This

is detailed in the numerical setup below.

1Recall the assumptions made when deriving the Eddington limit in §1.2.2, a steady spherically sym-
metric accretion comprised entirely of Hydrogen.

76



GRS 1915+105: 4.3 Numerical Method

4.3 Numerical Method

I study the long term evolution of GRS 1915+105 using the smooth particle hydrody-

namic (SPH) code detailed in§2. It includes the thermal viscous instability, wind loss,

disc irradiation as described in§4.2. Moreover, the full binary potential is included and

hence any tidal effects that may arise.

4.3.1 Particle injection and rejection

In the simulations particles are injected from the L1 point,and into the primary’s poten-

tial, with the transfer rate given by Ritter (1999),

−Ṁ2 ∼ 7.3 × 10−10

(
M2

M⊙

)1.74 (
Porb

1 day

)0.98

M⊙ yr−1 . (4.9)

Using GRS 1915+105 system characteristics, this gives−Ṁ2 ∼ 2 × 10−8M⊙ yr−1. For

more detail on the mass transfer rate in binary systems see§1.3.1.

Particles are removed from the simulation when they are within 0.04a (a is the binary

separation) of the black hole, if they return to the secondary’s Roche lobe or if they are

at a distancer > a from the black hole with a velocity greater than the escape velocity.

The first condition implies that the accretion rates derivedare not the accretion rates onto

the black hole (as0.04a ≫ RSchw). Some material may still be blown away in a wind

before it reaches the black hole surface but resolution and timescale issues prevent us

from studying the most inner regions of the accretion disk.

4.3.2 Triggering the disc instability

The disc is divided into one hundred annuli in which the mean surface density is eval-

uated. When the surface density of one of these annuli is greater thanΣmax(R), α is

switched into the hot state (α = αh). Conversely, the disc switches back to the cold state

(α = αc) whereverΣ(R) < Σmin(R). Using eqs. (4.3) and (4.4) with the parameters

of GRS 1915+105 and the typical values of the Shakura-Sunyaev α parameterαh = 0.1

andαc = 0.01,

Σmax = Kmax

(
R

a

)1.05

∼ 2.5 × 105

(
R

a

)1.05

g cm−2 , (4.10)
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Σmin = Kmin

(
R

a

)1.05

∼ 2.2 × 104

(
R

a

)1.05

g cm−2 . (4.11)

In practice, we cannot use the values ofKmax/min shown in eqs. (4.10) and (4.11). Using

Kmax ∼ 2.5 × 105 g cm−2, triggering an outburst would take a prohibitive amount of

time. Typical values used wereKsph
max = 55 andKsph

min = 4.7853. The reasons behind this

are discussed in§4.3.3-§4.3.5 and its effects of are discussed in§4.3.6. The quantities

Kmax andKmin are also to be varied to explore how a less or more massive diskwould

behave. For the same reasons,αh andαc are also increased from their canonical values

given above, in order to speed up the outburst and quiescencetimes. Doing so allows

the system to relatively quickly reach steady-state and undergo several outburst events

during a single run. The draw-back is that results need to be scaled in order to get actual

quiescence and outburst times, this is detailed in§4.3.6.

2 4 6
t/tth

0.2

0.4

0.6

0.8

FIGURE 4.1. Functional form of the viscous switch, eq. (4.13). The viscosity is
switched after a few thermal time scales. A comparison is made between eq. (4.13)

solid line and eq. (4.15) points

The last technical point is that of the disc transition between the cold and hot states.

It is performed following the method described in Truss et al. (2000), Murray et al.
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(2002) and Truss & Wynn (2004). Particles are switched from the cold into the hot state

smoothly on the thermal time scale,tth, of the system. The thermal time is given by

a ratio of the heat content per unit area of the disc,∼ ρkT/µmp ∼ Σc2s and the rate

of energy loss (dissipation) per unit area of the disc,9νΣGM1/4R
3 (see§1.2.4). This

results in a thermal time scale of

tth =
4

9αΩK
(4.12)

where I have used eq. (1.15) and the fact thatH/cs ∼ tφ ∼ Ω−1
K , the dynamical time

scale in the disc (§5.8 in Frank et al. (2002)). Once a switch is triggered,α follows

α(t) = α+ ± α− tanh
(
t

tth
− π

)
, (4.13)

where

α± =
(αh ± αc)

2
. (4.14)

The change in viscosity parameter (δα) in a time-step (δt) is therefore given by,

δα =
δt

tth
α−


1 −

(
α− α+

α−

)2

 . (4.15)

Fig. 4.1 compares the forms of eqs. (4.13) and (4.15).

4.3.3 Models using a massive disc

In the first attempt to model GRS 1915+105, the physical values for Kmax andKmin

were used from eqs. (4.10) and (4.11). One disadvantage of this method was the mass

and time resolutions of the simulations was poor. Limited computational time means it

is desirable to keep the number of particles in the disc toN ∼ 105. A typical simulation

with 105 particles takes∼ 3000 computer hours, any significant increase in the particle

number and this time becomes prohibitively long. A rough estimate of the particle mass

can be found by approximating the mass of the disc immediately before an outburst

Mdisc ∼
∫ Rout

0
2πRΣmax(R) dR ∼ 2πKmax

a1.05

∫ Rout

0
R2.05dR (4.16)

and dividing by the number of particles,mp = Mdisc/N . With aRout ∼ 0.4a the particle

mass ismp = 1.7 × 1025g. This demonstrates how the particle mass is related to the
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choice ofKmax used in the code,mp ∝ Kmax. The global time steps used in the code are

tstep =
tresPorb

2π
(4.17)

with a time resolution oftres. Assuming one particle is emitted from theL1 point per

time step then,

mp = Ṁ2 tstep

tres =
2πmp

Porb Ṁ2

(4.18)

To ensure the correct mass transfer rate (−Ṁ2 ∼ 2 × 10−8 M⊙ yr−1) and usingmp =

1.7 × 1025g, a time resolution of∼ 30 is needed. In effect one particle is emitted once

every∼ 5 orbits. To speed up the code the viscosity in the disc is a factor of ten greater

than is typically assumed both during outburst and quiescence, leading to a higher rate

of particle accretion. This slow rate of particle injectioncoupled with the higher rate

of particle accretion can result in an entirely empty disc. To prevent this, the rate of

particle injections was increased effectively increasing−Ṁ2 by a∼ few thousand. Fig.

4.2 shows a sample of the output of the code.

4.3.4 Models using an under-massive disc

To avoid the problems discussed in§4.3.3 one possibility is to scale down the mass of the

disc while the particle number remains constant. If a reduced value ofKsph
max = 55 g cm−2

is used, an approximate particle mass is∼ 3.5 × 1021 g, following the steps outlined in

§4.3.3. The values forKsph
max andKsph

min were chosen to have the same ratio asKmax/Kmin.

This allows for a significantly improved mass and time resolution of the code. Using eq.

(4.18)tres ∼ 0.005, resulting in a global time step of∼ 2300s. However the resultingRirr

during outburst is too small (fig. 4.3 compared to fig. 4.2). GRS 1915+105 is expected

to be accreting at the Eddington limit, using eq. (1.14) results in an irradiation radius of

REdd = 3.24 × 1011

(
ǫ

10−3

)1/2
(
M1

M⊙

)1/2

cm. (4.19)

For ǫ = 7 × 10−4 (value used by Truss & Done (2006)),REdd ∼ 0.14a, a value that is

greater than any produced by this version of the code. Scaling the irradiation efficiency

up to approximate the system more accurately will be necessary.
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FIGURE 4.2. Plot of central accretion rate, irradiation radius, dissipation (code units)
and number of particles as a function of time withΣmax andΣmin given by eqs.

(4.10) and (4.11)

4.3.5 Under-massive disc with scaledRirr

To rectify the smaller than expected irradiation radius, anallowance for the under-massive

disc must be made. Upon accretion the mass of the particles are scaled up when calcu-

latingRirr. WhenKmax = 2.5 × 105 g cm−2 andKsph
max = 55 g cm−2 then the particle

masses were scaled up by a factor ofKmax/K
sph
max ∼ 4500. The output of the code is

shown in fig. 4.4. A comparison between the output of the code for the unscaled and

scaled irradiation radii is shown in fig. 4.5. A largerRirr prolongs the outburst and its

exponential decay, as expected for an irradiated disc (King& Ritter 1998), has a longer
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FIGURE 4.3. Plot of central accretion rate, irradiation radius, dissipation (code units)
and number of particles as a function of time. Values ofKsph

max = 55 g cm−2 and
Ksph

min = 4.7853 g cm−2 are used.

timescale.

4.3.6 Scaling outburst and recurrence timescales

As we have stated in section 4.3, for reasons of computational time, we are forced to use

Σmax/min andαhot/cold values which are different from their “true” values. In thissection

we consider how to scale the outburst and quiescent timescales from the simulations to

produce predictions of the true timescales.

In the code we use aΣmax proportional toR. During an outburst most of the mass
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FIGURE 4.4. Plot of central accretion rate, irradiation radius, dissipation (code units)
and number of particles as a function of time. Values ofKsph

max = 55 g cm−2 and
Ksph

min = 4.7853 g cm−2 are used andRirr has been scaled.

inside a certain radius (Rout) will be accreted. At the start of the outburst the surface

density inside this radius will be nearΣmax. The outburst timescale is then given by

tout =
M

Ṁ
(4.20)

whereṀ is the rate at which the mass in the regionR < Rout changes andM is the

mass in the same region, given by,

M ∼
∫ Rout

0
2πRΣmax(R)dR−

∫ Rout

0
2πRΣmin(R)dR. (4.21)
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FIGURE 4.5. Comparison between the output of the code with a scaled and unscaled
Rirr. The time has been normalised to the start of the outburst

Simplifying using eqs. (4.3) and (4.4) gives,

M ∼ 2πR2
out

3.05
(Σmax(Rout) − Σmin(Rout)). (4.22)

Eqs. (4.10), (4.11) and (4.22) can then be used to show,

M ∝ (Kmax −Kmin). (4.23)

Given that (see eq. (1.53)),

Ṁ ∝ αhΣmax ∝ αhKmax (4.24)
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then

tout ∝
(Kmax −Kmin)

αhKmax

(4.25)

This provides a way to scale the results we obtain from our SPHcode. The ratio of the

“real” outburst time to the simulated outburst time is therefore,

tout

tsph
out

=
(Kmax −Kmin)α

sph
h Ksph

max

(Ksph
max −Ksph

min)αhKmax

. (4.26)

WhereKmax andKmin are the physical values andKsph
max andKsph

min are the values used in

the SPH simulation. Similarly we can also scale the quiescent times by using,

tq =
M

−Ṁ2

(4.27)

whereM is given by eq. (4.23), hence,

tq ∝ Kmax −Kmin

−Ṁ2

(4.28)

which gives the ratio of the “real” quiescent time to the quiescent time in the simulation

as,
tq

tsph
q

=

(
Kmax −Kmin

Ksph
max −Ksph

min

)(
−Ṁ sph

2

−Ṁ2

)
. (4.29)

The standardsimulation has the following parametersKmax = 55, Kmin = 4.785

(all subsequent references toKmax/min refer to the values used in the code),αh = 1,

αc = 0.1, η = 0.1 andλ = 1.0. When exploring the parameter space, only one of these

variables was changed at any one time, the rest took these values. In§2.7 I determined

the relation between the Shakura-Sunyaevαss and the artificial viscosityα, because of

the approximate one-to-one relation between the two they can be used interchangeably.

However, to remove ambiguity, unless stated otherwiseα in this section refers to the

artificial viscosity parameter.

4.4 Results

4.4.1 Typical Behaviour

As previously stated in§4.3.1 particles are injected from the L1 point and proceed to

build up in a disc around the accreting black hole. The particle mass andKmax were
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chosen to ensure approximately105 particles were in the disc before an outburst was

triggered. The simulations were permitted to go through several outbursts until the disc

achieved a steady state.

FIGURE 4.6. Evolution of azimuthally averaged surface density before outburst (top
left panel) during outburst (top right panel) and after outburst (bottom panel). Red
and blue lines representΣmax andΣmin respectively, see eqs. (4.10), (4.11). Binary

separation for GRS1515+105 isa ∼ 7.5 × 1012 cm

Fig. 4.6 shows the evolution of the azimuthally averaged surface density in a disc for

a typical simulation. In the snapshot immediately prior to the outburst (top left panel), the

surface density in the inner disc closely follows the form ofeq. (4.10) withKmax = 55.

Exceeding this limit atR ∼ 0.1a is the trigger for entry into the hot viscous state and

hence the trigger for the outburst. The annulus that enters the hot state begins to spread,

its particles drift into neighbouring annuli increasing their surface density. This process

repeats itself if the surface density of the neighbouring annuli rises aboveΣmax(R). In

this way a significant portion of the disc enters the hot state. The top right panel in fig.

4.6 shows the disc in the initial stages of an outburst. The increased viscosity in the inner

disc has already caused particles to be transferred to the inner regions of the disc, where
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they will be removed from the simulation and said to be accreted by the black hole. To

further illustrate the changes in the disc during an outburst, fig. 4.7 displays the average

artificial viscosity parameter in the disc during the initial stages of an outburst. The inner

disc is in the hot state, conversely the outer disc is in the cold state.

FIGURE 4.7. Radial profile of the artificial viscosity parameter during an outburst.
For comparison theα in the hot and cold states is displayed.

Typically 20-30% of the particles in the disc are accreted onto the black hole during

an outburst. The bottom panel in fig. 4.6 shows the disc immediately after the outburst.

Comparing to the top panel, it is apparent that the inner dischas lost a substantial number

of particles. The surface density in the inner disc is now approximately equal to eq.

(4.11) withKmin = 4.79 . During quiescence the disc regains the mass it lost in outburst

and the cycle repeats.

Figures 4.8 and 4.9 show snapshots of the evolution of the surface density and vis-

cous dissipation in the disc during an outburst and fig. 4.10 the mass accretion rate onto

the black hole during the outburst. The first snapshot is immediately before the outburst.

The outburst is triggered in the inner disc and a density wavemoves outwards and in-

wards pushing more of the disc into the hot state. In this way asignificant fraction of

the disc is accreted. During the outburst there is far more azimuthal variability in the

disc, this is particularly apparent in the surface density plot where spiral “arms” can be

seen. Consequently the range in surface density is greater during an outburst. The dis-

sipation in the disc is larger during an outburst with much ofthe additional dissipation
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FIGURE 4.8. Snapshots of the Surface density (g cm−2) through an outburst at 200 day intervals.
Note the central part of the disc (dashed circle) is not modelled in the simulation.
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FIGURE 4.9. Snapshots of the viscous dissipation in the disc through an outburst at
200 day intervals. Colour scale is in log code units.
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FIGURE 4.10. Mass accretion rate onto the black hole during the outburst depicted
in figs. 4.8 and 4.9. Dotted lines denote the time of the snapshots.

in the inner disc. This is what one would expect. The accretion rate is non-uniform,

local density variations particularly evident in the middle left panel of fig. 4.8 lead to

a variable accretion rate. As in fig. 4.6 the depletion of the inner disc can be clearly

seen. Figure 4.11 shows the history of a simulation once it has reached a steady state

where approximately the same fraction of the disc is lost during an outburst. The mass

accretion rates as functions of time of all the simulations in this work are in§A. Figure

4.11 is the raw output from the code which must be scaled by themethods described

in §4.3.6. The effects of increasingαh/c and decreasing the disc mass is to compress

both the outburst time and the quiescent time. Indeed, in contrast fig. 4.11 the quiescent

time is several orders of magnitude greater than the outburst time, in effecttrec ∼ tq.

Additionally the mass accretion rate onto the black hole is also affected by the changes

to the disc mass and viscosity. With particle masses being scaled upwards by a factor

of Kmax/K
sph
max ∼ 4500 and outburst prolonged by a factor of∼ αsph

h /αreal
h = 10, Ṁ1

is scaled from few10−8M⊙ yr−1 to few 10−5M⊙ yr−1. This is several orders of mag-
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nitude greater than the Eddington accretion rate of GRS 1915+105 (3 × 10−7M⊙ yr−1,

using eq. (1.14)), hence the plateau observed inRirr common to all the simulations2.

4.4.2 Changingαhot/cold

Figure 4.12 shows the effect of varyingαh andαc on tout, trec and duty cycle. The results

presented are of the simulationsalpha h [1 − 4] andalpha c [1 − 3]. The values for

theα displayed in fig. 4.12 are the “real” values of the artificial viscosity parameter,

i.e. smaller than the values used in the code by a factor of 10.The timescales are

scaled as described in§4.3.6. For numerical reasons it was decided thatKmax/min would

not be changed withαh/c, as demanded by eqs. (4.3) and (4.4). ChangingKmax/min

in conjunction withαh/c would force the disc into a persistent hot state. However the

scaling method described can account for this deficiency in the setup.

The outburst time is roughly governed by the viscous time at the outermost part of

the outburst and is given by (Pringle 1981),

tout ∼ tvisc =
1

αhΩK(H/R)2
(4.30)

∼ 170
(
αh

0.1

)−1
(

(H/R)out

0.03

)−2 (
Rout

a

)3/2

yrs .

where eq. (1.15) has been used anda = 7.5 × 1012cm. During the outburst the inner

disc is switched into the hot, more viscous, state as described in §1.3.3. One would

expect that variations of the viscosity in the cold state to have little impact ontout which

is confirmed by fig. 4.12. If the approximate values ofH/R ∼ 0.03 (fig. 4.13a) and

Rout = 0.3a are used thentout ∼ 2.8/αh. This simple analytic upper estimate matches

the calculated outburst times well (fig. 4.13b) given thatH/R is not constant withR or

time andRout is not necessarily the same for each simulation.

The effect ofαh on the recurrence time is more complicated, with increasingand

decreasingαh from the value of 0.1 both reducingtrec. Examining fig. A.4 the trend

with increasingαh is shorter outbursts with an increaseḋM . This is mirrored in the

number of particles accreted during an outburst, which decreases withαh. The disc in

the simulations was allowed to reach a steady state, therefore trec can be approximated

by the time required to replenish the disc (see eq. (4.27)) and the mass lost in an outburst.

2In the simulations we calculatėM1 at a radius of0.04a > RSchw due to the lack of resolution in the
inner disc. This is not the rate at which matter will arrive atRSchw as some material will likely be lost in
a wind. However the accretion rate is still expected to be super-Eddington atRSchw
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FIGURE 4.11. Plot of central accretion rate, irradiation radius, Eddington wind loss,
dissipation (code units) and number of particles in the simulation. WithKmax = 55

andKmin = 4.79, the particle mass is∼ 1.1 × 10−12M⊙.

Whenαh = 0.05 the disc loses∼ 54000 particles during an outburst , while∼ 38000

particles are lost whenαh = 0.15. Whenαh is increased the mass/particles in the inner

disc are removed from the disc quickly. This limits the matter waves described in§1.3.3
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FIGURE 4.12. tout, trec and duty cycle shown as a function ofαhot (solid line) and
αcold (dashed line). N.B. the values ofα have been scaled to their correct values

(α = αsph/10)

that sustain the outburst.

The above explanation satisfactorily explains the behaviour of trec for values ofαh >

0.1. However at lower values ofαh the recurrence time exhibits contradictory behaviour.

This is a numerical effect caused by the small disc mass. The rate at which the disc is

being replenished by−Ṁ2 is several orders of magnitude too large for the disc mass

in the simulations. This can be taken into account in most cases by the scaling method

detailed in§4.3.6. However, certain parameter sets can render the scaling inaccurate. As

shown in fig. A.4 (top panel), whenαh = 0.05 the outbursts are characterised by their

long duration and low intensity. The rate at which particlesare lost from the disc to the

primary is lower than the transfer rate from the secondary for a significant portion of

the outburst (see fig. 4.14a). This contradicts what is knownabout LMXBs in outburst,

93



GRS 1915+105: 4.4 Results

(a) Plot ofH/R againstR during outburst

(b) Numerical results compared to an analytic approximation

FIGURE 4.13.

Ṁ1 ≫ −Ṁ2. In the simulation whereαh = 0.05 the disc gains in mass during an

outburst. In effect the disc is close to being in a persistenthigh state and a constant

outburst. The simulationalpha c 4 (lower panel in fig. A.5) is another example of a
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(a) Comparison between particles accreted by the primary and
the particles transferred from the secondary (dotted line)in 50
time steps

(b) Comparison between two different scaling methods for the
recurrence time. Solid line depicts scaling method described
in §4.3.6 and dotted line is the alternative method described in
§4.4.2

FIGURE 4.14.
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simulation on the cusp of entering a constant outburst. In this simulationαc = 0.02: this

results in an increase in the viscosity of the cold state, consequently the mass transfer in

the disc was too high for the simulation to reach a steady state.

Another way to estimate thetrec is by assuming all of the mass lost in an outburst is

regained during the quiescent phase. Knowing the mass transfer rate the quiescent time

is given by eq. (4.27). The mass lost during the outburstMout is calculated from the

particle massmp ∼ 1.1 × 10−12M⊙ and a count of the number particles accreted per

outburstNout, henceMout = Noutmp. Both scaling methods are displayed in fig. 4.14b.

The large differences intrec between the two scaling methods whenαh < 1.0 highlight

the deficiencies of the scaling method detailed in§4.3.6. The need to stay in the regime

where the scaling method of§4.3.6 can be used (wheṅM1 > −Ṁ2) is the reason for the

sometimes restricted range of parameters in this work. The alternative scaling method

could be used, it is essentially an analytic method based on the outburst time rather than

calculating the recurrence time independently from the code output. An effort was made

to use both scaling methods when possible. A reduction inαc is associated with an

increase inΣmax (see eq. (4.3)). Making the assumption that the outer radiusof the

outburst and surface density profile of the disc are unaffected by this change3 then more

mass should be lost in the outburst for smaller values ofαc. With a fixed−Ṁ2 this results

in increased recurrence times as seen in fig. 4.12. The lower panel in fig. 4.12 shows

the variation of the duty cycle. While similar in amplitude,bothαh andαc affect it in

opposite ways. Neglecting the lower values ofαh the duty cycle spans a limited range

from 0.1% to 0.4% which emphasises that GRS 1915+105 spends the vast majorityof

the time in quiescence.

4.4.3 ChangingKmax/min

The critical density profiles used are given by eq. (4.3) and (4.4) which are fitted to

the vertical disc structure obtained by Cannizzo et al. (1988). This is by no means the

only fit possible, with many possible models for the disc, other prescriptions can be

found in Cannizzo & Wheeler (1984), Hameury et al. (1998) andDubus et al. (2001)

among others. As mentioned in§4.4.2 there is a limited range ofKmax/min that results

in transient behaviour of the discs. Figure 4.15 shows the effects of varying theKmax

andKmin parameters on the duty cycle, outburst and recurrence times(remembering

throughout thatΣmax/min are directly proportional toKmax/min). Simulations used are

sig max[1 − 3] andsig min[1 − 4] in table A.1.

3This assumption is examined in§4.4.3
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ChangingKmax/min can effect the outbursts in two ways: altering the mass lost from

the disc during an outburst (see fig. 4.16) and changing the position where the outburst

is triggered (alsoRout). The mass transfer rate is constant, therefore the changesin the

recurrence time should be explained by the differing amounts of mass being lost from

the disc in an outburst. Using eq. (4.21) the mass accreted can be expressed as

Mout ∼
2πR2

out

3.05
(Σmax(Rout) − Σmin(Rout)).

HenceMout ∝ Σmax(Rout) and∝ −Σmin(Rout). Assuming for the moment a constant

Rout thenMout ∝ Kmax and∝ −Kmin. The middle panel in fig. 4.15 (and fig. 4.16)

shows a trend in agreement with the above relation with the caveat thatRout will likely

be different in the simulations.

FIGURE 4.15. tout, trec and duty cycle shown as a function ofKmax (solid line) and
Kmin (dashed line).

The top panel of fig. 4.15 depicts the variations in the outburst time. Once an outburst
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FIGURE 4.16. Plots of the number of particles accreted during an outburst as a
function ofKmin andKmax

has been triggered the surface density in the unstable region of the disc drops until it

reachesΣmin. As Kmin is increased the mass remaining in the disc after an outburst

is likewise increased. The decrease in the mass accreted in an outburst as a function

of Kmin has been discussed previously and is shown in fig. 4.16. Figure 4.17 shows the

surface density of two simulations with differing values forKmin, the snapshots show the

surface density at a time when the outburst is∼ 80% complete (the outbursts in question

are depicted in fig. A.3, simulation namessig min 1 andsig min 4). TheΣ profile of the

disc has been significantly altered by the change inKmin. WhenKmin = 15 g cm−2 the
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FIGURE 4.17. Top panel shows simulation withΣmin = 3(R/a) g cm−2. Bottom
panel shows simulation withΣmin = 15(R/a) g cm−2 (blue lines).

outer disc in particular builds up to higher surface densities. The inner disc also retains

more mass post outburst, reducing the time taken for the discto re-enter the cold state

and the outburst to end.

The behaviour of the outburst time as a function ofKmax is more complicated. Firstly

the location of the trigger for the outburst changes. When the slope ofΣsph
max is increased

the outburst is triggered progressively closer toM1. Figure 4.18 depicts the triggering

points for outbursts for two different forms ofΣmax (simulationssig max 1 andsig min 3

in fig. A.2). In the upper panelKmax = 40: the outburst is triggered atRout ∼ 0.38a

and propagates inwards (outside-in). In the lower panelKmax = 62.7: the outburst

is triggered atR ∼ 0.12a and propagates outwards (inside-out) to a radius ofRout =
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FIGURE 4.18. Top panel shows simulation withΣmax = 40(R/a) g cm−2. Bottom
panel shows simulation withΣmax = 62.7(R/a) g cm−2 (red lines).

0.3a. This change in outburst behaviour is shown in fig. 4.19. The lower three panels

show outbursts in the simulationssig max [2 − 4] and all show a similar trend of an

initial, nearly instantaneous increase inṀ1 followed by a slow increase. In the top panel

however, the outburst has a different form with the initial steep rise inṀ1 followed by a

fast increase. This fast rise iṅM1 is expected when outbursts are triggered in the outer

disc (Smak 1984). For all the values ofKsph
max used the outbursts either begin at∼ 0.3a

propagating inwards or are triggered in the inner disc propagating outwards to∼ 0.3a.

This accounts for the limited effect changingKsph
max has to the outburst time, keeping in

mind eq. (4.30). Again the duty cycle spans a narrow range centred around0.25%.

The mass transfer history of the simulation namedsig max 4 is shown in fig. A.2
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FIGURE 4.19. Individual outbursts in simulationssig max [1 − 4]
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(lower panel). It exhibits unusual behaviour when comparedto the other simulations

discussed previously, particularly it fails to reach a steady state. This is not technically

true, a steady state is reached but not one with a common outburst. The accretion history

is explained in the following way: an outburst is triggered at a radius of∼ 0.2a which

results in a significant fraction of the disc mass being lost.Following this the disc begins

to build up in mass once again. Due to the steep slope ofKsph
max the inner disc reaches

Σsph
max quicker than the outer parts of the disc and this time the outburst is triggered at

∼ 0.1a. The outburst does not propagate to the depleted outer disc and a shorter outburst

is the result. With the inner disc depleted the next outburstis triggered at a radius of

∼ 0.2a once the outer disc has gained sufficient mass and the processrepeats.

4.4.4 Changingǫ and λ

Figure 4.20 shows the effect of varying theǫ andλ parameters (simulationsirr [1−4] and

wind [2−4]). Similar tosig max 4, the simulationwind 1 exhibited two different outburst

types. When increasingλ the higher the threshold, hence a less efficient wind. The

efficiency of the wind has no noticeable effect on the outburst time (fig. 4.20 top panel).

The surface density profile is not significantly affected by the change inλ and hence the

outbursts are triggered and extend to the sameRout. As λ is decreased more mass is

lost in the wind and the amount of mass accreted onto the blackhole is correspondingly

decreased (see table A.2). However this does not significantly changetout, only reducing

the mass accretion rate. As more mass is lost from the discvia the wind the recurrence

time would be expected to increase. This is seen in fig. 4.20. There is a relatively large

change intrec whenλ becomes less than 1. For values above this limit the mass lost

from the disc during quiescence is negligible. As increasing mass is lost from the disc in

quiescence the longer the quiescent phase needs to be to ensure the disc build up in mass

to trigger the next outburst. The change inṀwind with differing values ofλ is shown in

fig. 4.21.

The parameterǫ controls the efficiency of the irradiation of the disc. This has two

effects, both of which act to increase the duration of the outburst. The first of which is

as follows, the surface density of an annulus can drop belowΣmin but the irradiation can

keep the annulus in the hot state. This effect can be seen in fig. 4.5. The second effect is

when the irradiation radius (see eq. (4.6)) is larger than the outer radius of the outburst

would otherwise have been, given no irradiation. This results in areas of the disc entering

the hot state which otherwise would remain cold. For values of ǫ ≤ 12×10−4 (solid line

and crosses) only the first effect ofǫ is noticeable. Outbursts are typically triggered at a
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distance of0.15 − 0.20a within the disc. The lower values ofǫ result in an irradiation

radius that is within the trigger radius (see triangles in fig. 4.22). Using eq. (4.19) with

ǫ = 7× 10−4 and assuming accretion at the Eddington rate for a14M⊙ black hole gives

Rirr ∼ 0.14a. While the irradiation does ensure the exponential decay ofthe outburst

(King & Ritter 1998) it does not have a large affect on the outburst time. Unfortunately,

any further increase in theǫ parameter and the disc entered the regimeṀ1 ∼ −Ṁ2

and a constant hot state. This numerical effect, caused by a mass transfer rate which is

unphysically large for the disc mass used in the simulations, was overcome by allowing

the disc to build up and then turning off particle injections. This is a valid approach in

GRS 1915+105 asṀ1 ≫ Ṁ2, indeed it is actually closer to the physical system than

having a relatively highṀ2 as before. While this would not result in a steady state

simulation (and the results should be used with some caution), it does give an indication

of the typical outburst times for high values ofǫ. The outbursts themselves are shown in

fig. 4.23 while the scaledtout/rec and duty cycles are denoted by diamonds in fig. 4.20.

In these simulationsRout = Rirr, using eqs. (4.6) and (4.30) the outburst time should

then obeytout ∝ ǫ3/4. This is in good agreement with the diamond points which follow

an approximate power law oftout ∝ ǫ0.7. For the highest value ofǫ a substantial fraction

of the disc is involved in the outburst with∼ 80% of all the particles pre outburst being

lost during the outburst. The quiescent time was calculatedfrom the mass accreted using

the method described in§4.4.2, the more mass lost from the disc the longer to replenish.

4.5 Discussion

4.5.1 Comparisons to other work

I have calculated the outburst and recurrence time scales for GRS 1915+105 and have

examined the effects of varying various parameters in the system. This work can be

viewed as an extension of the paper by Truss & Done (2006), in which they analytically

estimated the outburst time scale. In their paper, the outburst time was calculated by

considering the mass in the disc,Mdisc,

tout =
Mdisc

〈Ṁdisc〉
. (4.31)

From the models by Dubus et al. (2001) the surface density in the disc was thought to

follow Σmax in the inner 10% of the disc before flattening off at larger radii, resulting in
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FIGURE 4.20. tout, trec and duty cycle shown as a function ofǫ (solid lines) andλ
(dashed line)

an approximation forMdisc

Mdisc =
∫ Rout

0.1Rdisc

2πRΣmax(0.1Rdisc)dR, (4.32)

whereRout was given by eq. (4.6). Truss & Done (2006) approximated the time averaged

mass loss from the disc by

〈Ṁdisc〉 = 〈Ṁ1〉 + 〈Ṁwind〉 − Ṁ2. (4.33)

Knowing thatṀ2 ≪ 〈Ṁ1〉, the inclusion of〈Ṁwind〉 resulted in a maximum and a min-

imum length of an outburst for a given irradiation efficiency. The maximum is obtained

when〈Ṁwind〉 = 0 and the minimum〈Ṁwind〉 = 〈Ṁ1〉 = ṀEdd.

Table 4.1 compares this work with the outburst times predicted by Truss & Done
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FIGURE 4.21. Plot of the mass lost via wind whenλ = 0.6 (top panel,wind 1) and
λ = 0.8 (bottom panel,wind 2)

105



GRS 1915+105: 4.5 Discussion

FIGURE 4.22. Plot of the average irradiation radius during an outburst as a function
of ǫ compared with eq.4.19

FIGURE 4.23. Plot ofṀ1 against time for 3 values ofǫ during an outburst. Larger
values ofǫ increase the length of the outburst.
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Table 4.1. Comparison of the predicted outburst times of Truss & Done (2006) (first
set) and this work (second set). Truss & Done (2006) predicted outburst times for

〈Ṁwind〉 = 0 and〈Ṁwind〉 = ṀEdd respectively.

ǫ Rirr tmax
out tmin

out

(×10−3) (a) (yr) (yr)

T & D

0.17 0.07 4.7 2.3
0.69 0.13 21 10
1.6 0.2 47 23
2.8 0.27 85 42
4.3 0.33 130 66
5.1 0.36 160 76

This work

0.3 0.08 23.9± 0.2
0.5 0.11 24.0± 0.3
0.7 0.13 23.8± 0.2
0.9 0.14 24.1± 0.3
1.2 0.16 26.1± 1.1
2.8 0.27 86
4.3 0.33 115
5.1 0.36 130

(2006). For values ofǫ < 0.7 × 10−3 I predict outburst times greater than those by

Truss & Done (2006). This is due to their approach of assumingthe irradiation radius

determines the region of the disc consumed in the outburst. As discussed in§4.4.4 in

the low ǫ regime the irradiation radius is not the primary factor determining the extent

of the outburst, rather it is the triggering point of the outburst (typically at 0.1-0.2a).

When ǫ > 0.9 × 10−3 my predictions are comfortably within the limits proposed by

Truss & Done (2006). Figure 4.24 displays the data in table 4.1. With the exception of

low irradiation efficiencies the results presented here areconsistent with Truss & Done

(2006). Table 4.1 shows the large variation of the outburst time whenǫ is allowed to

vary. The duration of the current outburst of GRS 1915+105 inconjunction with these

numerical models may provide some evidence of the irradiation efficiency in LMXBs.

4.5.2 Central accretion rate and the need for a wind

As mentioned in§4.4.1 the accretion rate measured at the inner boundary of the disc

(Rin = 0.04a ∼ 3×1011 cm) in the simulations must be scaled up toṀin ∼ 10−5 M⊙ yr−1.

As discussed, this is much larger than the Eddington rate of the black hole, i.e.Ṁ1 ∼
10−7 M⊙ yr−1 atRSchw = 4× 106 cm. So far, the outburst of GRS 1915+105 has lasted
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FIGURE 4.24. Comparison between this work and Truss & Done (2006)

17 years. Using eq. (4.30) withH/R = 0.03 andαh = 0.1 gives a minimum outer

radiusRout ∼ 2 × 1012 cm. Assuming the surface density profile of the disc follows

Σmax (given by eq. (4.10)), a rough upper estimate of the mass lostin the outburst is

Mout =
∫ Rout

0
2πrΣmax(R)dR ∼ 2 × 10−4 M⊙. (4.34)

This mass implies a transfer rate through the discṀin ∼ 10−5 M⊙ yr−1, in agreement

with the transfer rate we measure at the inner boundary of thesimulations. If one were

to make a more modest approximation for the disc mass and use eq. (4.32) then the disc

mass is∼ 5 × 10−5. Implying a mass transfer rate in the disc of∼ 3 × 10−6M⊙ yr−1,

still significantly greater than the Eddington limit.

Conversely, if one takes the mass accretion rate that is observationally inferred from

the X-ray luminosity(Ṁ1 ∼ 10−7M⊙ yr−1) as the transfer rate through the disc and

usetout = 17 yrs, one getsMout ∼ 10−6 M⊙. Again assuming the density profiles

of eqs. (4.34) and (4.32) this implies an outer radius of between∼ 2 − 6 × 1011 cm,

which may be incompatible with a viscous/outburst time of 17years. This contradiction

implies that a significant fraction of the mass involved in the outburst is actually lost

to the system in the form of a wind launched from the innermostregions not modelled

in the simulations. Ueda, Yamaoka & Remillard (2009) concluded the existence of a

thermally and/or radiation driven disc wind in GRS 1915+105from the absorption lines

in its spectra and inferred a launching radius∼ few RSchw. This corresponds to the

innermost regions our simulations. They estimate the mass loss rate in the wind to be

108



GRS 1915+105: 4.5 Discussion

∼ 5 × 10−7 M⊙ yr−1, of the same order as the inferred accretion rate onto the black

hole.

4.5.3 Conclusion

In this section I have described the galactic microquasar GRS 1915+105 and have out-

lined a numerical approach to model the accretion disc around the black hole contained

within the system. In this model I described the physical processes that can affect the

evolution of the disc and outlined several key parameters that will influence the length

of both the outburst and the quiescent periods between the outbursts. From my analysis

the length of the outburst is independent of the efficiency ofthe X-ray irradiation (when

ǫ ≤ 10−3). With some confidence the outburst can be expected to last atleast∼ 20±5 yr.

As the outburst began in 1992 this raises the possibility that the outburst could end in the

next decade. If so this would indicate that the X-ray irradiation of the disc is negligible.

If however the outburst persists any longer, the conclusionthat significant fractions of the

outer disc are being irradiated is unavoidable. The length of the outburst (which could

last∼ 100 yrs, see table 4.1) will provide information about the disc geometry and how

efficient the irradiation is. It may also shed some light on how the disc is being irradiated,

i.e. by a central source or by scattered X-rays. GRS 1915+105can be expected to spend

the vast majority of its lifetime in quiescence with a recurrence time calculated that is of

the order∼ 9500 ± 2500 yr. This results in a duty cycle of the order of 0.002, which is

lower than shorter period LMXBs (∼ 0.01). This may have implications for modelling

other long period LMXBs and the X-ray contents of the local Universe, both of which

will be examined in§5.
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Chapter 5
Long period LMXBs

“No one wins. One side just loses more

slowly.”
- Prez

The Wire: Refugees [4.04]
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5.1 Introduction

There are 15 confirmed Galactic black hole X-ray binaries. The system known as GRS

1915+105 can be considered to be the most unusual. Discovered in 1992 (Castro-Tirado

et al. 1992) it has a relatively long orbital period which sets it apart from all of the other

Galactic black hole X-ray binaries, as discussed in§4. The outburst of GRS 1915+105

has been proceeding since 1992, far longer than any other LMXB. GRS 1915+105 has

no known counterpart in the Galaxy but there is the possibility that similar objects can

be observed in other galaxies.

Irwin (2006) analysed X-ray data from multiple epochs of twoelliptical galaxies,

M87 and NGC 1399. Despite theChandraobservations being carried out over a period

of 5.3 yr in the case of M87 and3.3 yr in the case of NGC 1399 there were several high

luminosity sources that were persistent for the entire observation time. Irwin (2006) ar-

gues that these sources are most likely black hole LMXBs. Firstly M87 and NGC 1399

are elliptical galaxies with old stellar populations, ruling out any HMXBs (see§1.3).

Secondly many of the sources have luminosities greater than8 × 1038 erg s−1. This is

the Eddington luminosity for a black hole with a mass of∼ 6M⊙. Explaining these

sources with neutron stars (2− 3M⊙) emitting several times their Eddington luminosity

is unlikely. Additionally, the high mass accretion rates required to sustain these lumi-

nosities rule out persistent sources. A donor star would be consumed in a few million

years as all potential high mass donors have long since expired in these old stellar pop-

ulations. The duration of the outbursts implies there is a large reservoir of mass in the

accretion disc, suggesting these LMXBs most likely have long orbital periods and giant

secondary stars. Several of these LMXB candidates (∼ 85%) appear to be associated

with globular clusters. This is in stark contrast to our Galaxy, where no black hole has

been found residing in a globular cluster. This raises the possibility that the potential

LMXBs are, in fact, several combined lower luminosity (< 1037 erg s−1) X-ray sources

(Kundu, Maccarone & Zepf 2007). However, this might also be thought unlikely given

the statistics of lower luminosity sources (Sarazin et al. 2003); a single high luminosity

source is more likely than several lower luminosity ones.

Overall, 15 and 18 sources with luminosities> 8×1038 erg s−1 were detected in M87

and NGC 1399 respectively and all sources were detected in every observational epoch.

Irwin (2006) estimated that the average outburst of these potential LMXBs would last

∼ 50 yr. This is strikingly similar to the predictions for the outburst length of GRS

1915+105 as predicted by Truss & Done (2006) and by my work in§4. If the duty cycles

of the longer period systems are comparable to those of the short period systems (which
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havetout ∼ 1 month andtq ∼ 10 yr) then the quiescence times for these objects will be

long,> 1000 yr.

TheChandradata used by Irwin (2006) showed no sources that could be identified

as short period LMXBs. This may seem strange considering ourGalaxy, in which GRS

1915+105 like objects are outnumbered 14-1 by shorter period LMXBs. However, the

relatively short outbursts are likely to be missed by observations which last a matter of

days. Irwin (2006) calculated that there were probably∼ 300 short period LMXBs com-

bined in the two galaxies. Considering the mass of M87 and NGC1399 compared to that

of our Galaxy this is reasonable. The ratio between the shortand long period systems in

both galaxies is 9, which is not inconsistent with our Galaxyconsidering the uncertainties

associated with working with small number statistics. Thisis assuming the duty cycles

of the longer period systems are comparable to their short period counterparts. Other

studies (e.g. Ivanova & Kalogera (2006), Kim & Fabbiano (2004)) have drawn similar

conclusions and deduce that LMXBs are an important contribution to the X-ray lumi-

nosity function (XLF) of elliptical galaxies. knowing the duty cycles of LMXBs is a key

issue when modelling the XLF of elliptical galaxies. The standard approach is generally

to assume a constant duty cycle (typically a few percent) or use a simplead hocprescrip-

tion involving the mass transfer rate. Additionally there are proposed LMXB candidates

in the Sculptor dwarf spheroidal galaxy (Maccarone et al. 2005) further demonstrating

the importance of LMXBs in the XLFs of objects in the local universe. Ideally it would

be desirable to perform numerical simulations, similar to the work in§4, for other possi-

ble systems but the size of the parameter space makes this prohibitively time consuming.

I will investigate these long period LMXBs with red giant donors using a simple analyt-

ical model and try to gain an understanding of how their behaviour varies with orbital

period. The initial motivation of this work was the sources detected by Irwin (2006),

however the following model could be applied to a variety of system types.

5.2 The outburst

The maximum available mass to fuel an outburst is the total mass of the accretion disc. To

estimate the mass in the disc at the start of an outburst I needto assume a surface density

profile for the disc. It would be desirable to estimate this from the mass transfer rate and

the quiescence time. However uncertainties in−Ṁ2 and more importantly quiescence

times> 1000 yr, similar to GRS 1915+105, render this impossible. Proceeding in a
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manner similar to§4, the mass of the disc is approximated by

Mdisc =
∫ Rdisc

0
2πRΣ(R) dR. (5.1)

Finally, I make the simple assumption that the surface density immediately preceding an

outburst is, for all radii, equal to the critical surface density, as already given by eq. (4.3),

rewritten here for clarity

Σmax(R) = 11.4α−0.86
c M−0.35

1 R1.05
10 g cm−2. (5.2)

Combing the two equations above gives the total mass of the disc

Mdisc = 2.4 × 1021α−0.86
c M−0.35

1 R3.05
disc,10 g, (5.3)

whereRdisc,10 is the disc radius in units of1010cm. This is the total mass in the disc and

hence the maximum available mass to fuel an outburst. From the strong dependence on

Rdisc,10 in eq. (5.3) it is clear that to obtain a reasonably accurate estimate for the mass

in the disc a solid estimate for its radius is required.

5.2.1 Determination of the disc radius,Rdisc

For this work I need to find some way to estimate the size of the accretion disc in an

LMXB. It seems likely that the disc is a fraction of the binaryseparation,a. Simply

setting the radius of the disc equal to,Rdisc = κa, with κ < 1, is one possibility. This

is fairly crude and a better estimate involves the circularisation radius. This concept

was introduced in§1.3.1 and will be further developed here. Making the substitution

v⊥ = RL1ω, whereω = 2π/Porb, in eq. (1.40) gives

Rcircvφ(Rcirc) = R2
L1

2π

Porb

. (5.4)

Combining this with eq. (1.41) gives an expression for the circularisation radius

Rcirc

(
GM1

Rcirc

)1/2

= R2
L1

2π

Porb

. (5.5)

It is convenient to expressRcirc in term of the binary separation,

Rcirc

a
=
(
RL1

a

)4 4π2

P 2
orb

a3

GM1

(5.6)
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and finally using eq. (1.35)

Rcirc

a
=
(
RL1

a

)4

(1 + q). (5.7)

As can be seen from eq. (5.7) the circularisation radius is heavily dependant on the

distance from the primary to theL1 point. There have been many approximate analytical

formulae to calculateRL1 some of which are listed in table 5.1. Using any of these in

eq. (5.7) would give an approximation for the circularisation radius. With regards to

the size of the disc itself, Shahbaz, Charles & King (1998) used conservation of angular

momentum arguments to show that when there is negligible accretion onto the primary

the radius of the disc isRdisc ∼ 1.36Rcirc or∼ 0.7R1. The valueR1 is an approximation

of the size of the Roche lobe of the black hole. Due to the form of eq. (1.36) the lobes

are not spherical. A common approximation is to consider a sphere of radiusR1 with

the same volume as the lobe. The non trivial nature of eq. (1.36) means there is no exact

formula describingR1, but Eggleton (1983) describes a analytic approximation for all

values ofq (see table 5.1). A similar formula for the secondary star canbe obtained by

replacingq with q−1 (see§1.3.1). Truss & Done (2006) use a value for the circularisation

radius given in Hessman & Hopp (1990) (again see table 5.1). All of the methods to

calculate the disc radius detailed above are listed in table5.1 and displayed in fig. 5.1.

In LMXBs the mass ratio of the binary is often∼ 0.1 and as such the expression forRL1

from Plavec & Kratochvil (1964) appears to be unsuitable. The three remaining methods

all give reasonable values forRdisc when compared to the numerical simulations of§4.

5.2.2 Outburst duration

Proceeding with the simple model discussed thus far, the disc of radiusRdisc and mass

Mdisc goes into an outburst phase which lasts a timetout. The outburst time is of the

order of the viscous timescale at the disc outer radius. FromPringle (1981)

tvisc(R) =
1

αΩk(H/R)2
, (5.8)

atRdisc,

tout = tvisc(Rdisc) =
1

α

(
R3

disc

GM1

)1/2 (
R

H

)2

. (5.9)

A typical value forH/R ∼ 10−2 (Mayer & Pringle 2007) andα = αh = 0.1. The total

mass of the disc is accreted on this time scale giving a time-averaged mass accretion rate
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Table 5.1. Analytic formula for the Roche lobe geometry
Estimates for distance fromM1 toL1

a

RL1

a
= 0.5 − 0.277 log(q) 0.1 ≤ q ≤ 10 Plavec & Kratochvil (1964)

RL1

a
= (1.0015 + q0.4056)−1 0.04 ≤ q ≤ 1 Silber (1992)

Estimates for the Roche lobe sphereb

R1

a
=

0.49q−2/3

0.6q−2/3 + ln(1 + q−1/3)
0 < q <∞ Eggleton (1983)

Estimates forRcirc

Rcirc

a
= 0.0859q−0.426 0.05 ≤ q < 1 Hessman & Hopp (1990)

a The distance from the centre of the primary to theL1 point in the binary.
b The sphere equal in volume to the Roche lobe of a star.

onto the primaryṀ1 = Mdisc/tout. Using the formulation forRdisc of Hessman & Hopp

(1990) and settingM1 = 10M⊙, M2 = 1M⊙ produces the dotted line in fig. 5.2. In

this simple model the disc radius is proportional to the binary separation, which in turn

varies asa ∝ P
2/3

orb (see eq. (1.35)). Using thisRdisc ∝ P
2/3

orb in eq. (5.9) gives a simple

relation for the outburst time,

tout(yrs) ∼ 8Porb(days). (5.10)

In the model detailed above, the disc is assumed to be entirely consumed in the

outburst. This may be appropriate in the smaller discs of short period systems but as

shown in§4, in longer period systems such as GRS 1915+105 the outer disc remains

after an outburst. In comparison with the outbursts predicted in §4 which were on the

order of∼ 25 yr; this model predicts outbursts of∼ 300 yr for a GRS 1915+105 like

system. In the simulations carried out in§4 the outburst was typically triggered at a radius

in the disc ofRtrig ∼ 0.1 − 0.2Rdisc. This would reduce the outburst times predicted by

eq. (5.10) by an order of magnitude. This begins a trend in this work, using information

from the detailed model of GRS 1915+105 and generalising to other systems. It is known

that X-ray radiation heating the disc can prolong an outburst (eg. Dubus et al. (2001),

King & Ritter (1998)). This was discussed in§4.2.2 but for convenience the equation
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FIGURE 5.1. Different models for the radius for the disc. Solid lineand dotted line
use theRL1 estimates from Plavec & Kratochvil (1964) and Silber (1992)respec-
tively in eq. (5.7) to calculateRdisc = 1.36Rcirc. The dashed line isRdisc = 0.7R1,
whereR1 is estimate from Eggleton (1983). The dotted-dashed line istheRdisc used
in Hessman & Hopp (1990). For reference a typical disc radiusfrom simulations of

GRS1915+105(q = 1/14) is shown as a diamond (see fig. 4.6)

describing the irradiation radius is repeated here,

Rirr = 2.7 × 1011

(
ǫ

10−3

)1/2 ( η

0.1

)1/2

Ṁ
1/2
18 cm. (5.11)

Again ǫ is the irradiation efficiency,η is the accretion efficiency anḋM18 is the central

accretion rate in units of1018 g s−1.

As discussed in§1.2.2 the Eddington limit caps the accretion rate onto any object.

While the Eddington limit is only an estimate, significantlyexceeding it over an extended

period of time is unlikely. The result is a limit on the irradiation radius and an upper limit

on the outburst time. If the outburst is triggered at some point in the disc,Rtrig = ξRdisc

whereξ is a free parameter less than 1, the mass within this radius will fuel an outburst.
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This mass will be accreted in a timetvisc(Rtrig). The resulting averagėM1 will cause a

portion of the disc to be irradiated. This gives a new outer radius for the outburstRirr,

within which all of the mass will be accreted on a time scaletvisc(Rirr). This then gives an

updated value for the average mass accretion rate. A simple model may be built where

this proceeds iteratively until the central accretion rateconverges (generally taking no

more than 5 iterations). Figure 5.2 shows the result of adding the Eddington limit to the

calculations of eq. (5.10). The irradiation efficiency was set to ǫ = 10−3 andξ = 0.1.

The outburst time initially rises asRdisc the mass accretion rate onto the primary and

the irradiation efficiency are such that the entire disc is irradiated and is accreted in the

outburst. It is only when the period of the binary∼ 10 days that the radius of the disc

exceedsREdd (whereREdd = Rirr(ṀEdd)) andtout plateaus.

FIGURE 5.2. Plot oftout varying with orbital period. Solid line is a model that
includes the Eddington limit and has an outburst triggered in the inner disc. Dotted

line is a model where the disc is totally consumed in the outburst.

5.2.3 A Different model for the disc surface density profile

The model assumed for the disc thus far is by no means the only one possible. Indeed it

will likely be an over estimate of the disc mass. Truss & Done (2006) use a model for the

disc of GRS 1915+105 that follows work by Dubus et al. (2001).The one-dimensional

models carried out predict the surface density of a disc willfollow Σmax for the inner

∼ 10% of the disc,Rmax = 0.1Rdisc. In the outer disc the surface density plateaus

resulting in a significantly less massive disc than detailedpreviously. From now on this

model for the disc will be referred to as Model 2, while the model detailed previously

will be referred to as Model 1. The mass of the disc is then as follows

Mdisc = M(R < Rmax) +M(R > Rmax). (5.12)
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I assume the outburst is triggered atRmax whereΣ(Rmax) = Σmax(Rmax). The mass in

the inner disc,Mmax, is given by

Mmax = M(R < Rmax) =
∫ Rmax

0
2πRΣmax(R)dR, (5.13)

with Σmax again given by eq. (5.2). Once again this mass is accreted on the viscous time

(Pringle 1981) at0.1Rdisc,

tvisc(Rmax) =
1

α

(
10−3R3

disc

GM1

)1/2 (
R

H

)2

(5.14)

I now proceed in a manner the same as before. The mass of the inner disc and the viscous

time provide an averagėM1 for accretion onto the cental object

Ṁ1 =
Mmax

tvisc(Rmax)
. (5.15)

Heating by X-ray radiation produced by the central object can push more of the disc

into the hot state. IfRirr is greater thanRmax then the outer disc will be involved in

the outburst. The extra mass beyondRmax which is being kept in the hot state through

irradiation is denoted byMirr,

Mirr = M(Rmax < R < Rirr) =
∫ Rirr

Rmax

2πRΣmax(Rmax)dR

= πΣmax(Rmax)[R
2
irr − R2

max]. (5.16)

This process is carried out iteratively until the central accretion rate converges. In the

event thatRirr < Rmax then no additional disc mass enters the hot state and the outburst

time is defined bytvisc(Rmax). I now define the valueMout as being the mass lost from

the disc during an outburst. In Model 2Mout is given by

Mout =





Mmax +Mirr whereRirr > Rmax

Mmax whereRirr < Rmax,
(5.17)

whileMout for Model 1 is given by

Mout = max [M(R < ξRdisc),M(R < Rirr)] . (5.18)

For clarification fig. 5.3 displays the important characteristics of Model 2.

Figure 5.4 displays the mass lost in an outburst changing with orbital period for both

118



Long period LMXBs: 5.3 The quiescence time

Σ max

Rmax Rirr Rdisc

Mmax
M irr

Σ

R/a

FIGURE 5.3. Diagram depicting Model 2. The green line is the surfacedensity of
the disc. N.B.Rirr can be less thanRmax, in which caseMirr = 0.

models of the disc. In Model 1̇M1 andǫ are such thatRirr > Rdisc and the entire disc

is irradiated. This continues untilPorb ∼ 10 days whenRirr has reached its Eddington

limited value. The outburst time will remain constant untilRmax > Rirr for longer

orbital periods. For Model 2 the mass lost in the outburst is initially dominated by the

irradiated portion of the disc, i.e.Mout ∼ Mirr. The reduced mass in the disc however

results in a smallerṀ1 than in Model 1, hence an irradiation radius less thanRdisc.

This continues untilPorb ∼ 100 days, where the Eddington limit takes effect and the

irradiation radius has reached its maximum value. From thispoint onwardsMout can

no longer be considered to comprise solely ofMirr. The mass contained withinRmax is

now a significant fraction ofMout. WhenPorb > 200 days, Rmax → Rirr and the two

models converge to the same mass lost in the outburst. To aid the discussion and prevent

confusion several important definitions of both Model 1 and 2are summarised in table

5.2

5.3 The quiescence time

The quiescence time is the time taken to replenish the mass lost from the disc during an

outburst.

tq =
Mout

−Ṁ2

, (5.19)
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FIGURE 5.4. Plot of the mass lost from the disc in an outburst varyingwith orbital
period. Solid line showsMout for Model 1. The dotted line dashed line and the

dotted-dashed line showMout,Mmax andMirr respectively for Model 2.

Table 5.2. Table of definitions used in both models of the disc

Model Symbol Definition
Model 1 & 2

Rdisc 1.36Rcirc or 0.7R1

Rirr eq. (5.11)
REdd Rirr(ṀEdd)

Model 1
Rtrig ξRdisc

Rout max(Rirr, Rtrig)
Model 2

Rmax 0.1Rdisc

Rtrig Rmax

Rout max(Rirr, Rmax)

where−Ṁ2 is the mass transfer from the secondary star. An estimate of the mass transfer

rate over a wide range of orbital periods is needed.
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5.3.1 Mass transfer rate

The purpose of this section is to show there is a link between the mass transfer rate

and the binary orbital period. For this task I consider some numerical simulations by

Webbink, Rappaport & Savonije (1983) and analytic work by King (1988), before finally

considering more a recent paper by Ritter (1999). To obtain an expression for the mass

transfer rate I follow the work by King (1988) who details theevolution of compact

binaries and briefly focuses on likely scenarios for long period systems.

In the long period systems under scrutiny the secondary starlosing mass to the pri-

mary must be a giant or subgiant star, as in GRS 1915+105 (see§4.1). When a main

sequence star exhausts the hydrogen fuel in its core, nuclear reactions in the core stop,

causing the core to contract. The core contains the productsof the hydrogen burning

process, i.e. helium. As the helium core collapses a shell surrounding the core, where

hydrogen still remains, becomes hot enough to begin the fusion of hydrogen to helium.

The higher temperatures lead to increasing reaction rates,producing enough energy to

increase the star’s luminosity and radius by several ordersof magnitude. This increase

in radius results in a much lower temperature at the stellar surface. The structure of the

star is now somewhat different: a helium core is surrounded by a thin hydrogen-burning

shell itself surrounded by an extended envelope. This envelope is now so tenuous that its

impact on the properties of the star is negligible. The luminosity and radius of the star

can be considered to be solely dependent on the core mass,Mc. Webbink et al. (1983)

parameterises the luminosity and radius as a Taylor series:

ln(L/L⊙) = 3.50 + 8.11y − 0.61y2 + ...

ln(R/R⊙) = 2.53 + 5.10y − 0.05y2 + ...
(5.20)

wherey = ln(Mc/0.25) (for the purpose of this section all masses are considered tobe in

solar mass units). If core masses in the range0.17M⊙ < Mc < 0.45M⊙ are considered

thenln |y| < 1 and non linear terms in eq. (5.20) can be ignored. Combining eq. (1.39)

with linearised version of eq. (5.20),

R ∼ 12.6R⊙

(
Mc

0.25

)5.1

(5.21)

gives a relation between the binary orbital period, the total mass and the core mass of the

secondary for a Roche lobe filling star:

Porb ∼ 16.5
(
Mc

0.25

)7.65 ( 1

M2

)1/2

days. (5.22)
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As previously stated the luminosity of the star is provided by hydrogen burning in a

shell surrounding the core. As the hydrogen is consumed, helium is added to the core,

suggesting a link betweenL andṀc. Hydrogen burns at4.19 × 1018 erg g−1, therefore

Ṁc =
L

4.19 × 1018
∼ 33L⊙

4.19 × 1018

(
Mc

0.25

)8.11

, (5.23)

using eq. (5.20). Logarithmically differentiating eq. (5.20) gives

Ṙ2

R2

= 5.1
Ṁc

Mc
(5.24)

which combined with eq. (1.46) for conservative mass transfer leads to

−Ṁ2

M2

∼ 3Ṁc

Mc
. (5.25)

A combination of the above and eq. (5.23) leads to an expression for the mass transfer

rate,

−Ṁ2 ∼
396L⊙

4.19 × 1018

(
Mc

0.25

)7.11

M2. (5.26)

To express the mass transfer rate in terms of the orbital period, integrate eq. (5.25),

Mc = M0
cM

−1/3
2 , (5.27)

whereM0
c is defined to be the core mass for a solar mass star. The final mass of the star

is equal to the final core mass,Mf
c = Mf

2 , leavingMf
c = Mf

2 = (M0
c )3/4. Using this

in eq. (5.22) results in relation between the orbital periodat the end of the mass transfer

process andM0
c ,

P f
orb = 394

(
M0

c

0.25M⊙

)5.36

days. (5.28)

Using eq. (5.27) in eq. (5.22), the orbital period varies asPorb ∝ M−3.05
2 . From eq.

(5.26) one then derives−Ṁ2 ∝ P 0.45
orb . If M2 = 1 is assumed then eq. (5.22) gives the

initial orbital periodP i
orb while eq. (5.28) gives the final orbital periodP f

orb. The ratio

between the final and initial mass transfer rates is therefore

Ṁf
2

Ṁ i
2

=

(
P f

orb

P i
orb

)0.45

∼ 4

(
M0

c

0.25

)−1.03

∼ 1

M0
c

. (5.29)

Hence the value of−Ṁ2 does not vary substantially as the orbital separation of thebinary

evolves. Indeed the averagėM2 is set by the initial orbital period. Finally a combination
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of eq. (5.22) and eq. (5.26) results in the desired relation betweenṀ2 andPorb,

−Ṁ2 ∼ 4 × 10−10P 0.93
orb (d)M1.47

2 M⊙ yr−1. (5.30)

The numerical calculations carried out by Webbink et al. (1983) are in good agree-

ment with this result. More recent work has been carried out on binary evolution and

mass transfer (Ritter 1999) which questions the constant mass transfer rate as the binary

evolves. Ritter (1999) states that the most important factor is the core mass at the begin-

ning of mass transfer. However the equation for−Ṁ2 contains several other parameters

such as initial primary and secondary masses as well as the core mass of the secondary.

Using this work would expand the parameter space unnecessarily. Ritter (1999) com-

pares his result for the mass transfer rate to that calculated by Webbink et al. (1983),

shown in his figs. 3 and 4 (fig. 3 is reproduced here, see fig. 5.5). The two results dif-

fer by no more than 20% at the beginning of the mass transfer process, they are similar

enough to warrant the use of eq. (5.30).

FIGURE 5.5. Mass loss rate as a function of time. Comparison betweenwork by
Ritter (solid line) and Webbink et al. (1983) (dashed line),taken from Ritter (1999).

5.3.2 Period range

The relations derived in§5.3.1 are not valid for the whole range of parameters. To ensure

that eq. (5.20) could be linearised, a limit on the core mass was imposed, hence

0.17 < Mc < 0.45

Mc . M2 <
5

6
M1.

(5.31)
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If M1 ∼ 10 is assumed then using eq. (5.22) can impose limits upon the range of periods

for which the relations in§5.3.1 are valid,

0.3 days . Porb . 6 yrs (5.32)

As previously stated Webbink et al. (1983) performed detailed calculations which are in

agreement with eq. (5.30). Their binary evolution calculations were carried out in the

(initial) orbital period range1 < Porb < 200 days. This is the range of orbital periods I

will consider hereafter.

5.4 Exploring the parameter space

5.4.1 Model 1

I shall start by examining the behaviour of the simplest of the models used for the surface

density profile, Model 1. Unless stated otherwise the parameters for all of the figures are

M1 = 10M⊙, M2 = 1M⊙, αh = 0.1, αc = 0.01, ǫ = 1 × 10−3, η = 0.1, H/R = 0.01,

Rtrig = 0.1Rdisc andRmax = 0.1Rdisc. The circularisation radius detailed by Hessman

& Hopp (1990) was used. Model 1 can be regarded as an upper limit for the total mass

of the disc. As a result the quiescence times using this modelare particularly large

∼ 103 − 104 yr. Additionally mass accretion rates onto the primary are typically super

Eddington at orbital periods of∼ 10 days.

By examining fig. 5.6 and 5.7, a general trend can be observed in the behaviour of

tout, tq and the duty cycle. Initially the outburst time is directly proportional toPorb

(see§5.2.2). The choice of parameters has resulted in anṀ1 which irradiates the entire

disc and the Eddington limit is reached at∼ 7 days. This behaviour continues until

Rdisc > REdd at Porb ∼ 10 days, hence the mass lost from the disc during outburst is

constant, irrespective of the size of the disc. However the mass transfer rate still increases

with orbital period (see eq. (5.30)). When the entire disc isirradiatedRout = Rdisc ∝
P

2/3

orb , this in turn meansMdisc ∝ P 2.03
orb . Hence, eq. (5.30) results in the quiescence

time obeying a power law of∼ 1.1 when the disc is totally consumed in outburst. When

Rout = REdd the massMout is constant, hencetq obeys the relation∝ P−0.93
orb . The effects

on the duty cycle are then straight forward to calculate (assuming tq ≫ tout): a power

law of ∼ −0.103 whenRout = Rdisc and a power law of∼ 0.93 whenRout = REdd.

This raises the possibility that the duty cycles of long period LMXBs may be larger that

previously assumed.
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(a) varyingM1 (b) varyingM2

(c) varyingαh (d) varyingαc

FIGURE 5.6. Parameter study of Model 1.
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(a) varyingǫ (b) varyingH/R

(c) varyingRtrig

FIGURE 5.7. Parameter study of Model 1.
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I will now briefly detail some of the specifics of the individual results of the parameter

study.

Figure 5.6a, varyingM1

Increasing the primary mass increases the orbital separation for a given period, resulting

in a larger disc. The greater reservoir of mass results in theEddington limit being reached

at a smallerPorb for a more massive black hole. Additionally the more massivethe black

hole the greater the Eddington luminosity. The maximum region of the disc which can

be irradiated is greater, causing the increased outburst and quiescence times.

Figure 5.6b, varyingM2

Once again changing the mass of a component in the binary changes the orbital sep-

aration for a given period. While increasing the secondary mass does increase the bi-

nary separation it also reducesRL1 and the circularisation radius around the primary

(see the form ofRcirc in table 5.1). This reduction in the radius of the disc means that

Rout = REdd < Rdisc at shorter orbital periods. A largerM2 also increases−Ṁ2 which

in combination with the reducedRdisc reducestq.

Figure 5.6c, varyingαh

With the exception ofαh = 0.045 all of the trials behave in a similar way. The mass

accretion rate is high enough to irradiate the entire disc until Porb ∼ 12 days when

Rdisc > REdd andtout plateaus. The viscous time atRirr is reduced for larger values of

αh but the same mass is accreted. Whenαh = 0.045 however, the viscous time atRirr is

such thatṀ1 never reaches the Eddington limit, due to the low viscosity in the hot state

and the resulting long outburst time. Thus, oncePorb ∼ 6 days the disc becomes larger

thenRirr but the Eddington limit has not been reached.

Figure 5.6d, varyingαc

From eq. (5.2), increasingαc reduces the mass in the disc. Forαc > 2.2× 10−2 the disc

mass is low enough so thaṫM1 is always sub Eddington. Asαc is decreased, the outburst

curve begins to approach that of the Eddington limited case with an outburst time of

∼ 100 yrs. Although the outburst times are identical for allPorb whenαc 6 2.2 × 10−2
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the effect of the differingαc can be seen in the quiescence time. Whenαc > 2.6 × 10−2

tout and tq begin to increase again at orbital periods> 100 days. This is caused by

Rtrig > Rirr and is seen in a number of the trials.

Figure 5.7a, varyingǫ

For larger values ofǫ the irradiation radius aṫMEdd is increased, see eq. (5.11), resulting

in a correspondingly largertout andtq (as more mass is lost from the disc in the outburst).

The only departure from this behaviour is whenǫ = 4 × 10−4, when thetout curve once

again starts to obey the power law of the pre Eddington limit,due toRtrig > Rirr. The

trigger radius increases with the disc radius and so the power law is ∼ 1 due to the

argument in§5.2.2.

Figure 5.7b, varyingH/R

The aspect ratio of the disc is varied between 0.01-0.1: these are values generally as-

sumed to be reasonable (King, Kolb & Burderi 1996, Mayer & Pringle 2007). The effect

on tout is similar to that when varyingαh, asH/R is increased the outburst time de-

creases, due to eq. (5.8). The amount of mass involved in the outburst is constant with

changingH/R in the range chosen.

Figure 5.7c, varyingRtrig

The only significant effect of changingRtrig is the value ofPorb for whichRtrig > Rirr,

the effect of which is described in the discussion of fig. 5.7a.

Varying η

The results were found to be independent ofη whenη > 0.05. Values< 0.05 are needed

to influence the amount of the disc that is irradiated.

5.4.2 Model 2

The behaviour of the second model for the mass in the disc can be best understood by

using the example of Model 1. The general form of the two models is similar: both

tout and tq increase withPorb until ṀEdd is reached, whereupontout plateaus andtq
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(a) varyingM1 (b) varyingM2

(c) varyingαh (d) varyingαc

FIGURE 5.8. Parameter study of Model 2.

129



Long period LMXBs: 5.4 Exploring the parameter space

(a) varyingǫ (b) varyingη

(c) varyingH/R (d) varyingRmax

FIGURE 5.9. Parameter study of Model 2.
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FIGURE 5.10. Figure showing the convergence to a power law of 1. Dashed lines
are differing values ofRmax starting at0.1Rdisc and increasing in increments of

0.03Rdisc.

begins to decrease. Compared with Model 1 the mass in the discis reduced, therefore

the Eddington limit is reached at largerPorb, typically Porb ∼ 100 days. A further

consequence of the reduced disc mass is the reducedtq. The form oftq is generally not a

simple power law for high values ofPorb, due to the more complicated expression for the

disc mass (see eq. (5.17)). WhenPorb > 100 days Mirr is no longer the only significant

constituent ofMout (see fig. 5.4). The resulting outburst time in Model 2 does notfollow

the same power law as in Model 1 at short orbital periods, indicating the disc is not

totally irradiated and taking part in the outburst. The power law in the outburst times for

Porb < 100 days is particularly evident in fig. 5.9a and can be explained by the model

for the disc surface density profile. To illustrate this I will follow an example iteration

series.

• Initially an outburst is triggered atRmax. The mass contained within this radius is

given by eq. (5.13). For a fixedM1 andM2, Rmax ∝ P
2/3

orb . Hence the mass within

Rmax contains within it mass proportional toP 2.03
orb .

• Using the expression for the viscous time (eq. (5.8)) atRmax results intvisc(Rmax) ∝
Porb. This gives an initial average mass transfer rate onto the black hole,Ṁini =

Mmax/tvisc(Rmax) ∝ P 1.03
orb .

• This initial average mass transfer rate results in irradiation of the disc following eq.

(5.11), thereforeRirr ∝ (Ṁini)
1/2 which in turn gives a dependence on the orbital
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periodRirr ∝ P 0.516
orb .

• Making the assumption thatRirr > Rmax, which is possible in low period high

ǫ tests, the mass of the disc can be approximated by using eq. (5.16),Mout ∼
2πΣ(Rmax)R

2
irr. From eq. (5.2),Σ(Rmax) is approximately proportional toP 2/3

orb

and using the aboveMout ∝ P 1.7
orb.

• The average mass accretion rate is now recalculated from thenew outburst mass

and the viscous time at the irradiation radius. From the above it is known that

Mout ∝ P 1.7
orb andRirr ∝ P 0.516

orb . Hence the updated average mass accretion rate is

Ṁ1 ∝ P 0.94
orb

• The updated irradiation radius is now calculated from the new Ṁ1, Rirr ∝ P 0.46
orb .

A new outburst time is now calculated from this irradiation radius, again using eq.

(5.8), resulting intout = tvisc(Rirr) ∝ P 0.69
orb . All subsequent iterations converge to

this result and this power law is seen in several of the figuresin this section.

• In a similar fashion for the quiescence time, the new mass of the outburst is given

by Mout ∼ 2πΣ(Rmax)R
2
irr. From the arguments aboveΣ(Rmax) ∝ P

2/3

orb and

Rirr ∝ P 0.46
orb , resulting inMout ∝ P 1.59

orb . Using eq. (5.30) ensures that the quies-

cence time obeystq ∝ P 0.67
orb .

The transition between the two power laws in the outburst time can be seen in fig.

5.9d and in more detail in fig. 5.10. As the inner radius is increased the amount of mass

in the disc increases, which can provide the necessary outburst mass and hencėM1 to

irradiate the whole disc. This results in a power law fortout of 1, i.e. tout is proportional

toPorb (see§5.2.2). If this is not the case a power law of∼ 0.69 is the result.

At first glance the behaviour of fig. 5.8c is surprising. An increase inαh should

decreasetout, however this fails to take into account the resultant increase inṀ1 has on

the irradiation radius (∝ α
1/2

h ). Combined with eq. 5.16 (givenRirr ≫ Rmax) results

in the outburst time having no dependence on the viscosity inthe hot state. The only

remaining variable is the size of the disc. Figure 5.11 displaystout, tq and duty cycle

when the disc radii from Silber (1992), Eggleton (1983) and Hessman & Hopp (1990)

are used in Model 2. The form of the resultant curves are qualitatively the same. When

q = 0.1 Silber (1992) and Eggleton (1983) predict a comparableRdisc (see fig. 5.1),

which is larger than that predicted by Hessman & Hopp (1990).Hence they predict

similar results and larger outburst and quiescence time.
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FIGURE 5.11. Outburst quiescence time and duty cycle as a function of orbital
period. Model 2 is used with different expressions forRdisc.

5.5 Comparisons with observations

Before proceeding any further, it would be useful to comparethe predictions made from

the models against observed LMXBs. As previously stated there are only 15 confirmed

Galactic black hole binaries. The majority of which have an orbital period on the order

of one day; GRS 1915+105 is the longest period LMXB known. Thehistory of X-

ray astronomy is limited to only∼ 40 yrs. This coupled with the quiescence times of

even the shorter period system being of the order∼ 10 yrs means there is a lack of

observational data for comparison. This is further hampered by the total lack of data

on the long period systems with outbursts lasting decades and quiescent periods lasting

thousands of years. I will have to extrapolate the behaviourof the longer period systems

based on the observation of their short period counterparts.

The criteria used to select the black hole LMXB were as follows: a giant or sub

giant secondary, a known orbital period preferably severaldays long, known primary and

secondary masses and a source that has had several outbursts. As can be seen in table 4.1

in McClintock & Remillard (2006) the ratio of LMXBs known with main sequence donor

stars to those with giant/subgiant donors is approximately2:1, further reducing possible
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Table 5.3. Table of LMXB system parameters, typical outburst times and quiescence
times

Name Porb (days) M1(M⊙) M2(M⊙) tout (months) tq (yrs)
V1033 ScO 2.62a 6.59b 2.76b 8-16c 7c

BW Cir 2.54d >7.83d >1.02d 5-6e 10de

V404 Cyg 6.21f 10g 0.65h 6i 18-33j

a González Hernández, Rebolo & Israelian (2008)
b Shahbaz (2003)
c Saito et al. (2007)
d Casares et al. (2004)
e Brocksopp et al. (2001)
f Casares et al. (1993)
g Shahbaz et al. (1996)
h Shahbaz et al. (1994)
i Życki, Done & Smith (1999)
j Richter (1989)

candidates. The selected sources are shown in table 5.3. They are all typical of the

shorter (relative to GRS 1915+105) period LMXBs, outburstslasting a few months and

quiescent periods lasting a decade or so. By comparing theseobjects to the predictions

of the model, I will be able to better constrain some of the parameters used, particularly

the disc scale height and the irradiation efficiency. Another focus of this section will be

to determine which of the models for the surface density in the disc provides the best

match to the observations.

To constrain the parameters used in the model a search through the parameter space

was conducted. The mass of the constituents of the system have been fixed, therefore the

following parameters remain:αh/c, H/R, ǫ andη. Whileαh/c are ways of parameteris-

ing our uncertainty regarding the viscosity in accretion discs, deviating too far from their

“accepted” canonical values is undesirable. The parameters that had the greatest influ-

ence on the predicted outburst and quiescence times wereH/R andǫ. These parameters

have the greatest uncertainty associated with them, with accepted values forH/R from

0.1 to 0.01 whileǫ can be expressed as (King & Ritter 1998)

ǫ = (1 − β)
(
H

R

)n
[
d lnH

d lnR
− 1

]
, (5.33)

whereβ is the albedo of the gas in the disc and the indexn has a value of 1 or 2. The

uncertainties of each of the constituents ofǫ motivated the use of the single parameter

to describe the irradiation efficiency. Figure 5.12 shows how the relative error between
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(a) tout (b) tq

FIGURE 5.12. Plot of the relative error between the observed and predicted outburst
and quiescence times (Model 2) for the system V1033 ScO as a function of ǫ and
H/R. Colour scale denotes thelog10 of relative error, which is minimised for both

tout andtq whenH/R = 0.03 andǫ = 0.2 × 10−3.

the predicted and observedtout andtq varies whenǫ andH/R are allowed to change for

V1033 ScO. The error is minimised for bothtout andtq when values ofH/R ∼ 0.031

andǫ ∼ 2 × 10−4 are adopted.

FIGURE 5.13. Plot of the relative error between observations of theoutburst times
and results of Model 2 againstH/R
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Table 5.4. Table of LMXB system parameters, typical outburst times and quiescence
times. Parameters areη = 0.1, αh = 0.1 andαc = 0.01.

Predicted Observed
Model Name H/R ǫ(×10−3) tout (months) tq (yrs) tout (months) tq (yrs)

Model 1 V1033 ScO 0.03 0.05 12 65 8-16 7
“ BW Cir 0.06 0.1 6 ∼ 1000 5-6 10
“ V404 Cyg 0.02 0.035 5 15 6 18-33

Model 2 V1033 ScO 0.03 0.2 14 16 8-16 7
“ BW Cir 0.06 1.0 6 ∼ 150 5-6 10
“ V404 Cyg 0.02 0.035 5 15 6 18-33

Figure 5.13 shows the relative error between results from Model 2 and the observed

outburst times. The surface density profile adopted has little effect on the outburst times

in these short period systems, hence Model 1 produced similar results. The value of

the scale height needed to match the observations appears tobe in the range 0.02-0.06.

Table 5.4 gives the “best fit” values ofH/R andǫ adopted for the systems. Both models

predict the outburst times of all three systems well. Model 2predicts a quiescence time

for V1033 ScO that is within a factor of∼ 2 of the observed value. The quiescence

time of BW Cir is predicted to be a factor of 15 too large. This may be associated with

the uncertainty in the mass of the secondary (Casares et al. 2004). From the orbital

data a lower limit of1.02M⊙ was placed on the secondary. However Casares et al.

(2004) identified absorption features which correspond to aG0-5 III type star, which

has a typical mass range of2.1 − 2.4M⊙. If the upper limit of this mass range for the

secondary was adopted then the quiescence time predicted byModel 2 would reduce to

∼ 40 yrs. Given the other uncertainties in the system (M1) this is becoming consistent

with observations. Model 2 under-predicts the quiescence time for V404 Cyg but not

to any significant degree. Given the large time scales involved (first outburst in 1933)

Richter (1989) could not rule out the possibility outburstshad been missed. Indeed there

was some indication of an outburst in 1979, which would reduce the observed quiescence

time to10 − 23 yr. In summary Model 2 predicts the outburst times well but can over

estimate the quiescence time by a factor of> 2.

Model 1 over-estimates the quiescence times of the systems V1033 ScO and BW

Cir by a large margin. The value ofǫ is somewhat immaterial, no matter the value the

quiescence times are grossly over-estimated. Even assumingM2 = 2.4M⊙ in BW Cir

which gives a revised quiescence time of 115 yrs, all of the systems are predicted to

havetq a factor∼ 6 − 10 too long. This is unsurprising, as the surface density profile

of Model 1 ensures the disc is more massive than that of Model 2(see fig. 5.4). This

would cause the longer quiescence times and also increase the mass accretion rate onto
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the primary. From the form of eqs. (5.1) and (5.2), increasing the value ofαc will

reduce the disc mass. If the disc mass becomes comparable to that predicted by Model

2 then the quiescence times will match the observations moreaccurately. Figure 5.14

shows the mass involved in the outburst for Model 1 for two different values ofαc. An

extreme value ofαc is needed forMout to resemble that of Model 2. This does indeed

reduce the quiescence times to values approaching those of the observations. However

this necessitates thatαc ∼ αh, which renders the idea behind the disc instability model

somewhat useless as a solution to explain outbursts in CVs and LMXBs. The whole

concept depends on the idea that in the hot state the disc viscosity is significantly greater

that it is in quiescence, thus explaining the increase in themass accretion rate during

an outburst. The extreme values that parameters in Model 1 have to take to match the

observations renders this model for the disc unreliable in my view.

FIGURE 5.14. Plot of the mass involved in the outburst against orbital period, system
masses follow V1033 ScOs,H/R = 0.03 andǫ = 10−3.

In contrast to V1033 ScO and BW Cir, Model 1 predicts the V404 Cyg well. This is

due to the negligible irradiation efficiency needed for bothModels 1 and 2. Without the

irradiation of the outer disc and both models are essentially the same with the inner 10%

of the disc being lost in the outburst. This conflicts withŻycki et al. (1999) who suggest

the entire disc is involved in an outburst, to explain the fast rise in the 1989 outburst.

The discrepancy between the estimated mass transfer duringquiescence and the disc

mass leaḋZycki et al. (1999) to predict a model for the disc similar to my Model 2,

by solving the vertical disc structure equations they find that the disc becomes unstable
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at Runst ∼ 0.05Rdisc. Beyond this point the disc the disc does not fully build up in

quiescence, i.e.Runst is analogous toRmax.

Varying Rmax in Model 2

If Model 2 does indeed represent the surface density in the disc more accurately of the

two models, the “main” parameter defining this modelRmax will need to be investigated,

this was done briefly in§5.4.2 (see fig. 5.9d). Figure 5.15 depicts the effects ontout, tq
and duty cycle whenRmax is allowed to vary for a given system, whereM1 = 10M⊙,

M2 = 1M⊙, H/R = 0.01 andPorb = 5 days. The effects of this are dependent on the

strength of the irradiation. With negligible irradiation,tvisc(Rmax) (eq. (5.8)) defines the

outburst time

tout ∼ 40
(
Rmax

Rdisc

)3/2

yr. (5.34)

From eq. (5.13) and eq. (5.30) the quiescence time is given by,

tq ∼ 4000
(
Rmax

Rdisc

)3.05

yr. (5.35)

In contrast the outburst time with a high irradiation efficiency is controlled bytvisc(Rirr).

There is sufficient mass in the disc to irradiate the whole disc whenRmax > 0.3 whenǫ =

10−3. Depending on the irradiation efficiency the change in the outburst and quiescence

times when alteringRmax by a factor of two can be as large as a factor of23/2 and23.05

from eq. (5.34) and eq. (5.35) respectively. Hence, the dutycycle can change by a factor

of 2−1.55.

5.6 GRS 1915+105

All the information necessary to make some informed predictions for longer period sys-

tems is now in place. The temptation is to assume that the longperiod systems behave in

the same way as their short period counterparts. This is by nomeans certain, as discussed

in §5.5. Also fig. 5.13 shows a trend of decreasing disc aspect ratio with increasing or-

bital period. Additional information provided by the numerical simulations in§4 will be

used to firm up some of the assumptions made. Figure 5.16 showsa similar exercise as in

fig. 5.12 for the numerical results of§4. Typical values obtained in§4 aretout = 25±5 yr

andtq = 104 ±2×103 yr. From fig. 5.16 Model 1 requires parameters ofH/R = 0.025
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(a) tout (b) tq

(c) Duty cycle

FIGURE 5.15. Plot of the outburst, quiescence times and duty cycle as a function of
Rmax for different values ofǫ. System parameters are:M1 = 10M⊙, M2 = 1M⊙

andPorb = 5 days.

andǫ = 1.5 × 10−3 while Model 2 requiresH/R = 0.036 andǫ > 5 × 10−3. Both

models can adequately reproduce the results from§4 as seen in fig. 5.17.

5.7 Discussion

A goal of this work is to make some prediction of the duty cycleof other long period

LMXBs. From the comparisons with short period systems Model1 can be ruled out

due to its repeated over estimation of the quiescence time. Model 2 on the other hand

can reproduce observations of short period LMXBs and the computer models of GRS

1915+105. To make general predictions of LMXBs I will need toconstrain the parameter

space somewhat. Assume thatη, αh andαc have their canonical values and thatM1 =

10M⊙. The value forM1 is arbitrary, within the range of possible masses for stellar

mass black hole. From fig. 5.8a, the trend in the duty cycle does not change withM1

but merely changes magnitude. I am more interested in the changes in the duty cycle

as orbital period changes therefore this assumption was justified. In a similar way the
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(a) Model 1tout (b) Model 1tq

(c) Model 2tout (d) Model 2tq

FIGURE 5.16. Plot of the relative error between the predictions oftout andtq from
chapter 4 and this work as a function ofǫ andH/R. Colour scale denotes thelog10

of relative error.

mass of the secondary was fixed at1M⊙. This had two motivations; the first follows

the argument forM1 and the second is that a solar mass donor star would be typicalin

the old stellar population found in elliptical galaxies observed in Irwin (2006). In§5.5

the disc scale height has values between0.02 − 0.06 while the above discussion of GRS

1915+105 impliesH/R = 0.036. Figure 5.13 suggests thatH/R decreases with orbital

period in this model, therefore I will assumeH/R has a value of approximately 0.03.

The final parameter,ǫ, has the weakest constraints with values ranging from10−5−10−3

in §5.5. Additionally the value ofǫ can change the profile of the duty cycle v.s.Porb plot

(see fig. 5.9a). I made the decision to leaveǫ as a free parameter and have it vary through

three orders of magnitude to hopefully cover likely values for this parameter.
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FIGURE 5.17. Comparison between Model 1 and 2 fitted to typical outburst and
quiescence times of GRS 1915+105 generated from Chapter 4

Figure 5.18 shows the variation of the duty cycle with orbital period for the param-

eters described above for three different values ofH/R. It appears the form of the duty

cycle can be divided into three different regimes. The first (shaded green in fig. 5.19)

can be identified as the low irradiation regime. In this region the duty cycle rises ini-

tially with orbital period untilPorb reaches a critical value whereRmax > Rirr and hence

tout = tvisc(Rmax). From this point onwards the duty cycle decreases withPorb. Follow-

ing the method outlined in§5.4.1 the duty cycle obeys

tout = 0.027Porb(d) yr

tq = 0.59P 1.103
orb (d) yr

duty cycle ∼ 0.045P−0.103
orb (d),

(5.36)

assuming thattq ≫ tout. In the extreme case of no X-ray irradiation of the disc, the

duty cycle will obey eq. (5.36) for the period range1 − 200 days. Otherwise the duty

cycle can increase by up to 60% in the rangePorb ∼ 1 − 30 days, before decreasing

according to eq. (5.36). In the high X-ray irradiation regime (shaded light blue in fig.

5.19) most, if not all, the disc enters the hot state and is accreted during the outburst,

resulting in smaller duty cycles that nevertheless show more variability withPorb. When

all of the disc is lost in the outburst the duty cycle again obeys ∝ P−0.103
orb , until the

Eddington limit is reached. In this regime the duty cycle canincrease by as much as a
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factor of three whenPorb is increased from three days to 200 days. Immediately after the

Eddington limit is reached the behaviour of the duty cycle isdominated by the changes

in the quiescence time. In the limit wheretout ≪ tq andRmax ≪ Rirr then eq. (5.16) and

eq. (5.30) give the dependence∝ P 0.263
orb (for a constantRirr andΣ(Rmax) ∝ P

2/3

orb ). The

intermediate regime (shaded blue in fig. 5.19) has moderate irradiation of the accretion

disc and is characterised by an initial constant duty cycle.It is caused by the power laws

that tout andtq obey when the disc is partially irradiated: from§5.4.2tout ∝ P 0.69
orb and

tq ∝ P 0.67
orb . Hence the duty cycle∝ P 0.02

orb i.e. nearly constant with orbital period. This

behaviour continues until the Eddington limit is reached (red line in fig. 5.19) andtout

becomes constant, whereupon the power law of∝ P 0.263
orb takes over. Due to the form of

eq. (5.16), whenRirr ∼ Rmax there is no simple power law to describe the duty cycle

as seen in fig. 5.19. As stated above the red line shown in fig. 5.19 cuts through the

intermediate regime where the Eddington limit is reached. The point at whichṀEdd is

reached can be calculated by using the results of§5.4.2:Mout ∝ P 1.7
orb andtout ∝ P 0.69

orb .

Therefore the mass accretion rate varies as∼ Porb (likewise forṀEdd).

To summarise, there appear to be three general trends in the duty cycle, the behaviour

of which depends on the importance ofRirr. I have classified the regimes according to

the extent of the irradiation in the disc when the Eddington limit is reached:

• Rirr(ṀEdd) < Rmax: A low irradiation of the accretion disc, characterised by an

initial increase followed by a peak then a gradual decline withPorb.

• Rmax < Rirr(ṀEdd) < Rdisc: Moderate irradiation of the accretion disc, char-

acterised a constant duty cycle followed by an increase at higher orbital periods.

• Rirr(ṀEdd) = Rdisc: High irradiation of the accretion disc, characterised by an

initial fall in duty cycle followed by a rapid increase at high orbital periods.

From fig. 5.18 the relative importance of each of the three regimes depends on how much

of the disc is irradiated, withH/R changingṀ1, see eq. (5.11). To more accurately

predict how the duty cycles of LMXBs change as a function of orbital period, an idea of

the importance of X-ray irradiation is needed. From the discussion in§4.5 the length of

the current outburst of GRS 1915+105 may be important in thisunderstanding.

In existing models of black hole LMXBs the duty cycle is oftenassumed to be con-

stant with a value of∼ 0.01. The model outlined in this section is equally valid for

LMXBs with a neutron star primary which some estimates of theduty cycle have been

made. In a study of cataclysmic variables Dobrotka, Lasota &Menou (2006) found a
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FIGURE 5.18. Variation of duty cycle with orbital period for three different values
of H/R over a range of irradiation efficiencies.

relation between the duty cycle and the mass transfer rate from the secondary, approxi-

mately

duty cycle ∼
(
−Ṁ2

Ṁcrit

)2

. (5.37)

WhereṀcrit is the critical mass accretion rate onto the primary ensuring all of the disc

is irradiated (King et al. 1996). From eq. (4.6) one gets

Ṁcrit =
4πσT 4

HR
2
disc

ηǫc2
. (5.38)

Hence the duty cycle using this method varies approximatelyas∝ P−0.81
orb . This model
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was used by Fragos et al. (2008) for neutron stars, to simulate the XLF in Elliptical

galaxies. The more complicated structure of the duty cycle dependence on the orbital

period in the model presented in this work would likely influence their results. Depend-

ing on the importance of the irradiation of the disc the duty cycle can be expected to

show three different types of behaviour asPorb is increased. Assuming the model for

the disc surface density is constant for allPorb. The model described in this work is a

more comprehensive method to describe the duty cycle of LMXBs than has been used in

the past. However it is heavily dependant on the choice of parameters. These have been

constrained to where possible by comparison to the few observations available and to

detailed numerical simulations but much uncertainty remains. This toy model attempts

to use the basic physics of accretion discs to reproduce their observed behaviour without

resorting to a computationally expensive treatment similar to §4. It would be an ideal ac-

companiment for any studies looking at the X-ray luminosityin modelled star systems.

Additionally, I have restricted myself to look at black holeLMXBs with giant compan-

ions. This analysis can be repeated in much the same way for main sequence donors and

even extended to other classes of astrophysical objects such as CVs.

FIGURE 5.19. Depiction of the 3 different regimes in duty cyclePorb parameter
space as described in§5.7, ǫ ranges from10−5 − 10−2. If the top curve is charac-
terised byi = 0 then the efficiency of each curvei is given byǫ = 10−5×1.26i. The
red line represents the points where the Eddington limit is reached in the moderate

irradiation regime.
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Chapter 6
Conclusions

“It don’t matter that some fool say he

different...”
- D’Angelo

The Wire: All Prologue [2.06]
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Conclusions:

In this thesis I have described accretion onto black holes intwo scenarios: that of

accretion from a diffuse medium in the Galactic centre and accretion in a binary sys-

tem. Muno et al. (2005a) identified a LMXB candidate 0.1 parsec in projection from

Sgr A∗, which due to its bright radio emission (Fender & Kuulkers 2001) they supposed

contained a black hole. Alternatively, due to its faint X-ray luminosity there is the pos-

sibility that this binary may be accreting gas from the Minispiral and be a “fake LMXB”

as described in§3.4.

In §3 and§4 I described objects in our own Galaxy, however observations described

in §5 were the motivation for considering systems that could explain the X-ray emis-

sion in nearby galaxies. With the advent of theChandraera there have been several

studies of the X-ray emission of the Galaxy and its neighbours (for a review of extra

galactic sources see Fabbiano (2006)). One of the most immediately noticeable features

of LMXBs is their propensity to be found in globular clusters. In some elliptical galax-

ies the fraction of LMXBs associated with globular clustersis as high as 70% (Sarazin

et al. 2003). LMXBs appear to be formed preferentially in globular clusters with a high

collision rate (Peacock et al. 2009). Globular clusters have an unusually high stellar den-

sity and interactions between stars are far more likely thanin the galactic field. This has

led to the conclusion that LMXBs in globular clusters are formed by these interactions

as opposed to the evolution of the binary system and/or the nuclear evolution of the stars.

This alternative explanation for the formation of LMXBs hasled some to conclude that

most if not all LMXBs are formed in globular clusters (White,Sarazin & Kulkarni 2002).

The LMXBs could be kicked out of the globular clusters which they were formed in due

to the change in velocities experienced by a binary during the supernovae that forms the

black hole/neutron star. Although this is refuted by Kundu et al. (2007), who find that

the field LMXBs are associated with the underlying stellar population and are therefore

likely formed in situ.

Whichever proves to be correct there are two distinct populations of LMXBs: those

in globular clusters and those in the field. It has been proposed that LMXBs in globu-

lar clusters are primarily ultracompact X-ray binaries (Bildsten & Deloye 2004), i.e. a

white dwarf secondary; while LMXBs in the field may be wide binaries with a red giant

secondary (Piro & Bildsten 2002). Any binary with a large orbital period,Porb & 1 day,

would likely be disrupted by the frequent interactions in a globular cluster. However

such binary systems could exist in the field. The formation mechanism of such binaries

and LMXBs in general is still uncertain, with the possibility of the supernovae explo-

sion destroying the binary. However there are other possible avenues: intermediate mass

X-ray binaries which would be more likely to survive the supernovae (Podsiadlowski,
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Rappaport & Pfahl 2002) and triple star systems, consistingof a high mass inner binary

and a low mass companion (Eggleton & Verbunt 1986). However LMXBs are formed in

the field, it appears likely that there are two different formation mechanisms for LMXBs

that may result in differences in the system parameters, luminosity profiles, outburst and

recurrence times. The observations of LMXBs with giant companions in the Sculptor

dwarf spheroidal galaxy1 (Maccarone et al. 2005) supports the idea that at least some of

the field population comprises LMXBs with giant donors.

There have been several attempts to model the X-ray luminosity function (XLF) of

elliptical galaxies, (Ivanova & Kalogera (2006) and Fragoset al. (2008)). The XLF is

highly dependent on the population of X-ray binaries and models describing it are gov-

erned by the mass of the black hole /neutron star and the secondary type. Transient black

hole X-ray binaries with red giant donors are particularly important when considering

the high luminosity end of the XLF; while they may be less numerous than those with

main sequence donors they are more luminous. A common problem when attempting to

model the XLF of a particular galaxy is the lack of any constraints from theory or obser-

vations, on the duty cycles of X-ray transients. Ivanova & Kalogera (2006) report that

the common assumption of a constant duty cycle for all systems fails to reproduce obser-

vations. Fragos et al. (2008) report that for certain parameters in their model a constant

duty cycle of 1% could match observations, at the expense of removing the contribution

of LMXBs from the XLF. Fragos et al. (2008) feel that a constant duty cycle of 1% is

unrealisticly low, however from§4 it may be appropriate for GRS 1915+105 like sys-

tems. The work presented in§4 and§5 is a step towards a understanding of long period

black hole LMXBs which, as detailed above, are likely to reside in the field of galaxies

and contribute significantly to the XLF.

Turning attention to our own Galaxy, of the confirmed 17 transient black hole LMXBs

the longest period of 33.5 days is in GRS 1915+105. If the dutycycles of GRS 1915+105

like systems are as predicted in§4, it implies that there are potentially many more sys-

tems with similar orbital periods that are currently quiescent. Previous studies have

assumed a constant duty cycle when estimating the number of these quiescent systems,

however§5 has demonstrated that (depending on the model assumed for the accretion

disc) longer period systems (Porb ∼ 10 − 100 days) potentially spend less time in

quiescence than previously assumed. Observation of quiescent black hole LMXBs in

the Galaxy is challenging; they are∼ 100 times less luminous than those containing

a neutron star (Garcia et al. 2001), although longer period systems do appear to have

1low luminosity galaxies with little gas, dust or recent starformation, additionally they do not contain
any globular clusters.
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higher quiescent luminosities. Comparisons between the observed LMXBs in outburst

and those in quiescence in the Galaxy would provide information on the duty cycles of

these objects as well as the orbital period range. Improved estimates of the duty cycle

and orbital period of LMXBs may allow the structure of the accretion disc to be inferred

based on the models outlined in§5, improving any attempt to model the XLF of other

galaxies.
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Appendix A
Results

“....a little slow, a little late.”
- Avon Barksdale

The Wire: The Pager [1.05]
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In this appendix I detail all of the parameters used in the simulations described in

§4 in table A.1. In table A.2 the raw data from the code is displayed along with the

results post processing using the scaling method outlined in §4.3.6. The errors have been

omitted from the tables for clarity but are shown on the figures in §4. The parameters

where chosen so thaṫM1 > −Ṁ2 and the scaling method (see§4.3.6) was applicable

(for discussion see§4.4.2).

Simulation Σmax Σmin αsph
h αsph

c η ǫ λ
Name
base 55 4.7853 1.0 0.1 0.1 7e-4 1
irr 1 55 4.7853 1.0 0.1 0.1 3e-4 1
irr 2 55 4.7853 1.0 0.1 0.1 5e-4 1
irr 3 55 4.7853 1.0 0.1 0.1 9e-4 1
irr 4 55 4.7853 1.0 0.1 0.1 1.2e-3 1

sig max 1 40 4.7853 1.0 0.1 0.1 7e-4 1
sig max 2 47.5 4.7853 1.0 0.1 0.1 7e-4 1
sig max 3 62.7 4.7853 1.0 0.1 0.1 7e-4 1
sig max 4 70 4.7853 1.0 0.1 0.1 7e-4 1
sig min 1 55 3 1.0 0.1 0.1 7e-4 1
sig min 2 55 7 1.0 0.1 0.1 7e-4 1
sig min 3 55 10 1.0 0.1 0.1 7e-4 1
sig min 4 55 15 1.0 0.1 0.1 7e-4 1
alpha h 1 55 4.7853 0.5 0.1 0.1 7e-4 1
alpha h 2 55 4.7853 0.8 0.1 0.1 7e-4 1
alpha h 3 55 4.7853 1.3 0.1 0.1 7e-4 1
alpha h 4 55 4.7853 1.5 0.1 0.1 7e-4 1
alpha c 1 55 4.7853 1.0 0.05 0.1 7e-4 1
alpha c 2 55 4.7853 1.0 0.08 0.1 7e-4 1
alpha c 3 55 4.7853 1.0 0.15 0.1 7e-4 1
alpha c 4 55 4.7853 1.0 0.2 0.1 7e-4 1
wind 1 55 4.7853 1.0 0.1 0.1 7e-4 0.6
wind 2 55 4.7853 1.0 0.1 0.1 7e-4 0.8
wind 3 55 4.7853 1.0 0.1 0.1 7e-4 1.2
wind 4 55 4.7853 1.0 0.1 0.1 7e-4 1.4

Table A.1.Table detailing the parameters used in each simulation
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Simulation Out Rec Ṁ1 Ṁwind scaled Out scaled rec duty
Name time (d) time (d) (10−8 M⊙ yr−1) time (yr) time (yr) cycle
base 967 868 3.1 0.12 23.8 10722 0.00222
irr 1 974 873 3.1 0.09 24.0 10778 0.00223
irr 2 973 877 3.1 0.10 24.0 10829 0.00221
irr 3 978 864 3.1 0.11 24.1 10673 0.00226
irr 4 1044 850 2.9 0.16 26.2 10629 0.00246

sig max 1 924 582 2.7 0.03 22.8 7185 0.00317
sig max 2 904 769 3.0 0.06 22.3 9499 0.00235
sig max 3 1016 948 3.2 0.16 25.0 11715 0.00214
sig max 4 690-1040 650-990 1.8-3.9 0.09-0.5 17-26 8029-12229 **
sig min 1 1125 872 2.8 0.04 27.7 10772 0.00257
sig min 2 839 846 3.3 0.18 20.7 10454 0.00198
sig min 3 741 800 3.5 0.27 18.3 9882 0.00185
sig min 4 622 713 3.7 0.55 15.3 8801 0.00174
alpha h 1 1625 343 2.0 0.08 37.0 4241 0.00944
alpha h 2 1104 780 2.8 0.1 26.7 9635 0.00282
alpha h 3 733 825 3.5 0.36 18.1 10191 0.00177
alpha h 4 623 717 3.7 0.40 15.3 8853 0.00173
alpha c 1 974 934 3.1 0.15 24.0 21795 0.00117
alpha c 2 971 898 3.1 0.11 23.9 13716 0.00174
alpha c 3 1022 830 3.0 0.11 25.2 5565 0.00453
alpha c 4 ** ** ** ** ** ** **
wind 1 605-885 625-985 1.6-3.0 0.53-2.0 15-22 7720-12167 **
wind 2 970 908 2.9 0.46 23.9 11211 0.00213
wind 3 975 857 3.2 0.01 24.0 10582 0.00227
wind 4 976 865 3.2 0.00 24.1 10685 0.00225

Table A.2.Table containing the raw outburst and recurrence times and the final processed results.
Errors have been suppressed for clarity. Simulations with ** never reached a steady state.
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FIGURE A.1. Mass accretion rate as a function of time for the simulationsirr 1, irr 2, irr 3 and irr
4 respectively.
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Results:

FIGURE A.2. Mass accretion rate as a function of time for the simulationssig max 1, sig max 2,
sig max 3 and sig max 4 respectively.
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Results:

FIGURE A.3. Mass accretion rate as a function of time for the simulationssig min 1, sig min 2,
sig min 3 and sig min 4 respectively.
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Results:

FIGURE A.4. Mass accretion rate as a function of time for the simulationsalpha h 1, alpha h 2,
alpha h 3 and alpha h 4 respectively.
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Results:

FIGURE A.5. Mass accretion rate as a function of time for the simulationsalpha c 1, alpha c 2,
alpha c 3 and alpha c 4 respectively.

156



Results:

FIGURE A.6. Mass accretion rate as a function of time for the simulationswind 1, wind 2, wind 3
and wind 4 respectively.
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