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Accretion onto stellar mass black holes

by
Patrick Deegan

Abstract

| present work on the accretion onto stellar mass black hiolssveral scenarios.

Due to dynamical friction stellar mass black holes are etqueto form high density
cusps in the inner parsec of our Galaxy. These compact resmaay be accreting cold
dense gas present there, and give rise to potentially addslerX-ray emission. | build a
simple but detailed time-dependent model of such emiss$tature observations of the
distribution and orbits of the gas in the inner parsec of Sgwi put tighter constraints
on the cusp of compact remnants.

GRS 1915+105 is an LMXB, whose large orbital period impliegeay large ac-
cretion disc and explains the extraordinary duration oftiisrent outburst. | present
smoothed particle hydrodynamic simulations of the acoretdiisc. The models includes
the thermo-viscous instability, irradiation from the aahbbject and wind loss. | find
that the outburst of GRS 1915+105 should last a minimum ofe&fryand up te- 100
years if the irradiation is playing a significant role in tisisstem. The predicted recur-
rence times are of the order ti* years, making the duty cycle of GRS 1915+105 to be
afew0.1%.

| present a simple analytical method to describe the obb&rhaviour of long pe-
riod black hole LMXBs, similar to GRS 1915+105. Construgttwo simple models for
the surface density in the disc, outburst and quiescenastare calculated as a function
of orbital period. LMXBs are an important constituent of eay light function (XLF)
of giant elliptical galaxies. | find that the duty cycle camywaonsiderably with orbital
period, with implications for modelling the XLF.
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Chapter 1

Introduction

“They can chew you up, but they gotta spit

you out.”
- McNulty

The Wire: Collateral Damage [2.02]



Introduction: 1.1 Black holes

The work in this thesis deals with accretion onto black hdleshis section | will begin
by introducing the concept of black holes and discuss théegxe for their existence. |
will then spend some time going over the mechanism of theetiocr process in detail:
the concepts discussed here will be used throughout thisnal Finally | will cover two
situations in which accretion onto black holes can takeeld@w~v mass X-ray binaries
and in the Galactic Centre.

1.1 Black holes

1.1.1 Theoretical argument

Of the four forces in nature (the strong force, weak force,dlectromagnetic force and
gravity) gravity is the weakest. However, it is the domintorte in the Universe on

large scales. The effects of gravity are most prominentraidhe objects known as
black holes. In 1705, Isaac Newton’s Opticks was publisiitestated that light was of a

particle nature. If this was the case, light should be infbeehby gravity. This thought

occurred to the amateur astronomer John Michell (Miche84)7He calculated that if a

star existed with a radius 500 times that of the Sun and the samrage density, then its
escape velocity would be equal to the speed of light. Simgliaéing the escape velocity
of a star to the speed of light results in an expression forabeus of a star.

2GM 2GM

Vese = R = R* = 2 s
*

(1.1)

wherec, v, M and R, are the speed of light, escape velocity, mass and radiuseof th
star respectively. Equation (1.1) produces answers thaheatime, seemed absurdly
small and this generated little interest among the sciefmmunity. For example, the
Sun’s mass [/, ~ 2 x 1033g) results inR, ~ 29 km.

The idea of what were to become known as black holes was risitegluntil the20*®
century. By 1915 Albert Einstein had developed his theoryesferal relativity (Einstein
1915) and had argued that gravity does influence light, dthestourvature of spacetirhe
Karl Schwarzschild solved Einstein’s field equations toctdiég the gravitational field
outside a spherical, non-rotating mass and showed thatc& hlae was theoretically
possible. However, the process leading up to their formatias still a mystery.

IN.B. Einstein used entirely different arguments to the arsssi by Michell (1784)
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In the 1930s several physicists, such as Chandrasekharmgreh@eimer, were work-
ing on the ultimate fate of stars. Oppenheimer and Snyderithesl the gravitational col-
lapse of a star that had exhausted all of its nuclear fuel é@pgimer & Snyder 1939).
Subsequently Oppenheimer & Volkoff (1939) theorised thaté may be a limit on the
mass of a neutron star (the most dense object known at th¢ éintea star exceeding
this limit may have a final collapse. As a consequence, blatédshare thought to be the
ultimate stage of development in the evolution of massiaesst

A thorough examination of black holes is beyond the scopdisfwork, however
some general facts will be useful. The radius described in(&dL) is known as the
Schwarzschild radiusRs..,. This can be thought of as the surface of a black hole,
called the event horizon. Within the event horizon all of thass is located at a single
point: the singularity. This is a point of infinite density @rfe spacetime is infinitely
curved, which nothing (including light) can escape from.

1.1.2 Observational evidence for black holes

By the 1940s the theory behind black holes was, for the mast paderstood. There
was one problem however: there was no evidence for them. i hissurprising since
by their very nature black holes are impossible to observectly. It was not until

the 1970’s that indirect observational evidence began tergéh The first black hole
candidate was in the system Cygnus X-1 (Cyg X-1). Discovéned-rays in 1964,

Cyg X-1 is one of the brightest X-ray sources that can be seen Earth with X-ray

luminosities of4.6 x 103" erg s~* in the 0.7-300 keV band (Makishima et al. 2008).

The optical counterpart was subsequently discovered tdohgeasupergiant variable
star, incapable of producing a significant X-ray flux. If thedsupergiant could not pro-
duce the observed X-rays something else must. The first thae<yg X-1 contained
some sort of compact object was from the satellite Uhuru @d& 1971). Extended ob-
servations showed that the source of the X-rays was rapathing. This suggested that
the source must be small due to the speed of light restrittiognmunication” between
differing regions. This led to speculation that Cyg X-1 wasimary system consisting
of a giant star and a compact object of some description. We&sMurdin (1972) and
Bolton (1972) discovered a 5.6 day orbital period of the sgip@at; based on the period,
the mass function and the mass of the supergiant (obtainedifs spectral identifica-

2This observational evidence was the result of matter aiogrento black holes, sef.2
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tion®) the mass of the compact object was found to be too large feutran stat. The
most recent mass estimate of the compact objegisdl (lorio 2008). The only way
the X-rays could be produced is for some material to fall ombat is now widely re-
garded as a black hole. This process is known as accretiors anstussed i§1.2.1. It
appears that Cyg X-1 consists of a black hole accreting frenopargiant star. A second
candidate, LMC X-3, for a black hole was identified by Cowléwke (1983). Cyg X-1
and LMC X-3 are just two examples of a class of objects calledyXbinaries, which all
consist of a compact object (a neutron star or black holeg#iog in some manner from
a secondary star. The subclasses of X-ray binaries will daudsed i31.3.

1.2 Accretion

1.2.1 Accretion as an energy source

In §1.1.2 it was alluded to that accretion was the source of thle éhergy X-rays ema-
nating from the source Cyg X-1. Accretion is an efficient euof energy and powers
many of the highest energy sources in the Universe. Conaitledy of mass/ and ra-
dius R,, the gravitational potential energy extracted by a madalling onto its surface

IS,
GMm

R,
It is clear from eq. (1.2) that the efficiency of the accretmocess is dependent on
the ratio of M /R,. This ratio is greatest when dealing with compact objecth as
neutron stars and black holes. Assuming all of the energgaseld by infalling matter
is converted into radiation at the stellar surface and maiteretes at a raté/, the
accretion luminosity produced is

AFu. = (1.2)

GMM

L acc —
R,

(1.3)

Equation (1.3) is only valid when the accretor has a solifeser, such as a white dwarf
or neutron star. When the accretor is a black hole, eq. (%.8pi strictly valid, some

3A star's mass can be estimated by looking at its spectra. ginperature of the star's atmosphere is
related to the mass of the star. The temperature also affecisnisation states of atoms in its atmosphere
resulting in differing stellar spectra.

4In a neutron star the weight of the star is supported by stamge repulsive interactions between
neutrons governed by the strong force and quantum degenerassure of the neutrons. If a compact
object has a mass greater thar.5 — 3.0 M, these forces will be unable to prevent the object collapsing
to some denser form.
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of the material can simply fall in past the event horizon add & the black hole mass
rather than producing observable radiation. This unagstaian be parameterised by the
inclusion of a dimensionless quantifythe accretion efficiency)

B oG MM
= =
=nMc?, (1.4)

Lacc

whereR, was replaced with the Schwarzschild radius from eq. (1.d)gmas a typical
value~ 0.1 (see§7.8 in Frank, King & Raine (2002)).

The simplest astrophysical accretion problem is steadyersgally symmetric ac-
cretion onto a star of mas¥/. This situation was considered by Hoyle & Lyttleton
(1939), Bondi & Hoyle (1944) and Bondi (1952); it is a readuleaapproximation to a
star accreting from a gas cloud or the interstellar mediudhigprovides a useful upper
estimate of the accretion rate on a star. The derivatiomigagith the equations of gas
dynamics, specifically the continuity equation for a stetholy

1d

ﬁﬁ(ﬁpv) =0, (1.5)

wherer, v andp are position, velocity and density of the gas. This integgab,

r’ow =C
dnr?p(—v) = M. (1.6)

asp(—v) is an inward flux of material the integration constéahtan be can be related
to an accretion rata/. If all gas within a distance aof,.. is assumed to be captured and
accreted by the star then

M = 4mrk p(—v). (1.7)

There are two extreme conditions that can determine the$izg.: when the motion of
the star in the gas is supersonic and when the star is at rigstegpect to the gas. Hoyle
& Lyttleton (1939) studied the first regime and found. ~ 2GM/v?, while Bondi
(1952) foundr,.. ~ 2G'M/c? in the second regime, whetg is the sound speed of the
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gas. There are now two forms for the mass accretion rate

: (GM)*
M= Admp 3
) 2
M = 47Tp(Gi\34) . (1.8)

s

Finally Bondi (1952) proposed an interpolation formula tadge the gap between the

two extremes
(GM)?

(Av2 + ¢2)3/27
where Av? is the relative velocity between the star and the gas. Fudbils of the
derivation can be found in the papers cited above or alteeigin Frank et al. (2002).

M = 4rp (2.9)

The above is only valid if the infalling gas has no intrinsigalar momentum. In
general this is not the case and the specific angular mometduses the gas to orbit
around the accretor: this will result in an accretion disee $pecific angular momentum
of a body in orbit of radiug? about a cental body of madg is

j=(GMR)?. (1.10)

As a body moves closer to the central mass its angular momesteareases, conversely
if R increasesj also rises. Since the total angular momentum of the disc ddxe t
conserved, the angular momentum loss of the mass falling thiet accretor has to be
accompanied by an angular momentum gain of the mass in tiee dist, i.e, angular
momentum needs to be transported outwards for matter tetaccr

Accretion discs occur in a wide variety of phenomena and oging size scales,
from active galactic nuclei (AGN) to gamma ray bursts andabprsystems. Accretion
discs are also thought to be necessary for star and plameafion. In this thesis | am
mainly concerned with discs around stellar mass black hodesained within binary
systems. The mechanics of binary systems and accretios aisaiscussed in the fol
lowing sections of this introduction.

1.2.2 Eddington limit

The form of egs. (1.3) and (1.4) suggests that the luminadign object will increase
indefinitely if A/ rises. This fails to account for the effect the radiationtaf accretor

The velocity in eq. (1.7) differs depending on the condision the supersonic cases the relative
velocity of the gas. When the star is at rest> c;.



Introduction: 1.2 Accretion

has on the infalling matter, which imposes a limit dh Assuming the infalling matter
is comprised entirely of ionised hydrogen, the gravitadidorce on the electron-proton
pairs is,

GM(m,+m.) GMm,

2 )

F=

(1.11)

r2 r
wherem,, andm, are the mass of the proton and the electron respectively$ m.).
This inward force is opposed by the outward force of radrafioessure on the ions.
The radiation pressure mainly affects the electrons thidtizomson scatterifg The
attractive Coulomb force between the ions means that tlogretes will drag the protons
outward. The force on the electrons is equal to the rate attwthiey absorb momentum,

LO’T

)2 (1.12)

Arer?’

whereor is the Thomson scattering cross-section for electrons/aisdhe luminosity.
Equating egs. (1.11) and (1.12),

4rGMmyc

~ 1.3 x 10%¥(M/ My)erg s™*, (1.13)
or

LEdd =
gives the value for the luminosity at which the gravitatibioace and the radiative force
are equal. This is known as the Eddington limit and imposes®immum limit on the
accretion rate onto any object. Note this is only an orderagnitude estimate assuming
a steady spherically symmetric accretion flow. The mass#ioorrate at the Eddington
limit for black holes is given by combining egs. (1.4) andL@),

g5t (1.14)

1.2.3 Viscosity

When some material is gravitationally captured by a magsady it will not be accreted
immediately. This is due to the angular momentum of the nmedtexrhich will go into
orbit about the body forming what is known as an accretion.dfsgure 1.1 depicts the
general idea behind the accretion disc. Around the certcaetor there is a rotating disc
of gas moving with a characteristic angular velocity. Iniidd to this, viscous forces
cause the disc to spread in the radial direction. The meshahy which gas ends up in
an accretion disc is discussediih 3.1. In this and following sections | will go into some
details about the mechanisms behind accretion discs. Foraimdepth discussion the

5When charged particles elastically scatter photons
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Central star

FIGURE 1.1. Standard picture of an accretion disc. Solid arrowsotléipe direction
of motion of the disc.

reader is referred to Frank et al. (2002) or Pringle (198 hass of an accretion disc
is typically much smaller than that of the accretor. If thssindeed the case, the self
gravity of the accretion disc can be ignored and the disd®the central body of mass
M with a Keplerian angular velocity,

M 1/2
G > , (1.15)

Ulh) = (G
whereR is the distance fromd/. This implies differential rotation in the accretion disc
i.e. material closer ta// will have a higher angular velocity than material at a larger
radius. When two neighbouring annuli slide past each othadom thermal motions of
the gas result in angular momentum transport perpenditoildre circular velocity of

the gas. This process is callsdear viscosity

Assuming a speed for the random motions and a typical length scale between ele
ment interaction\, the kinematic viscosity is,

v = \U. (1.16)

A large shear viscosity is necessary for the angular momeftransport during the life-
time of an accretion disc. However the process behind theosity is still open for
debate. Thé&keynolds numbes a ratio of the inertial and viscous forces in a fluid. If a
fluid is dominated by viscous forces the Reynolds numbesistiean one. For an accre-
tion disc, which relies on molecular collisions, the Reylsohumber has been calculated
to be as high a$0'. It appears that molecular collisions are insufficient tovine the
shear viscosity needed. There is a critical value of the Blegmumber in every system
above which turbulent motions begin. The large values ¢tatled for accretion discs
suggest that the material in an accretion disc is turbuighich could provide the nec-
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essary shear viscosity. Assuming that turbulence is theecatithe shear viscosity in
accretion discs eq. (1.16) can be modified,

Veurb = )\turb'Uturb- (117)

The values);,,;, and w1, represent the size and velocity of the largest turbulent mo-
tions respectively. This does not at first appear to be anyaugment on eq. (1.16),
indeed, a complete description of turbulence is still @@sBShakura & Sunyaev (1973)
parameterised all of the ignorance involving turbulenctneir relation,

v=ac.H, (1.18)

known as thex-prescriptionof shear viscosity. Shakura and Sunyaev reasoned that the
largest turbulent motions cannot exceed the height of tke idiand that the motions
cannot be supersonic, hence a maximum speed is the sourdiaiptbe gas:,. Equa-
tion (1.18) is a useful form for the shear viscosity, it has@amaged the comparison
between theory and experiment to determine the magnitude dhe magnitude ofv
while expected to beS 1 is still the subject of much debate. The physical mechanism
behind viscosity also remains uncertain. The magnetoootatinstability (Balbus &
Hawley 1991, Balbus 2003) (MRI) is the current favoured miéalexplain the viscosity

in accretion discs. Consider a rotating disc in the presefeevertical magnetic field.
Two neighbouring fluid elements can behave as though theyoemeected by a ‘spring’,
due to the magnetic tension. In a Keplerian disc the inned fallément has a larger
velocity than the outer element, causing the “spring” tetsti. The inner fluid element

is then forced by the spring to slow down, hence reducingriguar momentum and
causing the inner fluid element to move a lower orbit. The oiliéd element is forced

by the spring to speed up, increasing its angular momentuhwélhtherefore move to

a higher orbit. Theoretically this could provide the neeggwiscosity to explain the
observed accretion rates in accretion discs.

1.2.4 Viscous spreading in an accretion disc

Viscous torque

In §1.2.3 the concept of shear viscosity was introduced. | sl briefly explain
the mechanism by which a ring of matter spreads due to thousforce. Consider
the situation depicted in fig. 1.2. There are two neighb@uannuli each of width
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A
R+ A
B
R
R-A

FIGURE 1.2. Mass transfer between adjacent annuli in an accreisan d

A, the average distance between interactions of the gas elem#/hen gas elements
are exchanged across the surfétthey carry differing amounts of angular momentum.
Element A will on average carry the angular momentum eqgeivab a position of? +
A/2. Similarly, element B has an angular momentum equivaleafosition ofR — /2.
Matter crosses the surfageequally in both directions due to chaotic motions. For every
unit arc length the mass flux in both directions is of the oden, wherep is the mass
density. While the mass flux is identical in both directioti®s same cannot be said
for the angular momentum. This results in a transport of Erguomentum due to the
random motions. The difference of the outward and inwardumgnmomentum flux
gives the torque exerted on the outer annulus by the innedasper unit arc length and
is of the order— H poAR*(Y, whereQ)' = d2/dR (Frank et al. 2002) . The total torque
exerted by the outer annulus on the inner annulus is therefor

G(R) = 2rRvXR* (Y, (1.19)
where eq. (1.16) has been used andstiidace densitpf the disc is defined as
H
Y= / pdz = pH, (1.20)
0

for a constant density. Assuming a Keplerian angular velogee eq. (1.15))) is
always negative. From the form of eq. (1.19), the inner amldses angular momentum
to the outer annulus.

10
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Dissipation

Now consider a ring of gas of thickned® at a distancé: from a mass\/. The inner
and outer edges of the disc will experience different tosgtiee net of which is,
oG
G(R+dR) - G(R) = @dR. (1.21)
This torque is acting in the presence of the angular veldejt}), hence a rate of work
being performed (power)

O==dR = | —=(GQ) — G

oG 0
o5 [ e dR. (1.22)

The termG<YdR represents the rate at which mechanical energy is lost tgadbe The
energy lost ends up as heat energy, i.e. the torque causgsadiisn in the accretion disc
and locally heats the gas. Defining the dissipation rate piesurface ared (R) so that

Gy

D(F) = 4R

= %VZ(RQ')Q. (1.23)

Where each ring has a surface are2 of 2r RdR and eq. (1.19) has been used. If a
Keplerian velocity is assumed eq. (1.15) then

M
D(R) = guz%. (1.24)

Viscous ring

Consider a thin (close to = 0) disc in a Keplerian orbit about a central star of mass
The disc will have a circular velocity of,

In addition to the circular velocity, there is a small radiift velocity v,, which is
negative for smalR due to matter falling toward&/. The expression for the mass of an
annulus of the disc of width is,

Am = 27 RTN. (1.26)

11
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Similarly the angular momentum of the annulus is giverRbyRYX R?Q - \. Again fol-
lowing Frank et al. (2002), the rate of change of mass for anukus is,

0 9 (orRAY) = v.(R, )21 RE(R, t) (1.27)
ot —0(R+ N t)2m(R+ AN)X(R+ A t).
In the limit A — 0, eq. (1.27) reduces to
oY 0

When considering the angular momentum, the net effectseofigtous torques need to
be included,

v, (R, 1)2rRE(R, t) R*Qk (R)

%(QWRAERQQK) = —u(R+A1)2m(R+ A)%(é% + A1) (1.29)
X (R+A)’Qx(R+)) + @/\

Again in the limitA — 0,

0 9 0 9 1 0G
Rat(ZR Q) + @(RZUTR Qk) = 5B (2.30)
Combining egs. (1.28), (1.30) and (1.19) results in,
5% — ROE <R 8R( vERYF) ). (1.32)

This is the basic equation describing the time evolutiorhefdurface density in a Kep-
lerian disc. Assuming that is a constant enables a relatively simple analytic solution
Provided an initial mass distribution of

" _5(R - Ry). (1.32)

E(R,t=0) = 50

i.e. aring of matter at radiuB, and following the method outlined in Frank et al. (2002)
an expression for the surface density is,

m _ _a z2
Y(x,7) = ﬂ_RzT =14, = 11/4(2x/7') (1.33)

Wherer = R/Ry andt = 12vtR;> andI,, is a modified Bessel function. Figure 1.3
shows the form of eq. (1.33) for several valueg-ofThe viscosity of the disc, has the
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TR,/ m

0.0 0.5 1.0 1.5 2.0
x=R/R,

FIGURE 1.3. A ring of matter of mass: placed in a Keplerian orbit (a8 = R,)
spreads out due to viscosity. The surface density is givesgby1.33)

effect of spreading the ring on a time scale

2
tyise ~ R— (1.34)

v

Examining fig. 1.3, it is possible to gain an insight into haweaecretion disc functions.
After a long time,r > 1, the vast majority of the mass originally in the disc has been
accreted onto the central object. The angular momentumeahtiss in the disc has been
carried away to a large radii by a small fraction of the madss s the basic principle
behind all accretion discs, whether they are found arougithsimass black holes, AGN
or protostars.

13



Introduction: 1.3 Low mass X-ray binaries

1.3 Low mass X-ray binaries

1.3.1 Binary systems

A binary star is a system that consists of two stars orbitnogd their centre of mass. It
has been suggested that a large percentage of stars aré patems with two or more
stars (Duquennoy & Mayor 1991, Fischer & Marcy 1992). Binstgr systems are of
large importance, by observing their orbits it is possibledlculate orbital period of the
system. This information can used to determine the masgée afdividual stars The
stars in binary systems can also influence each other’s teamolproducing many and
varied astrophysical objects.

Binary Geometry

Before discussing the specifics of low mass X-ray binaridssktribe the basic geometry
of a binary star system. Consider the system depicted in #g.cbntaining two stars of
massM; and M, (in this work it is assumed that/; > Ms) respectively orbiting about a
centre of mass (COM). The separation of the stazan be determined by Kepler’s third
law,

dn*a® = G(M; + Ma) P2, (1.35)

whereP,,;, is the orbital period in the binary. The total potential of $ystem has three
constituent parts; the gravitational potential of the tharsand the effect of the Coriolis
force. The potential at a poimtin a binary with an angular velocity ¢t is described by
the Roche potential

GM, G M,

—|r—r1| B |r — 1y B

1
O(r) = 5(9 At)? (1.36)
wherer;andr, are the position vectors of the centres\éf and M, respectively. Figure
1.5 shows eq. (1.36) plotted on the line of centres of theegysThree local maxima are
apparent in the potential: they are known as the first thregdragian points.

Further insight into accretion problems in binary systemns loe gained by plotting
equipotentials ofb(r) in the orbital plane, fig. 1.6. The equipotentials are hgadé-
pendent on the mass ratjc= M; /M,. When a test particle is close to either of the stars,
its motion is largely determined by the nearest star. Shhyila test particle at a large

"Provided the radial velocities of the stars are known andrtbiénation of the system with respect to
the observer is known.

14
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M2
a
- o
FIGURE 1.4. A binary system consisting of a compact st& and a secondary
star M orbiting around their COM with a binary separati@nArrows indicate the
direction of motion.
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—-15.4
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—16.4

0
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FIGURE 1.5. Roche potentiab(r) along the line of centres (the line connecting the
centres of mass) for a binary system with a mass ratio 1/4, shown are thd.;,
L, and L3 points and the positions @i/; and M.
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Introduction: 1.3 Low mass X-ray binaries

distance from the primary only feels the force from a singbsscentred on the centre
of mass (COM) of the system. More important is the area sadimg theL, point, the
equipotentials in this region resembling a figure-of-eidfite critical equipotential sur-
rounding both stars and passing through thgoint is known as th&®oche lobelf the
secondary star somehow fills its Roche lobe, matter may Insfeaed to the primary
star via thel; point. As demonstrated by fig. 1.5 the “path of least rest#ars via
the L, point, an unstable local maxima (actually a saddle pointDx). 3atter is then
transferred, in a process called Roche lobe overflow (RL&Xhe primary’s Roche lobe.

To examine the Roche lobes in more detail a measure of tlegrisineeded. Due
to the form of eq. (1.36) the lobes are not spherical. A comagoroximation is to
consider a sphere of radius, that has the same volume as the lobe. The non trivial
nature of eg. (1.36) means there is no exact formula deagribi, but Eggleton (1983)
describes a analytic approximation for all valueg of

Ry 0.49¢%/3
a  0.6¢%3 +In(1+¢/3)

(1.37)

This calculates the radius of the lobe sphere for the secgnétathe range; < 0.8 a
simpler form (Paczyhski 1971) is

/3
R2 2 q !
== <1_+q> : (1.38)

An interesting consequence of this: combining egs. (1.88)eq. (1.38), the average
density of a lobe filling star is determined by the orbitaliperof the binary (expressed
in hours),

_ 3M2 35 m _9 3
_ _ 0 ~ 110P=2(h 1.39
p 47TR% 8 GPOQrb 0 OI‘b( r) g cm ( )

Mass transfer

The means of mass transfer onto the primary depends on thdienf the secondary
star, which is largely determined by its mass. If the secpnaa high mass star such
as an O or B type it will have a significant stellar wind. A fiact of this wind can be
captured by the primary, form an accretion disc and subsglyugccrete onto the pri-
mary. For a lower mass secondary, mass transfer cannotgoroceil the star, somehow,
fills its Roche lobe. Then, mass can be transferred vid.thgoint. Gas initially at the
L, point settles into an orbit of radiug,;,. around the primary with the same angular
momentum that it possessed at thepoint. The material settles into the lowest energy
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—1.5.8

— 152

—15.4

—T10.8

— 3.8

0
x/a

FIGURE 1.6. Roche equipotentiads(r) = constant, for a binary system with a mass

ratiog = 1/4. Shown are the five Lagrangian poiris - Ls. The inner Lagrangian

point L, is a saddle point in the potential surface. If the second@nyevolves and

fills its Roche lobe, mass can be transferred to the primany Jthe colour scale
represents-log;o(®) and is in units of ergs'.

orbit for a given angular momentum i.e. circular, becausdissipation when the stream
of matter interacts with itself. From the conservation ajaar momentum,

RcirC'Uqb(Rcirc) - RL1 vy (140)
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FIGURE 1.7. A patrticle simulation of disc formation in the system &R915+105

with a ~ 7.5 x 102 cm, P,,4, = 33.5 days, M; = 14 M, and M, = 1.0. The cross

represents the position éf/;, the secondary red giant is not shown. Patrticles are
emitted from thel,; point.

whereR;, is the distance from/; to Ly, vs(Reirc) is the circular velocity aR.;,., given
by

1/2
o) = ()
andv, is the velocity (in a non-rotating frame) perpendicularte line of centres at the
L, point. As gas is transferred from the secondary, it accutesilatR ;.. forming a ring
which spreads out due to collisions, shocks and viscougdissn to form an accretion
disc, the mechanics of which have been discusséd.ia4. An example of a numerical
simulation showing the formation of an accretion disc isvetn fig. 1.7.

(1.41)

For the process of mass transfer via Roche lobe overflow tmtoeg of two things
must occur. The lobe of the star can shrink until it is equaheostellar radius or the star
can expand to fill the Roche lobe. Starting by looking at th®tar angular momentum,
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Introduction: 1.3 Low mass X-ray binaries

J, of the binary
2

Porb ‘
Wherea; = (My/M;)a andas = (M, /Ms)a are the distances dff; and M, from the
COM respectively, simplifying with\/ = M; + M, and using eq. (1.35) gives

J = (Mya} + Mya3) (1.42)

Ga 1/2
J = My M, (E) . (1.43)
If it is assumed that all of the mass lost by the secondafy & 0) is gained by the
primary then,M; = 0 andM, = —M,. Logarithmic differentiation of eq. (1.43) then
gives

LR} (1.44)

Due tog < 1 and M, < 0, for conservative mass transfer (no loss of mass or angular
momentum/ = 0) the LHS of the equation is always positive and the orbitpbsation
must increase. Logarithmic differentiation of eq. (1.3Beg

Ry a M,

2 _ T, 72 1.45

Rg a + 3]\427 ( )
combing this with eq. (1.44) gives an expression for the gkan the lobe radius of the
secondary

A =y (1.46)

Ry, J M, \6
Again for conservative mass transfer any system with 5/6 will result in the Roche
lobe expanding away from the star, stopping any mass tnaiisfe star does not simi-
larly expand.

R, 2J 2M2<5 )

1.3.2 X-ray binaries

A simple approximation of a blackbody spectrum allows amneste of the optimum
wavelength an accreting black hole should be observabl®gifine a temperaturé,,,
that the black hole would have if it radiated as a blackbody,

Lacc A
Ty, = ( ) , (1.47)

whereo is the Stefan-Boltzmann constant. Assuming a black holesroéSs M., us-
ing eq. (1.1) and assuming the luminosity is equal to its Bgidin luminosity (.5 x
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S

FIGURE 1.8. Distribution of HMXB (filled circles) and LMXB (empty oiles)
within the Milky Way (Grimm et al. 2003).

103%erg s71), givesTi, ~ 4 x 107 K. This temperature would result in photons with an
energy ofkTy;, ~ 1keV (wherek is the Boltzmann constant). At this energy, a black
hole is a source of X-rays. A note of caution, this result isnmare than an order of
magnitude estimate. Assuming the Eddington luminositygn €1.47) is only viable
because of the insensitivity @i, to the luminosity. Similar arguments can be used to
show neutron stars also radiate largely in X-rays. The pres/sections have shown that,
accretion can be a source of ener§¥.2.1), mass can be transferred from a secondary
star to a primary compact stay1(.3.1) and that this mass will form an accretion disc that
will spread due to viscosity5(.2.4). In addition the emitted spectrum of black holes
and neutron stars will be in the X-ray band. This has led systeontaining a black
hole/neutron star accreting from a secondary star to bsifiksas X-ray binaries.

X-ray binaries are typically separated into two categoriegh mass X-ray binaries
(HMXB) and low mass X-ray binaries (LMXB). HMXBs typicallyansist of a black
hole/neutron star and a high mass companion. Accretionatalace due to the wind
of the massive companion star or due to Roche lobe overflowy hlave a hard X-ray
spectrakT = 15 keV) and are known to be concentrated in the Galactic plane (gee fi
1.8). LMXBs are binaries where a neutron star/black holerés@nt, along with a low
mass main sequence star, or a evolved giant star filling ith&tobe. Mass can only
be transferred to the primary via Roche lobe overflow. Thesmaigoq in these systems
can be low, referring to eq. (1.46) the secondary star mustrek for mass transfer to
proceed. In contrast to HMXBs, LMXBs have a softer X-ray spe@7 < 10 keV) and
are associated with the Galactic bulge. The lifetime of arr 8 type star is of the order
of 105=7 yrs, resulting in HMXB being found in star forming regions (i.the Galactic

8Assuming that/ = 0, which is not always the case, particularly in systems wittwaorbital period
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FIGURE 1.9. Orbital period distribution of 33 well defined LMXB (Wthi et al.
1995)

plane). The lifetime of LMXBs on the other hand is much longer10'° yrs); therefore
LMXBs are found throughout the Galaxy and are also assatiaith globular clusters
(Clark 1975).

Figure 1.9 shows the orbital distribution of 33 well measut®XBs. The peak in
the distribution appears to be 10 hrs. This is in contrast to orbital periods in main
sequence binaries which are of the order of years. The padeforming a LMXB
must decrease the orbital separation and hence decreassbita¢ period. Assuming
a binary begins with two main sequence stars, the more neapsimary star evolves
quicker and enters the giant phase first. As the primary gfzarels it will transfer mass
to the secondary via the, point (see§1.3.1). As the primary continues to expand the
secondary becomes engulfed resulting in a common enveloggep Frictional forces
between the stars and the common envelope causes the sdmtahtion to shrink and
the common envelope to be ejected. The end result is a redubgdl separation and
a primary star that is now a helium core, which will in turnlepke into a neutron
star/black hole in a supernova. If the binary survives theesuova it will consist of a
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Y
1996.0 1998.0  2000.0 002. 2004.0 2006.0 2008.0
FT T T 7 — T T 7 T T T T I T H
- |”|. [ |_|| | Lo | WFC .
- ! oo B ! ASM e
| | | R . f
60 - x | 11 s
— g 1
" L | i
- _
= 40 r|
7]
> | | i |
R | | -
Lo
20 —‘ ‘ ‘ || -
L : 5 )l
: | | . % | i ‘ |ﬂ\ A :
N s LR AN T A .
50000 51000 52000 53000 54000
Time [MJD]

FIGURE 1.10. 1.5-12 keV light curve of 4U 1608-522 at a 2-week timsohetion
(Keek et al. 2008)

compact object and a main sequence star, the progenitodXiB. This also explains
the few LMXBs with longer orbital periods: these systemsareantered the common
envelope phase and they remained at a large orbital separati

Some LMXBs exhibit transient behaviour: they show long pasi of inactivity in-
terrupted by periods of increased luminosity. Figure 1Hd@xss the X-ray lightcurve of
the LMXB 4U 1608-522. The X-ray flux can increase by an ordanafjnitude or more
for short periods. Referring to eq. (1.3), the mass acaratioto the compact object
must be somehow be increased. The two possibilities to &elines are an increase in
the mass transfer from the secondary star or an increase im#éiss being transported
in the disc. The first possibility can be ruled out based orenlagions of the secondary
star and the hot spot (where the gas stream impacts the disle idisc. The second
possibility explains the transient behaviour of LMXBs viaiastability in the accretion
disc which temporarily increased through the disc. This model which became known
as the disc instability model (DIM) has had great succestaxpg the observations of
LMXBs along with other outbursting systems such as catatiysariables.

1.3.3 The disc instability model

The disc instability model was first proposed by H oshi (193 ®xplain dwarf novae.
It has since been developed for LMXBs, for a review see Lag2@8@1) and Dubus,
Hameury & Lasota (2001). Firstly I will go over the basic ideavolved in the DIM
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and how it explains outbursts. Secondly the mathematiesoing underpinning the
DIM will be discussed. A relation between the surface dgnsitthe discY: and the
temperaturd results in theS-curveshown in fig. 1.11. The curve represents the regime
in which an annulus of the disc can remain in thermal equilior To the right of the
curve energy generation due to viscosity is greater thaaerbagy losses from the surface
of the disc, hence the disc heats up. The opposite is trueedefttof the curve.

A
T High Viscosity, Hot state

V Cooling

Low Viscosity, cold statt

| | s
Zmin zmax
FIGURE 1.11. TheS-curvefor a given annulus of an accretion disc. The annulus has
a limit-cycle behaviour between hot and cold states.

The physical mechanism that underlines the DIM is the idimsaof hydrogen and
the extreme sensitivity of the opacity function in this tesrgiure region which results
in an instability. In theS-curvethe lower cold state corresponds to low opacity neutral
hydrogen, while the higher hot state corresponds to higkigpimnised hydrogen. The
critical value for the surface density above which the hgeéroin the disc is ionised
(T ~ 6500 K) is denoted,,,.x. The solution which has a negative gradienff' (0% < 0)
is unstable, resulting in limit-cycle behaviour when thgotheats and cools at the critical
pointsX .. andX ;..
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Introduction: 1.3 Low mass X-ray binaries

The changes in the annulus are assumed to be followed by gelvathe viscosity.
An increase in the ionisation of an annulus could in theosyltan an increased viscos-
ity, if the viscosity is wholly or partially the result of magtic fields. The increase in
viscosity is associated with an increase of angular monmemtansfer within the disc.
This causes a matter wave to propagate in the disc pushirsytfeece density of neigh-
bouring annuli abov&,,... Thus, the instability is likewise propagated through tise d
An increase in the mass transferred within the disc wouldaatfor the increasing/
and hence the increase in luminosity during the hot states.DIM has been successful
in explaining many astrophysical phenomena. However tloemainty over the physi-
cal mechanism behind viscosity in accretion discs meanaligity remains uncertain.
Nevertheless the fact remains that the DIM is the curretiydnly theory to success-
fully explain observations of CVs and LMXBs. As mentionedsih2.3 the effect of
magnetic fields on the disc is expected to give rise to the MRidling to viscosity in the
disc. Simulations using magnetohydrodynamics (MHD) mayvjale further evidence
backing this theory (for a review see Balbus & Hawley (2003))

The central premise of the DIM is ti&curve To understand the origin of the curve
| will follow the reasoning of Frank et al. (2002). Startingtlveq. (1.31), lefu = vX
and perturb the surface density so that >, + AY resulting in,

OAL 30 (Lip 0
ot ROR OR

(AMR1/2)> : (1.48)

Frank et al. (2002) show that the viscosityis a function of the surface density and
radius only, hencg is also, meaning

0%

AY = —Apu.
ol a

(1.49)

Using this in eq. (1.48) gives a relation describing how tleyrbation iry:, evolves with
time,

OQp _0p3 0 (s 0\ poipo
ot _ OX ROR (R g ST ) (1.50)

The important result from this is thatAp /ot « ou/0X. If ou/0% > 0 then eq.
(1.50) exhibits behaviour similar to that shown in fig. 1.8, ithe perturbation decays
on a viscous timescale. However the perturbations groweitctinditionoyu. /0% < 0 is
satisfied.

To gain a better understanding of this instabilitynust be related to a more intuitive
quantity. Use the conservation equations for mass eq. &28 angular momentum
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eq. (1.30) and assume a steady stat = 0) disc rotating with a Keplerian velocity.
From eq. (1.28) and using the same arguments used as in @pgildes

RZUR =C
2rRY(—vg) = M. (1.51)

Similarly from eq. (1.30) and using eq. (1.19) gives

) C
—VEQK = E(—UR)QK + Ff:{?” (152)

whereC' is a constant of integration. The second term on the RHS miftkrl as rate at
which angular momentum is lost from the disc to the accredithe beginning of the
boundary layef),, = 0 andQx ~ Qx(R,), whereR, is the radius of the accretor. Along
with eq. (1.51) this gives the value of the integration canstsC' = —M (GMR,)"/2.
Finally, using eq. (1.15) relatgsto the local mass transfer rate

VY = = M (1 _ <%>1/2> . (1.53)

Therefore the instability is in the region whedd//0%Y. < 0. This describes the be-
haviour of the disc in the unstable regime: whedecreases the local mass transfer rate
increases, leading to the fragmentation of the disc as blestagions are emptied of
mass.

To show the dependency of the instability on the opacity efdlsc the mass accre-
tion rate needs to be related the temperature of the disdelflisc is assumed to be
optically thick in thez direction then it will radiate as a blackbody. This energsslavill
be equal to the viscous dissipation in the disc

oT*(R) = 21/26;;—]\3/[, (1.54)

where eq. (1.24) has been used. To obtain the desired relatibstitute eq. (1.53) into

the above . 12
3MGM R
4 o N *
T(R) = 8TR30 <1 ( R) ) ' (1.55)

Meaning M T*(R), this recovers the instability condition originally stdtaend de-
picted in fig. 1.11, namelyT/0%. To proceed any further a relation betweemand T
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is needed. Given an opacity ef;, « p71* Frank et al. (2002) show that

13—2n

T o S0, (1.56)

for a given central temperatufe = 0). The gradient of which is negative whén2 <

n < 13/2, given the form of the opacity above this corresponds to émge in which
hydrogen is ionised, giving the physical cause of$ieurve The simpleS-curvein fig.
1.11 is an idealised version to explain the basics of the Ohweality there are two
S-curvezorresponding to the different values®@f This was implemented early in the
development of the DIM to explain the duration of outburstdivarf nova. An example
of a calculateds-curveis shown in fig. 1.12.

1ot

Ty ()

10? 1 Lol 1 L4 i1
10 1° 10
£ (g em™®)

FIGURE 1.12. An example of a calculat&Curve The dashed lines have a constant
« and the solid line is the result with differeats on the upper and lower parts of
the curve (Lasota 2001).

1.4 The Galactic centre

In §1.3 the black holes in question are no more than sevifglin mass. There are
however black holes in existence which are several ordensagiitude more massive.
Lynden-Bell & Rees (1971) speculated that there may be & keegtral mass within the
Galaxy which would probably be a black hole. The first evidefor this central black
hole was a bright radio source in the central parsec (Bali@&wvn 1974). It has since
been name®agittarius A*(Sgr A*) and is now widely believed to be-a 4 x 10° M,
black hole (Schodel et al. 2002). Sgr A* is part of a grouptfyanamed objects called
super massive black hole (SMBH) believed to reside in thdreesf most if not all
galaxies.
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FIGURE 1.13. Pa in the Galactic centre showing the feature known as the Min-
ispiral. The gray scale units at®'® erg cm=2 s~* per pixel, and spatial offsets are
relative to Sgr A* (Scoville et al. 2003).

The central parsec around Sgr A* contains thousands of dikrst are old red main
sequence stars. Within the central half-parsec howevepdiaer output is dominated
by young massive stars (Krabbe et al. 1995) which appearve baen formedh situ
despite the large tidal shear due to Sgr A*. More puzzlingésso called S-statsvhich
are found~ 0.03 parsecs form Sgr A*. How such young stars formed isotrofyical
around Sgr A* is still open to debate. In addition to these sivasyoung stars there
is the strong possibility that a significant number of conipacnants are located in
the nucleus of the Galaxy. Dynamical friction should reguiinassive stellar remnants
transferring closer to Sgr A* and less massive stars beejej from the Galactic centre
entirely (Morris 1993).

In addition to stars and compact objects the inner few parstthe Galaxy also con-

9The S-stars were first described by Eckart & Genzel (1997¢yEne young< 10 Myr), a factor of
10 closer to the SMBH than the closest stellar populatiomipusly known, and move around Sgr A* on
randomly oriented orbits that are highly eccentric.
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tains a significant amount of ionised gas. In projection tag fg@atures appear to have
a spiral shape (see fig. 1.13), resulting in the collectivee¢éhe Minispiral. The struc-
ture of the Minispiral is believed to consist of as many aeriomponents (Paumard,
Maillard & Morris 2004). The origin of the gas is still uncledhe hyperbolic orbits
(Yusef-Zadeh, Roberts & Biretta 1998) of the feature knowrhe northern arm sug-
gest that some of the gas is a temporary feature in the innkixgaThe presence of
the Minispiral and the expected compact objects leads tpdhsibility that black holes
(and neutron stars) could accrete gas from the MinispiralBeondi-Hoyle accretion (eq.
(1.9)), and be observable. | consider this possibility imgter 3.
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Chapter 2

Numerical methods

“The bigger the lie, the more they believe.”
- Bunk

The Wire: More With Less [5.01]
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2.1 Smoothed Particle Hydrodynamics

In this chapter | will introduce the concept of smoothed igethydrodynamics (SPH)
which will be used extensively ig4. There are two basic ways to computationally model
fluid flows, with and without a grid. The standard grid methodbives a fixed grid in
space where fluid quantities and derivatives are computed tisite difference meth-
ods. This approach runs into resolution difficulties whes tonfronted with problems
that span many orders of magnitude in space or density. @adslto a refinement of the
standard grid approach: the adaptive mesh refinement (AM&hoa solves many of
the problems that plague the fixed grid method by refining tietig regions of interest.

In the SPH approach, instead of using a grid the fluid quastdre carried by sev-
eral interpolation points called particles. These patictace the fluid motion and fluid
quantities and derivatives are calculated by interpajgtimer neighbouring particles.
This method became known as smoothed particle hydrodysarfite Lagrangian na-
ture (the coordinates move with the particles) inherentRdl $s extremely useful in
problems that grid codes had difficulty with because thelogi®m of the SPH method
is automatically adjusted with respect to the particle fp@ss. SPH was first described
by Lucy (1977) and Gingold & Monaghan (1977) and has been imsadvide variety of
astrophysical problems:

e Supernovae explosions

Star formation

Galaxy collisions

Gas dynamics

Planet formation

Star collisions

Accretion discs

In this thesis | use an SPH code written by James Murray (Mut@95, Murray
1996). The code has been modified by myself for this work aherst(Truss et al.
2000, Murray, Truss & Wynn 2002). For a comprehensive rede®PH see Monaghan
(1992). In the following section, | describe the SPH formialiand how it is implemented
in the code.
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2.2 SPH Derivation

2.2.1 Interpolant

Start with the trivial identity

/Q 5(|r —r'|)dr’, (2.1)

where/ is the Dirac delta function an@ is a function that is defined in the coordinates
r. This can be approximated using,

lim Wi(r—1',h)=6d(r—1), (2.2)

wherelV is a smoothing kernel with a characteristic smoothing leiagt) is then given

by
/ QYW ([r — v'|, h)dr’ + O(h?), (2.3)

wherell has been expanded in a Taylor series albartd is normalised to
/W(r — 1’ h)dr’ = 1. (2.4)

The integral in eq. (2.3) is then changed to a sum over a sdtofede points (the par-
ticles) which the interpolation is performed over and thessn@lemenpdV’ is replaced
with the particle mass:

Qr) = / f((:))W(r — 1/ h)p(r)dr’ + O(h?)

N Q
~ Y mi—W(r—r',h), (2.5)

=1 Pi

wherei refers to quantity being evaluated at the position of plerticEquation (2.5) is
the basis for SPH, as it allows us to find an approximation jopdnysical quantity of a
fluid. A common example of the SPH method is finding the dereditgny point in the
fluid. LetQ(r) — p(r) then eq. (2.5) becomes,

= %miW(r — 1’ h). (2.6)
i=1

This is the origin of the term SPH, the mass of each partidenigothed over the smooth-
ing length resulting in a continuous density distributidnie fluid.
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2.2.2 Derivative

Using eq. (2.5) the derivative of the fluid quantities can b&éamed. This is highly
desirable, calculating the derivatives at points in thelfenables calculation of pressure
and viscous forces within the fluid. The particle positioresthen updated according to
these forces. From eq. (2.3),

VO(r) = / VX)W (r — v, h)dr, 2.7)

integration by parts gives

VO(r) = /S Q@YW (r — ', h) nda + / Q)W (r — ', h)dr,  (2.8)

wheren andda are the unit normal and area element respectively of a suffad’he
first term on the LHS of the equation is a surface integral anatactice can be ignored
as long as eithe®)(r) or W are zero at some point in space. With this assumption in
mind and changing the integral to a series of interpolatimintgs as before results in,

m;

VO =20

Q(r)VW(r —r', h). (2.9)

Assuming that the derivative of the kernel is non zero, thévdive of any physical
quantity can be calculated.

2.2.3 The kernel

When SPH was first developed the kernels used were simplestaausinctions of the
form
1 2

W(T, h) = W€_x s (210)

wherer = r — r’ andz = r/h (Gingold & Monaghan 1977). This approach, however,
implies that all of the particles in the simulation are usedvaluate a physical quantity,
no matter how little a given particle contributes. This isaste of computing resources
and motivated the use of spline kernels in later work (Moregh Lattanzio 1985),

1—322+32% where0 <z <1
ag
W(r,h) = o 12 —x) wherel < z < 2 (2.11)
0 wherex > 2
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wherev is the number of dimensions aads a normalisation factor given by,

2 whenv =1
c=1{4 wheny =2 (2.12)
1 whenv = 3.

From eq. (2.11) the derivative of the kernel follows

3z + §a? where0 < z < 1
g
VW (r,h) =574 =12 —x)* wherel <z <2 (2.13)
0 wherez > 2.

This ensures that only neighbouring particles withincontribute to a quantity. As-
suming the smoothing length has been chosen correctly, parlycles with significant

contributions are used when performing any calculations @namatically reduces the
cost in computing time.

2.2.4 Smoothing length

The accuracy and speed of any SPH calculation is heavilyrdigpe on the choice of
the smoothing length. & is too great the number of neighbours of the particles in high
density regions is unnecessarily large and the calculaicomputationally expensive.
Conversely if the smoothing length is too small, partictearieas of low density may find
themselves with no other particles witt¥h, causing the SPH calculation to break down.
To resolve this, it is necessary to introduce variable shnagtlengths, specific to each
particle. This approach would ensure areas of high denaitg high spatial resolutions
while areas of low density are also accounted for. The emtrsduced by allowing the
smoothing length to vary are shown to be of the ordeh%fthe same as those when
making the initial SPH approximation (Hernquist & Katz 198%he smoothing length
is generally adjusted so that each particle has a given nuaflmeighbours withir2h.
One caveat when varying the smoothing length, to ensurartbatentum is conserved,
it is necessary to ensure that the smoothing length useddolate the force on particle

i due to particlej is the same as that used to calculate the force on paytidige to
particlei. This is achieved by using the average smoothing lengtheofwio particles
(Benz 1990).
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2.3 Fluid Equations

2.3.1 Equations of fluid dynamics

Consider a fluid with density and a velocityv. The behaviour of the gas can be de-
scribed by three conservation equations: mass, momentd@reangy. The conservation
of mass is described by the continuity equation

dp

“F : = 0. 2.15
5 TV (V) =0 (2.15)
Thedp/0t term describes the density changing with time andthéov) term describes
the flux of mass into a volume. For an incompressible flow ed52educes t& - v =
0. The conservation of momentum is described by the Eulertemua

ov

Por +p(v-V)v=—-VP+{, (2.16)

wheref represents external forces acting on the fluid &nhi$ the pressure at a given
point. In the vast majority of astrophysical problemsan be expressed using the perfect
gas law, an equation of state relating the pressure, deasityhe temperaturg of the

fluid
_ pkT

Hwmp
1 is the mean molecular weight amdy is the mass of hydrogen. Equation (2.16) is
analogous to Newton’s second law, i.e. forces on the fluidlres an acceleration.
From the discussion i§il viscosity is an important consideration for accretiorcslisT he
Navier-Stokes equation describes a compressible fluidawtbnstant shear viscosity

P (2.17)

ov

1
N +p(v-V)v=-VP+f+vVv+ gV[V(v-v)]. (2.18)

Finally the conservation of energy is governed by

0 /1 1
§<§pv2+p¢>+v- {<§pv2+p¢+P>] =f-v-V-Fa—V-q (219)

Here v is the internal energy per unit mass for the fluid. The quanti2pv? + py

is the energy of a gas element and has two constituents: teikienergy per unit
volume (1/2pv?) and the internal energy per unit volurfy@)). On the right hand side

of the equation there are several source/sink terms duediatian (V - F,,4) and a
conductive flux of heatV - q). The above equations can completely describe a fluid in
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an astrophysical system.

2.3.2 SPH equations in an accretion disc

| have introduced the equations of fluid dynamics and will ni@tail how they are imple-
mented in SPH. Mass conservation is an inherent properti?bf & an explicit SPH ex-
pression for the continuity equation is unnecessary. Tainlan expression that governs
how particles behave we start with the momentum conservétig. (2.16)), neglecting
any external forces

ov VP
Using the techniques i§2.2,
/ N vV ) W[ — '], h)dr :—/—W|r—r|h) (2.21)
ot

and proceeding in a way identical to (Benz 1990) we achievexanession for momen-
tum conservation suitable for implementation in SPH,

:_ij

dvl 3 (5 P>VW(|r—r| h), (2.22)

( J
whereV; denotes the gradient with respect to the coordinates atfeait Similarly

b7

N
e Z m;vi; - ViW(|r — 1’|, h) (2.23)

is the SPH energy conservation equation (Benz 1990).

2.3.3 Artificial Viscosity

Equation (2.22) is only valid for a inviscid fluid. In a realifiuthe viscosity allows the
conversion of kinetic energy into heat. This is especiaitportant in the treatment of
shocks, which is where viscosity is most significant in gstgsical problems. In SPH
an artificial viscosity is introduced to attempt to modeltiois

de

N P

Z ]
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The total energy is not conserved by eq. (2.23) when artifiggcosity is included.
Another term must be included that accounts for the heatfitigeofluid due to shocks,

sz R N / 1 al /
dt = ? ijvij . VZW(‘I' — T ‘, h) + 5 ijHisz’j . VZW(|I' — 7T ‘, h) (225)
et

i

j=1
Several forms ofl;; have been tried with the most widely used being

ocijuig + Bz
Xl TPy wherev;; - r;; < 0

0 Whet’EVij s Ty > 0,
where
hvij . rij
oo ity 2.27
Hij I_Zgj T ( )

andc;; andp;; are the average sound speed and density of two particlesndrherical
factorn preventsu;; becoming singular when;; — 0 and is set to) = 0.01h*. The
quantitiesa! and 3 are free parameters that control the strength of the vigco$he
« term primarily deals with the bulk viscosity of the fluid, vdiithe second ordes
term becomes significant in shocks. From eq. (2.26),# 0 only whenv;; - r;; < 0,
i.e. the viscous force only acts when two particles are aggirimg one another. This

formalism is used whell;; was only necessary in the treatment of shocks. In this work

we are interested in the shear viscosity so receding andagpiping particles do interact.
Therefore eq. (2.26) is changed to,

ocijuig + Bz
_]'uj—ﬁ'u] Wherevij Ty < 0
=9 aep” (2.28)
S Whet’EVij s Ty > 0.
Pij

IN.B. This is not equivalent to the described ir§1.2.3. The link between the artificial viscosityand
the Shakura-Sunyaevis discussed if§i2.7
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2.4 Nearest Neighbours

With the introduction of a kernel of the form of eq. (2.11) welyoconsider particles
within 2h of any particlei. These particles are known as the nearest neighbours of
particlei. There are many ways to find the nearest neighbours of a gaiclp,

1. Neighbour table
2. Monotonic logical Grid
3. ATree

4. Link list

I will present the basics of the first three methods and givexample of the link list
used by the code.

2.4.1 Neighbour table

For every particle, all the labels of neighbouring particles withth are stored in an
array. If we haveV particles and every particle hag, nearest neighbours, then an array
of dimensionV x N, is needed. This array has to be updated after every timerstap i
simulation, unless the particles’ positions are not chaggignificantly with time. IfN
and NV, are large the resulting size of the array may be problematic.

2.4.2 Monotonic logical Grid

Similar to the neighbour table, this method relies on stpiiriormation about the parti-
cles neighbours in an array. All of the properties of theipkas are stored in an array,
the order they are stored in the array relates to their phlypimsition in the simulation.
Therefore finding the nearest neighbours is simply a mafteearching through the
array.

2.4.3 Hierarchical Tree

This approach is mainly used in problems that require seligy. Indeed the informa-
tion used to calculate the self gravity in a fluid is the samghasrequired for the nearest
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o Particle

(O Node

FIGURE 2.1. A simple example of a hierarchical tree, note the nurobearticles
N = 7 and the number of nodasv — 1 = 13.

neighbours. In a tree, particles are grouped together iesidtiese nodes then interact
with one another. Once a node has been formed, its positidefiised as the centre of
mass of all the internal nodes/particles contained withifihe number of nodes depends
on the number of particleg N — 1, see fig. 2.1.

A node is considered to be an effective “particle” in its ovight. This is only
accurate when considering particles some distance fromdte. When considering a
node particle interaction it may be necessary to open updte to reveal its constituent
parts, (see fig. 2.2). When

R,

Ry,
the node is opened up and the particles interaction is cereddwith all the nodes con-
stituents. Trees effectively cut down the computing timedesl when considering parti-
cle particle interactions fro®N? to O NlogN. Whend,,;; — 0 all nodes are open and
the calculation returns t& N2.

< Ocrit, (2.29)

2.4.4 Link list

When using this method a grid is overlaid on the computatidoeain. The particles
are assigned to a cell and a list is constructed with the sabeévery particle in that
cell. Finding the nearest neighbours then consists of Beay¢hrough neighbouring
cells for particles. The link list consists of two arrays avigich records the label of the
last particle in that cell, if there ane..; cells, this array needs to be of length,. The
second array is of lengtlv and records the label of the previous particle in that cell.
A combination of these two arrays records what cell everyigaris in. This method

38



Numerical methods: 2.4 Nearest Neighbours

Node Ron Particle

FIGURE 2.2. Diagram showing node opening angk, is the distance between the
node and particle anf,, is the radius of the node.

Is very memory efficient when compared to a Neighbour Talbeydver setting up and
accessing the link list are recursive operations.

2.4.5 Link list example

Figure (2.3) shows a simplified 2D example with 8 particlesstly we want to know
the extent of the computational domain. The particles 1,8)%b8 define the maximum
extent of the domain in the, y plain,

Lside = Lmax — Lmin

(2.30)

Yside = Ymax — Ymin-

The lengthse;q. andygqe are divided by2h,,.., whereh,,., is the maximum smoothing
length allowed for a particle. This gives the size of the cataponal domain in terms
of the maximum smoothing length,

l:c = xside/2hmax =4
ly = yside/2hmax =3 (231)
Ly = L1, = 12.

The resulting grid is “unpacked” into a 1D array using thatieln,

lcell - lxcell + (lycell - 1)lac + (lzcell - 1)lxy> (232)
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Ymax oo
A 3
3 43 44 45 46
”””” R Pa—
] e | oy, !
ny 39 40 41 42
| | 4 6 5
,,,,,,, '
| 2
; 8
| 35 36 37 38
Ymin.___y » | |
SR S S N
| | o Ix | |
X‘min | Xmax

FIGURE 2.3. Simplified 2D computational domain with 8 particles. ddghas been
overlaid as described in section (2.4.4).

where
lxcell - N{([L’(l) - Imin)/2hmax} +3

lycell == N{(y(l) - ymin)/2hmax} + 3 (233)
Lican = N{(2(1) = Zumin) /2oma } + 3.

The valuesz (i), y(i) and z(i) refer to thex,y and z coordinates of the i'th particle.
Equations (2.33) locates which grid square each particddocated. The + 3 accounts
for the fact that the initial two values df..; andl,..; denote cells which are never
occupied. The link list itself is simple to construct, usimg arrays,//, andihoc. The
code to implement the link list is relatively simple and iaim below.
doi=1,n

[I(z) = ihoc(Icell)

ihoc(lcell) =4
end do
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We proceed as follows:

1. firstloopi =1
lxcell
lycoll

l zcell

= 5
3 = lcell =37
= 3

Particle 1 is in cell number 37. We now update the link list

1 2 3 4 5
= 0 0 o0 0 0

6 7 8

- 735 36 37 38 39
ihoc = 0 0 1 0 0

40 a1 a2 43 a4

45

6

FIGURE 2.4. Link list after particle 1

2. Second loop = 2
lxcoll
lycell

l zcell

Particle 2 is in cell number 37, the same as patrticle 1, againopdate the link list

3 = lcon =37

1 2 3 4 5
= 0 1 0 0 0

6 7 8

35 36 37 38 39
ihoc = 0 0 2 0 0

40 41 42 43 44

45

46

FIGURE 2.5. Link list after particle 2

3. Third loopi = 3
lxcell
lycoll

l zcell

4
= 5
= 3

= lcell =44

Particle 3 is in cell number 44, we now update the link list

4. Fourth loop =4
lxcell
lycell

l zcell

3
4 5 = leen = 41
= 3

Particle 4 is in cell number 41, we now update the link list
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" 135 36 37 38 39 40 41 42 43 44 45 46
thoc="| 0 | 0 0 2 | 0o 0|0/ 0| 0] 0] 3 0| 0

FIGURE 2.6. Link list after particle 3

1 2 3 4 5 6 7 8
= 0 1 0 0 0 0. 0 0

BES 36 37 38 39 40 a1 ) a3 a4 5 76
ihoc = 0 0 2 0 0 0 4 0 0 3 0 0

FIGURE 2.7. Link list after particle 4

5. Fifth loopi =5

lxcoll = 6
lycoll = 4 = leen = 42
lzcell = 3

Particle 5 is in cell number 42, we now update the link list

1 2 3 4 5 6 7 8
= 0 1 0 0 0 0.l 0 0

" 135 36 37 38 39 40 41 42 43 44 45 46
ihoc = 0 0 2 0 0 0 4 5 0 3 0 0

FIGURE 2.8. Link list after particle 5

6. Sixth loopi = 6

lxcoll = 5
lycoll = 4 = leen = 41
lzcell = 3

Particle 6 is in cell number 41, the same as particle 4, we mmate the link list

1 2 3 4 5 6 7 8
= 0 1 0 0 0 410 0

" 135 36 37 38 39 40 41 42 43 44 45 46
thoe="| 0 | 0 2 | 0| 0| 0|6 | 5| 0] 3 0| 0

FIGURE 2.9. Link list after particle 6
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7. Seventh loop =7

lxcel = 5
lycen = 4 p = leen =41
lyeen = 3
Particle 7 is in cell number 42, the same as patrticle 6 anicfadt, we now update
the link list
1 2 3 4 5 6 7 8

35 36 37 38 39 40 41 42 43 44 45 46
hoe="| 0 | 0 ' 2 | 0o 0| 0| 7|5 ]| 0] 3 o o

FIGURE 2.10. Link list after particle 7

8. Eighth loopi = 8

lxcoll = 3
lycell = 3 = lcoll =35
lzcell = 3

Particle 8 is in cell number 35, we now update the link list

1 2 3 4 5 6 7 8
= 0 1 0 0 0 4 | 6 0

T35 36 37 38 39 40 41 42 43 44 45 46
ihoc = 8 0 2 0 0 0 7 5 0 3 0 0

FIGURE 2.11. Link list after particle 8

To calculate the nearest neighbours of, for example, pamics as follows. Firstly
we look at the cell at which particle 6 is in, looking at elernét in the arrayihoc we
see the last particle that was known to be in the cell wasgbarfi. Now look at the
seventh element in the arrily we see the particle 6 was in the cell previously. Look at
the sixth element df we can see that previously to particle 6, particle 4 was ircéie
Finally looking at the fourth element dif, which is zero, we see that particle 4 was the
first particle in the cell. We now know that particles 7, 6 aratd in the cell labelled 41.

Now we examine the neighbouring cells, in this simplifiedrapée there are 8 cells
surrounding the home cell of particle 6. In 3D this increa®e26 neighbouring cells.
The neighbouring cells are: 36, 37, 38, 40, 42, 44, 45 and 46king in the arrayhoc
we can see that elements 36, 38, 40, 45 and 46 are equal tovemaing that these cells
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currently have no particles in. Looking at the cells 42 andvelsee inhocthat particles

5 and 3 are in these cells respectively. Looking at allraye see that these particles are
the only ones in these cells. The remaining cell is 37, prdiogein a manner similar to
cell 41 we know that particles 1 and 2 are in this cell. Henlge,rtearest neighbours of
particle 6 which are particles 1, 2, 3,4, 5and 7.

2.5 Time stepping

The accretion discs that have been described thus far estal¢o two forces: viscous
forces that have the effect of viscously spreading the didqaessure forces. As seenin
§1.2.4 the viscous forces act to spread the disc on a time ginae by eq. (1.34). The
dynamics of the disc are also influenced by gravity. For acgldime scale due to the
force of gravity, consider a test partial in a Keplerian orbit about a central objett
(M > m) at a distance oR. Using eq. (1.35) the orbital period at a pofis

R3 1/2
Porb ~ 2T <G—M> . (234)

This can be the basis for a dynamical gravitation ttgag . Typically the dynamical time
scale is much shorter than the viscous/pressure time saradiesn accretion disc can vary
in radial extent by several orders of magnitude resulting large range of dynamical
times. This difference in,,,, creates problems when considering the length of the time
step in a simulation. The vast majority of the mass in the @isad therefore most of the
particles) will be located in the outer disc. Here the othitdocities are low. If a global
time step was chosen appropriate for the few particles imther disc which need their
positions and velocities to be updated frequently, thetjpos of particles in the outer
disc would be updated needlessly.

To avoid such inefficient use of computing resources the S&tt¢ cises a method
called operator splitting. An important part of this methedusing the fact that the
gravity calculation is relatively simple (only a few lines of code are needed).rirare
computational time is needed to calculate the nearest beigh, density and viscosity.
From the discussion above, the dynamical time scale is miioties than the viscous
time scale. This suggests it is possible to reduce the freyueith which the pressure
and viscosity forces are calculated but still calculategravity as required. This is the
origin of the name operator splitting. On each particleetse two accelerations acting

2In the standard thin disc approximation the self gravity e tlisc is ignored. Particles in all the
simulations presented here have no particle-particleigitéanal interaction.
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on it. One is the acceleration due to the pressure/viscausda,, and the other is the
acceleration due to gravity,,,.,

dv

- = a, + agray (2.35)

The quantitya,,,, iS easy to calculate whereag is more involved. Operator splitting
ensures that calculation af is minimised. The scheme used by Murray in his SPH code
is a drift-kick-drift scheme. Firstly the velocity of the ppigles are integrated over a half
pressure force time stept,,,

T = ap(rl,'Ul), (236)
2 p

where the initial time ig;. The positions of the particles are not updated at this stage
Now a full pressure time step is taken to update the positokvelocities using only
the gravity force. During this stage the code goes throughyndgnamical time steps.
The initial velocity atk = 0 is equal tov;, 1.

Frpy1 — Tk
A 2.37
Atgrav Vi+1 ( 3 )
Vi+1 — Vi
ﬁ = agray (15, Vk)- (2.38)

Due toAt,,,, < At, the code goes through several iterationg &br eachl. After nk
gravity time steps the code has advanced one pressure gmengieren is an integer.
Finally a second half pressure time step using only the pregerces is calculated using
the positions and velocities from the last gravity time step

W — Pk V). (2.39)
While the operator splitting can be performed in two stage® for the pressure
forces and one for the gravity force, this approach withdlstages is used. This three
step approach conserves physical quantities more aclyuoats long integrations. The
pressure calculations are performed using a simple legpftegrator. This calculates
positions and velocities alternately, resulting in themafling” over each other. The
gravity calculations are performed with a fourth order Renigitta integration scheme.
This is accurate t@dt?, which is more than adequate. A scheme with greater accuracy
(Press et al. 1992), but a corresponding increasing in teeofisomputing resources
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is unnecessary. The limiting factor is the use of the kerse¢{2.2.1) in the pressure
calculation, which is only accurate @h>.

2.5.1 Courant-Friedrichs-Lewy condition

The Courant-Friedrichs-Lewy (CFL) condition is to ensure time step of a simulation
is less than a certain time to prevent unphysical effects. eikample, if a particle is
moving a characteristic lengih then the time stegt must be less than the time required
for the particle to move a distance equaltowWhenL is reduced, the upper limit for the
time step is correspondingly decreased. Simply put the @Hidition is a characteristic
length scale of a simulation divided by a characteristiooiy,

it < L. (2.40)

Up

where the particle has a speed In Murray’s SPH code, the CFL condition for the
viscosity time control takes the form
h

dt = , 2.41
cs + 0.6(2@68 + ﬁ,uij) ( )

« andg are the artificial viscosity parameters,is the sound speed, is the smoothing
length andu;; is given by eq. (2.27).

2.6 SPH code overview

In previous sections | have gone into some detail about SRi¢meral and specifically
how the code by Murray works. | will now give an overview of ttade to show how all
the constituent “parts” fit together.

e Select the system parameters. All masses are scaled togtersynass and all
lengths are scaled to the binary separation]The code is also scaled so that the
orbital angular frequency is equal to orze;,/ P,,;, = 1. This results in a velocity
unit of 2ra/ Py,

e All particles are initially set to the cold (less viscousjtst

e A particle is injected from thé.,; point.
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2.7

The positions of the primary and secondary stars are loeatgdhanged as needed.
The link list is built.

Solve the momentum and thermal energy equation for eaciclearsing all neigh-
bouring particles withir2h. Neighbours are located via the link list.

The velocity of all the particles is advanced a half pressume step using only
the pressure forces.

The gravity force is now used to update both positions anocigs forwards one
pressure time step.

A new link list is built to sort the new positions of the palés.

The density at each patrticle is calculated using all pagialithin2A. If conditions
are satisfied then the particles have their viscositiexcbed into the hot state. For
more detail on how this is achieved sgk

Again the velocities of all the particles are advanced apr@$sure time step using
only the pressure forces.

Any particles that are withif.04a of the primary are considered to be accreted
and are removed from the system. If any return to the secgisdaoche lobe or

if they are at a distance > a with a velocity greater than the escape velocity they
are also removed.

Particles that are considered to be accreted provide a mwaassddr rate onto the
primary. This is used to calculate an irradiation radiusiciwtalso switches parti-
cles contained within into the hot state. Further detagsiag4.

Finally a new link list is created and particles are located.

Another particle is injected from thg, point and the process repeats itself.

Viscous Particle ring

In §2.3.3 the concept of artificial viscosity was introduced. ohder to compare the
artificial viscositya to the Shakura-Sunyaev,®, | look at the problem of a ring of

matter which spreads due to viscous forces. This problera halatively simple analytic

3The Shakura-Sunyaevhas been renamed tq, in this section to prevent confusion
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solution and can be compared to results from the SPH codéls2d. As introduced in
§1.2.3 then-prescription (Shakura & Sunyaev 1973) is as follows,

V= QgCsH (2.42)

Using eq. (1.33) it is possible to equate the artificial vesgointroduced in section
(2.3.3) toa,. Figure (2.12) shows a simulation of 20000 particles pldoealthin ring

of width 1/40 of the initial smoothing length of the partisleThe ring spreading can be
clearly seen. During the simulation théerm in the artificial viscosity was set to zero, as
there are no shocks in this problem, only the viscous torgaedged on the inner ring by
the outer ring. The surface density of the ring simulatios wampared to theoretically
derived curves using eq. (1.33) with sound speed.®fx 105 cm s~! and a disc scale
height given by,

Cs
H=3. (2.43)

Figure 2.13 shows the results of the comparisons for fodermiht values oty after
eight equally spaced time intervals, between 2250 and 7&@9dteps. As can be seen
from fig. 2.13, none of the values of; exactly fit the curve generated by the SPH code.
To quantitatively state which value of, best fits the SPH code result,xd test was
performed, (see fig. 2.7. This determined that an $PH 1.0 was best described by an
ass ~ 0.9, 1.e. there is almost a one to one relation between thentsvo
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Chapter 3

Constraining the number of compact
remnants near Sgr’A

“You cannot lose if you do not play.”
- Marla Daniels

The Wire: The Detail [1.02]

51



Constraining the number of compact remnants near Sgr A 3.1 Introduction

3.1 Introduction

Theoretical calculations predict a cusp~oR0000 stellar mass black holes in the central
parsec of our Galaxy (Morris 1993, Miralda-Escudé & Goudd@) and a similar number
of neutron stars (Freitag, Amaro-Seoane & Kalogera 200@nibn & Alexander 2006).
X-ray observations reveal a highly significant overabuméaof transients in the same
region (Muno et al. 2009 when compared with the region ef several tens of parsecs
from Sgr A, the super-massive black hole (SMBH) of magg,,, ~ 4 x 10% M, in
the Galactic Centre (GC) (Schodel et al. 2002, Ghez et &I3R0Several methods to
constrain the population of these remnants are discussbe iiiterature. In particular,
one might look for dynamical signatures of these remnanttherorbits of stars near
Sgr A*(Rubilar & Eckart 2001, Mouawad et al. 2005, Alexander & bi\2004) and
by gravitational lensing (Chanamé, Gould & Miralda-Ese @01, Alexander & Loeb
2001). Also young neutron stars might be detectable as u(§&hanamé & Gould
2002, Pfahl & Loeb 2004). Each of these methods come witlwitsget of observational
difficulties and limitations.

Nayakshin & Sunyaev (2007) proposed an alternative methaletiect the compact
remnant’s cusp. They suggested that these compact remmagtbe accreting gas at
relatively high rates when they happen to travel throughreseéonised gas observed to
exist in the GC (Morris 1993). They calculated a simple tiaveraged model for X-ray
emission from such a cusp, and concluded that the total emiefthe cusp could be as
high as 2, 10*° erg s°!, i.e. very significant observationally.

On the other hand, a time-independent treatment does reirtakaccount the com-
plexity of the problem. Despite the high total number of kldoles, due to a small
volume filling fraction of cold gas in the GC, only a few of thiatk holes will be mov-
ing within the gas clouds and possess a small enough relaieeity to be visible to
Chandrd. Here | extend the model of (Nayakshin & Sunyaev 2007) in iséweays.
Firstly, I allow time-dependency in the problem by expliciiollowing realistic Keple-
rian orbits of the compact objects. Secondly, the formagiod evolution of small scale
accretion discs around the accretors is modelled, as sactwill form due to the excess
angular momentum of the accreting gas. An attempt is madeotteh{in a rather basic
manner) the observed distribution of ionised gas from whikehcompact objects might
be accreting,“the Minispiral” (se$l.4). Non-circular gas orbits are also considered with
a simplified approach.

!Chandrais a X-ray Observation satellite launched in 1999. It wasemtimprovement over previous
X-ray telescopes with an angular resolution of 0.5 arcsécseveral orders of magnitude greater than the
first orbiting X-ray telescope£handraoperates in the 0.1 - 10 keV band.
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Constraining the number of compact remnants near Sgr 8.2 Numerical approach

The model shows a large intrinsic time-dependence of theetion on the compact
objects and the X-ray emission it produces. Despite that,dmspite uncertainties in
the model (exact gas orbits, circularisation radius patameadiative efficiency, etc.),
certain conclusions can be drawn. In particular, withth20000 compact remnants ex-
pected in the central parsec, at least several X-ray sowitleX-ray luminosity greater
than103® erg s! should be present. Such sources, which could be called AKakaey
binaries”, can potentially contribute to the sources oy (Muno et al. 2009 in
the central parsec. Conversely, it appears that a cusgfisggtly more populous, i.e.,
with 40000 compact remnants, would over-produce the X-raisgion as compared to
the observations, and should thus be ruled out.

3.2 Numerical approach

A stellar mass black hole of magd,,, travelling through a gas cloud or a disc with
densityp is capturing gas in amall scale disc about {see below) at the Bondi-Hoyle
accretion rate (Bondi & Hoyle 1944):

(G Mbh)2

—_— A
(Av2 4 ¢2)3/2 7 (3.1)

Mcapt = 4mp
introduced in§1.2 wherec, and Av are the gas sound speed and the relative velocity
between the black hole and the gas, respectively. The abowgeis complicated by
the presence of the SMBH. The area of influence of the stebasralack holes is limited
by the Hill radius. The Hill radius is a measure of the extena dody’s gravitational
influence on its surroundings. For an order of magnitudemed&, equate the orbital
velocity around the black holgy,, to the orbital velocity of the black hole around the
SMBH Qg.11. This gives the radius at which the gravitational influenténe black hole
and the SMBH are equal, using eq. (1.15),

My _ JGM 2
3 I (3.2)

Mbh 1/3
Msmbh )

whereR is the distance between the stellar mass black hole and tiBHSM rigorous
derivation gives Hill's radius to bey = R(Myy/3Mmsn)'/? (Hamilton & Burns 1991).
This imposes a limit on the capture rate, given by the Hiltation rate My = 4rrd pcs.

hence

TH:R< (3.3)

53



Constraining the number of compact remnants near Sgr 8.2 Numerical approach

Hence,
Mcapt = min[Mcapta MH] (34)

whereMwpt on the right hand side of the equation is defined in eq. (3.1).

3.2.1 Time-dependent disc accretion

The captured gas may have a net angular momentum resultihg formation of a disc
around the stellar mass black hole. The disc size is of therafithe circularisation
radius for the gas flow;., which is unknown. The maximum value gf is the capture
radius,rcapt, Which is

: G My,
Tcapt = 1N 7, m (3.5)
| thus parametrise the circularisation radius as
Te = Crcapt s (36)

where( is a parameter less than unity. The viscous time scale inawli$c around the
stellar mass black hole is (Pringle 1981)

1 /ro\2
tyisc = = ) 3.7
OéQd ( h) ( )

where« is the viscosity parametef)y = /G M, /r? is the angular velocity of the
disc andh is the scale height of the disc. Numerically using the steshdasultsh =
csr32)(GMy,), 2 = P/pandP = pkT/um, (see§5.2 in Frank et al. (2002)),

tse = 1.5 % 10° yrs ag b parey Tt (3.8)

where Ty, 5 is the disc temperature in units @6® K, the viscosity parameter is =
0.0l .01, pa is the mean molecular mass in units of hydrogen masgg andr. 2 is
the circularisation radius ih0'? cm. This is to be compared with the period (the orbital
time) about the SMBH:

2 )
P= Qi — 2900 yrs RY2 M V2 (3.9)
K

Here Q) is the Keplerian angular frequency for the black hole onlgithe super-massive
one:Qx = /GMgu,n/R3. The corresponding Keplerian velocity:ig = Rk.

Thus, the gas captured in the small-scale disc accretesdiabk hole after a delay
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Constraining the number of compact remnants near Sgr 8.2 Numerical approach

of a fraction of to a few (black hole around the SMBH) orbiiadé¢s. The evolution of
the disc mass is given by the rate at which the mass is adﬁ’@g,, minus the mass
accreted onto the black hol&f,..

dMy
dt

- ' capt Macc- (310)
The black hole accretion rate is calculated as

Macc — tM_de—tvisc/l?t (3.11)
(sees5.2 in Frank et al. (2002)). Finally, the luminosity of theestion flow is modelled
in the same way as in Nayakshin & Sunyaev (2007). Namely, tewirk = nMaCCcz,
wherer is given by

Macc
n= 0.01-=

e (3.12)
MO + Macc

whereMO = 0.01 Mgqq is the critical accretion rate where the switch from theatidely
efficient to radiatively inefficient regime occurs (Esin, ®lmtock & Narayan 1997). It
is also assumed that X-ray emission visible in @®ndraband constitutes 10% of the
bolometric efficiency, which would be a lower limit for ty@icspectra of X-ray binaries
in their hard state.

3.2.2 Orbital evolution of accretors

The velocity and space distribution of stellar mass bladke$is modelled as a cusp that
follows the Bahcall & Wolf (1976) distribution for heaviepscies in a mass-segregated
cusp. This distribution results in the black hole numbersitgrand velocity distribution
obeying power laws of the forrR~7/* and f, respectively, where,

2

rRVA(1- 2 v 3.13
Jo ox Tz . (3.13)

Both space and velocity distributions are isotropic. Thestmecent Monte-Carlo sim-
ulations (Freitag et al. 2006) broadly support these aatsesults. However a recent
Fokker-Planck study (Hopman & Alexander 2006) predictsraeghat steeper power-
law density dependence for the black hole cysp; « R~2. However, this level of
detail is left for future investigations.

The black hole cusp is sharply cut A&t= 0.7 pc (Miralda-Escudé & Gould 2000).
The artificial cut of the black hole distribution at the outersp radius is a crude ap-

55



Constraining the number of compact remnants near Sgr 8.2 Numerical approach

proximation to the more complicated broken power-law stecof the cusp found by
(Freitag et al. 2006). It is also not entirely self-consistas black holes do follow their
orbits hence changing their radial position. To determime gignificance of this the
structure of the cusp was examing@! years after it was set up (see fig. 3.1). The
density profile did in fact change. Some black holes on eccentbits with large semi-
major axes were found at radii much larger than the outer cadjpus. However, the
maximum change in the black hole density profile was no mae 80%. Furthermore,
the black holes on very eccentric orbits will be those thatete gas at a low rate unless
the gas in the inner parsec moves on similar eccentric orblisrefore, emission from
these black holes might be neglected in any event.

Generating a series of orbits consistent with this spatacitg distribution, the ini-
tial phases of the black holes were randomly set along thbkitsp and then their spatial
motion was followed. The instantaneous gas capture ratedon black hole was also
recorded. When one of these orbits intersects the disc d¥ithispiral, the black hole
in question starts capturing gas and builds up a disc ardwasddescribed i§3.2.1.

3.2.3 The model for the Minispiral

Paumard et al. (2004) suggests that the Minispiral is a djcedrfeature in a state of
almost free fall onto Sgr A However, if this was the case then Sgt iself would
be accreting from the Minispiral. This would result in ad¢@e rates far above that
from the stellar winds (Cuadra et al. 2006), and would calittahe X-ray observations
(Baganoff et al. 2003). More realistically, the gas in thendpiral follows an eccentric
orbit which does not enter the inner arcsecord)(03 parsec) of the GC.

In my simple model, the Minispiral is modelled as half of acdis a local Keplerian
circular rotation around Sgr*Awith the total gas mass df/4;,. = 50M,,, in accord with
estimates in Paumard et al. (2004). It extends from a radi@slopc from the SMBH
to a radius of 0.5 pc. The disc scale height, is assumed to have a fixed ratio to the
radius,R: H/R = 0.1. The gas density is given by R) = Mg,/ (27 R2H).

The dynamical age of the Minispiral is a few thousand yeatser&fore, the calcu-
lations ran for 3000 years with these assumptions, and tieMinispiral was instan-
taneously “removed”. This is done as a rough model of timdutian of the system
in the case where the gas apocenter is larger than 0.5 passetsat the Minispiral
would leave the inner 0.5 parsec after a dynamical timeg3l8.4 | vary some of the
above assumptions about the structure of the Minispiraktonate the sensitivity of

56



Constraining the number of compact remnants near Sgr A 3.3 Results

10*

density [black holes/pc’]

10°

O
N

0.1

O

R [pc]

FIGURE 3.1. Density profile of the black hole cusp; the solid line #meldotted line
correspond té = 0 andt = 10* yr respectively

my results to these assumptions. In future work, a more deatgd, but unavoidably
model-dependent dynamics of the Minispiral should be idetl

3.3 Results

3.3.1 Emission from individual black holes

To motivate the study of X-ray emission from black hole cugghis work, the emission
from individual black holes was examined. For simplicitydi$cussion in this section
only, the “half-disc” described i§3.2.3 is replaced with a full disc, with other parameters
unchanged, the only exception being the mass of the Miripvhich was doubled. The
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black holes follow Keplerian orbit$8.2.2) that are characterised by the values of the
semi-major axis and the eccentricity (see Table 3.1). Thiniation of the orbit to the
midplane of the disc,, is also essential in determining the accretion histonheftilack
hole in question. The orbital parameters of the test caseswanmarised in Table 3.1.
Figure 3.2 shows the resulting light curves for the fourgesplored. The circularisation
parameter is fixed at = 0.1 for all of the tests.

Table 3.1. Orbital parameters of individual black hole tglfsee;3.3.1). The incli-
nation of the orbit is with respect to the midplane of the Mpiral. The last column
shows the time-averaged X-ray luminosity of the source.

Black | Inclination | Eccentricity| Semi-major| < L, >
hole axis
@) (pc) ergs’
T1 6 0.1 0.1 1.78 x 1036
T2 11 0.2 0.1 2.97 x 1034
T3 1 0.6 0.3 1.34 x 103
T4 29 0.5 0.08 1.28 x 1032

T1 in Table 3.1 is shown with the solid curve in fig. 3.2 is thestlaminous case.
Low inclination and eccentricity of the orbit ensure that thlack hole spends all of its
time inside the disc. The near circular orbit ensures a Idative velocity between the
black hole and the gas in the disc. Hence, the gas capturis rafatively high, as is the
X-ray luminosity. The few kinks in the lightcurve are caussdperiodic variations in
the relative velocity due to the eccentricity of the orbit.

The black hole in test T2 is on a slightly more eccentric andeniaclined orbit. The
relative black hole-gas velocity is larger than in test Tidd &ence the gas capture rate
is reduced (see eg. (3.1)). The black hole spends a sigriiboaount of time inside the
disc, but there are periods of time when it exits the discughoone of its faces. Half of
the dips in the lightcurve correspond to time spent outdigedisc, and the other to the
time when the relative velocity\v reaches the highest value along the trajectory. Due
to a relatively large size of the accretion disc (the “smedils” one discussed i§8.2.1)
that builds up around the black hole, the viscous time is @aige to the duration of
time spent outside of the disc, and hence the dips are relatiwinor. The X-ray light
curve of the source reaches a quasi-steady state with thedsity L, ~ few x 103* erg
s! after~ 10* years.

In test T3, the black hole is on a more eccentric orbit, witbestricitye = 0.6,
and a larger semi-major axis. The high eccentricity of theteesults in a high relative

58



Constraining the number of compact remnants near Sgr A 3.3 Results

10% L

% 35 _
- 10
o i
= f
.CSD 10%°F
=
D) h
10%|

§)

time [ 10%r]

FIGURE 3.2. X-ray light curves of the four individual black holessdebed in
§3.3.1; the solid, dotted, dashed and dotted-dashed liresspmnd to T1, T2, T3,
and T4 respectively.

velocity which limits the gas capture rate. For most of tHaitor.x < 103 erg s'!. The
luminosity of the black hole increases dramatically at 8000 years. At this momentin
time, the relative velocity is near a minimum while the gassity in the disc is close to
the maximum reached on this orbit, yielding the maximum wegptate. The accretion
luminosity approaches that of case T2.

Finally, test T4 is close to the worst case scenario as fahegas capture rate is
concerned. A high inclination and eccentricity orbit imphat the black hole spends
little time inside the disc. Accumulation of gas in the sns&lhle accretion disc happens
in a burst-like manner when the black hole is inside the dAlso note that since the
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relative velocity is high, the gas capture radius (see edp))X3& smaller than it is in
tests T1 and T2, and hence the disc viscous time is shorerese(3.8)). This results
in shorter decay times for the “bursts” in the lightcurve.eTkrray luminosity is never
larger than fewx 10%? erg s*.

These simple tests indicate that the black holes may be tgét produce a de-
tectable X-ray emission in one of the two following ways: difew black holes may
be on orbits essentially co-moving with the gas, producirigwabright point sources;
(i) the dim majority of high inclination and/or high ecceigtty orbits may not produce
individually bright sources but may be collectively brigproducing an unresolvable
“diffuse” X-ray emission.

To estimate an upper-limit of the mass accreted by thesé& hlales over the lifetime
of the Minispiral assume that all the black holes have captates equal to T1 (highly
unlikely). T1 is the most luminous case and has a captureofate 10~ M, yrs~!. If
one were to assume the lifetime of the Minispiral was000 yrs then 20000 black holes
would accretev 0.02 M, negligible compared to the total mass of the Minispiral.

3.3.2 Representative cases

Having considered the individual accretors’ case in th@iptes section we move on to
the problem of the total black hole cusp emission with theisfimal model. A black
hole distribution consistent with the (Bahcall & Wolf 197@istribution as described
in §3.2.2 is generated. The orientation of orbits is drawn ramgdrom an isotropic
distribution.

The upper panels in fig. 3.3 display the total X-ray luminpsit a cluster ofN =
5000 black holes as a function of time for two values of the ciragktion radius param-
eter,(, 0.1 and0.001, left and right, respectively. The lower panels show the benof
X-ray sources with luminosity higher than?? erg s! for the tests shown in the panels
above. Such sources could be observe€hgndra Several conclusions can be made.
With a larger value of = 0.1, the accretion discs around black holes are larger, and
thus viscous times are long. As a result, the X-ray emissaies smoothly with time,
first increasing as the discs are built up, and then decrgasin- a thousand years time
scale. Thus the sources are rather steady in time, and ardiais

For the smaller value of = 0.001, viscous times in small scale discs are much
shorter. Therefore, the X-ray emission from the sourcegesayn much shorter time
scales, i.e., of a few years to tens of years. The sourcedsrdaghter as the peak
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accretion rates are higher — each individual source shinehrorighter for a shorter
time, as compared with the largércase. Both the upper and the lower panels provide
us with largely independent predictions which may be coreghéo X-ray observations.

Figure 3.4 shows the same experiments as fig. 3.3 but for 20l@@Q holes. Com-
parison between the two different values(o$hows similar trends as before. It is in-
teresting to compare the figs. 3.3 and 3.4. While the reseltgnd significantly on the
unknown value of}, both low and high( tests show the same tendency of a significant
luminosity increase with increase in the number of blaclebolin fact, the luminosity
increased by a larger factor than the black hole number die Higher the number of
accretors, the larger the chance to have sources with sxalhence increasing the lu-
minosity of the cusp with increasiny in a non-linear fashion. The number of sources
above the chosen luminosity threshold also increased.€eTteaslencies hold for all val-
ues of(. This suggests that by performing tests across all reas®palbameter space
for ¢ the maximum allowed number of stellar mass black holes irctisp may be de-
termined.

3.3.3 SearchintheN, ( parameter space

Following this idea, a number of models for a range of valules and for the total
black hole numbers ofV = 5, 10,20 and 40 thousand were tested. During the time
period modelled, the results vary considerably in each test example, it is possible
for just one single source to dominate the X-ray luminosiiypot of the cluster. In
order to reduce and estimate the statistical noise of thdtse$or each of the values of
¢ and the total black hole number considered here, the tests n@peated three times,
each time generating a new random black hole orbit disiobhutThe mean value for
the observables for the three runs were calculated as wedethations from the mean
values. The averaging was done between ) < ¢ < 3000 years to look at a state
that may be similar to the present state of the Minispiralegiits estimated dynamical
time.

A summary of the results is presented in Table 3.2. Sevemattijies were defined
specifically, the average total X-ray luminosity of the id&ole cluster and the number
of black holes brighter that0?? erg s!, Nx, as such sources would have been resolved
by Chandrainto separate point sources. Time-dependent variantsesktiguantities
were plotted in figs. 3.3 and 3.4. In addition to these, théabdities that the total
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FIGURE 3.3. X-ray light curves (top panels) and number of individdaurces (bot-

tom panels) wheré,, > 10* erg s'!, when the total number of black holes in the

inner parsec is 5000. The left and right panels correspogdd.1 and{ = 0.001
respectively.

luminosity of the cusp exceeds*@nd 16° erg s were defined:

1

ty —t; JLx>10%

P(Lx > 10%) = dt , (3.14)

and similarly for 16° erg s, ¢; andt,; are 2000 and 3000 years respectively. The
probability of the number of individual sources brighteanh.y > 1033 being larger
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FIGURE 3.4. X-ray light curves and number of individual sources ehlg, > 1033
erg s'!, when the total number of black holes in the inner parsec@®Q@0The left
and right panels corresponddo= 0.1 and¢ = 0.001 respectively.

than 3, 10 and 20 at a given time is defined in a similar way, e.g.

1

ty —t; JNx>10

P(Nx > 10) = dt. (3.15)

These values can be compared to the number of discrete Y6uages in the inner parsec
as detected bZhandra

Observations of the inner parsec 6yandrahave placed upper limits on the total
luminosity of sources of approximately?® erg s'* (Baganoff et al. 2003) and the num-
ber of individual X-ray sources with a luminosity greateanti 03 erg s'! of a dozen or
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so (F. Baganoff, private communicatioBalactic Centre Workshop 20D6With these
constraints in mind the possibility that the cusp contaid800 black holes can be im-
mediately ruled out. For any reasonable valu€,ahe total luminosity and the number
of individual sources withl y > 10?3 erg s'! are too large compared to observations. A
cusp containing 20000 black holes is not very likely but cdrbe ruled out completely
at this time. In particular, only the largércase is acceptable fa¥ = 20000. Even
though the average total cusp luminositys.0%° erg s for this test, i.e., too large, the
probability P(Lx > 10%) is only ~ 0.66. Cusps withV = 5000 or 10000 black holes
is well within the limits imposed by observations.

3.3.4 Sensitivity of results to the properties of the Minispal

A rather simple model for the Minispiral is use¢B(2.3), partially because it is not yet
clear what a better model for this gas would be. Currentlyotigin of this gaseous fea-
ture and the precise three-dimensional distribution ofagakvelocity field is unknown
(Paumard et al. 2004).

To test the sensitivity of the conclusions to the properdiethe Minispiral, several
of the assumptions made #3.2.3 were varied. Table 3.3 summarises these tests. In
particular, in one of the series of tests the Minispiral wasumed to be three times
more massive, i.e., contain0 M, of gas, with all other assumptions unchanged. In this
case the luminosity of the cusp increases significantly atenghumber of black holes,
and even theV = 10? case is too luminous for the smaller values of the circuddios
parametet. Hence the upper limit on the number of black holes is aroirid

Another likely complication is that the gas may be on a palialw an eccentric
trajectory rather than a circular one, as assumed in thik wotil now. For such orbits,
the gas velocity can be both larger and smaller than the Kegalerian value, depending
on where exactly on the orbit the gas is. Observationally, Nhnispiral seems to be
closer to the pericenter of its orbit rather than the apaadaumard et al. 2004). To test
the significance of non-Keplerian orbits, the gas velocigwet to 1.2 and 1.4 times the
local Keplerian value in the two series of tests presentd@ie 3.3. Clearly this model
is not geometrically self-consistent as the half-disc weefos the Minispiral should then
deform in a complicated way. The larger gas velocity shoefilt in a decrease in the
number of black holes travelling at a low relative speedugtothe Minispiral, which
should reduce the average gas capture rate (eq. 3.1).

Table 3.3 shows that increasing the gas velocity to 1.2 ofdbal Keplerian value
results in a marked drop in average luminosity of black haleshe point that a cusp
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containing 40000 black holes cannot be ruled out for theelavglue of the circulari-
sation parameter; = 0.1. On the other hand, realistically, the sources would have a
distribution in values of, and hence a fair number of sources would have 0.01 or
less, which would then be ruled out.

Moving on to the gas velocity.4v, a further drop in the luminosity of the cusp and
the number of sources detectable®yandra(Table 3.3) is noted. Even th€ = 40000
is allowed. However this model strongly over-simplifies #tiation in the Galactic
Centre. The Minispiral should be a feature bound to Sgl(@k else the fact that it is
crossing the innermost region of the parsec now would be aci@nce), and hence
it is rather implausible that the gas is on a radial trajgctor which one would have
v = v2uk ~ 1.4vk. | believe the case whete= 1.2uk is the one that better represents
reality

Finally, the last entries in Table 3.3 are the tests with theidpiral mass of\/4;,. =
150 M, andv = 1.2vk. A cusp of 40000 black holes is clearly inconsistent with the
observations, whereas thé = 20000 is not completely ruled out.

3.3.5 Comparison to related previous work and result unceminties

Blaes & Madau (1993) and Perna et al. (2003) considered kdequestion of observ-
ing isolated neutron stars of the Galaxy in X-rays as theyedeqyas passing through
molecular clouds. Agol & Kamionkowski (2002) studied thensaissue for isolated

stellar mass black holes. In particular, the latter studyctaled that radiative efficiency
of accreting black holes needs to be very small, ire=, 107, in order to not contradict

the available X-ray data.

My model differs from Agol & Kamionkowski (2002) in two imptant aspects.
Firstly, the viscous disc evolution is modelled in a simplifimanner whereas these au-
thors assumed that the instantaneous Bondi-Hoyle catees also the instantaneous
accretion rate onto the black hole. If the disc viscous tisnemng, my model predicts a
smaller accretion rate onto the black hole but for a longeogdeof time. Thus, with the
same radiative efficiency, | would in general predict fewighHuminosity sources but a
higher number of low luminosity sources.

Secondly, rather than use a constant radiative efficientprfaeq. (3.12) is used,
in whichn o« M for M < 0.01. While this prescription is quite reasonable on both
theoretical and observational grounds (Esin et al. 1997,dy no means the only one
possible. To assess the magnitude of the possible chang&s iesults, a cusp df =
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40000 was considered, in a similar test to those in Table 3.2. Wighconstant = 104
value, and an instantaneous accretion model as in Agol & Kakaowski (2002), the
number of detectable sources was abidytand the cusp total average luminosity was
around2 x 10% erg s'!. The number of detectable sources is thus comparable tolwhat
find with my standard assumptions.

On the other hand, if one uses the radiative efficiency as foy-a 10~°, then there
is only Nx ~ 3 observable sources. Such a low radiative efficiency woulat@eallow
a cusp withN = 40000 black holes. However = 107° is extreme and is unlikely at
least for the sources with higher accretion rates as thesaahe parameter space of
observed moderately bright accreting X-ray binaries, whées clearly larger than0—>
(Esin et al. 1997).

3.3.6 A neutron star cusp

The mechanism that produces an overabundance of black inalles Galactic Centre
also applies to neutron stars, as they are also more mahksineah average star. Sim-
ulations by Freitag et al. (2006) predict that a cusp of reusitars will have a number
density profile quite similar to that of stellar mass blaclelso These neutron stars would
be accreting gas in a similar manner to the black holes, widifications only due to
the smaller mass\(,s = 1.4 M) and the existence of a surface.

Using the method outlined i§1.3.2 | approximate the emission of an accreting
neutron star as a black-body with temperatiifefrom the surface areér R%,, where

R,s = 10 km is the radius of the neutron star. Most of the radiation fiikbe emitted
at wavelengths corresponding to photon endrgy 3k7,:

E~08 Li* keV , (3.16)

where L, is the X-ray luminosity in units ofl0%* erg s. Due to the quite large ab-
sorbing column density to the GQJ; ~ 10 cm~2 (Baganoff et al. 2003), soft X-ray
emission below~ 1keV is practically unobservable. Hence the minimum observable
total X-ray luminosity of a neutron star was setlat! erg s, rather thanl 03 erg s!

for the black hole case.

Assuming that the radiative efficiency of an accreting remustar with negligible
magnetic fields is constant at ~ 0.1, the luminosity of an accreting neutron star is
simply

Ly = 0.1Mc? . (3.17)
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With these modifications, | can use the method developé8.@&to calculate the X-ray
emission from the cusp containing neutron stars. The sl presented in a way
identical to the black hole cusp in Table 3.4. As with the kl&ole cusp case, the
N = 40000 case is strongly ruled out on account of too large a numbeetdatable
point sourcesNx, and the total X-ray luminosity of the cusp. Thé = 20000 cusp
also appears to be a bit too high in terms of both the totalasity and the number of
sources.

However, the assumption that all of the captured materid&em# onto the neutron
star surface (see eq. (3.17)) is uncertain. It is well knoat the “propeller effect”
may reduce the X-ray luminosity of neutron stars by disngthe flow far from the
stellar surface (Menou et al. 1999). In fact Perna et al. 8288owed that the radiative
efficiency of accreting isolated neutron stars in the Gakbguld not exceed ~ 1073
on average, or else observational constraints would bateid! If ~ 1072 is adopted,
the total X-ray luminosity of the neutron star cusp with= 40000 is only few x 103* erg
s~'. Hardly any individual sources would radiate above the ehadetection threshold
of 10*3 erg s!.

3.4 Conclusions

Stellar mass black holes and neutron stars are predictddtterche central parsec of
our Galaxy (Morris 1993, Miralda-Escudé & Gould 2000, Egiet al. 2006, Hopman
& Alexander 2006). While these predictions seem to be velbyst observational con-
firmation of the existence of a stellar remnant cusp is ordyract at the moment (Muno
et al. 200B). Nayakshin & Sunyaev (2007) suggested that these sowrcestingcold
gas episodically from the Minispiral or other molecular @nised gas features found in
the central parsec, may be bright enough both collectivedyiadividually to be observ-
able withChandra | performed a more elaborate study, where a time-depertisnt
accretion onto the compact sources was considered. Alsa tato account was the fact
that at low accretion rates, the radiative efficiency of bllacles appears to be drastically
reduced (Esin et al. 1997), and | used a Monte-Carlo like@gagr to randomly initialise
the cusp of compact remnants.

The main effort in this work was to set the upper limit on thentner of compact
remnants. Whereas the models have internal uncertairsiiey, as the value of cir-
cularisation parametef, and observational uncertainties (the mass and precise orb
of the Minispiral), a cusp of black holes witN 2 40000 seems to be ruled out, bar-

67



Constraining the number of compact remnants near Sgr A 3.4 Conclusions

ring the possibility that radiative efficiency of these sms is extremely low. A cusp
with N ~ 20000 black holes, as theoretically predicted (Freitag et al.620fopman
& Alexander 2006), is broadly consistent with the data. Feiefforts should improve
these upper limits. The constraints on the neutron star atespveaker as the propeller
effect could realistically make radiative efficiency tooahfior most sources.

On the basis of my calculations, it is quite realistic thahsoof the X-ray sources
visible in the central parsec (Baganoff et al. 2003, Munol e2@0%) may be isolated
black holes and neutron stars accreting gas from the MiaisfBuch sources should be
preferentially found close to the Minispiral if the viscotime is short ¢ is small). In
addition, binary systems containing a black hole and a nblomamass star can also
accrete gas in roughly the same way as | calculated here.elnabe of low values of
circularisation paramete(, the size of the disc around the primary (the black hole) can
be smaller than the size of the binary itself. Thus, thestesys may appear as “fake
X-ray binaries”, where the gas supply comes from outsiderahan from the low mass
secondary. Observational signatures of such systems imgiirped and out of binary
plane accretion discs, “too short” or “too weak” accretiartbursts for the size of the
binary.
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Table 3.2. Characteristics of black hole cusp averagedd®t2000—-3000 years (s¢&3.3).

Numbef  ¢? < Lx >¢ P(Lx > 10%)? P(Lx > 10*)* < Nx >/ PN >20¢ P(Nx >10* P(HNx >3)
[10°] [10%%erg s1]
5 0.001 1.85+ 0.51 0 0.53+ 0.46 2.76+ 0.75 0 0 0.33t 0.8
5 0.01 2.75+ 1.33 0.42+ 0.2 0.72t£ 0.1 4.2+ 04 0 0 0.63+ 0.13
5 0.1 0.73t+ 0.6 0 0.24+ 0.21 2.23+ 0.2 0 0 0.18+ 0.11
10 0.001 1591 2.70 0.33+0.13 0.90+ 0.07 4.44+ 0.28 0 0 0.7X 0.06
10 0.01 1.03: 0.24 0 0.45+ 0.16 5.36+ 0.26 0 0 0.9G+ 0.04
10 0.1 0.514+ 0.28 0 0.31+ 0.22 4,53+ 1.52 0 0.0+ 0.00 0.45t0.21
20 0.001 19.9#4 5.87 0.57+ 0.05 0.99+ 0.01 8.87+ 0.81 0 0.19+ 0.11 1.00+ 0.00
20 0.01 9.6 1.94 0.34+ 0.14 0.99+ 0.00 12.26+1.40 0.01+£0.01 0.69+-0.17 1.00+0.00
20 0.1 9.88+ 4.49 0.34+ 0.22 0.66+0.23 13.11+1.25 0.01+0.00 0.74t£0.16 1.00+ 0.00
40 0.001 40.3& 1.75 1.004+ 0.00 1.00+0.00 19.40+0.37 0.34t0.05 1.00+£0.00 1.00+0.00
40 0.01 100.5362.13 0.7A4 0.08 0.99+-0.00 24.66+0.50 0.85+-0.05 1.00+£0.00 1.00+0.00
40 0.1 6.504+-1.83 0.20+0.14 1.00+£ 0.00 2459 2.18 0.72-£0.14 1.00+0.00 1.00+ 0.00

The columns list:

@ Total number of black holes in the cusp
b Circularisation paramete$3.2.1)

¢ Time-averaged luminosity of the cusp

d-¢ Probability that the total luminosity of the cusp is greatem103¢ or 10% erg s!, respectively.
I Average number of sources with X-ray luminosity greatenth@3erg s*(Nx)
9~ Probability thatNx is greater than 20, 10 and 3, respectively
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Table 3.3. Same as Table 3.2, but for different models of tiredgdiral

Number ¢ <Lx > P(Lx > 103%)  P(Lx > 10%) < Nx > P(Nx >20) P@{Nx >10) P{Nx >3)
[103] [10%%erg s~1]
3 Mgag®
5 0.01 28131154  0.62£0.15 0.84+ 0.08 5.81+ 0.95 0 0.03+0.02  0.84+ 0.06
5 0.1 1.53+ 4.45 0 0.67+ 0.40 7.04+ 0.47 0 0.06+ 0.04  1.00+ 0.00
10 0.01  35.2H112.01 0.63+0.17 1.00+ 0.00 9.24+ 0.93 0 0.36+0.13  1.00+ 0.00
10 0.1 2.06+ 0.74 0 0.56+ 0.16 1412+ 0.51  0.02+0.00 0.98+0.01  1.00+ 0.00
20 0.01 2453 6.02 0.77£0.13 1.00+ 0.00 18.95+ 1.25 0.40+0.16 1.00+:0.00 1.00+ 0.00
20 0.1 5.47+ 0.41 0.01+ 0.00 1.00+ 0.00 29.38-2.06 0.90+ 0.07 1.00+0.00 1.00+ 0.00
1.202
5° 0.01 0.93+ 0.55 0.02+ 0.01 0.14+ 0.07 1.85+ 0.36 0 0 0.10+ 0.04
5 0.1 0.05+ 0.03 0 0 0.44+ 0.20 0 0 0
10 0.01 0.45+ 0.10 0 0.13+0.05 3.47+ 0.42 0 0 0.49+ 0.13
10 0.1 0.38+ 0.25 0 0.174+0.12 2.45+ 1.42 0 0 0.3 0.22
20 0.01 4.86+ 1.63 0.14+ 0.05 0.43£0.15 6.65+ 0.08 0 0.03+0.01  0.91+ 0.04
20 0.1 0.35+ 0.07 0 0 4.24+ 0.08 0 0 0.76+ 0.07
40 0.01 40.65+ 1.66 0.56+ 0.14 0.94+ 0.04 13.42-0.23 0.02:0.01 0.74+0.06  1.00+ 0.00
40 0.1 1.05+ 0.37 0 0.18+0.13 10.27+ 0.62 0 0.44+0.80  1.00+ 0.00
1.41110<
5 0.01 0.074+ 0.02 0 0 0.7 0.15 0 0 0
5 0.1 0.02+ 0.00 0 0 0.3 0.26 0 0 0
10 0.01 0.12+ 0.04 0 0 1.170.21 0 0 0
10 0.1 0.05+ 0.01 0 0 0.83- 0.32 0 0 0
20 0.01 0.32+0.48 0 0.03+ 0.02 3.66+ 0.43 0 0 0.49+ 0.13
20 0.1 0.03+ 0.00 0 0 0.1 0.05 0 0 0
40 0.01 0.64+0.14 0 0.18+ 0.09 5.37+ 0.60 0 0.04+0.01  0.72+0.07
40 0.1 0.124 0.03 0 0 1.34+0.36 0 0 0.0 0.01
3Mgas& 1.2v%
20 0.01 9.79+ 0.93 0.34+ 0.06 1.00+ 0.00 15.47+0.25 0.07+0.02 0.98+-0.01  1.00+ 0.00
20 0.1 2.89+ 1.03 0.09+ 0.06 0.86+ 0.10 13.72£0.25 0.04-0.01 0.914+0.03 1.00+ 0.00
40 0.01 12.17 0.96 0.59+ 0.02 1.00+ 0.00 25.02:0.78 0.90+ 0.05 1.00+0.00 1.00+ 0.00
40 0.1 6.43+ 1.76 0.29+ 0.10 0.93+ 0.05 19.63+1.82 0.50+0.16 1.00+:0.00 1.00+ 0.00

@ Mass of the Minispiral has been tripled to 150

b Velocity of the gas has been increased todx2 wherev is the local Keplerian velocity

¢ Velocity of the gas has been increased todx4

4 Mass of the Minispiral has been tripled to 150, and the velocity of the gas has been increased ta.2
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Table 3.4. Same as Table 3.2 but for a neutron star cusp.

TL

Numbef  ¢? < Lx >¢ P(Lx > 107 P(@Lx > 10%®)* < Nx >/ P{®x >20¥ P(Nx >10* P(HNx >3)
[10%] [10%erg s°1]
5 0.001 3.23:5.24 0.08+ 0.06 0.79+0.11 2.84+ 0.43 0 0 0.32£ 0.10
5 0.01 2.43+ 0.76 0 0.6 0.12 2.78+0.81 0 0 0.38t 0.16
5 0.1 1.44+ 0.18 0 0.85+ 0.11 2.90+ 0.67 0 0 0.34+ 0.20
10 0.001 4.1A0.90 0.02+ 0.01 0.99+ 0.01 6.25+ 0.45 0 0.03£ 0.02 0.94+ 0.02
10 0.01 5.89+ 1.38 0.18+ 0.08 0.99+ 0.01 453t 0.34 0 0 0.72+ 0.10
10 0.1 6.69t 3.59 0.30+ 0.21 0.83+ 0.12 3.32+ 0.15 0 0 0.4A 0.05
20 0.001 8.13:1.34 0.27+0.11 1.00+£0.00 11.52t£1.15 0 0.5+ 0.15 1.00+ 0.00
20 0.01 9.73 1.73 0.32+ 0.12 1.00+ 0.00 7.32+ 0.30 0 0.114+0.08 0.97+0.02
20 0.1 7.1+ 2.15 0.27+0.19 1.00+ 0.00 9.00+ 0.35 0 0.1+ 0.05 1.00+ 0.00
40 0.001 41.6G:12.71 0.99+0.01 1.00+£0.00 21.99+0.52 0.69+-0.07 1.00+0.00 1.00+0.00
40 0.01 18.624.46 0.87+ 0.07 1.00+£ 0.00 15.82£0.48 0.04+0.02 0.99+-0.00 1.00+0.00
40 0.1 17.9 3.74 0.86+ 0.10 1.00+£ 0.00 21.34£0.34 0.66+0.05 1.00+£0.00 1.00+0.00

@~ ¢ see Table 3.2 caption.
I Average number of neutron stars with greater thari03*erg s!(Nx). Only sources with k > 103* are visible, se§3.3.6.
9 ~ i see Table 3.2 caption.
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Chapter 4

GRS 1915+105

“Don’t matter how many times you get

burnt, you just keep doin’ the same.”
- Bodie

The Wire: Time after Time [3.01]
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4.1 Introduction

GRS 1915+105 is a member of a class of objects called low maiag Kinaries (LMXB).
As described irg1.3, they consist of a black hole/neutron star primary anaarhass
secondary star which is filling its Roche lobe. Mass is tramsfl from the secondary
star via the L1 point and forms an accretion disc around thegyy. The accretion disc
may become unstable due to the thermal-viscous instabdgylting in an increase in
the accretion rate onto the primary. These sudden accretients lead to a brightening
of the source in X-rays for several months.

GRS 1915+105 is one of the brightest X-ray sources visiblénsky. It was first
discovered in 1992 (Castro-Tirado, Brandt & Lund 1992) whevent into outburst and
has been extensively studied ever since (for a review sedeF&nBelloni (2004)). The
outburst which led to the system’s detection in 1992 isgtdiceeding to this day, lasting
20 times longer than for any other LMXB. The X-ray light cunweGRS 1915+105 is
one of the more complex that has been observed with largabibity on a variety of
time scales (Greiner, Morgan & Remillard 1996, Belloni etl&l97).

A radio counterpart was observed by Mirabel et al. (1993)vaasidiscovered to have
components moving away from GRS 1915+105 with an appare@rkuminal velocity
(Mirabel & Rodriguez 1994). This, combined with a distanstireate of 12.5 kpc,
means that GRS 1915+105 became the first source in our Gal@xibit superluminal
motion. This had previously only been associated with jegsnfsuper-massive black
holes in active galactic nuclei and lead to GRS 1915+105¢badassed as a microquasar.

Identification of the optical counterpart to GRS 1915+10% Wwandered by over 30
magnitudes of absorption in the optical band separatingam the source (Mirabel
et al. 1994). Infrared spectroscopy identified the secgndara K or M type giant
(Greiner et al. 2001), which confirmed that GRS 1915+105 whM&B. Radial ve-
locity measurements confirmed the presence of a black hole bf M, and obtained
a orbital period of 33.5 days (Greiner, Cuby & McCaughrea@1)0 The most recent
observations suggest a 14i04.4 M, black hole and a secondary of (80.5 M,
(Harlaftis & Greiner 2004). The longevity of GRS 1915+105kaursts can possibly be
explained by its long orbital period which results in an eriely large accretion disc
forming around the black hol&?4;.. ~ 2 x 10? cm (Truss & Done 2006). This ensures
there is a large reservoir of mass in the disc and result®ilotig outburst time observed.

In this work | concentrate on the long term behaviour of GRE58A.05, specifically
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the duty cycle, i.e. the fraction of the time the system isutbarst,

tout
duty cycle = . 4.1
y ¢y — (4.1)

Wheret,,, andt, are the outburst and quiescent times respectively. Additlp the
recurrence time will also be discussed in this wogk = ¢, + t,. Analytic estimates
of the duration of an outburst were performed by Truss & D&#6). However these
simplified estimates could not include effects such as fit@ractions and mass loss
from the disc, which may dramatically effect any outburst.

The mass transfer rate;M/,, from the secondary is significantly smaller than the
accretion rate onto the black hole during an outburst. Assaltrehe time between
outbursts is expected to be far larger than the outburst.itbe disc is depleted during
an outburst and needs to build up in mass again before anotileuarst is triggered.
Hence GRS 1915+105 and other systems like it are expect@etalsnost of their lives
in the quiescent phase and will be difficult to detect. Thisasithe question, how many
GRS 1915+105 like objects are in our Galaxy and the local &hsie?

In section 4.3 | present the features of the smooth partideddynamics (SPH) code
| use and introduce the parameters that determine the lmhanfi the simulations. In
section 4.4 | will present the results and determine therpaters effects on the duty
cycle. Finally in section 4.5 the implications of the worle aliscussed.

4.2 Physical ingredients

In this section | will go into the physical ingredients usadhe code in some detail. The
SPH code by Murray (1995) has been modified to include theviatlg physical effects:
the disc instability model (DIM), irradiation of the acaat disc by a central source of
X-rays and Eddington wind loss from the disc.

4.2.1 The disc instability model

This was introduced i§1.3.3 and was devised to explain the outbursts in dwarf novae
The disc vertical equilibrium solution, at a given radiwesults in a relation between the
surface density of the dis¢ and the temperaturg, theS-curveshown in fig. 1.11. The
solution is unstable on the middle branch resulting in kayitle like behaviour when the

74



GRS 1915+105: 4.2 Physical ingredients

disc heats and cools at the critical densibkgs, andX,;,. Such a solution is calculated
using the Shakura-Sunyaev viscosity prescription §de2 3,

v=acsH , (4.2)

whereq is a free parameter.

Historically, in order to reproduce observed outbursts, tthio-« model was intro-
duced: « takes different valuesy, anda.) on the hot and cold branch of the S-curve.
This translates iNt&,,.x = Ynax (R, @) andX i, = S (R, ap). If somewhere in the
discX(R) > Ymax(R), the annulus enters the hot, high-viscous state, whichayaies
to nearby annuli. The front propagating inward forces ttse dhto the hot viscous state
on its way. The high viscosity implies a high accretion ratéodhe central object, lead-
ing to an X-ray outburst. The disc returns to quiescence (seosity, small accretion
rate) onceX(R) < Y.i,. It has been found by integration of the vertical disc suitest
thatX,,.x andX,;, scale linearly with radius (Cannizzo, Shafter & Wheeler8)98

Ymax(R) = 11LAR P M % a %% gem ™2 | (4.3)

C

and
Ymin(R) = 8.25R%005M1‘0'35a;°'8 gem ™2 (4.4)

where); is the primary mass in solar masses, #@hglis the radius in units of0'° cm.
Equations (4.3) and (4.4) are used in our numerical setujit, ibunoted that some slightly
different prescriptions exist, e.g. Dubus et al. (2001).

4.2.2 Irradiation

As stated above, wherevefR) > ¥,...(R) the disc is in the hot viscous state. However,
these are not the only grounds for the disc entering the laté.sThe X-ray radiation
generated when matter falls into the back hole {8e8) can keep the hydrogen ionised
and the disc in the hot state out to a certain radiys This does not take place in dwarf
novae which typically do not emit significantly in X-rays ahdve smaller luminosities
than LMXBs.

To estimate the region of the disc that is affected by ir@oiieof the central source,

the ionisation temperature of hydrogény, is used in the Stefan-Boltzmann law

eLyx = 4noR?

1rr

T, (4.5)
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whereo is the Stefan-Boltzmann constant ants a constant containing all of the un-
known information about the nature of the X-ray source, teengetry of the disc and

the albedo of the gas within the disc. If no assumptions ath&uaccretion or irradiation

efficiency are made then

R - enMc? 2
" \dre T

1/2 12
— 2.7 x 10" (106_3) (011) MY em. (4.6)

wheree is defined as the irradiation efficienayjs the accretion efficiency antls is
the central accretion rate in units of'® g s,

4.2.3 Wind Loss

Local mass loss due to the local mass transfer rate excetdirigddington limit is also
included. The local accretion rate at radiss given by,

M(R) = —27Rug(R)%(R) (4.7)
wherevg(R) is the radial velocity. The Eddington rate at the same raidius

: RLgaq
M, =A
Edd (1) Gmy

(4.8)

whereLgqq is the Eddington luminosityp, is the black hole mass ands a free param-
eter usually set to 1. I#/(R) > Mgaq(R) a wind carries away the excess mass at a rate
Mima. The parameteh allows us to depart from the Eddington lithivhen A = 1):

the smaller\, the easier it is to remove particles from the disc. This $ gusimple way

to parametrise the wind efficiency. These three mechanismisin the free parameters
that are varied throughout this work in order to reveal thelimtive effects, namelyy,,

a., € and\. Note also that the expressions oy, andX,;, are estimates only and that

| allow for a change in their normalisations which resultévim extra parameters. This

is detailed in the numerical setup below.

!Recall the assumptions made when deriving the Eddingtainiling1.2.2, a steady spherically sym-
metric accretion comprised entirely of Hydrogen.
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4.3 Numerical Method

| study the long term evolution of GRS 1915+105 using the sim@article hydrody-
namic (SPH) code detailed F2. It includes the thermal viscous instability, wind loss,
disc irradiation as described #4.2. Moreover, the full binary potential is included and
hence any tidal effects that may arise.

4.3.1 Particle injection and rejection

In the simulations particles are injected from the L1 poamiti into the primary’s poten-
tial, with the transfer rate given by Ritter (1999),

] M 1.74 Por 0.98
— My ~ 7.3 x10710 <ﬁl> (1 d;y) Mg yrt. (4.9)

Using GRS 1915+105 system characteristics, this gives ~ 2 x 108 M, yr—'. For
more detail on the mass transfer rate in binary system§lsael.

Particles are removed from the simulation when they areimiil04: (a is the binary
separation) of the black hole, if they return to the secoyig&oche lobe or if they are
at a distance > « from the black hole with a velocity greater than the escapecity.
The first condition implies that the accretion rates deraesdnot the accretion rates onto
the black hole (a8.04a > Rsayw). Some material may still be blown away in a wind
before it reaches the black hole surface but resolution mmelstale issues prevent us
from studying the most inner regions of the accretion disk.

4.3.2 Triggering the disc instability

The disc is divided into one hundred annuli in which the meaarfase density is eval-
uated. When the surface density of one of these annuli iggrézany,,..(R), « is
switched into the hot stater(= «;,). Conversely, the disc switches back to the cold state
(a = a.) whereverX(R) < Ym(R). Using egs. (4.3) and (4.4) with the parameters
of GRS 1915+105 and the typical values of the Shakura-Swnygarametery, = 0.1
anda, = 0.01,

R 1.05 R 1.05
Ymax = Kmax <_) ~ 2.5 X 105 <_) gcm_z, (410)
a

a
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Sin = K () o
a
In practice, we cannot use the valuedQf../min» Shown in egs. (4.10) and (4.11). Using
Kuax ~ 2.5 x 105 gcem™2, triggering an outburst would take a prohibitive amount of
time. Typical values used wef€*" = 55 and K**" = 4.7853. The reasons behind this
are discussed if4.3.3$4.3.5 and its effects of are discussed#3.6. The quantities
K.« and K ;, are also to be varied to explore how a less or more massivenaisld
behave. For the same reasong,anda, are also increased from their canonical values
given above, in order to speed up the outburst and quiesd¢anes. Doing so allows
the system to relatively quickly reach steady-state ancergulseveral outburst events
during a single run. The draw-back is that results need tacaled in order to get actual

quiescence and outburst times, this is detailetlii.6.

1.05
~ 2.2 x 10* <§) gem 2. (4.11)
a

a=ay,

0.6

0.4-

o
N
\

tt,

FIGURE 4.1. Functional form of the viscous switch, eq. (4.13). Thexesity is
switched after a few thermal time scales. A comparison iseredween eq. (4.13)
solid line and eq. (4.15) points

The last technical point is that of the disc transition betwéhe cold and hot states.
It is performed following the method described in Truss et(2000), Murray et al.
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(2002) and Truss & Wynn (2004). Particles are switched froendold into the hot state
smoothly on the thermal time scalg,, of the system. The thermal time is given by
a ratio of the heat content per unit area of the discpkT/um, ~ Xc? and the rate
of energy loss (dissipation) per unit area of the diBS.G M, /4R? (see§l.2.4). This

results in a thermal time scale of A

- 9OJQK

where | have used eq. (1.15) and the fact tHdt, ~ t, ~ Q5', the dynamical time
scale in the disct6.8 in Frank et al. (2002)). Once a switch is triggeredollows

(4.12)

tin

a(t) = a’ £ a tanh (i - 7T) : (4.13)

Lin

where i
* = @"‘270‘) . (4.14)

The change in viscosity parameteénd in a time-stepdt) is therefore given by,

2
PR L [1 _ (O‘ — O‘+> ] . (4.15)

th o™

Fig. 4.1 compares the forms of egs. (4.13) and (4.15).

4.3.3 Models using a massive disc

In the first attempt to model GRS 1915+105, the physical wafoe K., and K,
were used from egs. (4.10) and (4.11). One disadvantagesofithod was the mass
and time resolutions of the simulations was poor. Limitethpatational time means it

is desirable to keep the number of particles in the dis¥ te 10°. A typical simulation
with 10° particles takes- 3000 computer hours, any significant increase in the particle
number and this time becomes prohibitively long. A rouglneste of the particle mass
can be found by approximating the mass of the disc immegiatfbre an outburst

21 K hax
105

Rout Rout
Moo ~ [ 20 R s (R) AR ~ [ r2oar (4.16)
0 0

and dividing by the number of particles,, = Mais./N. With a R, ~ 0.4a the particle
mass ism, = 1.7 x 10**g. This demonstrates how the particle mass is related to the
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choice ofK,,,,x used in the coden, «x K,,... The global time steps used in the code are

tres Porb
2

(4.17)

tstop =

with a time resolution of,.,. Assuming one patrticle is emitted from tlie point per
time step then,

my = M2 tstcp
2
brog = —2p (4.18)
Porb M2

To ensure the correct mass transfer ratéf, ~ 2 x 10~® M, yr~') and usingm, =

1.7 x 10%°g, a time resolution of- 30 is needed. In effect one particle is emitted once
every~ 5 orbits. To speed up the code the viscosity in the disc is @faftten greater
than is typically assumed both during outburst and quiestdeading to a higher rate
of particle accretion. This slow rate of particle injectiooupled with the higher rate
of particle accretion can result in an entirely empty diso. pfevent this, the rate of
particle injections was increased effectively increasing, by a~ few thousand. Fig.
4.2 shows a sample of the output of the code.

4.3.4 Models using an under-massive disc

To avoid the problems discussed;# 3.3 one possibility is to scale down the mass of the
disc while the particle number remains constant. If a redwedue of P! = 55 g cm ™2

is used, an approximate particle mass-is.5 x 102! g, following the steps outlined in
§4.3.3. The values foksPh. andKfjfi]S1 were chosen to have the same ratid@s./ K nin-
This allows for a significantly improved mass and time resotuof the code. Using eq.
(4.18)t,.s ~ 0.005, resulting in a global time step ef 2300s. However the resulting;, .
during outburst is too small (fig. 4.3 compared to fig. 4.2).S5G®15+105 is expected

to be accreting at the Eddington limit, using eq. (1.14) tssuo an irradiation radius of

e \2 [/ M 1/2
Rpaqd = 3.24 x 10 <10_3> <V;> cm. (4.19)

Fore = 7 x 1074 (value used by Truss & Done (2006))iqq ~ 0.14a, a value that is
greater than any produced by this version of the code. Sr#imirradiation efficiency
up to approximate the system more accurately will be necgssa
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1000 E

du,/dt

110000 E
105000 E
100000 E
95000
€ 90000

85000 E

particles

3000 9000 10000 11000 12000 13000
time (days)

FIGURE 4.2. Plot of central accretion rate, irradiation radiussgiation (code units)
and number of particles as a function of time wih,,, andX,;, given by eqgs.
(4.10) and (4.11)

4.3.5 Under-massive disc with scale®;,,

To rectify the smaller than expected irradiation radiusaliowance for the under-massive
disc must be made. Upon accretion the mass of the particescated up when calcu-
lating Ri.,. WhenK,,,, = 2.5 x 10° gcm™2 and K3P2 = 55 ¢ cm~2 then the particle
masses were scaled up by a factorfdf,../ Kb ~ 4500. The output of the code is
shown in fig. 4.4. A comparison between the output of the codehfe unscaled and
scaled irradiation radii is shown in fig. 4.5. A largRr.. prolongs the outburst and its

exponential decay, as expected for an irradiated disc (Riijtter 1998), has a longer
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du,/dt

1000

140000 E
130000 E

particles

& 120000 E

110000 E

11000 12000 15000 14000 15000
time (days)

FIGURE 4.3. Plot of central accretion rate, irradiation radiussgiation (code units)
and number of particles as a function of time. Valueskgf® = 55 g cm~2 and
K — 47853 ¢ cm ™2 are used.

min

timescale.

4.3.6 Scaling outburst and recurrence timescales

As we have stated in section 4.3, for reasons of computadtiione, we are forced to use
Yimax/min @Ndanet /co1a Values which are different from their “true” values. In tBiction
we consider how to scale the outburst and quiescent timesst@m the simulations to
produce predictions of the true timescales.

In the code we use &,,,., proportional toR. During an outburst most of the mass
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M (Moyr‘f

R\rrod/a’
(G NOIOEGEGR®)

du,/dt

100
120000 E
110000 E
100000 E

90000 E

nportic\es

5000 6000 /7000 8000 9000 10000 11000
time (days)

FIGURE 4.4. Plot of central accretion rate, irradiation radiussgiation (code units)
and number of particles as a function of time. Valueskgf® = 55 g cm~2 and
K — 47853 ¢ cm 2 are used andk;,, has been scaled.

inside a certain radiusi,;) will be accreted. At the start of the outburst the surface
density inside this radius will be neax,... The outburst timescale is then given by

M
fow = 7 (4.20)

where M is the rate at which the mass in the regiBn< R, changes and/ is the
mass in the same region, given by,

Rout Rout
M~ / 21 R o (R)AR — / 21 R min(R)AR. (4.21)
0 0
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10771

Scaled R,
,,,,,,,,,,,,,,, Unscaled R;,

107° \3 | | | |
O 200 400 600 300
titstart<d0y8>

FIGURE 4.5. Comparison between the output of the code with a scalédiascaled
R;... The time has been normalised to the start of the outburst

Simplifying using egs. (4.3) and (4.4) gives,

2mR2,,
~ out (s -3 . ) 4.22
305 ( maX(Rout) mln(Rout)) ( )

M

Egs. (4.10), (4.11) and (4.22) can then be used to show,
M x (Kpax — Kuin)- (4.23)
Given that (see eq. (1.53)),

M X apSmax X h Ko (4.24)
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then
(Kmax - Kmin)

4.25
athax ( )

tout X

This provides a way to scale the results we obtain from our E8¢. The ratio of the
“real” outburst time to the simulated outburst time is tHere,

tout o (Kmax - Kmin)azthi?a};( (4 26)
t(s){)l? ( rsr{)z?x - Ksph)athax . .

min

WhereK ., and K ,,;, are the physical values ad¢"" and K sPh are the values used in

min

the SPH simulation. Similarly we can also scale the quidda®es by using,

M
tqg = — 4.27
=L (4.27)
wherel is given by eq. (4.23), hence,
Kmax - Kmin
tqg X ——————— (4.28)
— M,

which gives the ratio of the “real” quiescent time to the goEnt time in the simulation

as, -
— . —MEP

o (Bmec= o) (20 ) (4.29)
£ AN

The standardsimulation has the following parametefs, ., = 55, Ky, = 4.785
(all subsequent references £9,,./min refer to the values used in the code), = 1,
a. = 0.1,7 = 0.1 andX = 1.0. When exploring the parameter space, only one of these
variables was changed at any one time, the rest took thegesvain§2.7 | determined
the relation between the Shakura-Sunyagyvand the artificial viscosityy, because of
the approximate one-to-one relation between the two theyeaused interchangeably.
However, to remove ambiguity, unless stated otherwisa this section refers to the
artificial viscosity parameter.

4.4 Results

4.4.1 Typical Behaviour

As previously stated i§4.3.1 particles are injected from the L1 point and proceed to
build up in a disc around the accreting black hole. The particass and¥,,., were
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chosen to ensure approximatel§® particles were in the disc before an outburst was
triggered. The simulations were permitted to go througlesshoutbursts until the disc
achieved a steady state.

time = 15843.1 days, n = 124463 time = 15903.1 days, n = 125557
[ B LR IR AR IRRRRRRRRRRREI NN AR R IR AR AR AR AR RARRRRN
/

T aay T
/

0.0 0.1 02 03 04 05 0.6 0.0 0.1 02 03 04 05 06
R/a R/a
time = 16850.8 days, n = 93343

T T 7 T
/

0.0 0.1 02 03 04 05 0.6

R/a

FIGURE 4.6. Evolution of azimuthally averaged surface densitplebutburst (top

left panel) during outburst (top right panel) and after ousib (bottom panel). Red

and blue lines represeht, ., andX,;, respectively, see eqgs. (4.10), (4.11). Binary
separation for GRS1515+105ds~ 7.5 x 10'2 cm

Fig. 4.6 shows the evolution of the azimuthally averageéhaserdensity in a disc for
a typical simulation. In the snapshotimmediately priot® dutburst (top left panel), the
surface density in the inner disc closely follows the forneqf (4.10) withK ., = 55.
Exceeding this limit at? ~ 0.1a is the trigger for entry into the hot viscous state and
hence the trigger for the outburst. The annulus that enterbat state begins to spread,
its particles drift into neighbouring annuli increasingithsurface density. This process
repeats itself if the surface density of the neighbouringuirrises aboves,,.«(R). In
this way a significant portion of the disc enters the hot st@itee top right panel in fig.
4.6 shows the disc in the initial stages of an outburst. Theeesed viscosity in the inner
disc has already caused particles to be transferred to tiee iagions of the disc, where
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they will be removed from the simulation and said to be aectdty the black hole. To
further illustrate the changes in the disc during an outbtigs 4.7 displays the average
artificial viscosity parameter in the disc during the ifistages of an outburst. The inner
disc is in the hot state, conversely the outer disc is in the state.

“““““““ \“S‘p‘h““‘ T T T T T T
W OW -
0.8F .
5 06 -
3
0.4F .
0.2 -, ]
I O<C ’ m/\,/\_/\/“’\/u\/v;’[
0.1 0.2 0.3 0.4 0.5
R/a

FIGURE 4.7. Radial profile of the artificial viscosity parameteridgran outburst.
For comparison the in the hot and cold states is displayed.

Typically 20-30% of the particles in the disc are accretetbdhe black hole during
an outburst. The bottom panel in fig. 4.6 shows the disc imatelyi after the outburst.
Comparing to the top panel, it is apparent that the innerltdsdost a substantial number
of particles. The surface density in the inner disc is nowraxmately equal to eq.
(4.11) with K ,,;, = 4.79 . During quiescence the disc regains the mass it lost in osttbu
and the cycle repeats.

Figures 4.8 and 4.9 show snapshots of the evolution of tfasidensity and vis-
cous dissipation in the disc during an outburst and fig. h&dnass accretion rate onto
the black hole during the outburst. The first snapshot is idiately before the outburst.
The outburst is triggered in the inner disc and a density wagees outwards and in-
wards pushing more of the disc into the hot state. In this walgaificant fraction of
the disc is accreted. During the outburst there is far momawathal variability in the
disc, this is particularly apparent in the surface dendiby where spiral “arms” can be
seen. Consequently the range in surface density is great@gdan outburst. The dis-
sipation in the disc is larger during an outburst with muchhaf additional dissipation
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FIGURE 4.8. Snapshots of the Surface densigycfn—2) through an outburst at 200 day intervals.
Note the central part of the disc (dashed circle) is not medéh the simulation.
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FIGURE 4.9. Snapshots of the viscous dissipation in the disc thr@umgoutburst at
200 day intervals. Colour scale is in log code units.
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dM,/dt (Mg yr™!)

| | | | |
1.04 106 1.08 110 1.12
time (x10* day)

FIGURE 4.10. Mass accretion rate onto the black hole during theursthiepicted
in figs. 4.8 and 4.9. Dotted lines denote the time of the sratpsh

in the inner disc. This is what one would expect. The accnetaie is non-uniform,
local density variations particularly evident in the mieldéft panel of fig. 4.8 lead to
a variable accretion rate. As in fig. 4.6 the depletion of threer disc can be clearly
seen. Figure 4.11 shows the history of a simulation oncestrbached a steady state
where approximately the same fraction of the disc is losinduan outburst. The mass
accretion rates as functions of time of all the simulationthis work are irgA. Figure
4.11 is the raw output from the code which must be scaled byné#ods described
in §4.3.6. The effects of increasing,,. and decreasing the disc mass is to compress
both the outburst time and the quiescent time. Indeed, itrasifig. 4.11 the quiescent
time is several orders of magnitude greater than the outkuors, in effectt,.. ~ t,.
Additionally the mass accretion rate onto the black holdge affected by the changes
to the disc mass and viscosity. With particle masses beiagdapwards by a factor
of Koax /K2 ~ 4500 and outburst prolonged by a factor of ;" /o = 10, M,

max

is scaled from few0~8 M, yr=*! to few 10~ M, yr~!. This is several orders of mag-

90



GRS 1915+105: 4.4 Results

nitude greater than the Eddington accretion rate of GRSABA% G x 107 M, yr!,
using eq. (1.14)), hence the plateau observefdincommon to all the simulatioAs

4.4.2  Changingaq /cold

Figure 4.12 shows the effect of varying anda,. ont,., t... and duty cycle. The results
presented are of the simulatioalpha h [1 — 4] andalpha ¢ [1 — 3]. The values for
the o displayed in fig. 4.12 are the “real” values of the artificisdoosity parameter,
i.e. smaller than the values used in the code by a factor of Title timescales are
scaled as described §4.3.6. For numerical reasons it was decided faf, /i, would

not be changed withy,,., as demanded by egs. (4.3) and (4.4). Chandingy min

in conjunction witha;/. would force the disc into a persistent hot state. However the
scaling method described can account for this deficiendyarsétup.

The outburst time is roughly governed by the viscous timéatdutermost part of
the outburst and is given by (Pringle 1981),

1
tou ~ tvisc = TN 11 oo
’ Qi (H/R)?

~ 170 (%) - <_(H/R)out>_2 (@f’/z yis .

(4.30)

0.1 0.03 a

where eq. (1.15) has been used ang: 7.5 x 10'2cm. During the outburst the inner
disc is switched into the hot, more viscous, state as dextrin§1.3.3. One would
expect that variations of the viscosity in the cold stateaweehlittle impact ont,,; which

is confirmed by fig. 4.12. If the approximate valuesifR ~ 0.03 (fig. 4.13a) and
Rout = 0.3a are used theh,,, ~ 2.8/ay,. This simple analytic upper estimate matches
the calculated outburst times well (fig. 4.13b) given tHatR is not constant withR or
time andR,; is not necessarily the same for each simulation.

The effect ofa;, on the recurrence time is more complicated, with increasimg
decreasingy;, from the value of 0.1 both reducing... Examining fig. A.4 the trend
with increasingoy, is shorter outbursts with an increasgfl This is mirrored in the
number of particles accreted during an outburst, whichessgs withy,. The disc in
the simulations was allowed to reach a steady state, thergfo can be approximated
by the time required to replenish the disc (see eq. (4.2 0}fmmmass lost in an outburst.

2In the simulations we calculate/; at a radius 0f).04a > Rscnw due to the lack of resolution in the
inner disc. This is not the rate at which matter will arrivei@t,,,, as some material will likely be lost in
a wind. However the accretion rate is still expected to bes@udington afRs
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FIGURE 4.11. Plot of central accretion rate, irradiation radiud¢iggton wind loss,
dissipation (code units) and number of particles in the fation. With K., = 55
and K, = 4.79, the particle massis 1.1 x 10712 M.

Whenay, = 0.05 the disc loses- 54000 particles during an outburst , white 38000
particles are lost when,;, = 0.15. Whenqy, is increased the mass/particles in the inner
disc are removed from the disc quickly. This limits the mattaves described ifl.3.3
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FIGURE 4.12. t,., twec and duty cycle shown as a function @f,; (solid line) and
e (dashed line). N.B. the values of have been scaled to their correct values
(o = a1 /10)

that sustain the outburst.

The above explanation satisfactorily explains the behawbt, .. for values ofw;, >
0.1. However at lower values afj, the recurrence time exhibits contradictory behaviour.
This is a numerical effect caused by the small disc mass. dteeat which the disc is
being replenished by- 17, is several orders of magnitude too large for the disc mass
in the simulations. This can be taken into account in mos<ay the scaling method
detailed in§4.3.6. However, certain parameter sets can render thegealccurate. As
shown in fig. A.4 (top panel), whety, = 0.05 the outbursts are characterised by their
long duration and low intensity. The rate at which partides lost from the disc to the
primary is lower than the transfer rate from the secondaryafsignificant portion of
the outburst (see fig. 4.14a). This contradicts what is knabaut LMXBSs in outburst,
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(b) Numerical results compared to an analytic approxinmatio

FIGURE 4.13.

M, > —M,. In the simulation wherey, = 0.05 the disc gains in mass during an
outburst. In effect the disc is close to being in a persishegh state and a constant
outburst. The simulatioalpha ¢ 4 (lower panel in fig. A.5) is another example of a
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(b) Comparison between two different scaling methods fer th
recurrence time. Solid line depicts scaling method desdrib
in §4.3.6 and dotted line is the alternative method described in
§4.4.2

FIGURE 4.14.
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simulation on the cusp of entering a constant outburst.ighsiimulationa, = 0.02: this
results in an increase in the viscosity of the cold statesequently the mass transfer in
the disc was too high for the simulation to reach a steadg.stat

Another way to estimate thg.. is by assuming all of the mass lost in an outburst is
regained during the quiescent phase. Knowing the masddranase the quiescent time
is given by eq. (4.27). The mass lost during the outbiifst; is calculated from the
particle massn, ~ 1.1 x 102 M, and a count of the number particles accreted per
outburstN,,., henceM,,, = Noum,. Both scaling methods are displayed in fig. 4.14b.
The large differences if).. between the two scaling methods when < 1.0 highlight
the deficiencies of the scaling method detailed4r8.6. The need to stay in the regime
where the scaling method §4.3.6 can be used (whed; > —M%,) is the reason for the
sometimes restricted range of parameters in this work. Tteenative scaling method
could be used, it is essentially an analytic method baseteonutburst time rather than
calculating the recurrence time independently from theeamatput. An effort was made
to use both scaling methods when possible. A reduction.is associated with an
increase inX,,., (see eq. (4.3)). Making the assumption that the outer raafiuke
outburst and surface density profile of the disc are unafteby this changethen more
mass should be lost in the outburst for smaller values.oWith a fixed— M, this results
in increased recurrence times as seen in fig. 4.12. The loarezlpn fig. 4.12 shows
the variation of the duty cycle. While similar in amplitudegth o, and o affect it in
opposite ways. Neglecting the lower valuesagfthe duty cycle spans a limited range
from 0.1% to 0.4% which emphasises that GRS 1915+105 spends the vast maybrity
the time in quiescence.

4.4.3 ChangingKmaX/min

The critical density profiles used are given by eq. (4.3) ahd)(which are fitted to
the vertical disc structure obtained by Cannizzo et al. 8198 his is by nho means the
only fit possible, with many possible models for the disc,eothrescriptions can be
found in Cannizzo & Wheeler (1984), Hameury et al. (1998) Butbus et al. (2001)
among others. As mentioned §4.4.2 there is a limited range @f,;,../mi, that results
in transient behaviour of the discs. Figure 4.15 shows tfexf of varying thei .,
and K,,;, parameters on the duty cycle, outburst and recurrence tireesembering
throughout that’,,,../min are directly proportional td<,,.x/min). Simulations used are
sig max[1 — 3] andsig min[1 — 4] in table A.1.

3This assumption is examined §4.4.3
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ChangingK,../min Can effect the outbursts in two ways: altering the mass tost f
the disc during an outburst (see fig. 4.16) and changing teeigo where the outburst
is triggered (alsd?,.;). The mass transfer rate is constant, therefore the changles
recurrence time should be explained by the differing am®ohimass being lost from
the disc in an outburst. Using eq. (4.21) the mass accretedeaxpressed as

21 R?

out o )
305 (Emax(Rout) 2rmn(li:{out))-

out ™

HenceM,u ¢ Yax(Rou) @Ndoc —X i (Rout ). Assuming for the moment a constant
Row then My < K. andoc — K ;. The middle panel in fig. 4.15 (and fig. 4.16)
shows a trend in agreement with the above relation with thieatahatR,,,; will likely

be different in the simulations.
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FIGURE 4.15. t,., t... @and duty cycle shown as a function &f,,., (solid line) and
K i (dashed line).

The top panel of fig. 4.15 depicts the variations in the owgttime. Once an outburst
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FIGURE 4.16. Plots of the number of particles accreted during abust as a
function of K;;, and K .«

has been triggered the surface density in the unstablerredithe disc drops until it
reachest ;.. As K., is increased the mass remaining in the disc after an outburst
is likewise increased. The decrease in the mass accreteu aothurst as a function

of K., has been discussed previously and is shown in fig. 4.16. &7 shows the
surface density of two simulations with differing values f4,,;,, the snapshots show the
surface density at a time when the outbursti80% complete (the outbursts in question
are depicted in fig. A.3, simulation nam&sg min 1 andsig min 4). The X profile of the

disc has been significantly altered by the chang&ig,. WhenK,;, = 15 g cm~?2 the
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FIGURE 4.17. Top panel shows simulation witty,;, = 3(R/a) g cm—2. Bottom
panel shows simulation with,,.;, = 15(R/a) g cm ™2 (blue lines).

outer disc in particular builds up to higher surface deesitiThe inner disc also retains
more mass post outburst, reducing the time taken for thetdise-enter the cold state
and the outburst to end.

The behaviour of the outburst time as a functio@f,, is more complicated. Firstly
the location of the trigger for the outburst changes. Whersthpe of! is increased
the outburst is triggered progressively closeite. Figure 4.18 depicts the triggering
points for outbursts for two different forms &f,,... (simulationsig max 1 andsig min 3
in fig. A.2). In the upper panek,,., = 40: the outburst is triggered a,.; ~ 0.38a
and propagates inwards (outside-in). In the lower pdtgl, = 62.7: the outburst

is triggered atR ~ 0.12a and propagates outwards (inside-out) to a radiug®Qf =
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FIGURE 4.18. Top panel shows simulation wilty,,, = 40(R/a) g cm™2. Bottom
panel shows simulation with,,,., = 62.7(R/a) g cm™2 (red lines).

0.3a. This change in outburst behaviour is shown in fig. 4.19. Theel three panels
show outbursts in the simulationg; max [2 — 4] and all show a similar trend of an
initial, nearly instantaneous increaselifj followed by a slow increase. In the top panel
however, the outburst has a different form with the inittelep rise in)/; followed by a
fast increase. This fast rise i, is expected when outbursts are triggered in the outer
disc (Smak 1984). For all the values BfP" used the outbursts either begin-at).3a
propagating inwards or are triggered in the inner disc pgapag outwards te- 0.3a.

This accounts for the limited effect changifgr? has to the outburst time, keeping in
mind eg. (4.30). Again the duty cycle spans a narrow ranggegaround).25%.

The mass transfer history of the simulation namgdmax 4 is shown in fig. A.2
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(lower panel). It exhibits unusual behaviour when compdeethe other simulations
discussed previously, particularly it fails to reach a dyestate. This is not technically
true, a steady state is reached but not one with a commonrgtutbine accretion history
is explained in the following way: an outburst is triggerecaadius of~ 0.2a which
results in a significant fraction of the disc mass being IBstlowing this the disc begins
to build up in mass once again. Due to the steep slop& 8 the inner disc reaches
ysph quicker than the outer parts of the disc and this time thewsths triggered at
~ 0.1a. The outburst does not propagate to the depleted outermiika ahorter outburst
is the result. With the inner disc depleted the next outhbisrétiggered at a radius of
~ 0.2a once the outer disc has gained sufficient mass and the pnegeesas.

4.4.4 Changinge and \

Figure 4.20 shows the effect of varying thand\ parameters (simulations [1 —4] and
wind [2—4]). Similar tosig max 4, the simulatiorwind 1 exhibited two different outburst
types. When increasing the higher the threshold, hence a less efficient wind. The
efficiency of the wind has no noticeable effect on the outttimee (fig. 4.20 top panel).
The surface density profile is not significantly affected lboy thange in\ and hence the
outbursts are triggered and extend to the sdtng. As )\ is decreased more mass is
lost in the wind and the amount of mass accreted onto the Iblalekis correspondingly
decreased (see table A.2). However this does not signifyoatminger,,..., only reducing

the mass accretion rate. As more mass is lost from thevitisthe wind the recurrence
time would be expected to increase. This is seen in fig. 4.B@rdlis a relatively large
change int,.. when A becomes less than 1. For values above this limit the mass lost
from the disc during quiescence is negligible. As incregsirass is lost from the disc in
guiescence the longer the quiescent phase needs to be te @resdisc build up in mass

to trigger the next outburst. The changej\ihvind with differing values of) is shown in

fig. 4.21.

The parametet controls the efficiency of the irradiation of the disc. Thashwo
effects, both of which act to increase the duration of théwist. The first of which is
as follows, the surface density of an annulus can drop b&lgw but the irradiation can
keep the annulus in the hot state. This effect can be seen h.figThe second effect is
when the irradiation radius (see eq. (4.6)) is larger thanotliter radius of the outburst
would otherwise have been, given no irradiation. This tssnlareas of the disc entering
the hot state which otherwise would remain cold. For valdes012 x 10~* (solid line
and crosses) only the first effect ofs noticeable. Outbursts are typically triggered at a
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distance of).15 — 0.20a within the disc. The lower values efresult in an irradiation
radius that is within the trigger radius (see triangles in figg2). Using eq. (4.19) with

e = 7 x 10~* and assuming accretion at the Eddington rate fot &/, black hole gives
R;. ~ 0.14a. While the irradiation does ensure the exponential decahebutburst
(King & Ritter 1998) it does not have a large affect on the aubtime. Unfortunately,
any further increase in the parameter and the disc entered the regifie ~ — M,

and a constant hot state. This numerical effect, caused bgsa transfer rate which is
unphysically large for the disc mass used in the simulafimas overcome by allowing
the disc to build up and then turning off particle injectiofi$is is a valid approach in
GRS 1915+105 ad/; > M,, indeed it is actually closer to the physical system than
having a relatively high\/, as before. While this would not result in a steady state
simulation (and the results should be used with some cguitaioes give an indication

of the typical outburst times for high values@fThe outbursts themselves are shown in
fig. 4.23 while the scaled, ... and duty cycles are denoted by diamonds in fig. 4.20.
In these simulation$:,; = R;., using egs. (4.6) and (4.30) the outburst time should
then obeyt,., « /. This is in good agreement with the diamond points whichofell

an approximate power law of,; o €*7. For the highest value efa substantial fraction

of the disc is involved in the outburst with 80% of all the particles pre outburst being
lost during the outburst. The quiescent time was calculfited the mass accreted using
the method described §#.4.2, the more mass lost from the disc the longer to regienis

4.5 Discussion

4.5.1 Comparisons to other work

| have calculated the outburst and recurrence time scaleSRS 1915+105 and have
examined the effects of varying various parameters in tlstegy. This work can be
viewed as an extension of the paper by Truss & Done (2006)hinwthey analytically
estimated the outburst time scale. In their paper, the osithime was calculated by
considering the mass in the disdy;,.,

(4.31)

From the models by Dubus et al. (2001) the surface densitigardisc was thought to
follow X,,..« in the inner 10% of the disc before flattening off at largerniradsulting in
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an approximation fof/g;,.

Rout
My = / 27 RS o (0.1 Rae )R, (4.32)

0.1Rgjsc
whereR,,; was given by eq. (4.6). Truss & Done (2006) approximatedithe &veraged
mass loss from the disc by

(Maise) = (M) + (Myina) — Mo. (4.33)

Knowing thatM, < <M1), the inclusion of(Mwind) resulted in a maximum and a min-
imum length of an outburst for a given irradiation efficientjie maximum is obtained
when (Myiq) = 0 and the minimurm{Mimq) = (My) = Mgqq.

Table 4.1 compares this work with the outburst times predidty Truss & Done
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FIGURE 4.21. Plot of the mass lost via wind when= 0.6 (top panelwind 1) and
A = 0.8 (bottom panelwind 2)
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values ofe increase the length of the outburst.

106



GRS 1915+105: 4.5 Discussion

Table 4.1. Comparison of the predicted outburst times o§3 & Done (2006) (first
set) and this work (second set). Truss & Done (2006) prediioteburst times for
<Mwind> =0 and(Mwind> = Mpaa respectively.

€ Ry, tmax  ¢min

(x107°)  (a) (yn) (yn)
0.17 0.07 47 23
069 013 21 10
1.6 0.2 47 23

T&b 2.8 0.27 85 42
4.3 0.33 130 66
5.1 0.36 160 76

0.3 0.08 23.9:0.2

0.5 0.11 24.6:0.3

0.7 0.13 23.8£0.2

This work 0.9 0.14 24.1H0.3

1.2 0.16 26.H1.1
2.8 0.27 86
4.3 0.33 115
5.1 0.36 130

(2006). For values of < 0.7 x 1072 | predict outburst times greater than those by
Truss & Done (2006). This is due to their approach of assurthiergrradiation radius
determines the region of the disc consumed in the outburstdigcussed i184.4.4 in
the low e regime the irradiation radius is not the primary factor deiaing the extent
of the outburst, rather it is the triggering point of the auti (typically at 0.1-0.2).
Whene > 0.9 x 1072 my predictions are comfortably within the limits proposed b
Truss & Done (2006). Figure 4.24 displays the data in talle With the exception of
low irradiation efficiencies the results presented herecarssistent with Truss & Done
(2006). Table 4.1 shows the large variation of the outbumse¢ twhene is allowed to
vary. The duration of the current outburst of GRS 1915+10&dnjunction with these
numerical models may provide some evidence of the irrahatfficiency in LMXBs.

4.5.2 Central accretion rate and the need for a wind

As mentioned ing4.4.1 the accretion rate measured at the inner boundaryeofiift
(Rin = 0.04a ~ 3x10" c¢m) in the simulations must be scaled uplty, ~ 1075 M yr—'.
As discussed, this is much larger than the Eddington rateebtack hole, i.eM; ~
1077 My yr~! at Rga,w = 4 x 10° cm. So far, the outburst of GRS 1915+105 has lasted
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FIGURE 4.24. Comparison between this work and Truss & Done (2006)

17 years. Using eq. (4.30) witH/R = 0.03 and«;, = 0.1 gives a minimum outer
radius R, ~ 2 x 10'2 cm. Assuming the surface density profile of the disc follows
Ymax (given by eq. (4.10)), a rough upper estimate of the massridke outburst is

Rout
My = [ 27 S (R)AR ~ 2 x 1074 Mo, (4.34)
0

This mass implies a transfer rate through the difg ~ 10~ M, yr™', in agreement
with the transfer rate we measure at the inner boundary ddithalations. If one were
to make a more modest approximation for the disc mass andqugé.82) then the disc
mass is~ 5 x 107°. Implying a mass transfer rate in the disc-of3 x 107¢ M yr~!,
still significantly greater than the Eddington limit.

Conversely, if one takes the mass accretion rate that is\digenally inferred from
the X-ray luminosity(M; ~ 107 M, yr~!) as the transfer rate through the disc and
uset,, = 17 yrs, one getsM,,, ~ 107% M. Again assuming the density profiles
of egs. (4.34) and (4.32) this implies an outer radius of ketw~ 2 — 6 x 10! cm,
which may be incompatible with a viscous/outburst time of/g@rs. This contradiction
implies that a significant fraction of the mass involved ie thutburst is actually lost
to the system in the form of a wind launched from the innermegitons not modelled
in the simulations. Ueda, Yamaoka & Remillard (2009) codeldi the existence of a
thermally and/or radiation driven disc wind in GRS 1915+1@#n the absorption lines
in its spectra and inferred a launching radiusfew Rs... This corresponds to the
innermost regions our simulations. They estimate the nasssrhate in the wind to be
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~ 5 x 1077 M, yr~!, of the same order as the inferred accretion rate onto thek bla
hole.

4.5.3 Conclusion

In this section | have described the galactic microquasa® G&®1.5+105 and have out-
lined a numerical approach to model the accretion disc @t black hole contained
within the system. In this model | described the physicacpsses that can affect the
evolution of the disc and outlined several key parametasiilill influence the length
of both the outburst and the quiescent periods between tieists. From my analysis
the length of the outburst is independent of the efficienaefX-ray irradiation (when
e < 1073). With some confidence the outburst can be expected to leststt- 2045 yr.
As the outburst began in 1992 this raises the possibilitiyttreoutburst could end in the
next decade. If so this would indicate that the X-ray irréidimof the disc is negligible.
If however the outburst persists any longer, the conclugiansignificant fractions of the
outer disc are being irradiated is unavoidable. The lenftheoutburst (which could
last~ 100 yrs, see table 4.1) will provide information about the disc getinand how
efficient the irradiation is. It may also shed some light owltlee disc is being irradiated,
i.e. by a central source or by scattered X-rays. GRS 1915¢40%e expected to spend
the vast majority of its lifetime in quiescence with a reemce time calculated that is of
the order~ 9500 + 2500 yr. This results in a duty cycle of the order of 0.002, which is
lower than shorter period LMXBs~ 0.01). This may have implications for modelling
other long period LMXBs and the X-ray contents of the locaiwgnse, both of which
will be examined irg5.
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Chapter 5

Long period LMXBs

“No one wins. One side just loses more

slowly.”
- Prez

The Wire: Refugees [4.04]
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5.1 Introduction

There are 15 confirmed Galactic black hole X-ray binariese 3ystem known as GRS
1915+105 can be considered to be the most unusual. Disacbwvei®92 (Castro-Tirado

et al. 1992) it has a relatively long orbital period whichsségpart from all of the other

Galactic black hole X-ray binaries, as discusse@dn The outburst of GRS 1915+105
has been proceeding since 1992, far longer than any otherB.NGRS 1915+105 has
no known counterpart in the Galaxy but there is the posgjtiiiat similar objects can

be observed in other galaxies.

Irwin (2006) analysed X-ray data from multiple epochs of telptical galaxies,
M87 and NGC 1399. Despite tlighandraobservations being carried out over a period
of 5.3 yr in the case of M87 and.3 yr in the case of NGC 1399 there were several high
luminosity sources that were persistent for the entire fagi®n time. Irwin (2006) ar-
gues that these sources are most likely black hole LMXBstligiM87 and NGC 1399
are elliptical galaxies with old stellar populations, ngiout any HMXBs (se¢1.3).
Secondly many of the sources have luminosities greater§han0®® erg s=!. This is
the Eddington luminosity for a black hole with a mass~of6 M. Explaining these
sources with neutron star3 € 3 M) emitting several times their Eddington luminosity
is unlikely. Additionally, the high mass accretion ratequieed to sustain these lumi-
nosities rule out persistent sources. A donor star woulddmsumed in a few million
years as all potential high mass donors have long sinceezkpirthese old stellar pop-
ulations. The duration of the outbursts implies there isrgdaeservoir of mass in the
accretion disc, suggesting these LMXBs most likely haveylorbital periods and giant
secondary stars. Several of these LMXB candidatest§%) appear to be associated
with globular clusters. This is in stark contrast to our Gglavhere no black hole has
been found residing in a globular cluster. This raises tresibdity that the potential
LMXBs are, in fact, several combined lower luminosity (0°7 erg s~1) X-ray sources
(Kundu, Maccarone & Zepf 2007). However, this might also ti@ught unlikely given
the statistics of lower luminosity sources (Sarazin et @03); a single high luminosity
source is more likely than several lower luminosity ones.

Overall, 15 and 18 sources with luminositiess x 103® erg s~! were detected in M87
and NGC 1399 respectively and all sources were detecteceny ebservational epoch.
Irwin (2006) estimated that the average outburst of thesenpal LMXBs would last
~ 50 yr. This is strikingly similar to the predictions for the outbtilength of GRS
1915+105 as predicted by Truss & Done (2006) and by my wogl inf the duty cycles
of the longer period systems are comparable to those of thre jgériod systems (which
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havet,,, ~ 1 month and, ~ 10 yr) then the quiescence times for these objects will be
long, > 1000 yr.

The Chandradata used by Irwin (2006) showed no sources that could bdifigehn
as short period LMXBs. This may seem strange consideringsaleaxy, in which GRS
1915+105 like objects are outnumbered 14-1 by shorter garidXBs. However, the
relatively short outbursts are likely to be missed by obsgons which last a matter of
days. Irwin (2006) calculated that there were probably00 short period LMXBs com-
bined in the two galaxies. Considering the mass of M87 and NIGED® compared to that
of our Galaxy this is reasonable. The ratio between the stmationg period systems in
both galaxies is 9, which is not inconsistent with our Galeagsidering the uncertainties
associated with working with small number statistics. Tikiassuming the duty cycles
of the longer period systems are comparable to their shoidgpeounterparts. Other
studies (e.g. Ilvanova & Kalogera (2006), Kim & Fabbiano @QMave drawn similar
conclusions and deduce that LMXBs are an important corttdbuo the X-ray lumi-
nosity function (XLF) of elliptical galaxies. knowing theity cycles of LMXBs is a key
issue when modelling the XLF of elliptical galaxies. Thenstard approach is generally
to assume a constant duty cycle (typically a few percentserassimpled hocprescrip-
tion involving the mass transfer rate. Additionally there proposed LMXB candidates
in the Sculptor dwarf spheroidal galaxy (Maccarone et ab®}@urther demonstrating
the importance of LMXBs in the XLFs of objects in the local warise. Ideally it would
be desirable to perform numerical simulations, similah@work in§4, for other possi-
ble systems but the size of the parameter space makes thibitikely time consuming.

I will investigate these long period LMXBs with red giant dwe using a simple analyt-
ical model and try to gain an understanding of how their behawaries with orbital
period. The initial motivation of this work was the sourcedetted by Irwin (2006),
however the following model could be applied to a varietyystem types.

5.2 The outburst

The maximum available mass to fuel an outburst is the totakméthe accretion disc. To
estimate the mass in the disc at the start of an outburst | teesgbume a surface density
profile for the disc. It would be desirable to estimate thisvirthe mass transfer rate and
the quiescence time. However uncertainties-it/, and more importantly quiescence
times> 1000 yr, similar to GRS 1915+105, render this impossible. Procegth a
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manner similar t¢4, the mass of the disc is approximated by
Rdisc
Moo = / 21 RS(R) dR. (5.1)
0

Finally, | make the simple assumption that the surface degmaimediately preceding an
outburst is, for all radii, equal to the critical surface dityy as already given by eq. (4.3),
rewritten here for clarity

Yimax(R) = 114, "M O¥ R ¢ cm™2. (5.2)
Combing the two equations above gives the total mass of #te di
Maige = 2.4 x 1020 " M "P REL 0 2, (5.3)

whereRy;sc 10 IS the disc radius in units dfo'’cm. This is the total mass in the disc and
hence the maximum available mass to fuel an outburst. Frersttbng dependence on
Raisc10 in €q. (5.3) it is clear that to obtain a reasonably accurstienate for the mass
in the disc a solid estimate for its radius is required.

5.2.1 Determination of the disc radius,R ;.

For this work | need to find some way to estimate the size of tueetion disc in an
LMXB. It seems likely that the disc is a fraction of the binagparationg. Simply
setting the radius of the disc equal ;.. = ~a, with x < 1, is one possibility. This
is fairly crude and a better estimate involves the circalgion radius. This concept
was introduced ir§1.3.1 and will be further developed here. Making the sulnsbih
v, = Rp,w, wherew = 27/ P,,;, in eq. (1.40) gives

2
Rcircv¢(Rcirc) - R2 T

. A4
I Porb (5 )

Combining this with eq. (1.41) gives an expression for theutarisation radius

GM N2 2
Reire <R 1> = Ril al . (55)
circ orb

It is convenient to expresk,;,. in term of the binary separation,

Reire (RL1>4 47?2 a?

5.6
P02rb GMl ( )

a a
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and finally using eq. (1.35)

R;irc _ (R;l)‘*(l +a) (5.7)

As can be seen from eq. (5.7) the circularisation radius @aihedependant on the
distance from the primary to thie, point. There have been many approximate analytical
formulae to calculate?;, some of which are listed in table 5.1. Using any of these in
eq. (5.7) would give an approximation for the circularisatradius. With regards to
the size of the disc itself, Shahbaz, Charles & King (199@dusonservation of angular
momentum arguments to show that when there is negligibleeion onto the primary
the radius of the discC i84;sc ~ 1.36 R OF ~ 0.7R;. The valueR; is an approximation
of the size of the Roche lobe of the black hole. Due to the fofego (1.36) the lobes
are not spherical. A common approximation is to considerteespof radiusRk; with
the same volume as the lobe. The non trivial nature of eq6)Iri#ans there is no exact
formula describingR;, but Eggleton (1983) describes a analytic approximatiorafb
values ofg (see table 5.1). A similar formula for the secondary starlmaobtained by
replacingg with ¢—* (see§1.3.1). Truss & Done (2006) use a value for the circularsati
radius given in Hessman & Hopp (1990) (again see table 5.1)ofAhe methods to
calculate the disc radius detailed above are listed in taldleand displayed in fig. 5.1.
In LMXBs the mass ratio of the binary is often 0.1 and as such the expression oy,
from Plavec & Kratochvil (1964) appears to be unsuitables firee remaining methods
all give reasonable values féiy;,. when compared to the numerical simulation§®f

5.2.2 Outburst duration

Proceeding with the simple model discussed thus far, theafisadiusR,;,. and mass
Magis. go€s into an outburst phase which lasts a tigae The outburst time is of the
order of the viscous timescale at the disc outer radius. FRdngle (1981)

1
tyise(R) = Wa (5.8)
atR iscs
d 1 (R \"? R\’
tout = tvisc(Rdisc) = a <G]\;j> <ﬁ> . (59)

A typical value forH/R ~ 10~% (Mayer & Pringle 2007) and: = oy, = 0.1. The total
mass of the disc is accreted on this time scale giving a tiveeaged mass accretion rate
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Table 5.1. Analytic formula for the Roche lobe geometry
Estimates for distance from/; to L,*

R,

a

Rr,

a

=0.5—0.2771og(q) 0.1 <¢<10 Plavec & Kratochvil (1964

= (1.0015 + ¢*4056)~! 0.04 < g<1 Silber(1992)

Estimates for the Roche lobe spifere

R 0.49¢~2%/3
a  0.6¢723 +1n(1+ ¢~1/3)

0<qg<oo  Eggleton (1983)
Estimates forR,,.

Reirc = 0.0859¢ 0426 0.05 <¢g<1 Hessman & Hopp (1990)

a
® The distance from the centre of the primary to fhepoint in the binary.
b The sphere equal in volume to the Roche lobe of a star.

onto the primaryi\Zfl = Maisc/tout- Using the formulation forzg;s. of Hessman & Hopp
(1990) and setting/; = 10 M, My = 1 M, produces the dotted line in fig. 5.2. In
this simple model the disc radius is proportional to the hjirseparation, which in turn
varies as: x P2* (see eq. (1.35)). Using thB.. o< P2 in eq. (5.9) gives a simple
relation for the outburst time,

tout (y18) ~ 8o (days). (5.10)

In the model detailed above, the disc is assumed to be gntmisumed in the
outburst. This may be appropriate in the smaller discs oftgteriod systems but as
shown in§4, in longer period systems such as GRS 1915+105 the outerelsains
after an outburst. In comparison with the outbursts predidch §4 which were on the
order of~ 25 yr; this model predicts outbursts ef 300 yr for a GRS 1915+105 like
system. In the simulations carried outihthe outburst was typically triggered at a radius
in the disc ofRy,i; ~ 0.1 — 0.2Rq4;s.. This would reduce the outburst times predicted by
ed. (5.10) by an order of magnitude. This begins a trend swioirk, using information
from the detailed model of GRS 1915+105 and generalisinghtersystems. Itis known
that X-ray radiation heating the disc can prolong an outhi@g. Dubus et al. (2001),
King & Ritter (1998)). This was discussed §4.2.2 but for convenience the equation
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FIGURE 5.1. Different models for the radius for the disc. Solid lared dotted line
use theR;, estimates from Plavec & Kratochvil (1964) and Silber (1988pec-
tively in eq. (5.7) to calculat& ;.. = 1.36 R ;... The dashed line i&4;c = 0.7Ry,
whereR; is estimate from Eggleton (1983). The dotted-dashed litteei& ;. used
in Hessman & Hopp (1990). For reference a typical disc raftara simulations of
GRS1915+10%¢ = 1/14) is shown as a diamond (see fig. 4.6)

describing the irradiation radius is repeated here,

1/2 1/2
_ 11 € Ui 1/2

Rirr = 27 X 10 <F> <0—1) M18 C1m. (511)
Again ¢ is the irradiation efficiencyy is the accretion efficiency antl/,; is the central
accretion rate in units of0!® g s,

As discussed ir81.2.2 the Eddington limit caps the accretion rate onto angatb
While the Eddington limit is only an estimate, significargkceeding it over an extended
period of time is unlikely. The result is a limit on the irration radius and an upper limit
on the outburst time. If the outburst is triggered at somatdaithe diSc,R;i; = & Raisc
where( is a free parameter less than 1, the mass within this radilifuei an outburst.
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This mass will be accreted in a timgs.(Ruig). The resulting averag®/; will cause a
portion of the disc to be irradiated. This gives a new outdiusfor the outbursg;,.,
within which all of the mass will be accreted on a time sc¢ale( R;,,). This then gives an
updated value for the average mass accretion rate. A simpieinmay be built where
this proceeds iteratively until the central accretion rataverges (generally taking no
more than 5 iterations). Figure 5.2 shows the result of agitie Eddington limit to the
calculations of eq. (5.10). The irradiation efficiency wast®e = 1072 and¢ = 0.1.
The outburst time initially rises aRg;,. the mass accretion rate onto the primary and
the irradiation efficiency are such that the entire discriadiated and is accreted in the
outburst. It is only when the period of the binary 10 days that the radius of the disc
exceedSgqq (WhereRpgqq = Rirr(MEdd)) andt,; plateaus.

1000 F . E

tout(yr)

100 F -

10 g L L =
1 10 100
Porp(days)
FIGURE 5.2. Plot oft,,; varying with orbital period. Solid line is a model that
includes the Eddington limit and has an outburst triggenetthé inner disc. Dotted
line is a model where the disc is totally consumed in the astbu

5.2.3 A Different model for the disc surface density profile

The model assumed for the disc thus far is by no means the aelpaossible. Indeed it
will likely be an over estimate of the disc mass. Truss & DA@06) use a model for the
disc of GRS 1915+105 that follows work by Dubus et al. (2000)e one-dimensional
models carried out predict the surface density of a discfailow X, for the inner

~ 10% of the disc,R,..x = 0.1Rgs.. In the outer disc the surface density plateaus
resulting in a significantly less massive disc than detgieyiously. From now on this
model for the disc will be referred to as Model 2, while the mlodetailed previously
will be referred to as Model 1. The mass of the disc is then beds

Maise = M(R < Rpax) + M (R > Rpax)- (5.12)
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| assume the outburst is triggeredidt.., whereX(R.x) = Zmax(FRmax)- The mass in
the inner discM,,..x, IS given by

Rmax
Miax = M(R < Rupax) = / 27 R max (R)dR, (5.13)
0

with ... again given by eq. (5.2). Once again this mass is accreteukeoridcous time
(Pringle 1981) a0.1 Ry,

1 (1073R3. \"? / R\?
tvisc(Rmax) - a (T%) (ﬁ) (514)

I now proceed in a manner the same as before. The mass of #radisn and the viscous
time provide an averagk/, for accretion onto the cental object

Minax

M, = o
! tvisc(Rmax)

(5.15)
Heating by X-ray radiation produced by the central object pash more of the disc
into the hot state. IfR;,, is greater tham?,,.. then the outer disc will be involved in
the outburst. The extra mass beyaRg.. which is being kept in the hot state through
irradiation is denoted by/;,,,

Rirr
Mirr = M(Rmax <R< Rirr) :/ 27TREmax(Rmax)dR

max

= T max (Rumax) [R2, — B2, (5.16)

1rr

This process is carried out iteratively until the centratration rate converges. In the
event thatR;,, < Rnax then no additional disc mass enters the hot state and tharstitb
time is defined by, i..(Ruax). | Now define the valué/,,; as being the mass lost from
the disc during an outburst. In Model,; is given by

Mmax + Mirr WhereRirr > Rmax
Moy = (5.17)
Mmax WhereRirr < Rmaxa
while M,,; for Model 1 is given by
Moy = max [M(R < {Rgise), M(R < Ryy)]. (5.18)

For clarification fig. 5.3 displays the important charactécs of Model 2.

Figure 5.4 displays the mass lost in an outburst changintyevtiital period for both
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Z max

max

Rmax Rirr Rdisc
R/a

FIGURE 5.3. Diagram depicting Model 2. The green line is the surfaeesity of
the disc. N.B.R;,, can be less thaR,, ., in which case\/;,, = 0.

models of the disc. In Model 4/, ande are such thaR;,, > R4 and the entire disc
is irradiated. This continues unti,,, ~ 10 days whenR;,. has reached its Eddington
limited value. The outburst time will remain constant umil,., > R;.. for longer
orbital periods. For Model 2 the mass lost in the outburshiigally dominated by the
irradiated portion of the disc, i.eM . ~ M;.,. The reduced mass in the disc however
results in a smalle/; than in Model 1, hence an irradiation radius less ttian..
This continues untilP,,;, ~ 100 days, where the Eddington limit takes effect and the
irradiation radius has reached its maximum value. Frompbist onwards)M,,,; can
no longer be considered to comprise solely\gf.. The mass contained withiR,,., is
now a significant fraction of/,,.. WhenP,,;, > 200 days, Ry.x — R, and the two
models converge to the same mass lost in the outburst. Thauiscussion and prevent
confusion several important definitions of both Model 1 arat summarised in table
5.2

5.3 The quiescence time

The quiescence time is the time taken to replenish the masfdon the disc during an

outburst.
Mout

ty = —
q_M2

(5.19)
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FIGURE 5.4. Plot of the mass lost from the disc in an outburst varywity orbital
period. Solid line shows/,,; for Model 1. The dotted line dashed line and the
dotted-dashed line show,,,;, M,,.x and M., respectively for Model 2.

Table 5.2. Table of definitions used in both models of the disc

Model Symbol Definition
Model 1 & 2
Rdisc 1~36Rcirc or 07R1
Riyy eq. (5.11)
REdd Rirr (MEdd)
Model 1
Rtrig 5 Rise
Rout maX<Rirr7 Rtrig)
Model 2
Roax 0.1 Rgjsc
Rivig Roax

Rout max ( Rirr ) Rmax)

where— M, is the mass transfer from the secondary star. An estimakeshtss transfer
rate over a wide range of orbital periods is needed.
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5.3.1 Mass transfer rate

The purpose of this section is to show there is a link betwéenntass transfer rate
and the binary orbital period. For this task | consider sommerical simulations by
Webbink, Rappaport & Savonije (1983) and analytic work bpd<§1988), before finally
considering more a recent paper by Ritter (1999). To obtaiexgpression for the mass
transfer rate | follow the work by King (1988) who details teeolution of compact
binaries and briefly focuses on likely scenarios for longquesystems.

In the long period systems under scrutiny the secondaryiatarg mass to the pri-
mary must be a giant or subgiant star, as in GRS 1915+105%4s&g When a main
sequence star exhausts the hydrogen fuel in its core, muelaetions in the core stop,
causing the core to contract. The core contains the prodiidtee hydrogen burning
process, i.e. helium. As the helium core collapses a shetbsnding the core, where
hydrogen still remains, becomes hot enough to begin theriusi hydrogen to helium.
The higher temperatures lead to increasing reaction rateducing enough energy to
increase the star’s luminosity and radius by several oroensagnitude. This increase
in radius results in a much lower temperature at the stalidase. The structure of the
star is now somewhat different: a helium core is surroundeal thin hydrogen-burning
shell itself surrounded by an extended envelope. This epedk now so tenuous that its
impact on the properties of the star is negligible. The lwsity and radius of the star
can be considered to be solely dependent on the core mhas3)Vebbink et al. (1983)
parameterises the luminosity and radius as a Taylor series:

In(L/Ly) = 3.50+8.11y — 0.61y% + ...

(5.20)
In(R/ Ry) = 2.53+5.10y — 0.05y> + ...

wherey = In(M,/0.25) (for the purpose of this section all masses are considefeelito

solar mass units). If core masses in the rangeé M., < M. < 0.45 M, are considered
thenln |y| < 1 and non linear terms in eq. (5.20) can be ignored. Combinindk39)

with linearised version of eq. (5.20),

Mc 5.1
R~126R, (0 25) (5.21)

gives a relation between the binary orbital period, the totss and the core mass of the
secondary for a Roche lobe filling star:

M 7.65 1 1/2
P ~ 16. c ) days. 22
orb ~ 16.5 <0.25> (Mz) ays (5.22)
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As previously stated the luminosity of the star is providgdhydrogen burning in a
shell surrounding the core. As the hydrogen is consume@yrhes added to the core,
suggesting a link betweefhand M.. Hydrogen burns at.19 x 10'8 erg g~!, therefore

: L 33 Lo M, \ 8!
M. = ~ 2
© 419x 108 419 x 1018 (0.25> ’ (5.23)
using eq. (5.20). Logarithmically differentiating eq.46) gives
RQ Mc
— =5.1 5.24
which combined with eq. (1.46) for conservative mass terisfads to
M, 3M,
——= ~ : 5.25
L~ L (5.25)

A combination of the above and eq. (5.23) leads to an exmedsr the mass transfer
rate,

— M,

L M 7.11
396 Lo ( ) , (5.26)

T 419 % 108 \0.25
To express the mass transfer rate in terms of the orbitabgpantegrate eq. (5.25),

M, = M°My "3, (5.27)

whereM? is defined to be the core mass for a solar mass star. The finaloh#e star
is equal to the final core masa/ = M{, leavingM/ = MJ = (M?)3/4. Using this
in eq. (5.22) results in relation between the orbital peebthe end of the mass transfer
process and/?,

Pf

orb

MO 5.36
= 394 < days. 5.28
59 (0.25 M®> e (5-28)
Using eq. (5.27) in eq. (5.22), the orbital period variesPas « M, *%. From eq.
(5.26) one then derives M, o P%¥. If M, = 1 is assumed then eq. (5.22) gives the
initial orbital period P!, while eq. (5.28) gives the final orbital periddfrb. The ratio

between the final and initial mass transfer rates is thezefor

f f o\ 045 0\ —1.03
My _(Low) (M -t (5.29)
M\ P 0.25 MY

orb

Hence the value of M, does not vary substantially as the orbital separation dbitery
evolves. Indeed the averagé, is set by the initial orbital period. Finally a combination

122



Long period LMXBs: 5.3 The quiescence time

of eq. (5.22) and eq. (5.26) results in the desired relat&iweenis, and P,

— My ~ 4 x 1070 PO (Q)MFT M, yrt. (5.30)
The numerical calculations carried out by Webbink et al.8@)9are in good agree-
ment with this result. More recent work has been carried oubioary evolution and
mass transfer (Ritter 1999) which questions the constassimansfer rate as the binary
evolves. Ritter (1999) states that the most important fastthe core mass at the begin-
ning of mass transfer. However the equation-fa¥/, contains several other parameters
such as initial primary and secondary masses as well as teextass of the secondary.
Using this work would expand the parameter space unnedgsdaitter (1999) com-
pares his result for the mass transfer rate to that calailayeWebbink et al. (1983),
shown in his figs. 3 and 4 (fig. 3 is reproduced here, see fig. 3% two results dif-
fer by no more than 20% at the beginning of the mass transteegs, they are similar
enough to warrant the use of eq. (5.30).

t(107 yr)

FIGURE 5.5. Mass loss rate as a function of time. Comparison betwexk by
Ritter (solid line) and Webbink et al. (1983) (dashed liiaken from Ritter (1999).

5.3.2 Period range

The relations derived if5.3.1 are not valid for the whole range of parameters. Torensu
that eq. (5.20) could be linearised, a limit on the core massimposed, hence

0.17 <M.< 045
5 (5.31)
M. <M, < EMI'
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If M, ~ 10is assumed then using eq. (5.22) can impose limits upon tyeraf periods
for which the relations i85.3.1 are valid,

0.3 days < P, S 6 yrs (5.32)

As previously stated Webbink et al. (1983) performed dethdalculations which are in
agreement with eq. (5.30). Their binary evolution caldolz were carried out in the
(initial) orbital period rangd < P,,;, < 200 days. This is the range of orbital periods |
will consider hereatfter.

5.4 EXxploring the parameter space

541 Modell

| shall start by examining the behaviour of the simplest efrtiodels used for the surface
density profile, Model 1. Unless stated otherwise the patarséor all of the figures are
M, =10 Mg, My = 1My, o, = 0.1, 0, = 0.01, e = 1 x 1073, p = 0.1, H/R = 0.01,
Rivig = 0.1Rgisc anNd Rpax = 0.1Rgisc. The circularisation radius detailed by Hessman
& Hopp (1990) was used. Model 1 can be regarded as an uppeifdinthe total mass
of the disc. As a result the quiescence times using this madebparticularly large
~ 10% — 10* yr. Additionally mass accretion rates onto the primary arécglfy super
Eddington at orbital periods of 10 days.

By examining fig. 5.6 and 5.7, a general trend can be obsenvéteibehaviour of
touts tq and the duty cycle. Initially the outburst time is directlyoportional to P,
(see$5.2.2). The choice of parameters has resulted infanwhich irradiates the entire
disc and the Eddington limit is reached at 7 days. This behaviour continues until
Rgise > Rgaq at P,;;, ~ 10 days, hence the mass lost from the disc during outburst is
constant, irrespective of the size of the disc. However tasstransfer rate still increases
with orbital period (see eq. (5.30)). When the entire discrediated R,y = Rgise X
P2 this in turn means\/y.. o« P2%. Hence, eq. (5.30) results in the quiescence
time obeying a power law of 1.1 when the disc is totally consumed in outburst. When
Rou = Rpqq the mass\,,, is constant, henag obeys the relationc P, %%, The effects
on the duty cycle are then straight forward to calculateu@ésgt, > t..): a power
law of ~ —0.103 when R,,; = Rgisc and a power law ofv 0.93 when R, = Rgaq.
This raises the possibility that the duty cycles of long pe&lLMXBs may be larger that

previously assumed.
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FIGURE 5.6. Parameter study of Model 1.
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FIGURE 5.7. Parameter study of Model 1.
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I will now briefly detail some of the specifics of the individuesults of the parameter
study.

Figure 5.6a, varying M,

Increasing the primary mass increases the orbital separfti a given period, resulting
in a larger disc. The greater reservoir of mass results iktitgngton limit being reached
at a smaller,,,, for a more massive black hole. Additionally the more mastieeblack
hole the greater the Eddington luminosity. The maximumaegif the disc which can
be irradiated is greater, causing the increased outbudsfjaiescence times.

Figure 5.6b, varying M,

Once again changing the mass of a component in the binarygekahe orbital sep-
aration for a given period. While increasing the secondaagsmloes increase the bi-
nary separation it also reducég,, and the circularisation radius around the primary
(see the form of?.,. in table 5.1). This reduction in the radius of the disc meduas t
Rowt = Rraa < Rais at shorter orbital periods. A largér; also increases M, which

in combination with the reducelly;s. reduces,,.

Figure 5.6¢, varyinga;,

With the exception ofy, = 0.045 all of the trials behave in a similar way. The mass
accretion rate is high enough to irradiate the entire digd uf,;, ~ 12 days when
Raise > Rpaq andt,,; plateaus. The viscous time A&f,, is reduced for larger values of
ay, but the same mass is accreted. When= 0.045 however, the viscous time &t,, is
such that\V/; never reaches the Eddington limit, due to the low viscositthe hot state
and the resulting long outburst time. Thus, ortg, ~ 6 days the disc becomes larger
then R;,, but the Eddington limit has not been reached.

Figure 5.6d, varying o

From eq. (5.2), increasing. reduces the mass in the disc. FQr> 2.2 x 102 the disc
mass is low enough so thaf; is always sub Eddington. As. is decreased, the outburst
curve begins to approach that of the Eddington limited caitle &n outburst time of
~ 100 yrs. Although the outburst times are identical for &)}, whenca, < 2.2 x 1072
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the effect of the differingy, can be seen in the quiescence time. Whei: 2.6 x 102
tout @andt, begin to increase again at orbital periogds100 days. This is caused by
Riig > Ry, and is seen in a number of the trials.

Figure 5.7a, varyinge

For larger values of the irradiation radius at/pq is increased, see eq. (5.11), resulting
in a correspondingly larger,,. andt, (as more mass is lost from the disc in the outburst).
The only departure from this behaviour is whea 4 x 10~%, when thet,,, curve once
again starts to obey the power law of the pre Eddington licug toR;,;; > Ri.. The
trigger radius increases with the disc radius and so the ptaweis ~ 1 due to the
argument irg5.2.2.

Figure 5.7b, varying H/R

The aspect ratio of the disc is varied between 0.01-0.1:ethes values generally as-
sumed to be reasonable (King, Kolb & Burderi 1996, Mayer &Ble 2007). The effect
oN t,, IS similar to that when varyingy,, as H/R is increased the outburst time de-
creases, due to eq. (5.8). The amount of mass involved inutieist is constant with
changingH /R in the range chosen.

Figure 5.7c, varying Ry,ig

The only significant effect of changin®.., is the value ofF,,;, for which Ry, > R,
the effect of which is described in the discussion of fig. 5.7a

Varying n

The results were found to be independeng efhenn > 0.05. Values< 0.05 are needed
to influence the amount of the disc that is irradiated.

54.2 Model 2

The behaviour of the second model for the mass in the disc edrest understood by
using the example of Model 1. The general form of the two m®delsimilar: both
tour @ndt, increase withP,,;, until Mgqq is reached, whereupaony,; plateaus and,
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FIGURE 5.10. Figure showing the convergence to a power law of 1. &ddhes
are differing values ofR,,., starting at0.1Rg;. and increasing in increments of
0.03 Rgisc-

begins to decrease. Compared with Model 1 the mass in thasdisduced, therefore
the Eddington limit is reached at largét,,,, typically P,, ~ 100 days. A further
consequence of the reduced disc mass is the redyc&tie form oft, is generally not a
simple power law for high values dt,,,,, due to the more complicated expression for the
disc mass (see eq. (5.17)). Wheg, > 100 days M, is no longer the only significant
constituent of\/,,; (see fig. 5.4). The resulting outburst time in Model 2 doedoltiw
the same power law as in Model 1 at short orbital periods,catiig the disc is not
totally irradiated and taking part in the outburst. The polaes in the outburst times for
P, < 100 days is particularly evident in fig. 5.9a and can be explained lgyrtiodel
for the disc surface density profile. To illustrate this I Millow an example iteration
series.

e Initially an outburst is triggered at,,... The mass contained within this radius is
given by eq. (5.13). For a fixet; and M, Ru.x x P27°. Hence the mass within
Ruax contains within it mass proportional fé?:%3.

e Using the expression for the viscous time (eq. (5.8R.al results intyis. (Rmax)
P,.,. This gives an initial average mass transfer rate onto thekihole A,,; =
Mmax/tviSC(Rmax) X Polrgg

e This initial average mass transfer rate results in irréoietf the disc following eq.
(5.11), thereforeR;,, o (Mmi)l/2 which in turn gives a dependence on the orbital
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period R, oc P9:216,

orb

e Making the assumption thak;,,, > R...., Which is possible in low period high
e tests, the mass of the disc can be approximated by using et6)(3/,,; ~
275 ( Runax ) R2,. From eq. (5.2)(Rumay) is approximately proportional t&2,

irr* orb

and using the abov&/,, o PLy.

e The average mass accretion rate is now recalculated frometlveoutburst mass
and the viscous time at the irradiation radius. From the ahbbis known that
Moy o< PLT and R, oc P96, Hence the updated average mass accretion rate is

orb orb

Ml o PO.94

orb

e The updated irradiation radius is now calculated from the né, R, o P26,
A new outburst time is now calculated from this irradiatiadius, again using eq.
(5.8), resulting irt .. = tyise( Rirr) o< P22, All subsequent iterations converge to

orb

this result and this power law is seen in several of the figurdsis section.

¢ In a similar fashion for the quiescence time, the new maskebtitburst is given
by My ~ 275 (Rumax)R2,. From the arguments above( R..) o Pfrf’ and
Ry o< P96 resulting inM,,, o< P19, Using eq. (5.30) ensures that the quies-

orb orb

cence time obeys, oc P57,

The transition between the two power laws in the outbursetoan be seen in fig.
5.9d and in more detail in fig. 5.10. As the inner radius iseased the amount of mass
in the disc increases, which can provide the necessary @timass and hencl; to
irradiate the whole disc. This results in a power law#gQr of 1, i.e.t. iS proportional
to P, (seegb.2.2). If this is not the case a power law-~0f0.69 is the result.

At first glance the behaviour of fig. 5.8c is surprising. Anrgese in«o;, should
decrease,, ., however this fails to take into account the resultant iasesin}/, has on
the irradiation radius ;/%). Combined with eq. 5.16 (giveRy, > Ruay) results
in the outburst time having no dependence on the viscositiggrhot state. The only
remaining variable is the size of the disc. Figure 5.11 digpt.., ¢, and duty cycle
when the disc radii from Silber (1992), Eggleton (1983) arebsinan & Hopp (1990)
are used in Model 2. The form of the resultant curves are wizkely the same. When
g = 0.1 Silber (1992) and Eggleton (1983) predict a compardblg. (see fig. 5.1),
which is larger than that predicted by Hessman & Hopp (1999&nce they predict
similar results and larger outburst and quiescence time.

132



Long period LMXBs: 5.5 Comparisons with observations

100 = - .

Hessman & Hopp (1990)
E%g\etom (W9855}
77777 Silber (1992)

1000

ty (yr)

100

0.2 ! ! 7

Duty Cycle
AN

7
7
0.1k 7 _
- S B

,,,,,,,

1 10 100

FIGURE 5.11. Outburst quiescence time and duty cycle as a functicortotal
period. Model 2 is used with different expressions Ry,

5.5 Comparisons with observations

Before proceeding any further, it would be useful to complespredictions made from
the models against observed LMXBs. As previously statecethee only 15 confirmed
Galactic black hole binaries. The majority of which have doital period on the order
of one day; GRS 1915+105 is the longest period LMXB known. Tigory of X-
ray astronomy is limited to only 40 yrs. This coupled with the quiescence times of
even the shorter period system being of the ordet0 yrs means there is a lack of
observational data for comparison. This is further hangénethe total lack of data
on the long period systems with outbursts lasting decadeégjaiescent periods lasting
thousands of years. | will have to extrapolate the behawbthie longer period systems
based on the observation of their short period counterparts

The criteria used to select the black hole LMXB were as fodiowa giant or sub
giant secondary, a known orbital period preferably sewdags long, known primary and
secondary masses and a source that has had several outBarsts be seen in table 4.1
in McClintock & Remillard (2006) the ratio of LMXBs known witmain sequence donor
stars to those with giant/subgiant donors is approxim&#lyfurther reducing possible
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Table 5.3. Table of LMXB system parameters, typical outbiimses and quiescence
times

Name Py (days) Mi(Mg) Ma(Mg) tow (Months) ¢, (yrs)

V1033 ScO 2.62 6.59 2.76¢ 8-16° 7°
BW Cir 2.54 >7.83 >1.02 5-6° 10t
V404 Cyg 6.21 1 0.65 6' 18-33

* Gonzalez Hernandez, Rebolo & Israelian (2008)
b Shahbaz (2003)

¢ Saito et al. (2007)

4 Casares et al. (2004)

¢ Brocksopp et al. (2001)

f Casares et al. (1993)

9 Shahbaz et al. (1996)

" Shahbaz et al. (1994)

¢ Zycki, Done & Smith (1999)

J Richter (1989)

candidates. The selected sources are shown in table 5.3/ arbeall typical of the
shorter (relative to GRS 1915+105) period LMXBs, outbulassing a few months and
quiescent periods lasting a decade or so. By comparing tiigsets to the predictions
of the model, | will be able to better constrain some of theapeaters used, particularly
the disc scale height and the irradiation efficiency. Anpbtbeus of this section will be
to determine which of the models for the surface density endisc provides the best
match to the observations.

To constrain the parameters used in the model a search thtbagarameter space
was conducted. The mass of the constituents of the systeerblean fixed, therefore the
following parameters remainy, ., H/R, e andrn. While o, are ways of parameteris-
ing our uncertainty regarding the viscosity in accretioscdj deviating too far from their
“accepted” canonical values is undesirable. The parasétat had the greatest influ-
ence on the predicted outburst and quiescence timesMigReande. These parameters
have the greatest uncertainty associated with them, witded values foff /R from
0.1 to 0.01 whiles can be expressed as (King & Ritter 1998)

H\" [dIn H
e=(1-75) (E) [dlnR_ll’ (5.33)

where is the albedo of the gas in the disc and the indexas a value of 1 or 2. The
uncertainties of each of the constituentsahotivated the use of the single parameter
to describe the irradiation efficiency. Figure 5.12 shows kize relative error between
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Table 5.4. Table of LMXB system parameters, typical outbiimses and quiescence
times. Parameters are= 0.1, a;, = 0.1 anda,. = 0.01.

Predicted Observed

Model Name H/R  €(x1073)  tou (Months) ¢, (Yrs) | tour (Months) ¢, (yrs)
Model1l V1033ScO 0.03 0.05 12 65 8-16 7
“ BW Cir 0.06 0.1 6 ~ 1000 5-6 10

“ V404 Cyg 0.02 0.035 5 15 6 18-33
Model2 V1033ScO 0.03 0.2 14 16 8-16 7
! BW Cir 0.06 1.0 6 ~ 150 5-6 10

V404Cyg 0.02 0.035 5 15 6 18-33

Figure 5.13 shows the relative error between results frorddli@ and the observed
outburst times. The surface density profile adopted hae éiftect on the outburst times
in these short period systems, hence Model 1 produced sinetallts. The value of
the scale height needed to match the observations appdagsndhe range 0.02-0.06.
Table 5.4 gives the “best fit” values éf/ R ande adopted for the systems. Both models
predict the outburst times of all three systems well. Modptéicts a quiescence time
for V1033 ScO that is within a factor of 2 of the observed value. The quiescence
time of BW Cir is predicted to be a factor of 15 too large. Thigynbe associated with
the uncertainty in the mass of the secondary (Casares e0@d).2 From the orbital
data a lower limit of1.02 M, was placed on the secondary. However Casares et al.
(2004) identified absorption features which correspond 05 1l type star, which
has a typical mass range &fl — 2.4 M. If the upper limit of this mass range for the
secondary was adopted then the quiescence time predictelddgl 2 would reduce to
~ 40 yrs. Given the other uncertainties in the systeh | this is becoming consistent
with observations. Model 2 under-predicts the quiesceimse for V404 Cyg but not
to any significant degree. Given the large time scales imgl(¥irst outburst in 1933)
Richter (1989) could not rule out the possibility outbutsasl been missed. Indeed there
was some indication of an outburstin 1979, which would redhe observed quiescence
time to 10 — 23 yr. In summary Model 2 predicts the outburst times well but ceero
estimate the quiescence time by a factor-al.

Model 1 over-estimates the quiescence times of the systeli83/ScO and BW
Cir by a large margin. The value efis somewhat immaterial, no matter the value the
quiescence times are grossly over-estimated. Even asguvfiin= 2.4 M, in BW Cir
which gives a revised quiescence time of 115 yrs, all of thetesys are predicted to
havet, a factor~ 6 — 10 too long. This is unsurprising, as the surface density @rofil
of Model 1 ensures the disc is more massive than that of Modsé@ fig. 5.4). This
would cause the longer quiescence times and also increaseats accretion rate onto
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the primary. From the form of egs. (5.1) and (5.2), incregsime value ofa,. will
reduce the disc mass. If the disc mass becomes comparabiat forédicted by Model

2 then the quiescence times will match the observations meearately. Figure 5.14
shows the mass involved in the outburst for Model 1 for twdéedént values ofv.. An
extreme value ofv. is needed forl/,,; to resemble that of Model 2. This does indeed
reduce the quiescence times to values approaching thoke observations. However
this necessitates that. ~ a4, which renders the idea behind the disc instability model
somewhat useless as a solution to explain outbursts in Co¥d.mXBs. The whole
concept depends on the idea that in the hot state the diszsitigcs significantly greater
that it is in quiescence, thus explaining the increase inntlags accretion rate during
an outburst. The extreme values that parameters in Modeld. toatake to match the
observations renders this model for the disc unreliableyrview.

Model 2
e Model 1, a=0.01
77777 Model 1, «=0.09
1078 5
1 10 100
Porb<d0ys>

FIGURE 5.14. Plot of the mass involved in the outburst against akpriod, system
masses follow V1033 ScO#]/ R = 0.03 ande = 1073,

In contrast to V1033 ScO and BW Cir, Model 1 predicts the V4@4 @ell. This is
due to the negligible irradiation efficiency needed for bigtbdels 1 and 2. Without the
irradiation of the outer disc and both models are essepttadl same with the inner 10%
of the disc being lost in the outburst. This conflicts wiycki et al. (1999) who suggest
the entire disc is involved in an outburst, to explain the fase in the 1989 outburst.
The discrepancy between the estimated mass transfer dguiegcence and the disc
mass leadZycki et al. (1999) to predict a model for the disc similar ty Model 2,
by solving the vertical disc structure equations they firat the disc becomes unstable
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at Rt ~ 0.05R4s. Beyond this point the disc the disc does not fully build up in
quiescence, i.eR,. iS analogous ta,,,,.

Varying R,.. in Model 2

If Model 2 does indeed represent the surface density in therdiore accurately of the
two models, the “main” parameter defining this mogtgl.. will need to be investigated,
this was done briefly i§5.4.2 (see fig. 5.9d). Figure 5.15 depicts the effects,nt,
and duty cycle wherR,,.. is allowed to vary for a given system, wheké = 10 M,

M, = 1M, H/R = 0.01 andP,,;, = 5 days. The effects of this are dependent on the
strength of the irradiation. With negligible irradiation. ( Rm.x) (€9. (5.8)) defines the
outburst time

R 3/2
fout ~ 40 ( R‘;{a") yr. (5.34)
From eq. (5.13) and eq. (5.30) the quiescence time is given by
R 3.05
£, ~ 4000 ( Rja") v, (5.35)

In contrast the outburst time with a high irradiation effigig is controlled by is.(Rir:)-
There is sufficient mass in the disc to irradiate the whole disenRz,,,,x > 0.3 whene =
103, Depending on the irradiation efficiency the change in thbunst and quiescence
times when altering....x by a factor of two can be as large as a factott and230°
from eq. (5.34) and eq. (5.35) respectively. Hence, the dytle can change by a factor
Of 2—1.55.

5.6 GRS 1915+105

All the information necessary to make some informed preatistfor longer period sys-
tems is now in place. The temptation is to assume that thegerigd systems behave in
the same way as their short period counterparts. This is loygans certain, as discussed
in §5.5. Also fig. 5.13 shows a trend of decreasing disc aspeaotwéth increasing or-
bital period. Additional information provided by the nurigad simulations irg4 will be
used to firm up some of the assumptions made. Figure 5.16 shenvslar exercise as in
fig. 5.12 for the numerical results ®4. Typical values obtained % aret,,, = 25+5 yr
andt, = 10* +2 x 10% yr. From fig. 5.16 Model 1 requires parameterdbfR = 0.025
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FIGURE 5.15. Plot of the outburst, quiescence times and duty cyckefanction of
Ru.x for different values ot. System parameters aréf; = 10 My, My = 1 M
andP,,;, = 5 days.

ande = 1.5 x 107 while Model 2 requires//R = 0.036 ande > 5 x 1073. Both
models can adequately reproduce the results fiéms seen in fig. 5.17.

5.7 Discussion

A goal of this work is to make some prediction of the duty cyafeother long period
LMXBs. From the comparisons with short period systems Mddebn be ruled out
due to its repeated over estimation of the quiescence timsdeM2 on the other hand
can reproduce observations of short period LMXBs and thepcder models of GRS
1915+105. To make general predictions of LMXBs | will need¢mstrain the parameter
space somewhat. Assume thaty, anda, have their canonical values and thdt =

10 M. The value forM; is arbitrary, within the range of possible masses for stella
mass black hole. From fig. 5.8a, the trend in the duty cycles ca¢ change with\/;

but merely changes magnitude. | am more interested in thegesain the duty cycle
as orbital period changes therefore this assumption waifi¢ds In a similar way the
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FIGURE 5.16. Plot of the relative error between the predictiong,gfandt, from
chapter 4 and this work as a functionc«oind H/ R. Colour scale denotes thez,,
of relative error.

mass of the secondary was fixedlal/,. This had two motivations; the first follows
the argument fol/; and the second is that a solar mass donor star would be typical
the old stellar population found in elliptical galaxies ebged in Irwin (2006). 185.5
the disc scale height has values betwe#2 — 0.06 while the above discussion of GRS
1915+105 implied?/R = 0.036. Figure 5.13 suggests that/ R decreases with orbital
period in this model, therefore | will assunié/ R has a value of approximately 0.03.
The final parametet, has the weakest constraints with values ranging fronmi — 103

in §5.5. Additionally the value of can change the profile of the duty cycle \i%,,, plot
(see fig. 5.9a). | made the decision to leaas a free parameter and have it vary through
three orders of magnitude to hopefully cover likely valuasthis parameter.
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FIGURE 5.17. Comparison between Model 1 and 2 fitted to typical astoand
guiescence times of GRS 1915+105 generated from Chapter 4

Figure 5.18 shows the variation of the duty cycle with orlpiriod for the param-
eters described above for three different value&¢R. It appears the form of the duty
cycle can be divided into three different regimes. The fisbiafled green in fig. 5.19)
can be identified as the low irradiation regime. In this regilee duty cycle rises ini-
tially with orbital period untilP,,,, reaches a critical value wherg, ., > R;.. and hence
tout = tvise(Rmax). From this point onwards the duty cycle decreases With. Follow-
ing the method outlined if5.4.1 the duty cycle obeys

tout = 0.027P,p(d) yr
tq = 0.59PL1%(d) yr (5.36)
duty cycle ~ 0.045P;1%(d),

orb

assuming that, > t,. In the extreme case of no X-ray irradiation of the disc, the
duty cycle will obey eq. (5.36) for the period rangje- 200 days. Otherwise the duty
cycle can increase by up to 60% in the rangg, ~ 1 — 30 days, before decreasing
according to eq. (5.36). In the high X-ray irradiation regifshaded light blue in fig.
5.19) most, if not all, the disc enters the hot state and iseéed during the outburst,
resulting in smaller duty cycles that nevertheless showerariability with P,,;,. When

all of the disc is lost in the outburst the duty cycle againysbe P29 until the

orb '

Eddington limit is reached. In this regime the duty cycle agarease by as much as a

141



Long period LMXBs: 5.7 Discussion

factor of three wherP,;, is increased from three days to 200 days. Immediately dfeer t
Eddington limit is reached the behaviour of the duty cycldasinated by the changes
in the quiescence time. In the limit whetg, < t, andR,.x < R, then eq. (5.16) and
eq. (5.30) give the dependenseP’:263 (for a constaniRy,, and(Ruax) o P2)Y). The
intermediate regime (shaded blue in fig. 5.19) has modenaidiation of the accretion
disc and is characterised by an initial constant duty cyitis.caused by the power laws
thatt,,. andt, obey when the disc is partially irradiated: frdf.4.2¢,,, ~« P and

tq oc P2S7. Hence the duty cyclec PO:2? i.e. nearly constant with orbital period. This
behaviour continues until the Eddington limit is reachesti(line in fig. 5.19) and,,;
becomes constant, whereupon the power law d?%:2% takes over. Due to the form of
ed. (5.16), whemk;,, ~ R,..x there is no simple power law to describe the duty cycle
as seen in fig. 5.19. As stated above the red line shown in fitP &uts through the
intermediate regime where the Eddington limit is reachelde point at whichVzyq is
reached can be calculated by using the result®ef.2: M, o< PL7 andtq,, oc PO,
Therefore the mass accretion rate varies-ak,,, (likewise for Maq).

To summarise, there appear to be three general trends intheytle, the behaviour
of which depends on the importance ®f,. | have classified the regimes according to
the extent of the irradiation in the disc when the Eddingtonitlis reached:

° Rirr(l\'/IEdd) < Rumax: A low irradiation of the accretion disc, characterised hy a
initial increase followed by a peak then a gradual declind \#j ;.

e Ruax < Rirr(Mgaa) < Raise: Moderate irradiation of the accretion disc, char-
acterised a constant duty cycle followed by an increasegaighiorbital periods.

° Ri”(l\'/IEdd) = Raise: High irradiation of the accretion disc, characterised hy a
initial fall in duty cycle followed by a rapid increase at higrbital periods.

From fig. 5.18 the relative importance of each of the threemeg depends on how much
of the disc is irradiated, witt /R changing)/;, see eq. (5.11). To more accurately
predict how the duty cycles of LMXBs change as a function ditat period, an idea of
the importance of X-ray irradiation is needed. From thewuksmn in§4.5 the length of
the current outburst of GRS 1915+105 may be important inuthderstanding.

In existing models of black hole LMXBs the duty cycle is oftessumed to be con-
stant with a value of~ 0.01. The model outlined in this section is equally valid for
LMXBs with a neutron star primary which some estimates ofdhty cycle have been
made. In a study of cataclysmic variables Dobrotka, Lasotde&ou (2006) found a
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FIGURE 5.18. Variation of duty cycle with orbital period for thredfdrent values
of H/ R over a range of irradiation efficiencies.

relation between the duty cycle and the mass transfer rae fine secondary, approxi-

mately

N
— M.
duty cycle ~ ( : 2) ) (5.37)

crit
Where M., is the critical mass accretion rate onto the primary enguaihof the disc
is irradiated (King et al. 1996). From eq. (4.6) one gets

4 P2
Aol R

— (5.38)

M, crit —

Hence the duty cycle using this method varies approximately P.)*'. This model
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was used by Fragos et al. (2008) for neutron stars, to simtiet XLF in Elliptical
galaxies. The more complicated structure of the duty cyelgeddence on the orbital
period in the model presented in this work would likely infige their results. Depend-
ing on the importance of the irradiation of the disc the dutgle can be expected to
show three different types of behaviour Bs,, is increased. Assuming the model for
the disc surface density is constant for Bll;,. The model described in this work is a
more comprehensive method to describe the duty cycle of LEIXBRn has been used in
the past. However it is heavily dependant on the choice @maters. These have been
constrained to where possible by comparison to the few ghtens available and to
detailed numerical simulations but much uncertainty remail his toy model attempts
to use the basic physics of accretion discs to reproducedhserved behaviour without
resorting to a computationally expensive treatment simdg4. 1t would be an ideal ac-
companiment for any studies looking at the X-ray luminositynodelled star systems.
Additionally, | have restricted myself to look at black halsXBs with giant compan-
ions. This analysis can be repeated in much the same way farsequence donors and
even extended to other classes of astrophysical objedisasuCVs.

0.04 |

0.03

0.02 |

Duty Cycle

0.01 |

1 10 100
Porb (days)

FIGURE 5.19. Depiction of the 3 different regimes in duty cydh,;, parameter

space as described §5.7, e ranges froml0~> — 10~2. If the top curve is charac-

terised byi = 0 then the efficiency of each curvés given bye = 107° x 1.26%. The

red line represents the points where the Eddington limié&hed in the moderate
irradiation regime.
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Chapter 6

Conclusions

“It don’t matter that some fool say he

different...”
- D’Angelo

The Wire: All Prologue [2.06]
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In this thesis | have described accretion onto black holgsvnscenarios: that of
accretion from a diffuse medium in the Galactic centre ardeton in a binary sys-
tem. Muno et al. (2008 identified a LMXB candidate 0.1 parsec in projection from
Sgr A*, which due to its bright radio emission (Fender & Kuulker®2pthey supposed
contained a black hole. Alternatively, due to its faint X~taminosity there is the pos-
sibility that this binary may be accreting gas from the Mpiial and be a “fake LMXB”
as described i§3.4.

In §3 and§4 | described objects in our own Galaxy, however observataescribed
in §5 were the motivation for considering systems that couldarghe X-ray emis-
sion in nearby galaxies. With the advent of t@Gbandraera there have been several
studies of the X-ray emission of the Galaxy and its neighbdtor a review of extra
galactic sources see Fabbiano (2006)). One of the most imategdnoticeable features
of LMXBs is their propensity to be found in globular clustels some elliptical galax-
ies the fraction of LMXBs associated with globular clustisras high as 70% (Sarazin
et al. 2003). LMXBs appear to be formed preferentially inlgilar clusters with a high
collision rate (Peacock et al. 2009). Globular clustershamvunusually high stellar den-
sity and interactions between stars are far more likely thahe galactic field. This has
led to the conclusion that LMXBs in globular clusters arenfed by these interactions
as opposed to the evolution of the binary system and/or tbkeauevolution of the stars.
This alternative explanation for the formation of LMXBs Had some to conclude that
most if not all LMXBs are formed in globular clusters (Whigarazin & Kulkarni 2002).
The LMXBs could be kicked out of the globular clusters whiokyt were formed in due
to the change in velocities experienced by a binary duriegstipernovae that forms the
black hole/neutron star. Although this is refuted by Kundale (2007), who find that
the field LMXBs are associated with the underlying stellgpyation and are therefore
likely formed in situ.

Whichever proves to be correct there are two distinct pdjuia of LMXBs: those
in globular clusters and those in the field. It has been pregdsat LMXBs in globu-
lar clusters are primarily ultracompact X-ray binariesldBien & Deloye 2004), i.e. a
white dwarf secondary; while LMXBs in the field may be wide duiles with a red giant
secondary (Piro & Bildsten 2002). Any binary with a largeitabperiod, P,,;, = 1 day,
would likely be disrupted by the frequent interactions inlabglar cluster. However
such binary systems could exist in the field. The formatiocmaaism of such binaries
and LMXBs in general is still uncertain, with the possilyiliif the supernovae explo-
sion destroying the binary. However there are other passiénues: intermediate mass
X-ray binaries which would be more likely to survive the sume/ae (Podsiadlowski,
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Rappaport & Pfahl 2002) and triple star systems, consistfraghigh mass inner binary
and a low mass companion (Eggleton & Verbunt 1986). HoweW#XBs are formed in

the field, it appears likely that there are two different fatran mechanisms for LMXBs
that may result in differences in the system parametersnlosity profiles, outburst and
recurrence times. The observations of LMXBs with giant camipns in the Sculptor
dwarf spheroidal galaxy(Maccarone et al. 2005) supports the idea that at least sbme o
the field population comprises LMXBs with giant donors.

There have been several attempts to model the X-ray luntynfasiction (XLF) of
elliptical galaxies, (lvanova & Kalogera (2006) and Fragosl. (2008)). The XLF is
highly dependent on the population of X-ray binaries and ef®describing it are gov-
erned by the mass of the black hole /neutron star and the dagotype. Transient black
hole X-ray binaries with red giant donors are particularhpbrtant when considering
the high luminosity end of the XLF; while they may be less nuwne than those with
main sequence donors they are more luminous. A common pnobleen attempting to
model the XLF of a particular galaxy is the lack of any constsafrom theory or obser-
vations, on the duty cycles of X-ray transients. lvanova &8dgara (2006) report that
the common assumption of a constant duty cycle for all sysfaiis to reproduce obser-
vations. Fragos et al. (2008) report that for certain patarsen their model a constant
duty cycle of 1% could match observations, at the expensenbving the contribution
of LMXBs from the XLF. Fragos et al. (2008) feel that a constdnty cycle of 1% is
unrealisticly low, however fron§4 it may be appropriate for GRS 1915+105 like sys-
tems. The work presented §d and§5 is a step towards a understanding of long period
black hole LMXBs which, as detailed above, are likely to desin the field of galaxies
and contribute significantly to the XLF.

Turning attention to our own Galaxy, of the confirmed 17 trantsblack hole LMXBs
the longest period of 33.5 daysisin GRS 1915+105. If the dutjes of GRS 1915+105
like systems are as predictedd, it implies that there are potentially many more sys-
tems with similar orbital periods that are currently quessc Previous studies have
assumed a constant duty cycle when estimating the numbkesé tquiescent systems,
howevers5 has demonstrated that (depending on the model assumetkfactretion
disc) longer period systems(;, ~ 10 — 100 days) potentially spend less time in
guiescence than previously assumed. Observation of ariestack hole LMXBs in
the Galaxy is challenging; they are 100 times less luminous than those containing
a neutron star (Garcia et al. 2001), although longer penstems do appear to have

Ylow luminosity galaxies with little gas, dust or recent saimation, additionally they do not contain
any globular clusters.
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higher quiescent luminosities. Comparisons between tkerebd LMXBs in outburst
and those in quiescence in the Galaxy would provide infolonatn the duty cycles of
these objects as well as the orbital period range. Improséthates of the duty cycle
and orbital period of LMXBs may allow the structure of the r@aton disc to be inferred

based on the models outlined §B, improving any attempt to model the XLF of other
galaxies.
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Appendix A

Results

“...alittle slow, a little late.”
- Avon Barksdale

The Wire: The Pager [1.05]
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In this appendix | detail all of the parameters used in theutations described in
84 in table A.1. In table A.2 the raw data from the code is digpthalong with the
results post processing using the scaling method outlimg4.8.6. The errors have been
omitted from the tables for clarity but are shown on the figures4. The parameters
where chosen so that; > —M, and the scaling method (s&4.3.6) was applicable
(for discussion seg4.4.2).

Simulation Yiue  Smin A Pt g ¢ A
Name
base 55 47853 10 01 01 7e4 1

irr 1 55 47853 10 01 01 3e4 1
irr 2 55 47853 10 01 01 5e4 1
irr 3 55 47853 10 01 01 9e4 1
irr 4 55 47853 10 0.1 01 12e3 1
sig max 1 40 47853 1.0 0.1 01 7e4 1
sigmax2 475 47853 10 0.1 01 7e4 1
sigmax3 62.7 4783 10 0.1 01 7e4 1
sig max 4 70 47853 1.0 01 0.1 7e4 1
sig min 1 55 3 1.0 01 01 7e4 1
sig min 2 55 7 1.0 01 01 7e4 1
sig min 3 55 10 1.0 01 01 7e4 1
sig min 4 55 15 1.0 01 01 7e4 1
alphah1 556 47853 05 0.1 01 7e4 1
alphah 2 556 47853 08 0.1 01 7e4 1
alphah 3 56 47853 13 01 01 7e4 1
alphah 4 560 47853 15 0.1 01 7e4 1
alphac 1 55 47853 1.0 005 0.1 7e4 1
alphac 2 55 47853 1.0 0.08 0.1 7e4 1
alphac 3 55 47853 1.0 015 01 7e4 1
alphac4 556 47853 10 02 01 7e4 1
wind 1 55 47853 10 0.1 01 7e4 0.6
wind 2 556 47853 10 0.1 0.1 7e4 0.8
wind 3 556 47853 10 0.1 01 7e4 1.2
wind 4 55 47853 10 0.1 01 7e4 14

Table A.1.Table detailing the parameters used in each simulation
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Simulation Out Rec My Myina Scaled Out  scaled rec duty
Name time (d) time (d) 107 M, yr~!) time (yr) time (yr) cycle
base 967 868 3.1 0.12 23.8 10722 0.00222
irr 1 974 873 3.1 0.09 24.0 10778 0.00223
irr 2 973 877 3.1 0.10 24.0 10829 0.00221
irr 3 978 864 3.1 0.11 24.1 10673 0.00226
irr 4 1044 850 2.9 0.16 26.2 10629 0.00246
sig max 1 924 582 2.7 0.03 22.8 7185 0.00317
sig max 2 904 769 3.0 0.06 22.3 9499 0.00235
sig max 3 1016 948 3.2 0.16 25.0 11715 0.00214
sigmax4 690-1040 650-990 1.8-3.9 0.09-0.5 17-26 80294222 **
sig min 1 1125 872 2.8 0.04 27.°7 10772 0.00257
sig min 2 839 846 3.3 0.18 20.7 10454 0.00198
sig min 3 741 800 35 0.27 18.3 9882 0.00185
sig min 4 622 713 3.7 0.55 15.3 8801 0.00174
alphahl 1625 343 2.0 0.08 37.0 4241 0.00944
alphah 2 1104 780 2.8 0.1 26.7 9635 0.00282
alphah 3 733 825 35 0.36 18.1 10191 0.00177
alphah 4 623 717 3.7 0.40 15.3 8853 0.00173
alphacl 974 934 3.1 0.15 24.0 21795 0.00117
alphac 2 971 898 3.1 0.11 23.9 13716 0.00174
alphac 3 1022 830 3.0 0.11 25.2 5565 0.00453
alpha C 4 *%* *%* *%* *%* *%* *%* *%*
wind 1 605-885 625-985 1.6-3.0 0.53-2.0 15-22 7720-12167 *k
wind 2 970 908 2.9 0.46 23.9 11211 0.00213
wind 3 975 857 3.2 0.01 24.0 10582 0.00227
wind 4 976 865 3.2 0.00 24.1 10685 0.00225

Table A.2.Table containing the raw outburst and recurrence times'aéinal processed results.
Errors have been suppressed for clarity. Simulations withevver reached a steady state.
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