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Abstract

This PhD thesis is an investigation of the characteristics and detection limits for

transit signals due to sub-stellar and terrestrial companions to white dwarfs in the

SuperWASP survey.

The work is described as follow: there is an introductory chapter on the field of

white dwarfs and exoplanets. In chapter 2 I describe the SuperWASP project,

the two SuperWASP telescopes the problematics of data analysis and the results

obtained so far. In chapter 3 I discuss the simulations I performed to investigate the

characteristics of the transit signals due to sub-stellar and planetary companions

to white dwarfs and the detection limits derived for SuperWASP light-curves by

means of my optimised version of Box-Least Square (BLS) algorithm. In chapter

4 I present a study of 194 spectroscopically identified white dwarfs which are a

cross-correlation of the McCook & Sion catalogue and the SuperWASP archive.

In addition, I derive upper limits to the frequency of sub-stellar and planetary

companions to white dwarfs using my sample and the results obtained from my

simulations. In chapter 5 I present a variability study for the sample of 194 white

dwarfs. I have investigated the light-curves of the 194 white dwarfs in the sample to

search for photometric variability due to non-radial pulsations, the presence of star

spots in magnetic white dwarfs, and to irradiation and reflection effects on low-mass

close companions. Finally, in chapter 6 I conclude and present my project for future

work.
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arrivare dove sono. Mi avete sempre sostenuto in ogni mia scelta anche quando

questo significava andare a vivere lontano da casa. Grazie per avermi insegnato che

le cose nella vita si guadagnano a fatica e anche per avermi insegnato ad affrontare

la vita! Mi mancate anche voi!! Ovviamente devo anche ringraziare mia sorella
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Chapter 1

Introduction

1.1 The discovery of white dwarfs

White dwarf stars are compact objects formed when a progenitor star ceases burn-

ing helium and is not massive enough to produce elements heavier than helium

giving rise to a gravitational collapse. The vast majority of the stars in our galaxy

(∼ 97%), including the Sun, will finally evolve towards the white dwarf state. The

first discovery of any such star dates back to the nineteenth century when Sirius,

the brightest star in the sky, was revealed to be a binary system by Friedrich Wil-

helm Bessel in 1844 and subsequently confirmed by Alvan Clark in 1862 (orbital

period ∼50 years). The measurements taken by Clark during apastron, when the

stars are at the maximum separation (∼ 10
′′

), revealed their extremely different

luminosities (LA = 23.5L⊙ and LB = 0.03L⊙). In 1910 the mass of the companion

was also derived from astrometric measurements, as 0.94M⊙ (Boss, 1910), which

give a model-independent dynamical mass from Kepler’s laws (a more recent value

1



Chapter 1. Introduction 1.1. The discovery of white dwarfs

is 0.984M⊙, Holberg et al. 1998). At the time of the subsequent apastron configu-

ration, when new spectroscopic techniques were available, Walter Adams obtained

the spectrum of Sirius B and revealed the enigma of white dwarf stars (Adams,

1915). Although Sirius B is a thousand times fainter than Sirius A, its spectrum is

identical to that of Sirius A: “identical in all respect so far as can be judged from a

close comparison of the spectra”. Contrary to any expectation at that time Sirius

B was found to be a hot, blue-white star emitting the majority of its energy in the

ultraviolet. Indeed in the UV/soft X-ray band Sirius B becomes brighter than Sirius

A (a modern value of the temperature of Sirius B is Teff = 25, 193 K; Barstow et al.

2005, while Sirius A has a temperature of Teff = 9, 940 K; Adelman 2004). A similar

puzzle was provided by two other well known stars: 40 Eridani B first discovered

by William Herschel in 1783, and Van Maanen 2 discovered by Van Maanen (1917).

The measurement of their parallaxes showed the two stars to be many magnitudes

fainter than other stars of similar spectral type. Many faint white stars were found

with high proper motion, i.e. the angular change in position over time, indicating

that they could be low-luminosity stars close to the Earth, and hence white dwarfs.

Willem Luyten appears to have been the first to use the term white dwarf when

he studied these stars in 1922 (Luyten 1922b, Luyten 1922a, and Eddington 1924).

By 1939, 18 white dwarfs had been discovered (Schatzman, 1958). By 1950, over

one hundred white dwarfs were known (Luyten, 1950), and by 1999, over 2,000 were

known (McCook & Sion, 2003). Since then the Sloan Digital Sky Survey (SDSS) has

found over 9,000 white dwarfs, most of which were previously unknown (Eisenstein

et al., 2006).

Knowing the effective temperature and luminosity of Sirius B and using the Stefan-

2
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Boltzmann equation the radius of the star could be estimated. Stefan-Boltzmann’s

law relates the total energy irradiated by a body to its surface temperature by:

L = 4πR2σT4
eff (1.1)

where L is the star luminosity, σ is the Stefan-Boltzmann constant, R is the stellar

radius and Teff is the star effective temperature. So the radius of Sirius B in solar

radii is obtained as:

R

R⊙

∼
(

T⊙

Teff

)2√

L

L⊙

(1.2)

where R⊙, T⊙ and L⊙ are the radius, temperature and luminosity of the Sun respec-

tively. The estimated radius for Sirius B was RWD ∼ 0.008R⊙ (a recent value for

the radius of Sirius B is 0.00864R⊙, Holberg et al. 1998) for a star with a mass of

∼1M⊙. Thus, surprisingly, Sirius B was found to have the mass of the Sun confined

within a volume smaller than the Earth (R⊕= 0.00916R⊙). This result implies an

extremely high stellar density (ρ ∼ 3.0 × 106 gcm−3), a million times that of a nor-

mal star, and a surface gravity (g) of about 4.0×106 ms−2 which is approximately

15,000 times larger than the surface gravity of the Sun (g⊙ ∼ 274 ms−2) and ∼

408,000 times larger than that of the Earth. An independent test of the high den-

sity of Sirius B was conducted in 1920 by Adams who, following the suggestion of

Einstein’s theory of general relativity (1907), measured the redshift of light in the

strong gravitational field of Sirius B. Adams estimated a gravitational redshift ()of

∼19 kms−1. This measurement was more recently refined by Greenstein et al. (1971)

who found a value of ∼ 85 kms−1. Although Adams’s estimate was incorrect (due to

strong contamination in the measurement by light from Sirius A) it confirmed the

strong gravitational field of Sirius B and provided one of the first test of Einstein’s

3



Chapter 1. Introduction 1.2. How stars become white dwarfs

general theory of relativity. The effect of the extremely high gravitational field is

directly observable in the spectra of white dwarfs which show very broad hydrogen

absorption lines. For example a recent spectrum of Sirius B is shown in Figure 4 of

Barstow et al. (2005).

The first observational results on white dwarfs were so unexpected that astronomers

struggled to understand their physics. The advent of the theory of quantum me-

chanics finally provided the tools needed to describe the equation of state of the

matter in the degenerate core of these objects. Solving the mystery behind the stars

with a mass similar to the Sun and the size of the Earth yielded a powerful demon-

stration of the combined action of the Pauli’s exclusion principle and the Heisenberg

uncertainty principle (see e.g. Fowler 1926 and Chandrasekhar 1935).

1.2 How stars become white dwarfs

All the stars less massive than 8M⊙ will end their lives as white dwarfs. White

dwarf stars are manufactured in the core of low and intermediate mass stars near

the end of their life at the end of the asymptotic giant branch (AGB) phase of

stellar evolution. A star spends most of its life in the main-sequence phase during

which all of the hydrogen is converted into helium via nuclear reactions in the core

(see Figure 1.1). When the hydrogen becomes depleted, shell burning of hydrogen

becomes the main energy source. Since the core no longer produces significant

luminosity this naturally results in its collapse (Schönberg & Chandrasekhar 1942).

The core and the envelope become dynamically decoupled, when the core contracts

and the temperature increases a greater pressure is created on the external layers and

4



Chapter 1. Introduction 1.2. How stars become white dwarfs

the shell’s energy production is rapidly increased. As a consequence the envelope

expands and the star swells at a nearly constant luminosity. During this phase of

pure hydrogen-shell burning rapid core contractions and envelope expansions carries

the star to the beginning of red giant evolution (Iben 1965), this phase is indicated

as RGB phase in Figure 1.1. As evolution along the red giant branch (RGB) track

continues the star develops a convection zone because of the effective temperature

drop due to the envelope expansion. The star then ignites the helium in a non

degenerate core. For low-mass stars the core becomes partially degenerate before

helium ignition occurs. The core does not expand and helium flashes are observed

(Iben & Renzini, 1983), see also Figure 1.1 at the top of the RGB phase. Helium

flashes are explosives releases of energy absorbed by the overlying layers of the

envelope, causing mass loss from the star surface (Iben & Renzini, 1983).

During the Asymptotic Giant Branch (AGB) phase (see Figure 1.1), the helium is

exhausted in the core and it burns in a shell surrounding a Carbon-Oxygen (C/O)

degenerate core. The star reaches its maximum radius and loses most of its mass. At

the top of the AGB track the star undergoes thermal pulses caused by the helium

shell that periodically turns on and off, and the onset of super-wind eventually

ejects the remainder of the star’s envelope (Cassinelli 1979 and Castor 1981). The

physical nature of the mechanism behind mass loss is not well understood (Iben &

Renzini, 1983). When leaving the AGB track the star becomes unstable and ejects

the majority of its atmosphere to be later observed as planetary nebula (PN) (Iben

& Renzini, 1983). At this point the core of the star collapses under gravity and

becomes the pre-white dwarf. During the PN phase the star is left with a C/O

degenerate core surrounded by a thin layer of residual H and He. The star can reach

very high temperatures and luminosities, see Figure 1.1. The development of the
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Figure 1.1: Hertzprung-Russell diagram (HR). Luminosity (L⊙) versus Temperature
(Kelvin). The Figure shows the different stages of post main-sequence stellar evolu-
tion. Indicated is the Main Sequence, the Red Giant Branch (RGB), the Horizontal
Branch (HB), the Asymptotic Giant Branch (AGB), the Planetary Nebula (PN)
phases of stellar evolution towards the final evolution end point of white dwarfs.
Also indicated is the onset of helium flashes and the stage of the stellar envelope
ejection at the top of the RGB and AGB tracks respectively.

strong wind that interacts with the material ejected by the AGB star dissipates the

nebula’s gas in approximately 50,000 years progressively unveiling the newly born

white dwarf (Iben & Renzini 1983 and references therein).

1.2.1 The Pauli principle and the degenerate core of WDs

White dwarfs are born from extremely hot collapsed objects which can only cool

off. For all but the coolest white dwarf the core is a plasma consisting of ions and
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degenerate electrons (e−), for which the energy sources of nuclear reaction have been

completely depleted. The degenerate pressure of the e− is therefore the main force

balancing gravitational collapse, as the thermal pressure of the ions is negligible in

comparison (Fowler, 1926). Thus, the mechanical structure of white dwarfs is nearly

entirely specified by the degenerate electrons. As the pressure of the degenerate e−

depends weakly on the temperature they do not contribute to the thermal reservoir

of the star, and cannot give up a significant amount of kinetic energy. Pauli’s

exclusion principle states that any two electrons cannot occupy the same quantum

state, thus all lower energy levels are occupied by e− that are no longer free. The

majority of the thermal energy is therefore provided by the non-degenerate ions.

This implies that an isolated white dwarf shines at the expense of its thermal ions.

The curious relation between the mass and the radius of a white dwarf (MWD R3
WD

=

constant) is also explained by electron degeneracy. Because of the Heinseberg un-

certainty principle (∆X∆P ≥ h̄/2), the electrons must be more closely confined

to generate a larger degeneracy pressure required to support a more massive star.

Thus, the volume of a white dwarf is inversely proportional to its mass and more

massive white dwarfs are actually smaller (Mazzitelli & Dantona 1986). Similarly,

relativistic degeneracy is also responsible for the existence of a limiting mass above

which white dwarfs cannot exist, the Chandrasekhar mass Mch = 1.4 M⊙ (Chan-

drasekhar 1935). Another important characteristic of the degenerate core is its

ability to conduct heat. The electrons in the degenerate gas can travel long dis-

tances before having a collision with a nucleus, thus energy is better carried out

by electron conduction rather than radiation. Indeed, this is so efficient that the

internal regions of white dwarfs are nearly isothermal (∼ 99% of the entire mass).

The temperature drops significantly only in the outer non degenerate surface layers
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which account for ∼ 1% of the white dwarf mass, and also control the total amount

of energy slowly released.

1.3 Properties of white dwarfs

The defining characteristic of white dwarfs is the fact that their mass is typically of

the order of half that of the Sun, while their size is similar to that of a planet. Their

compact degenerate nature explains their large average densities, surface gravities

and low luminosities. The properties of these objects are therefore related to their

degenerate nature and some of their peculiar properties can be determined directly

from observations.

1.3.1 WDs spectra and spectral classification

Analyses of spectra of white dwarfs show that their effective temperatures range

from ∼4000 K (Bergeron et al., 1994) for the coolest WD up to ∼ 170,000 K for the

hottest white dwarf (Werner et al. 2008). This large range in effective temperature

is reflected in the range of luminosity covered by these stars, exceeding seven orders

of magnitudes (L∝ T4
eff). From spectral analyses we can also infer their surface

gravities as logg ∼ 8 (cm s−2; with g = GM⋆/R
2
⋆). The width of the observed

spectral lines depends on the density of the particles in the atmosphere of the star,

which in turn depends on the surface gravity. The value of the mass and the radius

of the star can then be estimated from logg. However, in the spectra of cooler and

older white dwarfs the H and He features are no longer visible (Teff < 5000 K) and
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the measurement of the surface gravity is more difficult as it is not possible to rely on

line profile analyses to infer the atmospheric composition of the star (Bergeron et al.,

1994) and a different approach is needed. In such cases, a parallax measurement

can be used to estimate the radius and the mass of the star, and hence logg.

The typical structure of a white dwarf is that of a stratified object with a mass of ∼

0.6M⊙ (Fontaine et al. 2001, Bergeron et al. 1994) consisting of a carbon-oxygen core

surrounded by a thin helium envelope, in turn surrounded by a thin hydrogen layer.

Heavy elements diffuse downward in white dwarf atmospheres due to gravitational

settling in their high gravitational fields (Schatzman 1945).

The spectral energy distribution of white dwarfs is determined by the effective tem-

perature, the pressure stratification (determined by the surface gravity) and the

chemical composition of the surface layers. White dwarfs are classified according to

the presence and strength of absorption lines in their spectra. The current classifi-

cation scheme has been derived by Sion et al. (1983):

DA: only Balmer lines, no He I or metals

DB: He I lines, no hydrogen or metals

DC: continuous spectrum

DO: He II strong, He I or hydrogen

DZ: metal lines only

DQ: carbon features

Where ‘D’ stays for dwarfs and the second capital letter indicates the dominant spec-

troscopic feature observed in the optical spectrum. The majority of white dwarfs,

∼ 84% (Winget & Kepler 2008) have hydrogen dominated atmospheres (DA), with

the vast majority of the remaining (16%) being He-dominated atmosphere, (the DOs
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and DBs) (Eisenstein et al., 2006). Nevertheless, a well established class (DAZ) of

white dwarfs with metal contaminated atmospheres is also known (Koester et al.

1997, Holberg et al. 1997, Zuckerman et al. 2003, Koester et al. 2005), and more re-

cently C-atmosphere DQ WDs have been discovered (Dufour et al. 2007). Moreover,

there is observational evidence that some spectral evolution is taking place in white

dwarfs. The ratio of DA to non-DA white dwarfs changes along the cooling sequence

with the variation of the star’s effective temperature (Huegelmeyer & Dreizler 2009,

and Malo et al. 1999). Thus, some white dwarfs change the chemical composition

of their surface layers from helium to hydrogen-dominated, and again to helium,

during the star’s lifetime. However, to date there is no convincing explanation for

such a phenomenon (Fontaine et al. 2001).

1.3.2 The importance of white dwarfs to the evolution of

galaxies

White dwarfs are the only stable final evolutionary state for the ∼ 97 % of all stars

(Winget & Kepler, 2008), thus the evolution towards white dwarfs is the dominant

channel in galaxies. The actual population of white dwarfs therefore constrains an

ensemble of information on the evolution of individual stars from birth to death, on

the previous history of the galaxy and finally on the rate of star formation. The

spectroscopic identification of of massive white dwarfs, members of relatively young

galactic clusters (Reimers & Koester 1982 and Weidemann & Koester 1983) have

suggested an upper limit of ∼ 8M⊙to the turn-off mass of white dwarfs’ progenitor

stars. The majority of white dwarfs have a typical core composition of mostly Car-

bon and Oxygen (see e.g. Fontaine et al. 2001), the products of helium burning. The
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mass distribution of the actual population of isolated white dwarfs is sharply peaked

around the mean value of 0.6M⊙ (Fontaine et al. 2001), however, low-amplitude tails

extended at both ends of the mass spectrum, from ∼ 0.3 to ∼ 1.2M⊙. This narrow

mass distribution is a remarkable property of these stars, and is related to the pro-

cess of mass loss on white dwarfs progenitors. The extreme difference between the

initial main-sequence masses and the final white dwarf masses highlights the very

important rôle of mass loss in post main-sequence stellar evolution. Therefore by

determining the masses of white dwarfs and tracing their evolution back to their

progenitors, it is statistically possible to estimate the total mass loss. This might

provide valuable constraints on the little understood mass loss process (Iben & Ren-

zini 1983, van Loon 2008). On the other hand a better understanding on the critical

stage of mass loss in stellar evolution can also provide new insights into the total

mass budget of the galaxy (Koester & Chanmugam, 1990), for example what is the

amount of mass recycled in the interstellar medium, and how much mass is retained

in the core of white dwarfs?

1.3.3 WDs luminosity function: insights on the Milky Way

Because nuclear burning is no longer active in their cores, white dwarfs evolve at

the expense of their thermal reservoir and slowly fade away to invisibility in about

5 to 10 billion years (Koester & Chanmugam, 1990). This implies the existence of

a relation between the age of a white dwarf and its luminosity. Indeed, the faintest

observed white dwarfs are also very old and carry information on the early stage of

evolution of our galaxy (Mestel 1952 and Dantona & Mazzitelli 1978). Because of

their intrinsic faintness, spectroscopic observations of these stars are restricted to
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small distances. For example the bulk of the sample of spectroscopically identified

white dwarfs (see e.g. McCook & Sion 2003) is confined to within ∼ 500 pc from the

Sun (Fontaine et al. 2001). The white dwarfs luminosity function (the number of

white dwarfs observed per unit of absolute luminosity) shows a deficit in the number

of the coolest, oldest white dwarfs at luminosity L= 10−4.5 L⊙ (see e.g. Liebert et al.

1979 and Liebert et al. 1988). Modelling this absence of the faintest objects with

theoretical cooling models provided an estimate to the finite age of the galactic disc

(∼ 8 Gyr, see Winget et al. 1987; Iben & Laughlin 1989 and Wood 1992, for a full

discussion). The cut off in the luminosity function of white dwarfs is not due to an

observational selection effect but is simply due to the fact that white dwarfs have

not had enough time to cool to fainter magnitudes. A recent estimate of the age of

the galactic disc is ∼ 9 ± 1.5 Gyr (Leggett et al. 1998, Knox et al. 1999, Bergeron

et al. 1995).

Because of their low luminosity, white dwarfs are also considered interesting candi-

dates for the baryonic dark matter halo. The first indication of the galactic dark

matter (Ostriker & Peebles 1973, Faber & Gallagher 1979) led to the hypothesis

that remnants of stellar evolution of a population of early stars in the galaxy could

account for a fraction of the unseen dynamical mass (Larson 1987, Silk 1991). The

observed turn over of the luminosity function of white dwarfs by Liebert et al. (1988)

provided a direct constraint to the estimate of the ages of the halo population; > 12

Gyr (Tamanaha et al., 1990). Observation of microlensing by the MACHO project

(MAssive Compact Halo Objects, Alcock et al. 1993) in the direction of the Large

Magellanic Cloud suggested that the most probable candidates for the objects caus-

ing the microlensing events are cool white dwarfs (Alcock 2000, Koester 2002 and

Calchi Novati et al. 2005). Oppenheimer et al. (2001) conducted a deep proper mo-
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tion survey for high velocity halo white dwarfs and appeared to confirm the above

result. However, both results remain controversial.

From observations of white dwarfs and constraints given by theoretical cooling mod-

els an estimate of the total age of the universe can also be inferred (10.3 ± 2.2 Gyr,

see Winget et al. 1987).

1.4 White dwarfs’ photometric variability

Photometric observations of white dwarfs are of crucial importance as they can reveal

the presence of unseen low-mass stellar and sub-stellar companions via their eclipses

(see for example Littlefair et al. 2006) or by means of the presence of sinusoidal

modulations in their light-curves (see chapter 5 for a few examples). Magnetic

isolated white dwarfs can show light-curve variations due to the presence of star spots

on their surfaces. In addition, the detection and analysis of non-radial pulsations of

white dwarfs can reveal the internal structure and composition and the mechanical

properties of these degenerate objects (Winget & Kepler 2008, Fontaine & Brassard

2008, Koester & Chanmugam 1990).

1.4.1 Pulsations, star spots, irradiation and reflection

The majority of white dwarfs are known to be photometrically stable and are often

used as calibration standards for optical and ultra-violet observations (Holberg 2007;

and Holberg & Bergeron 2006). However, three different classes of white dwarfs are

known to be non-radial pulsators. These are ZZ Ceti stars or DAVs, hydrogen

13



Chapter 1. Introduction 1.4. White dwarfs’ photometric variability

atmosphere white dwarfs; the DBVs also known as V 777 Her, helium atmosphere

WDs; and the GW Vir or DOVs white dwarfs with atmospheres mainly composed

of helium, carbon, and oxygen (see Winget & Kepler 2008). These stars show non

radial pulsations associated with the excitation and partial ionisation of the most

abundant element in their surface layer.

ZZ Ceti stars show non radial g-mode pulsations with variability timescales between

a hundred and a thousand seconds. ZZ Ceti stars are observed in a very narrow

temperature region around Teff ∼ 12,000K, around the transition region between

the radiative and convective atmosphere. At this Teff the partial ionisation and

recombination of the hydrogen in the envelope is the mechanism responsible for the

excitation of the low-order g-modes across the ZZ Ceti instability (temperature) strip

(Fontaine & Brassard 2008). In the case of non-radial pulsation the dominant force

restoring the hydrostatic equilibrium in the star is gravity (Winget & Kepler 2008),

while for p-modes, radial displacements are favoured and the principal restoring

force is pressure (periods of few seconds in white dwarfs). By direct analogy with

ZZ Ceti stars Winget et al. (1982) predicted that helium-atmosphere (DB) white

dwarfs could also exhibit non-radial oscillations at higher temperatures (around

Teff ≃ 25,000K), the temperature of helium recombination. This prediction was

soon after confirmed by the detection of GD 358 (Winget et al. 1982; and chapter 5

this work) a pulsating DB star with a temperature of Teff = 24,000K (Kotak et al.

2003). The first object belonging to the GW Vir class of pulsators is represented by

the pre-white dwarf PG 1159-035, the first detected such star (McGraw 1979), with

temperature between 75,000 ≤ Teff ≤ 170,000K. The envelope of DOV stars is

devoid of hydrogen and is mostly made of a mixture of helium, carbon and oxygen in

approximately comparable proportions (Fontaine & Brassard, 2008). However, GW
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Vir stars have atmospheric compositions that vary from object to object. For this

class of star, non-radial pulsations are driven by the cyclic ionisation of the carbon

and oxygen in their atmosphere (Fontaine & Brassard 2008 and references therein).

It has been suggested (Fontaine et al. 1982) that the ZZ Ceti star is a phase of the

evolution of every white dwarf, implying that DA white dwarfs are to become ZZ

Ceti pulsators as they cool and cross the instability strip. If this is true in general, it

means that every white dwarf will become a non-radial pulsator as it cools during its

lifetime. Therefore, it is extremely important to certify the purity of these instability

strips.

Non-radial pulsations have also been observed in the DA white dwarf component of

cataclysmic variables (van Zyl et al. 2004 and Mukadam et al. 2007). This suggests

that accretion and mass transfer do not affect the convection/partial ionisation

region where the pulsations originate. Finally, the recent detection of non-radial

pulsations (Montgomery et al. 2008) in carbon-dominated atmosphere white dwarfs

(DQ, Dufour et al. 2007), indicate Hot DQ stars as a fourth, new class of pulsator

(Teff ∼ 20,000K).

As mentioned previously photometric variability is also observed in the light-curves

of magnetic white dwarfs. About 2% of the total white dwarf population consist of

isolated magnetic white dwarfs (Brinkworth et al., 2005). While these stars are rare

they are extremely important as they offer the possibility of determining the rota-

tional period of the star. The presence of spots on the stellar surface cause changes in

the observed stellar brightness as the spots rotates in and out of view, revealing the

rotational period of the star. Rotation periods in isolated non-magnetic white dwarfs
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is otherwise difficult to measure due to heavy gravitational broadening of their spec-

tral lines (Brinkworth et al., 2005). A few very highly magnetic white dwarfs also

display photometric variability due to changes in the magnetic field strength and

structure as the star rotates, resulting from changes in the opacity of the outermost

layers of the stellar atmosphere, as in the case of RE J0317-853 (Barstow et al. 1995,

magnetic dichroism, see Ferrario et al. 1997). The detection and characterisation of

variability connected to the star’s magnetic field is important to better constraint

the origin of this physical phenomenon. Ferrario & Wickramasinghe (2007) suggest

that magnetic fields in high field magnetic white dwarfs (HFMWDs) are linked to

the magnetic fields of their progenitors. The hypothesis of the fossil origin of the

magnetic field thus connects their properties from main-sequence stars to HFMWDs.

White dwarfs in close binaries often display optical variability such as eclipses, or

the effects of reflection and irradiation on a low-mass companion. The detection

of the orbital period of these binary systems is extremely important to constrain

post-main sequence stellar evolution and in particular the most important process

of Common Envelope interaction (Paczynski 1976; and Willems & Kolb 2004). In

addition, detailed studies of systems orbital periods, masses and ages, can help us to

better understand the physics of cataclysmic variable stars and Type Ia supernovae,

possibly shedding light on physical phenomena such as angular momentum loss via

gravitational wave versus magnetic breaking radiation (King 1988; Parthasarathy

et al. 2007). Moreover, a detailed analysis of the light-curve of any such system can

help reveal the effects of tidal and rotational distortions as well as the irradiation

and reflection due to mutual heating and radiative interaction of the binary compo-

nents. The temperature changes and the reprocessed emitted light have the effect of

raising the detected flux from the facing hemisphere of the secondary. The effects of
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irradiation and in particular the detection of reflected light from low-mass compan-

ions is also important for the study of the secondary atmosphere (e.g. Peraiah 1983).

In my thesis I mainly focused on the analysis of white dwarfs in the SuperWASP

archive searching for signatures of their intrinsic and/or extrinsic variability. In par-

ticular I have explored the possibility of detecting low-mass, sub-stellar and plane-

tary companions orbiting white dwarfs in the SuperWASP survey, by means of their

transit signatures. Because white dwarfs are the end state of ∼ 97% of stars in

our galaxy they offer the unique possibility of investigating the fate of extra-solar

planetary systems and their survival to the later stages of stellar evolution. In the

following I will introduce the field explaining the motivations behind my work.

1.4.2 Sub-stellar companions to white dwarfs

Observationally, sub-stellar companions to white dwarfs are found to be rare (< 0.5%

for L dwarfs, e.g. Farihi et al. 2005). Only two wide binary system GD165 (Beck-

lin & Zuckerman, 1988) and PHL5038 (Steele et al., 2009), and two detached

non-eclipsing, short-period white dwarf+brown dwarf systems are currently known,

WD0137-349 (Maxted et al. 2006, orbital period ∼ 116 min), and GD1400 (Burleigh

et al. 2009 in preparation, orbital period ∼ 10 hours). GD1400B and WD0137-349B

are the only two sub-stellar companions known to have survived the common en-

velope (CE) phase of stellar evolution. During the CE phase the more massive

component in the binary evolves into a red giant. If the initial orbital period is less

than 10 years, the envelope of the giant will expand beyond the orbit of its compan-
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ion. As a result the two components spiral towards each other, the CE is ejected

leaving behind the progenitor remnant of the compact component with its compan-

ion at much smaller separations (see e.g. Paczynski 1976 and Iben & Livio 1993).

WD0137-349B is the lowest mass object known (∼ 50MJUP) to have survived CE

evolution. Although surveys such as the UK Infrared Deep Sky Survey (UKIDSS)

and observatories such as the space infrared telescope (Spitzer) hope to reveal many

more such binaries, they remain difficult to identify either as infra-red excesses or

through radial velocity measurements. The detection of more such systems will al-

low us to place observational upper limits on the mass of sub-stellar companions

that can survive CE evolution. For example, can Hot Jupiters survive their parent

star’s evolution to a white dwarf?

In addition the detection of a significant number of eclipsing white dwarf+brown

dwarf (WD+BD) binary systems might help uncover the hypothesised population

of ’old’ cataclysmic variables (CVs) in which the current accretion rate is extremely

low and the companion has been reduced to sub-stellar mass (e.g. Patterson 1998;

Patterson et al. 2005; Littlefair et al. 2003). While these systems elude direct de-

tection as X-ray sources and remain difficult to identify in optical and infra-red

surveys, it is possible to measure the mass and the radius of the donor in eclipsing

CVs. Indeed, Littlefair et al. (2006) finally confirmed the first such system through

the system eclipses. Old CVs are important for shedding light on models of close

binary evolution as well as for placing constraints on the period distribution of cata-

clysmic variables; in particular, the period gap and the period minimum (King 1988;

Parthasarathy et al. 2007).
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1.4.3 Can planets survive stellar evolution?

To date more than 350 extra-solar planets have been detected around nearby stars.

Because the majority of stars with mass < 8 M⊙ will evolve to white dwarfs it

is natural to ask what will be the fate of these planetary systems. This question

also has particular interest for us, in that the Earth’s survival to the Sun’s post-

main sequence evolution is uncertain (Rasio et al. 1996; Duncan & Lissauer 1998;

and Villaver & Livio 2007). Several theoretical studies discuss post-main sequence

evolution of planetary systems and show that planetary survival is not beyond pos-

sibility (Duncan & Lissauer 1998; Debes & Sigurdsson 2002; Burleigh et al. 2002;

and Villaver & Livio 2007). Observations indicate that planets in orbits beyond the

extent of the RG and AGB radius, can survive stellar evolution (see Frink et al. 2002;

Hatzes et al. 2005, Sato et al. 2003). More recently Silvotti et al. (2007) reported

the detection of a ∼ 3 MJUP planet orbiting an extreme horizontal branch star. Fur-

thermore, Mullally et al. (2008) found convincing evidence of a 2MJUP planet in a

4.5 year orbit around a pulsating white dwarf. The latter, if confirmed, will be the

first planet detected in orbit around a white dwarf, and will show that planets can

indeed survive the death of their parent star.

Short-period planetary companions to white dwarfs may seem less likely. Only two

scenarios can yield planets around a white dwarf in close orbits: 1) planets undergo

CE evolution and survive the stellar evolution to a white dwarf, or 2) their orbits

are significantly changed by a process occurring at the end of the AGB phase of

stellar evolution. Villaver & Livio (2007) investigated the fate of a planet engulfed

by the envelope of a red giant star and suggested that planets in orbit within the
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reach of the red giant’s envelope will either totally evaporate or in rare cases, more

massive bodies can accrete mass and become a close companion to the star. Thus,

only massive companions are likely to survive CE evolution. Villaver & Livio (2007)

suggested that brown-dwarfs are more likely to survive the RGB and the AGB

phases of stellar evolution. However, the estimate of the minimum planetary mass

is uncertain and depend on several factors, such as the efficiency of the envelope

ejection, which are largely unknown (Villaver & Livio 2007 and references therein).

Planets that escape the RGB and AGB engulfment and are sufficiently far from

the stellar surface so that they do not experience tidal drag, will have their orbit

increased to conserve angular momentum (as described by Jeans 1924). Duncan &

Lissauer (1998) investigated the stability of planetary systems during post main-

sequence evolution, and found that for WD progenitors experiencing substantial

mass loss during AGB, planetary orbits become unstable on timescales of ≤ 108yr.

Debes & Sigurdsson (2002) also studied the stability of planetary systems and found

that mass loss from the central star is sufficient to destabilise systems of two or more

planets. For unstable systems, in the case of orbit crossing, Debes & Sigurdsson

(2002) found that the most likely result was that one planet would be scattered

into an inner orbit, while the other would be boosted into a larger orbit or ejected

from the system. This may result in white dwarf systems which have settled into a

configuration with planets at orbital radii which were originally occupied by inner

planets before the RGB phase of stellar evolution.

These results can provide an explanation for the recent detection of silicate-rich dust

discs around a growing number of white dwarfs at orbital radii up to ∼ 1R⊙ (e.g.

Reach et al. 2005; Farihi et al. 2007, Farihi et al. 2008; Jura 2003). Jura (2003)
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suggest that the formation of dust discs around white dwarfs is most probably due

to the tidal disruption of an asteroid or a larger object in close orbit to the star.

Dynamical instabilities during the final stages of solar system evolution could have

caused the rocky body to migrate into inner orbits (as suggested by Debes & Sig-

urdsson 2002). If the body wanders too close to the Roche radius of the white dwarf

it will be completely destroyed, producing a debris disc reminiscent of Saturn’s rings

(Jura, 2003). Recent studies of the dust disc around the white dwarf GD 362 (Jura

et al. 2009) suggest that the more likely scenario which simultaneously explains all

of GD 362’s distinctive properties is that we are witnessing the consequences of the

tidal destruction of a single body that was as massive as Mars.

The detection of any such close planetary-mass companion to WDs, will open an

exciting chapter in the study of extra-solar planet evolution, constraining theoretical

models of common envelope evolution and helping us to understand the ultimate

fate of hot Jupiter systems as well as the fate of our own solar system in the post

main-sequence phase.

1.5 Extra-solar planets: detection methods

The majority of the extra-solar planets have been detected by means of radial ve-

locity measurements (Marcy et al. 2005). However, the first extra-solar planet ever

found was detected around a millisecond pulsar, PSR1257 + 12, by means of varia-

tions in the arrival times of the star’s pulsations (Wolszczan & Frail, 1992). In more

recent years the transit technique has also yielded numerous planetary detections

contributing importantly, to the discovery and the characterisation of extra-solar
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Figure 1.2: Figure from Horne (2006). Planets detection limits for different detec-
tion techniques: green astrometry; red microlensing; black radial velocity and blue
transits. The Figure is referred to results on planet detection from 2006, however it
clearly shows the different range of parameters covered by each individual detection
technique.

planets (see e.g. Collier Cameron et al. 2006; Alonso et al. 2004; and Bakos et al.

2007 just to cite a few) together with the microlensing technique and the radial

velocity method (see e.g. http://exoplanet.eu/, for a review on extra-solar planets).

In the last few years extra-solar planets have also been discovered by means of direct

imaging (see e.g. Marois et al. 2008 and references therein) and through astrometric

measurements (Pravdo & Shaklan, 2009). Figure 1.2, from Horne (2006), shows the

different detection limits for each of these techniques. The plot is referred to the

number of extra-solar planets known by 2006. Nevertheless, the detection limits
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indicated for the different detection methods are still valid. Ground-based transit

searches are limited to Neptune-sized planets (Bakos et al. 2009) in orbit with pe-

riods of up to a few days. Space-based transit searches can detect smaller planets

of sizes comparable to the Earth (also named Super-Earths) (blue dot-dashed line).

Earth analogues might be detected from space missions such as Corot (Barge et al.,

2005) and Kepler (Knutson & Charbonneau, 2009). Radial velocity searches are

mostly sensitive to Jovian-like objects however recent results are pushing the mass

of detectable planets to a few Earth masses (Mayor et al., 2009). In addition, the

RV technique can explore longer orbital periods out to a few AU from the star (black

line). Microlensing and astrometry cover the parameter space for medium to long

orbital periods. The microlensing method is more sensitive to planets in Earth-to-

Jupiter-like orbits with semi major axis in the range 1−5 AU (Beaulieu et al. 2006,

Gaudi et al. 2008), but can detect planets even in wider orbits (red dot-dot-dashed

line). The astrometric technique may be sensitive to terrestrial sized planets and

the detection sensitivity increases with increasing semi-major axis distances. Thus

astrometry can detect planets with long orbital periods (green-dashed lines). For

an updated status on the number and characteristics of known extra-solar planets I

refer the reader to the extra-solar planet encyclopedia at http://exoplanet.eu/.

This PhD thesis focuses on the use of the transit method for the detection of extra-

solar planets; in particular the detection of transit signatures of sub-stellar and

planetary companions to white dwarf stars. In the following I describe in detail

the characteristics of the transit detection technique. I also briefly discuss other

detection methods.
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Figure 1.3: Description of a transit event. The cartoon also shows the different
phases of the transit event: the ingress (points 1−2), the flat bottom (points 2−3),
and the egress (points 3−4).
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1.5.1 The transit method

A transit is a temporary dimming of the apparent brightness of a star that occurs

when a planet crosses the stellar disc. The transit appears periodically with a

period equal to the orbital period of the planet. Because planets are cooler than

their parent star they cause a dip in the stellar light-curve whenever they transit the

star. A sketch of a transit light-curve is shown in Figure 1.3. Points 1−2 and 3−4

illustrate the transit ingress and egress; points 2-3 the central part, flat bottom, of

the transit. Also indicated are the star radius R⋆ and the impact parameter b. The

fractional change in the star brightness, ∆F/F , is proportional to the fraction of the

stellar surface subtended by the planetary disc; therefore photometric measurements

directly yield a measure of the planet size. The detection of transiting planets require

an almost perfect alignment between the observer, the planet and the star. This

is defined by the transit (geometric) probability Ptr. When a planet of radius Rpl

orbits a star of mass M⋆ and radius R⋆ at an orbital distance a the transit of the

stellar disc will be visible only if the system inclination angle i satisfies the following

condition (Charbonneau et al., 2007):

acosi ≤ R⋆ + Rpl . (1.3)

This is illustrated in Figure 1.4 where a is the orbital distance and d(t) is the planet-

star distance. If we assume that cosi can take any value between 0 and 1, then the

probability that the inclination satisfies the geometric criterion is:
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Figure 1.4: Geometry of a transit event of inclination i and orbital radius a as seen
from the side (top-panel), and from the observer’s vantage point (lower-panel).
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Ptr =

∫ (R⋆+Rpl)/a
0 d(cosi)

∫ 1
0 d(cosi)

=
R⋆ + Rpl

a
. (1.4)

Geometrically speaking the transit method favours planets in systems with small

orbital radii. If I consider the simple case of a circular orbit (i = 90◦) then the

transit duration Dtr, the fraction of the orbital period P during which the planet

is transiting the host star (Figure 1.5), can be written as follows (Seager & Mallén-

Ornelas, 2003):

Dtr = 2(Rpl + R⋆)

√

a

GMtot

(1.5)

where Mtot is equivalent to Mpl+M⋆, and G is the constant of gravitation. Figure

1.5 shows the occurrence of a transit event for a transit of a generic inclination angle

i.

The depth of the transit signature is a measure of the fractional change in the star

brightness and is related to the star and planet radii as follows (Seager & Mallén-

Ornelas, 2003):

∆F =
Fout − Fin

Fout
=
(

Rpl

R⋆

)2

(1.6)

where Fout is the observed stellar flux out of transit, and Fin is the stellar flux

during transit. Here for simplicity I do not consider the effects of limb darkening.

However, the shape of the transit dip depends on the degree of limb darkening in the

observational band, as well as on the inclination angle and on the ratio of the planet

to stellar size. Transiting planets also offer the unique possibility of directly detecting
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Figure 1.5: The fraction of the planetary orbit spent during transit, (left-sketch),
and the geometric alignment condition for a transit as seen from the observer’s point
of view (right-sketch).
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the light coming from the planet itself during the secondary eclipse (Deming et al.

2007, and Agol et al. 2009). This allows observers to obtain crucial information on

the characteristics and the chemical composition of the planet’s atmosphere (Tinetti

et al., 2007), important for the detection of life signatures (Arnold et al., 2002).

1.5.2 Radial Velocity

Radial velocity (RV) is probably the most famous planet detection technique. The

radial-velocity method uses the motion of the star induced by the gravitational

interaction of the planetary body. The method consists of measuring the variations

in the speed with which the star moves toward or away from Earth. The radial

velocity can be deduced from the displacement in the parent star’s spectral lines

due to the Doppler effect and can be measured using high resolution spectroscopic

measurements. The semi-amplitude of the radial velocity of the host star induced

by small terrestrial planets is of the order of few centimetres per second. Currently

the most accurate RV instrument for planet searches is the HARPS spectrograph

(Mayor et al., 2003) which is able to achieve a long-term precision of better than

1ms−1.

The radial velocity technique can only measure the projected radial velocity i.e. the

component of the velocity in the direction of the line of sight. Thus, it only allows to

estimate a projected minimum mass of Mpl sini for the planetary companion. From

the measure of the RV semi-amplitude, K⋆, the projected mass of the planetary
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companion can be derived as follows (Santos 2008):

K⋆ =
2πa

P

Mpl sini

M⋆
(1.7)

where P is the orbital period of the planet, a is the semi-major axis of the orbit, Mpl is

the planetary mass and M⋆ is the mass of the star. The unambiguous determination

of the planetary mass is possible when a combined value of the orbital inclination

is obtained by the transit method. Thus the RV and the transit techniques are

mutually dependent as spectroscopic follow-up of transiting systems is needed in

order to confirm their planetary nature.

1.5.3 Timing, astrometry, microlensing and imaging

In addition to the RV method and the transit technique other planet detection

methods exist and planets have also been detected by means of timing analysis,

microlensing, astrometry and imaging.

The timing technique was firstly used by Wolszczan & Frail (1992) to detect the

first ever extra-solar planet companion to the millisecond pulsar PSR1257 + 12 Wol-

szczan & Frail 1992. A pulsar is a neutron star: the small, ultradense remnant of a

star that has exploded as a supernova. Because Pulsars emit radio waves extremely

regularly as they rotate, slight anomalies in the arrival time of the observed radio

pulses can be used to track the pulsar’s motion. This is a powerful technique which

has also been used to search for planetary companions to white dwarfs. Mullally

et al. (2008) found convincing evidence for a 2MJUPplanet in a 4.5 year orbit around

a pulsating white dwarf.
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More generally, if a planet is in orbit around a star the star’s distance from the Sun

will periodically change as it orbits the centre of mass of the system. If the star is a

stable pulsator (pulsars are among the most stable pulsators known, Matsakis et al.

1997), this will cause periodic changes on the pulse arrival time. Because the pulse

arrival time is proportional to the semi-major axis of the orbit the timing sensitivity

increases with the orbital separation, making long period planets easier to detect

(as for astrometry).

The microlensing technique is sensitive down to 1R⊙. This method involves de-

tecting the light coming from a distant background star that is magnified by the

gravitational field of a foreground star. The method allows the detection of planets

and stars regardless of the light they emit. Generally planets can only be detected

around bright stars. Because microlensing boosts the light by several magnitudes,

it allows the study of the objects that emit little or no light. Lensing events are

brief, lasting for weeks or days, as the two stars and Earth are all moving relative

to each other. Since the event requires a highly improbable alignment, a very large

number of distant stars must be continuously monitored in order to detect planets

via microlensing. This method is most fruitful for planets between Earth and the

centre of the galaxy, as the galactic centre provides a large number of background

stars. The application of the microlensing technique to the detection of extra-solar

planets was firstly suggested by Paczynski (1991). The first detection dates back

to 2002 by Udalski et al. (2002) who announced the detection of several possible

planets, though limitations in the observations prevented clear confirmation. Since

then, seven confirmed extrasolar planets have been detected using microlensing (see

for examples Dong et al. 2009, Bennett et al. 2008, Pont et al. 2008). A notable dis-

advantage of the method is that the microlensing event cannot be repeated because
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the chance alignment never occurs again. Also, the detected planets will tend to be

several kilo parsecs away, so follow-up observations with other methods are usually

difficult if not impossible.

The Astrometry method for planet detection consists of precisely measuring a star’s

position in the sky and observing how that position changes over time. If the star

has a planet, then the gravitational influence of the planet will cause the star itself

to move in a tiny circular or elliptical orbit. Effectively, star and planet orbit around

their mutual centre of mass. Unfortunately, the changes in stellar position are so

small (µ asec) and atmospheric and systematic distortions so large that ground-

based detection of planets is difficult. However, the Hubble Space Telescope did

succeed in using astrometry to characterise a previously discovered planet around

the star Gliese 876 (Benedict et al. 2002). One potential advantage of the astro-

metric method is that it is most sensitive to planets with large orbits. This makes

it complementary to other methods that are most sensitive to planets with small

orbits. However, very long observation baselines will be required (years), and pos-

sibly decades to allow detection via astrometry. However, the first planet detected

via astrometry was finally announced in 2009. Pravdo & Shaklan (2009) detected

the planet VB 10b with mass of 7MJUP orbiting a low-mass red dwarf star by means

of astrometric measurements. If confirmed, this will be the first extra-solar planet

discovered by the astrometry technique.

Imaging. Because planets are extremely faint sources the direct light coming from

them is generally lost in the glare of their parent stars. Thus, it is very difficult

to directly detect a planet. In certain cases, however, current telescopes may be

capable of directly imaging planets. Projects for the search of extra-planets employ-

ing new observing instruments are underway at the Gemini telescope (GPI, Gemini
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Planet Imager, Graham et al. 2007), the VLT (SPHERE, Spectro−Polarimetric

High−contrast Exoplanet Research, Mouillet et al. 2009), and the Subaru telescope

(HiCIAO, High contrast Coronagraphic Imager with Adaptive Optics, Tamura et al.

2006). The direct imaging planet detection method naturally favours the detection

of large planetary objects (considerably larger than Jupiter) in distant orbits from

their parent star, and young bright objects so that their infrared radiation is easily

detectable. In July 2004, the first planetary companion was announced around a

brown dwarf star via direct imaging by Chauvin et al. (2004) and subsequently in

2005 Chauvin et al. (2005) confirmed the planetary nature of the companion which

was found to have an orbital period of ∼ 40 AU and a mass of ∼ 5 MJUP. More re-

cently, in 2008 the detection of the first multiple planet system has been announced.

Three planets were directly observed orbiting the star HR 8799, whose masses are

approximately 10, 10 and 7 MJUP (Marois et al. 2008). At the same time it was also

announced that the Hubble Space Telescope directly observed an exoplanet orbiting

Fomalhaut with a mass ∼ 3 MJUP(Kalas et al. 2009).

While there are numerous direct and indirect planetary detection methods currently

employed, the work presented in this thesis focuses on the transit technique for the

search of sub-stellar and planetary companions to white dwarfs in the SuperWASP

survey.

The work is set out as follows; in Chapter 2 I describe the SuperWASP project,

the SuperWASP instrumentation, the survey designs and the scientific goals. In

Chapter 3 I present simulations of transiting sub-stellar and terrestrial companions

to white dwarfs and the characteristics of their transit light-curves. In Chapter
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4 I search for eclipses and transit signals in a sample of 194 white dwarfs in the

SuperWASP archive and I estimate an upper limit to the frequency of planetary

companions to white dwarfs. In Chapter 5 I study the sample of 194 white dwarfs

to search for extrinsic and intrinsic photometric variability due to white dwarf non-

radial pulsations, star spots in magnetic white dwarfs, irradiation and reflection

effects in binary systems with white dwarf primaries. Finally, in Chapter 6 I present

my conclusions and my project for future work.
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Chapter 2

The SuperWASP project

Abstract

SuperWASP (Wide Angle Search for Planets) is the world’s leading project for the

detection of transiting extra-solar planets. It comprises a consortium of eight institu-

tions which include Leicester University, St.Andrews University, Queens University

Belfast, the University of Cambridge, the University of Keele, the Open University,

the Isaac Newton Group (ING) and the Instituto de Astrofisica de Canarias. The

SuperWASP project is a ground-based ultra-wide-field photometric survey which

consists of two robotic telescopes, SuperWASP-North (La Palma, Canary Islands,

Spain), and SuperWASP-South (Sutherland, South Africa). Each instrument is ca-

pable of observing the entire sky every 40 minutes, and can achieve a photometric

accuracy of better than 1% for stars in the range 8 < V < 12. SuperWASP science

goals are designed to explore long baseline (months-years) time domain astronomy,

and in particular the detection of transiting extra-solar planets. Indeed SuperWASP
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has discovered 24 extra-solar planets in the last two years (2006-2008) and is cur-

rently the most successful planet transit discovery mission of its type.

2.1 Introduction

In the last decade the field of extra-solar planets has witnessed a rapid increase in

the number of newly detected systems, totalling ∼ 353 planets at the time of writing

(http://exoplanet.eu/). The majority of these systems have been detected via radial

velocity (RV) measurements. However, in the last few years ground-based transit

surveys and in particular the SuperWASP project, have contributed with many dis-

coveries. When combined with RV measurements planetary detection via the transit

technique offers the possibility to determine unambiguously the planetary mass and

radius as the system’s inclination angle is known. Photometric transit searches are

strongly biased towards planets in small orbits, since they have a greater probabil-

ity of presenting a transit configuration. Transit surveys also require a minimum

number (∼ 3,5) of distinct eclipses to be observed in order to confirm the planetary

detection. Since longer period systems give fewer opportunities for transits to be

observed, this drastically reduces their detection probability in particular in the case

of transit surveys with a limited baseline. Finally, ground-based transit surveys are

biased in favour of larger planets or smaller stars, both making the transit depth

δ = (Rpl/R⋆)
2 larger, and thus producing a deeper transit signal. These close-in

planets are known as Hot Jupiters (HJ) and Very Hot Jupiters (VHJ), they have

orbital periods of less than a few days (at orbits 50-100 times closer than Jupiter

is to the Sun), and show transit signals of ∼ 1% depth with durations between

2 to 3 hours. Transiting planets offer a unique opportunity to study the diver-
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sity of planetary atmospheres (Brown 2001), and also provide an important testing

ground for models of these atmospheres. Through the detection of secondary tran-

sits (i.e. when the planet goes behind its parent star) it is possible to characterise

the light emitted by the day sides of these planets, and to construct a model spec-

trum (e.g.Charbonneau 2008; Deming et al. 2005; Grillmair et al. 2007; Knutson

2008). In addition, a detailed analysis of transit light-curves can reveal transit time

and transit duration variations which can indicate the presence of secondary small

bodies, exo-moons, otherwise undetectable in the system (Kipping 2008; Szabó et al.

2006; Simon et al. 2007).

Radial velocity surveys have shown that around 6% of the population of nearby

solar-type stars harbour Jupiter-sized planets in orbits out to 3 AU. Less than 20%

of these are HJ and VHJ planets. By definition, transiting planets have an almost

perfect alignment between the observers line of sight, the planet and the host star.

The probability that a Hot Jupiter, with a randomly inclined orbit, will transit its

parent star is about 10% (Horne 2003). We might therefore expect to find roughly

1 in every 1000 stars (6%× 20%× 10%) in a random SuperWASP field to exhibit a

transit. Since the transit method clearly favours large planets orbiting their parent

stars at small orbital radii, a large sample of stars must be monitored in order to

detect statistically meaningful numbers of transiting planets. The SuperWASP ob-

serving strategy is designed to obtain well sampled light-curves of numerous stars

with a photometric precision of better than 1%, required for the detection of planets.

SuperWASP routinely observe fields of high stellar densities while avoiding crowded

fields near the Galactic plane. This choice allows us to reduce the number of blended

stars and stellar systems with eclipse depths, durations, and orbital periods resem-

bling those of planets (see e.g. Brown 2003 for more details). The SuperWASP
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observing strategy facilitates the selection of planetary candidates and minimises

the loss in telescope time ( and observers’ time ) spent ruling out impostors. Su-

perWASP employs off-the-shelf, small aperture, wide-field imaging systems which

consist of a large CCD mounted directly onto a high-quality wide-angle camera op-

tic. Each camera has a field of view of 7.82 degrees and continuously photographs

the sky capturing up to 100,000 stars per image. This large number is needed to

observe a sufficient number of bright stars (8 < V < 12) for which we have good

quality photometry (< 1%). This amounts to over 50 gigabytes of observational

data per night, per observatory, which is automatically processed by our custom

built pipeline. Finally, all data are stored in a data base hosted by the University

of Leicester.

To date about 52 extra-solar planets have been found using the transit technique.

Among those, 24 have been discovered by SuperWASP making SuperWASP the

most successful project for discovering extra-solar transiting planets. In this chap-

ter I will describe in detail the SuperWASP project and data. I will provide technical

information on the two SuperWASP telescopes, the optics employed, the data ac-

quisition system and data analysis software. Finally, I will describe the SuperWASP

observing strategy and show a few examples of SuperWASP planet discoveries.

2.2 Instrumentation

The SuperWASP project is the direct successor of the Wide Angle Search for Plan-

ets prototype WASP0 project (Kane et al. 2004). The WASP0 prototype was de-

signed to demonstrate the feasibility and efficacy of using inexpensive wide-angle

camera optics in the detection of transiting planets. A detailed description of the
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SuperWASP prototype WASP0 and the results obtained during the observational

campaigns can be found in (Kane et al. 2004, 2005).

Figure 2.1: Location of SuperWASP-North and SuperWASP-South telescopes.
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Figure 2.2: SuperWASP-North telescope at Roches de los Muchachos observatory
on the island of La Palma.

2.2.1 SuperWASP telescopes

The SuperWASP project comprises two completely robotic telescopes

SuperWASP-North (SWN), situated among the Isaac Newton Group (ING) of tele-
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scopes in La Palma, Canary islands, Spain and SuperWASP-South (SWS) in Suther-

land, South Africa at the South African Astronomical Observatory (SAAO) site, (see

e.g. Figure 2.1). SuperWASP first began operating in the northern hemisphere in

2004 with a complement of five cameras, observing in white light with the spectral

transmission defined by the optics, detectors, and atmosphere. The SWN telescope

has been subsequently up-graded to operate with eight cameras (see Figure 2.2).

From 2006 SWS became operational, mounting eight cameras and using a broad-

band filter which define a pass-band from 400 to 700 nm, also introduced in SWN

from 2006 (see also Figure 2.3). The broadband filter was introduced to remove

red-light leakage thus increasing the contrast between the sky background and the

objects. Figure 2.3 shows the transmission feature of the Earth atmosphere which

becomes important at wavelengths > 700 nm. Both SuperWASP instruments use

an equatorial fork mount, housed in a small enclosure. Each mount has been con-

structed by Optical Mechanics, Inc. (Iowa; formerly Torus Engineering), and have a

pointing accuracy of 30
′′

rms over the whole sky with a tracking accuracy of about

0
′′

.01 s−1. The enclosure employs a roll-off roof which is better suited to the rapid

rotation of the mount. The system completely retracts in less than 20 seconds and

takes ∼ 54 seconds to completely close. The space under the roof is used as a con-

trol and computer room and is temperature-controlled. More details can be found

in Pollacco et al. (2006). Each telescope uses e2V CCD cameras manufactured by

Andor Technology (Belfast, UK). The e2v CCDs consist of 2048×2048 pixels of 13.5

µm. The CCDs are cooled to -50deg degrees Celsius which is sufficient for the per-

formance needed by SuperWASP. Figure 2.3 shows the pass-band of SuperWASP

filter (nm) plotted alongside the CCDs response, the atmospheric transmission and

the lens transmission.
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Figure 2.3: the pass-band of the SuperWASP filter (nm) plotted alongside the CCD
response, the atmospheric transmission and the lens. transmission

More details of the CCDs and their performance can be found at

http://www.andor.com/. The SuperWASP cameras use Canon 200mm f/1.8, tele-

photo lenses. These lenses together with the above detectors give a field of view of

7.8×7.8 degrees squared and an angular scale of 13
′′

.7 pixel−1.

2.2.2 Data acquisition system

We use a Data Acquisition System (DAS) PC with storage discs for each detector.

The acquisition cluster deals with the high rate of data arising every night from

the eight cameras of each telescope. The observations are scheduled by a TCS

(telescope control system) which also controls other observing functions such as
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telescope pointing and roof control. In addition the TCS is connected to a weather

station and a GPS receiver which ensure that the absolute time is accurate to better

than 1s. The TCS continuously monitors the systems to ensure operations run

smoothly. In case of a break in communications, a close-down procedure will start

abruptly. Every night the data are stored locally on DAS machines. At the end

of an observing run, the data from SWN are compressed and sent back to UK via

the Internet, while for SWS, due to the slower connection speed, data are copied

onto a magnetic tape. Both telescope locations have a local weather station which

measures the internal and external temperature and humidity, the wind direction

and strength, precipitation and air pressure. A cloud sensor (infra-red activated) is

also used (see the website http://wasp.astro.keele.ac.uk/live/).

2.2.3 Data acquisition software

The data acquisition software is high-level software which controls the entire Su-

perWASP system. The software is a modified version of Linux software Talon

produced by Optical Mechanics, Inc. Object acquisition and tracking, scheduled

operations, environmental monitoring, dome control, image analysis and processing

all fall under the control of the acquisition software. Observations are possible using

a standard graphical interface or a command-line interface. Talon supports two op-

erational modes: manual control by an observer, using the graphical interface or the

command line interface; and an automated observing mode. The Talon operation

scheduling program takes control of the telescope and performs observations from

a predefined queue (waspsched). The first SuperWASP observing season in 2004

was operated via the manual mode control and the observer was responsible for
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taking bias and dark frames, opening and closing the dome and taking flat fields at

twilight. Starting from 2005 a dynamic scheduler waspsched has been developed for

all observations. Waspsched has controlled continuous operations thereby increas-

ing the system observational efficiency. In addition, observations of all-sky fields

can be easily intermixed with planetary fields, offering the possibility to support

alternative observing modes, and in particular, the ability to interrupt the sched-

uled observations to follow up transient events (e.g. gamma-ray bursts, supernovae,

comets etc.). The weather conditions from the two local weather stations are fed

into the software enabling a weather alerts for different weather conditions (e.g. high

humidity or strong wind). In the case of an alert, the system parks the telescope

in a predefined position to avoid collisions with the closing roof. If the roof fails to

close, a radio signal is sent to a receiver in the dome of the nearest observer-operated

telescope.

2.2.4 SuperWASP pipeline

To deal with the large amount of data, a custom built pipeline for data reduction has

been developed by the SuperWASP consortium. The pipeline uses custom written

programs, shell scripts and several STARLINK packages. The pipeline corrects each

science exposure using bias frames, thermal dark-current exposures, and twilight-

sky flat-field exposures. An astrometric solution is computed for each field using the

USNO-B1.0 catalogue (Monet et al., 2003) and Tycho-2 (Hog et al., 2000) catalogue

as photometric input catalogues. Aperture photometry is performed in three circular

apertures of radius 2.5, 3.5 and 4.5 pixels (≃ 35
′′

, 48
′′

and 62
′′

) selected by inspection

of images of known blended and unblended objects at these spatial resolutions.
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The sky background is computed in an annulus with inner radius of 13 pixels and

outer radius 17 pixels, 10 times the area of the 3.5 pixel aperture. We use the

fractional variation in flux between the three different apertures to identify blended

sources from unblended ones. We use the wing-to-core flux relative change defined

as: r1 = (f3−f1)/f1 and r2 = (f3−f2)/f2, where f1, f2, f3 are the fluxes in the three

apertures defined above. For unblended images, r1 and r2 are related by a constant

scaling factor. Finally the pipeline creates an input catalogue file. Each object is

labelled with the airmass and catalogue magnitude, and is corrected to heliocentric

Julian date. These, plus information on the sky background, aperture radius, raw

instrumental fluxes and their associated variances, and blending information are

saved in a FITS binary table. More details and information on the pipeline can be

found in Pollacco et al. (2006).

The FITS binary tables produced by the pipeline are read into the post-pipeline

calibration module for reduction from raw to calibrated magnitudes. The pipeline is

designed to calibrate and remove photometric trends due to primary and secondary

extinction, the system zero point and the system response to colour changes. The

final corrected fluxes are added to the FITS table ready to be ingested into the

archive.

2.2.5 Data archive

The SuperWASP data archive held at Leicester University consists of two similar

catalogues, a private catalogue used by all members of the consortium and a public

catalogue which will soon become available. The latter will be populated using
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data from the private catalogue at defined delayed time intervals (time scale yet

to be decided). The major advantage of the SuperWASP archive is its flexibility,

allowing the consortium to add extra attributes (for example, periods for variable

stars) as the archive gets populated with more and more data. The results from the

precessing of large volumes of data, for example when detecting planetary transits

or detecting periodicities, can be fed-back into the catalogue, by appending the

information to existing objects and creating new entries as needed. Additional

tables are then created and made available for the user to use in the formulation

of queries. Queries can be made via an intermediate query language WQL (custom

written by Dr. Richard West). WQL is a structured query language which allows us

to express queries as simple ASCII text files in which the user can describe a variety

of parameters and filters to be applied to and retrieved from the catalogue. Queries

can include parameters such as object ID, position, brightness and variability, and

can use constraints on for example the number of seasons, photometric points, the

right ascension and declination, to name but a few. The query files are used in

conjunction with a command-line tool, wcatquery, which deals with all the details

of communicating with the catalogue query server. Queries can be performed on

a per object basis as well as in batch mode. Other command tools to access the

archive are the wlcextract and wimgextract which allow users to extract respectively

one or more SuperWASP light-curve FITS files, and retrieve the raw images. All

the archive structure and its updating as well as the specific formulation of the

intermediate query language WQL and all the related software was designed and

implemented by Dr. Richard West.

In parallel to the above interface, a separate custom written interface to the archive

has been developed by Dr. David Wilson (Wilson, 2007). The Variable Star In-
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Figure 2.4: illustrates the number of observed stars per field. Black frames are
region in the sky not covered by SuperWASP (for example the galactic plane). The
more densely sampled SuperWASP fields contain up to ∼ 300000 stars.

vestigator (VSI) is a web based Virtual Observatory tool that combines parameters

from an object’s light-curve with external catalogue data. The returned data which

includes SuperWASP light-curves and statistics, image thumbnails, as well as blend-

ing information and much more, are extremely useful particularly in the analysis of

SuperWASP planet candidates. The VSI web-pages enable quick elimination of un-

likely stellar hosts such as giants, known multiples or blended systems. The VSI

interface is extensively used by the consortium in the identification of candidates for

follow-up. More details can be found in Wilson (2007).
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Figure 2.5: shows the average number of photometric points per star. As in Figure
2.4 black frames are regions in the sky not observed by SuperWASP. The maximum
number of points per star is ∼ 2 × 104 (white coloured frames).

2.3 SuperWASP observing strategy

SuperWASP’s main science goal is the detection of extra-solar planets via the transit

method. As mentioned before we know from radial velocity surveys that ∼ 6% of

FGK stars harbour planets within 0.3 AU. Of these stars ∼ 1.2% have HJ and VHJ

orbiting at less than 0.1 AU (Lineweaver & Grether 2003; Marcy et al. 2005). Of

these, only 10 % will transit their parent star, so we can expect about 1 in every

1000 stars to harbour a transiting planet. Therefore the SuperWASP survey needs

to observe a large number of stars, with the required photometric precision (< 1%),

in order to detect transit signals. Some of the transit surveys (e.g. STARE and

Vulcan, e.g. Brown & Charbonneau 2000; Borucki et al. 2001) have searched for
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planets focusing on highly populated fields near the Galactic plane. Despite the high

stellar density in such fields, the large population of early-type main sequence and

giant stars only worsens the problem of stellar blending. In addition, these stars do

not contribute to the detection statistics, since transit amplitude is inversely propor-

tional to the stellar radius, making planetary companions difficult to detect. For this

reason the SuperWASP observing strategy focuses on fields of high stellar densities

(selected using the Besancon Galactic model, http://www.obs-besancon.fr/model/)

but avoiding the Galactic plane where crowded fields would make reduction and

detection difficult. Every clear night, SuperWASP instruments cyclically raster the

sky in a series of fields centred on the Local Sidereal Time (LST), spaced by 1 hour

in right ascension. A maximum of eight fields are observed at any one time, each

with a duration of ∼1 minute (including 30 seconds exposure plus the telescope

slew and settling time). This observing strategy provides well-sampled light-curves

with baseline of ∼ 8−10 minutes. A typical field contains approximately 30,000

stars per camera at magnitudes brighter than V ∼ 13. Figures 2.4 and 2.5 show

the SuperWASP sky coverage. Figure 2.4 shows the star counts over the observed

fields and Figure 2.5 shows the average number of points per star. The SuperWASP

observing strategy enables us to obtain fields of high star density while reducing

the frequency of planetary impostors. However, the planetary candidate sample is

unavoidably contaminated by stellar systems that mimic transit events, for exam-

ple: grazing transits in systems of two main-sequence stars, or transits of giants

by main-sequence stars (see e.g. Brown 2003 for a detailed discussion). For this

reason an additional photometric and spectroscopic follow-up is needed to confirm

the planetary nature of the target system.
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Figure 2.6: RMS plotted versus SuperWASP instrumental magnitude. Also indi-
cated is the photometric accuracy needed for the detection of 0.5RJUP(dotted line),
1RJUP(dot-dashed line) and 2RJUP(dashed line) planets.

2.4 SuperWASP data

The SuperWASP observing strategy typically yields light-curves which span about

120-150 day per object per season, with seasons spanning from 2004 to 2008 in

the case of SWN and 2006 to 2008 for SWS. Each light-curve is well sampled with

∼ 50−60 photometric points per observing night, which corresponds to a total of

3000−5000 photometric points per light-curve per season, depending on the amount

of time lost due to bad weather conditions. For targets in the magnitude range

8 < V < 12, SuperWASP can achieve a photometric accuracy of better than 1%.

This value becomes larger for increasingly fainter objects. Figure 2.6 shows the
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root mean square rms values of SuperWASP light-curves against the instrumental

magnitudes. Figure 2.6 illustrates the precision achievable with SuperWASP data.

It also shows that stars brighter than V ∼ 12 can be measured to a precision of few

millimagnitudes. SuperWASP magnitude is calculated from the mean flux (µVega)

using the following formula:

V = −2.5Log10F + 15 (2.1)

where F is the mean flux of the target object.

Because SuperWASP is a wide-field long-term photometric survey, SuperWASP data

will inevitably contain systematic errors which depend on correlated and uncorre-

lated noise sources that vary either on short timescales (intra-night), and/or on

long timescales, across the observing season. Pont et al. (2006) showed that errors

on ground-based millimagnitude photometry are correlated. These trends have a

low-frequency component which introduces covariance between photometric points

in the light-curve. The typical correlation has a time-scale of 2 to 3 hours, similar

to planetary transit durations. This so called ‘red-noise’ acts to reduce significantly

the effective signal-to-noise of the transit event. In such case the required signal-to-

noise threshold for planetary detection is about three times higher than in the case

of white Gaussian noise (see Figure 4 of Pont et al. 2006), and may render some

planets undetectable. This low-frequency noise component has been observed in

a wide variety of phenomena such as Biology, Geophysics, Astronomy, Economics,

as well as in Psychology and music, to mention a few. This ubiquitous noise was

first noticed as an effect in vacuum tubes by Johnson (1925); an extensive review

is given by Press (1978). The nexus between the low-frequency noise component

and its colour is to be found in the trend of the spectral density of the stochastic
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Figure 2.7: from Kane et al. 2004 (WASP0 prototype), illustrating the vignetting
distortion across the frame.

process, which scales with frequency as 1/fα. For α = 0 we have the well known

‘white noise’ which shows a flat spectral distribution. For α = 1 we have what is

commonly referred to as flicker noise or ‘pink noise’, while for α = 2 we have the

known Brownian noise or ‘dark noise’. Linear systematics in ground-based surveys

are mostly due to airmass variations during the night, variations in the telescope

tracking and changing atmospheric conditions.

The SuperWASP data suffer from a variety of sources of systematic errors (see Col-

lier Cameron et al. 2006). Because SuperWASP is wide-field, spatially dependent

effects which are normally assumed to be constant across the frame vary significantly

from one side of the frame to the other. For example, the SuperWASP band-pass
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spans the visible spectrum, introducing significant colour-dependent terms into the

extinction correction. The PPWASP process of the pipeline has been designed to

remove these colour-dependent effects from the data. However, some systematics

still remain. For example, bright moonlight or changing atmospheric conditions,

can reduce the contrast between faint stars and the sky background, altering the

rejection threshold for faint sources and biasing the photometry for faint stars. The

SuperWASP camera lenses are vignetted across the entire field of view. Figure 2.7,

taken from Kane et al. (2004), shows an example of vignetting distortion that can

affect the position and the shape of the stellar profile. This effect tends to be par-

ticularly severe in the corners of the image.

Furthermore, temperature changes during the night can affect the camera focus,

changing the shape of the point spread function across the field and biasing the

photometry for fainter stars. These known systematic effects, and probably others

not yet identified, have a serious impact on the detection threshold for transits. In

order to remove systematic errors from the data SuperWASP employs an implemen-

tation of the Tamuz algorithm (Tamuz et al., 2005), see also Collier Cameron et al.

(2006). The Tamuz algorithm searches for linear combinations of systematic effects

in the data, of the kind mentioned above, in the case where the uncertainties in

the measurements are unequal. The algorithm reduces to the Principal Component

Analysis (PCA) for equal uncertainties in the measurements (Tamuz et al., 2005).
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2.5 De-trending algorithm

Searching for low amplitude variability, as is the case when searching for transiting

planets, involves finding weak periodic signals in noisy data. It is therefore of prime

importance to identify and remove any covariant noise component which may hide

the transit signal. The Tamuz algorithm removes systematic trends on a star by

star basis, as long as these effects are present in a large number of light curves. We

consider a set of N light curves, each of which consists of M observations. We first

define the residual magnitude for each observation to be the stellar magnitude after

subtracting the average magnitude of the individual star mij ; with j = 1, . . . , M .

The algorithm finds the first linear systematic trend represented by the basic func-

tions ajci; of the ith star at time j, by minimising the following expression:

S2
i =

∑

j

(mij − ciaj)
2

σ2
ij

(2.2)

where σij is the uncertainty in the magnitude of star i at time j and mij is the

residual magnitude of star i at time j. Via an iterative procedure the two sets of

coefficients that best describe the first linear trend are estimated. Subsequently, the

whole procedure is repeated to eliminate different systematic effects hidden in the

data. We define the first sets of parameters ci
(1), aj

(1), and we then remove these

effects one after the other from the data as follows: m
(k)
ij = mij−c

(k)
i a

(k)
j where k is an

integer. This procedure is then repeated until no more significant trends are found

in the data, i.e. when the change in the residual S2, between two successive steps, is

less than 0.01%. The basic functions c
(k)
j represent the kth red noise source at time j,

while the a
(k)
j coefficients represent the extent to which the star i is effected by the kth
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source of red noise. Our experience with the SuperWASP implementation of Tamuz

algorithm suggests that four iterations are sufficient to remove the most significant

linear trends in the data, as discussed in Collier Cameron et al. (2006). Despite the

high efficiency of the Tamuz algorithm, a residual component of covariant noise is

still present in the data after de-trending. These components are mostly due to poor

background subtraction, and in particular, due to temperature variations causing

spatially-dependent focussing variations. The latter effect introduces systematic

errors which are not linearly separable and can not be fully removed by the de-

trending algorithm. This residual noise component can still be significant at the

millimagnitude level thus preventing planet detection.

2.6 Planet detection and candidate selection

Once the data have been de-trended and the major sources of covariant noise have

been removed, the light-curve of thousands of sources are searched for transit signals

by means of a Box Least-Square algorithm (BLS by Kovács et al. 2002). The BLS

uses the anticipated square shape of the transit light-curve and performs a least-

squares fit of step functions to the light-curve, folded on different trial periods. The

BLS produces a large sample of stars showing transit-like light-curves that need to

be analysed.

55



Chapter 2. The SuperWASP project2.6. Planet detection and candidate selection

2.6.1 BLS algorithm

The SuperWASP BLS implementation, HUNTER, is a variant of the fitting model

described in Kovács et al. (2002) reformulated such that the goodness-of-fit criterion

has the dimensions of the χ2 statistic (Collier Cameron et al., 2006). The grid of

sampling frequencies is chosen such that the accumulated phase difference between

successive frequencies, calculated over the length of the data set, corresponds to the

transit width at the longest period searched. At each trial frequency a set of transit

epochs e is defined at phase intervals equal to the transit width at that frequency.

At each trial period and epoch the fitted transit depth and χ2 statistic are calcu-

lated. We define ∆χ2 to be the improvement in the fit (χ2) when compared to that

of a constant light-curve (χ2
0); a transit event will thus yield large ∆χ2 values. More

details on the BLS are given in chapter 3 and also in Collier Cameron et al. (2006).

The HUNTER procedure rejects variable stars, stars with less than two transits and

solutions with non-uniform phase-folded light-curves that show gaps longer than 2.5

times the transit duration. Nevertheless, the majority of the stars selected by the

fitting routine are false positive detections, mostly due to grazing eclipsing binaries

contaminating the light of the target star (see e.g. Brown 2003). In order to re-

duce the quantity of selected systems, planetary candidates must satisfy a number

of tests to be considered high-priority spectroscopic targets. Therefore, further se-

lection criteria such as the Sred threshold (see Pont et al. 2006), the “anti-transit”

threshold (see Burke et al. 2006) to cite just a few, are needed. Out of several

thousand stars typically between 100 and 200 objects satisfy the selection criteria.

For these, a Markov Chain Monte Carlo (MCMC) algorithm (Collier Cameron et al.

2007 and reference therein) is applied to derive the planet and stellar parameters
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more accurately.

2.6.2 Candidate selection

The final list of planetary transit candidates is then visually inspected by members of

the SuperWASP consortium. We use the VSI interface, which allows a simultaneous

inspection of the phase-folded transit light-curve, together with all the estimated

refined parameters such as the orbital period, the transit duration, planetary and

stellar radii, transit impact parameter etc. (see Collier Cameron et al. 2007 for the

full analysis). A plot of the reduced proper motion (RPM) versus the H − J colour

is used to identify dwarfs from giant stars. In addition SuperWASP images can be

retrieved to check for blends.

Each candidate is assessed taking into account all available data, and a final short-

list of high priority candidates is produced. For these targets, follow up photometry

and spectroscopy are carried out in order to certify the candidate planetary nature.

2.7 Summary

SuperWASP is the UK’s leading project in the search for transiting extra-solar plan-

ets and is the world’s most successful ground-based transit survey with 24 previously

unknown extra-solar planets discovered in the period 2006-2008. SuperWASP is

playing an extremely important rôle, contributing actively not only to the detection

of unknown planetary systems, but also to their direct characterisation and under-

standing. It is now known that there are a large variety of extra-solar planets (see
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e.g. the extra-solar planets encyclopedia at http://exoplanet.eu/ for a review). The

range in planetary systems discovered by transit and other techniques represents a

significant new challenge for existing theories of planetary formation and evolution

(see e.g. Ida & Lin 2008, and Ford 2006). Some of the planets discovered by Su-

perWASP are VHJ in orbits with periods of few days and less. For a review of the

SuperWASP project see the web-site http://www.superwasp.org/. Some examples

of SuperWASP planets can be found in Cameron et al. (2007), West et al. (2009),

Hebb et al. (2008).
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Chapter 3

Characteristics of and detection limits for

simulated transits of sub-stellar and

terrestrial companions to white dwarfs in

the SuperWASP survey

Abstract

I have investigated the transit detection limits for sub-stellar and planetary compan-

ions around white dwarfs in SuperWASP data. Because white dwarfs have approx-

imately the same size as the Earth, any brown dwarf or gas giant companion will

totally eclipse it and even bodies smaller than the Moon will have relatively large

transit depths (> 1%), detectable in good signal-to-noise light-curves. I have per-

formed extensive simulations for transiting companions around white dwarfs (WDs)
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with radii spanning ∼ 0.3−12R⊕, with orbital periods between 2 hours and 15 days

and orbital distances from ∼ 0.003 to 0.1 AU from the star. I have used a Box-Least

Square fitting algorithm to recover the injected transit signals. My results show that

for Gaussian random noise SuperWASP is sensitive to companions as small as the

Moon, orbiting a V ∼ 12 white dwarf. For fainter stars SuperWASP is sensitive to

increasingly larger radius rocky bodies. Although SuperWASP detection sensitivity

drops in the presence of covariant-noise structure in the data, I find that Earth-

sized companions remain detectable, even in low-signal-to noise data. In the case

of good quality data for which correlated noise is efficiently reduced by powerful

de-trending, smaller bodies of sizes similar to Mars and Mercury can yield transits

with signal-to-noise detectable by my implementation of the BLS routine.

3.1 Introduction

In recent years we have witnessed considerable progress in the search for extra-solar

planets. Since the first detection of a “Hot Jupiter” around the main-sequence star

51 Peg (Mayor & Queloz 1995), the number of extra-solar planets has rapidly risen,

and currently numbers about 350. Although the majority of extra-solar planets

have been detected by radial velocity (RV) surveys, only planets that transit their

parent stars offer the unique possibility to directly derive the planet mass and radius

when combined with RV measurements, as the inclination i of the system is known

(Sackett, 1999). This is also described in chapter § 1 Figure 1.4, equations 1.3

and 1.7. More recently, an increasing number of extra-solar planets (58) have been

detected by dedicated planetary transit surveys including HATnet, the Hungarian-

made Automated Telescope network (Bakos et al. 2004), TrES, the TRans-atlantic
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Exoplanet Survey Network (e.g. Brown & Charbonneau 2000; Dunham et al. 2004;

Alonso et al. 2004), OGLE, the Optical Gravitational Lensing Experiment (Udalski

et al. 2002, 2003), XO, the search for exo−planets (McCullough et al. 2005), and

SuperWASP, the UK Wide-Angle Search for Planets (Pollacco et al. 2006). Among

the wide-field ground-based photometric surveys SuperWASP has been the most

successful planet finding project, with 24 previously unknown exo-planets detected

in the last two years (e.g. Cameron et al. 2007, and on-line http://exoplanet.eu/).

Planet detection via the transit technique involves searching for periodic dips in

stellar light-curves caused by the orbital revolution of a transiting planet, blocking

a fraction of the stellar light (see chapter §1 Figure 1.3). Only planets with their

orbital planes aligned within a few degrees to the line of sight are visible, this is

defined by the geometric transit probability as derived in chapter §1 equation 1.3 and

illustrated in Figure 1.4 (see also Charbonneau et al. 2007; Koch & Borucki 1996).

The transit probability, Ptr, represents the fraction of the area of the celestial sphere

swept out by the shadow of the planet during one orbital period. This constraint on

the number of observable systems explains the relatively low number of transiting

planets when compared to radial velocity studies.

For a given planetary radius, the transit depth is directly proportional to the square

of the planet to star ratio. Therefore, planets orbiting a main-sequence solar-type

star have extremely shallow eclipses, ∼ 10−2 for a giant planet and ∼ 10−4 for an

Earth-sized planet. Current ground-based wide-field surveys can achieve photomet-

ric accuracies of better than 1%, needed for planet detection, only for bright stars

(SuperWASP range 9 < V < 12), and are therefore insensitive to planetary bodies

smaller than ∼ Jupiter around main-sequence stars. To date the smallest transit-

ing extra-solar planet detected is HAT-P-11b, a Neptune-size planet transiting a K
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dwarf star (Bakos et al. 2009).

A strong advantage over main sequence primaries is offered by white dwarf stars.

Indeed, because of the small dimension of white dwarfs (∼ Earth), any sub-stellar

or gas giant companion, orbiting the star, will completely eclipse it, while bodies as

small as the Moon will have relatively large transit depths (∼ 3%), with the only

caveat being that it is as yet unclear whether such systems survive the later stages of

stellar evolution. I briefly discuss the likelihood of sub-stellar and planetary survival

to stellar evolution.

Observations indicate that sub-stellar and planetary companions in wide orbits, be-

yond the extent of the red giant (RGB) and the asymptotic giant (AGB) radius, can

survive post main-sequence stellar evolution. For example evolved RGB stars are

known to harbour sub-stellar and planetary companions (see e.g. Frink et al. 2002,

Sato et al. 2003, Sato et al. 2008; Hatzes et al. 2005). Moreover, we know at least

two sub-stellar objects that survived their parent star evolution and become close

companions to the white dwarf ( e.g. WD0137-349 and GD1400, Maxted et al. 2006;

Burleigh et al. 2006; and Burleigh et al. 2009 in prep.). GD1400B and WD0137-

349B are the only two sub-stellar companions known to have survived the common

envelope (CE) phase of stellar evolution, and WD0137-349B is the lowest mass ob-

ject known (∼ 50MJUP) to have done so. The detection of more such systems will

allow us to place observational upper limits on the mass of sub-stellar companions

that survive the CE evolution. For example, can Hot Jupiters survive their parent

star evolution? Recently Silvotti et al. (2007) reported the detection of planetary

mass companion in a 1.7 AU orbit around an extreme Horizontal Branch (HB) star.

Moreover, Mullally et al. (2008) found convincing evidence of a 2MJUP (Jupiter mass)

planet orbiting a pulsating white dwarf with a period of 4.5 years. The latter, if
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confirmed, will be the first planet detected around a white dwarf and will show that

planets in wide orbits do indeed survive their parent star evolution. Short-period

companions are not expected to survive the red giant phase of stellar evolution (see

Villaver & Livio 2007). Nevertheless, the detection of dust and gas discs around

about 14 WDs (showing as infra-red excess) (Jura 2003, Jura 2008; Reach et al.

2005; Farihi et al. 2008, Farihi et al. 2009; Gänsicke et al. 2006, Gänsicke et al.

2007) suggests that asteroids and small rocky bodies, remnants of and old planetary

system, can get dynamically destabilised during the post main-sequence phase of

solar system evolution (Debes & Sigurdsson 2002) and kicked into orbits so close

to the star’s Roche limit that they are disrupted by tidal forces. The detection of

any such companion, will open an exciting chapter in the study of extra-solar planet

evolution helping to constrain theoretical models of CE and close binary evolution.

They may also help us to understand the ultimate fate of Hot Jupiter systems as

well as our own solar system in the post main-sequence phase. The aim of this

study is to investigate whether transiting brown dwarfs, gas giants and terrestrial

planets in close orbits around white dwarfs can be detected using data from the fore-

most ground-based survey, SuperWASP. I have designed and performed extensive

simulations to investigate the characteristics and detection limits for these systems.

3.2 Simulations

I have used the time sampling of SuperWASP photometric data to create a set

of synthetic light-curves in to which fake transit signals have been injected. The

synthetic data set covers three magnitude ranges of V ∼ 12, 13, 15, commensurate

with the brightness of white dwarfs in the SuperWASP survey. Because SuperWASP
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data show residual covariant-noise structure even after de-trending by means of the

Tamuz algorithm (see § 1.5 chapter 2), I have tested the transit recovery rate both

in the case of: 1) uncorrelated white noise, and 2) correlated red noise. First, I sim-

ulated white noise light-curves consisting of a transit-like event injected at different

orbital periods and for different companion sizes, plus a zero mean Gaussian noise

component of standard deviation σ, equal for all data points. I chose σ to be the

mean error on the points in a real SuperWASP light-curve at a given magnitude. To

account for red noise in the data, I injected fake transits into a set of SuperWASP

light-curves obtained from a densely observed field from the 2004 SuperWASP sea-

son. This accounted for different patterns of noise in the data and allowed me to

test my detection sensitivity in different noise regimes. For each light-curve I used

the SuperWASP pipeline fluxes and errors derived after de-trending by the Tamuz

algorithm (Tamuz et al. 2005).

3.2.1 Characteristics of the transit signals

A transit signal is characterised by its duration, depth and shape. The known

transiting extra-solar planets around solar-type stars, show signals characterised by

an ingress, a flat bottom and an egress, with typical transit durations of between

2 to 3 hours and eclipse depths of approximately 1% (see for example West et al.

2009 and Hebb et al. 2008). My simulations have been designed assuming circular

orbits and fixed stellar parameters. I considered a typical 1 Gyr old Carbon-core

white dwarf of mass 0.6M⊙ and radius ∼ 0.013R⊙ ∼ 1R⊕. The observed mass

distribution of isolated white dwarfs is sharply peaked around 0.6M⊙(see Fontaine

et al. 2001 for details and references therein). However, low-amplitude tails extends
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Figure 3.1: Comparison of the transit light-curve of a Jupiter across a sun-like
star with an Earth across a white dwarf. The fractional change in brightness is
significantly increased in the case of WD primaries. The sketch shows that any
objects with size similar to the Earth or larger will completely eclipse the WD
(transit depth > 70%). Smaller bodies of size similar to the Moon can yield large
transit depths of ∼ 1%, comparable to the depth of a transit signal due to a Jupiter
planet around a solar-type star.

at both ends of the mass spectrum ∼ 0.3 to ∼ 1.2M⊙. The majority of white

dwarfs have masses around the mean value with a very small dispersion. I have

parametrised the simulations in terms of the orbital period of the planet-star system
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and I have considered periods in the range ∼ 2 hours - 15 days (i.e. orbital distances

between ∼ 0.003 and 0.1 AU). I chose the shorter orbital period to yield an orbital

separation close to the Roche radius of the white dwarf. The Roche limit is the

closest distance an object can come to another object without being pulled apart

by tidal forces (see e.g. Roche 1859 and Paczyński 1971). I have limited the transit

search to periods of ≤ 15 days in order to recover more than five transit repetitions

for a typical SuperWASP light-curve of ∼150 days. I have investigated transits for

planets ranging from Moon size to Jupiter and/or a brown dwarf sizes (which have

approximately the same radius of ∼ 10−12R⊕).

Figure 3.1 illustrate two examples of a schematic transit light-curves. The top

panel shows the typical transit light-curve expected from a Hot Jupiter transiting

a solar-type star yielding a transit depth of ∼ 1%. The lower panel, shows the

simulated transit light-curve for an Earth-sized object transiting a white dwarf star

yielding a considerably large depth of ∼ 70%. Figure 3.1 emphasises the strong gain

obtained in the transit depth when considering transits of white dwarf primaries.

Any companion with radius larger than the Earth will completely eclipse the white

dwarf. Even rocky bodies of sizes smaller than the Moon (e.g. as small as the

size of UK) could have detectable transit signals ( depths ∼ 1%) in good signal-

to-noise data. For my choice of parameters the simulated transit signals show very

short duration (between 1 and 32 minutes for companions ranging from the Moon

to Jupiter sizes) and exhibit large transit depths (between ∼ 3% for the Moon

to ∼ 100% for any body larger than the Earth). Figure 3.2 and Figure 3.3 show

the transit characteristics derived for the systems studied in this work. Figure 3.2

upper panel shows the systems transit durations in the parameter space defined by

the planet radius in units of the Earth radius, R⊕, versus orbital period in days. The
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lower panel, illustrates the transit depths for different companion sizes. I show the

transit probability in Figure 3.3. The transit probability is the geometric probability

that a given binary-system has its orbital plane aligned to the Earth line of sight.

The transit probability ranges from ∼ 20% for a Jupiter or a BD companion in a

few hour orbit around a white dwarf, to < 1% for period > 10 days. For smaller

companion sizes the transit probability decreases rapidly with increasing orbital

period, Ptr < 0.1% for P > 10 days.

3.2.2 Synthetic SuperWASP light-curves

The set of synthetic light-curves have been modelled by injecting fake transit signals

into the phase folded light-curves at random orbital period P within the period-

window searched. For each trial period P I have calculated the phase width φtr of the

transit event. Finally I have reduced the stellar magnitude by a factor proportional

to the transit depth, for all data points which fall in the transit bin, i.e. that have

phase values 0 ≤ φi ≤ φtr, where i = 1, ..., N observations. Figure 3.4 show a sketch

of a model box-like function, in red I highlight the width of the transit bin. L stands

for low points (in-transit) and H stands for high points (out-of-transit) see § 3.2.3

for a detailed discussion on the model function. The synthetic transit light-curves

were modelled assuming simple box-like profiles, with no data points during transit

ingress and egress. This is justified by the expected short transit durations of the

systems studied here and the SuperWASP observing cadence of ∼ 8−10 minutes.

Figure 3.5 shows an example of two simulated transit light-curves. The top panel

shows the synthetic light-curve of an hypothetical eclipsing WD+BD binary system

with an orbital period of P ∼ 116 minutes similar to WD0137-349 (Maxted et al.,

67



Chapter 3. Simulations 3.2. Simulations

Figure 3.2: Upper panel: contour of transit duration (mins) for Rpl between ∼ 0.3
and 10−12R⊕ (i.e. between the Moon and a BD or Jupiter size body), and orbital
periods P between 2h and 15 days. I have assumed a white dwarf of mass 0.6M⊙ and
radius 0.013R⊙∼ 1R⊕. Lower panel: transit depths (%) for the same parameters as
above.
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Figure 3.3: contour of transit Probability (%) for Rpl and orbital periods as in Figure
3.2.

2006) (which itself does not show eclipses). The lower panel shows the simulated

transit light-curve for a rocky body of the size of the Earth in a ∼ 5h orbit.

To recover the transit signals injected into the set of synthetic light-curves I used a

modified Box Least Square (BLS) algorithm, see Kovács et al. (2002). I will describe

the implementation adopted in this work, and I will highlight the differences between

the classic BLS algorithm (Kovács et al., 2002) and my modified version.

3.2.3 Detecting transit signals

The BLS algorithm performs a least-square fit of box-like functions to the transit

light-curves, folded at different trial periods. The BLS algorithm is most sensitive

69



Chapter 3. Simulations 3.2. Simulations

when the modelled box-width closely matches the duration of the true transit signal.

Thus, to ensure that the BLS search was sensitive across the expected range of transit

durations, I chose to search a grid of durations of Dtr = [1, 2, 4, 8, 16, 32] minutes

(see also Figure 3.2). This frequency grid covers the range in transit duration for all

simulated light-curves over the parameter space (for brown dwarfs/gas giants and

terrestrial planets in orbit up to ∼ 15 days, see Figure 3.2 top panel). I define the

grid of frequencies sampled by the BLS as follows:

Fmax =
1

Pmin
, Fmin =

1

Pmax
, (3.1)

where Pmin ∼ 2 hour and Pmax ∼ 15 day. The number of sampling frequencies used

by the routine is given by:

nf =
int[Fmax − Fmin]

δF
, (3.2)

and I have chosen a fixed frequency step given by:

δF =
DtrFmin

∆T
, (3.3)

where Dtr is the transit duration and ∆T is the time spanned by the data. I only

accept trial periods if the difference between subsequent periods searched is >1 sec-

ond. This allows me to control oversampling at short periods.

I denote the data set by {mi}, of i = 1, ..., n observations, and define the residual

from each observation to be the stellar magnitude after subtracting the optimal
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Figure 3.4: A phase-folded light-curve for a simulated transit signal. The photo-
metric points falling in the transit bin are highlighted in red (L). H indicates the
out-of-transit light-curve (black).

average magnitude m̂, of the individual star, m̃i =
∑

i mi − m̂. Where m̂ is the

weighted mean defined as:

m̂ =

∑

i miwi
∑

i wi
(3.4)

where wi is the weight defined as wi = σ−2
i . The shape of the model light-curve

is approximated by a periodic two-level signal, an in − transit phase flagged as L

for low points, and an out − of − transit phase flagged as H for high points (see

Kovács et al. 2002, and Figure 3.4).

For each trial frequency I evaluate the phase folded light-curve and I define a set

of transit epochs, e , at phase intervals equal to the transit width. The number of
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Figure 3.5: Two examples of synthetic light-curves. Top, an eclipsing brown dwarf
in an orbit with a period of ∼ 2h, around a WD. Bottom, an Earth-sized companion
to a WD in ∼ 5h orbit.

epochs Ne (or bins) is given by Ne = P/Dtr, where P is the trial orbital period and

Dtr is the duration of the transit. I calculate χ2 over the Ne bins such that:

χ2 =
∑

i∈L

wi (m̃i − L)2 +
∑

i∈H

wi (m̃i − H)2 . (3.5)

where wi is calculated over the in-transit and out of transit light-curve respectively,

L indicates the sum over the transit bin, and H the sum over the out-of-transit

light-curve. In my implementation of the BLS, the number of epochs, Ne, at each
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iteration depends only on the trial period. Thus substantial computational speed

is achieved because the χ2 statistic of subsequent iterations is obtained simply by

adjusting for the number of bins Ne at different trial periods. The minimisation of

χ2 yields simple arithmetic weighted averages over the corresponding in-transit (L)

and out-of-transit (H) phases and are given by:

L̂ =
s

r
and Ĥ =

−s

t − r
(3.6)

where s =
∑

i∈L wim̃i, r =
∑

i∈L wi, and t = [
∑

j σ−2
j ], summing over the full

dataset. Thus the numerator in the equation 3.6 for Ĥ is obtained as − s =

∑n
j=1 −

∑

i∈H wim̃i. L̂ and Ĥ are the mean light levels inside of, and outside of tran-

sit.

To obtain equation 3.6 I write the sum over H as
∑

i∈H wi = t −∑

i∈L wi = t − r.

The variances for L̂ and Ĥ are:

V ar(L̂) =
1

r
, V ar(Ĥ) =

1

t − r
. (3.7)

It is straightforward to show that the square sum of the deviations D calculated in

Kovács et al. (2002) has the dimensions of χ2, once I multiply it by t, the sum of

the weights over the full dataset. I use the estimated values of L̂ and Ĥ to replace

the parameters in the expression for χ2 and obtain:

χ2 =
n
∑

i=1

wim̃i
2 − s2t

r(t − r)
(3.8)
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The improvement on the fit (χ2) to the data is defined as:

∆χ2 = χ2
0 − χ2 where ∆χ2 =

s2t

r(t − r)
(3.9)

and χ2
0 =

∑n
i=1 wim̃i

2 represents an intrinsic measure of the spread of the data. This

implies that ∆χ2 is proportional to the square of the S/N value of the transit event.

Thus I can write ∆χ2 = (S/N)2 where S/N is given by:

S/N =
δ

√

V ar(δ)
(3.10)

where the transit depth δ is given by δ = L̂ − Ĥ, that is:

δ =
st

r(t − r)
where V ar(δ) =

t

r(t − r)
. (3.11)

The χ2 computation is repeated for all epochs e in order to find the minimum of χ2

for each trial period.

Planetary detections are strongly affected by the signal-to-noise value of the transit

event. Good photometry is not always sufficient to ensure the detection of a transit;

and in particular, for signals dominated by noise structure correlated on the same

time scale as the transit (see Pont et al. 2006). Therefore, a S/N criterion has to

be satisfied in order to confirm a transit detection.

From consideration of pure random Gaussian noise I can derive an estimate for the

expected signal-to-noise SNE of a transit event on the basis of the a priori knowledge

of the expected depth of the signal (see Figure 3.2 lower-panel) and the quality of

SuperWASP data at different magnitudes.
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Figure 3.6: Estimated signal-to-noise for transit signals of the systems investigated
in this work (Blue dashed lines). I used the a priori knowledge of the quality of
SuperWASP data at different magnitudes and the expected depth of the transit
signals as illustrated in Figure 3.2-lower panel. I have considered light-curves of
3000 photometric points of photometric accuracy σ = 1% (V ∼12). The threshold
for detection is SNE > 6. This limit corresponds to the signal-to-noise limit that
minimises statistical false positives seen in Kovács et al. (2002). Black-solid line
indicates the transit duration in minutes.

3.3 Estimating SNE

I describe the quality of the light-curves using the individual photometric errors

σi as obtained from the SuperWASP archive. I then calculate the mean error as

< σ > which is used to describe the accuracy of each measurement in a white noise

light-curve. For a transiting planet the signal-to-noise is given by:

S/N =
δ

σ

√

Ntr (3.12)
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Figure 3.7: Same as Figure 3.6 but for σ = 5% (V ∼ 13).

where δ is the depth of the eclipse, and Ntr is the number of points in-transit. Using

equation 3.12 I can investigate the expected signal-to-noise values (SNE) for my

transiting planets in SuperWASP light-curves. I explored the SNE values in the

parameter space defined by companions from Moon size to Jupiter or brown dwarf

sizes (which have similar radii), system orbital periods between 2 hour to 15 day and

SuperWASP magnitudes of V ∼ 12, 13, 15 (which correspond to mean light-curve

photometric accuracies of σ ∼ 1%, 5% and 10%). A typical light-curve of about 3000

photometric points was considered. For each trial period P and transit duration Dtr

the fraction, Ntr, of photometric points falling in the transit bin is defined as:

Ntr = 3000 × Dtr

P
. (3.13)
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Figure 3.8: Same as Figures 3.6 and 3.7 for σ = 10% (V ∼15).

Then the expected signal-to-noise SNE is given by:

SNE =
δ

σ

√

Ntr (3.14)

where σ/
√

Ntr represent the standard deviation of the average of all measurements

within the transit bin. Following equations 10−11 from Kovács et al. (2002) I

consider a detection threshold of SNE > 6. This corresponds to the SDE = 6 limit

that minimises statistical false positives seen in Kovács et al. (2002). The SDE is

a measure of the statistical significance of transit detection (more details on SDE

statistics are also given in § 3.2). Figures 3.6, 3.7 and 3.8, show the results obtained

for the SNE. Blue-dashed lines are contours of constant values of SNE .

The behaviour of the SNE contours is due to the change between two different
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regimes: 1) when the planetary radius is smaller than the stellar radius (Rpl < R⋆)

and 2) for Rpl > R⋆. The knees in Figures 3.6, 3.7 and 3.8, appear at the transition

between the two regimes when Rpl = R⋆.

This becomes clearly visible if equation 3.14 is written in terms of the Rpl, R⋆ and

the orbital period P. Using Kepler third law the equation for the transit duration

can also be written in terms of the Rpl, the R⋆ and the orbital period P as follows:

Dtr = 2(Rpl + R⋆) × P−1/3 × (2πGM⋆)
−1/3 . (3.15)

Thus equation 3.13 becomes:

Ntr = CP−1/3 × P−1 , (3.16)

where C = 2×npts
(2πGM⋆)−1/3 , is a constant. The transit depth is also given by δ =

(Rpl/R⋆)
2. Now by using equations 3.15 and 3.16, equation 3.14 assumes the follow-

ing form:

SNE = k
(

Rpl

R⋆

)2
√

Rpl + R⋆ P−1/3 , (3.17)

where k is a new constant defined as k = C/σ. Finally in equation 3.17, the stellar

radius(R⋆) is also constant and for Rpl = R⋆ the depth of the transit event becomes

constant too. Therefore in the limit of Rpl < R⋆ equation 3.17 bec This becomomes:

SNE ≃ R2
pl P−1/3 , (3.18)
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Figure 3.9: SNE values for five different companions: Jupiter, the Earth, 0.6R⊕,
Mercury and the Moon. The estimated S/N is plotted versus the system orbital
period P.

this implies that at each constant SNE value the Rpl is proportional to the P1/6. On

the other hand, in the limit where Rpl > R⋆ I obtain:

SNE ≃ R
1/2
pl P−1/3 , (3.19)

so for a constant SNE value the Rpl is proportional to the P2/3. This explains the

SNE contours in Figures 3.6, 3.7 and 3.8. Figure 3.9 shows the trend of the SNE

values with respect to the orbital period P, for five fixed companion sizes: the Moon,

Mercury, 0.6×Earth, the Earth and Jupiter.

From the calculations above I find that for bright stars (V ∼ 12) companions of sizes
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even smaller than the Moon should have S/N values greater than 6SNE, and should

be detectable in SuperWASP light-curves (Figure3.6). For fainter white dwarfs only

bodies of increasingly larger sizes are detectable (Figure 3.7 and 3.8). If SuperWASP

light-curves were not affected by residual correlated noise my estimate could have

been considered a realistic description of SuperWASP detection limits. However, the

presence of red noise reduces the BLS power of the detected signal thus reducing

my detection rate. As discussed by Pont et al. (2006) in the presence of residual

correlated noise the S/N of a transit signal is described by:

(S/N)2 =
δ2

σ2
w

Ntr
+ σ2

r

nt

(3.20)

where σw is the standard deviation of the differential magnitudes in the transit bin

for white noise, σr is the red noise contribution, Ntr is the number of points in

transit and nt is the number of observed distinct eclipses. Therefore, I expect my

simulations to show lower detection rates and higher S/N detection thresholds for

red noise when compared to white noise simulations. Before testing my prediction I

have tested the BLS algorithm performance in the case of model light-curves of pure

random Gaussian noise with no injected transit signals. I have interpreted the BLS

power spectra in terms of the Signal Detection Efficiency (SDE) (see also Kovács

et al. 2002), which is a measure of the S/N at the highest peak in a periodogram

(more details are given in the next paragraph). This allowed me to test the algorithm

false detection rate and therefore to set a SDE threshold value for the detection of

a transit signature. In the following discussion I give a detailed explanation of the

different steps used in my approach.
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3.4 Characterisation of the BLS response

As discussed in paragraph §3.2.3 the Box-fitting routine first selects the highest S/N

value at each trial period and secondly the highest S/N value over the whole grid of

trial periods investigated (e.g. see equations 3.9 and 3.10). Because the detection of

a transit signature is strongly dependent on the S/N value (see equations 3.10 and

3.20), I want to be able to identify significant peaks in a BLS periodogram. Thus,

I define the Signal Detection Efficiency (SDE) (see Kovács et al. 2002) as:

SDE =
S/Npeak− < S/N >

σS/N

(3.21)

where S/Npeak is the S/N at the highest peak, < S/N > is the average S/N ,

and σS/N is the standard deviation of the S/N over the frequency band tested.

A Detection is then represented by the peak with the highest SDE. Because the

BLS algorithm uses a finite bin size, the BLS power spectra strongly depend on the

position of the transit within the folded time series. For unevenly sampled data

there is a large dispersion in Dtr/P = Ntr/Ntot at different epochs (see Gaudi et al.

2005). So that the SDE values strongly depends on the duration of the transit

event. The BLS algorithm performs better when the bin size matches the duration

of the transit event. Thus, the higher the number of bins used to partition the

phased light-curve the higher and more stable the SDE values. Lower numbers of

bins may yield lower SDE values due to occasional partial coverage of the transit

event and larger bin sizes (see e.g. Kovács et al. 2002). For each trial period P my

implementation of the BLS uses a bin dimension equal to the phase width of the

expected transit at that period. One consequence of this is that in cases for which
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the periods are multiples or sub-multiples of P , a fraction of in-transit points can

be distributed over different bins, resulting in poor BLS performance. In such cases

higher BLS power might be allocated to those periods.

In order to test the BLS response and to investigate the dependence of the SDE

on the transit duration I have modelled the set of simulated transit light-curves

to account for one hundred random phases offsets for each injected transit signal,

orbital period and transit duration. As a consequence the results of my simulations

should be equally effected by the above trend.

To assign a statistical significance to the highest peak in a BLS power spectrum

(indicating a detection) I have tested the algorithm performance in the case of

pure white noise data with no injected transit signals. By testing the algorithm

false detection rate I have identified a SDE threshold that allows me to distinguish

signals arising from real transits from those simply due to noise. This approach can

be compared to the false alarm probability (FAP) test, extensively used in Fourier

analysis (see for example the Lomb-Scargle algorithm, Scargle 1982; Press et al.

1992, and chapter 5).

3.4.1 BLS response to pure noise: testing the algorithm

false detection rate

I derive the Probability Distribution Functions (PDFs) of the SDE in the case of

data with no injected transits and only random Gaussian noise. Figure 3.10 shows

an example of the BLS response in the case of a white noise light-curve with no

injected transit signals. In Figure 3.10 the highest BLS power (y-axis) is chosen as
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Figure 3.10: BLS power spectrum for a light-curve of pure Gaussian random noise
with no injected transit signals.

in Figure 3.14 which shows for comparison the BLS response in the case of a transit

signal due to an Earth-sized body, injected in the same light-curve with a period of

∼ 5h.

I performed extensive numerical tests to calculate the PDFs for different numbers

of sampled frequencies, nf/2, nf/5, nf/7, nf/10, where nf is defined as in equation

3.2. If these frequency samples are statistically independent I expect the probabil-

ity of finding significant peaks in a noisy periodogram to increase as the number

of trial frequencies increases. I tested this assumption by fitting a semi-theoretical

model which estimates three different parameters: nf that identify the real number

of frequencies sampled, and a and b which account for the shape of the normal dis-

tribution describing the SDE (see Kovács et al., 2002, equation 7). In the following

I derive the theoretical model used to fit the PDFs; I refer the reader to Kovács

83



Chapter 3. Simulations 3.4. Characterisation of the BLS response

et al. (2002) for a full discussion. Using equation 3.21 I can express the probability

that SDE exceeds a generic value X as follows:

P (SDE > X) = P (S/Npeak > x) . (3.22)

I define p as the probability that S/N has a value > x over the Ne bins at a trial

frequency f . The probability that SDE is exceeding X over all possible realisations

ñ is then obtained as:

P (SDE > X) = P (S/Npeak > x) = 1 − (1 − p)ñ , (3.23)

the probability p can be estimated in the case of white noise light-curves with no

signal injected. In this case, the photometric errors of the data points are all equal

to σ (where σ is the average of the individual errors (σi) of the photometric points

in the real SuperWASP light-curve). Then the S/N becomes a zero-mean random

Gaussian variable with variance σ2/n. The distribution describing the probability

for the S/N is the Gaussian normal distribution. Thus I can write σS/N = aσ/
√

n

and < S/N >= bσ/
√

n where a =
√

1 − 2/π = 0.60 and b =
√

2/π = 0.80. The

value for a and b are obtained by calculating the standard deviation and the mean

using the definition of the Gaussian function. Then by replacing the variable S/N

by a normalised random variable ξ = S/N(
√

n/σ), I can write p as:

p = P (S/N > x)

= P (ξ > (x
√

n)/σ)

= 2(1 − Φ(x
√

n/σ))

= 2(1 − Φ(aX + b)) (3.24)
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where Φ is the cumulative distribution function of the normalised Gaussian variable.

I used a Levenberg-Marquardt algorithm (Marquardt, 1963) to fit the above model

to the data. Figure 3.11 displays the fit of the empirical PDFs (black lines) to the

models (colour lines), obtained for different nf . Figure 3.11 shows, as expected, that

the larger the number of sampling frequencies used, the higher the probability of

getting significant high SDE values, thus the false detection probability increases

for a given SDE threshold. I note that my implementation of BLS uses a finer

frequency sampling (of the order of 106), about two orders of magnitude larger than

the one used in Kovács et al. (2002), due to the short duration of the transits sought

in this work.

Figure 3.11 shows the selected detection threshold of SDE >7.3 (dashed line).

This choice corresponds to 10% false alarm probability due to noise. My choice is

justified by the relatively small size of the sample of white dwarfs investigated in

this work (see chapter 4). However, this false alarm rate might be too high in the

case of main-sequence stars where the sample size is considerably larger (millions).

I used the knowledge of the algorithm false alarm rate to define a set of empirical

criteria for a transit detection. These criteria allow me to investigate the detection

efficiency for my set of synthetic light-curves with injected transit signals. A transit

is considered successfully recovered if a peak in the periodogram is within 0.003d of

the correct (inserted) period, or is identified as one of its harmonics, and in addition

has a value of SDE > 7.3.

I used the above criteria to characterise the real detection rate of my implementation

of the BLS algorithm in the case of the set of synthetic light-curves containing
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Figure 3.11: Probability distribution functions for different values of the trial fre-
quencies (solid coloured lines) and the relative semi-theoretical fitted models (solid
black lines), for light-curves of just random white noise. The y-axis indicates the
probability that SDE exceed a given value X, where X (x-axis) is defined by equa-
tions 3.22 and 3.21. The number of trial frequencies, nf defined in equation 3.2, is
indicated in the top right corner for each model (colour). For statistically indepen-
dent frequencies, the larger the frequency band tested the higher is the probability
of getting a high SDE value, i.e. a high peak in the BLS power spectrum. The
dashed line shows the detection threshold, here set at 7.3SDE.
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injected transit signals covering the parameter space defined in paragraph § 3.2.2.

3.5 Results

I summarise my results in the case of a bright V ∼ 12 star for transit signals injected

into Gaussian random noise data, and red noise data. I show the detection recovery

rate for five companion sizes: BD/Gas giant (10−12R⊕), the Earth, 0.6R⊕, Mercury

(0.34R⊕) and the Moon (0.28R⊕), at three randomly chosen, orbital periods in my

period window (2h - 15d). Table 3.5 shows from left to right: companion size in R⊕,

orbital period P in (days), transit duration Dtr (minutes), d the detection rate of

systems with SDE > 7.3 (%), dbt the rate of injected systems recovered with SDE

values below the detection threshold (%), and dnotr, the number of simulated light-

curves for which no points were found in transit (%). dnotr quantifies in percent the

number of synthetic light-curves that, for a given transit zero-point, orbital period

and time coverage, happen to have no photometric points covering the transit phase

(see the previous discussion concerning the BLS power spectral dependence on the

transit phase zero point).

I note that in Table 3.5, for long orbital periods (e.g. > 3.6 days) the BLS detec-

tion rates for red noise simulations are higher compared to the white noise case. In

addition, in the case of the Moon the detection rate, d, is higher at P ∼ 3.6 days

compared to P ∼ 0.22 days. This is contrary to expectations. I rather expected to

have lower detection rates in the case of red noise. This anomaly is explained by

analysing my implementation of the BLS algorithm in more detail.
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Figure 3.12: Phase folded light-curve for the transit of Earth in ∼ 5h orbit. When
the trial period correspond to the inserted period all the in-transit points fall in the
transit bin yielding high S/N values. The vertical dashed lines show the bin size for
the correct orbital period.

The behaviour of the BLS fitting routine is dominated by effects induced by large

signal amplitudes and by my choice to use a fixed grid of transit durations. Conse-

quently, a large number of additional peaks (aliases) of high power are introduced

into the BLS power spectra, which can result in false detections.

The expected appearance of a simulated light-curve folded on the right (injected)

orbital period is shown in Figure 3.12 for an Earth-sized companion in ∼ 5h orbit.

However, when a trial period is not the correct inserted period or one of its harmon-

ics, Figure 3.13 shows the form assumed by the phased light-curve. Although the

in − transit points are rearranged over the entire phase interval [0,1], they can not

be hidden in the scatter of the out-of-transit light-curve. In the case of extra-solar

88



Chapter 3. Simulations 3.5. Results

Figure 3.13: Phase folded light-curve for the transit of Earth in ∼ 5h orbit, phased at
a random period. Because of the large depth of the transit signal (∼ 70%) multiple
bins share some of the in-transit points. This results in non-zero S/N values allocated
at wrong periods. The vertical dashed lines show the bin size.

planets around solar-type stars, which have very shallow transits compared to WDs,

folding at the wrong orbital period produces a flat permutation of the original data

resulting in an approximately zero χ2 value (for my simulations only in the case

of Moon-sized objects the transit depth, ∼ 1−3%, is comparable to that of a Hot

Jupiter planet around a solar-type star, ∼ 1%). For the signals investigated in this

work, it is clear from Figure 3.13 that every wrong trial period searched, will yield

positive χ2 values corresponding to a non-zero S/N in the periodogram. In addition

my implementation of the BLS routine searches for transits of short durations over

a fixed grid of Dtr = 1, 2, 4, 8, 16, 32 minutes, which results in large numbers of bins
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partitioning the phase folded light-curve (where nbins = P/Dtr) (see Figure 3.13).

Because the number of points in the transit bin decreases with increasing orbital

period for the same transit duration, the χ2 evaluations over bins containing no

points in-transit, will have increasingly higher statistical significance. This increases

the value of the S/N allocated to intermediate and long (hour to day) trial periods

(see Figure 3.14), and explains the sometimes higher detection rates observed at

long orbital periods for the red noise simulations listed in Table 3.5). At the far end

of the period range searched, the numbers of bins becomes so high (nbins = P/Dtr)

that individual bins contain only a few points. The step-like structure which ap-

pears at long periods in the BLS periodogram as shown in Figure 3.14, is due to

subsequent in-transit points jumping out of a bin. Thus, different permutations of

the phased light-curve may have equal numbers of bins containing the same number

of in-transit points, resulting in equal S/N values. In the limit at which as little as

2 points fall within a bin the χ2 calculations are no longer reliable, with instabilities

arising for bins containing less than 5 points (Wall & Jenkins, 2003).

In addition to the problems highlighted above, SuperWASP red noise light-curves

have a residual correlated noise component. Consequently spurious periods can

achieve even higher statistical significance, in particular for periods which are in

any way correlated to one day and its harmonics (SuperWASP data are severely

affected by the day-night alternation). Last but not least, I note that to simulate

the effect of red noise I have used a set of real SuperWASP light-curves in which I in-

jected simulated transit signals. As a result, small differences in the time baseline of

individual light-curves and differences in the data quality also play a rôle in adding

extra noise components. This might be important for the transits of rocky bodies

of sizes similar to the Moon, for which the number of detections strongly depends

90



Chapter 3. Simulations 3.5. Results

Figure 3.14: BLS power spectrum for the transit signal of an Earth in orbit with ∼ 5h
period. While the correct (inserted) period is recovered, strong aliasing and noise
structure are present, particularly at long periods, see text for a detailed discussion.

on the χ2 values near the detection threshold. In these cases even a change in χ2

of 5% can have significant effects on the inferred detection probability. Table 3.5.1

shows the detection rate for a rocky body, with a radius similar to the Moon, but

with a change of 5% in the value of the detection threshold. I define OTH to indicate

the detection rates (d, dbt, dnotr as defined in Table 3.5) obtained with the original

threshold of SDE > 7.3 and I define MTH to indicate the modified detection rates

obtained when using a threshold of OTH × 1.05. Table 3.5.1 shows that the change

in χ2 is sufficient to drastically reduce the BLS detection sensitivity.

;
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Table 3.1: Results from simulations using the first implementation of the BLS rou-
tine, for five companion sizes: BD/Gas giant, the Earth, 0.6×Earth, Mercury and
the Moon, for three, randomly chosen, orbital periods in the period window, for
white and red noise simulations. In both cases d is the detection rate of systems
with SDE > 7.3 (%), dbt is the rate of injected periods with SDE below the de-
tection threshold (%) and dnotr the number of simulated light-curves for which no
points were found in transit (%).

White noise Red noise

Size Rpl P Dtr d dbt dnotr d dbt dnotr

R⊕ (days) (min) (%) (%)

BD-Gas Giant 10-12 0.08 6.65 100 0 0 99 1 0
” ” 3.60 19.88 100 0 0 99 1 0
” ” 14.72 32.18 78 22 0 83 17 0

Earth 1 0.22 1.70 100 0 0 98 2 0
” ” 3.60 4.21 77 22 1 81 19 0
” ” 14.72 6.82 5 93 2 21 47 2

0.6Earth 0.6 0.22 1.42 100 0 0 64 36 0
” ” 3.60 3.51 69 27 4 27 73 0
” ” 14.72 5.69 3 88 9 7 84 9

Mercury 0.45 0.22 1.32 100 0 0 8 92 0
” ” 3.60 3.25 63 34 3 5 94 1
” ” 14.72 5.26 2 89 9 3 88 9

Moon 0.27 0.22 1.19 80 20 0 0 100 0
” ” 3.60 2.94 3 94 3 2 98 0
” ” 14.72 4.76 0 89 11 0 86 14
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3.5.1 Optimised BLS implementation

In order to improve the performance of my implementation of the BLS algorithm I

have developed a modified version of the previous routine. I used the same grid of

frequencies as defined in equations 3.1 to 3.3, but I adopted a logarithmic frequency

step compared to the fixed step used before. The difference between the frequencies

sampled is chosen such that the accumulated phase difference between successive

trial frequencies, over the full dataset, corresponds to the width of the transit at

the longest period searched. This accounts for the oversampling at short periods

and allows me to match more closely the model box-function to the expected transit

signal for each orbital period searched. For the χ2 evaluation I used only phase-bins

which contain at least five photometric points. In addition, I have only selected

transits for which at least five distinct eclipses were observed over the entire obser-

vations (∼ 120−150 days per season for a typical SuperWASP light-curve). Because

the majority of the spurious structure in the BLS periodogram is due to the large

amplitude of the transit signals, I have introduced an additional down-weighting

method applied on a per bin base. The down-weighting is performed at the time of

the calculation of the ∆ χ2 (see equation 3.9) in the transit bin and consists of:

S/N =
δ

√

V ar(δ) + w̃2
, (3.25)

where w̃ is the root mean square (rms) of the differential magnitudes inside the

transit bin. The down-weighting adds an extra term in the calculation of the signal-

to-noise value (see e.g. equation 3.10) of the transit event and reduces the S/N

allocated to bins which contain a mixture of in-transit and out-of-transit points.
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This should account for the spread of the in-transit points over different bins in the

folded time series in the case of periods which are not the correctly inserted period

(see Figure 3.13). At the correct orbital period all the in-transit points should be

found in the same bin resulting in higher values of S/N . In order to investigate

the sensitivity of this version of the BLS routine I tested the algorithm response

for pure white noise light-curves. I found that my optimisation of the BLS can

achieve lower SDE threshold values for detection when using the same sample of

trial frequencies as before. Figure 3.15 shows the PDFs (black curve) from data and

in colour the fitted model as derived in § 3.3.2. The detection threshold indicated

by the dashed line is reduced to 6.3SDE (compared to 7.3SDE before). I have

analysed the set of simulated transit light-curves using the same empirical criteria

for detection as derived in § 3.4 but now using the detection threshold obtained

above. The optimised BLS implementation yields much cleaner periodograms where

the structure seen in Figure 3.14 is significantly suppressed. In addition, the SDE

values of detected transit signals have higher statistical significance. Figure 3.16

shows the BLS power spectrum for the same transit of Figure 3.12. I recover the

same transit signal, the periodogram is clean, and the detection has a much higher

S/N value. However, because I have more stringent requirements on the number of

points per bin (≥ 5) and the number of observed transits per light-curve (≥ 5) the

probability of detecting long periods transits is strongly reduced.

I summarise the results obtained using the optimised version of the BLS algorithm

in Table 3.3. Table 3.3 shows the cut-off in the detection rate at long periods and for

small companion sizes. Indeed, companions as small as the Moon can have very short

transit durations (Figure 3.2), and this may result in not enough in-transit points in

a synthetic light-curve. This is also illustrated in Figures 3.17 and 3.18 which show
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Figure 3.15: PDF function for the modified-optimised BLS routine. The dashed-line
shows the new detection threshold 6.3SDE for a 10% noise contribution.

the SDE values for the transiting system recovered using my implementation of the

BLS algorithm, plotted against the orbital period of the recovered systems. Figure

3.17 shows the detection limits for sub-stellar and planetary companions to a white

dwarf of magnitude V ∼ 12. Figure 3.18 illustrates the same for a white dwarf of

V ∼ 13 and V ∼ 15. Small planetary companions in long period systems have SDE

values below the selected detection threshold of 6.3SDE and consequently are not

detected.

Finally, I note that the SDE values for the transit signals of the simulated systems

in the case of red noise are more than three times lower than the one estimated using

the näive assumption of Gaussian random noise, as expected from the discussion in

paragraph § 3.3.

The results obtained from my simulations show that in the case of Gaussian random

noise my implementation of the BLS routine is sensitive to the transit of a Moon-
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Figure 3.16: BLS power spectrum as in Figure 3.14 obtained with the improved BLS
routine. I show that for the same transit signal I achieve higher S/N values and
higher statistical significance (i.e. higher SDE values). The noise structure present
is Figure 3.14 is importantly reduced.

sized companion orbiting a V ∼12 white dwarf. For fainter stars only increasingly

larger rocky bodies can be detected. The improvements I have obtained upon the

BLS routine, allows me to achieve high detection rates of higher S/N values, even

in the case of correlated noise in the data. However, as expected in the presence

of red noise I obtained lower detection rates compared to the case of uncorrelated

(white) noise. This is in agreement with the prediction based on white noise data

(see e.g. § 3.3). Nevertheless, even in the presence of residual noise I find that

Earth-sized companions remain readily detectable even in low signal-to-noise light-

curves. For good quality data in the case of bright white dwarfs (V ∼ 12) Mars-sized

companions and even smaller Mercury-like planets could be detected in SuperWASP
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Figure 3.17: SDE values for the simulated transit signals recovered by my BLS
algorithm in the case of red noise simulations. The Simulations cover companions
raging from the Moon size to Jupiter or brown dwarf sizes orbiting a V ∼ 12 white
dwarf. The lower-panel shows that for a bright V ∼ 12 WD bodies as small as
Mercury and even the Moon can have transit signals detectable in good S/N light-
curves.

light-curves as shown from the results of my simulations (Table 3.3). In addition,

my results have been obtained simulating transit light-curve with a time span of

a typical SuperWASP season (120−150 days). Thus, an analysis of light-curves

covering multiple SuperWASP season might increase S/N values of transit signals

and thus my detection rate, as more distinct eclipses can be observed (see also Smith

et al. 2006).
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Figure 3.18: SDE results as in Figure 3.17 but for a white dwarf of magnitude
V ∼ 13 and V ∼ 15. For fainter magnitudes WDs increasingly higher radius rocky
bodies are detectable. However, the Figure shows that Earth size companions and
even smaller bodies remain readily detectable.

Table 3.2: The detection rate for a transit of a Moon-sized rocky body when
5% change in the detection threshold is considered. This results in a drastic re-
duction of the BLS detection sensitivity. OTH indicates the detection rates (d, dbt,
dnotr) obtained with a detection threshold of 7.3SDE, MTH indicates the detection
rates obtained when using a modified detection threshold of 1.05×OTH . d, dbt and
dnotr are defined as in Table 3.5.

OTH MTH

Size Rpl P d dbt dnotr d dbt dnotr

R⊕ (days) (%) (%)

Moon 0.27 0.08 80 20 0 37 63 0
” ” 3.48 3 94 3 0 97 3
” ” 14.72 0 89 11 0 89 11
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3.6 Conclusions

I have investigated the characteristics and detection limits for sub-stellar and terres-

trial companions to white dwarfs in the SuperWASP survey. I have used SuperWASP

photometric data to create a set of synthetic light-curves for simulations performed

in the case of white and red noise. Using my first implementation of the BLS algo-

rithm I found that the behaviour of the BLS was compromised by the characteristics

of the signals simulated here. In order to better account for the large amplitudes

and very short durations of the transit events I have modified the BLS algorithm.

The new optimised version of the BLS allowed me to obtained higher signal-to-noise

values by reducing importantly the red noise and the large signal depths contribu-

tion to aliases in the BLS periodograms. My final results show that in the case of

white Gaussian noise my modified BLS code is sensitive to rocky bodies of sizes

comparable to the Moon. Although the BLS detection sensitivity is reduced for

red noise data, nevertheless, I find that Earth-sized companions to white dwarfs are

readily detectable and even Mercury sized bodies are detectable, at an acceptable

level, in good quality data from current ground-base photometric surveys such as

SuperWASP.

In the work carried out here I have pushed the BLS algorithm to its limit of ap-

plicability. Kovács et al. (2002) firstly developed the routine to detect the transit

signals of Hot Jupiter planets orbiting solar-type stars. The characteristics of the

transit light-curves of known extra-solar planets cover a different set of parameters

compared to the signals of the systems subject to my investigation. I have modi-

fied the routine by introducing a down-weighting scheme that helps account for the
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shape of the phased time series of my dataset (see Figure 3.13). However, I suggest

that more than one algorithm should be used to certify a transit detection. A suit-

able alternative solution may be offered by the “Rayleigh test” (see Kruger et al.

2002, and references therein) which could account for the large depth of the signal

simulated in this work.

The Rayleigh test searches for periodicities in time series by detecting a preferred

direction in circular data spanning angles from 0 to 2π. For a light-curve of m

photometric points recorded at arrival times ti with i = 0, ..., m the Rayleigh test

evaluates the phase value of each point for a trial frequency f as follows:

φi = 2πfti . (3.26)

Each event is considered to identify a unit vector of components (cosφi,sinφi), then

the sum of all vectors (mR) will line up if there is a preferred phase in the data.

The Rayleigh power is calculated as:

R(fi) =
1

m

[

m
∑

i=1

sin(2πfti)

]2

+
1

m

[

m
∑

i=1

cos(2πfti)

]2

. (3.27)

If the analysis of R(fi) has a large magnitude for a particular trial period, a periodic

signal maybe present at that period. The Rayleigh test has been extensively used

to search for periodic signals, an example of its application is the analysis of time-

tagged event data from observations of gamma-ray bursts (Kruger et al. 2002).

The key argument of the Rayleigh test is to look for periodicities in the light-curve

arrival times, whereas the BLS algorithm identifies periodicities related to detectable

100



Chapter 3. Simulations 3.6. Conclusions

changes in the values of the light-curve flux. A different approach would be to first

isolate the hypothetical points in-transit by σ-clipping the mean light-curve points to

identify all the outliers. Then, the Rayleigh test can be used to look for periodicities

in the arrival times of these outliers. This approach could be applied to identify the

presence of transit signals of large depths appropriate for this work. However, the

BLS routine remains a very powerful algorithm for the detection of the signature of

very shallow transits as in the case of extra-solar planets around solar-type stars.

Finally, for the shape and characteristics of the transit signals studied in this work,

a combined approach which uses the above idea and the BLS algorithm may yield

higher detection rates.
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Table 3.3: Detection efficiency for the new optimised im-

plementation of the BLS algorithm. From left to right

I list the companion size, the SuperWASP magnitude

Vmag, the orbital period P and the results obtained for

red noise simulations compared to the white noise case.

The detection rate d, dbt and dnotr are described in Table

3.5.

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

BD 12 0.08 100 0 0 100 0 0

” ” 0.22 100 0 0 100 0 0

” ” 0.87 100 0 0 100 0 0

” ” 1.56 99 1 0 98 2 0

” ” 3.60 24 25 0 21 32 0

” ” 8.30 0 0 0 0 0 0

” ” 14.7 0 0 1 0 0 1

BD 13 0.08 100 0 0 100 0 0

” ” 0.22 100 0 0 100 0 0

” ” 0.87 100 0 0 100 0 0

” ” 1.56 95 2 0 98 0 0

” ” 3.60 24 25 0 6 31 0

Continued on next page
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Table 3.3 – continued from previous page

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

” ” 8.30 0 5 0 0 7 0

” ” 14.7 0 0 1 0 1 0

BD 15 0.08 100 0 0 100 0 0

” ” 0.22 100 0 0 100 0 0

” ” 0.87 100 0 0 100 0 0

” ” 1.56 98 0 0 91 3 0

” ” 3.60 4 33 0 8 44 0

” ” 8.30 0 5 0 0 8 2

” ” 14.7 0 0 1 0 2 0

Earth 12 0.22 100 0 0 100 0 0

” ” 0.87 76 5 0 67 10 0

” ” 1.56 48 19 0 37 30 0

” ” 3.60 5 7 0 2 4 0

” ” 8.30 0 0 7 0 0 7

” ” 14.7 0 0 6 0 0 6

Earth 13 0.22 100 0 0 100 0 0

” ” 0.87 74 11 0 64 6 0

” ” 1.56 37 30 0 21 17 0

Continued on next page
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Table 3.3 – continued from previous page

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

” ” 3.60 2 34 0 3 36 0

” ” 8.30 0 4 7 0 5 7

” ” 14.7 0 0 6 0 2 6

Earth 15 0.22 100 0 0 100 0 0

” ” 0.87 65 11 0 66 8 0

” ” 1.56 37 30 0 6 43 0

” ” 3.60 2 34 0 1 49 0

” ” 8.30 0 4 7 0 7 8

” ” 14.7 0 0 6 0 1 6

0.6Earth 12 0.22 98 2 0 96 4 0

” ” 0.87 44 14 0 41 6 0

” ” 1.56 31 17 3 20 19 3

” ” 3.60 3 2 1 2 1 1

” ” 8.30 0 0 15 0 0 15

” ” 14.7 0 0 12 0 0 12

0.6Earth 13 0.22 84 1 0 55 29 0

” ” 0.87 42 11 0 16 26 0

” ” 1.56 15 20 0 4 53 3

Continued on next page
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Table 3.3 – continued from previous page

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

” ” 3.60 3 35 1 2 37 1

” ” 8.30 0 5 16 0 4 15

” ” 14.7 0 2 15 0 0 12

0.6Earth 15 0.22 10 18 0 0 9 0

” ” 0.87 7 17 0 0 27 0

” ” 1.56 4 44 0 0 52 3

” ” 3.60 1 50 1 0 36 1

” ” 8.30 0 7 20 0 4 15

” ” 14.7 0 1 13 0 0 12

Mercury 12 0.22 86 6 0 78 2 0

” ” 0.87 25 26 0 24 19 0

” ” 1.56 12 14 3 8 9 3

” ” 3.60 2 0 1 0 0 1

” ” 8.30 0 0 17 0 0 17

” ” 14.7 0 0 15 0 0 15

Mercury 13 0.22 22 19 0 0 8 0

” ” 0.87 16 15 0 0 26 0

” ” 1.56 13 22 0 0 51 3

Continued on next page
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Table 3.3 – continued from previous page

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

” ” 3.60 1 35 2 0 35 1

” ” 8.30 0 4 19 0 4 17

” ” 14.7 0 2 17 0 0 15

Mercury 15 0.22 5 8 0 0 8 0

” ” 0.87 5 18 0 0 26 0

” ” 1.56 3 45 0 0 50 3

” ” 3.60 0 49 1 0 35 1

” ” 8.30 0 6 21 0 4 17

” ” 14.7 0 1 14 0 0 15

Moon 12 0.22 38 13 0 4 26 0

” ” 0.87 12 24 0 1 30 0

” ” 1.56 4 33 3 1 37 3

” ” 3.60 0 0 1 0 0 1

” ” 8.30 0 0 21 0 0 21

” ” 14.7 0 0 18 0 0 18

Moon 13 0.22 12 8 0 0 8 0

” ” 0.87 8 15 0 0 26 0

” ” 1.56 3 23 0 0 50 3

Continued on next page
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Table 3.3 – continued from previous page

White noise Red noise

size Vmag P d dbt dnotr d dbt dnotr

(days) (%) (%)

” ” 3.60 0 35 5 0 35 1

” ” 8.30 0 4 20 0 4 21

” ” 14.7 0 2 19 0 0 18

Moon 15 0.22 4 7 0 0 8 0

” ” 0.87 4 18 0 0 26 0

” ” 1.56 1 43 0 0 49 3

” ” 3.60 0 49 4 0 35 1

” ” 8.30 0 6 24 0 4 21

” ” 14.7 0 0 17 0 0 18
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Chapter 4

Data analysis

Abstract

The simulations explored in chapter 3, show that sub-stellar objects and even smaller

planetary companions to white dwarfs have eclipses and transit signals detectable in

SuperWASP light-curves. Encouraged by my results I have investigated the possi-

bility of detecting the signal of any such system in a sample of nearby white dwarfs

brighter than V ∼ 15 for which I have SuperWASP data. I have searched for

eclipses and transits signals in my sample of 194 white dwarfs, resulting from the

cross-correlation of the McCook & Sion catalogue and the SuperWASP data archive.

I used my own implementation of the Box-fitting routine as describe in chapter 3.

In addition, I visually inspected the light-curve of each star in the sample. This

study found no evidence for transits due to sub-stellar or terrestrial companions to

stars in my sample. I used this key result to obtain an upper limit to the frequency

of sub-stellar and planetary companions around white dwarfs.
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Figure 4.1: Sky coverage for the 194 stars in my sample of white dwarfs observed
by SuperWASP.

In the following I describe the selection method used to identify the white dwarf

sources incorporated in the final target sample, the results obtained from the transit

search by means of my BLS routine and the visual inspection of the light-curves. I

finally discuss the implications of my null result and estimate an upper limit for the

frequency of sub-stellar and terrestrial companions to white dwarfs.

4.1 White Dwarfs in the SuperWASP archive

My sample of white dwarf targets consists of all objects resulting from a cross-

correlation of the McCook & Sion catalogue (McCook & Sion, 2003) and the Su-
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perWASP data archive. The total number of matched sources is 347. In order to

maximise my detection probability I have used light-curves de-trended by means of

the Tamuz algorithm (Tamuz et al. 2005). As described in chapter 2, the Tamuz

algorithm is very efficient in removing sources of systematic errors from the data

(red noise), thus increasing the signal-to-noise of a transit signal. Of the 347 Super-

WASP objects I only considered sources with more than ∼ 600 photometric data

points per light-curve. This is equivalent to a minimum of ∼ 11 observing nights,

for a night of ∼ 8 hours and a sampling cadence of ∼ 8−10 minutes. In this way,

all selected sources, have sufficient numbers of observations to allow the successive

observations of individual planetary eclipses. This selection reduces the number of

SuperWASP targets to 213. In addition, I have analysed each individual light-curve

and applied a data quality test to reject data of very poor quality. Because of the

very large signal amplitudes of the systems investigated here, chapter 3, § 3.2.1, I do

not remove the light-curve outliers by sigma-clipping, instead I identify and reject

bad quality observations. These photometric points have large associated errors and

only contribute to the residual noise component. The quality test used evaluates

the value qi for every photometric measurement in a light-curve using the individual

magnitude errors σ̃i added in quadrature to the estimated systematic errors σt(i)

introduced into individual frames by for example, passing clouds, Sahara-dust and

other transient phenomena which degrade the extinction correction (see e.g. Collier

Cameron et al. 2006). Thus qi is obtained as:

qi =

√

(σ2
t(i) + σ̃2

i ) (4.1)

where σ̃i are individual magnitude errors calculated as:
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σ̃i =
2.5

ln(10)

(

Fi

σi

)

, (4.2)

where Fi are the individual flux measurements and σi are the relative photometric

errors. SuperWASP magnitudes are calculated as:

magi = −2.5Log10

(

Fi

106

)

, (4.3)

where the denominator in the log function gives the magnitude zero-point in µVega.

Visual inspection of the 213 light-curves shows that points with qi ≥ 0.3 can be

rejected and are associated with nights in which the observational conditions are

poor (e.g. bright sky due to Moon light, poor seeing, etc.). For each light-curve I

have selected only photometric points for which qi is ≤ 0.3. As a result the number

of SuperWASP targets with more than 600 photometric points is further reduced to

200. Among the 200 stars, I find six duplicate SuperWASP counterparts to the same

McCook & Sion targets. This can be related to the characteristics of the USNO-B1

catalogue (Monet et al., 2003), used by the SuperWASP pipeline to perform the

fields astrometric solution (see chapter 2, § 2.4; and Pollacco et al. 2006). Firstly,

the USNO-B1 catalogue contains spurious entries caused by optical artifacts related

to diffraction spikes and reflection halos in the original imaging data (for more de-

tails see Barron et al. 2008). Secondly, because of the large SuperWASP pixel size

(13.7
′′

pixel−1), in some cases the duplicate SuperWASP sources can be due to real

individual entries in the USNO-B1 catalogue. In such cases both stars are detected

in the same SuperWASP pixel and can not be separated. Here I have selected the

brightest of the two SuperWASP entries and/or the one which had either the longest

duration or the greatest number of points. I considered, where possible, data with
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multi-season observations ranging from 2004 up to 2008. This allows me to increase

the signal-to-noise (see equation 3.10 from chapter 3) and thereby increase my de-

tection probability. My final sample contains 194 SuperWASP unique matches to

the McCook & Sion catalogue white dwarfs. The stars in the sample are distributed

over both hemispheres, north and south, with the majority in the north. Figure 4.1

shows the sky coverage for the 194 stars in my sample.

My sample covers magnitudes in the range V ∼ 9 to V ∼ 15. SuperWASP

can achieve high photometric precision < 1% for sources brighter than V ∼ 12

while for increasingly fainter sources the photometric precision becomes increasingly

lower. Figure 4.2 shows the quality of four SuperWASP light-curves for magnitudes

V ∼ 10, 12, 13, 15. Figure 4.2 illustrate the data quality after de-trending with the

Tamuz algorithm and after I applied my quality test. However, residual systematic

trends can still be present in the data in particular at periods connected to the

day-night alternation and/or connected for example to residual Moon-light varia-

tion. This is the case of star 1SWASP J0222440.83+400823.0, Figure 4.2 top-left

panel (V ∼ 10). The star light-curve shows brightness variations and low photo-

metric points, outliers, however, a detailed analysis of the light-curve by means of

the BLS algorithm and by visual inspection did not find evidence of companions.

SuperWASP photometric precision decreases for fainter magnitude stars and for

white dwarfs close to the SuperWASP faint magnitude limit (V ∼ 15) SuperWASP

photometric precision is ∼ 10%, see for example Figure 4.2 lower-right panel. The

scatter in the data around the mean light-curve is σ = 0.12 ≃ 12%. This is roughly

equivalent to the amplitude of a transit signal due to a body of size comparable to

or greater than Mercury (see chapter 3, Figure 3.2, lower panel), and in some cases
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can preclude transit detection.

I present the entire list of 194 sources in Table 4.1. I have used the BLS implemen-

tation described in chapter 3, § 3.4.1 to search for eclipses and transit signals. To

date I find no evidence for transiting sub-stellar or planetary companions for the

stars in my sample. Table 4.1 summarises my results. For each entry I quote the

SuperWASP identifier (1SWASP), the WD name (McCook & Sion, 2003), the Su-

perWASP magnitude (as from equation 4.3) and the number of photometric points

in the light-curve (N).

4.2 Visual inspection of SuperWASP light-curves

As well as using the Box-fitting algorithm I also visually inspected each individual

light-curve in the sample. The transit signal of systems subject to this study are

expected to have very short transit durations (as short as ∼ 1 minute, see Figure 3.2).

This might be equivalent to one individual photometric point, periodically dropping

in a light-curve. Therefore, visual inspection of individual light-curves can help to

identify the signature of a transit event from a non-detection. Figure 4.3 shows an

example of a simulated transit event. The top-left panel shows the simulated transit

light-curve of an Earth-sized companion injected with an orbital period of ∼ 3.6 days.

The top-right panel shows a magnified version of this Figure, in the vicinity of a

transit event (highlighted in red). Bottom-left and right panels, as above but in this

case plotting fluxes versus integer numbers, which allows removal of time gaps in the

light-curve due to the day and night alternation, bad weather etc. In this way I can

easily identify light-curves which might have interesting features. For example, eye-
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Figure 4.2: Four examples of white dwarf targets among the sample of 194 stars.
From top-left to bottom-right I plot the sources 1SWASP J022440.83+400823.0 (V ∼
10), 1SWASP J015202.95+470005.5 (V ∼ 12), 1SWASP J061000.36+281428.4 (V ∼
13), 1SWASP J215453.40−302918.4 (V ∼ 15). The four panels illustrate SuperWASP
photometric precision for four magnitudes ranges covering the magnitudes of white
dwarfs in the SuperWASP archive. The light-curves are plotted after de-trending
by means of the Tamuz algorithm and after the application of my data quality test.
Nevertheless, residual are still present in the data as illustrated in the top-left panel.
These residuals can be due to the day-night alternation and/or residual Moon-light
variations. I note that outliers are present in the plotted light-curves. However, a
detailed analysis of these targets (BLS + visual inspection) found no evidence of
companions.
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Figure 4.3: Top panels: left shows the synthetic transit light-curve for an Earth-
sized body in orbit with period ∼ 3.6 days. Right shows a magnified view of the
region of the first transit event. Lower panels show the same light-curve by plotting
fluxes versus integer numbers. This eliminates time gaps and may help to identify
individual, periodically dropping points, transits, that were not detected by the BLS
algorithm.

balling might help in the case of long period systems which can remain undetected

because of the period cut-off (at long orbital period) used by my implementation

of the BLS algorithm. I used a cut in the number of photometric points in-transit

(>5) and on the number of individual observed eclipses over the time of observation

(>5). Therefore, eye-balling can identify targets for which further analyses might

be warranted (for example,when more data become available in the archive).
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4.3 Results

To date I find no evidence for transiting sub-stellar or planetary companions for the

stars in my sample. The data quality and more importantly, the relative small size

of the white dwarf sample, do not allow me to definitively conclude on planetary

survival to post main-sequence stellar evolution. The detection sensitivity of each

individual star in the sample depends on numerous factors such as the stars magni-

tude, the light-curve photometric accuracy, the time sampling and the presence of

long gaps in the observations. Different observing seasons and fields may be more

or less affected by the presence of correlated noise (red noise), and different Super-

WASP cameras might be affected by residuals due to different sources of distortion

(e.g. vignetting, flat fielding, background subtraction). Some SuperWASP fields

may be more crowded than others. Moreover, my simulations only cover Super-

WASP magnitudes of V ∼ 12, 13, 15. The sample of stars analysed here covers

magnitudes ranging from V ∼ 9 to V ∼ 15. Thus, the detection limits for the 194

white dwarf targets might be slightly different from the limits obtained from my

simulations. Thus to obtained detection limits related to the sample of white dwarfs

I have combine the results obtained from simulations with the results of the analysis

of the 194 white dwarfs. This allowed an estimate of my detection sensitivity for

each individual star in the sample.

As discussed above, the response of the BLS algorithm depends on many different

factors. For example, for a given orbital period and transit duration the BLS ability

to recover the transit crucially depends on the coverage of the transit event in the

light-curve. Thus it is not possible to make definitive statements about individual
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objects. However, it is possible using my results on various system configurations to

make statements about the population as a whole, or probabilistic statements about

individual objects. When the BLS algorithm is used to analyse the 194 light-curves,

the majority of the WDs are detected with periods within 0.02d (∼ 30 minutes)

from one day period and its harmonics, suggesting that a large number of stars just

show periodical variations due to the SuperWASP observational window function.

The analysis of SuperWASP light-curves is in general affected by the presence of

these periodic features which show real power in the BLS power spectrum due to

the day and night alternation in the observations (see chapter 5 for more details on

this point). In fact the detection of any extra-solar planet with orbital period within

1.5% from 24h, and interger multiple or sub-multiples of 24h, would be extremely

difficult to detect for SuperWASP.

It is worth mentioning that some well known variable objects are present in my

sample, for example V471 Tau (Kamiński et al., 2007) and MS Peg (Schmidt et al.,

2005). Both systems consist of a WD in a close binary system with a low-mass

stellar companion of late spectral type (K and M respectively). Both systems are

detected by my own implementation of the BLS algorithm and have power spectra

peaked at the correct orbital period of 12.5h and 4.16h, respectively. The signal

detection efficiency SDE values for the detection are of SDE = 13.66 and SDE

= 11.77 respectively, in either case, significantly above the detection threshold (of

6.3SDE). This confirms my ability to detect the presence of periodic signals in the

light-curves of the stars in my sample.
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4.4 Limits to companions’ frequency

In order to estimate an upper limit to the frequency of sub-stellar and terrestrial

companions to white dwarfs, I used the detection limits derived from my simulations

and the results obtained from the analysis of the sample of 194 stars.

I first used a binomial distribution to describe the probability ( PROB(n; N, f)) of

finding n transiting companions for a given sample of N stars, with a true companion

frequency f (eg. see McCarthy & Zuckerman 2004; and Appendix of Burgasser et al.

2003) as follow:

PROB(n; N, f) =
N !

n!(N − n)!
fn(1 − f)N−n (4.4)

The binomial distribution describes exactly n successes with probability fn, and

N − n failures with probability (1 − f)N−n. When the two quantities N and n are

known equation 4.4 can be used to derive the distribution (PROB

1) describing the

probability of f , where f is the frequency of transiting companions. The probability

Prob1(f ; n, N) is proportional to PROB(n; N, f) for f in the interval [0, 1]. I obtain

PROB

1 by normalising :
1
∫

0

PROB

1(f ; n, N) df = 1 (4.5)

which yields PROB

1= (N + 1)PROB. The evaluation of the integral of equation 4.5

implies the use of the Beta and Gamma functions. Because my results have been

obtained for simulations of transiting companions I can use the transit probability

Ptr (Figure 3.3, chapter 3) to evaluate the number of stars in the sample which may
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Figure 4.4: Probability distribution (PD) for the frequency f of companions to white
dwarfs. I report the range in f that delimits the 68% of the integrated probability
function. Top panel shows the PD for a sub-stellar companion in orbit with period
∼ 2h, for which the transit probability is Ptr ∼ 20% (sample size N = 40 and n = 0
detected companions). Lower panel shows the PD for a terrestrial companion in
orbit with ∼ 5h period and Ptr ∼ 2% (N = 4 and n = 0). Solid line and y axis
(shaded region) delineate a region that contains the 68% of probability. Dashed line
and y axis delineate a region that contains 32% of probability.

have transits visible from Earth. Thus, the number of stars N (originally 194) in

the sample is reduced accordingly to the transit probability as follow:

N = 194 × Ptr(Rpl, Porb) , (4.6)

where the transit probability depends on the planetary radius Rpl and on the or-

bital period Porb. In this way, the bias due to the choice of the detection method

can be eliminated and the evaluation of the frequency upper limits assume a generic
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Figure 4.5: Contours of constant values for the estimated upper-limits to the fre-
quency of sub-stellar and terrestrial companions to white dwarfs (values in percent).
Estimated under the assumption of 100% detectability. The upper limits are derived
for f that delimits the 68% of the integrated probability function.

significance. Since the binomial probability distribution is not symmetric about its

maximum value, I report the range in f that delimits the 68% of the integrated

probability function. Figure 4.4 shows the probability distribution for f as deter-

mined for a brown dwarf or a gas giant planet orbiting a white dwarf with a period

of ∼ 2 hours for which the transit probability is Ptr ≃ 20%, top panel. In the lower

panel, I show the same for an Earth-sized companion with orbital period of ∼ 5

hours (Ptr ≃ 2%).

I consider all possible companions sizes spanning the size of the Moon to Jupiter-

sized objects with orbital periods between ∼2 hours and 15 days. Figure 4.5 shows

the upper limits for the frequency of companions to white dwarfs (blue solid lines

are contours of constant values in %) obtained using equation 4.4 and equation 4.6.
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Figure 4.6: Same as Figure 4.5 but when I consider my detection sensitivity as
derived from simulations for a white dwarf of V ∼ 12 top-panel, for a white dwarf
of V ∼ 13 and V ∼ 15 middle and lower panel respectively.
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In this particular case I have assumed the transit signals to be detectable for every

planetary body and at every orbital distance from the star (100% detectability).

This ideal situation is shown to emphasise the changes in the frequency upper limits

when the results from my simulations are taken in to account. To consider my

results I introduced the detection probability Pdet in equation 4.6 as follow:

N = 194 × (Ptr × Pdet) . (4.7)

The detection probability is obtained from my simulations as described in chapter 3,

see also Table 3.3. In equation 4.7 the transit probability Ptr and the detection

probability Pdet are independent. The probability of detecting a transiting system

is given by the probability of the system transiting × my probability of detecting

the transit signature. Indeed, the set of synthetic transit light-curves used in my

simulations all contain simulated transit signals injected at different orbital periods

and for different companion sizes. Thus the detection probability represents the rate

of detection (over many hundreds of simulations) of a simulated transit recovered

with my BLS implementation.

I show in Figure 4.6 the estimated upper limits to the frequency of companions to

white dwarfs when results from my simulation are considered. Figure 4.6 top panel

shows my results for a white dwarf of magnitude V ∼ 12. The middle and lower

panel show my results for a white dwarf of V ∼ 13 and V ∼ 15 respectively.

The sample of white dwarfs investigated in this study has magnitude spanning from

V ∼ 9 to V ∼ 15, see for example the target list in Table 4.1. Because the time

needed to perform exhaustive simulations covering the entire magnitude range for
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Figure 4.7: as for Figure 4.6 but with the detection probability Pdet estimated over
the range of magnitudes of the 194 stars in my sample.

all the stars in my sample is prohibitive, my results only cover three magnitude

ranges (V ∼ 12, 13, 15). Thus to obtain detection limits covering the magnitudes

spanned by the white dwarfs in my sample I have used the detection probabilities

derived from my simulations and I have extrapolated and interpolated over the

entire magnitude range (9−15 in V ). I subsequently calculated a weighted mean

to account for the probabilities Pdet so obtained. Thus, the values of Pdet finally

contains the information relevant to my sample.

Finally, I used the values for Pdet to calculate the upper limit to companions fre-

quency this time based on the estimated values of the detection probability for the

whole white dwarf sample. Figure 4.7 shows my results.
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4.5 Conclusion

Encouraged by the results obtained from my simulations I have searched for transit

and eclipse signals in a sample of 194 white dwarfs for which I have SuperWASP

data. I have used my implementation of the box-fitting BLS routine details of which

are given in chapter 3. To date, I do not find any evidence of sub-stellar or smaller

planetary rocky bodies transiting the 194 stars. I have used this null result to derive

an upper limit to the frequency of companions to white dwarfs given my sample size

and my detection sensitivity as estimated from simulations.

Although my attempt to find planetary companions to white dwarfs proved fruitless,

I emphasise the importance of searching for sub-stellar and planetary companions

to white dwarfs. Theoretical studies on post main-sequence stellar evolution and in

particular studies focusing on the crucial phase of common envelope suggest that

planetary survival is not beyond possibility (see e.g. Villaver & Livio 2007). The

results obtained from my research are far from conclusive as very large samples are

needed in order to test sub-stellar and planetary survival to the later stages of stellar

evolution. We know that about 2% of isolated white dwarfs have infra-red excesses

due to the presence of dust discs (Farihi et al., 2009). Because of the very low

transit probability of rocky planetary companions to white dwarfs (less than a few

percent, see Figure 3.3, chapter 3), a much larger sample of white dwarfs is needed

(5 to 10 times larger) in order to test planetary survival to the later stages of stellar

evolution.
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Table 4.1: Results for 194 white dwarfs in the Super-

WASP archive. From left to right I list the SuperWASP

ID, the corresponding McCook & Sion ID, the Super-

WASP Vmag and the number of observations.

1SWASP WD Vmag N

(WASP)

J000007.24+295700.6 2357+296 12.24 15825

J000331.62−164358.4 0000−170 14.87 10446

J000732.24+331727.7 0004+330 13.95 21067

J000818.17+512316.7 0005+511 13.42 4876

J002130.72−262611.0 0018−267 13.92 7305

J003112.96−271253.7 0028−274 14.99 6961

J003145.95+571817.1 0029+571 10.50 2511

J003353.90−270823.6 0031−274 14.30 7293

J003952.15+313229.3 0037+312 15.03 9429

J004121.46+555009.1 0038+555 13.47 6202

J005317.46−325956.6 0050−332 13.45 9316

J005340.53+360118.4 0050+357 14.54 14264

J011011.78+270104.8 0107+267 15.61 4702

J011018.59−340025.5 0107−342 14.27 10151

J011211.65−261327.7 0109−264 13.14 10038

J011547.45−240651.0 0113−243 15.03 29846

J012942.57+422817.1 0126+422 13.51 18136

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J013856.85+152742.5 0136+152 14.37 2251

J014754.80+233943.8 0145+234 14.19 4653

J015202.95+470005.5 0148+467 12.08 4362

J020253.98−165303.5 0200−171 11.41 8756

J021255.35+170356.5 0210+168 14.32 3082

J021616.34+395125.5 0213+396 14.11 7608

J021733.49+570647.3 0214+568 13.29 2279

J022440.83+400823.0 0221+399 10.02 13621

J023530.74+571524.8 0231+570 13.68 2223

J023619.55+524412.4 0232+525 13.76 6096

J024502.37−171220.5 0242−174 15.54 7672

J031149.19+190055.7 0308+188 14.46 2711

J031315.18+190824.5 0310+188 16.20 2547

J031445.95+481206.1 0311+480 14.33 4908

J031942.73+344223.8 0316+345 14.37 7868

J034329.01−454904.2 0341−459 15.19 15506

J035024.96+171447.4 0347+171 9.47 2515

J035630.59−364119.7 0354−368 12.66 9400

J035705.82+283751.5 0353+284 11.67 5606

J040434.12+250851.8 0401+250 13.58 3841

J041010.32+180223.8 0407+179 14.50 2303

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J044321.26+464205.7 0441+467 12.76 4283

J045013.52+174206.1 0447+176 12.09 3155

J045535.93−292900.0 0453−295 15.58 9872

J045713.22−280752.8 0455−282 13.90 9869

J045722.55+415556.6 0453+418 11.98 5475

J050003.17−362346.4 0458−364 13.33 13986

J050355.38−285436.0 0501−289 13.58 8629

J050530.60+524951.9 0501+527 11.72 3288

J051233.54+165209.6 0509+168 13.47 2931

J051302.56+162246.8 0510+163 14.15 2930

J052906.46+271257.6 0526+271 15.17 9014

J053244.82+261200.7 0529+261 14.14 7321

J053620.20+412955.7 0532+414 13.46 5935

J054748.47+280311.6 0544+280 13.04 5246

J055814.64−373426.1 0556−375 14.64 10756

J061000.36+281428.4 0606+282 13.00 3538

J061518.70+174341.9 0612+177 13.37 2676

J061934.22+553642.9 0615+556 13.40 3258

J062312.60−374127.9 0621−376 12.09 11875

J062702.01−252249.7 0625−253 12.98 9502

J064112.82+474419.8 0637+477 14.52 2673

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J064856.08−252347.0 0646−253 13.74 9658

J071736.26+582420.4 0713+584 12.03 2993

J073427.45+484115.6 0730+487 14.96 5327

J082705.14+284402.6 0824+288 14.27 9142

J084253.04+230025.6 0839+231 14.45 3552

J084644.40+353833.7 0843+358 14.72 7568

J084909.48+342947.8 0846+346 15.47 6769

J085730.45+401613.2 0854+404 15.16 11310

J090148.65+360708.1 0858+363 14.87 9274

J092921.28−041005.9 0926−039 14.57 1030

J094159.32+065717.1 0939+071 15.11 1621

J094250.60+260100.1 0939+262 14.88 4173

J094846.64+242126.0 0945+245 14.47 4244

J101628.64−052032.8 1013−050 13.21 1362

J101801.63+072123.9 1015+076 15.59 1179

J102405.90+262103.7 1021+266 9.33 7073

J102459.84+044610.5 1022+050 14.16 3186

J102712.01+322329.8 1024+326 13.51 9985

J102909.80+020553.7 1026+023 14.05 2885

J103936.73+430609.2 1036+433 11.17 4800

J104616.19−034033.4 1043−034 14.14 1913

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J105220.53−160804.3 1049−158 14.59 7601

J105443.32+270657.2 1052+273 13.73 4875

J105709.94+301336.8 1054+305 14.69 5270

J110432.58+361049.1 1101+364 14.87 5109

J111912.41+022033.1 1116+026 14.82 2222

J111934.60−023903.1 1117−023 14.61 3512

J112542.87+422358.3 1122+426 13.25 6053

J112619.09+183917.2 1123+189 14.20 4600

J112910.93+380850.1 1126+384 15.22 9645

J112918.04+181645.8 1126+185 14.10 2932

J113227.35+151731.0 1129+155 14.26 2853

J113423.42+314605.9 1131+320 14.94 10834

J113705.10+294758.1 1134+300 12.64 9241

J114359.35+072906.1 1141+077 14.47 2810

J114803.16+183046.6 1145+187 14.38 7930

J115006.09−231613.8 1148−230 14.56 14440

J115119.30+125359.8 1148+131 14.15 3680

J115154.20+052839.7 1149+057 15.37 5172

J120145.98−034540.6 1159−034 15.04 2630

J120526.70−233312.3 1202−232 12.90 14521

J120936.01−033307.6 1207−032 13.69 2636

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J121229.13−062206.8 1209−060 13.39 2608

J121233.90+134625.0 1210+140 14.78 3027

J121356.28+325631.6 1211+332 14.93 11489

J121410.52−171420.2 1211−169 10.15 19365

J122747.36−081438.0 1225−079 16.06 1347

J123515.36+233419.4 1232+238 13.63 8160

J124428.57−011858.1 1241−010 13.51 3307

J125217.16+154444.2 1249+160 15.00 10250

J125223.56+175651.6 1249+182 15.43 10340

J125514.83+373229.3 1253+378 15.58 8160

J125702.33+220152.9 1254+223 13.67 18254

J131341.59−305133.5 1310−305 14.92 14136

J131621.95+290556.3 1314+293 12.77 8381

J132115.12+462324.0 1319+466 14.97 8291

J133601.94+482846.7 1333+487 13.89 8310

J133741.51+363903.8 1335+369 14.51 9836

J133913.55+120831.0 1336+123 14.89 3770

J134117.94+342153.6 1339+346 14.93 8492

J134307.26−310151.4 1340−307 13.25 11366

J135153.93+140945.6 1349+144 14.77 3288

J141026.96+320836.1 1408+323 14.22 7984

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J141329.93+213730.0 1411+218 13.86 5943

J142439.16+091714.2 1422+095 14.90 2935

J143545.65−163818.1 1432−164 14.58 13190

J144814.07+282511.6 1446+286 14.71 16402

J145156.24+422142.9 1450+425 15.57 8167

J151127.61+320417.9 1509+322 13.10 3865

J151714.27+031028.0 1514+033 13.79 4115

J152950.39+085546.3 1527+090 14.72 3552

J154419.46+180643.9 1542+182 15.08 4373

J155501.99+351328.6 1553+353 14.74 12136

J155804.76−090807.3 1555−089 13.37 3793

J160521.18+430436.6 1603+432 15.32 1353

J160532.09+122542.8 1603+125 15.91 3148

J161053.25+114353.6 1608+118 14.61 3466

J161419.14−083326.4 1611−084 13.43 3792

J161623.83+265310.7 1614+270 14.82 14663

J161928.99−390711.5 1616−390 14.63 11944

J162333.83−391346.1 1620−391 11.09 12748

J163339.30+393053.6 1631+396 13.88 31052

J164539.13+141746.3 1643+143 15.69 3436

J164718.40+322833.0 1645+325 13.90 27543

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J170033.62+441024.3 1659+442 13.27 43025

J170530.69+480311.4 1704+481 13.93 20729

J172643.19+583732.0 1725+586 13.44 10838

J175255.81+094751.9 1750+098 9.53 1425

J175332.27+103724.3 1751+106 14.15 4268

J181140.81+282939.5 1809+284 14.06 5172

J182029.78+580441.2 1819+580 14.23 3511

J182337.00+410402.2 1822+410 14.63 18410

J191858.65+384321.8 1917+386 11.58 1700

J194740.52−420026.3 1944−421 10.30 23397

J195219.66−384613.8 1948−389 13.34 32011

J200039.25+014341.9 1958+015 12.48 2948

J202706.23+553415.0 2025+554 12.98 6313

J202956.18+391332.3 2028+390 12.45 2902

J203202.39+183139.6 2029+183 12.20 12648

J203454.59−273449.2 2031−277 15.28 6762

J203838.16−332635.0 2035−336 14.25 12714

J204808.16+395137.8 2046+396 14.94 2942

J204906.71+372813.2 2047+372 12.74 2989

J210031.30+505118.0 2058+506 15.93 3907

J211244.06+500618.1 2111+498 12.93 3354

Continued on next page
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Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J211652.86+241214.9 2114+239 12.39 4421

J211708.29+341227.6 2115+339 12.33 2117

J211717.80+504407.3 2115+505 11.55 3392

J211856.30+541241.4 2117+539 11.99 6914

J212146.78−331048.0 2118−333 14.27 7625

J212454.89+155903.8 2122+157 13.80 12929

J212458.14+282603.5 2122+282 14.60 2969

J212743.10−221148.4 2124−224 14.94 11028

J213636.12+220433.5 2134+218 14.53 13813

J213652.94+124719.5 2134+125 13.35 11732

J213846.20+230917.6 2136+229 12.28 14626

J214954.57+281659.8 2147+280 15.04 16920

J215202.73+372617.9 2149+372 12.59 9941

J215453.40−302918.4 2151−307 15.05 7776

J215618.25+410245.5 2154+408 14.61 3191

J220714.40+072232.3 2204+071 14.91 7675

J221029.22−300543.7 2207−303 13.61 11058

J222919.42−444138.4 2226−449 14.48 10279

J223822.75+313418.4 2236+313 14.75 11464

J225848.13+251544.0 2256+249 12.63 13430

J230740.13−342753.4 2304−347 14.86 10752

Continued on next page

133



Chapter 4. Data analysis 4.5. Conclusion

Table 4.1 – continued from previous page

1SWASP WD Vmag N

(WASP)

J231219.65+260419.7 2309+258 14.57 9279

J232606.58+160019.4 2323+157 13.63 4815

J232715.83+400124.7 2324+397 15.41 21231

J233135.65+410130.6 2329+407 14.18 17476

J233149.93−285252.6 2329−291 14.29 10859

J233536.58−161743.8 2333−165 13.57 5660

J234350.87+323247.2 2341+322 13.28 11404

J235530.18−251612.7 2352−255 13.61 10780

J235644.76−301631.6 2354−305 15.01 10635
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Chapter 5

Monitoring variable white dwarfs with

SuperWASP

Abstract

In previous chapters I mainly focused on the identification of photometric variability

due to transits and eclipses of sub-stellar and planetary companions to white dwarfs.

Here I present a more complete search for extrinsic and intrinsic variable white

dwarfs in my sample. I have employed the modified Lomb-Scargle periodogram,

the CLEAN algorithm and the Phase Dispersion Minimisation (PDM) techniques

to search for photometric variability in my sample of 194 white dwarfs with V > 15.

Each individual light-curve was analysed and periods were considered successfully

detected when they could be recovered by more than one period-searching method.

I have tested my detection ability against well known variable sources such as the

close binary (WD+dM) MS Peg. When a period was detected I fitted a Gaussian
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Chapter 5. Photometric variability 5.1. Introduction

function to it in order to obtain an error estimate on the period. I discard WDs with

periods within 1.5% of 1 day and its harmonics. I discuss a few of the interesting

variable sources in my sample and refine my previous error estimate of their period

by means of the Schwarzenberg-Czerny post-mortem method. When available, I also

report the period listed in the SuperWASP Table ‘Period-ajn3 ’ of variable objects

found in the SuperWASP database.

5.1 Introduction

The majority of white dwarfs are considered photometrically stable and are often

used as flux calibration standards for optical and ultra-violet observations (Holberg

2007; and Holberg & Bergeron 2006). However, a few white dwarfs are intrinsi-

cally variable. For example ZZ Ceti stars are non-radial pulsators with variability

time scales of a few hundred seconds. The detection of multi-periodic luminosity

variations and the identifications of the pulsation’s modes can reveal the properties

of the stellar interiors, e.g. the core composition (Fontaine & Brassard, 2008). ZZ

Ceti stars are DA(H-atmospheres) white dwarfs showing pulsations in a very narrow

temperature interval (10,000 ≤ Teff ≤ 12,000K) around the hydrogen recombina-

tion temperature (Teff ≃ 12,000K). By direct analogy with ZZ Ceti stars, DB(He-

atmosphere) white dwarfs show non-radial pulsations albeit at higher temperatures

(Teff ≃ 25,000K, the He recombination temperature, see e.g. Winget et al. 1981; for

a review see Winget & Kepler 2008). A third class of pulsators is represented by the

pre-white dwarf PG 1159 stars (DOVs), around 75,000 ≤ Teff ≤ 170,000K. These

objects have carbon and oxygen in their atmosphere and pulsations are driven by

their cyclic ionisation (Fontaine & Brassard 2008 and references therein). If this
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behaviour is true in general it means that every white dwarf will become a non-

radial pulsator as it cools during its lifetime. Therefore, it is important to certify

the purity of the, so called, instability strips.

About 2% of the total white dwarf population consists of isolated magnetic white

dwarfs (Brinkworth et al., 2005). These rare stars often display star-spots which

rotate in and out view, causing photometric variability the amplitude of which is

dependent on the spot’s size. Magnetic white dwarfs are extremely important as they

can reveal the rotation period of the star, hard to measure in non-magnetic white

dwarfs due to heavy gravitational broadening of their spectral lines (Brinkworth

et al., 2005). A few very highly magnetic white dwarfs also display photometric

variability as they rotate due to changes in the magnetic field connected to changes

in the opacity in the outermost layers of the stellar atmosphere, as in the case of RE

J0317-853 (Barstow et al. 1995 magnetic dichroism, see Ferrario et al. 1997). The

detection and characterisation of variability connected to the star’s magnetic field

may help us to understand the physical origin of the phenomenon. Maybe connected

to the progenitor star’s magnetic field (e.g. Ferrario & Wickramasinghe 2007).

White dwarfs in close binaries often display optical variability such as eclipses, or

the effects of reflection and irradiation on a low-mass companion. The detection

of the orbital period of these binary systems is extremely important to constrain

post-main sequence stellar evolution and in particular the most important process

of Common Envelope interaction (Paczynski 1976; and Willems & Kolb 2004). In

addition, detailed studies of systems orbital periods, masses and ages, can help us to

better understand the physics of cataclysmic variable stars and Type Ia supernovae,

possibly shedding light on physical phenomena such as angular momentum loss via
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gravitational wave versus magnetic breaking radiation (King 1988; Parthasarathy

et al. 2007). Moreover, a detailed analysis of the light-curve of any such system can

help reveal the effects of tidal and rotational distortions as well as the irradiation

and reflection due to mutual heating and radiative interaction of the binary compo-

nents. The temperature changes and the reprocessed emitted light have the effect

of raising the detected flux from the facing hemisphere of the secondary. The effects

of irradiation and in particular the detection of reflected light from low-mass com-

panions is also important for the study of the secondary atmosphere (e.g. Peraiah

1983).

I have searched for periodicities in my sample of 194 WDs for which I have Super-

WASP data. I have analysed each target using multiple period-searching techniques:

the Lomb-Scargle modified periodogram and the CLEAN algorithm are designed to

detect weak periods in unevenly spaced datasets showing sinusoidal variability. The

Phase Dispersion Minimisation (PDM) technique can be very efficient in identifying

non-sinusoidal variability. The structure of this chapter is as follow: in § 5.1 I briefly

describe my period-searching approach, in § 5.2 I tested my method using the known

variable system MS Peg (Schmidt et al. 1995). In § 5.3 I report my results for the

variability search of the 194 white dwarfs in my sample, and I discuss a few of the

more interesting variable targets in the sample. My conclusions presented in § 5.4.

5.2 Data Analysis

For the analysis of the white dwarf sample I have used the set of light-curves de-

scribed in chapter 4. The set of light-curves were previously de-trended by means of
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the Tamuz algorithm (see §2.5, Tamuz et al. 2005). Although light-curve de-trending

is necessary to remove linear systematics from the data (thus increasing the detec-

tion probability for transit searches), I also found that some intrinsic variability had

also been removed during this step. This effect has been also observed in some of

the light-curves of SuperWASP planets, which show larger transit amplitudes in the

raw data (more about this later).

The period search I performed utilises multiple period-finding techniques. A Lomb

(1976)-Scargle (1982) modified periodogram (L-S hereafter) was used to investigate

the presence of any sinusoidal variation in each star’s light-curve. This method is

equivalent to a least-square fit of sinusoids to the data and allows the recovery of

weak periodic signals in unevenly sampled data, as is found for SuperWASP data.

Because the Lomb-Scargle algorithm requires 102N2 operations to analyse N data

points, I used the fast version of the algorithm described by Press et al. (1992)

which requires less computations (order of 102NLogN). I used an implementation

of the algorithm written in the programming language IDL (Interactive Data Lan-

guage) available at (http://idlastro.gsfc.nasa.gov) which I customised to my needs.

The routine uses a fixed number of trial frequencies (Nfreq) evaluated using the

Horne & Baliunas empirical formula (Horne & Baliunas 1986). That is :

Nfreq = −6.362 + 1.193N0 + 0.00098N2
0 (5.1)

where N0 is the number of observations in a light-curve. The frequency grid is chosen

such that:

Fmax = 0.016666sec−1(= 1mins) and Fmin =
1

4 × ∆T
(5.2)
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where ∆T is the length of the dataset. The frequency step is chosen to be:

δF =
(Fmax − Fmin)

Nfreq − 1
(5.3)

However, these parameters Fmax; Fmin, Nfreq and δF can be easily modified in the

IDL routine. In my case and more generally for any SuperWASP light-curve, I have

to deal with uneven sampled data with observational gaps. Therefore the Nyquist

frequency and the Shannon sampling theorem lose their meaning. SuperWASP tele-

scopes take 30 second exposures every ∼8-10 minutes. Thus, the Fourier transform

of the data could eventually carry information about frequencies higher than the

minimum spacing in the data (Roberts et al. 1987). I decided to set the maximum

sampling frequency to 0.0166 sec−1, which corresponds to a minimum period of one

minute. The amplitudes of the periodograms are normalised according to the for-

mulation of Horne & Baliunas (1986) by scaling to the total variance of the data.

For each periodogram I estimated the power detection threshold corresponding to

a false alarm probability (FAP) of 0.01, according to the number of independent

frequencies Nfreq used (see Scargle 1982). I have investigated the significance of the

highest peak in the Lomb-Scargle periodogram performing simulations over a set of

five hundred simulated white noise light-curves, free from astrophysical periodic sig-

nals, modelled using real SuperWASP light-curves. Figure 5.1 shows the probability

distribution function (PDFs) for the set of 500 simulations performed. In Figure 5.1

the black-line represents the PDF of the data and the red-solid line is the best fit

model. The dashed line correspond to a FAP of 0.01. I calculated the significance

Sg of the highest peak in the L-S power spectrum as follows:

Sg =
Pmax− < P >

σP

(5.4)
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Figure 5.1: Probability Distribution Function derived for 500 simulated light-curve
modelled using SuperWASP data and for Gaussian random noise. Black-line is the
PDF as obtained from the data, the red-line is the best fit model. Dashed line
correspond to FAP of 0.01.

where P is the intensity of the power spectrum, Pmax is the intensity at the highest

peak in the periodogram, < P > is the average intensity and σP is the standard

deviation over the frequency band tested. I found that periods with power > 16Sg

should be caused by real periodic signals. A FAP = 0.01 corresponds to a detection

significance of 99%. This method implies Gaussian random noise in the data and

the statistical significance of the highest peak in the periodogram can be lower for

datasets dominated by covariant noise structure (red noise). SuperWASP data show

real power at one day ([d]) and at periods of n[d] and n/k[d], with n and k small

integers. The strength of signals arising from the SuperWASP window function can

differ from light-curve to light-curve, and also from season to season. Thus I expect

that sources can be differently affected by variation occurring at periods arising from
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the window function (e.g. in the case of gaps occurring at one day or at its sub-

harmonics) resulting in false detections. In such cases, visual inspection of the target

folded light-curve is sufficient to reject the period. When a period was detected by

the L-S routine a Gaussian function was fitted to the peak in order to obtain an

estimate of the period confidence interval. I used the width of the Gaussian best

fit function (e.g. Figure 5.5), which corresponds to a 1σ confidence interval. Other

approaches may also be used. For example, the period confidence interval could be

estimated using half-size of the frequency bin (1/2 the frequency step, δF
2

), centred

on the highest peak in the periodogram, then converting this to units of period (for

example the Starlink routine PERIOD98). However, because the calculation of the

period confidence interval can be statistically incorrect (see Schwarzenberg-Czerny

1991), the width of the best-fit Gaussian function represents a more conservative

estimate. For the interesting variable objects found in my sample, I subsequently

refined the period error using the post-mortem analysis described in Schwarzenberg-

Czerny (1991). This technique evaluates the mean noise power level (MNPL) in the

vicinity of the highest peak in a periodogram, avoiding features arising from the

window function. The period confidence interval is then equal to the width of the

line at the peak minus the MNPL level. Figure 5.2 shows the principle of the

Schwarzenberg-Czerny (1991) post-mortem test. This procedure can be performed

graphically (see Schwarzenberg-Czerny 1991).

The sub-sample of white dwarfs for which I found a period with the L-S periodogram,

were subsequently analysed by means of the CLEAN algorithm. The majority of the

targets in my sample are fainter than V ∼ 12, the magnitude limit at which Super-

WASP can achieve good photometric precisions. Thus, because the periodogram of

noisy data is noisy, the use of a second detection technique will allow me to confirm
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Figure 5.2: Illustration of the post-mortem analysis described by Schwarzenberg-
Czerny (1991). The period confidence interval is shown in light grey. The mean
power of the noise is shown by the hatched region.
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or disprove any identified period. The CLEAN algorithm (Roberts et al. 1987; Fos-

ter 1995) is designed to remove spurious features from a peridogram, by performing

a deconvolution of the Fourier spectrum of the data with the window function, pos-

sibly revealing the presence of additional signals. The Fourier convolution theorem

states that the Fourier Transform (FT) of the product of two functions in the time

domain is equivalent to a convolution of the FTs in the frequency domain. In prac-

tise the algorithm identifies the highest peak in the Fourier spectrum and creates

an impulse response, spike-like, function of power equal to a reduced fraction of the

maximum. The amount subtracted is governed by the gain, an adjustable quan-

tity. It then convolves this component with the window function and subtracts it

from the spectrum to obtain a residual spectrum. The above procedure is repeated

until a stop condition is met: in this instance when the residual spectrum is below

a desired noise value or the requested number of iterations has been reached. In

Figure 5.3 I compare the Lomb-Scargle periodogram and the CLEAN periodogram

for the known variable binary system MS Peg (more later) for which I can detect

the system orbital period (more in § 5.1). Figure 5.3 highlights the ability of the

CLEAN algorithm to remove the majority of the spurious features present in the

Lomb-Scargle periodogram thus confirming and also improving the signal detection.

Finally, I have performed a visual inspection of each folded light-curve to identify

periods due to residual systematic effects such as gaps due to the day-night alterna-

tion and/or to residuals affecting groups of targets in a field (for example residual

Moon-light variation). The folded light-curves that on visual inspection appeared to

show non-sinusoidal variations were also analysed by means of the Phase Dispersion

Minimisation (PDM) technique (Stellingwerf, 1978). The PDM can be a powerful
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Figure 5.3: Comparison between the L-S and the CLEANed periodogram for the
test target MS Peg. My approach considered a period successfully detected if was
identified in both periodograms and with 0.003d tolerance.

tool for detecting non-sinusoidal photometric variability. The PDM technique per-

forms a least-squares fit where the model function is the “average” curve obtained

by averaging the points of each of the light-curve bins. As such the PDM includes

all harmonics in the fitted function, reducing the effect of power leakage encountered

in Fourier methods due to the use of a finite frequency interval.

I considered a period successfully detected if it was recovered using two of the

methods described above within an interval of 0.003d from each other. The use of

the CLEAN algorithm and the PDM technique also allowed me to test the light-
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curve for the presence of multi-periodic signals in the data (see Roberts et al. 1987;

Stellingwerf 1978).

Among the stars in my sample there are some notable known variable objects such

as MS Peg (Schmidt et al., 1995) and V471 Tau (Kamiński et al., 2007). Here I used

the well known binary system MS Peg, a white dwarf primary and a main-sequence

red dwarf secondary, to test my approach and to verify my ability to detect and

characterise photometric variability using SuperWASP data.

5.3 MS Peg

The binary system MS Peg (1SWASPJ225848.13+251544.0, WD2256+249) is a

close-detached binary system which consists of a white dwarf primary and a low-

mass main sequence red dwarf secondary of spectral type M3-5 (Schmidt et al.,

1995). The system shows variability due to the reflection effect caused by the white

dwarf heating the surface of the co-rotating secondary star.

The sinusoidal variability shown by the MS Peg light-curve reveals the system’s

orbital period (4.1679±0.0003h Schmidt et al. 1995) and characterise it as a pre-

cataclysmic variable. SuperWASP routinely observed WD2256+249 between 2004

and 2006 with a total of 13337 epochs. I used the L-S algorithm to search for a

periodic signal in the SuperWASP light-curve of MS Peg. Figure 5.4 top panel shows

the L-S periodogram. The power spectrum peaks at a frequency of 6.6642110−5 sec−1

which corresponds to the system orbital period Porb= 4.1682h (see also Figure 5.3).

I obtained an estimate of the error by fitting a Gaussian function to the peak and
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Figure 5.4: Top panel shows the CLEANed periodogram as in Figure 5.3. Middle
and lower panel show the folded light-curve and the bin folded light-curve for the
detected period (4.1682±0.0007h ). The red curve is the best fit model sine function
as by equation 5.5. The fit yields a peak-to-peak amplitude of variation of 3.1%.
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Figure 5.5: Gaussian fit to the highest peak in the periodogram. The error on the
period is the width of the best fit Gaussian function.

using the width of the best fit function. This yielded an error of ∆P = 0.0017h.

Figure 5.5 shows the best Gaussian fit to the highest peak.

Once the period was correctly identified I refined the period-search by using a small

frequency interval centred around the peak and I performed a new search using

a finer frequency step. The period confidence interval was calculated by means

of the Schwarzenberg-Czerny (1991) post-mortem analysis and I obtained P =

4.1682±0.0007h which is consistent with the published period P = 4.1679±0.0003h,

previously found by Schmidt et al. (1995). The light-curve of the binary MS Peg

folded on the above period reveals sinusoidal variability which is due to the pres-
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ence of the low-mass secondary showing a reflection effect. The estimate for the

amplitude of the sinusoidal variation was obtained by fitting a sine-wave model of

the form:

Yfit = A0 + A1 [sin(2πft − φ)] (5.5)

where A0 gives the y-zeropoint, A1 is the amplitude and φ is the phase given by the

time-zeropoint. I found the system to vary with a peak-to-peak amplitude of ∼ 3%.

Figure 5.4, central and lower panels show the folded light-curve and the binned

folded light-curve. In red I show the fitted model. The amplitude of the variable

signal is somewhat smaller than the variability observed by Schmidt et al. (1995).

Schmidt et al. (1995) found ∆mag variation of 5% in the B band and ∼ 10% in V

band. The reason for this discrepancy may reside in SuperWASP broad band filter,

which covers both B and V filters (more sensitive in the B band). In addition, the

data taken during the 2004 pilot season were obtained in white light with the tele-

scope transmission response completely determined by the Earth atmosphere and

SuperWASP optics. This may have caused the removal of some variability by the

pipeline when correcting for secondary extinction, back-ground subtraction and flat

fielding. In addition, SuperWASP photometry is performed using three different

apertures, 1.5, 2.5, and 3.5 pixels which corresponds to ∼ 20, ∼ 34 and ∼ 48 arc-

seconds.

Thus it is possible that other objects are found within the 48” radius centred on

the target star. These objects may be the cause of starlight contamination which

dilutes the photometric variation of the target source. In the case of MS Peg (Figure

5.6) I found two fainter objects within 48
′′

radius. Information extracted from
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the archive indicates that the two objects are 4.58 and 1.97 magnitudes (WASP

magnitudes) fainter than MS Peg. This implies a dilution factor of 9%. Figure

5.6 shows the distances of the two fainter sources. An additional subtractive factor

may also be related to the employment of the light-curve de-trending algorithm

(Tamuz et al., 2005) used to remove linearly correlated noise contributions from the

data. Light-curve de-trending can remove some of the intrinsic source variability,

and in particular long term variability. A reduction in the amplitude of the transit

signals of SuperWASP planets has indeed been observed. Figure 5.7 shows the raw

SuperWASP light-curve of MS Peg folded on the period identified in this study.

The amplitude variation of ∼ 3.63%, of the raw data, is found to be larger than

the amplitude of 3.1% for de-trended data (Figure 5.4). The above effects, acting

alone or in combination may explain the somewhat smaller variation in the signal

amplitude found by this study.

5.3.1 Variability results

The results obtained from this study are presented in Table 5.1. My search method

identified periods for a large number of white dwarfs in the sample. However, the

majority of sources were detected at the 1-day and n/k[d] harmonics (where n and

k are small integer). I only list objects for which variability was confirmed by

visual inspection of the folded light-curve. In Table 5.1 from left to right I list

the SuperWASP ID, the white dwarf ID (McCook & Sion 2003), other names from

SIMBAD, the period (P) detected from this study, the period confidence interval

(δP ), and the amplitude (A) of the photometric variation obtained by fitting a

model sine-wave to the light-curve. Finally, I also list the closest period found in
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Figure 5.6: Image obtained from Aladin. The image show the presence of two fainter
stars within 2.5 pixel radius from MS Peg.

the SuperWASP archive Table ‘Period-ajn3’ where available. I note that all white

dwarfs but HZ 43 are also listed in the SuperWASP Table ‘Period-ajn3’ of periodic

sources found in the SuperWASP archive (see e.g Norton et al. 2007 for more details).

The reason why HZ 43 is not found in the list of variable sources in table Period-ajn3

is due to the use of a more strict FAP threshold for detection. This was necessary in

order to minimise the number of sources detected with variability connected to the

day and the day sub-harmonics. I also note that GD 358 was first detected by my

method to vary with a period of ∼ 24h. Only after a more detailed analysis of the
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Figure 5.7: As in Figure 5.4. The fitted sine function yields a peak-to-peak variation
of 3.63% somewhat bigger than in the case of de-trended data.

light-curve I could identify a large number of periodicities as discussed in § 5.3.5.

Figures 5.16 and 5.17 show the CLEANed periodograms and the folded light-curves

for the white dwarfs listed in Table 5.1 which are not individually discussed in

the text. I also indicate the detected period and the amplitude of the observed

photometric variation.

In the following I will discuss in more detail a few of the more interesting objects

for which a clear period or more than one period could be detected. These consist

of the binary systems WD0353+284, WD1024+326 and HZ 43, and the non-radial

DB pulsator GD 358.
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5.3.2 WD0353+284

The system WD0353+284 (1SWASPJ035705.82+283751.5, 2RE J0357+283 Jeffries

et al. 1996) consists of a hot WD and a rapidly rotating cool-star of spectral type

K2V, in a wide binary. Jeffries et al. (1996) detected photometric variability due to

the high magnetic activity of the rapidly rotating secondary (Prot = 0.3646±0.0002d,

= 8.7504±0.0048h). The system was observed by SuperWASP during 2004 and 2006

observing seasons with a total of 5606 good photometric points. I used my period-

searching method and found a period of Prot = 8.755±0.008h which is consistent with

the rotational period of the K dwarf detected by Jeffries et al. (1996). A separate

analysis of the 2004 and 2006 seasons revealed the presence of a second periodicity

in the 2004 data highlighted in Figure 5.8. Figures 5.8 and 5.9 show the CLEANed

periodogram for the 2004 and 2006 light-curves respectively. The highest peak in

Figure 5.8 corresponds to the known rotational period of 8.755±0.008h, the second

highest peak in the periodogram is found at the period P = 5.3525± 0.0038h, while

the third peak is an alias of the rotational period P8.75h with the P12h of the window

function. In order to investigate the origin of the second period in the 2004 data

I pre-whitened the data by subtracting a sine-wave at the rotational period P8.75h

and subsequently performed a Discrete Fourier Transform (DFT) of the residuals.

Figure 5.10 shows the periodogram of the residuals where the highest peak is found

at P = 5.3525 ± 0.0038h.

The remnant peaks in the periodogram are aliases due to the window function, and

can be obtained by the following calculation:

1

Palias

=
1

5.35h
− 1

24h
=

1

6.88h
, (5.6)
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Figure 5.8: As for Figure 5.4 I show the CLEANed periodogram, and the light-curve
folded on the on the rotational period of the K star (8.75h). The peculiar shape
of the phase time series might be due to the presence of a second spot on the star
surface rotating faster with period of 5.35h.
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Figure 5.9: same as Figure 5.8. The separate analysis of the 2006 data do not show
the presence of any periodicity other than the known rotational period of the K
dwarf secondary.
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Figure 5.10: I show here the DFT of the residuals after subtracting a sine function
at 8.775 hour. The highest peak in the DFT periodogram is found at the period
P = 5.353h, suggesting the veracity of my detection.

1

Palias

=
1

5.35h
− 1

12h
=

1

9.66h
, (5.7)

respectively the second and third peak in the DFT periodogram. The separate

analysis of the 2006 data do not show the presence of the P5.35h. I suggest that

a possible explanation for the additional period at 5.35h in the 2004 data might

be related to the magnetic activity of the secondary (fast rotating star) possibly

showing large star spots and differential rotation. I note the large ∆P and the high

rotational rates implied may be more plausible in close binary systems such as pre-

cataclysmic variable systems (e.g. V471 Tau, Prot = 12.5h, Kamiński et al. 2007).

However, the absence of this second period in the 2006 data may be consistent with
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the sporadic onset of star spots. Jeffries et al. (1996) suggest that because of the

wide nature of the binary system the secondary stars could be spun up by wind

accretion during the AGB phase in a detached configuration (named “wirring” star,

Wind-accretion Induced Rapid Rotator). Further investigations are needed in order

to exhaustively investigate the nature of the second period detected in the light-

curve of WD0353+284. Future developments and analysis will be available in a

forthcoming paper (Faedi et al. 2009, in prep.).

5.3.3 WD1024+326

The white dwarf WD1024+326 (1SWASPJ102712.01+322329.8, REJ1027+322) has

been studied by Genova et al. (1995). They suggest the system to consist of a wide

binary (angular separation less than 10 arcsec) consisting of a hot (Teff = 40, 000K)

white dwarf and a main-sequence star of spectral type G2V. I have analysed the

light-curve of WD1024+326 which was observed by SuperWASP in 2004 and 2006

seasons with a total of 1331 days equivalent to 9949 epochs. The analysis of the

light-curve revealed the target to vary with a detected period of P = 31.97h equiv-

alent to 1.331±0.012d. I subsequently refined the period confidence interval using

the post-mortem analysis of Schwarzenberg-Czerny (1991) and found the period

P = 1.331 ± 0.004d. Figure 5.11 shows the CLEANed periodogram from 2004

data, in addition the period is also detected in the 2006 data and during this sea-

son in different SuperWASP cameras. Figure 5.11 middle panel shows the folded

light-curve on the detected period. The lower panel shows the light-curve fit which

identifies the system to have a peak-to-peak amplitude variation of ∼ 4.4%. A

consultation of SIMBAD database and of the available literature for this target
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could not find any previously recorded photometric variation. I suggest that as

in the case of WD0353+284 discussed above, I can detect the rotational period of

the non-degenerate component of the binary system. Despite the large separation

between the two binary components, the use of wide-angle optics (13.7
′′

/pixel for

SuperWASP), means that the system falls on an individual pixel (id est the sys-

tem is unresolved). The detection of the period at 1.33 day could be consistent

(similar order of magnitude) with the observed for WD0353+284 suggesting that

WD1024+326 could be a “wirring” star too. However, further analysis of the target

using data from 2007, 2008 and 2009 SuperWASP seasons will enable us to confirm

the periodicity found here.

5.3.4 HZ 43

An other system similar to the two already discussed is WD1314+293 also known

as HZ 43 (1SWASPJ131621.95+290556.3). The hot white dwarf (Teff = 49, 000

K) is known to be in a wide binary system (angular separation 3 arcsec; Luyten

1970) with a stellar companion of spectral type M3-5 (see Napiwotzki et al. 1993

and Margon et al. 1976). HZ 43 is a well studied white dwarf also known for

its exceptional ultraviolet luminosity and was the first object to be detected as

an EUV source (Margon et al. 1976). McAlister et al. (1996) studied the system

and determined the magnitude of the two components to be V WD = 12.94pm0.02

and V B = 14.32 ± 0.08, SuperWASP magnitude is V WASP = 12.78 ± 0.03. In fact

McAlister et al. (1996) found the secondary to contaminate the photometry of the

WD by making it to appear 0.27±0.02 magnitude brighter in V , which also explains

the somewhat brighter SuperWASP magnitude (also in agreement with Margon
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Figure 5.11: As for Figure 5.4 we show the CLEANed periodogram, top panel.
Middle and lower panel show the folded light-curve and the model fit sine function.
I obtain a peak-to-peak modulation of 4.4%.
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et al. 1976). The object is unresolved in SuperWASP thus the observed magnitude

is the sum of the magnitudes of the individual components. My analysis of the

system found a modulation in the folded light-curve with a peak-to-peak variability

amplitude of 1.47% at a period of P = 3.626 ± 0.066d. SuperWASP observed HZ

43 in 2004 and 2006 seasons (8381 epochs) and the period was detected in both

seasons. Because HZ 43 is a very well known and well studied star and never

previously seen to be variable, I think that the observed variation is most probably

due to the rotational period of the active M dwarf companion, and that my detection

is again connected to the large pixel size used by SuperWASP. Figure 5.12 shows the

CLEANed periodogram for my detection of P = 3.626d. From the Gaussian fit to

the highest peak I obtained a first estimate of the period error, Figure 5.13 show the

best fit to the period P = 3.626± 0.066d. I subsequently refined the error estimate

as described by Schwarzenberg-Czerny (1991) and obtained P = 3.626 ± 0.036d.

The analysis of the residuals after pre-whitening (subtracting a sine function) with

the above period do not show any residual power in the periodogram.

Figure 5.12 middle and lower panels show the folded light-curve for HZ 43 and

the fit to a model sine-wave with the period P = 3.626 ± 0.036d. The fit yields

a signal amplitude variation of 1.47%. The white dwarf HZ 43 is a widely used

calibration standard for satellite instruments in the optical, the ultraviolet and X-

rays (see for example Beuermann et al. 2006 and references therein). There is no

reported periodic photometric variability for HZ 43 in the literature. However, the

observed small photometric variation due to the M dwarf secondary is not relevant

with regards to the employment of HZ 43 as a spectroscopic calibration standard.

It is not HZ 43 that varies, just the fact that both sources fall on one pixel.
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Figure 5.12: As for Figure 5.4 and 5.11. The best fit sine function yields a variation
of 1.47%.
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Figure 5.13: Gaussian fit to the peak. I derive the period confidence interval of
δP = ±0.066d as the width of the best fit function.

5.3.5 GD 358

The following example differs from the previous in that it is a single white dwarf

which show photometric variability due to non-radial gravitational pulsations. GD

358 also known as WD1645+325 and 1SWASP J164718.40+322833.0, was the first

pulsating star detected based on the theoretical prediction of Winget et al. (1987),

of pulsating helium-atmosphere WDs (named DB) and is the star with the largest

number of detected periodicities after the Sun. The analysis of stellar pulsations

is extremely important to derive the mass and internal composition, which are key

parameters for measuring stellar ages and thus the age of our Galaxy. Previous

asteroseismological analysis found GD 358 to be variable in the range 1000-2400
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Figure 5.14: I show the L-S periodogram of the source GD 358 over the 2004 (camera
102) and 2006 season (cameras 143 and 147) top to bottom. The L-S spectrum shows
the changing in the amplitude of the significant frequencies also changing over the
two seasons.

µHz with more than 180 significant peaks (e.g. Kepler et al. 2003 and Winget

et al. 1994) continuously changing over time. I used my method and analysed

the light-curve of GD 358 over 2004 and 2006 (with 16328 epochs). Because GD

358 is known to be continuously variable I carried out a separate analysis of the

2004 and 2006 datasets. In addition, for the 2006 data I also performed a separate

analysis for different cameras. Figure 5.14 shows the L-S periodograms obtained

from camera 102 (2004), camera 147 and 143 (2006) in three different panels, top

to bottom. Figure 5.14 shows a part of the entire periodogram for the frequency

range 1000−2400 µHz. I observe a continuous change in the power of the significant
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peaks in the periodogram from season to season as well as a change in the pulsation

frequencies. I performed a detailed analysis of the higher peaks in each periodogram

to search for previously known modes. Some of the frequencies detected by this work

could be related to known oscillations from Kepler et al. (2003) and Winget et al.

(1994), however my estimate for the uncertainty on the periods do not allow me to

compare these values. For example, in 2006 data for camera 143 I can detect a peak

at the period P = 576.156 ± 0.012s which could be related to the k = 12 and l = 0

mode detected at P = 576.76s by Winget et al. (1994). However, to test for the

presence of periodicities belonging to specific k and l modes (e.g. m splitting triplets

for each l) requires the use of theoretical models of pulsating DB stars. Nevertheless,

my analysis detects the presence of periodicities different from previously published

periods over different seasons confirming the ever changing nature of GD 358. In

addition, my result proves that SuperWASP telescopes and also future transiting

telescopes can be used to study known pulsating white dwarfs to search for period

changes, to monitor for planets by timing anomalies and finally to discover new

pulsators. I show in Figure 5.15 a magnification of the highest period detected by

my analysis of the 2004 data, P = 811.098± 0.032s (see also Figure 5.14).

5.4 conclusion

In this chapter I have analysed my sample of 194 white dwarfs to search for extrinsic

and intrinsic variability. Variable isolated white dwarfs or white dwarfs in binary

systems may show photometric variability due to sinusoidal variation for example

irradiation or reflection on a low-mass companions, as well as non-sinusoidal varia-

tion as in the case of non-radial pulsator such as ZZ Ceti stars. I have developed a
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Figure 5.15: magnification around the highest peak detected in 2004 L-S peri-
odogram. Period P = 811.098± 0.032s. Data from the 2004 season are plotted in
black. Data from 2006 April are plotted in red and data from 2006 May in green.

period-searching method suited for the characteristics of SuperWASP data (uneven

time sampling and large gaps in the data), and that accounts for weak periodic

signals. I demonstrated my ability to detect and characterise photometric variable

systems with the known source MS Peg (Schmidt et al., 1995). I found that more

than ∼ 52% of stars in my sample have periods detected with a 99% confidence,

however the majority of the targets are detected at periods close to one day and the

day harmonics and sub-harmonic and were therefore discarded for further investi-

gations. Table 5.1 lists the twelve sources that passed visual inspection. I discussed

some of the interesting systems found by my period-searching method such as MS
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Peg, HZ 43 and WD0353+284. My study found 12 white dwarfs in the sample of

194 stars to show photometric variability. Of those, 6 are known binary systems and

2 are known isolated non-radial pulsators. The remnant 4 stars are not previously

known to be photometric variable sources. However, a more detailed analysis of

these objects is needed to investigate the nature of their variability and will be the

subject of a forthcoming paper (Faedi et al. 2009, in prep.).
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Figure 5.16: CLEANed periodograms and folded light-curves for the sources listed
in Table 5.1 that were not studied individually in the chapter. The detected period
is indicated in the top-left corner of the periodogram panels. In red is the model fit
sine function. I also indicate the amplitude of the photometric variation (%).

167



C
h
ap

ter
5.

P
h
otom

etric
variab

ility
5.4.

con
clu

sion

1SWASP WD name P δP A Pajn3

(hour) (hour) (%) (hour)

J000007.24+295700.6 2357+296 PG2357 + 296 22.530 0.081 5.93 22.57
J035024.96+171447.4 0347+171 V 471Tau 6.255 0.004 7.65 6.254
J035705.82+283751.5 0353+284 V 1092Tau 8.755 0.008 9.3 8.755
J102712.01+322329.8 1024+326 GSC02511 − 00033 31.962 0.370 4.49 31.962
J131621.95+290556.3 1314+293 HZ43 86.700 0.810 1.47
J134307.26−310151.4 1340−307 CE356 7.980 0.007 3.14 7.981
J164718.40+322833.0 1645+325 V 777Her/GD358 10.225305 9.010−6 24.14
J181140.81+282939.5 1809+284 GD375 5.978 0.003 7.83 7.96
J194740.52−420026.3 1944−421 V 3885Sgr 4.971 0.00 4.37 4.972
J200039.25+014341.9 1958+015 NGC6852 24.912 0.102 5.22 616.65
J215202.73+372617.9 2149+372 GD397 22.590 0.061 6.14
J225848.13+251544.0 2256+249 MSPeg 4.1682 0.0026 3.11 4.168

Table 5.1: I present the results obtained from my period search for the sample of 194 white dwarfs. From left to right I
list the SuperWASP ID, the WD name, other name from SIMBAD, the period and period error from this work and the
amplitude, A, of the folded light-curve. In the last column I list the period entry in Table Period-ajn3 from the SuperWASP
archive when available.
1 GD 358 was first detected with a period of 24.011hours.
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Figure 5.17: continue from Figure 5.16.
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Chapter 6

Conclusions and future work

6.1 Conclusions

My thesis has focused on the study of white dwarfs variability by means of data from

the ground-based photometric survey SuperWASP. White dwarf stars are known to

be photometrically stable stars, however light variations in the observed brightness

of these objects can be due for example to the presence of unseen low-mass stellar,

sub-stellar and planetary bodies eclipsing or transiting the stellar disc. In addition

low-mass stellar companions can also show light-variations due to the reflection and

irradiation effects caused by the white dwarf heating the facing hemisphere of the

low-mass companion. Finally, white dwarfs can also show photometric variability

due to non-radial g-mode pulsations, with timescales of a few hundred seconds, and

due to the sporadic onset of star spots on the surface layers of magnetic white dwarfs

that rotate in and out of view revealing the star’s rotation period.
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6.1.1 Sub-stellar and planetary companions to white dwarfs

This work has focused on the study of sub-stellar and planetary companions around

white dwarfs. The aim of my thesis was to investigate the possibility of detecting

transiting brown dwarfs, gas giants and smaller rocky bodies, in close orbits around

white dwarfs, by means of their eclipses and transit signatures in data from current

ground-based transit surveys such as SuperWASP. Because white dwarfs have the

same size as the Earth, they offer a large gain in relative sizes compared to solar-

type stars. Indeed, even rocky bodies smaller than the Moon can yield large transit

depths (∼ 1%), detectable in good signal-to-noise light-curves. In addition, because

white dwarfs are the end point of stellar evolution for every star less massive than

∼8M⊙, they offer the unique possibility to investigate planetary survival to the

later stages of stellar evolution for every known extra-solar planetary system. This

is interesting also for us, as the fate of our own planet during the Sun’s red giant

phase is uncertain (Rasio et al. 1996; Duncan & Lissauer 1998; and Villaver & Livio

2007).

I have simulated a set of synthetic light-curves using the time sampling and the

characteristics of SuperWASP data. I have injected fake transit signals to account

for companions ranging from the Moon to a gas giant or a brown dwarf size and from

orbital periods between ∼ 2 hour and 15 day. I performed extensive simulations to

test SuperWASP detection limits for any such system injected in SuperWASP light-

curves. I have used my version of the Box-Least Square (BLS) routine to recover

the transit signals from the set of simulated light-curves. My implementation of the

BLS algorithm is an optimisation that takes into account the characteristics and

the shape of the transit signals investigated in this work. Because SuperWASP data
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suffer from the presence of residual correlated noise, red noise, even after de-trending

by means of powerful techniques such as the Tamuz algorithm (Tamuz et al. 2005),

I have explored the BLS recovery rate for data with only Gaussian random noise

(white noise), and for red noise data. This also allowed me to test the effect of red

noise for transit signals that cover a different parameter space from that of transits of

extra-solar planets, e.g. Hot Jupiters around solar-type stars. The results from my

simulations show that transits of Moon-sized objects are detectable in data with only

random Gaussian noise for a parent white dwarf of magnitude V ∼ 12. For fainter

white dwarfs increasingly larger radius bodies are detectable. My simulations show,

that as expected, SuperWASP detection limits are reduced in the presence of red

noise (see chapter 3). Nevertheless, Earth-sized companions to white dwarfs remain

readily detectable even in low signal-to-noise light-curves. Moreover, in the case of

good quality data for which red noise has been importantly reduced by powerful

de-trending, Mars and even Mercury sized bodies can yield transits with detectable

signal-to-noise (see e.g. Table 3.3, chapter 3).

Encouraged by my results I have investigated a sample of 194 white dwarfs in

the SuperWASP survey. This sample is a cross-correlation of the McCook & Sion

catalogue (McCook & Sion 2003) and the SuperWASP database. This study to

date found no evidence for transits of sub-stellar and terrestrial companions in the

light-curves of the 194 stars. My key result allowed me to estimate an upper limit

to the frequency of transiting sub-stellar and planetary companions to white dwarfs

(see chapter 4).

Although my attempt to find planetary companions to white dwarfs proved fruitless,

I emphasise the importance of searching for sub-stellar and planetary companions
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to white dwarfs. The results obtained from my research are far from conclusive as

very large star samples are needed in order to test sub-stellar and planetary survival

to the later stages of stellar evolution. We know that about 2% of isolated white

dwarfs have infra-red excesses due to the presence of dust and gas discs (Farihi et al.

2009). Because of the very low transit probability of rocky planetary companions to

white dwarfs (less than few percent see Figure 3.3, chapter 3) I need a target sample

at least ten times larger than mine.

Future surveys such as Pan−STARRS (http://pan−starrs.ifa.hawaii.edu/public)

and LSST (http://www.lsst.org/lsst) capable of detecting tens of thousands of white

dwarfs will allow us to test sub-stellar and planetary survival. However, my work has

demonstrated that observations of very high cadence and long baseline are needed

to detect the signature of transiting systems such as in the case investigated in this

work. Future space missions such as PLATO might also offer the possibility of de-

tecting these systems. The PLATO mission (http://wwww.lesia.obspm.fr/perso/

claude−catala/plato), will observe stars to a magnitude limit similar to that of Su-

perWASP, but will observe the same field continuously for very long periods and

without interruption. This will provide well sampled light-curves of very long base-

line with no observational gaps and might yield the detection of small rocky bodies

around white dwarfs. My results have shown that terrestrial planetary bodies with

sizes comparable to Mars and even Mercury can yield detectable transit signatures

in SuperWASP light-curve.
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6.1.2 WDs variability

As part of my research I have also studied the sample of 194 white dwarfs to search

for photometric variability due to star spots, non-radial pulsations and or to the

presence of low-mass stellar companions showing the effects of irradiation and re-

flection. I have analysed each target using multiple period-searching techniques: the

Lomb-Scargle (Lomb 1976; Scargle 1982) modified periodogram and the CLEAN al-

gorithm (Roberts et al. 1987; Foster 1995) are designed to detect weak periods

in unevenly spaced datasets showing sinusoidal variability. The Phase Dispersion

Minimisation (PDM) technique (Stellingwerf 1978) can be very efficient in identify-

ing non-sinusoidal variability. Finally, I have performed a visual inspection of each

folded light-curve to identify periods due to residual systematic effects such as gaps

due to the day-night alternation and/or to residuals affecting groups of targets in a

field (for example residual Moon-light variation). I considered a period successfully

detected if it was recovered using two of the methods above within an interval of

0.003d from each other.

I find more than ∼ 52% of stars in my sample to have periods detected with a 99%

confidence, however the majority of the targets are detected at periods close to one

day and the day harmonics and sub-harmonics and were therefore discarded for fur-

ther investigations. My study finds just 12 variable white dwarfs in a sample of 194

stars. Of those, 6 are known binary systems and 2 are known isolated non-radial

pulsators. The remaining 4 stars were not previously known to be photometrically

variable sources. However, a more detailed analysis of these objects is needed to

investigate the nature of their variability and will be the subject of a forthcoming

paper (Faedi et al. 2009, in prep.).
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6.2 Future work

6.2.1 A search for hidden white dwarfs by occultations due

to low-mass stellar companions

Motivated by my previous work I aim to extend my search for white dwarf compan-

ions into the stellar regime. Following the discovery of the eclipsing system DE CVn

(van den Besselaar et al., 2007), where the white dwarf is optically undetectable, I

have searched and detected the system’s eclipses by means of my implementation of

the BLS routine. Encouraged my independent detection of DE CVn, I aim to detect

more such systems. This will allow me to put constraints on the true frequency of

close stellar companions to white dwarfs.

Large gaps in our knowledge of binary stellar evolution affect our understanding

of evolved compact objects as well as of phenomena such as supernovae type Ia

explosions. The poorly understood phase of common envelope (CE) evolution results

in considerable uncertainties in binary evolution models (Willems & Kolb 2004).

During the CE phase the more massive component in a binary evolves into a red

giant. When the binary initial orbital period is ≤ 10 years, the envelope of the giant

will encompass the secondary star. This forces the secondary and the core of the

primary to spiral towards each other (see Paczynski 1976 and Iben & Livio 1993 for

a review). Due to the very short duration of the CE phase (≤ 1000 years; Taam &

Sandquist 2000) it is virtually impossible to directly observe this phase. However

we can constrain models of CE evolution by studying systems that have undergone

CE evolution in the past. Eclipsing binary systems with white dwarf primaries are
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extremely helpful in this regard. A detailed analyses of the light-curves and radial

velocity curves of such systems would allow precise physical parameters including

masses, radii and orbital distances to be derived. By fixing these parameters more

accurate models can be derived to test the data. Moreover the evolution of close

post CE binary systems (PCEBs) and in particular, cataclysmic variable systems

(CVs), is governed by angular momentum loss (AML) driven by the combination of

gravitational radiation (for periods < 3h), and magnetic braking (for periods > 3h)

(King 1988; Verbunt & Zwaan 1981). Both mechanisms are not well understood

(Taam & Sandquist 2000). Therefore the detection of more such systems will help

to test models of close binary evolution theory as well as shedding light on the

period distribution features, the period gap and the period minimum. Politano &

Weiler (2006) suggest that observations of masses and spectral types of PCEBs can

be sufficient to confirm or disprove the magnetic braking model.

The known population of PCEBs appears to be biased towards hot/young white

dwarfs, because the degenerate component has been detected as a blue optical or

soft X-ray source, the major discovery channel for PCEBs. Schreiber & Gänsicke

(2003) predicted the existence of a large, currently undiscovered, population of old

PCEBs containing cold/old white dwarfs contributing only to a small fraction of the

optical emission of the system. These systems will be rejected when using colour

based selection criteria. New detections of eclipsing binary systems with a cold WD

primary component, such as DE CVn (Teff = 8000K see van den Besselaar et al.

2007), will help test population synthesis models. Their characteristics will allow us

to better define their space densities as a function of composition, e.g. white dwarf

temperature, spectral type and age.
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Figure 6.1: Folded light-curve of DE CVn on the orbital period ∼ 8.74 hours detected
using my implementation of the BLS algorithm. The Figure shows the eclipses of
the white dwarf by means of the M dwarf.

6.2.2 Technique

I aim to search the SuperWASP list of red dwarf counterparts for eclipses by means

of the BLS algorithm. I expect white dwarfs to show eclipses characterised by a

squared shape with sharp ingress and egress (see for example the eclipses of the

WD in the system NN Ser, Brinkworth et al. 2006), and the eclipse depth to be a

few tenths of a magnitude, (e.g. Figure 6.1). The eclipse will be of short duration,

between a few to a few tens of minutes, and will show strong colour dependence and

out-of-eclipse variability. I set the range of orbital periods to be between 2 hours

and 15 days, my implementation of the BLS algorithm is optimised to account for

eclipses of short duration. I have already shown that the SuperWASP data are of
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sufficient quality to allow me to search for such binary systems (Figure 6.1). In

addition the simulations from my thesis work, show that I am able to recover very

short, (1 to 35 minutes), and deep eclipses (from ∼ 3% to 100%) in SuperWASP

light-curves. I have tested this approach with two known PCEB systems DE CVn

(Figure 6.1) and V471 Tau (Figure 6.2) (van den Besselaar et al. 2007; Kamiński

et al. 2007).

DE CVn is a WD + M3V dwarf eclipsing binary system in a ∼ 8.7 hours orbit,

with a magnitude of V ≃ 12.8. The white dwarf in this system is spectroscopically

unseen, therefore this object is excluded from the list of 194 SuperWASP white

dwarfs previously searched. However the source has been observed by SuperWASP

in two fields. This eclipsing binary is easily identified in the SuperWASP light-

curve using my implementation of the BLS algorithm. My independent detection of

the correct orbital period shows my ability to detect eclipses of WDs by low-mass

stellar companions even in the presence of out-of-eclipse variability. For DE CVn

such variability is due to the heating effect the white dwarf has on the M dwarf,

which is tidally locked. I note that this kind of variability appears to be quite

stable in time. Figure 6.1 shows the light-curve of DE CVn folded on the orbital

period. My independent detection of DE CVn certify the possibility of detecting

new EB systems with unseen cold/old white dwarf primary components that seem

to be missed in the population of post common envelope binaries as discussed by

(Schreiber & Gänsicke, 2003).

The binary system V471 Tau consists of a WD + K2V dwarf. It is a candidate

pre-CV eclipsing binary system of magnitude V ≃ 9.5 (Kamiński et al. 2007). The

light-curve of V471 Tau is dominated by the sinusoidal variability due to the presence
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of star spots on the secondary. In this case too, the white dwarf in the system is

optically invisible, hidden in the glare of the secondary, although hot enough to

outshine the K dwarf in the UV. I used the BLS algorithm to search for eclipses,

and detected a significant peak in the BLS power spectrum with a period of 12.5

hours. However, upon initial inspection of the phase-folded light-curve the eclipse

was visible only when plotting the data in sections with duration of about 28 days.

This reduced the effect of the change in the intensity of the star spots’ revealing

the WD eclipse. Figure 6.2 shows the light-curve of V471 Tau folded on the orbital

period of 12.5 hours. For V471 Tau the orbital period and the spots’ period are

the same because the two stars are tidally locked. My analysis of V471 Tau shows

that WD eclipses due to low-mass stellar companions are detectable in SuperWASP

data. It also suggests that a better approach for the detection of the eclipse in these

systems would be to fit and remove any sinusoidal variability before searching for

the eclipse signature using a BLS algorithm. This is true in particular for binary

systems where the two components are not in synchronous rotation.

I will perform a cost-benefit analyses of such a method. I aim to search for Su-

perWASP counterparts in the list of all known PCEB binaries from Morales-Rueda

et al. (2005). I will use this sample (e.g. V471 Tau and DE CVn are in Morales-

Rueda list) to test my two-step detection method, and so investigate my ability to

detect the white dwarf occultation.

I aim to investigate my ability to identify new WD + red dwarf binary systems. I

will compile a list of all known nearby/bright red dwarfs spectral type K and M from

on-line catalogues, such as the Gliese catalogue (Gliese & Jahreiss 1995), that I will

cross-correlate with the SuperWASP data archive. The resultant list of SuperWASP

179



Chapter 6. Conclusions 6.2. Future work

Figure 6.2: V471 Tau folded light-curve on the orbital period 12.5 hours. The
variability is due to the presence of star spots in the secondary. This plot shows the
first 600 data points of the time series, that span ∼ 28 days. The transit remain
hidden by the spots variability when folding the entire light-curve.

counterparts will then be searched for eclipsing unseen companions using my method

outlined above. New PECB systems with secondary of spectral type K and M might

be discovered as suggested by the example discussed above.

Finally, once tested, I can also apply my two-step detection method to the Su-

perWASP planet program. The stellar variability due to the presence of spots in

the star surface is one of the causes of contamination when searching for extrasolar

planet transits around main sequence stars. The spots’ variability can be important

enough to hide the transit signal and leave the planet undetected. I first encountered

this problem with V471 Tau.
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Bakos G. Á., et al., 2007, ApJ, 656, 552
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Gänsicke B. T., Marsh T. R., Southworth J., Rebassa-Mansergas A., 2007, ArXiv

e-prints, 710

Gaudi B. S., et al., 2008, Science, 319, 927

Gaudi B. S., Seager S., Mallen-Ornelas G., 2005, ApJ, 623, 472

Genova R., Bowyer S., Vennes S., Lieu R., Henry J. P., Gioia I., 1995, AJ, 110, 788

Gliese W., Jahreiss H., 1995, VizieR Online Data Catalog, 5070, 0

Graham J. R., Macintosh B., Doyon R., Gavel D., Larkin J., Levin M., Oppenheimer

B., Palmer D., Saddlemyer L., Sivaramakrishnan A., Veran J., Wallace K., Gem-

ini Planet Imager Science Team 2007, in Bulletin of the American Astronomical

Society Vol. 38 of Bulletin of the American Astronomical Society, Ground-Based

Direct Detection of Exoplanets with the Gemini Planet Imager (GPI). pp 968–+

Greenstein J. L., Oke J. B., Shipman H. L., 1971, ApJ, 169, 563

Grillmair C. J., Charbonneau D., Burrows A., Armus L., Stauffer J., Meadows V.,

Van Cleve J., Levine D., 2007, ApJ, 658, L115

Hatzes A. P., Guenther E. W., Endl M., Cochran W. D., Döllinger M. P., Bedalov
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