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Abstract

We develop a general theory of intertemporal choice: the reference-time theory,

RT. RT is a synthesis of ideas from the hyperbolic model and subadditivity of time

discounting. These models are extended to allow for a reference point for time as

well as wealth. RT is able to account for all the 6 main anomalies of time discount-

ing: gain-loss asymmetry, magnitude e¤ect, common di¤erence e¤ect, delay-speedup

asymmetry, apparent intransitivity of time preferences, and non-additivity of time

discounting. We provide a class of utility functions compatible with RT. We show

how RT can be extended to incorporate uncertainty and attribute models of in-

tertemporal choice.
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1. Introduction

The standard model of intertemporal choice, exponentially discounted utility (EDU), is
contradicted by a large body of empirical evidence. See, for example, Loewenstein and
Prelec (1992), Frederick et al. (2002) and Manzini and Mariotti (2008). Moreover, these
anomalies are not simply mistakes; see Frederick et al. (2002), section 4.3. To develop
models that provide a better explanation of economic behavior over time, it is imperative to
take account of these anomalies. Subsection 1.1, below, outlines the anomalies. Subsection
1.2 overviews the current explanations. Subsection 1.3 outlines our approach.

1.1. Anomalies of intertemporal choice

Loewenstein and Prelec (1992), henceforth �LP�, described the following four anomalies,
all with good empirical support:

1. Gain-loss asymmetry (or sign e¤ect). Subjects in a study by Loewenstein (1988b)
were, on average, indi¤erent between receiving $10 immediately and receiving $21 one
year later (an implied discount rate of 74% per annum1). They were also indi¤erent
between loosing $10 immediately and losing $15 dollars one year later (an implied
discount rate of 40:5% per annum). This is inconsistent with EDU because the
implied discount rates are di¤erent and they are both too high (even allowing for
capital market imperfections and liquidity constraints).

2. Magnitude e¤ect. Thaler (1981) reported that subjects were, on average, indi¤erent
between receiving $15 immediately and $60 one year later (an implied discount rate of
139% per annum). They were also indi¤erent between receiving $3000 immediately
and receiving $4000 one year later (an implied discount rate of 29% per annum).
This contradicts EDU in that the implied discount rate is magnitude dependent and
is too high.

3. Common di¤erence e¤ect2. Thaler (1981): A person might prefer one apple today

1The estimated discount factor De is the ratio of current to future reward times the ratio of marginal
utilities. Assuming that the marginal utilities are approximately the same, the ratio of rewards is simply
used to approximate De: Thus, in this case, De = 10

21 = 0:476 19: Assuming continuous compounding,
De � D = e��; where � is the discount rate. Taking logs on both sides, � = � lnDe; which in this case
is � ln(0:476 19) = 0:741 94, as claimed. The same method is used to report the other discount rates in
experiments, below.

2The common di¤erence e¤ect is also known as the delay e¤ect or preference reversal. However,
�preference reversal� is also used to describe (for example) the following situation: A consumer strictly
prefers bundle x to bundle y. But when a new bundle, z, is introduced, the consumer now strictly prefers
y to x. The latter phenomenon is a framing e¤ect and leads to violation of independence. The �common
di¤erence e¤ect�need not be due to framing nor need it lead to a violation of independence. On this point,
see Manzini and Mariotti (2008, subsection 3.1).

1



to two apples tomorrow (an implied real discount rate of 25300% per annum), but
at the same time prefer two apples in 51 days to one apple in 50 days (there is no
evidence that this is due to an expected change in the real discount rate).3 This is a
violation of a fundamental principle of EDU, namely, that discounting only depends
on the time interval between two rewards.

4. Delay-speedup asymmetry. Loewenstein (1988a) reported that, in general, the amount
required to compensate for delay in receiving a real reward by a given interval, from
s to s+ t, was two to four times greater than what the subjects were willing to sacri-
�ce to bring consumption forward from s+ t to s. (Neo)classically, these quantities
should be the same.
Recent scholarship has added two further anomalies:

5. Non-additivity of time discounting. Discounting from time t back to time s then
further back to time r is not the same as discounting from time t back to time r in
one step (Read, 2001 and Scholten and Read, 2006a).

6. Intransitivity of time preferences. The following cycles have been observed: x re-
ceived at time r is preferred to y received at time s, which is preferred to z received
at time t, which is preferred to x received at time r (Roelofsma and Read, 2000).

1.2. Explaining the anomalies

We very brie�y summarize some attempts at explaining anomalies 1-6. These attempts
will be discussed in greater depth later in the paper.
The main explanations of the magnitude e¤ect and the gain-loss asymmetry are due

to Loewenstein and Prelec (1992) (henceforth, �LP�). LP explained the magnitude e¤ect
through a value function with increasing elasticity. This makes higher magnitudes more
salient. They explained gain-loss asymmetry by adopting a value function with greater
elasticity for losses than for gains, which makes losses more salient. We are not aware of
alternative generally accepted explanations of these two anomalies.
There are several competing explanations of the common di¤erence e¤ect (CDE). The

CDE is explained in LP by the notion of declining impatience (roughly, one is more impa-
tient as the date of the reward approaches). Hence, despite identical intervals separating
two time-outcome pairs, the choice among the two depends on how close to the current
period they are. LP also provided an axiomatic derivation of their generalized hyperbolic
discount function, which we shall call the LP-discount function. A similar explanation

3However, Andersen et al (2007), by jointly eliciting attitudes to risk and time, estimate much lower
discount rates, of about 10.1%.
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of the CDE is provided in the quasi-hyperbolic discounting model of Phelps and Pollak
(1968) and Laibson (1997), �PPL�for short.4

The experimental work of Read (2001) con�rmed the CDE but rejected declining impa-
tience in favour of constant impatience and, hence, rejected the LP (and PPL) explanation
of the common di¤erence e¤ect in terms of declining impatience. Read (2001) and Scholten
and Read (2006a) found experimental evidence for subadditivity and introduced the con-
cept of an interval discount function5. Furthermore, based on empirical evidence, Scholten
and Read (2006a) developed a speci�c interval discount function, which we shall call the
RS-discount function. The RS-discount function (depending on parameter values) can ex-
plain the common di¤erence e¤ect as due to either declining impatience, subadditivity or
a combination of both. We shall refer to this work as collectively RRS.6

Manzini and Mariotti (2006), in their �theory of vague time preferences�, develop an
attribute model that can explain the common di¤erence e¤ect; we review this in more
detail in subsection 5.3, below.
Under uncertainty, the common di¤erence e¤ect never arises when we use expected

utility with exponential discounting. Hence, it is quite possible that the experimental
�nding of the common di¤erence e¤ect is a rejection of expected utility rather than expo-
nential discounting. Halevy (2007) shows that when non-expected utility is combined with
exponential discounting, the theory is consistent with the presence of a common di¤erence
e¤ect, provided uncertainty is present but su¢ ciently small (see subsection 5.2, below).
The main explanation of non-additivity of time discounting is through the work of

RRS and, in particular, using the interval discount function of Scholten and Read (2006a).
Intransitivity of time preferences can be incorporated either through a variety of attribute
models (Rubinstein, 2003; Manzini and Mariotti, 2006). Yet another explanation relies
on models that do not assume transitivity of preferences in the �rst place, such as Ok
and Masatlioglu (2007); see subsection 5.4, below. However, it cannot account for either
gain-loss asymmetry or delay-speedup asymmetry.
A problem, however, is that there is no single model that can explain all the anomalies.

1.3. Towards a general theory of intertemporal choice: The reference-time the-
ory (RT)

Within the class of time preference models which are separable in time and outcomes
(also known as delay-discounting models), what should a general theory of time preference

4Hyperbolic discounting alone, however, cannot explain anomalies 5 and 6.
5An interval discount function, D (r; t), 0 � r � t, discounts a quantity from time t back to time r. If

D is additive (and only if D is additive), then D (r; t) = D (r; s)D (s; t), for all s, r � s � t.
6The justi�cation for the acronym RRS is that in related work, Roelofsman and Read (2000) provide

experimental evidence for intransitivity.
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aspire to? We suggest two desirable elements. First, it should be able to explain anomalies
1-6. Second, it should provide a framework that can incorporate recent developments in
time discounting such as uncertainty (Halevy, 2007) and attribute models (Manzini and
Mariotti, 2006 and Scholten and Read, 2006b).
The aim of this paper is to develop a theory of intertemporal choice that incorporates

the two desirable elements mentioned above. We call this theory the reference-time theory
of intertemporal choice, �RT�for short. It is a synthesis of three important works, namely,
LP, PPL and RRS. In a nutshell, RT is basically LP extended to allow for non-additive
time discounting by incorporating a reference point for time. Using RT, we explain the
anomalies 1-6 as follows.

1. We follow LP in explaining the gain-loss asymmetry (anomaly 1) by assuming that
the elasticity of the value function for losses exceeds the elasticity for gains. This
allows us to use the same discount function for gains and losses, in agreement with
strict separability of time and outcomes.

2. Also like LP, we explain the magnitude e¤ect (anomaly 2) by assuming that the
elasticity of the value function is increasing. However, al-Nowaihi and Dhami (2008)
show that several popular classes of utility functions violate this condition. They
propose the class of simple increasing elasticity value functions (SIE) that is tractible
and consistent with LP�s explanation of the magnitude e¤ect. Furthermore, it is
compatible with any theory where preferences are separable in time and outcomes.
The SIE value function also satis�es LP�s requirement that the elasticity of the
value function for losses exceeds the elasticity for gains in order to explain the sign
e¤ect. We follow al-Nowaihi and Dhami (2008) in using the SIE value function and
integrating it within the RT theory.

3. LP provided an axiomatic derivation of their generalized hyperbolic discount function
(which we call the LP-discount function). For this, they added the extra assumption
of linear delay to that of the common di¤erence e¤ect. While there is considerable
empirical evidence for the common di¤erence e¤ect, the assumption of linear delay is
added purely for convenience. We extend the LP derivation as follows. At the most
general level, which requires neither linear delay nor the common di¤erence e¤ect,
we have our Representation Theorem 2 (Proposition 12, below). We introduce a
weaker notion of subadditivity, which we call �-subadditivity (De�nition 12, below).
According to our Characterization Theorem 4 (Proposition 21, below), preferences
exhibit the common di¤erence e¤ect if, and only if, �-subadditivity holds. We also
introduce a generalization of the concept of linear delay of LP. We call this 
-delay.
Our Proposition 23, below, then shows that 
-delay implies the common di¤erence
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e¤ect. Imposing additivity, as well as 
-delay, gives our Proposition 24, below. The
special case of the latter with 
 = 1 gives the LP-discount function. Our more
general approach also allows us to derive the RS-discount function (Proposition 25,
below). In particular, as with RRS, we can explain the common di¤erence e¤ect
(anomaly 3) as due to either declining impatience, subadditivity or a combination of
both. However, our approach is more general, as RT can also explain the common
di¤erence e¤ect as due to the presence of a small amount of irremovable uncertainty,
as in Halevy (2007), or as a consequence of multiple decision criteria, as in Manzini
and Mariotti (2006) (see section 5, below). Thus, RT can accommodate all the
known explanations of the common di¤erence e¤ect. In the spirit of RRS, we leave
it to empirical evidence to select the correct explanation.

4. We show the delay-speedup asymmetry (anomaly 4) follows from our other assump-
tions (see Proposition 29, below).

5. We follow LP in adopting prospect theory (Kahneman and Tversky, 1979 and Tver-
sky and Kahneman, 1992) as our underlying decision theory. But, in addition to a
reference point for wealth, we introduce a reference point for time. If preferences
are additive, as in LP, then the choice of the reference point for time is immaterial
(Proposition 7, below). However, if preferences are non-additive, then the choice
of the reference point for time matters. Thus, we can accommodate non-additive
preferences (anomaly 5) by having a reference point for time. A consequence is that
all our discount functions are interval discount functions, as in RRS.

6. Given a reference point for wealth, w0, and a reference point for time, r, our prefer-
ences are complete and transitive (subsection 2.2, below). Thus they may be called
conditionally complete and conditionally transitive (conditional on w0 and r). We
explain observed intransitivity as due to a change in the reference point for time (see
subsections 2.3 and 2.7, below). This is in contrast to Ok and Masatlioglu (subsec-
tion 5.4, below), where preferences are complete but intransitive (in our terminology
we may describe such preferences as unconditionally complete but not even condi-
tionally transitive). Thus the relative-discounting theory Ok and Masatlioglu and
the reference-time theory of this paper are not compatible and neither is a special
case of the other.

To summarize, the theory presented in this paper (reference-time theory or RT) can
explain anomalies 1-6 (section, 4, below) and can be extended to incorporate uncertainty,
as in Halevy (2007), and the attribute models of Manzini and Mariotti (2006) and Scholten
and Read (2006b) (section 5, below).
All proofs are contained in the appendix.
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2. A reference-time theory of intertemporal choice (RT)

This section is structured as follows. We �rst outline prospect theory (subsection 2.1),
which is an essential building block of RT. We de�ne preferences for RT as early as possi-
ble (subsection 2.2). This is followed by further essential material on discount functions,
additivity, impatience, intransitivity and the common di¤erence e¤ect (subsections 2.4, 2.5,
2.6, 2.7 and 2.8). The main technical machinery: representation, extension and charac-
terization theorems are developed in subsections 2.9, 2.10 and 2.11. Finally, in subsection
2.12 we are in a position to extend LP to allow for non-additive time discounting by
incorporating a reference point for time.

2.1. Prospect theory

We follow LP in using prospect theory (Kahneman and Tversky, 1979, and Tversky and
Kahneman, 1992) rather than standard utility theory. Prospect theory distinguishes be-
tween two phases of decision making: editing and evaluation.
In the editing phase, a decision maker simpli�es a real world problem to make it

amenable to formal analysis and reduce the associated cognitive load. As part of the
editing phase a reference point is chosen to which outcomes are to be compared.
In the evaluation phase, a value (a real number) is attached to each feasible action by

the decision maker. The action with highest value is chosen. The function, v, that assigns
values to actions in prospect theory is called the value function, it is the analogue of the
indirect utility function of standard utility theory. In standard utility theory carriers of
utility are the outcomes of actions. But in prospect theory carriers of utility are deviations
in outcomes from the reference point. In general, the action chosen in the evaluation phase
will depend on the reference point chosen in the editing phase.
The value function, v, in prospect theory has four main properties: reference depen-

dence, monotonicity, declining sensitivity, loss aversion. Furthermore, in prospect theory,
there is non-linear transformation of probabilities. There is good empirical support for
these feature; see, for instance, Kahneman and Tversky (2000).
We take v to be the value function introduced by Kahneman and Tversky (1979). Thus

v satis�es:

v : (�1;1)! (�1;1) is continuous, strictly increasing (monotonicity). (2.1)

v (0) = 0 (reference dependence) and is twice di¤erentiable except at 0. (2.2)

For x > 0: � v (�x) > v (x) (loss aversion). (2.3)

Following LP, we de�ne the elasticity of the value function as follows.
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De�nition 1 : The elasticity of v is

�v (x) =
x

v

dv

dx
, x 6= 0. (2.4)

2.2. Preferences

We consider a decision maker who, at time t0, takes an action that results in the level of
wealth wi at time ti, i = 1; 2; :::; n, where

t0 � r � t1 < ::: < tn. (2.5)

Time r is the reference time: the time back to which all values are to be discounted. We
can choose any moment of time as time zero and measure all other times relative to it. We
choose to set t0 = 0, i.e., the time a decision is made is always time t = 0. If it is desired
to set t0 6= 0, then simply replace all times, t, below, with t � t0. The decision maker�s
intertemporal utility function is given by:

Vr ((x1; t1) ; (x2; t2) ; :::; (xn; tn)) = �
n
i=1v (xi)D (r; ti) , (2.6)

where v is the value function introduced by Kahneman and Tversky (1979). xi = wi �w0
is the di¤erence between the wealth level, wi, at time, ti, and the reference level for wealth,
w0. D (r; ti) is the discount function, it discounts v (xi) from time, ti, back to the reference
time, r.
More formally, we assume that, for each (w0; r) 2 (�1;1) � [0;1), the decision

maker has a complete transitive preference relation, �w0;r on (�1;1)� [r;1). We think
of w0 as the reference point for wealth and r the reference point for time. If (w; t) 2
(�1;1)� [r;1), with w � w0, we say that (w; t) is an outcome in the domain of gains.
If (w; t) 2 (�1;1)� [r;1), with w < w0, we say that (w; t) is an outcome in the domain
of losses. We assume that �w0;r is represented by a utility function v (w � w0)D (r; t).
Thus (w1; t1) �w0;r (w2; t2) if, and only if, v (w1 � w0)D (r; t1) � v (w2 � w0)D (r; t2).
Using (2.6), we extend �w0;r to a complete transitive preference relation on sequences

from (�1;1)� [r;1), as follows7:

((x1; s1) ; (x2; s2) ; :::; (xm; sm)) �w0;r ((y1; t1) ; (y2; t2) ; :::; (yn; tn))

, Vr ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) � Vr ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) (2.7)

We depart from LP in the following ways. LP have a reference point for wealth but not
for time. We have a reference point for wealth, w0, and a reference point for time, r. LP
implicitly assume that the discount function is additive (De�nition 5, below). We allow

7This also holds for in�nite sequences, provided the sum in (2.6) is convergent.
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the discount function to be non-additive, to accommodate the empirical evidence of RRS.
If the discount function is additive (as in LP), then the choice of the reference point for
time is irrelevant, since (x; s) �w0;r (y; t) if, and only if, (x; s) �w0;0 (y; t) (Proposition 7,
below). However, if the discount function is non-additive, then the choice of the reference
point for time matters. We use this to explain (apparent) intransitivity as a framing e¤ect
due to a change in the reference point for time.

2.3. Determination of the reference point for time

Let S be a non-empty set of sequences from (�1;1)� [0;1). Suppose a decision maker
is interested in comparing the members of S. For example, for the purpose of choosing
the optimal member (if S is compact). For this he needs a reference point for time. Let T
be the set of times involved, i.e.,

T = ft 2 [0;1) : t = ti for some sequence f(x1; t1) ; (x2; t2) ; :::; (xi; ti) ; :::g in Sg . (2.8)

Since T is bounded below (by 0) and non-empty, it follows that T has a greatest lower
bound, r. We make the following tentative assumption:
A0 Reference time. Given S, T , r, as described just above, we assume that the decision

maker takes r as the reference point for time.
For example, if a decision maker wants to compare x received at time s with y received

at time t, s � t, then S consists of just two sequences, each with just one element:
S = f(x; s) ; (y; t)g and T = fs; tg. Thus A0 implies that r = s. If v (x) < v (y)D (s; t)

then the decision maker chooses (y; t) over (x; s).
A0 does not have the status of the LP assumptions A1-A4, introduced in subsection

2.12, below. While there is considerable, though debated, empirical evidence for A1-A4,
A0 should be regarded as a tentative assumption, whose implications are to be explored.
We will only use A0 in subsections 2.7 and 2.12. In subsection 2.7, we use A0 to explain
(apparent) intransitivity as due to a shift in the reference point for time. In subsection
2.12, we use A0 to prove that assumption A4 (Delay-speedup asymmetry) follows from
the other assumptions (Proposition 29).

2.4. Discount functions

The �ve discount functions that will be important for this paper are:

Exponential: D (r; t) = e��(t�r), � > 0. (2.9)

PPL: D (r; t) =

8<:
1 when r = t = 0

e�(�+�t) when r = 0; t > 0
e��(t�r) when 0 < r � t

9=; ; � > 0, � > 0. (2.10)
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LP: D (r; t) =
�
1 + �t

1 + �r

�� �
�

, t � 0, r � 0, � > 0, � > 0. (2.11)

RS: D (r; t) = [1 + � (t� � r� )�]
� �
� , 0 � r � t, � > 0, � > 0, � > 0, � > 0. (2.12)

generalized RS: D (r; t) = e�Q[w(t)�w(r)], 0 � r � t, where

Q : [0;1) onto! [0;1) and w : [0;1) onto! [0;1) are strictly increasing. (2.13)

The exponential discount function (2.9) was introduced by Samuelson (1937). Aside
from its tractability, the main attraction of EDU is that it leads to time-consistent choices.
If the plan (x1; t1) ; (x2; t2) ; :::; (xn; tn) is optimal at time 0, then at time tk the plan
(xk+1; tk+1) ; (xk+2; tk+2) ; :::; (xn; tn) is also optimal. But this may no longer be true for
more general speci�cations of the discount function.
The �� (or quasi-hyperbolic) discount function (2.10) was proposed by Phelps and

Pollak (1968) and Laibson (1997). The generalized hyperbolic discount function (2.11) was
proposed by Loewenstein and Prelec (1992). For the special case, � = �, (2.11) it reduces
to the hyperbolic discount function. These three discount functions are additive (De�nition
3, below). They can account for the common di¤erence e¤ect through declining impatience
(De�nition 6, below) but they cannot account for either non-additivity or intransitivity.
The interval discount function (2.12) was introduced by Scholten and Read (2006a).

It can account for both non-additivity and intransitivity. It can account for the com-
mon di¤erence e¤ect though declining impatience, subadditivity or a combination of both
(subsections 2.7 and 2.8, below).
In subsection 5.1, below, we shall show that the attribute model of Scholten and Read

(2006b) is equivalent to a discounted utility model with the discount function (2.13), which
is a generalization of their RS-discount function (2.12).
Note that (2.11) approaches (2.9) as �! 0. In general, neither of (2.11) or (2.12) is a

special case of the other. However, for r = 0 (and only for r = 0), (2.12) reduces to (2.11)
when � = � = 1. Scholten and Read (2006a) report incorrectly that the LP-discount
function is a special case of the RS-discount function. One needs to restrict r = 0 (in
addition to � = � = 1) in order to generate the LP from the RS-discount function. While
�; � are parameters, r is a variable. Hence, neither discount function is a special case of
the other.

De�nition 2 (Discount functions): Let

� = f(r; t) 2 R� R : 0 � r � tg . (2.14)

A discount function is a mapping, D : �! (0; 1], satisfying:
(i) For each r 2 [0;1), D (r; t) is a strictly decreasing function of t 2 [r;1) into (0; 1]
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with D (r; r) = 1.
(ii) For each t 2 [0;1), D (r; t) is a strictly increasing function of r 2 [0; t] into (0; 1].
Furthermore, if D satis�es (i) with �into�replaced with �onto�, then we call D a continuous
discount function.

Our terminology suggests that a continuous discount function is continuous. That this
is partly true, is established by the following Proposition.

Proposition 1 : A continuous discount function, D (r; t), is continuous in t.

Proposition 2 : Each of (2.9), (2.11) and (2.12) is a continuous discount function in the
sense of De�nition 2. However, (2.10) is a discount function but not a continuous discount
function.

The reason that (2.10) fails to be a continuous discount function is that lim
t!0+

D (0; t) =

e�� < 1 = D (0; 0).
From (2.11) and (2.12) we see that the restrictions r � 0 and t � 0 are needed. From

(2.12) we see that the further restriction r � t is needed.8 From (2.9) we see that the �into�
in De�nition 2(ii) cannot be strengthened to �onto�.

Proposition 3 (Time sensitivity9): Let D be a continuous discount function. Suppose
r � 0. If 0 < x � y, or if y � x < 0, then v (x) = v (y)D (r; t) for some t 2 [r;1).

Proposition 4 (Existence of present values): Let D be a discount function. Let r � t.
Let y � 0 (y � 0). Then, for some x, 0 � x � y (y � x � 0), v (x) = v (y)D (r; t).

2.5. Additivity

We now de�ne additivity and related concepts.

De�nition 3 (Additivity): A discount function, D (r; t), is

additive if D (r; s)D (s; t) = D (r; t) , for r � s � t, (2.15)

subadditive if D (r; s)D (s; t) < D (r; t) , for r < s < t, (2.16)

superadditive if D (r; s)D (s; t) > D (r; t) , for r < s < t. (2.17)

8One alternative is to de�ne D (t; s) to be 1=D (s; t). But we do not know if people, when compounding
forward, use the inverse of discount function (as they should, from a normative point of view). Fortunately,
we have no need to resolve these issues in this paper.

9We have chosen the phrase �time sensitivity�to conform with the terminology of OM, Axiom A1, p219,
and Claim 3, p235.
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Additivity (2.15) implies that discounting a quantity from time t back to time s and
then further back to time r is the same as discounting that quantity from time t back to
time r in one step.
To aid further development, we de�ne a generating function, whose interpretation will

become apparent from Proposition 5 that follows the de�nition.

De�nition 4 (The generating function): Let ' : [0;1) ! (0; 1] be a strictly decreasing
function with ' (0) = 1. Then we call ' a generating function. If, in addition, ' is onto,
we call ' a continuous generating function.

A �continuous generating function� is continuous. The proof is the same as that of
Proposition 1 and, therefore, will be omitted.

Proposition 5 (Additive extension theorem):
(a) Let D (r; t) = [' (r)]�1 ' (t) for some strictly decreasing real valued function, ' :

[0;1)! (0; 1]. Then the following hold:
(i) D is an additive discount function.
(ii) If ' (0) = 1 (so that ' is a generating function), then D (0; t) = ' (t).
(iii) If ' is onto (so that ' is a continuous generating function), then D is an additive
continuous discount function and D (0; t) = ' (t).
(b) Let D be an additive discount function. Then the following hold:
(i) D (r; t) = [' (r)]�1 ' (t) for some strictly decreasing real valued function, ' : [0;1)!
(0; 1] with ' (0) = 1 (hence, ' is a generating function).
(ii) If D is a continuous discount function, then ' is onto (hence, ' is a continuous gener-
ating function).
(iii) D (0; t) = ' (t).

Proposition 5 justi�es the following de�nition.

De�nition 5 (Additive extensions): Let ' be a generating function. Let D (r; t) =
[' (r)]�1 ' (t). Then:
(i) We call ' the generating function of the additive discount function, D.
(ii) We call D the additive extension of '.
(iii) We also refer to D (r; t) as the additive extension of D (0; t).

Proposition 6 : The discount functions (2.9), (2.10) and (2.11) are additive. In each case,
D (r; t) is the additive extension ofD (0; t) and ' (t) = D (0; t) is the generating function for
D (r; t). However, (2.12) is not additive. (2.13) is additive if, and only if, Q [w (t)� w (r)] =

Q [w (t)] � Q [w (r)], in which case D (r; t) = eQ[w(r)]�Q[w(t)] is the additive extension of
D (0; t) = e�Q[w(t)] and e�Q[w(t)] is the generating function.

11



Proposition 7 (Invariance to the choice of reference time) If D (r; t) is additive, then

((x1; s1) ; (x2; s2) ; :::; (xm; sm)) �w0;r ((y1; t1) ; (y2; t2) ; :::; (yn; tn))

, ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) �w0;0 ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) .

Thus, if the discount function is additive (as is the case with LP) then the choice of
the reference time, r, back to which all utilities are discounted, is irrelevant. Discounting
back to time r is equivalent to discounting back to time 0.

2.6. Impatience

The following concepts are also useful.

De�nition 6 (Impatience): A discount function, D (r; s), exhibits10

declining impatience if D (r; s) < D (r + t; s+ t) , for t > 0 and r < s, (2.18)

constant impatience if D (r; s) = D (r + t; s+ t) , for t � 0 and r � s, (2.19)

increasing impatience if D (r; s) > D (r + t; s+ t) , for t > 0 and r < s. (2.20)

Proposition 8 : Let D (r; t) be the RS-discount function (2.12), then:
(a) If 0 < � � 1, then D is subadditive.
(b) If � > 1, then D is neither subadditive, additive nor superadditive.
(c) (i) If 0 < � < 1, then D exhibits declining impatience.
(ii) If � = 1, then D exhibits constant impatience.
(iii) If � > 1, then D exhibits increasing impatience.

Scholten and Read (2006a), bottom of p1425, state: � > 0 implies subadditivity
(incorrect), � > 1 implies superadditivity (incorrect) and 0 < � < 1 implies declining
impatience (correct but incomplete). Proposition 8 clari�es these points.
In the light of Proposition 8, we can now see the interpretation of the parameters �

and � in the RS-discount function (2.12). � controls impatience, independently of the
values of the other parameters �, � and �: 0 < � < 1, gives declining impatience, � = 1
gives constant impatience and � > 1gives increasing impatience. If 0 < � � 1, then we
get subadditivity, irrespective of the values of the other parameters �, � and � . However,
if � > 1, then (2.12) can be neither subadditive, additive nor superadditive (depending
on the particular values of r, s and t, we may have D (r; s) < D (r + t; s+ t), D (r; s) =
D (r + t; s+ t) or D (r; s) > D (r + t; s+ t)).

10Some authors use �present bias�for what we call �declining impatience�. But other authors use �present
bias�to mean that the discount function, D (s; t) is declining in t. So we prefer �declining impatience�to
avoid confusion. It is common to use �stationarity�for what we call �constant impatience�. We prefer the
latter, to be in conformity with �declining impatience�and �increasing impatience�.
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2.7. Intransitive preferences: Real or apparent?

Consider the following hypothetical situation. A decision maker prefers a payo¤of 1 now to
a payo¤ of 2 next period, i.e., (2, next period) � (1, now). The decision maker also prefers
a payo¤of 2 next period to a payo¤of 3 two periods from now, i.e., (3, 2 two periods from now)
� (2, next period). Finally, the same decision maker prefers a payo¤ of 3 two periods from
now to a payo¤ of 1 now, i.e., (1, now) � (3, 2 two periods from now). Schematically:

(1, now) � (3, 2 two periods from now) � (2, next period) � (1, now) . (2.21)

Ok andMasatlioglu (2007, p215) use a similar example to motivate their intransitive theory
of relative discounting.
Alternatively, we may view (2.21) as due to a framing e¤ect resulting in a shift in

the reference point for time. Assume that the choice of reference time in each pairwise
comparison is the sooner of the two dates, in conformity with Assumption A0, subsection
2.3. Then (2.21) can be formalized as follows.

V0 (1; 0) < V0 (3; 2) , V1 (3; 2) < V1 (2; 1) , V0 (2; 1) < V0 (1; 0) . (2.22)

Thus, the decision maker prefers a payo¤ of 1 now to a payo¤ of 2 next period, both
discounted back to the present. The decision maker also prefers a payo¤of 2 next period to
a payo¤of 3 the following period, both discounted back to next period. Finally, the decision
maker prefers a payo¤ of 3 in two periods from now to a payo¤ of 1 now, both discounted
back to the present. If this view is accepted, then the apparent intransitivity in (2.21) arises
from con�ating V0 (3; 2) with V1 (3; 2) and V1 (2; 1) with V0 (2; 1). The following example
shows that (2.22) is consistent with a reference-time theory of intertemporal choice.

Example 1 : Take the reference point for wealth be the current level of wealth, so each
payo¤ is regarded as a gain to current wealth. Take the value function to be11

v (x) = x
1
2 (1 + x)

1
2 , x � 0. (2.23)

Thus (working to �ve signi�cant �gures),

v (1) = 1: 414 2, v (2) = 2: 449 5 and v (3) = 3: 464 1. (2.24)

As our discount function we take the Read-Scholten discount function (2.12) with � =
� = 1 and � = � = 1

2
:

D (r; t) =

�
1 +

�
t
1
2 � r

1
2

� 1
2

��1
. (2.25)

11The reasons for this choice will become clear in sections 3.1 and 3.2, below. Many other choices are
possible.
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Thus,

D (0; 1) =
1

2
, D (1; 2) = 0:608 42 and D (0; 2) = 0:456 79. (2.26)

From (2.24) and (2.26) we get

V0 (1; 0) = v (1)D (0; 0) = 1: 414 2, (2.27)

V0 (3; 2) = v (3)D (0; 2) = 1: 582 4, (2.28)

V1 (3; 2) = v (3)D (1; 2) = 2: 107 6, (2.29)

V1 (2; 1) = v (2)D (1; 1) = 2: 449 5, (2.30)

V0 (2; 1) = v (2)D (0; 1) = 1: 224 8. (2.31)

From (2.27) to (2.31), we get

V0 (1; 0) < V0 (3; 2) , V1 (3; 2) < V1 (2; 1) , V0 (2; 1) < V0 (1; 0) , (2.32)

con�rming (2.22).

A consequence of Proposition 7 is that no additive discount function (e.g., exponential
(2.9), PPL (2.10) or LP (2.11)) can explain (apparently) intransitive choices as exhibited
in (2.21). The reason is that, under the conditions of that proposition, all utilities can be
discounted back to time zero and, hence, can be compared and ordered.

2.8. The common di¤erence e¤ect: Declining impatience or subadditivity?

Let us reconsider the common di¤erence e¤ect, using Thaler�s apples example (anomaly
3 in the list of subsection 1.1). A decision maker prefers one apple today to two apples
tomorrow, so that

v (1) > v (2)D(0; 1). (2.33)

However, the decision maker, today, prefers to receive two apples in 51 days� time to
receiving one apple in 50 days�time, so that

v (1)D(0; 50) < v (2)D(0; 51). (2.34)

From (2.33) and (2.34) we get

D(0; 50)D(0; 1) < D(0; 51). (2.35)

If we assume additivity (as did LP), so that D(0; 51) = D(0; 50)D(50; 51), we get, from
(2.35), D(0; 1) < D(50; 51). So the decision maker exhibits declining impatience. How-
ever, and as Read (2001) pointed out, subadditivity could be an alternative explanation.
To see this, assume constant impatience, so that D(0; 1) = D(50; 51). Then (2.35) gives
D(0; 50)D(50; 51) < D(0; 51). Thus, the common di¤erence e¤ect is consistent with con-
stant impatience if the discount function is su¢ ciently subadditive.
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Example 2 : (Thaler�s apples example)
Take the reference point to be �no apples�and take the value function to be

v (x) = x
1
2 (1 + x)

1
2 , x � 0. (2.36)

Thus,
v (1) = 1: 414 2 and v (2) = 2: 449 5. (2.37)

We compare the resolution of the �common di¤erence e¤ect� anomaly under the LP-
discount function (2.11) and the RS-discount function (2.12). To simplify as much as
possible, choose the parameters: � = � = � = � = 1. We shall use these parameters in
other examples too. We tabulate the relevant magnitudes below:

LP: D (s; t) = (1 + s) (1 + t)�1 RS: D (s; t) = (1 + t� s)�1

D (0; 1) 1=2 1=2
D (0; 50) 1=51 1=51
D (0; 51) 1=52 1=52
D (50; 51) 51=52 1=2
D (0; 50)D (50; 51) 1=52 1=102

Recall that the decision maker prefers one apple today to two apples tomorrow if, and only
if,

v (1) > v (2)D(0; 1). (2.38)

On the other hand, the decision maker, today, prefers to receive two apples in 51 days�
time to receiving one apple in 50 days�time if, and only if,

v (1)D(0; 50) < v (2)D(0; 51). (2.39)

Substituting from the above table and (2.37) into (2.38) and (2.39) gives, respectively,12

v (1) = 1: 4 > 1: 2 = v (2)D(0; 1), (2.40)

v (1)D(0; 50) = 0:028 < 2:4 = v (2)D(0; 51), (2.41)

for both the LP-discount function and the RS-discount function. This illustrates that
both approaches can explain the common di¤erence e¤ect. However, they explain in very
di¤erent ways. Comparing rows one and four of the table, we see that the LP-discount
function exhibits declining impatience, D (0; 1) = 1

2
< 51

52
= D (50; 51), while the RS-

discount function exhibits constant impatience, D (0; 1) = 1
2
= D (50; 51). On the other

hand, comparing rows three and �ve of the table, we see that the LP-discount function is

12In the presentation of the results, we write down the �rst two signi�cant �gures, which is entirely
adequate.
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additive, D (0; 51) = 1
52
= D (0; 50)D (50; 51), while the RS-discount function subadditive,

D (0; 51) = 1
52
> 1

102
= D (0; 50)D (50; 51). Thus, the LP-discount function explains the

common di¤erence e¤ect as exclusively due to declining impatience, while the RS-discount
function explains this e¤ect as due (in this example, exclusively) to subadditivity. More
generally, and provided 0 < � � 1, the RS-discount function can combine subadditiv-
ity with declining impatience (0 < � < 1), constant impatience (� = 1) or increasing
impatience (� > 1).

Of course, and as Read (2001) pointed out, the common di¤erence e¤ect could be due
to both declining impatience and subadditivity. Read (2001), conducted a series of exper-
iments that tested for the common di¤erence e¤ect and could also discriminate between
subadditivity and declining impatience. He found support for the common di¤erence e¤ect
and for subadditivity but rejected declining impatience in favour of constant impatience.
Read (2001) also discusses the psychological foundation for subadditivity.

2.9. Representation theorems

Suppose that x received at time 0 is equivalent to y received at time t (when both are
discounted back to time 0), so that v (x) = v (y)D (0; t). Suppose that the receipt of x
is delayed to time s. We ask, at what time, T , will y received at time T be equivalent
to x received at time s (when both are discounted back to time 0)? Or, for what time,
T , will the following hold: v (x)D (0; s) = v (y)D (0; T )? For the exponential discount
function (2.9) the answer is clear: T = s + t. More generally, does such a T exist? Is it
unique? Does it depend on x; y as well as s; t? What are its properties? These questions
are answered by Propositions 9 and 10, below. But �rst, a de�nition.

De�nition 7 (Delay functions): Let D be a discount function. Suppose the function, 	,
has the property D (0; s)D (0; t) = D (0;	(s; t)), s � 0, t � 0. Then we call 	 a delay
function corresponding to the discount function, D. We also say that the discount function,
D, exhibits 	-delay.

Proposition 9 (Properties of a delay function): Let D be a discount function and 	 a
corresponding delay function. Then 	 has the following properties:
(a) 	 is unique,
(b) 	(s; t) is strictly increasing in each of s and t,
(c) 	(s; t) = 	 (t; s),
(d) 	(0; t) = 	 (t; 0) = t,
(e) v (x) = v (y)D (0; t) if, and only if, v (x)D (0; s) = v (y)D (0;	(s; t)).
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Suppose that x received at time 0 is equivalent to y received at time t (when both
are discounted back to time 0), so that v (x) = v (y)D (0; t). Suppose that the receipt of
x is delayed to time s. Then, according to Proposition 9(e), the delay function, 	(s; t),
if it exists, gives the time to which the receipt of y has to be deferred, so as to retain
equivalence to x (when both are discounted back to time 0). Therefore, we called 	 a
delay function.

Proposition 10 (Existence of a delay function): A continuous discount function has a
unique delay function.

We now introduce our fourth de�ned function (the others were: the discount function,
the generating function and the delay function).

De�nition 8 (The seed function): Let  : [0;1) ! [0;1) be strictly increasing, with
 (0) = 0. We call  a seed function. If, in addition,  is onto, we call  a continuous seed
function.

A �continuous seed function�is continuous. The proof is similar to that of Proposition
1 and, therefore, will be omitted.
The following de�nition gives a useful representation for discount functions.

De�nition 9 (Representations): Let � > 0 and � > 0. We call D (0; t) = [1 + � (t)]�
�
�

an (�; �)-representation of the discount function D (r; t).

Proposition 11, below, establishes the existence of (�; �)-representations for continuous
discount functions and shows their connection to delay functions.

Proposition 11 (Representation Theorem 1): Let D be a continuous discount function.
Let 	 be the corresponding delay function. Then, for each � > 0 and each � > 0, D has
the unique (�; �)-representation D (0; t) = [1 + � (t)]�

�
� . Moreover,  has the properties:

(a)  : [0;1) onto! [0;1) is strictly increasing (hence  (0) = 0 and  is a continuous seed
function).
(b)  �1 exists and  �1 : [0;1) onto! [0;1) is strictly increasing with  �1 (0) = 0.
(c) 	(s; t) =  �1 [ (s) +  (t) + � (s) (t)].

From Proposition 11, we see that if 	 is to be the delay function of some continuous dis-
count function, then it must take the form given in part (c) of that proposition. In the light
of this, when considering possible delay functions, we can restrict ourselves, without loss of
generality, to the class of functions of the form 	(s; t) =  �1 [ (s) +  (t) + � (s) (t)],
where  is as in part (a), i.e., a continuous seed function.
The following proposition is a generalization of LP�s derivation of their generalized

hyperbolic discount function.
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Proposition 12 (Representation Theorem 2): Let  : [0;1) onto! [0;1) be strictly in-
creasing, � > 0 and 	(s; t) =  �1 [ (s) +  (t) + � (s) (t)]. Let D be a continuous
discount function with delay function, 	. Then, for some � > 0, D (0; t) = [1 + � (t)]�

�
� .

According to Propositions 9(a) and 10, a continuous discount function determines a
unique delay function. Hence, we can partition the set of all continuous discount functions
into equivalence classes, two continuous discount functions being in the same equivalence
class if, and only if, they have the same delay function. Many di¤erent discount functions
could have the same delay function. In fact, according to Representation Theorem 1
(Proposition 11), all (the di¤erent) continuous discount functions, D, for which D (0; t) =
[1 + � (t)]�

�
� (�xed � and  , di¤erent ��s) have the same delay function and, hence, lie

in the same equivalence class. But does an equivalence class contain other continuous
discount functions? Representation Theorem 2 (Proposition 12) gives the answer �no�:
Consider an arbitrary equivalence class. Choose some member of that class. Let it have
the (�; �)-representation D (0; t) = [1 + � (t)]�

�
� . Then all members of its class can be

obtained by varying �, keeping � and  �xed.

2.10. Extension theorems

Proposition 8(a) and (b) established that the RS-discount function (2.12) is not additive
and, hence, cannot be obtained as an additive extension of a strictly decreasing function
' : [0;1) ! (0; 1], ' (0) = 1. We, therefore, need a more general way to extend such
a strictly decreasing function to a discount function. This is what we turn to in this
subsection. We start by introducing our �fth, and �nal, de�ned function.

De�nition 10 (extension functions): Let f : �! [0;1) satisfy:
(i) For each r 2 [0;1), f (r; t) is a strictly increasing function of t 2 [r;1) into [0;1),
with f (r; r) = 0.
(ii) For each t 2 [0;1), f (r; t) is a strictly decreasing function of r 2 [0; t] into [0; t], with
f (0; t) = t.
Then we call f an extension function. If, in (i), �into�is replaced with �onto�, then we call
f a continuous extension function.

A �continuous extension function�, f (r; t), is continuous in t. The proof is the same as
that of Proposition 1 and, therefore, will be omitted.

De�nition 11 (f -extensions): Let D be a discount function. Let f : � ! [0;1) satisfy
D (r; t) = D (0; f (r; t)), then
(a) we call f an extension function corresponding to D,
(b) we refer to D (r; t) as an f-extension of D (0; t), or just an f-extension.
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De�nition 10 de�nes extension functions independently of any discount function. By
contrast, De�nition 11 de�nes an extension function corresponding to a give discount
function. Our terminology suggests that �an extension function corresponding to a given
discount function� is, in fact, �an extension function�. That this is indeed the case, is
established in the following proposition.

Proposition 13 (Extension Theorem 1): Let D be a discount function. Let f be a
corresponding extension function in the sense of De�nition 11(a). Then:
(a) f is unique.
(b) f is an extension function in the sense of De�nition 10.
(c) v (x) = v (y)D (r; t) if, and only if, v (x) = v (y)D (0; f (r; t)).

Suppose that x received at time r is equivalent to y received at time t, 0 � r � t,
time r being the reference time; so that v (x) = v (y)D (r; t). Suppose that the receipt of
x is brought forward to time 0. We ask, at what time, T , will y received at time T be
equivalent to x received at time 0, time 0 being the new reference time? Or, for what time,
T , will the following hold: v (x) = v (y)D (0; T )? For the exponential discount function
(2.9) the answer is clear: T = t� r. More generally, Proposition 13(c) gives the answer as
T = f (r; t).

Proposition 14 (Extension Theorem 2): Let the discount function, D, be continuous.
Then there exists an extension function, f , corresponding to D in the sense of De�nition
11. Moreover, f is unique and is a continuous extension function in the sense of De�nition
10.

Proposition 15 (Extension Theorem 3): Let ' be a generating function and f an exten-
sion function. Then:
(a) D (r; t) = ' (f (r; t)) is a discount function.
(b) f is the extension function corresponding toD andD (r; t) is the f -extension ofD (0; t).
(c) If ' is a continuous generating function and f a continuous extension function, then
D is a continuous discount function.

To summarize, given a generating function, ', and an extension function, f , by Exten-
sion Theorem 3 (Proposition 15), we can construct a discount function D so that D (r; t)
is the f -extension of ' (t) = D (0; t). Extension Theorem 2 (Proposition 14) tells us that
all continuous discount functions are obtainable in this way from continuous generating
functions and continuous extension functions.
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2.11. Characterization theorems

We can combine the representation and extension theorems of the previous two subsections
to produce further useful results, which we now turn to.

Proposition 16 (Characterization Theorem 1): D is a continuous discount function if,
and only if, D (r; t) = [1 + � (f (r; t))]�

�
� , � > 0, � > 0, where  is a continuous seed

function and f is a continuous extension function. Furthermore, f is uniquely determined
by D.

Proposition 17 (Characterization Theorem 2): A continuous discount function with the
extension function, f , exhibits:
(a) declining impatience if, and only if, f (r; s) > f (r + t; s+ t), for t > 0 and r < s,
(b) constant impatience if, and only if, f (r; s) = f (r + t; s+ t), for t � 0 and r � s,
(c) increasing impatience if, and only if, f (r; s) < f (r + t; s+ t), for t > 0 and r < s,

Proposition 18 (Characterization Theorem 3): A continuous discount function, D, is

additive if, and only if, f (r; t) =  �1
�
 (t)� (r)
1+� (r)

�
, in which case D (r; t) =

h
1+� (t)
1+� (r)

i� �
�
.

Proposition 19 : The following two tables give a seed function,  , the generating func-
tion, ', the extension function, f , and the delay function, 	, of each of the discount
functions D (r; t) (2.9) to (2.12).

 (t) ' (t) f (r; t) 	 (s; t)

exponential e�t�1
�

e��t t� r s+ t

LP t (1 + �t)�
�
� t�r

1+�r
s+ t+ �st

RS t�� [1 + �t��]�
�
� (t� � r� )

1
� [s�� + t�� + � (st)��]

1
��

generalized RS e
�
�
Q[w(t)]�1
�

e�Q[w(t)] w�1 [w (t)� w (r)] w�1Q�1 [Q (w (s)) +Q (w (t))]
PPL (r = t = 0) 0 1 0 s

PPL (0 = r < t) e
��
�
+�t�1
�

e�(�+�t) t �
�
+ s+ t

PPL (0 < r � t) e�t�1
�

e��t t� r NA
D (r; t)

exponential e��(t�r)

LP
�
1+�t
1+�r

�� �
�

RS [1 + � (t� � r� )�]
� �
�

generalized RS e�Q[w(t)�w(r)]

PPL (r = t = 0) 1

PPL (0 = r < t) e�(�+�t)

PPL (0 < r � t) e��(t�r)
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Starting with a continuous seed function,  , an � > 0 and a � > 0, we can �grow�from
them a unique generating function, ' (t) = [1 + � (t)]�

�
� (which turns out to be contin-

uous). Given this generating function and a continuous extension function, f (r; t), we
obtain a unique discount function D (r; t) = ' (f (r; t)) = [1 + � (f (r; t))]�

�
� (which also

turns out to be continuous). This discount function determines a unique delay function,
	(s; t) =  �1 [ (s) +  (t) + � (s) (t)].
Conversely, a continuous discount function, D, determines a unique (continuous) gen-

erating function, ' (t) = D (0; t) and a unique (continuous) extension function, f , so that
D is the f -extension of ': D (r; t) = ' (f (r; t)).
Although a continuous discount function, D, determines unique generating, exten-

sion and delay functions, ', f and 	, it does not determine unique �, � or  in the
representation D (0; t) = [1 + � (t)]�

�
� . For example, the LP-discount function D (r; t) =

(1 + �r)
�
� (1 + �t)�

�
� , � > 0, � > 0, has, obviously, the representationD (0; t) = (1 + �t)�

�
�

(with  (t) = t) and, hence, the delay function 	(s; t) = s + t + �st. But it also has

many other representations: D (0; t) = [1 + a (t)]�
b
a ,  (t) = (1+�t)

�a
�b�1
a

, for all a > 0

and all b > 0. However, it can easily be check that [1 + a (t)]�
b
a = (1 + �t)�

�
� and

 �1 [ (s) +  (t) + a (s) (t)] = s + t + �st. Since the delay function, 	, but not the
seed function,  , is uniquely determined by D, it is better to say that D exhibits 	 delay
rather than  delay.

2.12. Assumptions and consequences

LP introduce four assumptions, all with good experimental support (LP, II pp574-578). We
adapt these assumption to allow for discount functions that are not, necessarily, additive.
Under this condition, the reference point for time becomes important (Proposition 7). Let
the discount function, D, be given by:

D (r; t) = [1 + � (f (r; t))]�
�
� ; � > 0; � > 0, (2.42)

where  and f are, respectively, the seed and extension functions. If D is a continuous
discount function then it can always be represented in the form (2.42), where  is a con-
tinuous seed function and f is a continuous extension function. Moreover, f is determined
uniquely by D (Characterization Theorem 1 (Proposition 16)). Furthermore, under the
assumption of continuity, D will have a unique delay functions, 	 (Propositions 9 and 10
and Representation Theorem 1 (Proposition 11)), and is given by:

	(s; t) =  �1 [ (s) +  (t) + � (s) (t)] . (2.43)

Assumptions A1 to A4, below, correspond to anomalies 1 to 4, above (subsection 1.1).
Thus, what is regarded as anomalous behavior from the neoclassical point of view is at
the core of the RT theory.
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Given a discount function, D (r; t), the assumption A1 to A4, below, place restrictions
only on D (0; t), i.e., only on discounting from an arbitrary time, t � 0, back to time
zero. Hence, to derive results for D (r; t), further assumptions are needed. In particular,
for Proposition 24 we assume that D (r; t) is an additive extension of D (0; t), while for
Proposition 25 we assume that D (r; t) is an f -extension of D (0; t) for f (r; t) = (t� � r� )

1
� .

A1 Gain-loss asymmetry. If 0 < x < y and v (x) = v (y)D (0; t), then v (�x) >
v (�y)D (0; t).

A2 Magnitude e¤ect. If 0 < x < y, v (x) = v (y)D (0; t) and a > 1, then v (ax) <
v (ay)D (0; t). If y < x < 0, v (x) = v (y)D (0; t) and a > 1, then v (ax) >

v (ay)D (0; t).

A3 Common di¤erence e¤ect. If 0 < x < y, v (x) = v (y)D (0; t) and s > 0, then
v (x)D (0; s) < v (y)D (0; s+ t). If y < x < 0, v (x) = v (y)D (0; t) and s > 0, then
v (x)D (0; s) > v (y)D (0; s+ t).

A4 Delay-speedup asymmetry. For c > 0, s > 0 and t > 0, V0 ((0; 0) ; (c; s) ; (�c; s+ t)) <

�V0 ((0; 0) ; (�c; s) ; (c; s+ t)).13

De�nition 12 (�-subadditivity): Let � > 0. A function,  , is �-subadditive if, for all s
and t for which  is de�ned and non-zero:  (s+ t) <  (s) +  (t) + � (s) (t).

A function,  , is subadditive (in the standard sense) if, for all s and t for which  is
de�ned:  (s+ t) �  (s) +  (t). A function that is �-subadditive, for some � > 0, need
not be subadditive. However, a function is subadditive if, and only if, it is �-subadditive
for all � > 0.14

13A4 is to be understood as follows. In the LHS of the inequality, the reference stream of the decision
maker is 0; 0; c (for dates 0; s; s+t) i.e. a reward is contractually promised at time s+t > 0: The individual
is then o¤ered a choice to receive the reward early, at time s (speedup). Given the assumption on reference
time, in A0, the income stream, relative to reference wealth, 0; c;�c, can be explained as follows: The
individual was not expecting anything at times 0 and s so relative to reference wealth, he gets 0� 0; c� 0
at times 0 and s: Having received a reward of c at time s; his reference wealth is c: Hence, at time t + s
his wealth relative to the reference wealth is 0� c = �c: For the RHS of the inequality, the contractually
promised income stream is 0; c; 0 (for dates 0; s; s + t): The individual is then told that the reward will
now instead be available only at time s + t (delay). Proceeding as before, the stream of income relative
to the reference point is now 0;�c; c.
14Similarly, a function,  , is additive (in the standard sense) if, for all s and t for which  is de�ned:

 (s+ t) =  (s) +  (t). Consider the exponential discount function, D (r; t) = e��(t�r), � > 0. Then
lnD (0; t) is additive in this sense. And, of course, D (r; t) is additive in the sense of De�nition 3. Also
note that �-subaddivity, as in De�nition 12, neither implies nor is implied by subadditivity of the discount
function, as in De�nition 3.
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Proposition 20 (Representation Theorem 3): Let D be a continuous discount function.
Let 	 be the corresponding delay function. Let � > 0 and � > 0. Let D (0; t) =
[1 + � (t)]�

�
� be an (�; �)-representation of D. Then the following are equivalent:

(a)  is �-subadditive.
(b) If s > 0 and t > 0, then 	(s; t) > s+ t.
(c) If s > 0 and t > 0, then D (0; s)D (0; t) < D (0; s+ t).

Proposition 21 (Characterization Theorem 4): LetD be a continuous discount function.
Then preferences exhibit the common di¤erence e¤ect for gains if, and only if, the seed
function,  , is �-subadditive.15

De�nition 13 (
-delay): Preferences exhibit 
-delay, if the delay function (2.43) is

	(s; t) = (s
 + t
 + �s
t
)
1

 , � > 0, 0 < 
 � 1. (2.44)

In particular, if 
 = 1, we say that preferences exhibit linear delay.

A delay function, if it exists, is unique (Proposition 9) and it always exists for a
continuous discount function (Proposition 10). Hence, De�nition 13 is a sound de�nition.
However, it should be remembered that 
-delay is a property of the delay function, 	, not
of the seed function,  (see discussion at end of subsection 2.11).

Proposition 22 : If preferences exhibit 
-delay, then they also exhibit the common dif-
ference e¤ect.

Proposition 23 : If preferences, with a continuous discount function, D, exhibits 
-delay,
then, necessarily, D (0; t) = (1 + �t
)�

�
� and D (0; t) = (1 + �t
)�

�
� , where � are � are

positive.

Proposition 24 (generalization of LP): If preferences, with an additive continuous dis-

count function, D, exhibits 
-delay, then, necessarily, D (r; t) =
�
1+�t


1+�r


�� �
� , where � and

� are positive.
In particular, 
 = 1 gives the LP-discount function (2.11).

Proposition 25 (RS-discount functions): Let � > 0, � = 

�
and f (r; t) = (t� � r� )

1
� .

Let preferences with continuous discount function, D, exhibit 
-delay. Let the extension
function be f . Then D is the RS-discount functions, D (r; t) = [1 + � (t� � r� )�]

� �
� ,

where � and � are positive.

15We noted earlier that the common di¤erence e¤ect can be explained by a combination of declining
impatience and subadditivity of the discount function. However, �-subadditivity is not to be confused
with subadditivity of the discount function.
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Proposition 26 (LP, p583): For a continuous discount function, A1 implies the following:
(a) Losses are discounted less heavily than gains in the following sense: 0 < x < y ) v(x)

v(y)
>

v(�x)
v(�y) .
(b) The value function is more elastic for losses than for gains: x > 0) �v (�x) > �v (x).

Proposition 27 (LP, p584): For a continuous discount function, A2 implies that the
value function is
(a) subproportional: (0 < x < y or y < x < 0)) v(x)

v(y)
> v(ax)

v(ay)
, for a > 1,

(b) more elastic for outcomes of larger absolute magnitude: (0 < x < y or y < x < 0) )
�v (x) < �v (y).

Intuitively, increasing elasticity of the value function implies greater sensitivity of v
to increases in x. This in turn increases the weight of larger outcomes (D (r; t) v(xt)) in
intertemporal plans. A similar intuition applies to the result in Proposition 26(b).
We now add the standard assumption from prospect theory that the value function is

strictly concave for gains and strictly convex for losses (Kahneman and Tversky, 1979):

A5 Declining sensitivity. For x > 0, v00 (x) < 0 (strict concavity for gains). For x < 0,
v00 (x) > 0 (strict convexity for losses).

Combining A5 with Proposition 27 we get:

Proposition 28 : A2 and A5 imply that 0 < �v < 1.

Proposition 29 : Assumption A4 (delay-speedup asymmetry) follows from assumptions
A0 (reference time) and A1 (gain-loss asymmetry).

3. Simple increasing elasticity value functions (SIE)

A natural question that arises is �Is the RT theory developed in section 2 consistent?� A
related question is �Is there a tractable functional form for the value function which can be
combined with RT theory to produce a useful model?�We address these questions in this
section. In subsection 3.2, below, we answer the second question in the a¢ rmative. We
call the value function developed there a simple increasing elasticity (SIE) value function.
Our a¢ rmative answer to the second question also provides an a¢ rmative answer to the
�rst question. But �rst, in subsection 3.1, immediately below, we show that none of several
popular families of functions is compatible with RT theory or, indeed, any theory (e.g.,
LP) that attempts to explain the magnitude e¤ect on the basis of increasing elasticity of
the value function.

24



3.1. Decreasing elasticity of HARA utility functions

We consider several popular classes of value functions:

1. Constant relative risk aversion functions (CRRA)16

v (x) =
x1�


1� 

, 0 < 
 < 1; �v (x) =

xv0 (x)

v (x)
= 1� 
. (3.1)

2. Hyperbolic absolute risk aversion functions (HARA)17

v (x) =



1� 


"�
�+

�x




�1�

� �1�


#
, � > 0, � > 0, 0 < 
 < 1, x � 0,

�v (x) =
xv0 (x)

v (x)
=
(1� 
) �x




�
�+ �x




��

�
�+ �x




�1�

� �1�


. (3.2)

3. Constant absolute risk aversion functions (CARA)

v (x) = 1� e��x, � > 0, x � 0; �v (x) =
1

�1n=1
(�x)n�1

n!

. (3.3)

4. Logarithmic functions

v (x) = ln (1 + �x) , � > 0, x � 0; �v (x) =
�x

(1 + �x) ln (1 + �x)
. (3.4)

5. Quadratic functions

v (x) =
1

2
�2 � 1

2
(�� �x)2 , � > 0, 0 � x <

�

�
; �v (x) =

2�x (�� �x)2

�2 � (�� �x)2
. (3.5)

Proposition 30 : For members of the CRRA class of value functions (3.1), �v (x) is
constant. For members of the HARA (3.2), CARA (3.3), logarithmic (3.4) and quadratic
(3.5) classes of functions, �v (x) is declining. Hence these families violates Proposition 26.

16The general restriction is that 
 6= 1. However, we need the stronger restriction, 0 < 
 < 1, in order
to satisfy Proposition 28.
17The general restrictions are � > 0,

�
�+ �x




�1�

> 0, 
 6= 1. Since we allow x 2 [0;1), the restriction�

�+ �x



�1�

> 0 implies that � > 0 and 
 > 0. We then also need 
 < 1 in order to satisfy Proposition

28.

Note that, traditionally, the HARA class is de�ned by v (x) = 

1�


�
�+ �x




�1�

, and that �v (x) =

(1� 
)
�
1 + 
�

�x

��1
, which is increasing in x, as required by Proposition 26. While an additive constant,

of course, makes no di¤erence in expected utility theory; its absence here would violate the assumption
v (0) = 0. However, including the constant � 


1�
�
1�
 , to make v (0) = 0, results in �v (x) decreasing with

x, as will be shown by Proposition 30, and, hence, violates Proposition 26.
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3.2. Simple increasing elasticity utility functions (SIE)

Consider the value function

v (x) =

x�

1� 


�
�+

�+


x

�1�

, x � 0,

v (x) = ��
 (�x)
�

1� 


�
�� ��



x

�1�

, x < 0,

� > 0, �� > �+ > 0, � � 1, 0 < � � 
 < 1. (3.6)

It may be interesting to note that (3.6) is a product of a CRRA function, x�, and a

HARA function, 

1�


�
�+ ��



x
�1�


.
Proposition 31, below, establishes that the value function (3.6) is compatible with

Propositions 26, 27 and 28.

Proposition 31 : From (3.6) it follows that
(a) v : (�1;1) ! (�1;1) is continuous, v (0) = 0 (reference dependence), v is
C1except at x = 0 and, for x > 0, �v (�x) > v (x) (loss aversion).
(b) �v (x) = � + 1�


1+ 
�
�+x

> 0, �0v (x) > 0, x > 0.

(c) �v (x) = � + 1�

1� 
�

��x
> 0, �0v (x) < 0, x < 0:

(d) x > 0) �v (x) < �v (�x).

Remark 1 (The sign e¤ect): The restriction �� > �+ > 0 (along with the other restric-
tions) guarantees that x > 0) �v (x) < �v (�x), as required by Proposition 27(b).18

Corollary 1 : From (b) and (c) of Proposition 31, we get that �v (x)! � as x # 0 and as
x " 0. Hence we can de�ne �v (x) as a continuous function for all x 2 (�1;1) as follows.
�v (0) = �, �v (x) = � + 1�


1+ 
�
��jxj

> 0 for x 6= 0. Note that �v (x) is increasing in jxj and
�v (x)! � + 1� 
 � 1, as jxj ! 1.

Remark 2 (SIE value function): In the light of Corollary 1, we may call the value function
(3.6) a simple increasing elasticity (SIE) value function.

4. Explaining the anomalies

Here, we put together the results of sections 2 and 3.

Proposition 32 : Each of the four discount functions (2.10), (2.11), (2.12) with � � 1 and
�� � 1, and (2.13), when combined with the SIE value function (3.6), satis�es assumptions
A0 to A5, i.e., all the assumptions.
18One may wonder whether it is possible to allow the other parameters to take di¤erent values in the

domains of gains and losses. The answer is no, as can be easily shown.
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4.1. A summing up

To sum up so far, the PPL-discount function (2.10), the LP-discount function (2.11) and
the RS-discount function (2.12) can all explain the common di¤erence e¤ect. But they
explain it in di¤erent ways. The PPL (2.10) and LP (2.11) discount functions explain
the common di¤erence e¤ect with declining impatience. For PPL, there is a sudden drop
in impatience from time t = 0 to times t > 0, with impatience being constant for all
times t > 0. For LP, on the other hand, the decline in impatience is continuous (recall
Example 2). By contrast, the RS-discount function (2.12), on account of its subadditivity
(for 0 < � � 1) can explain the common di¤erence whether we have declining impatience
(0 < � < 1), constant impatience (� = 1) or increasing impatience (� > 1), provided
�� � 1 (recall Proposition 8 and Example 2).
On the other hand, none of the discount functions (2.9), (2.10) or (2.11) can explain

(apparent) intransitive preferences such as that exhibited by (2.21), recall Proposition 7
and subsection 2.7.
Thus, it emerges that of discount functions (2.9), (2.10), (2.11) and (2.12), the RS-

discount function (2.12) is the most satisfactory because, when combined with the SIE
value function, reference time/wealth, it can explain all the anomalies: gain-loss asymme-
try, the magnitude e¤ect, the common di¤erence e¤ect, delay-speedup asymmetry as well
as subadditivity and (apparent) intransitivity.

5. Alternatives and extensions

In this section we compare the reference-time theory (RT) of section 2 with four recent
developments.
First, we consider the tradeo¤ model of intertemporal choice of Scholten and Read

(2006b), SR for short. We will argue that SR�s tradeo¤ criterion can be represented by a
discount function. Hence, it can be incorporated within RT. The gain is that their psycho-
logical arguments for their tradeo¤ model give support for RT theory and, in particular,
their own RS-discount function.
The second development we consider is Halevy (2007), H for short, who shows that the

common di¤erence e¤ect is compatible with exponential discounting, provided subjects are
non-expected utility maximizers and exhibit the certainty e¤ect. The certainty e¤ect was
�rst proposed as an explanation of the Allais paradox: subjects are much more sensitive
to a change from certainty to uncertainty than they are to changes in the middle range of
probabilities.
The third is the theory of vague time preferences of Manzini and Mariotti (2006),

MM for short. Again, they can explain the common di¤erence e¤ect without departing
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from exponential discounting. However, we believe that the importance of H and MM
far transcends their ability to explain the common di¤erence e¤ect. On the other hand,
and because in their present formulations they do not include any reference dependence,
they are unable to explain gain-loss asymmetry, delay-speedup asymmetry, subadditivity
and (apparent) intransitivity. By contrast, RT theory can explain all the anomalies. Nev-
ertheless, we believe that it is desirable, and easy, to extend RT theory to incorporate
uncertainty, as in H, and multiple criteria, as in MM. We show this, below, in the context
of simple examples.
The fourth recent development we discuss here is the theory of intransitive preferences

and relative discounting of Ok and Masatlioglu (2007), OM for short. This is the most
radical of all the theories considered so far. From the outset it neither assumes transitivity
nor additivity and, hence, is compatible with these two phenomena. In its present for-
mulation, it cannot account for either gain-loss asymmetry or delay-speedup asymmetry.
Furthermore, the lack of transitivity will make it hard to work with this theory, as the
authors themselves explain. On the other hand, these problems can all be resolved in the
special case of a transitive preference relation. But then their model becomes additive. In
this case, OM would reduce to a standard discounting model.
Finally, all �ve theories (SR, H, MM, OM and RT) can explain the magnitude e¤ect,

when combined with the SIE value function (3.6).

5.1. The tradeo¤model of intertemporal choice

Read and Scholten�s critique of discounting models, including their own, led them to
develop their tradeo¤ model of intertemporal choice (Read and Scholten, 2006). It is
worth quoting their abstract in full:

�Research on intertemporal judgement and choices between a smaller-sooner
and a larger-later outcome has revealed many anomalies to the discounted-
utility model. Attempts to account for these anomalies within the discounting
paradigm have resulted in convoluted and psychologically opaque models. We
therefore develop a new model of intertemporal choice, the tradeo¤ model, in
which choice results from a tradeo¤ between the perceived time di¤erence (in-
terval) and the perceived outcome di¤erence (compensation). This model is
both more parsimonious and more intuitive than any rival discounting model
of comparable scope. Moreover, it accurately describes archival data as well as
data from new experiments.�

We argue that the tradeo¤ model of Scholten and Read (2006b) can be incorporated
within RT-theory. If this is accepted, then their tradeo¤ model lends further support to
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the RT-theory and, in particular, their own discount function (2.12) and its generalization
(2.13), above.
We proceed by �rst recasting their model in a more general form (and indicate how

their model is to be obtained as a special case). However, there should be no presumption
that they would agree with our reformulation. They develop their model through three
successive versions. We concentrate on their fourth and �nal version, page 15.
Let r � 0 be the reference point for time.19 The tradeo¤ model establishes preference

relationships, �r and �r between outcome pairs (x; s) and (y; t). Thus (x; s) �r (y; t) if,
and only if, y received at time t is strictly preferred to x received at time s. Similarly,
(x; s) �r (y; t) if, and only if, y received at time t is equivalent to x received at time s.
These relationship are established using three functions, a value function, u, a tradeo¤
function Q and a delay-perception function, w. We make the following assumptions: Q :

[0;1) onto! [0;1) is strictly increasing, w : [0;1) onto! [0;1) is strictly increasing (the same
as in (2.13), above).20

First, let x > 0, y > 0 and s � r � 0, t � r. Then:

(x; s) � r (y; t), Q [w (t)� w (r)]�Q [w (s)� w (r)] = u (y)� u (x) , (5.1)

(x; s) � r (y; t), Q [w (t)� w (r)]�Q [w (s)� w (r)] < u (y)� u (x) . (5.2)

Second, let x < 0, y < 0 and (as before) s � r � 0, t � r. Then:

(x; s) � r (y; t), Q (w (t)� w (r))�Q (w (s)� w (r)) = u (x)� u (y) , (5.3)

(x; s) � r (y; t), Q (w (t)� w (r))�Q (w (s)� w (r)) > u (x)� u (y) . (5.4)

For completeness, we also need (again, s � r � 0, t � r):

(0; s) � r (0; t) , (5.5)

x < 0) (x; s) �r (0; t) , (5.6)

y > 0) (0; s) �r (y; t) , (5.7)

x < 0; y > 0) (x; s) �r (y; t) . (5.8)

To get the tradeo¤ model of Read and Scholten, set r = s in the above equations.21

19To ease the burden of notation, we shall suppress reference to the reference point for wealth, w0.
Thus, in what follows, we write �r and �r when we should have written �r;w0 and �r;w0 , respectively.
20They explicitly state two assumptions: Q0 > 0, Q00 < 0. However, in the next paragraph, they say

that Q00 > 0 for su¢ ciently small intervals. So, we make no assumptions on Q00. They explicitly state no
further assumptions on Q and w. However, we believe our other assumptions on Q and w are in line with
what they intend (see their equations (2) and (5) for the earlier, and simpler, versions of their model).
21They explicitly state only (5.1) and (5.3) (with r = s). However, we believe that our other equations

are in line with their framework.
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To de�ne a discount function, D, that expresses these preferences, let

v (x) = eu(x), for x > 0, (5.9)

v (x) = �e�u(x), for x < 0. (5.10)

Then all the above relations, (5.1) to (5.8), can be summarized by the following. For all
x; y and all r, s, t such that s � r � 0, t � r:

(x; s) � r (y; t), v (x) e�Q[w(s)�w(r)] = v (y) e�Q[w(t)�w(r)], (5.11)

(x; s) � r (y; t), v (x) e�Q(w(s)�w(r)) < v (y) e�Q[w(t)�w(r)]. (5.12)

(5.11) and (5.12) suggest we take our discount function to be the generalized RS function
(2.13), which is a generalization of the discount function (2.12) of Scholten and Read
(2006a).
Thus, RT-theory can incorporate the tradeo¤ model.

5.2. The certainty e¤ect

A test of a theory (T) is always a test of T plus auxiliary assumptions (O). Thus, a
refutation of T&O may be a refutation of O rather than T. However, since O is often
left implicit, a refutation of T&O may be misconstrued as a refutation of T rather than
O. A case in point may be T = �exponential discounting�and O = �uncertainty is not
relevant�. In testing the common di¤erence e¤ect, not only is it better if subjects are paid
�real money�, the delays should be realistic too, i.e., quite long. Despite the experimenters�
best e¤orts to eliminate uncertainty, there will always be a residual risk that the subjects
will not receive their promised payo¤s. If subjects were expected utility (EU) maximizers,
then risk would not matter (Example 3, below). However, if subjects overweight low
probabilities and underweight high probabilities (as in many non-EU theories), then risk
matters (Example 4, below). Moreover, the lower the residual risk the greater will be
its e¤ect! (Example 5, below.)22 Thus, Halevy (2007) argues that the common di¤erence
e¤ect may, in fact, be a refutation of EU rather than exponential discounting.
The above points are illustrated by the following three examples. They all involve

a choice between receiving $1000 now or $1100 next year and, simultaneously, a choice
between receiving these two sums 10 and 11 years from now, respectively. We use the SIE
value function (3.6), so that

v (1000) = 1000:5 and v (1100) = 1100:5. (5.13)

22So, experimenters, by doing their best to reduce residual risk with the aim of getting a sharper
refutation of exponential discounting are, actually, achieving the opposite.
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Let the discount function beD (s; t) and the probability weighting function be w (p), where
p is the probability that the payo¤ will actually be paid one year from now. We assume
independence across years so that the probability of receiving the payo¤ t years from now
is pt. Let (x; t) be the event $x is received in year t and let (x; s) � (y; t) mean (y; t) is
strictly preferred to (x; s). We take the current level of wealth, w0, and present time, r = 0,
to be the reference points for wealth and time, respectively (and, to simplify notation, we
have dropped the subscripts, w0; r, from �w0;r). We thus have:

No common di¤erence e¤ect: (1100; 1) � (1000; 0)) (1100; 11) � (1000; 10) (5.14)

(1100; 1) � (1000; 0), v (1100)D (0; 1)w (p) < v (1000) , (5.15)

(1100; 11) � (1000; 10), v (1100)D (0; 11)w
�
p11
�
< v (1000)D (0; 10)w

�
p10
�
. (5.16)

Example 3 (exponential discounting with expected utility): Assume exponential dis-
counting, so D (s; t) = e��(t�s), � > 0, and expected utility, so w (p) = p. Substitute
in (5.15), (5.16) to get:

(1100; 1) � (1000; 0), v (1100) e�1p < v (1000) , (5.17)

(1100; 11) � (1000; 10), v (1100) e�11�p11 < v (1000) e�10�p10, (5.18)

(5.18) is equivalent to:

(1100; 11) � (1000; 10), v (1100) e�1p < v (1000) . (5.19)

From (5.17) and (5.19) we see that (1100; 1) � (1000; 0), (1100; 11) � (1000; 10). Thus,
exponential discounting together with expected utility23 imply no common di¤erence e¤ect.
Hence, the observation of a common di¤erence e¤ect is a rejection of the joint hypothesis
of exponential discounting and expected utility. Thus, it would imply the rejection of one
or the other (or both) but not, necessarily, exponential discounting.

Example 4 (Exponential discounting with non-expected utility): We take cumulative
prospect theory (Tversky and Kahneman, 1992) as our model of non-expected utility.
Take D (r; t) = e��(t�r), � = 0:04, and w (p) = e�(� ln p)

�

(Prelec, 1998) with � = 0:5. Let
p = 0:98. Substitute in (5.15), (5.16), using (5.13), to get:

(1100; 1) � (1000; 0), 1100:5e�0:04e�(� ln 0:98)
0:5

< 1000:5, (5.20)

(1100; 11) � (1000; 10), 1100:5e�0:44e�(� ln(0:98)
11)

0:5

< 1000:5e�0:4e�(� ln(0:98)
10)

0:5

.
(5.21)

23Or no risk so that p = 1 and, hence, w (p) = w (1) = 1.
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A calculation shows that the inequality of the right hand side of (5.20) holds while
the corresponding inequality in (5.21) does not hold. Hence, (1100; 1) � (1000; 0) but
(1100; 11) � (1000; 10). Thus, exponential discounting may be consistent with an ob-
servation of a common di¤erence e¤ect, if subjects do not behave according to expected
utility.

Example 5 (It�s the certainty e¤ect that�s doing the work): The same as for Example
(4), except that now p = 0:4, rather than p = 0:98. Substitute in (5.15), (5.16), using
(5.13), to get:

(1100; 1) � (1000; 0), 1100:5e�0:04e�(� ln 0:4)
0:5

< 1000:5, (5.22)

(1100; 11) � (1000; 10), 1100:5e�0:44e�(� ln(0:4)
11)

0:5

< 1000:5e�0:4e�(� ln(0:4)
10)

0:5

. (5.23)

A calculation shows that the inequality of the right hand side of (5.22) holds and also
the corresponding inequality in (5.23). Hence, (1100; 1) � (1000; 0) and (1100; 11) �
(1000; 10). Thus, the common di¤erence e¤ect is due to the certainty e¤ect in particular,
rather than uncertainty as such.

Example 5 suggests that if the common di¤erence e¤ect is due to the certainty e¤ect
alone, rather than a combination of the certainty e¤ect and non-exponential discounting,
then the phenomenon should disappear for probabilities around 0:4.

5.3. Vague time preferences

Manzini and Mariotti (2006) develop a theory of vague time preferences and discuss the
psychological foundations for such an approach. The intuition behind this theory is that
the choice between, say, receiving $1000 now and $1100 next year is clearer than the
choice between these two sums received 10 and 11 years from now, respectively. MM
propose three criteria to choose between (x; t) and (y; s). The primary criterion is to
choose whichever has the highest present utility value. If the two present values are not
�signi�cantly�di¤erent, then the subject chooses the one with the highest monetary value
(secondary criteria). If they have the same monetary values, so that the secondary criterion
fails, then the subject behaves according to the third criterion: �choose the outcome that
is delivered sooner�. If all three criteria fail, then the subject is indi¤erent. Thus, MM
achieve a complete, though intransitive, ordering. In particular, indi¤erence here is not
an equivalence relationship. Suppose that two present values are signi�cantly di¤erent if
their di¤erence is greater than �, where � is positive real number. Then we can state these
criteria formally as follows. (x; t) �w0;r (y; s) if, and only if, one of the following holds

24:

24More generally, � is a �vagueness function�, in which case �jv (y)D (r; s)� v (x)D (r; t)j � ��is replaced
by �v (y)D (r; s)� v (x)D (r; t) � � (x; r; t) and v (x)D (r; t)� v (y)D (r; s) � � (y; r; s)�
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1. v (y)D (r; s)� v (x)D (r; t) > �, or

2. jv (y)D (r; s)� v (x)D (r; t)j � �, and x < y, or

3. jv (y)D (r; s)� v (x)D (r; t)j � �, x = y and s < t.

Obviously, if x and y are vectors, then extra criteria can be added. Utility values whose
di¤erence is less than � are regarded as not signi�cantly di¤erent. This could be because,
for example, the decision maker is not sure of the appropriate value function or discount
function to use. Therefore, the decision maker does not want the decision to depend too
critically on the choice of these functions. On the other hand, the decision maker might
be absolutely sure that more is better than less and sooner is better than later. Example
6, below, shows how this theory can explain the common di¤erence e¤ect.

Example 6 : Consider the choice between receiving $1000 now and $1100 next year
and the choice between these two sums received 10 and 11 years from now, respectively.
As with the examples in subsection 5.2, we use the SIE value function (3.6), so that
5.13 holds. We use the exponential discount function (2.9) with � = 0:1 and the ref-
erence time r = 0, D (0; t) = e�0:1t. We take � = 3, so that present utility values
whose di¤erence is less than 3 are regarded as not signi�cantly di¤erent. Using these
values, we get v (1000) � v (1100) e�0:1 = 1000:5 � 1100:5e�0:1 = 4: 726 4 > 3. Hence,
the primary criterion holds and the decision maker prefers $1000 now to $1100 next year.
Next, jv (1100) e�1:1 � v (1000) e�1j = j1100:5e�1:1 � 1000:5e�1j = 1: 738 8 < 3. Hence,
the primary criterion fails, and the decision maker considers the second criterion. Since
1000 < 1100, the second criterion holds. The decision maker prefers $1100 received 11
years from now to $1000 received 10 years from now. We have an illustration of the
common di¤erence e¤ect.

Recall, from subsection 2.7 above, that the experimental results of Roelofsma and
Read (2000) supported �sooner is better than larger�against �larger is better than sooner�.
However, if the order of the secondary criteria is reversed, so that sooner is better than
larger (in agreement with the experimental results of Roelofsma and Reed, 2000), then
$1000 received 10 years from now would be better than $1100 received 11 years from now,
and we would not get a common di¤erence e¤ect.
However, whether MM�s explanation of the common di¤erence e¤ect is acceptable or

not, to us the main contribution of their paper lies in the use of primary and secondary
criteria. This appears to us to be a more accurate description of actual decision making
compared to the assumption of a single criterion.
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5.4. Intransitive preferences and relative discounting

Ok and Masatlioglu (2007) (henceforth OM) accommodate (apparent) intransitivity, such
as (2.21), by regarding it as real. Thus, they develop a theory of intransitive time prefer-
ences. At time 0, a decision maker has a binary relationship, �, on the set � = X� [0;1),
where X is a non-empty set. Let x; y 2 X and s; t 2 [0;1), then (x; s) � (y; t) is to be
interpreted as �y received at time t is (weakly) preferred to x received at time s�.
Let � and � be the symmetric and asymmetric parts of �, respectively. For each

t 2 [0;1), �t is the t-th time projection of � onto X, i.e., x �t y, if, and only if,
(x; t) � (y; t). In particular, �0 is the projection of � onto X at time 0 (and, similarly,
for �t and �t).
If X is a metric space, then further structure can be imposed on �. In particular (OM,

p218):

De�nition 14 (time preferences): Let X be a metric space, then � is a time preference
on � if
(i) � is complete and continuous,
(ii) �0 is complete and transitive,
(iii) �t = �0 for each t 2 [0;1).

In De�nition 14, note that transitivity is imposed on �0 (and, hence, also on �t) but
transitivity is not imposed on �. Hence, neither � nor � are, necessarily, transitive. In
particular, � is not, in general, an equivalence relationship.
Let R be the set of real numbers, R+ the set of non-negative reals and R++ the set of

positive reals. Recall that a homeomorphism is a mapping that is 1-1, onto, continuous
and its inverse is also continuous. Then

Proposition 33 (OM, Theorem 1)25: Let X be an open interval in R and � a binary
relation on �. � is a time preference on � that satis�es properties (A1)-(A6) if, and
only, there exit an increasing homeomorphism U : X ! R++ and a continuous map
D : R2+ ! R++ such that, for all x; y 2 X and s; t 2 [0;1),

(x; s) � (y; t) i¤ U (x) � U (y)D (s; t) , (5.24)

while (i) for given s, D (s; t) is decreasing in t with D (s;1) = 0, and (ii) D (t; s) =
1=D (s; t).

25Assumption A1 to A6 of OM are plausible and clearly stated. We do not reproduce them here because
we only need the theorems that OM derive from them. Also note that D (s; t) here corresponds to � (t; s)
in OM.
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Suppose s � t. Then (5.24) says that y received at time t is (weakly) preferred to x
received at time s if, and only if, the (undated) utility of x is less or equal to the (undated)
utility of y discounted from time t back to time s by the discount factor D (s; t). In this
case, part (i) of Proposition 33 implies the following. Fix the time, s, at which x is received.
Let the time, t, at which y is received, recede into the future. Then the value of the utility
of y, discounted back to time s, decreases. In the limit, as the receipt of y is inde�nitely
postponed, the value of its utility, discounted back to time s, approaches zero. Part (ii)
of Proposition 33 says that compounding forward, from time s to time t, is the inverse of
discounting backwards from time t to time s.
For each r 2 [0;1), let �r be the restriction of � to X � [r;1), i.e., to times t � r.

Thus, for r � s and r � t, (x; s) �r (y; t) if, and only if, (x; s) � (y; t).
We can now point to the main di¤erences between RT and OM.
First, note that U in Proposition 33 can take only positive values while v in (2.1)-

(2.2) takes both positive and negative values.26 To bypass this problem, we consider only
the domain of strictly positive gains. Let w0 be the reference point for wealth. Take
X = fw � w0 : w > w0g = (0;1) and let � satisfy the conditions of Proposition 33. Let
(U;D) be the representation of � guaranteed by that Proposition.
From subsection 2.2 recall that, for each r 2 [0;1), �w0;r is a complete transitive order

on (�1;1)� [r;1) and, hence, also on X � [r;1). The second point we wish to make
is that, in general, �w0;r, unlike �r, is not the restriction to X � [r;1) of some complete
binary relationship on X � [0;1). Thus OM and RT are not compatible and neither is a
special case of the other.
Third, �w0;r is transitive while, in general, �r is not transitive. To elaborate this

point, consider (x; r), (y; s) and (z; t), where x; y; z 2 X and s; t 2 [r;1). Suppose
(x; r) �w0;r (y; s) and (y; s) �w0;r (z; t). Since �w0;r is transitive, we can conclude that
(x; r) �w0;r (z; t). Now, suppose that (x; r) �r (y; s) and (y; s) �r (z; t). Since �r is not,
in general, transitive, we cannot conclude that (x; r) �r (z; t).27 More generally, given
a compact subset C � X � [r;1), there is no guarantee in OM that it has a maximum
under �r (i.e., an m 2 C such that c �r m for all c 2 C). This, obviously, will cause great
di¢ culty for any economic theory formulated in the OM framework. On the other hand,
in RT theory, and if D is continuous, C will always have a maximum under �w0;r.
Fourth, and �nally, these problems with OM can all be resolved in the special case

where � is transitive. But then � would also be additive. In this case, OM would reduce
to the standard discounting model.

26Hence, in its present formulation, OM cannot explain gain-loss asymmetry. However, it can explain
the magnitude e¤ect using the SIE value function (3.6).
27As OM clearly explain, it is for this reason that we should think of D (s; t) in their theory as the

relative discount function between times s and t.
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6. Appendix: Proofs

Proof of Proposition 1: Let r 2 [0;1) and t 2 [r;1). Let ftng1n=1 be a sequence
in [r;1) converging to t. We want to show that fD (r; tn)g1n=1 converges to D (r; t).
It is su¢ cient to show that any monotone subsequence of fD (r; tn)g1n=1 converges to
D (r; t). In particular, let fD (r; tni)g

1
i=1 be a decreasing subsequence of fD (r; tn)g

1
n=1.

Since fD (r; tni)g
1
i=1 is bounded below by D (r; t), it must converge to, say, q, where

D (r; t) � q � D (r; tni), for all i. Since D is onto, there is a p 2 [r;1) such that
D (r; p) = q. Moreover, tni � p � t, for each i. Suppose D (r; t) < q. Then tni < p,
for each i. Hence also tni < t, for each i. But this cannot be, since ftnig

1
i=1, being a

subsequence of the convergent sequence ftng1n=1, must also converge to the same limit, t.
Hence,D (r; t) = q. Hence, fD (r; tni)g

1
i=1 converges toD (r; t). Similarly, we can show that

any increasing subsequence of fD (r; tn)g1n=1 converges to D (r; t). Hence, fD (r; tn)g
1
n=1

converges to D (r; t). Hence, D (r; t) is continuous in t. �
Proof of Proposition 2: It is straightforward to check that each of (2.9), (2.11),

(2.12) and (2.13) is a continuous discount function in the sense of De�nition 2. It is also
straightforward to check that (2.10) is a discount function. The reason the latter is not a
continuous discount function is that lim

t!0+
D (0; t) < D (0; 0). �

Proof of Proposition 3 (Time sensitivity): Let D (r; t) be a continuous discount
function and r � 0. Suppose 0 < x � y. From (2.1) and (2.2), it follows that 0 < v (x) �
v (y) and, hence, 0 < v(x)

v(y)
� 1. Since, by De�nition 2(i), D (r; t) : [r;1) onto! (0; 1], it

follows that v(x)
v(y)

= D (r; t) for some t 2 [r;1). A similar argument applies if y < x < 0.
�
Proof of Proposition 4 (Existence of present values): Let r � t and y � 0. Then,

0 < D (r; t) � 1. Hence, 0 = v (0) � v (y)D (r; t) � v (y). Since v is continuous and
strictly increasing, it follows that v (y)D (r; t) = v (x) for some x 2 [0; y]. Similarly, if
y � 0, then v (y)D (r; t) = v (x) for some x 2 [y; 0]. �
Proof of Proposition 5: (a) Suppose that D (r; t) = [' (r)]�1 ' (t) for some strictly

decreasing real valued function, ' : [0;1) ! (0; 1]. We �rst check that D satis�es all
parts of De�nition 2. Clearly, D (r; t) is strictly decreasing in t and strictly increasing in
r. Let r 2 [0;1). D (r; r) = [' (r)]�1 ' (r) = 1. Hence, for �xed r 2 [0;1), t 7! D (r; t)

maps [r;1) into (0; 1]. Next, let t 2 [0;1). D (t; t) = [' (t)]�1 ' (t) = 1. Hence, for �xed
t 2 [0;1), r 7�! D (r; t) maps [0; t] into (0; 1]. Thus De�nition 2(ii) also holds. Hence, D
is a discount function. If, in addition, ' (0) = 1, then D (0; t) = [' (0)]�1 ' (t) = ' (t).
Now suppose that ' is onto. Let p 2 (0; 1]. Hence, also, ' (r) p 2 (0; 1]. Since ' is onto

(0; 1], we get ' (t) = ' (r) p for some t 2 [0;1). But ' (t) = ' (r) p � ' (r). Hence, t � r.
We also have D (r; t) = [' (r)]�1 ' (t) = [' (r)]�1 ' (r) p = p. Hence, for each r 2 [0;1),
t 7�! D (r; t) maps [r;1) onto (0; 1]. Thus De�nition 2(i) holds with �into�replaced by

36



�onto�. Hence, D is a continuous discount function. Since ' : [0;1) onto! (0; 1] is strictly
decreasing, we must have ' (0) = 1. Hence, D (0; t) = [' (0)]�1 ' (t) = ' (t).
For all r, s and t, D (r; s)D (s; t) = [' (r)]�1 ' (s) [' (s)]�1 ' (t) = [' (r)]�1 ' (t) =

D (r; t). Hence, D is additive.
(b) Suppose that D is an additive discount function. Then, for all r, s, t, where

0 � r � s � t, D (r; s)D (s; t) = D (r; t). From this, it follows that, for any s and any t
(0 � s � t): D(r;t)

D(r;s)
= D (s; t), which is independent of r, for all r 2 [0; s]. Similarly, for any

r and any s (0 � r � s): D(r;t)
D(s;t)

= D (r; s), which is independent of t, for all t 2 [s;1). This
can only hold ifD (r; t) = F (r) � (t), for all r and t (0 � r � t). In particular, F (r) � (r) =
D (r; r) = 1. Hence, F (r) = [� (r)]�1. Hence, D (r; t) = [� (r)]�1� (t). Set ' (t) =
� (t) =� (0). Then D (r; t) = [' (r)]�1 ' (t). In particular, D (0; t) = [' (0)]�1 ' (t) = ' (t).
Hence, ' is a strictly decreasing function from [0;1) into (0; 1]. If D is continuous, so
that D (0; t) is onto, then ' is also onto. �
Proof of Proposition 6: Exponential: ' (t) = e��t. PPL: ' (0) = 1 and ' (t) =

e����t for t > 0. LP: ' (t) = (1 + �t)�
�
� . Generalized RS: ' (t) = e�Q[w(t)]. �

Proof of Proposition 7 (Invariance to the choice of reference time):

((x1; s1) ; (x2; s2) ; :::; (xm; sm)) �w0;r ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) ,

, Vr ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) � Vr ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) ,

, D (0; r)Vr ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) � D (0; r)Vr ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) ,

, D (0; r) �mi=1v (xi)D (r; si) � D (0; r) �ni=1v (yi)D (r; ti) ,

, �mi=1v (xi)D (0; r)D (r; si) � �ni=1v (yi)D (0; r)D (r; ti) ,
, �mi=1v (xi)D (0; si) � �ni=1v (yi)D (0; ti) , by additivity,

, V0 ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) � V0 ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) ,

, ((x1; s1) ; (x2; s2) ; :::; (xm; sm)) �w0;0 ((y1; t1) ; (y2; t2) ; :::; (yn; tn)) . �

To facilitate the proof of Propositions 8, below, and 22, later, we �rst establish Lemmas
1 and 2.

Lemma 1 : Let x � 0 and y � 0. Then:
(a) � � 1) x� + y� � (x+ y)�.
(b) 0 < � � 1) x� + y� � (x+ y)�.

Proof of Lemma 1: Clearly, the results hold for x = 0. Suppose x > 0. Let z = y
x

and f (z) = (1 + z)��1� z�. Then f (z) = 0 and f 0 (z) = �
�
(1 + z)��1 � z��1

�
, for z > 0.

Suppose � � 1. Then f 0 (z) � 0. Since f is continuous, it follows that f (z) � 0 for z � 0.
Part (a) follows from this. Now suppose 0 < � � 1. Then f 0 (z) � 0. Since f is continuous,
it follows that f (z) � 0 for z � 0. Part (b) follows from this. �
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Lemma 2 : Let � > 0, 0 � s < t and r > 0. Let f (r) = (t+ r)� � (s+ r)� � (t� � s� ).
Then:
(a) � > 1) f (r) > 0.
(b) 0 < � < 1) f (r) < 0.

Proof of Lemma 2: Clearly, f (0) = 0. Also, f 0 (r) = �
�
(t+ r)��1 � (s+ r)��1

�
. If

� > 1, then f 0 (r) > 0 for r > 0. Since f is continuous, it follows that f (r) > 0 for r > 0.
This establishes part (a). If 0 < � < 1, then f 0 (r) < 0 for r > 0. Since f is continuous, it
follows that f (r) < 0 for r > 0. This establishes part (b). �
Proof of Proposition 8: (a) Suppose 0 < � � 1. Let 0 � r < s < t. From

(2.12), we get D (r; s) = [1 + � (s� � r� )�]
� �
� , D (s; t) = [1 + � (t� � s� )�]

� �
� and D (r; t) =

[1 + � (t� � r� )�]
� �
� . Hence,

D (r; s)D (s; t) =
�
1 + � [(s� � r� )� + (t� � s� )�] + �2 (s� � r� )� (t� � s� )�

	� �
� ,

< f1 + � [(s� � r� )� + (t� � s� )�]g�
�
� , since �2 (s� � r� )� (t� � s� )� > 0 and � �

�
< 0,

� [1 + � (s� � r� + t� � s� )�]
� �
� , by Lemma 1b and since � �

�
< 0,

= [1 + � (t� � r� )�]
� �
� = D (r; t) .

(b) It is su¢ cient to give an example. Let � = � = 1 and � = 2. Hence,D (0; 1)D (1; 2) =
4�� > 5�� = D (0; 2). Hence, for � = � = 1 and � = 2, D cannot be additive or subad-
ditive. However, for the same parameter values, we have D (0; 10)D (10; 20) = 10201�� <
401�� = D (0; 20). Hence, D cannot be supper additive either.28

(c) Let 0 � s < t. (ii) is obvious from inspecting (2.12). Let r > 0. (iii) For � > 1,

Lemma 2(a) givesD (s+ r; t+ r) = f1 + � [(t+ r)� � (s+ r)� ]
�g�

�
� < f1 + � [t� � s� ]�g�

�
�

= D (s; t). (i) For 0 < � < 1, Lemma 2(b) givesD (s+ r; t+ r) = f1 + � [(t+ r)� � (s+ r)� ]
�g�

�
�

> f1 + � [t� � s� ]�g�
�
� = D (s; t). �

Proof of Proposition 9 (Properties of a delay function): Let D be a discount
function and 	 and � two corresponding delay functions. Let s; t 2 [0;1). Then
D (0;� (s; t)) = D (0; s)D (0; t) = D (0;	(s; t)). Since D (0; r) is strictly decreasing in
r, we must have � (s; t) = 	 (s; t). This establishes (a). Using De�nition 2, it is straight-
forward to check that properties (b) to (d) follow from De�nition 7. Now, suppose v (x)
= v (y)D (0; t). Multiply both sides by D (0; s) to get v (x)D (0; s) = v (y)D (0; s)D (0; t)

= v (y)D (0;	(s; t)). Conversely, suppose v (x)D (0; s) = v (y)D (0;	(s; t)). Then
v (x)D (0; s) = v (y)D (0; s)D (0; t). Since D (0; s) > 0, we can cancel it to get v (x)
= v (y)D (0; t). This establishes (e) and completes the proof. �
28Other examples can be given to show that there is nothing special about r = 0, � = 1, � = 1, or

� = 2, as long as � > 1.
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Proof of Proposition 10 (Existence of a delay function): Let D be a continu-
ous discount function. Let s; t 2 [0;1). Then D (0; s) ; D (0; t) 2 (0; 1]. Hence also
D (0; s)D (0; t) 2 (0; 1]. Since r 7! D (0; r) is onto (0; 1], there is some T 2 [0;1) such
that D (0; s)D (0; t) = D (0; T ). Since D (0; r) is strictly decreasing in r, this T is unique.
Set T = 	(s; t). The function, 	(s; t), thus de�ned, is a delay function corresponding to
D. �
Proof of Proposition 11: (Representation Theorem 1) Let � > 0 and � > 0. It

is easy to verify that D (0; t) = [1 + � (t)]�
�
� is an (�; �)-representation of the discount

function D (r; t) if, and only if,  (t) = 1
�
[D (0; t)]�

�
� � 1. From this, using De�nition

2, it is straightforward to verify that part (a) holds. It follows that the inverse of  
exists and  �1 : [0;1) onto! [0;1) is strictly increasing with  (0) = 0, this establishes
part (b). We now turn to part (c). We have [1 + � (	 (s; t))]�

�
� = D (0;	(s; t)) =

D (0; s)D (0; t) = [1 + � (s)]�
�
� [1 + � (t)]�

�
� = [1 + � (s) + � (t) + �2 (s) (t)]

� �
� .

Hence, [1 + � (	 (s; t))]�
�
� = [1 + � (s) + � (t) + �2 (s) (t)]

� �
� . From the latter it

follows that  (	 (s; t)) =  (s)+ (t)+� (s) (t). Hence, 	(s; t) =  �1 [ (s) +  (t) + � (s) (t)].
�
Proof of Proposition 12 (Representation Theorem 2): Let

 : [0;1) onto! [0;1) be strictly increasing (hence,  (0) = 0), (6.1)

and let
	(s; t) =  �1 ( (s) +  (t) + � (s) (t)) , � > 0. (6.2)

Let D be a continuous discount function with delay function, 	. Then

D (0; s)D (0; t) = D (0;	(s; t)) , s � 0, t � 0. (6.3)

From (6.2) and (6.3), we get

D (0; s)D (0; t) = D
�
0;  �1 ( (s) +  (t) + � (s) (t))

�
, s � 0, t � 0. (6.4)

From (6.1), we get that  �1 exists and  �1 : [0;1) onto! [0;1) is strictly increasing with
 �1 (0) = 0. Bear these facts in mind for when the functions G and h are de�ned, below
((6.7) and (6.10)).
Let

X = 1 + � (s) , Y = 1 + � (t) . (6.5)

Hence  (s) = X�1
�
,  (t) = Y�1

�
, s =  �1

�
X�1
�

�
, t =  �1

�
Y�1
�

�
,  (s) +  (t) +

� (s) (t) = XY�1
�

and

 �1 ( (s) +  (t) + � (s) (t)) =  �1
�
XY � 1

�

�
. (6.6)
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De�ne the function G : [1;1)! (0;1) by

G (X) = D

�
0;  �1

�
X � 1
�

��
. (6.7)

Hence,

G (Y ) = D

�
0;  �1

�
Y � 1
�

��
, G (XY ) = D

�
0;  �1

�
XY � 1

�

��
. (6.8)

From (6.4), (6.6), (6.7), (6.8) we getG (XY ) = D
�
0;  �1

�
XY�1
�

��
= D

�
0;  �1 ( (s) +  (t) + � (s) (t))

�
= D (0; s)D (0; t) = D

�
0;  �1

�
X�1
�

��
D
�
0;  �1

�
Y�1
�

��
and, hence,

G (XY ) = G (X)G (Y ) . (6.9)

De�ne29 the function h : [0;1)! (0;1) by

h(y) = G(ey); y � 0 (6.10)

Hence, and in the light of De�nition 2(i), h satis�es30:

h : [0;1)! (0;1) is strictly decreasing and h (x+ y) = h (x)h (y) . (6.11)

As is well known, see for example Corollary 1.4.11 in Eichhorn (1978) or Theorem 1, page
38, of Aczel (1966), the unique solution to (6.11) is the exponential function

h (y) = ecy, y � 0, c < 0, (6.12)

(6.5), (6.6), (6.8), (6.10), (6.12) give, in succession, h (y) = (ey)c, G(ey) = (ey)c, G(Y ) =
Y c, D

�
0;  �1 ( (t))

�
= [1 + � (t)]c,

D (0; t) = [1 + � (t)]c . (6.13)

Let � = ��c. Then (6.13) gives D (0; t) = [1 + � (t)]�
�
� , � > 0, � > 0, t � 0, where

� > 0 because � > 0 and c < 0. �
Proof of Proposition 13 (Extension Theorem 1): (a) Let f and g be extension

functions corresponding to the discount function D. Let r 2 [0;1) and t 2 [r;1). Then,
by De�nition 11(ii), D (0; f (r; t)) = D (r; t) = D (0; g (r; t)). Since D (r; s) is strictly
decreasing in s, it follows that f (r; t) = g (r; t). Hence, f = g. (b) We have D (0; t) =
D (0; f (0; t)). Since D (0; s) is strictly decreasing in s, it follows that f (0; t) = t. We

29It is tempting, at this stage, to take a shortcut and conclude, from the fact thatG (XY ) = G (X)G (Y ),
that, necessarily, G (X) = Xc. However, the relevant theorem (Theorem 1.9.13 in Eichhorn (1978) or
Theorem 3, page 41, in Aczel (1966)) requires that G (X) be de�ned for all X > 0. However,  �1 (t) is
not de�ned for t < 0 and, hence, G (X) is not de�ned for X < 1.
30It is su¢ cient that h be strictly decreasing in some interval: (a; a+ �), a � 0; � > 0.
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also have D (0; f (r; r)) = D (r; r) = 1 = D (0; 0), i.e., D (0; f (r; r)) = D (0; 0). Again,
since D (0; t) is strictly decreasing in t, it follows that f (r; r) = 0. Since D (0; f (r; t))
= D (r; t) and D (r; t) is strictly decreasing in t, it follows that f (r; t) must be strictly
increasing in t. Since D (r; t) is strictly increasing in r, it follows that f (r; t) must be
strictly decreasing in r. This completes the proof that f is an extension function. (c)
Since D (r; t) = D (0; f (r; t)), it follows that v (x) = v (y)D (r; t) if, and only if, v (x) =
v (y)D (0; f (r; t)). �
Proof of Proposition 14 (Extension Theorem 2): Let r 2 [0;1) and t 2 [r;1). Then

D (r; t) 2 (0; 1]. Since D is a continuous discount function, it follows that s 7�! D (0; s)

is onto (0; 1]. Hence, for some T 2 (0; 1], D (r; t) = D (0; T ). Since D (r; s) is strictly
decreasing in s, it follows that this T is unique. Set f (r; t) = T . The function, f ,
thus de�ned has the property D (r; t) = D (0; f (r; t)). Hence, f is an extension function
corresponding to D. Let r 2 [0;1). Let t 2 [0;1). Then D (0; t) 2 (0; 1]. Since, D is a
continuous discount function, it maps [r;1) onto (0; 1]. Hence D (r; s) = D (0; t), for some
s 2 [r;1). But since f is an extension function corresponding to D, we have D (r; s) =
D (0; f (r; s)). Hence, D (0; f (r; s)) = D (0; t). Since D (0; q) is strictly decreasing in q, it
follows that f (r; s) = t. Hence, t 7�! f (r; t) maps [r;1) onto [0;1). �
Proof of Proposition 15 (Extension Theorem 3): (a) Since f : � ! [0;1) and

' : [0;1)! (0; 1], it follows that ' � f : �! (0; 1]. Let r 2 [0;1). Then t 7! ' (f (r; t))

maps [r;1) into (0; 1] and is strictly decreasing with D (r; r) = ' (f (r; r)) = ' (0) = 1.
Let t 2 [0;1). Then r 7! ' (f (r; t)) maps [0; t] into (0; 1] and is strictly decreasing.
Thus, D (r; t) = ' (f (r; t)) satis�es all parts of De�nition 2 and, hence, is a discount
function. (b) D (0; f (r; t)) = ' (f (0; f (r; t))) = ' (f (r; t)) = D (r; t). Hence, f is the
extension function corresponding to D and D (r; t) is the f -extension of D (0; t). (c) Let
r 2 [0;1). Let p 2 (0; 1]. Since ' is onto, there exists t 2 [0;1) such that p = ' (t).
Since s 7! f (r; s) maps [r;1) onto [0;1), there exists s 2 [r;1) such that f (r; s) = t.
Hence, D (r; s) = ' (f (r; s)) = ' (t) = p. Hence, s 7! D (r; s) maps [r;1) onto [0;1).
Hence, D is a continuous discount function. �
Proof of Proposition 16 (Characterization Theorem 1): Let D be a continuous

discount function. Then, by Representation Theorem 1 (Proposition 11) and Extension
Theorem 2 (Proposition 14) D (r; t) = D (0; f (r; t)) = [1 + � (f (r; t))]�

�
� , where � > 0,

� > 0,  is a continuous seed function and f is a continuous extension function. Conversely,
if D (r; t) = [1 + � (f (r; t))]�

�
� , where � > 0, � > 0,  is a continuous seed function and

f is a continuous extension function, thenD satis�es all the conditions of De�nition 2, with
�onto�replacing �into�in part (i). Hence, D is a continuous discount function. Uniqueness
of f follows from Extension Theorem 1 (Proposition 13). �
Proof of Proposition 17 (Characterization Theorem 2): Follows from De�nition 6

and Characterization Theorem 1 (Proposition 16). �
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Proof of Proposition 18 (Characterization Theorem 3): Let f (r; t) =  �1
�
 (t)� (r)
1+� (r)

�
.

ThenD (r; t) = [1 + � (f (r; t))]�
�
� =

h
1 + � 

�
 �1

�
 (t)� (r)
1+� (r)

��i� �
�
=
h
1 + � (t)� (r)

1+� (r)

i� �
�

=
h
1+� (t)
1+� (r)

i� �
�
, which is additive, by Proposition 5(aiii). Conversely, suppose D is addi-

tive. Then, by Proposition 5(b), D (r; t) = [' (r)]�1 ' (t) for some strictly decreasing real
valued function, ' : [0;1) onto! (0; 1], ' (0) = 1. Let D (r; t) = [1 + � (f (r; t))]�

�
� . Then

' (t) = D (0; t) = [1 + � (t)]�
�
� . Hence, [1 + � (f (r; t))]�

�
� =

h
1+� (t)
1+� (r)

i� �
�
and, hence,

1 + � (f (r; t)) = 1+� (t)
1+� (r)

. From which it follows that f (r; t) =  �1
�
 (t)� (r)
1+� (r)

�
. �

Proof of Proposition 19: All the claims can be veri�ed by straightforward calcu-
lations. However, when dealing with PPL, do not use Proposition 11, as PPL is not
continuous. So, for example, instead of using part b of Proposition 11, check directly that
D (0; s)D (0; t) = D (0;	(s; t)). �
Proof of Proposition 20 (Representation Theorem 3): Since  (0) = 0 and  is

strictly increasing (Proposition 11a), it follows that  (t) > 0, t > 0. Let s > 0 and t > 0,
then D (0; s)D (0; t) < D (0; s+ t) , [1 + � (s)]�

�
� [1 + � (t)]�

�
� < [1 + � (s+ t)]�

�
�

, [1 + � (s)] [1 + � (t)] > 1 + � (s+ t) ,  (s+ t) <  (s) +  (t) + � (s) (t)

, s + t <  �1 [ (s) +  (t) + � (s) (t)] , s + t < 	(s; t). From this chain it follows
that (c) , (a) , (b). �
Proof of Proposition 21 (Characterization Theorem 4): Assume  + is �+-subadditive.

Let 0 < x < y, v (x) = v (y)D+ (0; t) and s > 0. Then 0 < v (x) < v (y). It follows
that D+ (0; t) < 1 and, hence, t > 0. From Representation Theorem 3(c) (Proposition
20), it follows that D+ (0; s)D+ (0; t) < D+ (0; s+ t). Hence, v (y)D+ (0; t)D+ (0; s) <

v (y)D+ (0; s+ t). Hence, v (x)D+ (0; s) < v (y)D+ (0; s+ t). Hence, the common di¤er-
ence e¤ect holds for gains.
Conversely, assume that the common di¤erence e¤ect holds for gains. Let s > 0 and

t > 0. Hence, 0 < s < s + t. Hence, by Proposition 2.7, for some x, 0 � x � 1,
v (x) = v (1)D+ (0; t). Hence, x > 0. Hence, v (x)D+ (0; s) < v (1)D+ (0; s+ t). Hence,
v (1)D+ (0; s)D+ (0; t) < v (1)D+ (0; s+ t). Hence, D+ (0; s)D+ (0; t) < D+ (0; s+ t).
From Representation Theorem 3 (Proposition 20), it follows that  + is �+-subadditive.
Hence, preferences exhibit the common di¤erence e¤ect for gains if, and only if, the

seed function for gains,  +, is �+-subadditive. A similar argument shows that preferences
exhibit the common di¤erence e¤ect for losses if, and only if, the seed function for losses,
 �, is ��-subadditive. �
Proof of Proposition 22: Let  + (t) = t
+ , where 0 < 
+ � 1. Then, for s > 0

and t > 0,  + (s+ t) = (s+ t)
+ � t
+ + s
+ < s
+ + t
+ + �+s

+t
+ =  + (s) +  + (t) +

�+ + (s) + (t). Hence, by Characterization Theorem 4 (Proposition 21), preferences
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that exhibit 
-delay (De�nition 13), also exhibit the common di¤erence e¤ect for gains.
Similarly, they exhibit the common di¤erence e¤ect for losses. �
Proof of Proposition 23: Let preferences with the continuous discount function, D,

exhibit 
-delay. Then, by De�nition 13, its delay function is 	(s; t) = (s
 + t
 + �s
t
)
1

 ,

� > 0, 0 < 
 � 1. Hence, by Representation Theorem 2 (Proposition 12), we must have
D (0; t) = (1 + �t
)�

�
� , for some � > 0. �

Proof of Proposition 24: By Proposition 23 we have, necessarily,D (0; t) = (1 + �t
)�
�
� ,

for some � > 0. Hence, by Characterization Theorem 3 (Proposition 18) we must have

D (r; t) =
�
1+�t


1+�r


�� �
� . �

Proof of Proposition 25: By Proposition 23 we have, D (0; t) = (1 + �t
)�
�
� , for

some � > 0. Hence,D (r; t) = D (0; f (r; t)) = [1 + � [f (r; t)]
]
� �
� =

h
1 + �

h
(t� � r� )

1
�

i
i� �
�

=
h
1 + � (t� � r� )



�

i� �
�
= [1 + � (t� � r� )�]

� �
� . �

Proof of Proposition 26: See LP, p583. For a more detailed proof, see al-Nowaihi
and Dhami (2008).
Proof of Proposition 27: See LP, p584. For a more detailed proof, see al-Nowaihi

and Dhami (2008).
Proof of Proposition 28: See al-Nowaihi and Dhami (2008).
Proof of Proposition 29: Consider the two consumption streams: ((0; 0) ; (c; s) ; (0; s+ t))

and ((0; 0) ; (0; s) ; (c; s+ t)), where c > 0. If the consumer receives ((0; 0) ; (0; s) ; (c; s+ t))

when he was expecting ((0; 0) ; (c; s) ; (0; s+ t)) then, according to prospect theory, he
codes the postponement of c as a loss in period 2 but a gain in period 3. Accord-
ing to (2.6), V0 ((0; 0) ; (0; s) ; (c; s+ t)) = v (0)D (0; 0) + v (�c)D (0; s) + v (c)D (0; s+ t)

< �v (c)D (0; s) + v (c)D (0; s+ t), where the last inequality comes from v (0) = 0 and
v (�c) < �v (c). On the other hand, if the consumer receives ((0; 0) ; (c; s) ; (0; s+ t))

when he was expecting ((0; 0) ; (0; s) ; (c; s+ t)), he codes the bringing forward of con-
sumption as a gain in period 2 but a loss in period 3. Hence, V0 ((0; 0) ; (c; s) ; (0; s+ t))

= v (0)D (0; 0) + v (c)D (0; s) + v (�c)D (0; s+ t) < v (c)D (0; s) � �v (c)D (0; s+ t).
We thus have: V0 ((0; 0) ; (c; s) ; (0; s+ t)) + V0 ((0; 0) ; (0; s) ; (c; s+ t)) < v (c)D (0; s) �
v (c)D (0; s+ t)�v (c)D (0; s)+v (c)D (0; s+ t) = 0. Hence, V0 ((0; 0) ; (c; s) ; (0; s+ t)) <

�V0 ((0; 0) ; (0; s) ; (c; s+ t)). �
Proof of Proposition 30: See al-Nowaihi and Dhami (2008).
Proof of Proposition 31: See al-Nowaihi and Dhami (2008).31

Proof of Proposition 32: These can be veri�ed by direct calculation using (2.10),
(2.11), (2.12), (2.13) and (3.6). �
31al-Nowaihi and Dhami (2008) also provide a scheme for generating further increasing elasticity value

functions.
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