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Abstract 

This thesis is presented in two sections. Two different multiscale models are 

developed in order to increase the computational speed of two well known atomistic 

algorithms, Molecular Dynamics (MD) and Kinetic Monte Carlo (KMC). 

In Section I, the MD method is introduced. Following this, a multiscale method of 

linking an MD simulation of heat conduction to a finite element (FE) simulation is presented. 

The method is simple to implement into a conventional MD code and is independent of the 

atomistic model employed. This bridge between the FE and MD simulations works by 

ensuring that energy is conserved across the FE/MD boundary. The multiscale simulation 

allows for the investigation of large systems which are beyond the range of MD. The method 

is tested extensively in the steady state and transient regimes, and is shown to agree with well 

with large scale MD and FE simulations. Furthermore, the method removes the artificial 

boundary effects due to the thermostats and hence allows exact temperatures and temperature 

gradients to be imposed on to an MD simulation. This allows for better study of temperature 

gradients on crystal defects etc. 

In Section II, the KMC method is introduced. A continuum model for the KMC 

method is presented and compared to the standard KMC model of surface diffusion. This 

method replaces the many discrete back and forth atom jumps performed by a standard KMC 

algorithm with a single flux that can evolve in time. Elastic strain is then incorporated into 

both algorithms and used to simulate atom deposition upon a substrate by Molecular Beam 

Epitaxy. Quantum dot formation due to a mismatch in the lattice spacing between a substrate 

and a deposited film is readily observed in both models. Furthermore, by depositing 

alternating layers of substrate and deposit, self-organised quantum dot super-lattices are 

observed in both models. 
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1 Introduction 

Nano-engineering and multiscale modelling 

Technological advances have often required the fabrication of smaller and smaller 

devices. For instance, since 1965, the number density of transistors in computer hardware has 

doubled every 2 years [1]. For this trend to continue, the feature size of each component will 

have to enter the nanometre scale. The latest Intel Core 2 Duo processors have architecture 

feature sizes of 45nm. At the nanometre scale, a great many new physical properties become 

more important. The materials can no longer be considered as continuous with constant bulk 

properties, as in many cases over 50% of the atoms are on a boundary. The behaviour of these 

small devices depends strongly on the atomic structure. Furthermore, quantum effects become 

more significant at this scale. One cannot simply scale down existing devices; they must be 

redesigned to function at the nanometre scale. 

On the nanometre scale, one cannot consider a material as a uniform bulk with 

constant properties such as the Young‟s modulus etc. The surface atoms on a real crystal have 

different properties and are mobile and can reorder themselves on the surface to find a lower 

energy configuration. Surface reconstruction is such a process and is illustrated with the (111) 

surface of silicon in figure 1.1 below. 

 

Fig. 1.1 High Resolution Electron Microscope (HREM) image of a (7x7) reconstruction on the 

Si(111) surface, [2]. 
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Surface structures such as these are useful templates for the growth of 3D self-

organised structures, because the deposited atoms are more likely to nucleate on points of 

minimal energy on the surface. An example of this is presented by Bansmann et al, [3], where 

the (111) surface of gold formed a „zigzag‟ reconstruction of alternating Face Centre Cubic 

(FCC) and Hexagonal Close Packed (HCP) crystal structures as shown in figure 1.2. When 

cobalt is deposited onto the surface, it is found to form self assembled atomic clusters at the 

vertices of the zigzags as shown in figure 1.3. 

 

Fig. 1.2 STM image of zigzag reconstruction on Au(111) surface showing commensurate FCC 

and HCP domains, [3]. 

 

Fig. 1.3 Image of self assembled cobalt clusters formed at the vertices of a zigzag surface 

reconstruction of Au(111), [3]. 

These reactive sites can also be manufactured. A stepped crystal surface can be 

created by cutting the crystal at a small angle relative to the surface. The edges of these steps 

become a lower energy site for adatoms to attach. Figures 1.4a and 1.4b illustrate this method. 
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 (a) (b) 

Fig. 1.4 (a) Diagram of the fabrication of a stepped surface by cutting a crystal at a small angle, 

 , to a crystal face. (b) Self assembled clusters form at the edges of the steps on a surface [4]. 

The sites at the edge of each step offer a lower energy than the terraces; therefore, as the 

experiment shows, these clusters preferentially form here.  

The above examples of self assembly depend heavily on the underlying atomistic 

processes. An example of the significance of atomistic effects is the deposition of germanium 

atoms upon a silicon substrate by molecular beam epitaxy (MBE). One would assume a 

uniform layer of germanium would form upon the substrate; however as shown in figure 1.5 

this is not the case. 

 

Fig. 1.5 Germanium atoms deposited upon a silicon surface form self assembled atomic 

clusters. The colours represent the gradient of the surface, [5]. 
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Germanium and silicon crystals have considerably different lattice spacing. This 

introduces an interfacial strain between the two materials. The surface will naturally evolve to 

minimise its energy. The large elastic strain energy is reduced by splitting the deposited 

germanium into discrete islands. This increases the surface energy, and hence the resulting 

size of the islands depends on the competition between strain energy and surface energy. This 

self-assembly process is known as Stranski-Krastanov growth. If the islands are small enough 

(below 20nm in diameter) they are known as quantum dots (QDs) due to their unique 

electronic properties. These are considered to be useful building block for quantum devices 

such as: single photon emitters for quantum computing and quantum cryptography, QD light 

emitting diodes (LEDs) for displays and more efficient photovoltaic devices. 

The strain in a crystal lattice is also very important. The strain can affect bulk 

properties like thermal [6] and material [7] transport, which will undoubtedly affect the 

response of a strained crystal subject to thermal effects. In addition, atoms in a state of high 

strain are equivalently in a high energy state. A material will relax this strain in order to lower 

its internal energy if it is able to do so. Figure 1.7.a shows the result of deposition of multiple 

alternating layers of InP and InAs/GaAs by molecular beam epitaxy (MBE). The first layer of 

InAs/GaAs forms quantum dots as before. However when more InP is deposited on top, this 

capping layer is strained by the dots underneath. The next layer of InAs/GaAs then 

preferentially forms quantum dots in areas where the substrate is already strained as this is the 

lowest energy site. Therefore, the communication of the strain through the crystal causes the 

vertical stacking of QDs in this nano scale device, forming a so-called QD super-lattice. 

Another good example of the importance of material transport and mismatched strain is the 

growth of InAs nanowiskers on a GaAs substrate [8] by diffusion of In through a gold particle 

on the GaAs substrate. 

The above pictures in figures 1.3 to 1.5 are examples of material transport. Thermal 

transport is also highly important for nano scale devices as the properties (such as electrical 

resistance) of these devices depend on the temperature of the system. Figure 1.6 illustrates the 

simulation parameters of a computer simulation of silicon in which nanopores of various sizes 

and densities are present. The conductivity of silicon is measured and the effect of nanopores 

on the thermal conductivity of silicon [9] is investigated. This is a good example of the value 

of computer simulations. Setting up and running these simulations is considerably simpler 

than trying to fabricate such samples in the lab. The authors find the introduction of 
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nanopores vastly reduces the thermal conductivity of silicon from a bulk value of 149 Wm
-1

K
-

1
 to 7.1 - 0.6 Wm

-1
K

-1
 depending on pore size and density. They find that making the pores 

bigger with fixed spacing reduces the thermal conductivity, and that reducing the pore density 

(increasing spacing) will increase it. The reduction in thermal conductivity is thought to arise 

from the reduction in the channels for phonon transport and the increased phonon scattering at 

the pore surfaces. 

 

 (a) (b) 

Fig. 1.6 A schematic of the simulation of the effect of nanopores on the thermal conductivity of 

silicon. (a) Structure of porous silicon (blue balls) which is passivated with hydrogen atoms 

(green). (b) Structural variables of the nanopores with a pore diameter, pd , and pore spacing, 

sd [9].  

Devices 

Figure 1.7 shows two examples of nanoscale devices in which quantum dots are an 

integral part. Due to the different conduction band energy of different materials, a quantum 

dot appears as a large potential well to an electron. Quantum mechanics predicts that there are 

several bound states for the electron that depend on the shape and size of the quantum dots 

(which controls the shape and size of the potential well) as well as the depth of the potential 

well. The electronic properties are similar to large atoms in that there are several discrete 

energy levels and that bound electrons can absorb and emit photons at specific wavelengths. 

Quantum dots offer a way of tailoring these properties by altering the material composition, 

size and shape of the QD. Hence emitters and detectors for specific wavelengths can be 

created. Furthermore an isolated quantum dot will only absorb and emit single photons at a 

time. Therefore these are useful components in quantum computing and quantum 

cryptography applications. Even for use in simple detectors, these QDs have a higher 
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response time, higher temperature operation, higher light coupling to normal incidence light 

than conventional devices. Computer modelling allows for easy design and testing of the 

multiple parameters of the manufacturing process of nano devices which allows for easy 

tailoring of these devices to specific applications. 

 

Fig. 1.7 Two examples of nanoscale devices are shown. (Left) A Single-photon 

generator/detector with InAs quantum dots [10]. (Right) A multi-stack InAs/GaAs quantum dot 

infrared photodetector is shown [11]. 

Computer modelling 

At the nanometre scale, not only are interfaces, quantum effects and strain important, 

also thermal effects are significant. To illustrate this, an example of a computer model of a 

nano-indentation experiment is used to show the importance of temperature [12]. This also 

highlights some of the difficulties that arise in computer simulations. 
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Fig. 1.8 Computer simulation of a nano-indentation experiment, [12]. The pictures show only 

the atoms that are displaced by the nano-indenter along with the top and bottom planes of the 

simulation. In both cases the thermostat is applied to all of the atoms in the simulation. (a) The 

atoms are thermostatted using the strong Nosé-Hoover thermostat. Here the dynamics of the 

atoms have been corrupted the leading to an incorrect result. (b) The weaker Berendsen 

thermostat controls the temperature without significantly corrupting the atomistic dynamics. The 

experimentally observed result is reproduced. 

Figure 1.8 shows the results of a large scale MD simulation in which an indenter is 

pushed into a surface. Only the atoms that are displaced by the nano-indenter along with the 

top and bottom planes are shown. Two thermostatting methods are compared, the strong 

Nosé-Hoover method and a weaker Berendsen method (see chapter 2.6). In each case, the 

thermostat is applied to all the atoms in the simulation. A thermostat is required to regulate 

the temperature of the simulation because the nano-indenter does mechanical work upon the 

system as it is pressed into the surface. The thermostats, then act on the atoms in order to 

remove this excess energy. If this was not done, the system temperature would increase 

significantly and reflections from the boundaries would adversely effect the simulation. 

Figure 1.8 shows that one must be careful in applying thermostats to computer 

simulations. A thermostat alters the trajectories of the atoms which can have vast 

consequences on the system. The strong Nosé-Hoover thermostat has corrupted the dynamics 

of the atoms in the simulation, yielding an incorrect result. 

In order to understand the physical properties of materials and devices at the 

nanometre scale, it is easier to simulate these small systems on computers. A computer can 
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track the trajectories of every atom if required, and, if storage space exists, any information 

about the system can be obtained. This is not possible with real systems; as such localised 

measurements are very difficult. Furthermore, identical systems can be subjected to different 

environmental conditions on a computer to investigate their effects, whereas in the real world 

nano-scale experiments are not precisely repeatable. 

The major drawback with computer simulations is that it takes too much time to 

simulate enough atoms, due to the vast amount of degrees of freedom involved. A nanometre 

scale device can contain many billions of atoms. Even with the most powerful 

supercomputers, simulations are limited to a few million atoms over timescales of a few 

nanoseconds. However, as has been demonstrated above, one cannot ignore the atomistic 

effects at this scale. Therefore, in order to simulate the formation of self organised structures 

as seen in figures 1.4 and 1.5, a different approach is required. 

A solution is to use multi-scale modelling. This is essentially a hybrid of existing 

discrete, stochastic and continuum numerical models with an artificial interface between 

them. Here the bulk area of a material (in which physics is well understood and predictable) is 

simulated with existing continuum methods. Surfaces, defects and boundaries are simulated 

with atomistic models. These separate models are then linked together in a way which does 

not adversely affect the results. This linkage is usually the major problem to be overcome 

when developing multiscale methods. 

Two such multi-scale methods are developed in this thesis. In section I, heat 

conduction is modelled using the Molecular Dynamics (MD) method. This method is 

introduced in detail along with many methods of controlling MD simulations in chapter 2. 

Non-equilibrium molecular dynamics (NEMD) simulations are introduced in chapter 3 along 

with a steady state MD/continuum coupling method. In chapter 4, this concurrent 

MD/continuum thermal coupling model is developed in order to enable fully transient 

boundary conditions. A range of simulations are performed for extremely testing cases and 

results presented in 4.4. 

In Section II multiscale computer simulation methods are introduced for use in surface 

diffusion problems. This section begins at chapter 5 with a detailed introduction to quantum 

dot formation. A detailed overview of the KMC method and the continuum KMC method are 

presented in 5.2 and 5.3 respectively. In chapter 6 both simulation methods are applied to 
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single and two component ellipses that are allowed to evolve by surface diffusion. This was 

done to validate the continuum method. Elastic strain is added to both algorithms in chapter 7. 

Simulations of surface roughening are then performed in order to identify optimal conditions 

for the atom deposition simulations. Lastly the formation of quantum dots is simulated. The 

deposition of alternating layers is simulated resulting in the formation of self organised 

vertically aligned quantum dots. 

Before proceeding further, some standard numerical methods for simulating material 

at particular length and time scales are introduced as well as a short introduction to multiscale 

methods. 

 

1.1 Conventional modelling techniques 

There are many existing methods of computer simulation, each with very specific 

applications. For simulations of a single molecule, a first principles approach is best as the 

quantum effects at this scale are significant. Crystals of a few nanometres are best simulated 

with MD if computation time is an issue, as the quantum effects are minimal and the extra 

computational effort of ab initio methods is not required. In order to simulate large time scales 

at the nanometre scale, KMC is the best model. Here the motion of the individual atoms is not 

important, just the structure, which KMC simulates well. Finally, for systems with large 

length and time scales, material properties can be expressed by constitutive laws and the 

system is solved via the finite element (FE) method. Statistical mechanics also applies when 

there are many particles interacting for a large time. This section provides an overview of 

each method. 

(a) Ab initio 

The Ab initio (also known as „first principles‟) method uses the rules of quantum 

mechanics to calculate energies and potentials of a group of atoms. The simulation proceeds 

by solving the many body Schrödinger equation. The only input is the atomic number of the 

elements involved. A numerical solution of the many-body wave function for more than a few 

particles is not viable, even on today‟s largest supercomputers, due to the large storage 

requirements and vast amount of calculations required. 
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An accepted approximation is Density Functional Theory (DFT), in which the 

individual particles are replaced with a particle density, see [13] for review. The wave 

function of the DFT system now depends on, the electron density, and the locations of the 

atomic nuclei. This significantly reduces the complexity at the cost of accuracy. Even with 

DFT, ab initio calculations are limited to about 100 atoms. 

 

Fig 1.9 An example of the results from a first principles calculation of a potential energy surface 

(PES) of a material [14]. The image shows the (2 ×1) view of the potential energy surface of a 

palladium atom on the (110) surface of dehydrated γ –alumina. The violet balls are oxygen and 

the yellow balls are aluminium. 

Figure 1.9 shows the potential energy of a surface computed using Ab initio methods. 

These results can then be used to calculate the inter-atomic potentials and energy barriers to 

surface diffusion which can then be used in MD and KMC simulations. 

(b) Molecular Dynamics (MD) 

The MD method is presented in detail in chapter 2; however a brief overview is 

presented here. 

A material is considered as a collection of classical particles (atoms), interacting via a 

pre-determined potential energy function, )(xV . The MD algorithm is quite simple; for each 

atom, the net force, F , is calculated from the derivative of the potential energy, given the 

inter-atomic distances of the neighbouring atoms. Then each atom is moved according to 

Newton‟s second law of motion, 
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x

V
xmF




         (1.1) 

where m  is the mass of the particle, x  is its acceleration and )(xV  is the potential energy. 

The atomic structure and material properties are all contained within the potential energy 

function. This means that correct determination of this function and its constants is essential 

for correct simulation of materials. 

It is possible to simulate several million atoms for a few nanoseconds using MD using 

a parallel code on a powerful supercomputer. A common example is the simulation of a nano-

indentation experiment. A real indenter is typically of the order of 50 – 100nm, which creates 

an imprint on the substrate of several hundreds of nanometres. In general, the atoms that make 

up the indenter are not simulated. In order to reduce the computational requirements of the 

simulation, an additional potential term is added to the atoms of the simulation to mimic the 

indenter, as shown in figure 1.10. 

 

Fig. 1.10 Example result of an MD simulation of a nano indentation experiment [15]. 

A major problem with these simulations is the boundaries. Fixing the boundaries will 

artificially stiffen the material and cause reflections of elastic waves. Freely moving 

boundaries cannot be used as the indenter would merely push the whole material downwards. 

Periodic boundaries are better, but the indenter does mechanical work on the substrate and 

hence raises its temperature. The heat generated must be conducted away from the indentation 

site; periodic boundaries will keep the substrate artificially hot. Section 1 of this thesis is 

particularly concerned with developing appropriate thermal boundary conditions for MD 
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simulations. A method of coupling MD and FE boundaries is derived to show how such issues 

can be addressed. 

(c) Statistical Mechanics 

For systems with a large number of particles, the laws of probability, quantum 

mechanics and thermodynamics are used to derive equations of state for the given system. 

This method has applications in many areas such as chemical reactions, photons in a cavity 

and population inversion in lasers and gases, to name a few. Statistical mechanics is useful for 

providing initial conditions for MD simulations as it gives the distribution of the speeds of 

atoms in a material. The distribution in atom velocities is not uniform, but rather fits a skewed 

profile known as the Maxwell Boltzmann distribution: 
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where v, is the atomic velocity, m is the atomic mass, kb is the Boltzmann constant and T is 

the absolute temperature. This is shown in figure 1.11. 
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Fig. 1.11 Plot of the Maxwell Boltzmann distribution of atom speeds for argon at 40K. 

The peak of the curve is the most probable atom speed of: 
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m

Tkb

p

2
         (1.3) 

This is lower than the average speed, v , due to the skewed nature of the curve. This average 

speed is given by: 

m

Tk
v b8
         (1.4) 

The RMS speed is given by: 

m

Tkb

rms

3
         (1.5) 

It is found from MD simulations that the atoms fit this curve very well. All MD 

simulations at finite temperature discussed in this work are initialised with speeds picked 

from the Maxwell Boltzmann distribution. 

(d) Kinetic Monte Carlo (KMC) 

For long time scale processes like surface diffusion, the MD method is too slow. 

Typically one surface hop of an atom takes many thousands of atom vibrations, which is 

beyond the reach of MD. 

In the KMC method, the vibrational motion of the atoms is not simulated, but merely 

represented by a temperature. A list of all the possible surface hopping events is generated 

along with the rates of these events. The rates can be calculated from the energy barrier 

between sites. One event is picked at random, depending on its rate, and executed. The time is 

then updated based on the rate of the event selected. This cycle is repeated many times to 

simulate the evolution of a surface. KMC simulations fall into two categories: 

On-lattice 

On-lattice KMC is only used for condensed phase simulations, mainly at zero strain. 

Each atom site and its neighbours are defined at the start of the simulation. The events are 

also defined at the start as hops to a vacant neighbour site, with the rates dependant on the 

initial state. The rate of each event can depend on the number and type neighbouring atoms. 
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Effects of elastic strain can be added by defining the starting lattice in a strained 

position. Then the rates of each event can be calculated from the „real‟ initial energy of each 

atom. 

One can also define the rates as dependant on the energy barrier between sites. Note 

that this energy barrier is overestimated in two-dimensions, where an atom cannot move 

around an atom to pass it. 

Off-lattice 

No lattice sites are defined here. Each atom is dragged from its current position to see 

if there is another stable minimum nearby, and the jump rate is dependant on the energy 

barrier. This method allows for dislocations, cracks and large scale deformations in strained 

crystals. In this thesis, these effects are not modelled in the KMC simulations and hence the 

simpler on-lattice model is used. The KMC method is discussed in more detail in section 2. 

(e) Finite Element Method (FEM) 

The finite element method is used to solve partial differential equations (PDE‟s) 

approximately, by discretizing the functions on a mesh. The Galerkin method reduces the 

problem to the solution of a set of matrix equations. 

To simulate a material, this method requires input of all material bulk properties, such 

as thermal conductivity, Young‟s modulus and density. Also constitutive laws of all the 

physical processes which one wants to simulate need to be pre-defined in terms of differential 

equations. Then FEM is used to solve these PDE‟s subject to user-given boundary conditions. 

In many situations (e.g. quantum dots on surfaces, figure 1.1) one cannot ignore the atomic 

structure, and hence finite element computations alone become over simplified. 

An example of multi-physics FEM is shown in figure 1.12, where electrostatic forces 

control a pair of micro tweezers. The solution depends on solving a set of coupled PDEs for 

the electro-magnetic and elastic fields in the material. 
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Fig. 1.12 Finite element model of an electrostatically actuated comb drive used to open and 

close a pair of micro-tweezers. Electrostatic forces attract the combs to each other. The colours 

show the electric field, blank areas are the drive. [16]. 

FEM is capable of simulating objects from microns to kilometres. There is no 

maximum size limit, only a limit to the amount of detail. However, FEM cannot correctly 

simulate materials at the nanometre scale, where atomistic effects are significant. 

 

1.2 Introduction to multiscale modelling 

A solution to the problem of finite computational resources is multiscale modelling. It 

is not necessary to simulate the oscillations of every atom in a uniform bulk region because 

the results are predictable by using other methods such as finite elements. Therefore, for a 

given system, the atomistic simulation method should only be applied where it is needed (on 

the boundaries, or near defects such as grain boundaries, cracks, voids etc). Continuum 

approaches such as finite elements can then be used in the linear bulk regions.  

The problem with this is that there needs to be a way of connecting these different 

simulation methods without adversely affecting the simulation results. Any interface between 

computer simulation methods will be an artificial one.  

Figure 1.13 shows the typical length and time scales that are available for a range of 

simulation methods. 
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Fig. 1.13 Diagram comparing the length and time scales typically available for a range of 

computer simulation methods.  

 

1.3 Problems with concurrent models 

Dynamics 

Finite temperature multi-scale modelling is not as simple as one might assume. The 

requirements of the continuum far field depend on the nature of the simulation, generally 

either sampling or dynamics. If the purpose of simulation is sampling of near equilibrium or 

steady state quantities, then typically only slowly-changing thermodynamical or statistical 

quantities are of interest and inertial effects are small. Rapid changes occur in truly dynamic 

situations such as fast fracture. Finite temperature simulations are complicated by the 

reflection of high frequency phonons from the interface between the atomistic and continuum 

regions. This leads to energy trapping and localized heating [15]. For the simulation of a 

single crack (figure 1.14a), for example, one simply needs to absorb all heat from the MD 

region. 

 Correct transmission of phonons across the MD/FE interface [15][17][18] is only 

necessary if the far boundaries can be seen during the simulation period (e.g. simulation of 
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Microelectromechanical systems, MEMS) or there are two atomistic regions which need to 

interact dynamically via the continuum medium (e.g. rapid growth of multiple cracks, figure 

1.14b). It is assumed here that absorption of phonons at the interface using diffuse boundary 

conditions is a sufficient requirement. This type of approach [19] has allowed the elastic 

boundary conditions to be specified at a position remote from the atomistic region. 

 In recent years, concurrent multiscale methods have been developed for crystalline 

solids in which the complex response of the far field is represented by a coarse-grained 

continuum region constructed from finite elements [15][17]-[28]. These multiscale modelling 

methodologies have mainly focussed on the far-field representation of the elastic field at zero 

or constant temperature, although a few authors have looked at the thermal far-field 

[18][26][27]. Some models consider isothermal problems, but these are still in the minority. 

Even so, constraining simulations to constant temperature can be highly restrictive, especially 

in cases where work is being done on the system and heat is being generated. Liu et al. [29] 

have recently demonstrated that MD simulations of nanoindentation are very sensitive to 

restricted thermostatic control (see figure 1.8). Keeping the boundary temperature constant 

also restricts simulations to be near to thermal equilibrium, whereas non-equilibrium 

conditions (e.g. temperature gradients) may be of interest. 

  

 (a) (b) 

Fig. 1.14 Schematic diagrams of multiscale computer simulations of crack growth. (a) An MD 

simulation of a single crack coupled to a FE region. (b) A diagram of two MD simulations of 

crack growth that can interact with each other via a continuum region. 
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Kinetics 

A great deal of research has been applied to increasing the practical length and time 

scales of MD and KMC simulations. Rare events such as atomic hops and configuration 

changes of molecules occur on timescales many orders of magnitude higher than the atomic 

vibrations simulated by MD. Given the initial and final atomic configurations of a rare event, 

action derived molecular dynamics (ADMD) [30][31] yields the minimum energy pathway 

with the constraint of energy conservation. The alternative bond-boost method [32], in which 

an additional boost potential is applied close to local minima, causes faster atomic jump rates 

while preserving the relative rates of rare events. This method requires no previous 

knowledge of the kinetics of rare events. 

The KMC method for surface diffusion on metals considers only the rare atom 

hopping events and does not resolve any atomistic vibrations. This allows for a significant 

increase in both the length and time scale of computer simulations compared to MD. The 

length and time scales can be further increased by coarse-graining the atoms into clusters. 

This is only done away from boundaries and areas of high gradients where the loss in 

accuracy is not significant to the simulation result [33][34]. This can be further enhanced by 

adaptively refining and coarsening the mesh on the fly [35][36]. The time-scale of KMC 

simulations also can be increased by allowing surface adatoms that are far from step edges 

and defects to execute large steps over several atomic sites at correspondingly reduced rates 

[37]-[39]. 

Nurminen et al [40] simulate the strain field of embedded QDs by patterning the 

substrate such that the energy barriers to diffusion depend on the (x,y) position on the 

substrate. Hence, no computationally demanding calculation of the strain field is required. 

The authors find that QDs form within an optimal temperature range of 370K – 400K. 

Consistency 

A computer simulation of the same system using two different techniques must yield 

similar results. If it does not, then one of the methods is inaccurate. Therefore the MD and FE 

simulations must produce the same results, for the same set of conditions. The equations to be 

solved by the FE method must be derived from the MD inter-atomic potential, so that the 

results of both methods are the same. 
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Section I 

This section is concerned with the development of a coupled FE/MD method for 

simulating heat flow in non-isothermal solids. Three issues need to be addressed. Firstly, 

before any multiscale coupling can be considered, it is necessary to be able to precisely 

stipulate the boundary conditions of a non-equilibrium molecular dynamics (NEMD) 

simulation. This is investigated in the context of steady state heat conduction in chapter 3.1. 

Secondly, for the coupled model, compatibility between the material parameters in the 

atomistic and continuum descriptions must be ensured. And thirdly, smooth transfer of 

information across the interface between the two models is required. These last two issues are 

discussed in chapter 4. 

Existing elastically coupled atomistic/continuum multiscale methods differ in their 

approach to implementing the effects of (constant) finite temperature. Dupuy et al. [41] and 

Gill et al. [20] retain the dynamics of the atomistic system in the continuum region by 

allowing the finite element nodes to move under inertial forces. However, the dynamics of 

coarse-grained nodes are not physical and cannot model systems in which there is a 

temperature variation. This is because equipartition demands that a system will move towards 

a state in which each degree-of-freedom has the same thermal energy. If the number of 

degrees of freedom is reduced then the thermal energy it can store in the dynamics of those 

degrees-of-freedom is reduced. Therefore the kinetic energy per unit volume is not conserved 

through the body as the number of degrees-of-freedom per unit volume is not constant. Qu et 

al. [19] do not resolve the thermal vibrational motion of the atoms/nodes but link an 

isothermal MD simulation to a quasi-static elasto-plastic continuum. As Qu et al. [19] 

consider an isothermal problem; the missing vibrational energy does not need to be 

represented in the continuum. A similar philosophy is adopted in this section, except in the 

non-isothermal case the missing kinetic energy in the continuum does need to be explicitly 

conserved. This energy is represented by the usual continuum state variable, temperature, and 

is allowed to evolve according to the classical laws of heat conduction whilst interacting with 

the atomistic medium. 

Chapter 2 below introduces MD simulations in detail. 
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2 Introduction to MD simulations 

2.1 Mathematics of MD 

This chapter introduces MD simulations and explains many of the concepts and 

implementation issues. Many researchers have written comprehensive reviews on the subject 

[15][42]-[44]. Here, the equations of motion are derived from the inter-atomic potential and 

solved efficiently with the Verlet time integration algorithm. Methods of controlling the state 

of MD simulations such as thermostats are explained in section 2.6. Also explained are some 

methods for greatly reducing the computer time required to simulate a given system.  

(a) Newtonian dynamics 

 

Fig. 2.1 Schematic of an MD system. 

As explained in the introduction, an MD simulation proceeds by solving Newton‟s 

second law for a collection of classical particles (figure 2.1). Newton‟s second law for each 

particle is given by: 
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       (2.1) 

where, im  and ix  are the mass and position vector of the i
th

 particle and the total potential 

energy )()( ij
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

   is the sum of all the interatomic potentials, )( ijr , 
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where jiij xxr   is the interatomic separation. In this work, only simple pair-wise atomic 

interactions are considered which is reasonable for most solid metals and fluids. 

For two particles interacting via Newton‟s second law, the trajectories of these 

particles can be predicted analytically. In the harmonic limit for linear springs two atoms will 

simply oscillate with simple harmonic motion (SHM) and an equation such as 

)sin()cos()( tbtatx   can be derived. Mathematicians have been trying for centuries to 

solve analytically the trajectories for three or more independent particles. This is known as the 

three body problem. Hence such complex systems need to be solved numerically. 

(b) Hamiltonian equations of motion 

Typically in the literature [15][44]-[46], the Hamiltonian formulation is used to 

describe equations of motion of particles in a simulation. Here the system is described in 

terms of generalised positions and momenta. An overview of the derivation of the 

Hamiltonian equations is presented in appendix B. 

The Hamiltonian is the sum of the kinetic and potential energies of a system. In the 

case of a system of particles in a one-dimensional chain, the Hamiltonian becomes: 
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where, ip , is the momentum of particle i , m , is the particle mass, ijr , is the inter-atomic 

separation and N is the total number of particles. The first term is the kinetic energy and the 

second term is the potential due to interaction with neighbouring particles and finally the sum 

is over all the atoms in the simulation. 

 

2.2 Interatomic potentials 

The interaction between atoms is described by the potential, V . This function 

represents the quantum mechanical properties of the atoms which one wishes to simulate. 

These quantum properties are responsible for the chemical properties of the atoms such as the 
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bond length, bond energy and the spatial arrangement of these bonds. In order to simulate 

different materials like diamond, silicon or water, the potential function used will depend on 

the separation and orientation of the many types of atoms. Therefore the potential energy 

function can be a very complicated expression. The general form of the potential is given by: 

...,),,(),()(),...,,(
,,

3

,

2121  
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kji

jkiji

ji

iji

i

i

N rrrVrrVrVrrrV  (2.3) 

where nr is the radius vector of the nth particle and the functions mV are the m-body potentials. 

The first term is an external potential applied to each atom. This represents an external force 

field such as gravity, which the whole system is subjected to. This term is usually neglected. 

The second term is the pair-wise interaction between atoms and the third term contains the 

three body interactions, etc. 

(a) Lennard-Jones 

Atoms consist of a positively charged atomic nucleus with negatively charged electron 

clouds (orbitals) surrounding it. The net charge of an atom is therefore neutral. As two atoms 

approach each other, an attractive force between the electron clouds occurs (atomic bonding). 

However as the atoms get closer, the effective screening of the positively charged nucleus is 

decreased, and hence electrostatic repulsion of the nuclei becomes the dominant force and 

prevents the atoms from getting closer. The competition between these two forces results in a 

minimum energy at the equilibrium bond length. 

In 1924 Jones proposed the Lennard-Jones (LJ) potential to describe pair wise 

interactions between atoms. This model has been used to simulate a variety of processes, but 

gives the best results for solid argon. The LJ potential depends on the separation between 

atoms only and is therefore described as axially symmetric. 

A system of atoms using the LJ potential will organise themselves into a hexagonal 

close packed (HCP) crystal, as shown in figure 2.2, when solid. The model includes a long 

range attractive force between atoms, which comes from a van der Waals effect from the 

electron clouds, and also short range repulsion due to the positive nuclei. This model can also 

simulate non-linear effects such as thermal expansion. 
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Fig. 2.2 Diagram of the Hexagonal Close Packed (HCP) lattice. 

The potential depends only on the distance between atoms, and hence is axially 

symmetric: 
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where  is the collision diameter (the point at which 0)( ijrV ) and  represents the bonding 

energy of the atoms, which is the minimum of )( ijrV . This minimum occurs at a separation 

distance of 6
1

2 . The corresponding force, derived from the negative gradient of the 

potential is given by: 
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The potential (2.4) and corresponding force (2.5) are plotted in figure 2.3. This shows 

clearly that the net force is zero at the equilibrium lattice spacing of this potential. 
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Fig. 2.3 Plot of the Lennard-Jones potential and corresponding interatomic force. 

Occasionally, in the literature, the Lennard-Jones potential is written in terms of 

6/12a (the equilibrium distance) to obtain: 
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For potentials that decay within a few atomic distances like the Lennard-Jones potential 

presented here, it is not necessary to calculate pair wise interactions between every possible 

pair of atoms in the system. The solid phase MD simulations presented in this thesis were 

computed using nearest neighbour interactions only, this is acceptable as interactions from the 

next nearest neighbours are negligible. For simulations using nearest neighbour interactions 

only, the computation time scales linearly with the number of particles, O(n). 

For fluid MD and condensed phase simulations where physical processes such as 

crack growth allow atoms to change neighbours during the simulation, the nearest neighbours 

cannot be defined. Therefore the force on each atom depends on the sum of the pair-wise 

forces between all atoms within a cut-off radius, R. R is usually taken to be several 

equilibrium bond lengths. The truncated potential energy function, )(rVT , is therefore now 

written as: 
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The function )(rVT  is not continuous, and hence an atom entering the cut-off region will 

suddenly experience a force which switches on and off as it crosses the point Rr  . A “skin” 

region of thickness, D, in which a smooth step-like function reduces the value of the potential 

at R to zero at R+D is introduced. The potential is then given by: 
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Cycling through every atom in the simulation in order to compute the inter-atomic 

displacements in order to work out which atoms are interacting at each step takes an 

enormous amount of time. The simplest method is to maintain a list of local atoms, which will 

always be much smaller than the total number of atoms in the simulation. This local list need 

only be updated every thousand time-steps. 

(b) Other potential energy functions 

Morse potential 

Morse proposed a function of exponentials to model the same effects as the LJ 

potential. Again there are attractive and repulsive terms representing bonding, and parameters 

to control bond energy and length: 
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where ε represents the bonding energy, ρ is the equilibrium bond length, and β is another 

inverse length scale factor. See [47] [48] for examples of the use of the Morse potential. 

Multi-body potentials 

A simple pair-wise potential like LJ is only capable of simulating a HCP material. For 

materials like carbon or silicon, which have a diamond structure, and molecules like water 

and hydrocarbons, which can have complicated shapes depending on the interactions between 

many atom types, a higher order potential energy function is required. In these cases the atom 
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type and spatial arrangement of neighbours and bonding angles contribute towards the net 

force on each atom. 

In order to describe all possible bonding geometries, 4, 5 or higher order terms would 

be required. This quickly becomes intractable and computationally inefficient to calculate. An 

alternative is to “wrap up” the local geometry into two- and three-body potentials, and employ 

a bond order function [15] to represent the spatial arrangements of bonds around the atom. 

These potentials are usually short ranged, involving only nearest or next nearest neighbours. 

The diamond structure is modelled by the Tersoff potential [49]. This is used to 

simulate covalent materials with the diamond structure such as silicon, carbon and germanium 

[50]-[52]. 

Embedded atom method (EAM) 

For metallic systems, atoms are positive ions embedded in a “sea of electrons” that 

permeate the whole crystal [15]. There are energies associated with pushing an atom into this 

“electron sea”, and electrostatic pair-wise interactions from the ions. In the embedded atom 

method (EAM), the total potential energy function,U , takes the form of: 
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where the first term represents the embedding energy of atom i  in the electron gas created by 

its neighbouring atoms. iG is the embedding energy of atom i , 
a

j is the averaged electron 

density of neighbouring atoms, j , and ijV  is the pair-wise interaction between atoms. For a 

review see [53]. 
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2.3 Integrating the equations of motion 

Since there is no analytical solution for N-body problems, the equations of motion 

need to be solved numerically. The Verlet algorithm is a simple and efficient method of doing 

this. Given the force (and hence the acceleration) and a set of initial conditions (positions and 

velocities), the subsequent motion of the particles can be calculated. The general form is that 

once the forces are known for a given configuration, the positions at some time later t  are 

calculated. New forces are then calculated, and the process repeated.  

There are several methods for solving the trajectories numerically. The Verlet method 

is used in the work presented here and is the most widely used method in MD. It is accurate to 

third order in t  and is simple to derive and use [54].  

Start with the Taylor expansion of the position variable )(tx : 
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Now form the corresponding expansion for )( ttx   by substituting t  for t : 
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Sum equations (2.11) and (2.12) and rearrange for )( ttx  to obtain: 

42 )()()()()(2)( ttxtttxtxttx   .   (2.13) 

The third order terms cancel, leading to an equation that only has fourth order errors. The 

force is only calculated once and the method only costs extra storage space for the previous 

position. Furthermore in order to obtain trajectories, there is no need to calculate the speeds. 

But if required, the speed at )(tx  can be found from: 
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The only drawback is that the calculated velocities, if needed, lag behind by one timestep. But 

this is usually of little consequence when dealing with averages over billions of calculations. 
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2.4 Dimensionless units 

In order to implement the calculations on a computer, it is generally more convenient 

to use dimensionless units. This is done for three main reasons; firstly atoms exist at much 

smaller length and time scales than the macroscopic objects that the metric system was 

designed for. Hence the equations contain many small parameters. A computer can be more 

efficient when dealing with decimals that do not differ too much from unity, due to increased 

calculations required to handle exponents of very large or small numbers. Furthermore 

dimensionless units will prevent any problems caused by values becoming too small or large 

to be handled by the processor. Secondly the equations of motion are simplified because 

many of the parameters in the model can be absorbed into the units. Thirdly, solving the 

problem in dimensionless units allows one to apply the results to a whole class of similar 

problems. The most convenient set of units (for the LJ potential) are [55]: 

length: MDLab rr  ,      (2.15) 

energy: MDLab EE  ,      (2.16) 

time: 


 2m
tt MDLab  ,     (2.17) 

where subscript lab, refers to metric system (i.e. metres) and subscript MD refers to the 

dimensionless MD units of the program. Using these definitions, one can derive the following 

useful relations: 
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2.5 The meaning and measurement of temperature 

The thermal energy in a solid crystal is a manifestation of the atomic vibrations. A 

high temperature is simply equivalent to a large amplitude atomic vibration. The total amount 

of internal energy in a classical system is an even split between the potential energy and the 

kinetic energy. This is known as the equipartition theorem. 

The thermal energy of a particle is Tkb2
1  per degree of freedom, where bk is 

Boltzmann‟s constant. A degree of freedom is an independent axis of movement, for example 

a dimension, x, y, or z. A d-dimensional system with N particles has a total thermal energy E 

of: 

2

TdNk
E b .        (2.22) 

This is equivalent to the total classical kinetic energy of the system of particles which is: 
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where im is the mass of particle i , and the ix  term represents the drift velocity of the 

sample as a whole. In an MD simulation, the thermostats can be configured to remove any net 

momentum of the system. Furthermore, fixed boundaries prevent any drift in the sample 

entirely. Hence this term can be safely neglected. It is worth noting that in fluids the drift of 

matter is significant. 

The temperature of a particle in terms of its velocity is found from the above 

expressions. For the thi particle the temperature is: 
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The absolute temperature at a definite point in time cannot be reliably obtained from (2.24) as 

the particle is oscillating and constantly changing velocity. Measurements are made in a 

similar way as an experimentalist would make measurements on a real experiment. The 
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average of a quantity, A , is the result of summing up successive measurements then dividing 

by the number of measurements made, M . 
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However, unlike a real experiment, one cannot assume that each measurement is independent. 

It is necessary to average over many oscillations in order to obtain an accurate value of the 

temperature. It is also useful to average over many atoms as well as many oscillations in order 

to obtain an accurate sample temperature. If one requires a precise measurement of the 

temperature over small spatial and temporal scales, then an average can be performed over 

multiple simulations of the same system, provided that the system is initialised randomly each 

time. 

Statistical errors like the variance are sensitive to the correlations of the data. 

Therefore, one must average over many blocks of a size that is greater than the correlation, in 

order to get an accurate estimate of the variance [55]: 
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where bM  is the total number of blocks, nA  a typical block average, and 
b

A the overall 

average. 

 

2.6 Temperature control 

Simply integrating the equations of motion would cause the system to conserve energy 

over time. Eventually a system such as a 3D rod will attain a uniform temperature across the 

whole system. Hence, the equations of motion are said to be conservative. That is, the total 

energy E of all the atoms in a simulation will remain constant unless energy is deliberately 

added to the system. The total number of atoms N  and the volume V  are also constant. This 

is known as the microcanonical ensemble (constant NVE ). A real material in equilibrium has 

a constant temperature and volume or pressure, which is represented by the canonical 

ensemble (constant NVT ) and the isobaric-isothermal ensemble ( NPT ). In a simulation at 
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a constant energy, E , the temperature will fluctuate around a constant value. Any non-

uniform initial conditions will smooth out over time to this equilibrium temperature. 

Many methods have been proposed over the years to control the temperature and 

maintain realistic trajectories. Some of the most popular methods are presented here. 

(a) Rescale the speeds 

This simple idea just rescales the atom speeds in the reservoir depending upon the 

target temperature. ZhengXing [56] explain this and many other non-equilibrium molecular 

dynamics (NEMD) methods. Firstly, from a given target temperature, pre-compute what the 

average speed should be. Then calculate the average speed of the atoms in the simulation, and 

scale the speeds up or down depending on the desired average speeds. The scale factor used 

should depend on some function of the difference between measured and desired average 

speeds. This simple idea works, but there is no proof that the resulting trajectories explore the 

whole phase space available. 

If this method is applied to a whole system with no net momentum initially, then the 

system will not gain or lose momentum. If, however, there is net momentum initially, or the 

thermostat is applied to two regions (hot and cold as in NEMD), then momentum is not 

conserved. 

(b) Velocity exchange 

This method is a simple yet effective way of imposing a temperature difference across 

a simulation. The speed of the slowest atom in the hot area is replaced with the speed of the 

fastest atom in the cold area and vice versa. This leads to an amount of energy ΔE added to 

the hot reservoir, and an equal amount subtracted from the cold reservoir. An important 

consideration here is that the method conserves momentum. But there is a computational 

speed penalty due to the extra calculations needed to sort the speeds. Furthermore the steady 

state temperature gradient is not specified directly by the user. 

(c) The Langevin thermostat 

The Langevin thermostat [57] is a stochastic thermostat which adds a random force to 

the particle motion along with an appropriate damping term such that: 
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


   ,      (2.27) 

where   is a damping coefficient, 10  R  is a uniformly distributed random variable. A 

new random number for each dimension is picked for each particle at every time-step. 

t

Tm
f ci

L 


6
 is the magnitude of the stochastic force for a target temperature cT  and a time 

step t for each component (L=x, y or z). The Langevin thermostat is a local thermostat as the 

target temperature is specified for each atom (i.e. a non-uniform temperature distribution can 

be specified). This is advantageous as it allows for a non-uniform temperature distribution to 

be specified at the boundaries. One drawback is that there is no feedback between the actual 

temperature and the target temperature for the Langevin thermostat. This is reasonable for 

equilibrium thermostatting, for which it was designed, but far from equilibrium there is no 

guarantee that the target temperature will be achieved or maintained. 

A local thermostat is useful as it allows for the creation of a diffusely thermostatted 

boundary which avoids the problems with phonon reflection associated with a sharp 

boundary. Figure 2.4 shows an example where the  factor is changed linearly over a 

boundary such that at the ends the atoms have heavy damping whereas at the interface 

between thermostat and the atomistic region, the environment that the atoms are in changes 

very little. This is known as „stadium damping‟, [19] and has been shown to provide 

absorption of pulses with minimal scattering. This is considered further in chapter 3. 
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Fig. 2.4 Variation of the   value (red line) through a cross-section of an MD simulation with 

stadium boundaries is shown. The shaded outer regions of the plots in the top row in figure 2.5, 

shows the location of the boundaries where gamma is active ( >0). The dashed line in the 

upper right of figure 2.5 shows the location of this cross-section in the simulation region.  The 

  value describes the strength of the thermostat, where  =0 is equivalent to no thermostatting 

at all and  =1 is the maximum thermostat strength.  

Curtin et al [19], test the stadium boundaries by introducing a pulse of energy into the 

system. They do this by displacing the atoms at the centre of a simulation from their 

equilibrium positions. The displacements applied are given by a radially varying Gaussian 

function. The results of a small simulation with the stadium boundaries is compared to a 

larger system whose boundaries are far enough away as to not affect the central region of the 

simulation for the short time in which the pulse is observed. The authors find that the stadium 

boundaries are effective in absorbing the energy from the pulse such that the centre region 

behaves in a similar way to the larger system. Figure 2.5 shows their results. 
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Fig. 2.5 Plots show a snapshot of an MD simulation of a broad pulse at 100K with time 

increasing from left to right. The top row is a 150Å x 150Å region with stadium boundaries 

(lighter shaded region) and the bottom row is the centre of 400Å x 400Å simulation. The 

colours represent the displacement of atoms from their equilibrium positions with red 

corresponding to displacements greater than 0.25Å, [19]. 

(d) Nosé-Hoover thermostat 

This thermostat proposed by Shūichi Nosé and Hoover [58]-[60] is a deterministic 

thermostat which maintains the average temperature of an atomic ensemble at a target value. 

This is widely used for constant temperature dynamical simulations due to its symplectic, 

volume conserving, time-reversible Hamiltonian structure [20]. In this case the motion of a 

thermostatted particle is described by  
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      (2.28) 

where Q is a thermal mass,   is a thermostatting variable and the summation is over all the 

thermostatted particles, p=1,…, TM . This is a global thermostat in that it enforces an 

ensemble of particles to maintain an average kinetic energy over time. It preserves the average 

temperature but it does not have any control over the distribution of the temperature within 

the thermostatted region. Any temperature distribution which satisfies this average is possible. 

This is acceptable for isothermal simulations, in which there is no driving force for the 

distribution to be non-uniform. 
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As the thermostat works on the average value of the temperature over a certain range 

of atoms, it is slow to react to changes. For example, an incoming pulse may drastically 

change the temperature in one area of the thermostat only, thus the average is not too different 

from the target, and thus the pulse can propagate through with minimal damping and reflect 

from any boundaries. This will lead to an unnatural confinement of heat in an atomistic 

region, and therefore must be avoided. 

(e) Berendsen thermostat 

The Berendsen thermostat [61] is a deterministic one similar to the Nosé-Hoover one 

above. In this case a damping/forcing term is added, whose sign and magnitude depends on 

the difference between a desired temperature, 0T , and measured temperature T : 


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
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This is equivalent to rescaling the velocities: 

OLDNEW vv  ,        (2.30) 

where  is given by: 









 11 0

T

T
t ,       (2.31) 

And t  is the time step. 

 

2.7 Boundary Conditions 

The boundary conditions for MD simulations in the condensed phase are a 

compromise between correct representation of the far field and minimization of the system 

size due to computational constraints. It is the aim of this section to further investigate the 

non-uniform thermal boundary conditions for MD, i.e. non-equilibrium MD (NEMD). 

In order to better represent a bulk material, periodic boundary conditions can be used. 

Fixed or free edges tend to introduce artificial boundary effects, such as phonon reflections 
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and scattering etc. In the periodic case, the atoms at the edge interact with a copy of the atoms 

from the far side. In this way, all atoms behave as though they are a bulk atom, not a surface 

atom. The 3-dimensional rods introduced later chapter 3 have periodic sides but fixed ends. 

An alternative is to use a space which folds around on itself. For example, in two-

dimensional simulations one could use the surface of a sphere as the simulation domain. Here 

the atoms interact with each other over the great circles of the sphere. However this is only 

physically reasonable for large systems, and adds greater complexity to the code. For three-

dimensional systems, a hyper sphere would be needed. 

Periodic boundaries cannot be used for 1D NEMD simulations unless there are two 

copies of the simulation as illustrated in figure 2.6. The periodic boundaries must have the 

same temperature to prevent any unnatural heat flow. Figure 2.6 shows two ways in which 

periodic boundaries can be applied to a simulation of a 1D chain. This boundary can exist 

inside the cold (or hot) thermostat, or at any point along the chain. 

 

Fig. 2.6 Two schemes for using periodic boundaries in NEMD simulations of a 1D chain. (a) 

Periodic boundary exists within the cold thermostat. (b) Periodic boundary exists outside the 

thermostats. 
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2.8 Lattice vibrations 

Consider the simplest lattice, a 1D chain of atoms as shown in figure 2.7. 

 

Fig. 2.7 Diagram of the classical model of a 1D chain of atoms. The atoms are modelled as 

point particles connected by identical springs.  

Each atom is the same type with a mass M  and inter-atomic spacing a . The length of the 

chain of N  atoms is, NaL  . For small vibrations around the equilibrium spacing a the LJ 

potential is harmonic. The atomic vibrations are modelled by a wave equation, 

)](exp[ 0 tkxiAu nn  ,      (2.32) 

where nu is the displacement of atom n  from its equilibrium position. A  is the amplitude, 0

nx  

is the undisplaced position of atom n  and t  is time. The vibration of atoms in a crystal lattice 

can be communicated throughout the crystal via the propagation of waves. The relationship 

between the wave frequency   and the wave-number k  is called the dispersion relation. In a 

one-dimensional chain the dispersion relation is (for derivation see [62]): 

M

½ka)(sin4 2K
 ,       (2.33) 

where K  is spring constant, a is lattice spacing, M is atom mass. There are N  modes and 

hence the number of modes depends on the length of the chain. This 1D chain can support a 

maximum frequency of, 
M

K2 . This is known as the cut-off frequency. Modes with a 

wavelength shorter than the atomic spacing (i.e. a higher frequency) cannot exist. This system 

size dependence is not only important in determining the thermal properties of nanostructures 

but also in determining the accuracy of MD simulations (naturally of constrained size). 

In the long wavelength limit 1ka  , the approximation  x sin(x) holds. This can be 

seen clearly in figure 2.8, therefore equation (2.33) becomes: 
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222 akKM         (2.34) 

This gives a group velocity k/ dd  and phase velocity k/ of: 
M

Ka . 

0

CBA

2(K/M)
1/2

2aa-a k



 

 

 

Fig. 2.8 Plot of equation (2.33) which shows the normal mode frequencies of a 1d chain as a 

function of wave-number. The three points A, B and C all have the same frequency and translate 

to the same atomic positions. The gradient k/ dd is the group velocity, where positive values 

are rightward moving waves and negative values correspond to waves moving left. 

A one-dimensional crystal only has one longitudinal acoustic branch (fig 2.8) of lattice 

vibrations as the atoms are constrained to move along one axis only. In a real crystal, the 

atoms exist in 3 dimensions and can support both transverse and longitudinal waves. 

Furthermore, crystals with more than one atom in its primitive unit cell can support a set of 

optical branches (high frequencies) [62]. The total number of modes is always equal to 3 

times the number of atoms in a 3-dimensional crystal. 
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Fig. 2.9 The picture shows a Sound wave travelling through crystal lattice (amplitude 

exaggerated), with the wavelength indicated [63]. 

(a) Phonons 

The true quantum nature of atomic vibrations is not captured by classical models such 

as MD [64][65]. In a real crystal, the atoms are always oscillating about their equilibrium 

positions. Even at absolute zero, the Heisenberg uncertainty principle [66] requires a zero 

point motion due to the fact that it is impossible to know the exact position and momentum of 

a particle simultaneously such that: 

4
. hxp   ,       (2.35) 

where h is the Planck constant (6.63 x 10
-34

 Js), p  is the error in momentum and x is error 

in position. 

A phonon is a quantized lattice vibration. Phonons, like all quantum objects, can be 

considered as a particle or a wave. Phonons behave like a simple harmonic oscillator in that 

they are restricted to discrete energy values and have a minimum zero point energy. 

  
2

1 nEn        (2.36) 

where is the frequency of a lattice vibration mode and   is Planck‟s constant divided by 2π. 
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Like photons, phonons have an integer value of intrinsic angular momentum (spin) 

and are thus classified as bosons. Consequently, they do not obey the Pauli Exclusion 

Principle, nor do their numbers need to be conserved. 

(b) Thermal conduction by phonons 

Thermal energy in a solid is due to atomic vibrations. In classical mechanics heat 

conduction is via the propagation and interaction of normal modes of atomic vibration. In 

most real crystals there are two mode types: the acoustic branch (lower frequencies) and the 

optical branch (higher frequencies). In practice heat transport is predominantly due to the 

acoustic modes and the optical modes are often ignored. Each branch consists of longitudinal 

and transverse mode branches. The vibration is in the direction of wave propagation for 

longitudinal waves and perpendicular to it for transverse waves. For a d-dimensional system 

(d=1,2 or 3) there is one longitudinal branch and  1d  transverse branches. Hence in one-

dimension there are no transverse waves but in three-dimensions there are two transverse 

branches. 

In this work, insulating materials will only be considered. The conductivity of 

insulators is dominated by the flow of phonons. The derivation of the conductivity comes 

from the kinetic theory of gases [66] and is given by: 

lCvk
3

1
         (2.37) 

where v is the velocity of phonons (speed of sound), l  is the mean free path and C  is the 

specific heat per unit volume. Since the speed of sound remains fairly constant and the 

phonon number does not need to be conserved, this simple equation fits quite well. 

The calculation of the heat capacity is a very involved method and is presented in [66]. 

The general form is: 




 dg
T

Tf
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N
C )(
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1
 


      (2.38) 

where )(E  is the energy of mode  , ),( Tf   is the Bose-Einstein distribution which 

represents the occupation probability of mode  and )(g  is the density of states which is 
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the number of states with a frequency in the range  d  and is derived from the 

dispersion relation. 

The calculation of the density of states )(g from the potential )(rV can be very 

difficult in 3D. Debye simplified this considerably by neglecting dispersion of the acoustic 

waves to obtain a heat capacity of [66]: 
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where Tkx B/ and the Debye temperature BDD k/  . At high temperatures DT   

the heat capacity tends towards the classical value of BNk3 , and at low temperatures DT   

the heat capacity varies with 3T given by: 
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Equation 2.39 is plotted in figure 2.10 along with the classical Dulong-Petit law (dashed line).  

 

Fig. 2.10 Debye prediction for the atomic heat capacity as a function of temperature. The 

Debye model is accurate at low temperatures. The classical limit is shown as a dashed line. It 

is generally accepted that classical MD is valid above the Debye temperature   1/ DT  . 
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2.9 Validity of MD 

At the Debye temperature DT   the quantum heat capacity is ClassicalDebye CC 95.0  , 

as seen from fig 2.10. For this reason, it is commonly accepted that classical Newtonian 

dynamics are acceptable for modelling heat conduction in insulators above the Debye 

temperature. In this regime the Dulong-Petit law (dashed line in fig 2.10) for heat capacity is 

very reasonable for most materials. It is still valid for many materials at low temperatures 

(e.g. silicon) but fails for metals, where the contribution to the heat capacity from electrons 

becomes significant. Values for the Debye temperature for some common elements are shown 

in Table 2.1. In total, 30 of the elements have Debye temperatures above room temperature of 

which only three are not metals: carbon, silicon and germanium. The high value for carbon 

means that the heat capacity is 25% of the classical value at room temperature, i.e. 

ClassicalDebye CC 25.0  . 

Element Debye temperature, D  

Carbon 2230K 

Beryllium 1440K 

Silicon 645K 

Chromium 630K 

Iron 470K 

Nickel 450K 

Aluminium 428K 

Germanium 374K 

Silver 225K 

Argon 93K 

Table 2.1 Table of the Debye temperatures of some elements. 

The appropriate thermal modelling methodology for insulators depends on the length 

scale and temperature of a system. A summary of this is presented in figure 2.11. At 

dimensions comparable to the phonon wavelength  and temperatures much smaller than the 

Debye temperature D (bottom left in figure 2.11), the quantum mechanical effects are 

strongly significant. At larger dimensions approaching the phonon mean free path and room 

temperatures, a semi-classical approach is more pragmatic such as perturbation theory (PT) or 
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the Boltzmann Transport Equation (BTE). At temperatures above D  the classical physics of 

MD is applicable. 

 

Fig. 2.11 A summary of the appropriate thermal modelling techniques for insulators at different 

length scales and system temperatures. D is the Debye temperature, 0a is the lattice spacing 

and  is the phonon mean free path. The diffusion length t  is given for the sake of 

completeness where   is the thermal diffusivity and t  is the phonon relaxation time [67].  

 

2.10 Methods for increasing computation speed 

A costly part of each computation is evaluating the force given the inter-atomic 

distances. Therefore any time saved in this calculation will significantly increase the speed of 

the computer program. Depending upon the complexity of the potential function, sometimes it 

can be advantageous to pre-calculate some or all of the potential and assemble a „lookup 

table‟ containing the value of the potential for a range of parameters. For the LJ potential, 

looking up the data in a table and interpolating can take just as long as calculating the 

potential each time. Therefore, the computer programs used here did not use lookup tables. 

For potentials that include trigonometric or exponential functions, tabulating the potential can 

reduce computation time. The exact benefit depends on computer hardware and the 
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programming languages‟ implementation of said functions. Therefore trial and error testing is 

required to find the optimal method. 

Neighbour lists  

 In condensed phase simulations, the atoms exist in a fixed lattice site. The six nearest 

neighbours can be pre-calculated and saved in a table which contains all possible atom pairs 

which contribute to the net force on each atom. This removes the need to cycle through the 

whole simulation just to find which atoms are near each other. For solids this list remains 

unchanged throughout the simulation. For fluids and gases it needs to be continually updated. 

 

2.11 Summary 

In this chapter many of the methods of controlling and performing MD simulations 

have been described. Inter-atomic potentials were introduced in subsection 2.2. The equations 

of motion are solved numerically using the Verlet algorithm, which was described in detail in 

subsection 2.3. Various thermostatting techniques for controlling the temperature of MD 

simulations, such as Langevin, Nosé-Hoover and Berensen were then described in subsection 

2.6. A variety of methods of increasing the efficiency of computer simulation were also 

described in this chapter, such as dimensionless units, neighbour lists and lookup tables. The 

validity of MD was also reviewed in subsection 2.9. The optimisations and techniques 

described in this chapter are applied to the MD simulations to be performed in chapters 3 and 

4. 
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3 Non-equilibrium Molecular Dynamics (NEMD) 

In this chapter, MD simulations of a 3D rod are performed in which each end is 

thermostatted at a different temperature. This introduces a thermal gradient along the rod 

where thermal energy is constantly flowing from the hot end to the cold end. This is the 

steady state where the total energy of the system does not change, yet energy is flowing 

through it. This is known as non-equilibrium molecular dynamics (NEMD).  

Here the effectiveness of some of the different thermostatting methods introduced in 

section 2.6, Nosé-Hoover, Langevin and stadium damping are compared using a simulation of 

a 3D rod with periodic boundary conditions. An extra feedback control algorithm is then 

added to the stadium damping method in order to impose a specific temperature in the 3D rod 

at a point beyond the non-linear region of the thermostat. This is done to allow greater control 

of the temperature gradient within the simulation. 

 

3.1 Introduction 

Most molecular dynamics simulations are sampled from the micro-canonical (constant 

energy) or canonical (constant temperature) ensembles. However, there have been a few 

studies where a steady state temperature gradient has been imposed on such an atomistic 

simulation [6][43][56][68]-[74]. The technique is simply to use conventional thermostatting 

techniques to enforce different temperatures on opposite ends of the sample. These NEMD 

simulations can then be used to determine the effective thermal conductivity of the medium, 

k, from Fourier‟s law for macroscopic heat flow: 

Tkq  .        (3.1) 

where q is the heat flux (averaged over time and space) in the unthermostatted region between 

the thermostats, and T  is the “measured” steady state temperature gradient. Importantly 

note that the measured temperature gradient is not the same as the temperature gradient 

imposed by the thermostats due to boundary effects. The situation described above is 

therefore not as straightforward as it may appear. This is discussed further in this section 

where details of the atomistic simulation are given below, along with a discussion of potential 

difficulties. If only determination of the thermal conductivity is of interest this can be 
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determined from equilibrium simulations using linear response theories such as the Green-

Kubo formula in (3.4) [43]. 

The heat flux q  in the unthermostatted region between the two thermostats must be 

measured in order to calculate k. This was achieved by tracking the heat energy that was 

added/ removed by the thermostats at each time step. The heat flux between each atomic slice 

is then the difference between these values minus the increase in internal energy U. 

Alternatively the local heat flux can be calculated [43] using (derivation in appendix A): 

   nnnnn xxFxxaq   11
2

1
 .     (3.2) 

where, F is the force between atom n and n+1 and a is the lattice spacing. 

 

3.2 NEMD simulations of a 3D rod 

In all the MD simulations presented we restrict our interest to ballistic heat transport in 

insulators via phonon interaction (i.e. conduction by electrons is neglected). This is an 

inherently non-linear phenomenon as phonons do not interact in the harmonic limit. The 

temporal evolution of a particle of mass im  at a position ix  in the main (unthermostatted) 

body of the system is described by Newton‟s second law (2.1) with forces between atoms 

being computed with the Lennard-Jones inter-atomic potential (2.4). 

Only nearest neighbour interactions are considered. Physically, this potential is 

applicable to solid argon for temperatures below 60K. In accordance with this we take 

bk120 , 4.3 Ǻ and m= 6.68e10
-26 

kg [54][68][75] where Bk  is Boltzmann‟s constant. 

Note that the exact form of the inter-atomic potential is not important to the general 

conclusions of this work. In fact, the principal philosophy behind this proposed modelling 

approach is to make it as simple and general as possible, so that it is not specific to particular 

details of the atomic model and can be implemented into a simulation code with only minor 

changes. 

Consider a three-dimensional rod of Lennard-Jones atoms subjected to a temperature 

difference at each end. To establish a steady state temperature gradient in the rod, it is 
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necessary to inject kinetic energy into one end of the rod and to remove it from the other end. 

This is achieved by the use of thermostatting algorithms. The two well-known examples of 

very different thermostats will be considered here: the Langevin thermostat [15] [43] and the 

Nosé-Hoover thermostat [43] [46] [58]. These thermostats were described in detail in section 

2.6. Like most thermostats, these have been designed to maintain a system at thermal 

equilibrium for constant temperature MD simulation. 

In NEMD simulations, where temperature gradients exist, the temperature distribution 

in the thermostatted region can be highly non-uniform. In this case, the temperature imposed 

at the edge of the thermostatted region will not be the target temperature. The Nosé-Hoover 

thermostat therefore also offers less potential for the stipulation of a spatial variation in 

temperature over a boundary, although Li and E [23] have made some notable achievements 

in this regard by employing a number of Nosé-Hoover thermostats to control different regions 

of the simulation. One advantageous property, however, is that the temperature is controlled 

by feedback between the actual and target temperatures, so one can be confident that the 

desired temperature has been achieved even in non-equilibrium simulations, unlike the 

Langevin thermostat. For rapidly changing transient boundary conditions, local thermostats 

are more responsive than global ones, which only react to a change in the global average 

temperature. 

The steady state thermostatic control of a rectangular rod of 100 atoms in length with 

a periodic square cross-section of 8x8 atoms is investigated. The atoms are in the minimum 

energy hexagonal close packed structure and oriented such that an 8x8 cross-sectional slice 

represents a (100) plane. From a continuum perspective this is effectively a one-dimensional 

heat conduction problem, as there is expected to be no net heat flow or temperature variation 

within a cross-sectional slice of atoms. Therefore, each group of 8x8 atoms within a slice are 

referred to by an incremental index j. It is intended that the ends of the rod be maintained at 

different, uniform temperatures in order to achieve a prescribed steady state temperature 

gradient within some region of the simulation, j=0,..,M, where the true dynamics of the 

system are preserved. The thermostatted regions (TR) are at the ends with the central true 

dynamics region (TDR) in the middle. This setup is illustrated in Figure 3.1 for two TR of 

TM  atomic slices. The separate regions are therefore defined by slice indices: 
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Fig. 3.1 Schematic of the three-dimensional molecular dynamics simulation. The Lennard-Jones 

rod 100 atoms in length has an 8x8 square cross-section. Thermostats are used to regulate the 

temperature at the ends. The only net temperature gradient will be along the length of the rod. 

Therefore the time ensemble averaged temperature in each cross-sectional slice of 64 atoms is 

expected to be uniform and is denoted jT  where j is the index of the slice, shown in detail on 

the horizontal axis. A total of TM  slices are thermostatted at each end (red TR region) in order 

to control the thermal boundary conditions of the inner true dynamics region of 1M  slices 

(yellow TDR region). 

The Langevin damping coefficient, D 2
1 , is taken to be half the Debye frequency 

[19] (above which there are no modes). Solid argon has a Debye temperature of 93K [62], 

which is equivalent to a Debye frequency of D 1.2x10
13

s
-1

. The time step used in the 

integration of the equations of motion was chosen such that approximately 50 samples were 

performed in each oscillation, which equates to a time step of τ=2.15x10
-14

s. Velocity Verlet 

time integration was used and micro-canonical simulations were performed to test energy 

conservation. The extremities of the rod are fixed ( 0  TT MMM xx  ) so that the atomic 

spacing is the zero Kelvin equilibrium spacing, although similar results are obtained for free 

end conditions. 

The behaviour of three different thermostats introduced in section 2.6 is investigated: 

Nosé-Hoover, Langevin and stadium damping. Stadium damping is a variant of Langevin 

which has been shown to be an effective means of phonon absorption [19][76] and 



49 

importantly to produce the expected canonical ensemble [21]. In this case, the damping 

coefficient is a function of position, such that )( ix  . As shown in Figure 2.4, it is linearly 

ramped from a maximum value of 0   at the rod ends down to zero at the edge of the 

thermostatted region. This forms a diffuse interface which allows phonons to move into the 

damping region and be slowly absorbed as they move through it. This avoids many of the 

problems associated with phonon reflection at a sharp interface [18]. More sophisticated 

methods for sharp interfaces based on memory kernels have been considered in the literature 

[15][22][24]-[26] but these usually have to be calibrated for a particular potential, are derived 

from the harmonic approximation (for which heat conduction is not observed), and generally 

are not so readily implemented. 

The thermostats are applied to a rod of 100 atoms in length with TM =15 slices of 

thermostatted atoms at each end and hence 701M  atomic slices in the TDR. The fixed 

target temperatures for the thermostats are LT  and RT  at the left (L) and right (R) ends 

respectively. A temperature difference is imposed such that LR TT 6.0 . The effect of 

temperature is investigated by considering LT =5,10,25 and 50K. Simulations are allowed to 

reach a steady state over a time of 610  and then the average temperature of the atoms in the 

j
th

 slice, 2
2

1
jjj xmT  , is determined over a subsequent period of 610 , where .  denotes 

the time ensemble average over the slice. The resulting steady state temperature distributions 

along the length of the rod are shown for the three thermostats in Figures 3.2a, 3.2b and 3.2c 

with the associated percentage error shown in figure 3.2d. 
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Fig. 3.2 Steady state temperature profile along the 8x8x100 atomic rod shown in Figure 3.1. The 

temperature difference is imposed by thermostatting the two end atoms such that the left hand 

thermostat temperature is LT =5, 10, 25 and 50K and that at the right hand end is LR TT 6.0 . 

Results are shown for (a) a deterministic Nosé-Hoover thermostat, (b) a stochastic Langevin 

thermostat and (c) a variant of the Langevin thermostat, stadium damping.. The expected steady 

state temperature distribution for a constant thermal conductivity is shown as a dashed line. The 

deviations from the expected result arise from the discontinuity in the temperature profile at 

each end due to phonon scattering. (d) The maximum percentage error for each simulation 

shows that the error decreases as the temperature increases and is smallest for the Nosé-Hoover 

thermostat, although it is still greater than 5%. 

 

 



51 

3.3 Problems of Phonon reflection, mismatch and the Kapitza effect 

From (3.1) it is expected that the temperature profile will vary linearly between the 

target temperatures at each end for a constant thermal conductivity (as illustrated by the 

dashed lines in Figure 3.2). As found in previous works [6] [43] [56] [68] [70] - [74], the 

simulation results do not conform to this expectation. There is a drop in the temperature at the 

edge of the thermostatted regions, such that the temperature gradient observed in the 

simulation is not the temperature gradient expected from the imposed temperature difference. 

The maximum deviation from the correct temperature profile (to be determined and shown in 

figure 3.7) is plotted in figure 3.2d. The percentage error is quite significant and clearly 

observable in all the temperature profiles, ranging from 5-20%. The largest errors are seen at 

low temperatures (where phonon interactions, due to sampling non-linearities in the potential, 

are reduced) and for stochastic thermostats (Langevin and stadium). This effect has been 

widely observed and is generally attributed to phonon mismatch at the interface between the 

thermostatted and unthermostatted regions [71]. The effect can be even more pronounced for 

other potentials, e.g. silicon [71]. For real physical interfaces this is known as the Kapitza 

effect, where it is observed that the thermal conductivity, like most physical properties, 

deviates from the bulk value near an interface. Even if the interface is artificial, as is the case 

here, it is difficult to avoid. To understand the origin of this boundary effect, and why its 

magnitude depends on the thermostatting method, we refer to the Green-Kubo formula [71]. 

This linear response theory allows the thermal conductivity to be determined from 

equilibrium simulations, and is often used for this purpose rather than NEMD simulations. It 

states that the conductivity is proportional to the long-time average of the heat flux 

autocorrelation. Assuming local equilibrium, the conductivity between atoms i and i+1 is 

proportional to 

    dsqsqk

t

ii
t

i 


0

0lim       (3.4) 

where )(tqi  is the instantaneous heat flux between atoms i and i+1. The net energy flux 

between particles is therefore due to long-term correlations between their motions. Any 

thermostat will always necessarily alter a particle‟s motion and corrupt this correlation and 

hence reduce the thermal conductivity at the edge of the thermostatted region. This leads to a 

Kapitza resistance across the boundaries due to phonon mismatch [77]. The Nosé-Hoover 
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thermostat in Figure 3.2a is seen to be better than the Langevin and stadium thermostat in 

Figures 3.2b and 3.2c as deterministic methods naturally exhibit longer correlation times than 

(uncorrelated) stochastic methods. In the steady state, the time-averaged heat flux at each 

point must be constant for conservation of energy. In this case (3.1) shows that the effective 

conductivity at a point must be proportional to the inverse of the temperature gradient such 

that Tk 1 . There is a larger-than-expected temperature gradient at each end for the 

Langevin and stadium thermostats in Figures 3.2b and 3.2c. This implies that the conductivity 

is small at the thermostat interfaces and that these stochastic thermostats strongly affect any 

temporal correlations between particle motions at that point. The case for the Nosé-Hoover 

thermostat in Figure 3.2a is improved, although the boundary conductivity is still reduced. 

The Kapitza effect and adverse phonon scattering are far worse in a 1D system. Figure 

3.3 shows the steady state temperature profile along a one-dimensional chain subjected to 

thermostatting at each end. Here the stochastic Langevin thermostat struggles to even apply a 

temperature gradient, whereas the Nosé-Hoover thermostat does slightly better. An 

elementary solution to these adverse, non-linear boundary effects is proposed in section 3.5. 
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Fig. 3.3 Steady state temperature profile along a one-dimensional 100 atom Lennard-Jones 

chain with fixed ends. The temperature difference is imposed by thermostatting the two end 

atoms to 50K and 40K respectively using either a stochastic Langevin thermostat or a 

deterministic Nosé-Hoover thermostat. The expected steady state temperature distribution for 

a constant thermal conductivity is shown as a dashed line. The large deviation from the 

expected result arise from the discontinuity in the temperature profile at each end due to 

phonon scattering. 
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(a) Phonon reflection 

Phonons can reflect at the interface between the bulk and the thermostat regions 

[62][78]. Even in a constant temperature simulation, perturbations to the system can cause 

artificial heating in the central bulk region due to the reflection of phonons. Figure 3.4 shows 

the energy in the central region of a 3D rod during the introduction of a pulse at the centre. It 

can be clearly seen that using the Langevin thermostat, the central region to remains hotter 

than it should be. 
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Fig. 3.4 Plot of the energy in the centre of a rod vs. time after a pulse is introduced. Several 

thermostatting methods are compared along with the no damping case where the edges of the 

rod move freely. The results are similar to those presented in [19]. 

The Stadium boundaries used below are known to reduce phonon reflections [19]. In 

order to test this boundary a pulse was set off by increasing the velocity of the two centre 

atoms towards each other. This simulation was performed on a large (2000) atom system and 

a small system with stadium damping. Sufficient time passed for any pulses to reflect off the 

edges in the stadium system. In Figure 3.5 the total energy in the central region for both cases 

is compared. As can be seen, the energy decays at the same rate for both systems. 



54 

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Small System

Large System

E
n

e
rg

y
 i
n

 b
u

lk
 a

s
 a

 f
ra

c
ti
o

n
 o

f 
in

p
u

t 
e

n
e

rg
y

time ( in oscillations)

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

Small System

Large System

E
n

e
rg

y
 i
n

 b
u

lk
 a

s
 a

 f
ra

c
ti
o

n
 o

f 
in

p
u

t 
e

n
e

rg
y

time ( in oscillations)

 

(a)     (b)     

Fig. 3.5 Plot of the energy in the centre of a rod vs. time after a sharp pulse is introduced for 

both a large system (Black curve) and a small system with stadium boundaries (Red curve). 

The simulation was performed at (a) 1K and (b) 10K. 

 

3.4 Divergence of thermal conductivity 

One can measure the thermal conductivity using the NEMD experiment (Figure 3.2a) 

with the Nosé-Hoover thermostats. The temperature gradient is measured in the central linear 

part of the graph, and the heat flux is calculated in the simulation using equation (3.2). Then 

Fourier‟s law (3.1) can be used to calculate the thermal conductivity, k. Many authors have 

found that the measured conductivity depends on how long the atomistic chain is 

[43][72][79][80]. In investigations of the origins some have looked at on site potentials [81] 

and disorder [82]. Divergence of the conductivity is also found in 2D [83]. This effect exists 

in one and two dimensions, but vanishes in three dimensions. It is predicted that for 

momentum conserving potentials, (i.e. no on-site potential, and an interatomic potential that 

conserves energy such as LJ) a system of characteristic length N, will have thermal 

conductivity: 

5/2Nk   in 1D case, longitudinal heat flow only, 

)ln(Nk   in 2D case, longitudinal and transverse heat flow, 

Constk   in 3D case, longitudinal and transverse heat flow. 
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For coupling with continuum simulations, it is expected that an atomic system will 

obey Fourier‟s law (3.1) such that the thermal conductivity, k, will be independent of N in the 

macroscopic limit, i.e. although there are expected to be system size effects, the conductivity 

will converge to its bulk value as the system size increases. Therefore, although working with 

a one-dimensional chain is desirable from a model development point of view, it introduces 

problems which will not be an issue in three-dimensions. Therefore, only three-dimensional 

simulations will be considered for the remainder of this thesis. 

 

3.5 NEMD simulations with extra feedback control 

In these simulations, instead of scaling the thermostat to a desired value, the program 

scales the thermostat temperature in order to maintain an atom outside the thermostat at a 

desired temperature. This simple algorithm provides extra feedback between the actual 

temperature of the atoms and the thermostat‟s state. 

The steady state thermostatic control of a rectangular rod is again investigated, but to 

avoid the problems due to boundary effects and global thermostatting methods, the 

thermostatted regions (TR) at the ends are separated from the central true dynamics region 

(TDR) in the middle by two small buffer regions (BR). This setup is illustrated in Figure 3.6 

for two BR of BM  atomic slices and two TR of TM  slices. The separate regions are therefore 

defined by slice indices 
























TRright for 1
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TDRfor 0
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TRleft for )1(),...,(

B

TBB

B

BTB

MM,...,MMM

M,...,MM

,..,M

M

MMM

j    (3.5) 
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Fig. 3.6 Schematic of the three-dimensional molecular dynamics simulation for the thermal 

boundary conditions with the feedback control algorithm. In this case a buffer region of BM  

slices (green BR region) is introduced between the TRs and the TDR to avoid any corrupting 

boundary effects at the edge of the TRs.  

It has been previously noted that there is not a straightforward relationship between 

the temperature that is imposed on the TRs and the temperature gradient which develops 

between them in the TDR. To ensure that there is precise control of the temperature within the 

TDR, the average temperature of the atomic slices at the edges of this region, 0T  and MT  

are determined, where jT  is the time ensemble average of the temperature over all the 

atoms in slice j, as before. It is desired that these two atomistic temperatures attain the 

constant values 0T  and MT  respectively in the steady state. The target temperatures in the left 

and right TRs, LT  and RT , must evolve to ensure that the actual temperatures at the periphery 

of the TDR ( 0T  and MT ) are maintained at the prescribed values ( 0T  and MT ). A simple 

feedback loop is used to achieve this such that 

 

T

L
Q

TT
T

00 
  

 

T

MM

R
Q

TT
T


     (3.6) 

where the constant TQ  determines the responsiveness of the thermostat. One benefit of this 

algorithm is that it provides feedback for the stochastic methods which was previously 

missing. Hence one can be certain that Langevin and stadium damping achieve the desired 

temperature. 
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Results are obtained for the same conditions as in Figure 3.2, with 0T =5, 10, 25 and 

50K and 06.0 TTM   with 15TM , 10BM and a TDR of M +1=70. These temperature 

profiles are shown in Figure 3.7 for the three different thermostats under investigation, with 

TQ =100  and a thermal mass of Q=10ε  for the Nosé-Hoover thermostat. It is found that all 

the thermostats correctly impose the prescribed temperatures at the boundaries of the TDR 

and that they all achieve a steady state in a similar time. 
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 (b) (c) 

Fig. 3.7 Precise imposition of a steady state temperature gradient along a three-dimensional 

(8x8x100 atom rod) NEMD simulation by feedback control of the thermal boundary conditions 

using (3.6) for (a) Nosé-Hoover, (b) Langevin, (c) stadium damping thermostats. The time-

averaged temperature profile along the rod is shown. The temperatures in the left and right 

thermostatted regions ( TM =15 atomic slices = 960 atoms each) are regulated at LT  and RT  by 

(2.9) such that the prescribed target temperatures in atomic slices j=0 and j=69 respectively are 
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maintained at 0T =5, 10, 25 and 50 K and 06.0 TTM   for all four cases. A buffer region (BR) 

of BM =10 atomic slices is introduced between the thermostatted regions (TR) and the true 

dynamics region (TDR) to avoid Kapitza effects at the TR/BR interfaces. Note that the 

temperature variation within the TR is non-uniform and unpredictable. The stochastic Langevin 

and stadium damping thermostat require a much larger temperature difference between the TR 

at either end to impose the same temperature gradient than the deterministic Nosé-Hoover 

thermostat. The Kapitza effect at the boundaries is smallest for the stadium damping case. The 

profiles in the TDR are not exactly linear due to changes in the thermal conductivity with 

temperature. 

Inspection of the temperature variation over time at every slice within the TDR shows 

that it reproduces the Boltzmann distribution (that one would expect at the equivalent 

equilibrium temperature). The Boltzmann distribution curves at equal points along a rod for 

one case is shown below in figure 3.8. 

 

Fig. 3.8 Speed distributions for atoms at each edge and the centre for the experiment with Nosé-

Hoover boundaries. 

The temperature profiles of the feedback simulations in figure 3.7 are not exactly 

linear. This is because the thermal conductivity changes with temperature. The resultant curve 

in the profile is therefore most apparent for the case with the biggest temperature difference. 

The three principal differences between the three algorithms are in the TRs and the BRs. 

Firstly, the temperature distribution in the TRs is highly non-uniform for the Nosé-Hoover 

and Langevin thermostats. This is because there is an abrupt change in the dynamics of the 

particles between the TRs and BRs and, in the case of the global Nosé-Hoover thermostat, 

this is controlling the average temperature not the temperature distribution. The temperature 
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distribution in the stadium damping case is more linear, which is in accordance with the linear 

variation in the damping parameter, )(x . Secondly, a major difference between the 

stochastic thermostats and the deterministic Nosé-Hoover thermostat in Figure 3.7 is that a 

much greater difference between the thermostat target temperatures, RL TT  , is required for 

the stochastic thermostats to achieve the prescribed temperature difference, MTT 0 . This is 

expected from Figure 3.2, where the stochastic Langevin thermostat is observed to corrupt the 

particle dynamics considerably leading to a larger drop in the conductivity at the interface 

with the thermostat region. This large temperature difference could be problematic if the 

lower target temperature in the thermostat region dropped below zero or the higher target 

temperature exceeded the melting point. However, this is only expected to be truly 

problematic in the presence of very high temperature gradients. The temperature gradient 

considered in this study is high for investigative purposes, but it is not unrealistic and can be 

easily attained when two surfaces at slightly different temperatures first come into contact for 

instance. The third difference between the thermostats is in the BRs. For the Nosé-Hoover 

thermostat the desired temperature gradient is only established within 5-6 atoms of the TR. 

For the Langevin thermostat there is a large drop in temperature over the first 2-3 atoms in the 

BR but then the correct temperature gradient is achieved. The best case is for the stadium 

damping thermostat, for which the boundary effect is small, and there is a smooth transition 

from the TR to the desired temperature gradient over 2-3 atoms. Hence it seems possible that 

the BR could be reduced in size for the stochastic algorithms. Note that energy is being 

injected by the thermostat into the left hand TR and removed from the right hand TR. Both 

ends are controlled by an identical algorithm which can handle either situation without 

modification. This is important when considering transient problems where the direction of 

heat flow across a boundary can reverse during the course of the simulation. The stadium 

damping algorithm produces the smoothest temperature profile across the TR and BR, is easy 

to implement, addresses each atom locally and provides a diffuse interface for phonon 

absorption. This method is therefore considered to be the best candidate for further 

implementation and is therefore the only thermostat considered for the coupled simulations in 

section 4. 
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4 A coupled atomistic/continuum model for 

heat flow 

It is the aim of this work to develop algorithms which firstly allow the temperature of 

an MD simulation to be precisely controlled away from thermal equilibrium, and secondly 

allow MD simulations to be concurrently coupled with a continuum representation of the 

thermal far-field.  

Therefore, in this chapter, a continuum representation of the NEMD simulation in 

chapter 3 is developed and concurrently coupled to an atomistic NEMD simulation to provide 

full control of the remote boundary conditions. A continuum model of the one-dimensional 

heat conduction problem is derived in section 4.1. In this case the finite difference method is 

used although a finite element method could be implemented just as readily. The model is 

initially developed in section 4.2 within the context of the steady state analysis of the previous 

section. This is then extended to the fully transient case in section 4.3, where the boundary 

conditions to the TDR are a function of time. 

The coupled model is then applied to simulating the effects of time varying thermal 

boundaries on solid and composite 3D rods. 

 

4.1 The continuum heat conduction model 

A continuum finite difference model is employed in regions which overlap the TRs 

and the BRs, as shown in Figure 4.1a. The one-dimensional finite difference grid matches the 

initial regular positions of the atomistic slices in these regions. This is not a requirement of 

the model, for which the grid-spacing can be irregular and extend to any remote position. The 

nodal temperatures on the finite difference grid are denoted as jT
~

 and are at a fixed 

position jx~ , where j denotes the slice number. These temperatures can evolve by the usual 

finite difference algorithm 

1
~~~

 jjj qqTc


       (4.1) 
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is the continuum heat flux between nodal points j and j+1. 

 

Fig. 4.1 A schematic diagram of the coupling between the NEMD simulation and the finite 

difference continuum representation for (a) steady state and (b) transient thermal boundary 

conditions. This is only shown for the left hand end of the rod, as a similar situation exists at the 

other end. The steady state boundary condition drives the atomistic and continuum temperatures 

at the CR/TDR interface to the same value using (3.6) and (4.6). The transient boundary 

condition is slightly more expensive to calculate as it conserves the heat fluxes across the 

TR/BR interface. This interface is chosen (rather than the BR/TDR interface) to minimize 

delays in the responsiveness of the thermostat. The transient boundary condition is also 

applicable to steady state conditions. 

(a) 

(b) 
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The thermal conductivity )(Tk  is assumed to be a function of temperature T. The 

constant c is the heat capacity of an atom and is defined to be the amount of energy required 

to raise the temperature of an atom by 1K. In the simple case of a classical three-dimensional 

crystal with pairwise interactions this is readily determined to be B
B k

dT

Tkd
c 3

)3(
 . The 

Debye model predicts the heat capacity for the more general case [62]. 

To implement a compatible continuum model it is necessary to have knowledge of the 

relevant macroscopic material parameters. In this case the only unknown parameter is the 

thermal conductivity. Close inspection of the steady state temperature profiles within the TDR 

in Figure 3.7 show that it is not precisely linear due to the variation in the thermal 

conductivity with temperature. To first order, it is proposed that the conductivity is a linear 

function of temperature such that kTkTk  0)( . In the steady state the heat flux of (3.1) 

has a constant value: 

dx

dT
Tkqss )( .       (4.3) 

This is readily integrated to give 

)()( 2

0

2
2

1
00 TTkTTkxqss       (4.4) 

where the position is 0x  at the 0j  slice at which 0TT  . The observed temperature 

distribution closely fits the quadratic of (4.4) but knowledge of the steady state heat flux ssq  

is required to determine an absolute thermal conductivity value. 

The instantaneous (spatially averaged) atomistic heat flux between each slice, jq , at 

time t can be determined from 

   

jj

Tjj ttmtqtq
 slice

22

 slice

1 )()(
2

1
)()( 


xxxf    (4.5) 

where the first term on the right hand side, 1jq , is the heat flow out of the previous slice, the 

second term is the rate at which the thermostat adds energy to slice j (zero in BR and TDR) 

and the third term is the rate of change in the kinetic energy of the slice over the time step τ. 

The force on each atom due to the thermostat is xff mRT   from (2.27) for the stochastic 
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thermostats and xf mT   from (2.28) for the Nosé-Hoover thermostat. The heat flux into 

the first slice (in the TR) at )( TB MMj   is zero as these atoms are fixed in space. Hence 

the time averaged heat flux jq  can be calculated for every slice using (4.5). This was done 

for the steady state simulations of Figure 3.7. The heat flux in the TDR was found to be 

constant with jss qq   for all j-0,..,M. The temperature distribution was then fitted to (4.4) 

and the thermal conductivity determined to be 016.10 k W/(m.K) and 02.0k W/(m.K).  

Note that the long boundaries of the rod are periodic so the non-uniform thermal 

expansion of the rod cannot be accommodated. The compressive strain in the rod therefore 

increases with the temperature and varies along its length. It has recently been calculated that 

the thermal conductivity is a function of strain [6]. Ideally a continuum model will not require 

material parameters to be pre-determined, especially if they are a complex function of state, 

e.g. temperature, strain and crystallographic orientation. It is often difficult or too time 

consuming to completely characterise a parameter in terms of the many state variables. 

Therefore it is preferable to determine these parameters on-the-fly [23] or at least refine them 

during the course of a simulation. This is discussed within the context of the coupling 

methodology proposed in the following sub-section. 

 

4.2 Thermal boundary conditions for steady state coupled 

atomistic/continuum simulation 

Two finite difference continuum regions (CR) containing N+1 nodes and defined by 

(4.1) are now coupled to each of the two ends of the atomistic NEMD simulation, as shown in 

Figure 4.1a for the left hand region only. The nodal positions go from Nx
~  to 0

~x  for the left 

hand CR and from Mx~  to NMx 
~  for the right hand CR. The nodes at 0

~x  and Mx~  coincide with 

the edges of the TDR in the NEMD simulation at slices j=0 and j=M. The fixed boundary 

temperatures are now prescribed at the outermost boundaries of the finite difference grid and 

are denoted NT

~
 and NMT 

~
. Unlike the analysis of section 3.5, the target temperatures at the 

boundaries of the TDR, 0T  and MT , are now no longer fixed at a particular value. The NEMD 

simulation is now only of interest in the TDR. The TRs and BRs are only used to control the 

thermal boundary conditions to the TDR. These boundary conditions are determined by 



64 

matching conditions at the interface between the CR and TDR at j=0 and j=M. For steady 

state analysis it is sufficient to simply specify that the target temperatures for the edges of the 

TDR should be the same as those at the matching node in the finite difference model such 

that: 

MM TT

TT
~

~
00




.        (4.6) 

The thermostat temperatures are determined by the feedback control equation (3.6) as before, 

as shown in Figure 4.1a. 

Results are shown in Figure 4.2 for the stadium damping thermostat for N=20. The 

same temperature gradient prescribed in Figure 3.7 is maintained within the TDR, although 

this time the temperatures are defined at the remote boundaries of the finite difference 

simulation not at the edges of the TDR. The fixed end temperatures are taken to be 

NL TT 
~~

=40K and NMR TT 
~~

=20K. The temperature profiles in the CRs at the left and right 

hand sides and the temperature in the TDR are shown. The unphysical temperatures in the 

TRs and BRs are not shown in these or subsequent simulation results. It is found that the 

temperature profile quickly settles down to the expected stable steady state. This is a 

considerable achievement as the atomistic region is highly dynamic and the temperature at the 

continuum/atomistic (CR/TDR) interface fluctuates rapidly. The stability of the method is not 

found to be very sensitive to the choice of the material parameters in the CR ( 0k , k and c) 

which is important. A discontinuity in the gradient of the temperature curves at this interface 

is only observed if there is a significant thermal conductivity mismatch between the CR and 

TDR. As the heat flux and temperature gradient are known at all points in the simulation it is 

a simple matter to determine the thermal conductivity during the simulation. This value can 

be used to refine the measured value on-the-fly. This is especially useful if the conductivity is 

expected to change significantly due to a variation in the state variables during the simulation. 
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Fig. 4.2 Steady state results for the coupled atomistic-continuum simulation. Target 

temperatures of 40K and 20K are now prescribed at the edges of the continuum regions (at j=-

20 and j=100). The target temperatures at the boundaries of the TDR (at j=0 and j=80) are now 

variable and determined from the coupling between the continuum model and the NEMD 

simulation. 

 

4.3 Thermal boundary conditions for transient coupled 

atomistic/continuum simulation 

The previous work in this thesis has only considered the steady state response of 

NEMD simulations. However, one of the advantages of a continuum model is that full control 

of the remote boundary conditions is obtained. These boundary conditions are dependent on 

the temperature or the heat flux at the boundary and can therefore be functions of time. In this 

section the methodology is extended to consider such cases. This is achieved by discarding 

the temperature matching condition (4.6) at the atomistic/continuum interface and explicitly 

enforcing the conservation of thermal energy between the models instead. A first approach 

would be to simply equate the continuum and atomistic heat fluxes on either side of the 

CR/TDR interface. For the left-hand side shown in Figure 4.1b this would require 01
~ qq  . 

However the instantaneous atomistic heat flux is rapidly changing so this is enforced 

on average over time by controlling the thermostat target temperatures at each end such that, 

  

t

mm

Q

L dtqq
Q

T
0

1 )~(
1    

t

mm

Q

R dtqq
Q

T
0

1 )~(
1 ,  (4.7) 
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where QQ  determines the response rate of the system to disparities in the heat flux and the 

integer m is the index of the slice where this condition is to be applied . The integral ensures 

that no heat is lost over time. The temperatures in the atomistic and continuum regions must 

also be connected. This is achieved by defining the continuum temperature at the CR/TDR 

interface to be the time-averaged value at the same point in the atomistic simulation such that, 

MM TT

TT





~

~
00

.        (4.8) 

The remaining issue when dealing with thermal transients is the responsiveness of the 

system. There is an inherent time delay in the system as a change in the target temperature of 

the TR takes a small time to effect a change in the heat flux at another point in the simulation. 

This is unavoidable with this methodology so the objective is to minimize the effect of this 

delay. This can be achieved by optimizing the position, m, at which heat flux conservation 

between the continuum and atomistic models is enforced. Selecting this to be the BR/TDR 

interface (m=0 on left hand side) gives reasonable results although there is still a small 

noticeable delay between the two descriptions. It is found that the optimal position is at the 

TR/BR interface as shown in Figure 4.1b. This minimizes the distance between the thermostat 

and the system controller (4.7). The BR has been reduced in size to 5BM  based on the 

steady state observations for the stadium damping thermostat in Figure 3.7. This is because 

the system is more responsive if the buffer zone is smaller. 

 

4.4 Results 

Results for a variety of test cases are shown in figures 4.3 – 4.8. These demonstrate 

the ability of the model to respond to changes in the boundary conditions at the 

atomistic/continuum interface over time, including multiple reversals in the heat flux from 

heat entering to heat leaving the boundary. Even though the thermal change is large and rapid, 

there is no observable delay between the response of the continuum and atomistic regions. In 

each case the combined atomistic/continuum results agree very well with the results from a 

full finite-difference simulation (shown as dashed lines). All parameters remain the same as 

before with the additional parameter QQ = 6 . The choice of value for this parameter is not 
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critical and the algorithm is not particularly sensitive to it. All the graphs are plots of the 

average of multiple simulations at 10000 τ intervals to reduce thermal noise.  

(a) Rapid discrete boundary variations 

The first case shown in Figure 4.3a has the remote boundary temperatures fixed at 

LT
~

=40K and 
RT

~
=20K. The simulation starts with one half held at 40K while the other half is 

held at 20K. The centre slice is initially fixed such that no heat flows between the two halves 

while the system is thermalised. After sufficient time the centre slice is allowed to interact as 

normal, and the system evolves towards a steady state. The second case is shown in Figure 

4.3b. Here the system is allowed to reach a steady state with the outer continuum 

temperatures set at 
LT

~
=40K and 

RT
~

=30K. The left outer edge 
LT

~
 is then instantaneously 

dropped to 20K, and the system allowed to evolve. The boundary conditions at the CR/TDR 

interface are truly transient as the temperature and heat flux evolves continuously over time at 

this point. Figure 4.3c illustrates the third case. A central part of the TDR is thermalised at 

40K while all surrounding atoms and the CRs are thermalised at 20K. As in Figure 4.3a, this 

is achieved by fixing the atoms between these different temperature regions. When the 

interactions are turned on again, the 40K region rapidly cools down to the temperature of the 

surrounding 20K region, reaching equilibrium after a time of 10
5
τ. The fourth case, shown in 

Figure 4.3d, is for a coupled system that is initially thermalised at 20K. The left hand 

temperature LT
~

 is then instantaneously increased to 40K. The system evolves as expected 

towards the steady state. As expected the transient boundary conditions produce the same 

result as the steady state boundary conditions once equilibrium has been achieved. However, 

the steady state boundary conditions in subsection 4.2 are still of value for purely steady state 

problems as they do not require the additional complication of the flux calculation of (4.5). 

Importantly, the continuum coupling has virtually no computational overhead, with the 

NEMD part of the simulation accounting for practically all the processor time. 
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(c)      (d)     

Fig. 4.3 Snapshots of the temperature profile evolution for transient boundary conditions for an 

entirely continuum model (dashed lines) and a coupled atomistic/continuum model, where the 

TDR is 0 <j 80. Four cases are considered: (a) the simulation starts with one half held at 40K 

while the other half is held at 20K; (b) the system is allowed to reach a steady state with the 

outer edges set at 40K and 30K. Then the left outer edge is suddenly dropped to 20K and the 

system allowed to evolve towards its new steady state; (c) a central region within the TDR is 

thermalised at 40K while all surrounding atoms and the continuum are at 20K. The hot inner 

region cools over time until the system has cooled down entirely to a steady state temperature of 

20K after a long time; (d) Initially at 20K, the left hand boundary is subject to an instantaneous 

temperature increase to 40K. Again, the system evolves as expected towards the steady state. In 

each case the coupled simulation result agrees very well with the result from the continuum 

simulation. 

In the problems of Figure 4.3, the system always evolves towards a steady state. A 

situation which better demonstrates the potential of the coupled atomistic/continuum method 

proposed here is shown in Figure 4.4. This is a situation where the system is large (infinite) 
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and will not reach a steady state (within a finite time). Energy is constantly injected into the 

central slice of the TDR by adding a random force to the atoms there. The temperature of 

these atoms increases and heat flows out towards the boundaries. Figure 4.4 shows the 

temperature profile evolution for two approximations to the full atomistic simulation of this 

problem (where we imagine that it is not possible to obtain the full solution due to 

computational limitations). Case (A) is an atomistic approximation of a reduced system 

employing a 100 slice NEMD simulation with the temperature fixed at the local boundaries 

(using the algorithm in section 3.5); case (B) represents a similar NEMD simulation of 100 

slices coupled to a large continuum region. This is expected to provide more realistic 

boundary conditions as the temperature at the atomistic/continuum boundaries can evolve 

over time. The inset in Figure 4.4 shows the temperature profile at a time t=10
4  when heat is 

just beginning to cross the atomistic system boundaries. At this point the profiles are similar. 

The main figure illustrates the thermal profile at a much later time, t=10
5  (the earlier case 

(B) t=10
4  result is shown again for reference). The temperature profiles are now quite 

different. The constraint of the local fixed temperature boundary conditions in case (A) has 

had a major effect. A steady state temperature gradient has developed such that the heat flow 

from the centre balances the rate of energy input into the system. This is an artefact of the 

system size. In case (B) the atomistic simulation is embedded within a large continuum region 

so that it cannot see the remote boundaries within the time scale of the simulation. It is 

important to note that case (B) does not require significantly greater computational time that 

case (A), i.e. the continuum region and coupling algorithm has a very small computational 

overhead compared to the NEMD simulation. This class of problem is representative of a 

situation where work is being done on an atomistic simulation but the simulation is reduced in 

size (for computational efficiency) such that heat is crossing the simulation boundaries 

(without being properly accounted) for during the simulation time, e.g. differential thermal 

contact such as an AFM tip on a substrate [70], nanoindentation [41], wear [28] or crack 

growth [76]. 
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Fig. 4.4 Transient analysis for two identical NEMD simulations except for their boundary 

conditions : case (A) has the temperature fixed at 20K at its boundaries (at j=0 and j=100) whilst 

the other, case(B), has its boundaries coupled to a much larger continuum simulation. Energy is 

injected into the centre of the NEMD simulation at j=50 causing the temperature at the centre to 

increase and heat to flow out towards the boundaries. The inset picture compares cases (A) and 

(B) at a time (t=10
4 ) when the heat flux is starting to be affected by the boundary conditions. 

At this point the temperature profiles are similar. As the system continues to evolve, the 

temperature gradient in case (A) balances the rate of energy input into the system and achieves a 

steady state. This is a direct consequence of the local boundary conditions. Meanwhile, case (B) 

continues to evolve as heat flows across the atomistic/continuum boundary into the large CR 

which provides more appropriate boundary conditions. 

(b) Harmonically varying boundary 

A fully transient boundary varies in time constantly. In order to thoroughly test the 

thermal coupling method, the edge of the continuum region is subject to a cyclic variation in 

its temperature between 20K and 40K. Each oscillation has a time period of 50000  . Figure 

4.5a is a plot of the temperature at three equally spaced points along the MD region as a 

function of simulation time. Also shown is the temperature at the edge of the continuum 

which is being controlled (black curve). On the same axis a full finite elements solution is 

plotted, and is found to be in good agreement with the coupled simulation.  Figure 4.5b shows 
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the measured temperature profile (solid line) and finite elements prediction (dashed line) of 

the 3D rod at five points in time during an oscillation of the boundary.  These plots show that 

the temperature profile along the rod is in good agreement with the full finite elements 

solution. 
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Fig 4.5 Results of the coupled MD/FD simulation with fully transient boundary conditions. The 

temperature of the far edge of the continuum is driven sinusoidally between 20K and 40K. (a) 

Plot of temperature (averaged over 1000 ) vs. simulation time at equally spaced points along 

the 3D rod.  (b) Plot of the temperature profile of the rod at equally spaced points in time during 

a single oscillation of the remote boundary.  These results were presented at MMM2008 in 

Tallahasse, Florida [84]. 

(c) Simulation of a composite material 

There is little point in performing coupled MD/FD simulations where a simple finite 

elements simulation yields the same results, other than for testing purposes. For this reason, a 

composite 3D rod was investigated.  Here the atoms in the central 30 atomic slices of the rod 

have their mass increased by a factor of 10. Therefore, composite rod consists of three 

regions, two outer M regions and a central 10M region.  This creates a real interface where 

phonon reflections and a Kapitza effect are expected to occur. 

Steady state NEMD simulations of this heavy (10M) material were performed in order 

to measure the thermal conductivity which is required for the finite elements simulation. This 

is not required for the coupled simulations, and is only used in the full FE simulations for 

comparison. The 10M region has a temperature dependant conductivity given by 
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kTKK  0  with 0K = 0.35 and k = -0.0075.  This is much lower than that obtained for 

the original rod, which was 037.10 K  and 02.0k . 

Figure 4.6 shows the steady state temperature profile (solid line) of the composite rod 

with the remote boundaries fixed at 
LT

~
=40K and 

RT
~

=20K. The profile is an average over a 

time of 80000  long after any transient effects have vanished. A large temperature drop in the 

coupled MD/FD simulation occurs at the interface between the M and 10M regions. This is 

not seen in the standard continuum solution (dashed pink line).  

The dashed red line is the same continuum solution except at the interface between 

regions a cell with a much lower conductivity is used. This conductivity is also temperature 

dependant as can be readily seen in figure 4.6 from the different size temperature drops each 

side of the 10M region.  This conductivity is given by: 

  01
2

1
KkTTK jj         (4.9) 

where j is the index of the slice, 0001.00 K  and 001.0k . This was obtained from 

measurements of the MD simulation. 
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Fig 4.6 The steady state temperature profile for a coupled atomistic/continuum (MD/FD) model 

of a composite rod. The temperatures are fixed at the edges of the continuum regions (CRs) to 

be 40K and 20K respectively. The temperature in the atomistic TRs and BRs is not shown. A 

region in which atoms have a large mass (m=10) is located in the centre of the atomistic rod. 

There is a large drop in the temperature at the interface between the regions of different masses 

due to the Kapitza effect. Results for the pure FD model (pink dashed line) do not reflect this 

unless a reduced interface thermal conductivity k is used at the interface between the high and 

low mass regions. 
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Transient results 

Discrete jumps in temperature of the far left continuum boundary are applied to the 

system to investigate its transient response. The simulation starts with all continuum nodes 

and atoms thermalised at 20K. After sufficient time (10
4 ) the edge of the continuum is 

raised instantly to 40K. After a time of 5x10
4  the edge of the continuum is set back to 20K 

again. Figure 4.7 shows successive temperature profiles averaged over 10
4  during the (a) 

heating and (c) cooling phases. Plots (a) and (b) are the same data compared with the different 

FD comparison models (similarly for (c) and (d)). 

Without the artificially low conductivity cell at the interface, the FD model is vastly 

different from the coupled simulation result. This highlights the value of the full atomistic 

model where atomistic effects are significant. The continuum solution could not predict the 

temperature drop at the interface, and only matches up when a FD cell of reduced k is used at 

the interface. These results were presented at IUTAM 2008 [85]. 
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(c)      (d)     

Fig. 4.7 MD/FD simulation results (solid lines) demonstrating the control of transient boundary 

conditions during the heating and cooling phase of a composite rod. (a) Initially at a uniform 

temperature of 20K, the far left continuum boundary temperature is instantly changed to 40K at 

t = 0 to heat the system. The dashed line is the full FD solution and (b) FD solution with a 

reduced interfacial conductivity k given by (4.9). (c) The left continuum boundary temperature 

is now instantly changed back to 20K. This occurs directly after the heating phase. The dashed 

line is (c) a pure FD solution (d) FD solution with a reduced interfacial conductivity k given by 

(4.9). 

 

Discussion and Conclusions for section I 

A simple molecular dynamics/continuum coupling algorithm has been developed 

which does not depend upon the underlying interatomic potential model employed. This 

should therefore be useful in a wide range of areas from solid crystals to fluids [86][87]. The 

models in this paper have been developed within the context of a quasi one-dimensional 

problem in which net heat flow only occurs in one direction. The situation is slightly more 

complicated for controlling the temperature in more than one direction but the method is still 

applicable. The thermostatting region will no longer necessarily drive the boundary of the 

TDR towards a uniform temperature, i.e the temperature can vary around the boundary. In the 

case of local thermostats such as Langevin and stadium damping this is not a problem as each 

atom can be driven towards a different temperature. Li and E [23] have shown that global 

thermostats such as Nosé-Hoover can also achieve this by dividing the thermostatted region in 

to sections along the periphery and having a different target temperature in each. However, 

this sectioning can complicate the algorithm and leads to an increase in the number of 
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thermostatting variables  . This is not the case for the local thermostats, where atoms can be 

individually labelled as thermostatted or unthermostatted . Hence the TR can be easily 

changed to accommodate an expansion/contraction of the TDR over time by altering which 

atoms are considered to be part of it. The steady state boundary conditions considered in 

sections 3.5 and 4.2 require a relationship between the target temperatures on the BR/TDR 

boundary and the thermostat temperatures with the TR, similar to that given in (3.6). This is 

obvious if a boundary has a uniform temperature (as considered here) but more complicated if 

the temperature varies continuously along the boundary, where a particular thermostatted 

atom will affect the temperature of a number of target temperature atoms and vice versa. In 

this case the thermostat temperatures can be related to the target temperatures through a 

compact local proximity weighting kernel. The more general transient boundary conditions 

considered in section 4.3 however only require a knowledge of the heat flux which can be 

readily calculated without additional complications to the algorithm. 

The issue of thermal expansion has been briefly mentioned in section 4.1. Coupled 

thermoelastic boundary conditions need to be considered to correctly model this phenomenon. 

Qu et al. [19] have proposed an isothermal model for coupled continuum/atomistic elasticity 

problems using a stadium damping thermostat at the boundary to avoid adverse phonon 

reflection. This method is compatible with the approach here for combined coupled 

atomistic/continuum thermoelastic problems. This would be a beneficial extension, as stresses 

due to thermal expansion will always be an issue in complete NEMD simulations. The quasi-

elastostatic continuum far field is coupled to the quasi-static atoms at the outer edge of the 

TR. The force on the nodes of the finite element field must balance the time-ensemble 

average force on their equivalent atoms in the TR. The only significant difference between the 

thermal equilibrium case [23] and the non-equilibrium case considered here is that now the 

temperature in the TR surrounding the TDR is non-uniform. Away from equilibrium the 

temperatures in the TR are unphysical and chosen to achieve the desired target temperatures 

at the TDR boundary. This leads to unphysical thermal expansion or contraction of the TR 

and BR. To implement the method of Qu et al. [23] it would be necessary to subtract this 

unphysical thermal expansion from the average atomic positions in the TR by calculating the 

difference between the physical temperature in the finite element field and the unphysical 

temperature at the same point in the TR. 
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In summary, a method for controlling the thermal boundary conditions of non-

equilibrium molecular dynamics (NEMD) simulations has been presented in section 3. The 

method is simple to implement into a conventional molecular dynamics code and independent 

of the atomistic model employed. The body is thermostatted at the boundaries to control the 

temperature at the edges of the true dynamics region (TDR). A small buffer region lies 

between these two regions to avoid the TDR being corrupted by boundary effects. This simple 

feedback control has been shown to work for a quasi one-dimensional example of heat flow 

down a three-dimensional rod of uniform cross-section. These boundary conditions are of use 

for analysing the heat transfer across nanoscale features [88] such as grain boundaries [73], 

nanowires [72][89][90] and nanoconstrictions [70]. As the model does not rely on the 

potential, there is a possibility that the potentials could be altered to incorporate quantum 

effects [91]. The method for controlling the boundary conditions of NEMD simulations has 

been extended in section 4 to allow atomistic/continuum models to be thermally coupled 

concurrently for the analysis of steady state and transient heat conduction problems. The 

effectiveness of this algorithm has been demonstrated through a number of examples. 
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Section II  

In this section we look at mass transport in solids by surface diffusion. The timescale 

of surface diffusion is far beyond the capabilities of the MD simulation method used in 

section I because it consumes far too much computer time. The Kinetic Monte Carlo (KMC) 

method is introduced in chapter 5, as well as a comparative continuum KMC method. In 

chapter 6, the simple case of the zero strain on-lattice models are investigated in order to 

compare the models using simple systems. Single component ellipses are simulated using 

both methods. Since quantum dots are formed by the interaction between two different 

materials, the KMC algorithms are then updated to include multiple atom types in subsection 

6.2. Two atomic species are differentiated by changing the jumps rates per bond in the KMC 

algorithm. Two component ellipses are considered for a variety of interesting cases. The 

results of these simulations are used to update the continuum KMC method. 

Lastly in chapter 7, elastic strain is added to the KMC algorithms. This is a 

requirement in order to see quantum dot formation. An investigation of surface roughening is 

performed first in order to ascertain the optimal conditions for performing the atom deposition 

simulations. The formation and arrangement of quantum dots upon a surface during molecular 

beam epitaxy experiments are simulated. Finally multiple layers of material and substrate are 

deposited in order to investigate vertical ordering of quantum dots into a super-lattice. 
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5 Introduction to surface diffusion and the 

KMC method 

Solid surfaces evolve over time to reduce the free energy of the solid if there is an 

active kinetic mechanism for it to do this. The dominant diffusion process is assumed to be 

surface diffusion, which generally has an activation energy lower than lattice or grain 

boundary diffusion. At the nano-scale, the surface area is large compared to the volume and 

hence interfacial energies act as a strong driving force for surface diffusion. Also, at this scale 

the lattice structure of the solid has a strong influence on the shape of crystalline solids, with a 

preference for forming angular surfaces aligned along particular low energy facet directions.  

Atomistic processes such as surface diffusion occur on a relatively large timescale 

compared to the oscillation of the atoms themselves. In order to simulate such processes using 

MD, one would have to solve many thousands of atomistic oscillations before even one 

surface atom hops to its neighbouring site. As has been said many times, such simulations 

would take prohibitively too long to run. 

A much faster method than MD is required to fully investigate real nano-scale devices 

such as nano-wires, nano-whiskers and quantum dots (QDs) etc (see section 1). The formation 

and dynamics of these devices occurs via surface diffusion at time-scales many orders of 

magnitude longer than MD is currently capable of simulating. Furthermore, information of 

every atom oscillation is not required for understanding of the structure of nano-devices like 

QDs. The Kinetic Monte Carlo (KMC) method is most suited to surface diffusion problems 

and can handle many thousands of atoms for much longer time scales than MD. However 

KMC still has its limits and drawbacks. An atom on a surface will perform many jumps 

meandering around before finding its minimal energy position. A comparative continuum 

KMC method is therefore introduced which attempts to reduce unnecessary kinetics. The goal 

of this section is to develop these KMC methods in order to simulate the formation of QDs on 

surfaces and to investigate vertical alignment of multiple layers of QDs. 
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5.1 Quantum dot formation 

The KMC models developed will be used to simulate QD systems. It is therefore 

important to review real QD systems in order to know what to expect from the computer 

simulations. 

QDs are produced by depositing a layer of material (such as GaAs) upon a substrate 

material (such as InAs) by a process called molecular beam epitaxy (MBE). The substrate is 

heated to constant temperature in a vacuum, while a crucible containing the deposition 

material is also heated until it vaporises. This vapour rains down upon the substrate forming a 

compressed film on surface. Figure 5.1 illustrates this process. 

 

Fig. 5.1 Diagram of heteroepitaxial growth on a surface. (Left) a vapour of the deposition 

material rains down on the substrate, (right) illustration of the mismatch in strain causing 

compressive strain in the film. 

The important point is that the two materials have a different lattice spacing. If the 

deposition is epitaxial (such that the deposit adopts the atomic configuration of the substrate 

forming a coherent interface) this introduces an interfacial mismatch strain 
s

fs

T
a

aa 
  in 

the deposited film, where fa  is the lattice spacing of the film and sa  is the lattice spacing of 

the substrate. A high strain state is a state of high energy. The film seeks to minimise its 

energy by roughening the surface in order to reduce the total elastic strain energy, however 

this increases the surface energy of the film.  
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In the Stranski-Krastanov growth mode, a wetting layer (typically a few monolayers 

thick) forms first. At a critical thickness, the flat layers become unstable and the atoms begin 

to cluster together to form QDs. QDs form as a result of the competition between elastic strain 

energy and surface energy. Figure 5.2 shows some QDs on a surface with a thin wetting layer. 

The atoms at the peak of the QD have relaxed back to their equilibrium spacing whereas 

atoms near the substrate are under high compression (e.g. -4.2% for Ge/Si (110)). 

 

Fig 5.2 A film of Germanium deposited upon a Silicon substrate. QDs form due to the 

competition between surface energy and elastic strain energy. 

The QDs formed are all roughly the same size as seen in experiments (figure 5.3). 

This preferred size arises from the competition between the surface energy (which prefers 

large dots) and the elastic strain energy (which prefers small dots). QDs are therefore 

considered to be highly self organised in that they have a very narrow size distribution.  
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Fig 5.3 AFM topographies (0.9x0.5  m
2
) for (a) 1.54 Mono-layers (ML), (b) 1.57 ML and (c) 

1.64 ML of InAs coverage. Panel (d) shows the number density dependence on InAs coverage 

of small and large QDs [92]. 

Quantum dots are useful structures for nano-scale devices. Since the substrate and QD 

have a different valence band energy and conduction band energy, the QDs formed can 

confine electrons in a similar way to atoms. By controlling the size and shape of the quantum 

dots, one has direct control over the energy levels of the confined electrons and holes. Hence 

this provides a means of "tuning" the resulting wavelength of the nano-scale device simply by 

changing the material composition of the substrate and QD. 

The deposition rate of material on a surface strongly affects the formation and 

distribution of QDs. For example, for InP islands on a GaInP/GaAs surface, a high deposition 

rate (2.6 Mono-layers per second (ML/s)) yields islands with a height of 290 12Å whereas 

for low (0.1 ML/s) and moderate (0.8 ML/s) deposition rates the islands are slightly shorter at 

250 16Å [93]. In general, a high deposition rate yields many QDs forming close together, 

whereas a low deposition rate results in fewer QDs that are distributed sparsely over the 

surface. 

Once the QDs have formed, more substrate material can be deposited on top of them. 

This results in some intermixing of the material from the QD with the substrate. Primarily, the 

material at the peak of the QD mixes with the substrate material that is raining down, 
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resulting in the removal of the top of the QD. This occurs because these atoms that were once 

relaxed become increasingly strained as they come into direct contact with the substrate 

material as it builds up around them. 

A buried QD causes tension in the capping layer above it. This is then a favourable 

site for another QD to form, and hence a vertical stack of QDs (as seen in figure 5.4) can be 

made by depositing alternating layers of substrate and QD material. 

 

Fig. 5.4 Vertical stacks of Germanium quantum dots [94]. 

This is also an example of self-organisation, where a system exhibits long range order. 

The „holy grail‟ of nano-engineering is to be able to obtain useful nano structures like arrays 

of transistors simply by mixing some chemicals. 

 

5.2 The KMC algorithm 

The Kinetic Monte Carlo method is an extension of the Monte Carlo (metropolis) 

algorithm to model the kinetics of a system. The metropolis algorithm is used to find the 

minimum energy state of a system only, whereas the kinetic Monte Carlo method can 

compute the path taken and the timescale required to get there.  

The KMC method has been used extensively over the years. It has been used for 

simulating MBE experiments, where a material is rained down upon a flat substrate [95]. 
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Using accurate chemical kinetic data and allowing for adsorption and desorption from a 

surface, KMC has been used to investigate the interaction of a surface with a hot vapour [96]. 

The KMC method is a stochastic method, which does not simulate the atomistic 

vibrations, but instead allows atoms to jump to the neighbouring sites based on given 

transition rates. In the simplest on lattice method, the rates just depend on the number of 

nearest neighbours at the start position and the temperature. The details of the kinetic 

algorithm are described below. 

Firstly, simulations in section 6 were performed using the simple on-lattice model at 

zero strain. All the simulations were performed in 2D using a simple triangular lattice where 

each atom has six nearest neighbours all at an equal distance from the centre site and each 

other. This represents a cross-section through a simple HCP crystal lattice and is depicted in 

figure 5.5. 

 

Fig. 5.5 Labelling of the six nearest neighbour sites (A to F) for an atom at a site (denoted O) in 

a fixed triangular lattice. 

The simulations are performed in 2D. In the on-lattice model, the lattice sites are fully 

determined before the simulation. Using a simple 2D array, the neighbour sites can be easily 

derived. Figure 5.6 illustrate the numbering system and neighbour site locations for an atom at 

site ),( ji . 
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Fig. 5.6 Relative coordinates of neighbours for an atomic site ),( ji  in an: (a) even column and 

(b) an odd column, for a fixed triangular lattice. 

The first step in the KMC algorithm is to identify all the possible atom jumps that can 

occur. Obviously each atom can only jump to a neighbour site if that site is currently empty. 

Allowed jumps are defined by a set of rules: 

1 Atoms are prevented from isolating themselves from the others as a result of a jump. 

E.g. Atom 5 cannot move to site 1 in figure 5.7 because site 1 has no other neighbours. 

2 An atom cannot isolate any others atoms. E.g. atom 7 cannot move to site 6 as this will 

leave atom 3 isolated from the others. 

3 If there is a site directly below an atom which is available, the atom is forced to move 

there. This prevents high energy structures such as overhangs from occurring and also 

prevents clusters of three or more atoms from escaping from the surface. This 

effectively simulates gravity. This rule overrides rules 1 and 2. For example, atom 8 

will move down to site 12 even if doing so isolates other atoms as this rule will force 

those to fall on the next step. 
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Fig. 5.7 Diagram of a typical high energy surface of a KMC simulation. The filled hexagons 

(blue) are occupied sites and unfilled sites are white. Some sites are numbered for reference. 

Once a valid atom jump has been determined, it is assigned an activation energy E  

equal to Kn , where K  is the bond energy and n  is the number of nearest neighbours (1 to 6). 

This energy depends only upon the initial state of the model. The jump rate of event k  is then 

calculated from: 

)exp(
),(

0
Tk

Kn
vR

b

ji

k


 ,     (5.1) 

where, 10 v  is an attempt frequency and ),( jin  is the number of neighbours of site ),( ji . bk  

is Boltzmann‟s constant and T  is the temperature. 

The rates are then listed in no particular order, forming the events table. A cumulative 

sum and total sum of the rate is then calculated from: 





c

k

kc RR
0

,      (5.2) 

where Nc ,...,1 and N is the total number of atom jump events. Denote TR as the total sum 

of the rates. This cumulative sum is saved in the event table, which is now automatically 

sorted by this parameter. This is important as it allows the use of the binary search algorithm 

on the events table. After this setup stage, the KMC algorithm proceeds as follows: 
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1 A uniformly distributed random number U  is selected where TRU 0  using the 

Mersenne Twister algorithm [97]. 

2 The corresponding event is found in the list via the binary search algorithm. This 

algorithm proceeds by picking the event in the middle of the table and asking if the 

selected event is the correct one or higher/lower in the table. At each step half of the 

table is eliminated and the next mid point in the valid range is tested. This continues 

until the correct event is found and will take at most N2log  tests to find the correct 

event.  

3 The selected event is then executed by updating the occupation flags of the atom sites. 

4 The events that have now changed as a result of the transition must be recalculated 

and added/removed from the event table as appropriate. Furthermore the cumulative 

sum and total sum of the rates will have to be updated. 

5 The elapsed time is then updated by an amount: 

TRv

U
t

0

ln
       (5.3) 

6 Repeat step 1 - 5 for as long as is needed. 

This algorithm is known by various names such as the residence-time algorithm or the 

n-fold way or the Bortz-Kalos-Liebowitz (BKL) algorithm or just the kinetic Monte Carlo 

(KMC) algorithm. 

Optimisation of KMC code  

All the random numbers used in this work were generated using the Mersenne Twister 

(MT) algorithm [97]. This was found to be faster than the standard C++ random number 

generator. The C++ random number generator only picks an integer between 0 and 32767, 

whereas the MT algorithm can pick any number between 0 and 4 billion. MT is capable of 

providing fast and high quality random numbers. 

Once an event has been picked and executed, the events table needs to be re-

calculated. One could simply cycle through the whole simulation and re-calculate all the rates, 
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but this is rather inefficient. A better way is to maintain a list of which events correspond to 

each atom such that they can be found and easily deleted once they become invalid. Then the 

list just needs to be updated with new events related to the atoms that moved, and their nearest 

neighbours. This data is then slotted into the events table, overwriting invalid events. Since 

the KMC model is an initial state model, the movement of one atom will affect at most 11 

neighbouring atoms (not 12 because one site needs to be empty for a movement in the first 

place). 

Therefore we now have an updated table without having to re-calculate events that 

have not changed. This lead to a vast increase in computational speed in our zero strain on-

lattice KMC. 

In the KMC simulations with strain, this is not as easily implemented because the 

movement of one atom will affect the strain field in the whole crystal. This will consequently 

change the jump rates of all local atoms. 

 

5.3 Continuum KMC model 

Given that an atom on a surface has a 50/50 chance of moving left or right, it is 

observed that a surface atom does not move directly to its minimum position. But rather 

meanders around on the surface until it finds its minimum by chance. Therefore, a large 

amount of the simulation time is taken up by atoms doing this.  

A continuum model [98] replaces this with an atom flux which depends on the same 

KMC rules. Care must be taken to ensure the timescale is still correct between simulation 

methods. The continuum model is derived from the atomic model and the similarities and the 

differences between them are compared in section 6.  

The Continuum Model 

In this model an occupation probability, ),( jip , is assigned to each lattice site 

(denoted by 2D coordinate indices i and j) and allow it to evolve as a continuous variable 

between 0 and 1. Therefore a lattice site can be partially occupied and the solid surface is no 

longer necessarily sharply defined but can be diffuse. It is found that the width of the diffuse 

interface (distance between fully solid (p=1) and vacuum (p=0) regions) increases with 
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temperature, reflecting the increase in the randomness of the surface. Referring to figure 5.5, 

if atom O is at ),( ji  and atom A is at position ),( AA ji  etc. then: 
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where ),( jiwA  is the net transfer rate from site O to site A (in the direction OA), and 

),( AAD jiw  is the net transfer rate from site A to site O (in the direction OD) etc. The net 

transfer rate is the sum over all the possible configurations of the individual transition rates 

weighted by the configuration probability. The individual transfer rates are determined from 

the occupancy probabilities of the neighbouring sites and the number of nearest neighbour 

bonds, e.g. the transfer rate from O to A if only B and D are occupied is: 
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BA ppeppeppjip   , where ),( AAA jipp   etc. The 

net transfer rate is the sum of all such individual rates over the 64 (2
6
) possible configurations, 

and can be written as: 

)(),(),(

)(),(),(

0

0

CACAFEDBB

BFBFEDCAA

nnmmmmmnjipjiw

nnmmmmmnjipjiw








       (5.5) 

etc, where AA pn 1  is the probability that site A is unoccupied and 

ABAA nTkKpm  )exp(  is the effect on the transfer rate due to the bond OA. In each case 

the final bracketed term enforces the rule that the contribution to the transfer rate due to 

hopping from site O to A (say) when the adjacent sites (B & F) are empty is removed. In the 

integer limit of all p=0 or 1, the transfer rates reduce to those of the kMC algorithm. 
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6 KMC Simulations 

In this section, the results of the on-lattice KMC simulations are presented and 

compared to the continuum KMC method. Firstly single component clusters are simulated 

and then the more interesting case of two component clusters is investigated. 

 

6.1 Single component simulations 

The initial configuration (figure 6.1) is a two dimensional ellipse of 1629 atoms, with 

a height of 16 atoms and a width of 130 atoms. This system was simulated using the KMC 

algorithm described in section 5.2 and the continuum algorithm presented in the previous 

section (5.3). The ellipse floats in free space in the computer simulation and hence rule 3 

(Gravity) is not in effect. The attempt frequency, 0v , is set to 1 in these simulations. This 

parameter has no effect on the evolution of the system, only the timescale associated with it. 

The surface atoms have a higher energy than atoms in the bulk simply due to having 

fewer bonds. It is therefore expected that a collection of atoms will minimise their surface 

energy by forming a circular nano-cluster. 

 

Fig. 6.1 A depiction of the initial configuration of the single component KMC simulation. The 

starting shape in all simulations in this section is an ellipse consisting of 1629 atoms (width 130, 

height 16). 

The exponential term in equation 5.1 can be varied in order to simulate the behaviour 

of the system at different temperatures. The bond energy and temperature are wrapped up into 
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a single variable, the rate constant, TkKR bC  . The total jump rate for each atom now 

becomes: 

)exp( ),( jiCk nRR  ,       (6.1) 

The KMC ellipse was simulated at a high temperature ( 0.2CR ) and a low 

temperature ( 0.4CR ). Snapshot of the KMC simulations at high and low temperature are 

presented in figure 6.2. 

The shape of the nanocluster is tracked quantitatively by measuring the second 

moment of area of the system in both the x  and y  directions. The second moment in the x  

direction is given by: 





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n xxI
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2)( .       (6.2) 

where nx  is the x  position of the thn  atom, 



N

n

nx
N

x
0

1
 is the average x  (the centre) and 

the sum is over all N  atoms in the simulation. A similar equation applies for the y direction. 
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Fig. 6.2 Snapshots of a KMC simulation of an elliptical nano-cluster evolving via surface 

diffusion to its equilibrium shape which is a circle. The high temperature ( 0.2CR ) results 

are shown in panels (a)-(d) and the low temperature ( 0.4CR ) results are shown in panels 

(e)-(h). The snapshots are taken at 10%, 25%, 50% and 100% of the total simulation time for 

both cases. At the high temperature a total of 40 million time steps (equivalent to a time of 

3.11x10
7
 in arbitrary units given by equation 5.3) were required to obtain the final state. At low 

temperature the total simulation time required was 15 million time steps (equivalent to a time of 

6.0x10
9
 in arbitrary units).  

High temperature KMC simulation, Rc=2.0 

The high temperature simulation results are presented in panels (a) – (d) in figure 6.2 

(left column). The high curvature edges of the ellipse initially become rounded in order to 
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reduce the surface energy. The system requires 40 million discrete atom jumps to converge to 

its lowest energy state which is a circle. At this high temperature the atoms are highly mobile 

and can explore high energy states. As expected, there is a large amount of thermal noise 

indicated by the highly irregular surface. Furthermore, some clusters of 2 or more atoms can 

break away from the surface at these high temperatures. 

The plot of the second moment of area vs. time for the high temperature case is shown 

in Figure 6.3a. The initial ellipse has a large moment in the x  direction but a small moment in 

the y  direction, as expected due to the elongated starting shape. Both values converge to the 

same value of 110, indicating that the shape formed is a circle. 
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Fig. 6.3 Plots of the 2
nd

 moment of area vs. time for the KMC simulations shown in figure 6.2 

at, (a) high temperature and (b) low temperature. The plots show the second moment in both the 

x (bright red) and y (dark red) directions. In both cases the 2
nd

 moment in x and y converges to a 

constant value of 110 indicating that the final state is a circle. The high temperature ellipse 

converges to a circle 200 times faster (using calculated elapsed time from equation 5.3) than the 

low temperature ellipse. However, twice as many discrete atom jumps are required. 

Low temperature KMC simulation, Rc=4.0 

 The low temperature simulation results are presented in panels (e) – (h) in figure 6.2 

(right column). The KMC ellipse required 15 million discrete atom jumps to converge to its 

lowest energy state which is also a circular nanocluster. The high curvature edges of the 

ellipse become rounded as before. At this low temperature there is very little thermal noise 

compared to the high temperature case. Some flat regions are visible in the low temperature 

snapshots; these are the crystal facets which are fairly stable at this temperature. 
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The plot of the second moment of area vs. time for this low temperature case is shown 

in figure 6.3b. The curve is similar to the high temperature case. Due to the low temperature 

each discrete atom jump takes a greater amount of time (calculated using equation (5.3)) to 

occur. Despite only needing half the number of discrete atom jumps, the low temperature 

simulations take a real time of 200 times longer to converge. But due to the lower amount of 

atom jumps taking place, the computer simulation is faster here. 

Comparison of the atomistic and continuum models 

The initial elliptical body shown in figure 6.1 is shown here again in the centre of 

figure 6.4. This body has a high surface-to-volume ratio and so evolves into a shape with a 

smaller surface area (circle) to reduce its surface energy by surface diffusion. The final shapes 

for the continuum and standard KMC models are also shown in figure 6.4. Both the high 

temperature case ( 0.2CR , close to melting point) and the low temperature case ( 0.4CR ) 

are shown. 

 

Fig. 6.4 An elliptical body evolves into a (near) circular one to reduce its surface area. The 

initial elliptical body is shown along with the final equilibrium states for two different 

temperatures ( TkK B
=2.0 (top) and 4.0 (bottom)) and three different models (atomistic (left), 

basic continuum (middle) and adapted continuum (right)). In the continuum models, partially 

occupied sites are shown by atoms with a size proportional to their occupation probability. 
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The surface of the atomistic model is very rough at the high temperature, whereas the 

basic continuum model (defined by equations (5.4) and (5.5), shown in the middle images) is 

smooth. Fig. 6.5 shows the evolution over time of the second moment of area (in the 

horizontal and vertical directions for each temperature and model. Figure 6.5a illustrates that, 

although the atomistic surface is more dynamic, its average shape evolves in a similar way to 

the basic continuum model. However, at the low temperature, the behaviour of the two 

models is quite different. The atomistic model reaches a near circular shape as before, but the 

basic continuum model gets trapped in a higher (elongated) metastable energy state. This is 

because the facets are stable without any thermal fluctuations. For this reason, an adapted 

continuum model is proposed. Firstly, the transition rates in (5.5) are given the same random 

distribution that occurs in the KMC algorithm, i.e. 
Aw  is replaced by UwA ln  in (5.4), where 

10 U  is a uniformly distributed random number. The random number is updated after the 

total corresponding flux due to this event is equivalent to the movement of a single atom. 
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Fig. 6.5 A quantitative assessment of the evolution (shown in Fig. 6.4) shows the change in the 

second moment of area of the elliptical body against time for (a) high temperature ( 0.2CR ) 

and (b) low temperature ( 0.4CR ). The upper and lower sets of curves are the second moments 

along the horizontal and vertical axes respectively. At high temperatures all three models 

behave in a consistent way. At lower temperatures the basic continuum model gets trapped into 

a facetted state. The adapted continuum model artificially introduces thermal fluctuations and 

promotes nucleation of new facets. This agrees very well with the atomistic model. Note that the 

stochastic simulations are for one run and hence there will be some statistical variation in these 

curves. 
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Fig. 6.6 The probability bias function, )( ph , as a function of site occupation probability, p. 

This is used in the adapted continuum model to promote nucleation. 

However, adding this randomness to the algorithm is not sufficient to achieve a continuum 

model that is comparable with the atomistic one. Although the randomness destabilizes the 

facets and the transition to a (near) circle is achieved, the process is very slow. It is thought 

that this is because nucleation of new steps/facets on top of the long flat facet is very 

important for the transition to a circle at low temperatures. To introduce this “discrete” feature 

into the continuum model, all the probabilities used in the calculation of the transition rates, p, 

are pre-processed by a biasing function, )( ph , i.e. Ap  is replaced by )( Aph  in (5.4), 

where  1)12()( 2
1  n

A pph , and n is an odd, positive integer. For n=1 the model is as 

before. For n=3,5,7, the occupation probability is biased as shown in Fig. 6.6. This 

accentuates the occupation probability for sites that have a small probability of being 

occupied, destabilizes the uniformity of occupation probabilities along facets and hence 

promotes nucleation. As with randomness, it is interesting to note that on its own this biasing 

contribution does not help the continuum model to reproduce the average behaviour of the 

atomistic model. In fact, biasing on its own can make the predictions of the continuum model 

much worse. However, when the randomness and biasing are applied together, the features of 

the atomistic model are reproduced by this adapted continuum model at high and low 

temperatures. This is shown in Fig. 6.4 and Fig. 6.5 for n=3. Encouragingly, the adapted 

continuum model is not sensitive to the value of n, with very similar results being obtained for 

n=7. 
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Summary 

The simple case of the single component ellipse was studied. It was found that in both 

methods the ellipse evolves towards the minimum energy state which is a circle in 2D. At 

high temperatures, both algorithms are in agreement (Figure 6.5a shows that the second 

moment of area vs. time curves are in good agreement with each other for both algorithms). 

However, at low temperatures the continuum method becomes trapped in a metastable state. 

Since the continuum method does not contain any noise it is unable to obtain the correct 

solution. It is found that randomness and biasing need to be added to the continuum method to 

reproduce the behaviour of the atomic model at low temperatures. 

Given the success of the single component system, we proceed to compare the 

atomistic and continuum models for two component systems. 

 

6.2 Two component simulations 

Quantum dot formation is the result of differing material properties between substrate 

and deposition material. The KMC simulations are therefore extended in this subsection to 

include multiple atom types. In this subsection, simulations of two component ellipses are 

performed in order to compare the KMC and continuum KMC methods. 

Introducing multiple atom types is a simple case of updating the transitions rates, 

based on pre-defined rules. With two atom types, there are three kinds of bonds between 

them. 11K  is the bond energy of atoms of type 1 with similar atoms. 12K is bond energy 

between atoms of type 1 and 2. 22K  is bond energy of atoms of type 2 with similar atoms. If 

all these constants are equal, then the result is the same as the one component simulations 

shown earlier. 

In the two component simulations, the jump rates for an atom of type 1 are calculated 

using: 
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Here the rate constant depends on the identity of the atom moving and its current 

neighbours. The sum is over the six neighbour sites, n, and IDn is the identity (1 or 2) of 

neighbour n. Obviously, this constant is zero for unoccupied neighbour sites. A similar 

equation applies for the jump rates of atoms of type 2. 

The initial configuration (figure 6.7) of the two component simulations is an ellipse 

the same size as the single component simulations (130 x 16 atoms). However, this time the 

left half (red in fig. 6.9) are type 1 atoms, and the right half (blue) are type 2 atoms. 

 

Fig. 6.7 The initial configuration of the two component simulations is shown here. In all cases 

in this section the starting state is an ellipse as before, with the left half (red atoms) are type 1 

atoms and the right half (blue atoms) are type 2 atoms. 

The behaviour of the two component system is strongly dependent on the choice of the 

values for the three different rate constants. Table 6.1 shows the rate constants used for each 

case presented in this subsection. The values in the table are specific to the high temperature 

case ( 1T ). The temperature of the low temperature simulations is half that of the high 

temperature simulations ( 2
1T ). Since the rates are inversely proportional to the 

temperature, the rates used at low temperature can be obtained by doubling the values in table 

6.1.  

 
11K  12K  22K  

Case A 2.4 2.0 2.4 

Case B 2.0 2.4 2.0 

Case C 2.0 2.4 2.8 

Table 6.1 Values of the rate constants for each case at the high temperature (T=1) regime. For 

the low temperature simulations (T=½) these values are simply doubled. 
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Case A at high temperature, T=1 

In case A, the bond energy of each atom type with similar atoms ( 11K  and 22K ) is 

lower than the bond energy between mixed atoms ( 12K ). Therefore each atom type 

preferentially bonds to itself rather than mixing. The rate constants are shown in table 6.1. 

The high temperature results for the standard KMC are shown in Figure 6.8 panels (a) 

– (d) while the final state obtained by the continuum KMC model is shown in figure 6.8.e. 

The final states of both models are very similar (see pictures in figures 6.8.d and 6.8.e). Here 

the edges of the ellipse quickly become more rounded in order to minimise the surface 

energy. The ellipse collapses inwards in a similar way to the single component simulations to 

form a circular shape.  

Due to the high temperature, an atom that exists on the opposite side is not necessarily 

picked to move again. As a result of this, other atoms can diffuse around the surface and bury 

the “foreign” atom. Only the surface atoms can move, therefore a buried atom can remain 

buried forever. Some mixing of the internal areas of the cluster occurred due to voids 

propagating through the cluster. The standard KMC simulation exhibits a higher degree of 

mixing of the atom types than the continuum case. 
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Fig. 6.8 Case A snapshots of a standard KMC and continuum KMC simulation of an elliptical 

nano-cluster evolving via surface diffusion to its equilibrium shape are shown. The left column 

(panels (a) – (e)) shows the high temperature results and the right column (panels (f) – (j)) 

shows the low temperature results. High temperature standard KMC snapshots are shown at (a) 

10% (b) 25% (c) 50% and (d) 100% of a total simulation of 60 million time steps (time = 

1.08x10
8
 in arbitrary units given by (5.3)). Panel (e) shows the state of the continuum KMC 

simulation at high temperature at time of 5x10
7
. Low temperature standard KMC snapshots are 

shown at (f) 10% (g) 25% (h) 50% and (i) 100% of a total simulation of 20 million time steps 

(time = 4.52x10
10

). Panel (j) shows the metastable state of the continuum KMC simulation at 

low temperature at a time of 2.5x10
10

. 
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Figure 6.9 shows the second moment of area vs. time of the whole system for both 

models at high temperature. The curves are of a similar form, but the standard KMC has a 

higher second moment in the y direction. This higher moment is a direct consequence of the 

greater amount of mixing that occurs in the standard KMC simulations. 
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Fig 6.9 Comparison between KMC and the continuum KMC of the second moment of area vs. 

time for case A at high temperature. 

Case A at low temperature, T=½  

The right column of figure 6.8 (panels (f) – (j)) shows snapshots of the low 

temperature case A simulation. As before, the system evolves towards its minimum energy 

shape which is a circle, with the atoms not mixing much in this case. The high curvature 

edges of the ellipse quickly become more rounded in order to reduce their surface energy. The 

final state appears less rounded than the higher temperature simulations due to the crystal 

facets being more stable at this temperature. Very little mixing of the atom types has 

occurred. As can be seen from the above pictures, a small number of atoms did become buried 

on the opposite side. This is simply because buried atoms cannot move, and once they are 

buried by at least two layers of atoms, they no longer affect the transition rates. 

The time scale of the simulation, as measured by (5.3) is many orders of magnitude 

higher than the high temperature case. However, the final state was obtained with only a third 

of the discrete atoms jumps taking place. 

The second moment of area of the whole system as well as each atom type 

individually is plotted in figure 6.10a. The pink and blue lines which represent the whole 
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system converge to a single value as expected. The second moments of the individual 

components do not converge to the same value, which is expected as each atom type forms a 

semicircle which has a greater second moment in y than x. Figure 6.10b shows the 

comparison of the second moment of area of the whole system for the continuum KMC and 

standard KMC models. This plot shows that the continuum KMC model has not converged as 

much as the standard KMC model did in the time it was run, and the gradient of the graph 

indicates that it will not attain the final state for a long time, if at all. Figure 6.8j shows that 

the continuum model at low temperature has become trapped in a metastable state once again. 

In the single component model, the additions of randomness and biasing allowed the 

continuum model to avoid becoming trapped in a metastable state. In this case, these additions 

have not been sufficient to avoid this. This indicates that two-component systems are more 

complex than single component ones, and that the continuum model is not likely to be directly 

comparable with the atomistic model at low temperatures. This conclusion is reinforced by 

the results for the other cases in the following subsections. 
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(a)      (b) 

Fig. 6.10. (a) Graph of second moment of area of each component in x and y for the KMC 

simulation. Blue and pink curves are the second moment of the whole system. These both 

tend towards a constant value of 110, which is the expected result for a circle. The second 

moment of each component becomes lower in x and higher in y, which is expected as these 

form semi-circles. (b) Comparison between KMC and the continuum KMC of the second 

moment of area vs time. 

Figure 6.11 shows the result of a KMC simulation of case A at very low effective 

temperature ( 6
1T ). Here the system is highly faceted and exhibits no mixing at all. An 

atom that exists on the opposite side (in this case the blue atom at the top left corner) will 
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have an energy far higher then any other atom in the system, and hence will always be picked 

to move again until it is back on its own side. 

 

Fig. 6.11 Snapshot of the final state after 30 million discrete atom jumps of a case A system at 

very low temperature 6
1T . Here absolutely no mixing occurs at all.  

Case B at high temperature, T=1 

Case B is the opposite of case A, where intermixing of different components is 

preferred. Snapshots of the simulation at high temperatures are shown in the left column of 

figure 6.12. As soon as a surface atom moves past the interface between atom types, it enters 

a far lower energy state. This results in a well mixed cluster of atoms forming a bulge in the 

centre (figure 6.12a). The final equilibrium state (fig 6.12d) occurs when all the outer atoms 

become mixed leaving a small area of „pure‟ material buried in the centre. Interestingly this is 

not the minimum energy that this system can achieve. The minimum would be all the atoms 

completely mixed together. The system never attains this as the centre becomes frozen in by 

the surrounding material. 
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Fig. 6.12 Case B snapshots of a standard KMC and continuum KMC simulation of an elliptical 

nano-cluster evolving via surface diffusion to its equilibrium shape are shown. The left column 

(panels (a) – (e)) shows the high temperature results and the right column (panels (f) – (j)) 

shows the low temperature results. High temperature standard KMC snapshots are shown at (a) 

10% (b) 25% (c) 50% and (d) 100% of a total simulation of 28 million time steps (time = 

4.5x10
7
 in arbitrary units given by (5.3)). Panel (e) shows the final state of the continuum KMC 

simulation at high temperature. Low temperature standard KMC snapshots are shown at (f) 10% 

(g) 25% (h) 50% and (i) 100% of a total simulation of 4 million time steps (time = 3.6x10
9
). 

Panel (j) shows the final state of the continuum KMC simulation at low temperature. 
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Both simulation methods yield an outer fully mixed region with an unmixed central 

region (see figures 6.12d and 6.12e). Slightly more mixing occurred in the standard KMC 

simulations than the continuum model. The second moments of area vs. time of each method 

are shown in Figure 6.13. The standard KMC results have a slightly higher second moment in 

y due to the slightly increased mixing; however both plots are of similar form. 
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Fig. 6.13 A plot of the second moment of area vs. time for case B high temperature simulations 

is shown. Results from the KMC method and continuum KMC method with biasing and noise 

are plotted. 

Case B at low temperature, T=½  

The low temperature simulations proceeded in a similar fashion to the high 

temperature case. Again the low temperature simulation required less discrete atom jumps but 

a higher simulation time was measured. A fully mixed outer region with an unmixed centre 

was obtained by both models. However the outer surface of the continuum KMC simulation 

was highly faceted (figure 6.12e) whereas in the standard KMC model it was more circular. 

This lead to a vast difference between the plots of the second moment of area for the two 

models (figure 6.14). The plots of the second moment do show that the final state was 

obtained in a similar time for both models. However, comparison of the final states in Figures 

6.12i and 6.12j show that they are qualitatively similar, even if the quantitative comparison is 

not. 
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Fig. 6.14 A plot of the second moment of area vs. time for the case B low temperature 

simulations is shown. Results from the KMC method and continuum KMC method with biasing 

and noise are plotted. 

Case C at high temperature, T=1 

In both case A and B, each atom type had the same properties when interacting with 

atoms similar to itself. Here, the most stable bonds are between type 2 atoms only. The bonds 

between mixed atom types have a lower stability and the bonds between type 1 atoms are the 

least stable of all. Therefore, type 1 atoms are far more mobile than the type 2 atoms and will 

seek to mix with the type 2 atoms to minimise their energy. 

Figure 6.15 (left column) shows that the type 1 atoms (red) quickly surround and mix 

with the type 2 (blue) atoms and the high curvature edges become more rounded as before. 

Both models attain a similar final state with a mixed outer region containing mostly red atoms 

and a pure blue centre. 
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Fig. 6.15 Case C snapshots of a standard KMC and continuum KMC simulation of an elliptical 

nano-cluster evolving via surface diffusion to its equilibrium shape are shown. The left column 

(panels (a) – (e)) shows the high temperature results and the right column (panels (f) – (j)) 

shows the low temperature results. High temperature standard KMC snapshots are shown at (a) 

10% (b) 25% (c) 50% and (d) 100% of a total simulation of 60 million time steps (time = 

6.8x10
7
 in arbitrary units given by (5.3)). Panel (e) shows the final state of the continuum KMC 

simulation at high temperature. Low temperature standard KMC snapshots are shown at (f) 10% 

(g) 25% (h) 50% and (i) 100% of a total simulation of 30 million time steps (time = 1.3x10
10

). 

Panel (j) shows the state of the continuum KMC simulation at low temperature at a time of 

1x10
10

. 
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The plot of the second moment (figure 6.16) shows an initial rise for the type 1 atoms 

as they spread out around the system. The plots for both models are again very similar at high 

temperature. 
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Fig. 6.16 A plot of the second moment of area vs. time for the case C high temperature 

simulations is shown. Results from the KMC method and continuum KMC method with biasing 

and noise are plotted. 

Case C at low temperature, T=½  

The right column of figure 6.15 shows that the type 1 atoms (red) quickly surround the 

type 2 (blue) atoms as they did in the high temperature simulations. Less mixing occurs in 

both models at low temperature. The continuum KMC model again has problems at this low 

temperature and does not attain the final state in the time that the standard KMC model did. 

The plot of the second moment (figure 6.17) indicates that the evolution of the shape is very 

similar in both models, but the continuum model evolves too slowly. 
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Fig. 6.17 A plot of the second moment of area vs. time for the case C low temperature 

simulations is shown. Results from the KMC method and continuum KMC method with biasing 

and noise are plotted. 

A similar set of simulations were also performed for the inverse problem of an 

elliptical void in a two component material for each of the three cases A, B and C at high and 

low temperatures. These simulations were only performed using the standard KMC method 

and therefore were not used to compare the KMC models. These results are presented in 

appendix C. 

Summary 

In this subsection the standard KMC and continuum KMC algorithm were used to 

simulate two component ellipses by surface diffusion. The simulations were performed at 

high and low temperatures and the results compared in order to validate the continuum 

method.  

Both models attain similar final states in nearly all cases, except case A at low 

temperature where the adapted continuum model became trapped in a metastable state. 

However, when the plots of the second moment of area vs. time are compared, there are 

significant differences in some cases. Low and high temperature case A simulations resulted 

in similar structures forming, but far more mixing occurred in the standard KMC simulation 

than the continuum. This caused a slight difference in the second moment of area of each 

component (see figure 6.9 and 6.10). For case B, the results compare well at high temperature, 

the central region remains unmixed with an outer coating of fully mixed material. For the 

continuum at low temperature a similar result occurs but the outer surface becomes highly 
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faceted which is not seen in the standard KMC. This caused a vast difference in the second 

moment at this temperature (see figure 6.14). In Case C, the high temperature simulations 

agreed well with each other (figure 6.16). However, at a low temperature, the continuum 

method evolved more slowly than the standard KMC. This is most likely due to the system 

becoming trapped in a meta-stable faceted surface.  

In conclusion the continuum KMC model is a good representation of the underlying 

atomistic KMC model in the high temperature regime. It attains the correct final state in all 

cases and evolves in a similar way as the standard KMC simulations. This is where it is most 

useful in eliminating unnecessary atom jumps and hence reducing simulation time. At low 

temperatures the agreement is not so good. The continuum model can become trapped in 

metastable states, and has crystal facets that are more stable than they should be. However, 

the final states obtained are often qualitatively very similar. Now, we proceed to introduce 

another driving force, elastic strain energy, in to the model in the next section. 
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7 Surface diffusion with elastic strain 

Real mechanical systems contain stresses and strains, which significantly alter its 

behaviour. In order to simulate processes like heteroepitaxial deposition, strain needs to be 

included in the KMC algorithm in order to see effects like the formation of quantum dots 

(QDs) (see chapter 5). 

In this chapter elastic strain is added to the KMC models in order to investigate the 

formation and arrangement of QDs upon a surface during molecular beam epitaxy 

experiments. An investigation of surface roughening is performed first in order to ascertain 

the optimal conditions for these simulations. Finally multiple layers of material and substrate 

are deposited in order to investigate vertical ordering of QDs into a QD super-lattice. 

 

7.1 Algorithm 

The on-lattice model is modified to allow the atoms to have a real position in space 

which is within half the lattice spacing around each site. The transition rates are then 

dependant upon the energy of each atom, which is dependant on the overall structure and net 

strain. The jump rate for each atom is calculated using: 
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where the sum is over all neighbouring atoms and nE is the bond energy between the atom and 

its thn  neighbour. For the simulations presented here the argon Lennard Jones potential from 

section 1 is used. Therefore 120
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  and equation (7.1) becomes: 

)

120

exp(0
T

E

vR

N

n

n

k



 . Without strain 1E  and this equation reduces to equation (5.1) 

for the zero strain case. 
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The effect of the strain is enhanced by altering the energy used in the jump rate 

calculation. The energy is modified according to: EEE  min , where minE  is the bond 

energy without any elastic strain, and E is the modification of the bond energy due to the 

strain. The parameter  controls the artificial strain enhancement. A value of 1  represents 

no artificial strain enhancement. Figure 7.1 below illustrates where each parameter comes 

from. This is done separately for each atomic bond. Artificially choosing enhancement values 

of  >1 is reasonable as ab initio simulations have shown that small strains can have a very 

strong effect on the activation barrier for diffusion. For example, 1-2% strain within a silicon 

substrate can lead to an order of magnitude increase in surface diffusion [7]. 
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Fig. 7.1 Schematic showing the origin of parameters in the strain enhancement calculation. 

All the KMC simulations with strain used an enhancement of   = 2. This increases 

the mobility of strained atoms and enhances the effect of strain and will be shown to lead to 

the formation of QDs. 

Calculation of minimum energy of atoms in simulations 

Since the jump rate of an atom now depends on the exact location of the atom and its 

neighbours, these atoms must be at their equilibrium positions (zero net inter-atomic forces on 

all particles) before the calculation of the rates. When an atom moves to a new site, it will 

invariably be in the un-relaxed position. Therefore it and the surrounding atoms must be 

allowed to move slightly (relax) to find their minimum energy positions. 
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The simplest way to do this is to use the MD algorithm already presented. However, 

the atoms should be heavily damped so that they do not oscillate significantly around the 

minimum but go straight to it. This can be done by neglecting the inertia of the atoms and 

simply updating positions after each MD time-step. However, this can lead to a greater 

computational time required for convergence compared to retaining inertia and heavily 

damping the atomic motion. Alternatively, the conjugate gradient method can be used to find 

the minimum energy positions of a collection of atoms. However, in the small systems studied 

here the MD method used was sufficiently fast since all atoms in the simulation were very 

close to their equilibrium positions. 

Using MD to minimise the whole system after each atom jump is very 

computationally demanding. Therefore after each atom jump a local MD minimisation 

occurs. Here, a boundary of atoms that are 4 times the lattice spacing away from the jump site 

is fixed in space. Now all the local atoms within this boundary are allowed to find their new 

minimum energy positions. 

To ensure that the system as a whole remains close to its minimum energy, a global 

MD minimisation occurs every 5000 atom jumps. Here all atoms in the simulation (apart from 

fixed boundaries at the edge of the simulation region) are allowed to move during the 

minimisation. 

The model is still an on-lattice model, but the lattice is allowed to deform slightly, i.e. 

the lattice sites undergo displacements from their original positions. All the lattice sites 

remain in the same position relative to each other, i.e. the neighbour lists are unchanged. 

 

7.2 Surface roughening 

The smooth surface of metals appears very flat to the naked eye, but at the atomic 

scale it can be quite rough due to the accumulated effect of thermal fluctuations. Above a 

critical temperature (the roughening transition temperature) a surface will roughen naturally. 

Elastic strain increases the mobility of atoms on a surface and increases surface roughening. 

Thermal and strain induced roughening have been investigated on a variety of surfaces, 

including Gallium Arsenide [95] and helium crystals [99]. An example of a thermal 

roughening is shown in figure 7.2. 
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Fig. 7.2 Example pictures by Leamy et al. [100] of a surface above and below the roughening 

transition temperature. Here a simple cubic lattice is used where each atom is also represented 

by a cube. At low temperatures, there are very few defects such as adatoms, surface vacancies 

and steps. As the temperature increases the surface becomes far more roughened. The 

temperature is expressed as a function of the bond energy J. The roughening transition occurs 

at TR=0.632J. 

The roughness of a surface is characterized by the RMS roughness, w , which is simply 

a measure of the absolute deviation of each atom from the average surface height and is given 

by: 
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is average surface height. Typically 

w increases over time. 

Due to the competition between surface energy and strain energy, the roughening of a 

strained surface favours a particular wavelength [101][102],   given by: 
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where 
2

02
1

0  E is the strain energy density in the initially flat film and 0 is the surface 

energy. 

The dominant frequency of the roughened surface is measured from the simulations by 

counting the peaks. The frequency is related to the wavelength by, fl   since the surface 

width l is fixed. Equation 7.3 can be used to predict the ratio of wavelengths of the roughened 

surfaces to the ratio of strain in the substrate between two simulations at different 

compressive strain. These are related by: 
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where subscript 1 and 2 refer to parameters from the two different simulations. 

Simulations of surface roughening 

In this section standard KMC simulations of a surface under various compressive 

strains at a range of temperatures were performed. Compressive strains only are considered 

here because the vast majority of heteroepitaxial systems are in compression (systems are 

unstable under tension leading to formation of cracks). Each simulation consists of 7250 

atoms (250 x 29) and has mirror boundary conditions at the edges. The effect of the elastic 

strain is enhanced in all of the KMC simulations presented here (  = 2). All simulations start 

with the jagged (10) surface shown in figure 7.3. This surface is an unstable one and was 

found to roughen at any temperature given enough time. This is expected as the surface is not 

a stable crystal facet.  The flat (01) surface which is a stable crystal facet was found to have a 

roughening transition temperature of about 15K. Roughening on this surface has been 

thoroughly investigated by Tong Wang [102]. 

 

Fig. 7.3 Diagram of the initial configuration of the surface roughening simulations on the (10) 

surface. The system consists of 7250 atoms (250x29).  
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In the following simulations, the atoms are coloured according to their local strain. 

This is simply an average of the strain in each of the atomic bonds. The compressive strain is 

applied in the x direction only. The atoms at the left and right boundaries are fixed in the x 

direction but can move freely in the y direction. The atoms at the base are fixed in the y 

direction and are free to move in the x direction. The corner atoms are fixed in both x and y to 

ensure the system does not drift as a whole. Results for a range of compressive strains at high 

and low temperature are presented in figure 7.4 below. Plots of the RMS roughness vs. time at 

various constant temperatures are shown in figure 7.5 and plots at constant strain are shown in 

figure 7.6. 

 3K 15K 

 

Fig. 7.4 Final state of surfaces subjected to compressive strain at high and low temperature. 

Snapshots are drawn after (a) 4.5 million discrete atom jumps (time=1.5x10
56

), (b) 10 million 

discrete atom jumps (time=7x10
14

), (c) 1 million atom jumps (time=1.7x10
55

), (d) 38.5 million 

discrete atom jumps (equivalent time 2.18x10
15

), (e) 2 million atom jumps (time=1.9x10
55

) and 

(f) 4 million atom jumps (time= 17.99x10
13

). Each column is at the constant temperature and 

each row is at the constant strain indicated in the figure. 

Figures 7.4a and 7.4b shows a snapshot of the KMC simulation of an unstrained 

surface. The surface profile is highly dynamic, i.e. there is no persistent desired wavelength of 

the roughening. The plots of the RMS roughness at various temperatures in figure 7.6a show 

that the unstrained surface quickly roughens to a value between 1 and 2 at all temperatures. 

From KMC simulations with compressive strain at very low temperatures (3K), the 

crystal facets were found to be very stable (figure 7.4c and 7.4e). The system is below the 

roughening transition temperature of the faceted surfaces and therefore once they form, they 

remain stable. The RMS roughness plots are shown in figure 7.5d. Greater compressive strain 
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results in faster initial roughening, however the highly strained surfaces reach a maximum 

roughness caused by the stability of the crystal facets. Each side of the peaks is a stable 

crystal facet; in order for the roughness to increase these sides would no longer be stable 

facets. This means a higher roughness here is equivalent to a much greater surface energy; 

hence the system remains trapped in this local energy minimum. 

At the higher temperature (15K), the atoms are far more mobile. Furthermore a 

particular frequency of surface roughness is favoured as expected from the competition 

between surface energy and strain energy. Figures 7.4d and 7.4f shows that at 15K the ratio of 

frequencies of the roughened surface (2%:3%) is: 4.0/ 32 ff . Equation 7.3 predicts this 

ratio to be: 44.0/ 32 ff which is a fairly good agreement considering the low frequencies 

involved. A more accurate figure could be obtained by simulating a surface at least 10 times 

longer. This is not done here as the computational time would be too long. The RMS 

roughness at 15K (figure 7.5b) also reaches a maximum once stable facets occur on each side 

of the peaks. This maximum roughness arises simply due to the geometry of the facets and 

found to be related to the wavelength ( 12/w ) and hence strain. 

At 30K the elastic strain appears to increase the mobility of the atoms on the surface, 

but no stable surface profile ever evolves. This is because the thermal fluctuations dominate 

the evolution over the elastic strain driving force. 
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Fig. 7.5 RMS roughness of the (10) surface under various compressive strains at a temperature 

of (a) 30K, (b) 15K, (c) 10K and (d) 3K. The compressive strain vastly increases the roughness 

of the surface compared to the unstrained cases. 

Generally increasing the compressive strain increases the mobility of the atoms on the 

surface, since the atoms have a higher energy which results in faster jump rates. The results in 

figures 7.4, 7.5 and 7.6 show that there is a narrow temperature window around 15K at which 

the strain energy dominates. At high temperatures (figure 7.5a) thermal noise dominates, 

preventing any large structures from forming. At low temperatures (figures 7.6c and 7.4e), the 

crystal facets are stable and further roughening is restricted. Therefore the quantum dot 

simulations in the next section are performed at 15K. 



118 

0 5000 10000 15000 20000 25000 30000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
M

S
 R

o
u

g
h

n
e
s
s

Normalised time

 30K

 15K

 10K

 3K

0 20000 40000 60000
0

1

2

3

4

5

6

7

8

R
M

S
 R

o
u

g
h

n
e
s
s

Normalised time

 15K

 10K

 3K

 

 (a) (b) 

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1

2

3

4

5

6

7

8

R
M

S
 R

o
u

g
h

n
e
s
s

Normalised time

 15K

 10K

 3K

 

(c) 

Fig 7.6 Plots of the RMS roughness of the (10) surface vs. time for various temperatures at (a) 

zero, (b) 2%, and (c) 3% compressive strain.  
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7.3 KMC simulations of Molecular Beam Epitaxy (MBE) 

In this subsection the results of the KMC simulations of molecular beam epitaxy are 

presented. The two material types introduced in chapter 6 now have different lattice spacing, 

as well as different rate constants. In all simulations, there is a compressive mismatch of -3% 

between the lattice spacing of the two material types; this causes an interfacial strain between 

the two materials. 

Initially the substrate material (type 1) is unstrained. The type 2 material is deposited 

upon the surface by picking at random a column which contains a valid surface site. The atom 

is created in the first empty site above the surface. As the deposition material (type 2) is 

rained down upon the substrate, QDs spontaneously form. Figure 7.7 shows a typical QD 

formed in the KMC simulations. Here, the atoms at the peak of the quantum dot have relaxed 

back to their equilibrium lattice spacing, whereas atoms that are near the substrate are highly 

strained. Underneath the QD, the substrate is also under tension due to the lattice mismatch. 

 

Fig. 7.7 The picture shows the result of a KMC simulation of a QD on a surface. The colours 

represent the average strain of each atom with the dark blues representing local strain greater 

than 1%. The QD shows significant strain relaxation at its peak as well as tension in the 

substrate underneath the dot. 
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Effect of the deposition rate 

The distribution of QDs on a surface is influenced by the deposition rate of material 

being rained down. A low deposition rate allows each atom a significant amount of time to 

find its preferred minimal energy site before the next atom arrives on the surface. However a 

high deposition rate does not give each atom enough time to find its minimum energy site 

before it gets buried by further deposit. 

Figure 7.8 compares the final state of a low and high deposition rate simulation of 

MBE. The QDs formed are of a similar size in both cases, yet in the low deposition rate 

simulation they are separated from each other on the surface. 

The system conforms to the Stranski-Krastanow growth mode. A uniform wetting 

layer of one monolayer forms first. Then the subsequently deposited material roughens to 

form QDs on the surface, which grow to a preferred size which depends on the lattice 

mismatch. 

 

Fig. 7.8 Comparison low and high deposition rates. (a) Final state where one atom is deposited 

every 1000 discrete atom jumps. A total of 1000 atoms are rained down on to a fixed flat surface 

at 10K with K11=26, K12=19 and K22=12. (b) One atom is deposited every 250 discrete atom 

jumps at 15K with K11=9.6, K12=8.8 and K22=8.0.   A total of 1700 atoms are deposited and 

they are allowed to mix with the substrate. Plots are coloured to show the local strain on each 

atom. 

Capping – intermixing 

Here more type 1 atoms are rained down after the formation of QDs in figure 7.8b 

from type 2 atoms. The rate constants and temperature remain the same at 15K with K11=9.6, 

(a) 

(b) 

(a) 
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K12=8.8 and K22=8.0. As the QDS are capped, the peaks of the QDs disappear as this material 

mixes with the capping layer to reduce the interfacial strain between the two materials. 

Experimental results (figure 7.11) show that this is expected to occur. 

The capping layer is under tensile elastic strain above each of the embedded QDs as 

can be seen in figure 7.9b. Referring to figure 7.8b, the QDs also stretch the substrate 

underneath them. Therefore these sites above each QD are the low energy sites for the next 

layer of QDs to form since the substrate is already stretched here. The dark blue colour of the 

buried QDs in figure 7.9b indicates that they are now highly compressed by the material all 

around them. 

 

 

Fig. 7.9 A capping layer of more type 1 atoms is rained down upon the quantum dots shown in 

figure 7.8. Snapshots of, (a) the composition and (b) the strain field, are shown.  

Vertical alignment 

Another layer of type 2 atoms are deposited on top of the capping layer. Figure 7.10 

shows that the next layer of QDs form on the low energy sites of the capping layer as 

expected. This results in a vertical alignment which agrees well with experimental results 

(figure 7.11). 

(b) 

(a) 



122 

 

 

Fig 7.10 Another layer of the type 2 material is deposited upon the surface shown in figure 7.9. 

The QDs form at the sites where the substrate is already under tension due to the buried QDs, 

and hence a vertical alignment of QDs occurs. 

 

Fig. 7.11 An example of an experimental result of the deposition of alternating layers of two 

materials by MBE. After the deposition, the sample is cut open to reveal vertically aligned 

quantum dots. Since the QDs are under compression within, they relax slightly by protruding 

from the surface. Also, clearly visible is the intermixing of the QD material with each capping 

layer [103]. 

The continuum KMC method is also capable of simulating this process. Figure 7.12 

shows images of a continuum KMC simulation taken at similar points to figures 7.7 to 7.10. 

(a) 

(b) 
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Quantum dot top removal, intermixing in the capping layer and vertical alignment are all 

demonstrated by the continuum method. 

 

Fig. 7.12 Continuum KMC model of the evolution of an elastically strained two-component 

system by surface diffusion: the growth, relaxation and capping of alloyed heteroepitaxial QDs 

[104]. The top picture shows the formation of pyramidal QDs after a period of deposition of 

(blue) dot atoms. Some intermixing (green) at the substrate-dot interface is observed. The dots 

are then capped (see middle image) by further deposition of the substrate material (red). As seen 

experimentally (figure 7.11), the top of the pyramids dissolve into the capping layer and the 

embedded quantum dots are reduced to truncated pyramids. Another layer of QDs is deposited 

along with another capping layer. This leads to the development of a vertically-aligned 

structure, as observed in experiments. 
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Further work - Extension to multiscale 

The simulations presented here require many days of computer time to run. Minimising the 

system to calculate the jump rates consumes most of the computer time. Ideally greater length 

and time scales are required to fully investigate the properties of these strained surfaces. A 

multiscale model would require standard KMC to be applied to the surface atoms only, and a 

continuum finite element method can be used to compute the strain field in the substrate.  

Although it was shown in section 6 that the continuum KMC model did not exactly 

represent the quantitative evolution of the atomistic KMC model, it was found that there was 

good qualitative agreement in most cases. Comparison of Figs. 7.10 and 7.12 demonstrate that 

this is also the case when the additional complexity of elastic strain is included in the two 

different algorithms. This is encouraging and shows that further development of the 

continuum KMC model is worthwhile. However, due to lack of absolute quantitative 

agreement, it is unlikely that these two models could be combined together into a single 

concurrent multiscale simulation. The continuum KMC is very good at converging quickly at 

high temperatures which can be used to extend the time scale of these simulations. 
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Conclusion for section II 

In this section the KMC algorithm and the continuum KMC algorithm were 

introduced. In subsection 6.1, both methods were initially used to simulate the evolution of 

ellipses by surface diffusion in order to demonstrate the validity of the continuum method. 

Both methods were found to be in good agreement at high temperatures. At low temperatures, 

the continuum KMC method becomes trapped in a meta-state. This was resolved by adding 

thermal noise and biasing to the continuum KMC algorithm. The simulation results for 2 

component ellipses for three cases A, B and C, were compared at high and low temperatures. 

These results were presented in subsection 6.2. The continuum method was found to be in 

good qualitative agreement in most cases, however, at low temperatures it can become 

trapped in meta-stable states. 

Elastic strain was added to the standard and continuum KMC methods and was 

introduced in chapter 7. Simulations of surface roughening were performed using the standard 

KMC algorithm. These simulations show that strain induced roughening is best observed 

around 15K for this system. At this temperature, the system is hot enough to overcome the 

stability of the crystal facets, but not too hot such that any structure is lost in the thermal 

noise. A characteristic wavelength of roughening occurs which depends on the interaction 

between surface energy and strain energy. The ratio of wavelengths was found to be in 

agreement with continuum models of surface roughening. 

By depositing a material with a lattice spacing 3% higher than the substrate material, 

an interfacial strain between substrate and deposit occurs. This caused the formation of 

quantum dots on the surface. A low deposition rate caused a few quantum dots of a 

characteristic size to form, whereas a high deposition rate caused many QDs of a 

characteristic size to form. Alternating layers of substrate and deposit material were then 

rained down upon a flat surface. This caused the formation of vertically aligned quantum dots 

(QD super-lattice) due to the interaction between embedded QDs and the surface via the strain 

field. A continuum KMC simulation of MBE also resulted in vertical alignment of QDs. This 

is a good example of a self organised structure which is very useful in the fabrication of nano-

scale devices. 
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Overall conclusion 

This concludes this section and the thesis. Two very different atomistic simulation 

techniques have been compared with derivative continuum models. The first (dynamic) model 

considered thermal transport by conduction; the second (kinetic) model was concerned with 

material transport by diffusion. In both cases it was found that many of the atomistic effects 

arising from the discrete, stochastic atomistic models could be well-represented by their 

continuum counterparts. However, equally it was found that some atomistic effects could not 

be readily represented. For instance, the Kapitza resistance due to phonon scattering at 

interfaces and defects in thermal problems, and the nucleation of surface steps in diffusion 

problems. This shows that the need for comparing, benchmarking and validating different 

models at different scales is of great importance. It also shows the need for the development 

of effective multiscale coupled atomistic/continuum models for the extension of simulations 

to larger length and time scales in the future. Hopefully, the work presented in this thesis is a 

useful contribution to progress in this field. 
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Appendices 

A Derivation of heat flux in 1D 

This derivation is similar to the one presented in [15]. The energy per particle is 

defined as: 

    11
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n xxVxxV
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h
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The first term is the kinetic energy of the particle and the second term is half of the total pair 

wise interactions. Now consider the continuity equation: 
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In 1D this is equivalent to: 

   
0

,,











x

txj

t

txh
        (A.3) 

Hence we find: 
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where 
dx

dV
F  . 

From the fact that the acceleration of the particle depends on the net force we have: 

    11   nnnn xxFxxFx       (A.6) 

So, on substitution into (A.5) one obtains: 
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Now, j is defined as: 
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and from continuity equation: 
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where jn is: 

   nnnnn xxFxxaj   11
2

1
       (A.10) 

This can be interpreted as a power (force between atoms x average velocity between atoms, 

from P=FV). The authors of [15], also present a further method involving Fourier integrals to 

obtain expressions where density fluctuation cannot be neglected. 
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B Hamiltonian formulation 

The derivation of the Hamiltonian and the Hamiltonian equations of motion are 

presented here. It should be noted that this formulation does not depend on the coordinate 

system used. Starting with the Euler-Lagrange equation: 
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where, L is the Lagrangian (Kinetic energy – Potential energy) of the system, and q are the 

generalised coordinates, and s,...,2,1 .  

The Hamiltonian formulation uses the generalised momentum defined as: 
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L
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which, in Cartesian coordinates leads to the expected result: 
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From the Euler-Lagrange equation (B.1) ip can also be defined: 
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To obtain the Hamiltonian, start with the total derivative of the Lagrangian: 
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Upon substituting equations (B.2) and (B.4) in the above (B.5), one obtains: 

   qpddqpqqdL  , ,       (B.6) 

From the product rule, it is known that: 

   dpqqpdqpd   .       (B.7) 
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On substitution of (B.7) in (B.6): 

  dpqqpddqpqqdL   )(, .     (B.8) 

Then rearranging (B.8) gives: 

dqpdpqLqpd   )( ,      (B.9) 

dqpdpqdH   ,       (B.10) 

where LqpH   . 

Therefore the Hamiltonian equations of motion can be found from (B.10): 
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From (B.9), the Hamiltonian is: 
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Now given the Lagrangian, L, which is (Kinetic energy – Potential energy), or VTL  , and 

as V does not depend on the speeds and that T is function of speeds squared, one obtains: 
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and therefore on substitution of (B.14) in (B.13): 

  VTVTTH  2 .      (B.15) 

That is, the Hamiltonian is the sum of the kinetic and potential energy. 
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In the case of a system of particles in the Cartesian coordinate system, the Hamiltonian in 1D 

becomes: 
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The first term is the kinetic energy, the second term is an optional on site potential, and the 

last term is the potential due to interaction with neighbouring particles and finally the sum is 

over all the atoms in the simulation. 
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C Elliptical void in a two component material 

Presented here are the results of KMC simulations of an elliptical void in a two 

component material. The starting configuration (shown in figure C.1) is simply the inverse of 

the 2 component ellipse simulations presented in chapter 6. The bonding energies for each 

case are also the same as the ones used in chapter 6. 

 

Fig. C.1 The initial configuration of the KMC simulations of a void within a two component 

material is shown. The type 1 atoms (red) occupy the left half and the type 2 (blue) atoms 

occupy the right half of the simulation region initially. 

Case A low temperature 

The bond energies for each case are the same as the equivalent cases in chapter 6 

shown in table 6.1. For this case they are: 8.411 K , 0.412 K  and 8.422 K . Each atom 

type preferentially bonds to itself rather than mixing. The final state (Figure C.2) shows that a 

small amount of mixing has occurred and the final state of a circular void is obtained. 

 

Fig. C.2 Final state of the case A low temperature KMC simulation. The snapshot is taken after 

20 million atom jumps (equivalent to a time of 6.42 x10
10

). A small amount of mixing occurs as 

the ellipse collapses to a circle. The many straight edges are due to the stability of the crystal 

facets at this temperature. 
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Case A High temperature 

At the high temperature, the jump rates are: 4.211 K , 0.212 K  and 4.222 K . 

Figure C.3 shows that vastly more mixing of the atomic species has occurred, and a more 

rounded void in the centre is obtained. 

 

Fig. C.3 Final state of the case A high temperature KMC simulation. The snapshot is taken after 

40 million atom jumps (equivalent to a time of 8.46 x10
7
).  Significantly more mixing occurs 

compared to the low temperature case. 

Case B low temperature  

In case B, mixing of atomic species is preferred. A uniformly mixed cluster of atoms 

grows at the interface between the two materials on both the upper and lower faces. 

Eventually these clusters meet in the middle causing the void to be split into two. The final 

state obtained is shown in figure C.4. 

 

Fig. C.4 Final state of the case B low temperature KMC simulation. The snapshot is taken after 

20 million atom jumps (equivalent to a time of 1.12 x10
10

).  The material builds up in the centre 

on both sides. Eventually the two mixed areas meet dividing the void in two. 



142 

Case B high temperature 

The high temperature simulation proceeds in a similar fashion to the low temperature 

case, resulting in the formation of two voids as before as seen in figure C.5. However, 

significantly more mixing occurs both in the centre and around the outer edges. Also many 

single atom voids meander through the simulation region at this temperature. 

 

Fig. C.5 Final state of the case B high temperature KMC simulation. The snapshot is taken after 

35 million atom jumps (equivalent to a time of 2.95 x10
7
).  The void is split into two by the 

mixed material forming in the centre as before. However, significantly more mixing occurs 

compared to the low temperature case as expected. 

Case C low temperature 

In this case the type 1 atoms (red) are more mobile than the type 2 atoms (blue). The 

jump rates in this case are: 0.411 K , 8.412 K  and 6.522 K . The type 1 atoms diffuse 

across the simulation region to fill the empty half ellipse within the type 2 atoms as seen in 

figure C.6. The void left behind on the left-hand side then evolves to its minimum energy 

shape. Crystal facets are relatively stable at this temperature, resulting in a roughly circular 

faceted void being formed. 
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Fig. C.6 Final state of the case C low temperature KMC simulation. The snapshot is taken after 

30 million atom jumps (equivalent to a time of 1.87 x10
10

). The type 1 (red) atoms diffuse into 

the half elliptical void in the type 2 (blue) atoms on the right. The void in the left then converges 

to its minimum energy state, which is a circle. 

Case C high temperature 

Again the high temperature case proceeds in a similar fashion to the low temperature 

case. Significantly more mixing between atomic species occurs, both within the filled half of 

the ellipse on the right, and around the edge of the void on the left-hand side. Furthermore, the 

initial sharp edges of the type 2 atoms have been eroded by mixing to produce a wider 

opening of the half ellipse in the centre and a rounded edge at the far right as seen in figure 

C.7 below. 

 

Fig. C.7 Final state of the case C high temperature KMC simulation. The snapshot is taken after 

30 million atom jumps (equivalent to a time of 4.41 x10
7
). The simulation proceeds in a similar 

fashion to the low temperature case, yet significantly more inter-mixing occurs along with all 

edges becoming more rounded. 

As with the simulations of ellipses in chapter 6, the final state of the simulation is 

highly dependant upon the bonding energies of each of the atomic species. 


