

ARCHITECTURAL SUPPORT FOR SOCIO-

TECHNICAL SYSTEMS

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Osama E. S. Elhassan, M.Sc., D.I.C. (Imperial)

Department of Computer Science

University of Leicester

November 2008

 ii

 iii

This thesis is dedicated to my parents.

Thanks for always supporting me, no matter which way I choose…

 iv

Author’s Declaration
I herby declare that this submission is my own work and that it is the result of work

done mainly during the period of registration. To the best of my knowledge, it contains no

material previously published or written by another person nor material which to as

substantial extent has been accepted for the award of ant other degree or diploma of the

university or other institute of higher learning, except where due acknowledgement has

been made in the text.

Parts of this submission appeared in the following conjoint publications, to each of

which I have made substantial contributions:

• El-Hassan, O. and J.L. Fiadeiro, Role-based Architectural Modelling of

Socio-Technical Systems, in Proc. of the 3rd International Workshop on

Coordination and Organisation (CoOrg'06), Bologna, Italy: ENTCS, 2006,

p. 5-17.

• El-Hassan, O., J.L. Fiadeiro, and R. Heckel, Managing Socio-technical

Interactions in Healthcare Systems, in BPM 2007 Workshops, the 1st

International Workshop on Process-oriented Information Systems in

Healthcare, H.M. ter Hofstede, B. Benatallah, and H.-Y. Paik, (eds.), LNCS,

Vol. 4928, Springer: Berlin / Heidelberg, 2008, p. 347-358.

 v

Abstract
Software development paradigms are increasingly stretching their scope from the core

technical implementation of required functionalities to include processes and people who interact

with the implemented systems. Socio-technical systems reflect such a trend as they incorporate the

interactions and processes of their social participants, by treating them not as users but as integral

players who enact well-defined roles. However, developers of these systems struggle with their

complexity and weak architectural support. The challenge is that existing toolboxes for modelling

and implementing complex software systems do not take into account interactions that are not

causal, but only biddable (i.e. whose execution cannot be ensured by software). Therefore, models

and implementations generated by these toolboxes cannot detect and respond to situations in which

the system participants deviate from prescribed behaviour and fail to play the role that they have

been assigned as entities of the system.

The research focus is on how a norm-based architectural framework can promote the

externalisation of the social dimension that arises in software-intensive systems which exhibit

interactions between social components (i.e. people or groups of people) and technical components

(devices, computer-based systems and so on) that are critical for the domain in which they operate.

This includes building normative models for evolvable and adaptable socio-technical systems to

target such interactions in a way that ensures that the required global properties emerge.

The proposed architectural framework is based on a new class of architectural connectors

(social laws) that provide mechanisms through which the biddability of human interactions can be

taken into account, and the sub-ideal situations that result from the violation of organisational

norms can be modelled and acted upon by self-adapting the socio-technical systems.

The framework is equipped with a new method underpinned by a coherent body of

concepts and supported by a graph-based formalism in which roles present the structural semantics

of the configuration, while the laws have operational semantics given by the graph transformations

rules. Guiding methodological steps are given to support the identification of critical social

interactions and the implementation of the proposed method.

Case studies derive the evaluation of the approach to demonstrate its generality,

applicability, flexibility and maintainability.

 vi

Table of Contents

List of Figures……………………………….........………………………………………..x

List of Tables……………………………………………………………………………....xi

Acknowledgments….…………………………………………………………………….xii

Chapter 1 - Introduction ... 1

1.1 Engineering Socio-technical Systems ... 1
1.2 Aims & Objectives .. 3
1.3 Methodology & Approach .. 4

1.3.1 Research Methodology... 4
1.3.2 The Approach ... 5

1.4 Contributions ... 6
1.5 Organisation of the Thesis... 8

Chapter 2 - Social Interactions: Premises, Challenges and Perspectives 11

2.1 Overview ... 11
2.1.1 Objectives ... 11
2.1.2 Social Interactions ... 12
2.1.3 The Chapter’s Structure ... 14

2.2 User-centric and Human-centred Approaches .. 14
2.3 Agent-Based Social Modelling ... 16
2.4 Concepts and Abstractions for Social Interactions.. 19

2.4.1 Problem Frames... 19
2.4.2 Speech Acts and Behavioural Implicit Communication ... 22
2.4.3 Social Interactions and Control: the Deontic Way .. 24

2.4.3.1 Deontic Logic.. 24
2.4.3.2 Ideal and Sub-ideal Worlds... 25
2.4.3.3 Normative Positions .. 26
2.5 Contextualising Social Interactions... 27
2.6 Discussion ... 28

Chapter 3 - Software Architecture from Different Perspectives................................... 30

3.1 Overview ... 30
3.1.1 Software Architecture on the Move .. 31
3.1.2 Engineering vs. Architecture.. 31
3.1.3 The Chapter’s Structure ... 32

3.2 Software Architectural Paradigms... 32
3.2.1 Architectural Elements... 33

3.2.1.1 Components .. 33
3.2.1.2 Connectors .. 34
3.2.1.3 Configurations... 34
3.2.1.4 Properties .. 35
3.2.1.5 Primitives .. 36
3.2.1.6 Styles... 36
3.2.1.7 Views .. 37

3.2.2 Architectural Definition Languages (ADLs) .. 38
3.2.3 Architectural Reconfiguration Models... 39

3.2.3.1 Architectural Levels of Reconfiguration... 40
3.2.3.2 Reconfiguration Operations .. 42
3.3 The 3Cs Approach... 42

3.3.1 Background .. 42

 vii

3.3.2 The 3Cs Business Architecture... 43
3.3.2.1 Separation of Concerns ... 45
3.3.2.2 Coordination Contracts ... 46

3.3.3 The 3Cs Approach to Reconfigurations ... 47
3.3.3.1 Coordination Contexts .. 47
3.4 Architecture and Non-causality... 49

3.4.1 Discussion .. 50
3.4.2 Questions.. 51

Chapter 4 - Architecting Social Interactions: A Ternary of Roles, Norms and

Reconfiguration.. 53

4.1 Motivations & Objectives ... 53
4.2 The Approach in a Nutshell .. 55
4.3 Roles in Organisation Theory.. 56
4.3.1.1 Roles & Organisational Structures.. 57
4.4 Roles for Modelling Software Systems... 57

4.4.1 Object-oriented Software Systems.. 58
4.4.2 Roles in Agent-based Systems .. 60
4.4.3 Roles in Access-based Policies .. 61
4.4.4 Roles in Organisation-oriented System Modelling .. 63

4.5 The Role Model: The Ternary of Roles, Norms and Reconfigurations 64
4.5.1 A Motivating Case Study .. 67
4.5.2 Social Roles.. 68
4.5.3 Social Tasks.. 70
4.5.4 Social Laws .. 71

4.5.4.1 The Language Design ... 72
4.5.4.2 Sub-ideal Contexts .. 73
4.5.4.3 Summary ... 76
4.6 Social Laws vs. Coordination Contexts .. 76

4.6.1 Separation of Control vs. Separation of Concerns... 77
4.6.2 Modelling Social Laws ... 79

4.6.2.1 Pull vs. Push Modes of Social Laws ... 79
4.7 Extending the 3Cs Framework.. 82

4.7.1 The Extended Conceptual Meta Model .. 82
4.7.2 The Framework’s Layers ... 84
4.7.3 The Framework’s Reconfiguration Mechanisms ... 85

4.8 Related Work... 85
4.9 Discussion ... 88

Chapter 5 - The Methodological Approach... 90

5.1 Overview ... 90
5.1.1 Objectives ... 90
5.1.2 The Chapter’s Structure ... 91
5.1.3 Process-aware Interactions.. 91

5.2 A Method for Socio-technical Protocols ... 94
5.2.1 Extending the Methodological Principles of the 3Cs Approach 97

5.2.1.1 An Example... 99
5.3 Capturing Biddability: From Concepts to Models .. 103

5.3.1 Modelling the Proposed Architectural Primitives.. 105
5.3.2 Separation of Concerns and Separation of Control ... 107

5.4 A Prospect of a Normative Methodology ... 108
5.4.1 General Steps of the Methodology ... 110
5.4.2 Remarks on the Proposed Methodology... 117

5.5 Related Work... 118
5.6 Discussion ... 120

 viii

Chapter 6 - Graph-based Formalisation & Meta-Modelling of Socio-technical

Protocols ... 122

6.1 Overview ... 122
6.1.1 Objectives ... 123
6.1.2 Incentives for Using Graph Transformation Approaches .. 124
6.1.3 The Chapter Structure.. 125

6.2 Graph Transformation in a Nutshell.. 125
6.2.1 A Formal Basis of Graph Transformation ... 126
6.2.2 Semantic Choices for Graph-based Modelling .. 127

6.2.2.1 Type Graphs.. 127
6.2.2.2 Labelled Graph Grammars vs. Attributed Graph Grammars .. 128
6.2.2.3 Clan Morphism and Modelling Inheritance .. 128
6.2.2.4 Definition 6.3 (Inheritance Graph).. 129
6.2.2.5 Definition 6.3 (Type graph with inheritance).. 129

6.2.3 The Graph Transformation Approach.. 130
6.2.4 Graph-based Modelling for Architectural Reconfigurations 131

6.3 Challenging Issues... 132
6.3.1 Biddable Interactions Modelling.. 132
6.3.2 Task-Interface Relationships.. 133
6.3.3 Generic Graph Transformation Rules.. 134

6.4 A Graph-based Approach: Semantics, Views and Interconnections....................... 134
6.4.1 Modelling Socio-technical Protocols ... 134
6.4.2 The view-based Approach .. 136

6.4.2.1 Communication between Views.. 136
6.4.2.2 Integrating Views.. 137
6.4.2.3 The Reference Model.. 138
6.5 Meta Modelling for Reconfiguration .. 140

6.5.1 Abstract Syntax... 140
6.5.2 Mapping the abstract syntax to the Textual Syntax of the Reconfiguration Language
... 141
6.5.3 Specifying Operational Semantics over Abstract Syntax ... 143

6.5.3.1 Abstract Syntax Meta Model... 143
6.6 Discussion ... 144
6.7 Examples & Tools Support ... 146

6.7.1 Scope within the Methodology ... 147
6.7.2 Case study: The Gastroenterology Unit... 147

6.8 Tool Support.. 148
6.8.1 AGG.. 148
6.8.2 Graph Transformation Rules ... 149

6.8.2.1 Dispatching Eligible (DispatchTaskRole)... 149
6.8.2.2 Dispatching Eligible Tasks (direct inheritance) .. 150
6.8.2.3 Dispatching Unqualified Tasks (ReconfigUnqual) ... 150
6.8.2.4 Dispatching Via Normal Inheritance... 151

6.8.3 Remarks.. 151
Chapter 7 - Evaluation .. 153

7.1 The Scope.. 153
7.1.1 Concerns of Self-adaptivity .. 154
7.1.2 Runtime vs. Design-time Adaptation .. 155
7.1.3 Anticipated vs. Unanticipated Causes of Change .. 155
7.1.4 The Evaluation Criteria ... 156

7.2 Case Studies .. 156
7.2.1 Claim 1: Generality.. 156

7.2.1.1 Motivations ... 157
7.2.1.2 Design ... 157

 ix

7.2.1.3 Discussion ... 160
7.2.2 Claim 2: Applicability & Flexibility.. 161

7.2.2.1 Motivation... 161
7.2.2.2 Design ... 162
7.2.2.3 Discussion ... 170

7.2.3 Claim 3: Maintainability.. 172
7.2.3.1 Motivations ... 173
7.2.3.2 Design ... 173
7.2.3.3 Discussion ... 175
7.3 Comparisons with Other Self-adaptive Systems... 176
7.4 Related Work... 179
7.5 Concluding Remarks ... 180

Chapter 8 - Concluding Remarks and Directions for Future Research..................... 182

8.1 Summary ... 182
8.2 Analysis of the Contributions.. 184

8.2.1 Putting All Together ... 186
8.3 Evaluation.. 186
8.4 Future Work .. 187
8.5 Concluding Remarks ... 188

Appendix A: Bibliography .. ii

Appendix B: List of Abbreviations.. i

Appendix C: Glossary ..iii

Appendix D: Mapping the 3Cs Extension to the PBT Conceptual FrameworkI

Conceptualising the Approach ..I
Mapping the Ideas to PBT Conceptual Framework..II

 x

List of Tables
Table 2.1 RNS vs. the proposed architectural approach..18
Table 4.1 Modality Signs for Operations...69
Table 5.1 Domains and fit relationships ..104
Table 6.1 Different level of modelling abstractions for textual/visual language...............140
Table 6.2 Excerpts of basic text-graph elements mapping ..142
Table 6.3 Graph-based mapping of complex expressions ...142
Table 7.1 Aircraft engine fire procedure – from (Fields, Harrison et al. 1997)158
Table 7.2 A comparison between the proposed approach and its counterparts.................178

 xi

List of Figures
Figure 1.1 Topics covered in the thesis chapters ...9
Figure 1.2 Modelling and meta-modelling the conceptual framework10
Figure 2.1. A simple Problem Frame...20
Figure 2.2 Problem Frames’ Requirements Analysis Model...21
Figure 2.3 Problem Frames’ three-ellipse model of requirements22
Figure 3.1 Palstik meta-framework (Batista, Joolia et al. 2005) ...41
Figure 3.2 The 3Cs Business Architecture (Andrade & Fiadeiro 2003)46
Figure 4.1 Roles in traditional object-oriented methods..58
Figure 4.2 Role as first-class modelling entities (Riehle & Gross 1998)59
Figure 4.3 The RBAC meta model (Sandhu, Ferraiolo et al. 2000)....................................62
Figure 4.4 Role, Norms and Reconfiguration..65
Figure 4.5 Holistic View of Extended Framework..66
Figure 4.6 An example of social roles ...70
Figure 4.7 A role hierarchy example (with task inheritance) ..71
Figure 4.8 The space of interactions that emerges from extending the 3Cs business

architecture..80
Figure 4.9 The abstract syntax of the extended 3Cs framework (conceptual elements)83
Figure 5.1 Processes Taxonomy of (Harrison-Broninski 2005) ...93
Figure 5.2 A harmoniser’s interactions within a socio-technical protocol95
Figure 5.3 Constraints spectrum in the 3Cs Approach ..98
Figure 5.4 The 3Cs based view of a nurse actor ..101
Figure 5.5 Modelling a task that is not part of the configured role101
Figure 5.6 Enacting and permitting technical/role-based reconfigurations in two steps...102
Figure 5.7 The fit-to-purpose Architecture (borrowed from (Fiadeiro 2007))104
Figure 5.8 Problem Frames three-ellipse model of requirements......................................105
Figure 5.9: The general socio-technical problem diagram (Brier, Rapanotti et al. 2004).106
Figure 5.10 Extended Problem Frame notation or organisational problems (Brier, Rapanotti

et al. 2004)...107
Figure 5.11 A simplified view of the proposed methodological steps113
Figure 5.12 The proposed methodological steps ...116
Figure 6.1 Type and typed graphs ...127
Figure 6.2 A taxonomy of graph types ..128
Figure 6.3 A type graph with inheritance ..130
Figure 6.4 Rule-base Modification of Graphs ...130
Figure 6.5 The reference model ...133
Figure 6.6. The role view of the Open Graph Transformation system..............................139
Figure 6.7 A MOF-agnostic type graph (initial integration) ...141
Figure 6.8 The MOF-based abstract syntax...144
Figure 6.9 A socio-technical protocol (Configuration graph) ...148
Figure 6.10 DispatchTaskToRole, graph transformation rule ...149
Figure 6.11 The transitive closure rule to compute the ancestors list................................150
Figure 6.12 ReconfigUnqual role transition ..151
Figure 7.1 An initial use case-like Configuration diagram..164
Figure 7.2 A purposeful task within the gastro process (Gastro_op) which allows operating

while monitoring vital contextual information ...165
Figure 7.3 Taxonomy of flexibility (Schnenberg, Mans et al. 2008)172
Figure 7.4 The role space with respect of a social law ..174
Figure 7.5 Role-based conflict resolution...175

 xii

Figure 7.6 The Aura Framework (Garlan, Siewiorek et al. 2002).....................................176
Figure 7.7 The ROAD Framework (Colman & Han 2007)...177
Figure 8.1 The da Vinci surgical system ..183

 xiii

Acknowledgements

First and foremost, all praises and thanks go to Allah, who took me through this

mission and help me to accomplish it. I also thank all people without whom this thesis

would not be possible. My sincere thanks go to my supervisor, Professor José Luiz

Fiadeiro, for his guidance throughout my Ph.D. trajectory and for his wise and acute

observations on how to improve my work. Those many hours we spent discussing my

research topic are unforgettable. My warmest thanks also go to Professor Reiko Heckel for

his visually compelling and mathematically rigorous co-supervision that inspired deep

discussions throughout my graduate study. I express special thanks to all the members of

the Computer Science Department at the University of Leicester, notably Professor Rick

Thomas, Dr. Roy Crole, Dr. Mohamed El-Ramly, Dr. Stephan Reiff-Marganiec and to the

PhD tutor Dr. Fer-Jan Vries. I gratefully acknowledge thoughtful comments and

encouragements from Dr. Michel Wermelinger and Dr. Jon Hall from the Open University.

I convey my gratitude to my PhD colleagues, Cristóvão Oliveira, O’Neil Delpratt and João

Abreu.

I owe my parents an ocean of gratefulness for their continuous moral support and

prayers. Definitely, I could not have finished this work without their help. I would like to

express my appreciation to many special people who contributed to my work with their

continuous encouragement. Among them, I wish to thank Professor Izzeldin Osman, Dr.

Mohamed Khidir, Dr. Ali Abbas, Khalid Abdul-Aziz, Dr. Mohamed Taye, Dr. Ali Al-

Bayati, Dr. Ajlan Al-Ajlan, Dr. Hassan Al-Marzuoki, Dr. Mohamed Manan, Mohamed Al-

Otaibi, Nasir Al-Alwan, Yosif Al-Saeed, Ali Al-Qahtani and finally Dr. Ahmed Al-

Ghamdi who deserves special thanks. Without question and beyond any doubt, their moral

support and suggestions were of great value.

Chapter 1

Introduction

“We can start with the obvious statement that engineering is a problem solving activity”.
Walter G. Vincenti

1.1 Engineering Socio-technical Systems

In spite of the increasing degree of automation across all sectors of the economy,

people will and must remain as integral players in all sorts of large-scale heterogeneous

systems that control critical infrastructures (defence, energy, health, telecommunication,

transport, etc.) or ensure services that are essential for the functioning of the society (e-

government, e-learning, etc.). To emphasise the fact that the behaviour of such systems

depends on interactions between humans and technical components, the term “socio-

technical systems” was coined (Emery & Trist 1960). The term has been extended to refer

to systems that incorporate a “social” dimension in the sense that people (or groups of

people) need to be considered, not as external users, but as another class of components,

together with software and devices (Brier, Rapanotti & Hall 2004, Bryle & Giorgini 2006).

As such, software is used to ensure that both technical components (e.g. devices, software

applications and artefacts) and social components act and interact jointly within ad hoc and

changing configurations in ways that are sensitive to the needs of the society or the

economy.

One of the problems that need to overcome to support the development of socio-

technical systems is the fact that current software engineering methods and techniques

 Chapter 1 Introduction

2

create a boundary around the technical components and place humans outside that

boundary as users, not as players on an equal par with the technical components. This is

particularly important as these boundaries between social and software components may

vary throughout a system’s lifetime; tasks performed by humans can be partially replaced

or even shared with software applications, depending on the context of execution.

Therefore, interactions between people (as social components) and technical components

need to be brought inside the system, which is being made easier thanks to recent advances

in monitoring techniques and context-awareness technologies such as sensor network

applications (Heinzelman, Murphy et al. 2004), wearable systems (Drugge, Hallberg et al.

2006) and RFID technologies (Holzinger, Schwaberger & Weitlaner 2005).

One of the challenges that need to be overcome for addressing this social

dimension of systems is the fact that interactions involving humans are not necessarily

causal, i.e. people cannot be guaranteed to bring about changes that may be required to

ensure the correct behaviour of the whole system. In other words, social components

cannot be designed, as software and mechanical/hardware entities can, to comply with

system rules; instead, they constitute what Michael Jackson calls biddable domains: “they

can be enjoined to adhere to a certain behaviour, but may or may not obey the injunction”.

That is, social components may deviate from prescribed behaviour or codes of norm, and

perform interactions that lead to sub-optimal (or sub-ideal) states. Such deviations are not

necessarily “faults” in the sense that they are deliberate or malicious, but they may arise

from the fact that the context in which a system is operating changes, which may imply

that the humans involved in the system may need to operate outside the role that they have

been ascribed and, as a consequence, violate a number of norms.

In such circumstances, software cannot force the social components to change their

behaviour, but the system should be able to reconfigure itself in order to adapt to a new

operating context. For instance, under normal circumstances, the software that is

controlling a routine check-up will prevent a nurse from operating some kinds of devices

but, if an emergency is detected, the software should adapt to the new role that the nurse is

required to perform in, say, a life-critical operation, by withdrawing some of those

restrictions and providing information that a doctor would normally know (or have access

to) like an allergy to penicillin.

In summary, there is a need for new methods and techniques that can support the

engineering of systems in which interactions can be causal or biddable and that can

 Chapter 1 Introduction

3

respond to situations in which system participants deviate from prescribed behaviour

and/or act (possibly by necessity) outside the role that they have been assigned.

1.2 Aims & Objectives

The aim of this research is to put forward an engineering method for socio-

technical systems that addresses social entities not as external users but as integral role

players whose interactions with technical components (i.e. software and devices), although

governed by organisational rules and policies, may affect the whole system behaviour in

ways that cannot be totally predicted, let alone programmed. This method should be able to

handle situations in which social components act outside their permitted role scope so as to

allow the system to reconfigure itself in order to adapt to a new operating context in ways

that ensure agreed, possibly minimal, levels of service.

Towards this aim, the following objectives are pursued:

• Concepts: modelling primitives need to be introduced through which

normative concepts (e.g. permissions obligations and power) and

organisational concepts (e.g. roles, tasks and operations) can be expressed

and socio-technical protocols (i.e. protocols governing interactions between

social and technical components) can be modelled.

• Conceptual models: a new framework is required to capture the structural

and behavioural aspects of the introduced concepts. Conceptual models are

patterns of interconnected structural elements. The framework needs to

separate social aspects from the technical ones and capture normative (or

ideal) as well as sub-ideal situations.

• Meta model: a new generic reconfiguration language is required through

which the new modelling primitives can be used and a new social

interaction-aware level of reconfigurability (i.e. norm-based self-adaptivity)

can be supported. A meta model needs to address the interconnections

between the technical and social levels of the conceptual model at a high

level of abstraction.

• Tools: the new reconfiguration language needs to be supported by tools that

can help modellers specify and animate models of socio-technical protocols

and the way they self-adapt to handle violations and sub-ideal situations.

 Chapter 1 Introduction

4

1.3 Methodology & Approach

1.3.1 Research Methodology

This thesis is not application-driven but rather directed to foundational issues of a

relatively new area of research that needs to be equipped with new concepts, abstractions

and mechanisms. Several research paradigms are related or relevant to its aims, though

none is capable of addressing their full extent. Although a more exhaustive review of the

state of the art is left for other chapters, it is useful to mention three particular areas as a

justification for the research methodology that I have adopted.

One of the most prominent class of approaches in this broad area of research adopts

agent-oriented methodologies, which have been extensively used for modelling social and

organisational structures (e.g. Yao, Moody & Bacon 2001, Dignum, Meyer et al. 2002,

Nickles, Rovatsos & Weiß 2002, Zambonelli, Jennings et al. 2003, Dignum, Vázquez-

Salceda et al. 2005). However, as further discussed in Chapter 2, such approaches are not

really appropriate to meet the objectives of the thesis because they focus mainly on

modelling and capturing the autonomy of agents that act as owners of roles in order to

pursue their own goals (individually or in cooperation with others). Thus, within agent-

oriented methodologies, the way agents collaborate with each other and self-adapt to

environment changes is hardwired in the agent code. This is why I decided to lean more

towards software engineering methodology, namely recent modelling techniques for

software architecture that support the design and implementation of an interaction-centric

approach in a more explicit and less intrusive way.

A related software engineering approach that I considered is Jackson’s Problem

Frames, which supports problem analysis and decomposition, i.e. the identification of

components, their interconnections, their assumptions about each other and the way they

relate to the problem domain. However, the aims that I am pursuing target a kind of

dynamic requirements that are different from those captured in Problem Frames: they

prevail only when sub-ideal situations and violating behaviours of social components are

detected. Therefore, socio-technical systems require analysis and decomposition

techniques that support these different levels of ideality directly.

Another relevant area of software engineering is requirements modelling. However,

methodologies such as the i* framework for enterprise modelling (Yu & Mylopoulos 1997)

and the Soft System methodology (Checkland 1984) consider social components as entities

 Chapter 1 Introduction

5

(users) outside the boundaries of the system, i.e. as part of the environment, which does not

make them really suitable for my purpose.

1.3.2 The Approach

As discussed above, I ended up adopting elements of architectural modelling

approaches within software engineering as a means of handling non-normative or sub-ideal

situations in socio-technical systems as first-class concerns. The main reason for this is

that, in order to achieve the levels of adaptability motivated above, procedures dealing with

these situations cannot be buried in the code of technical components. Otherwise, it would

be impossible to figure out, within the code of a component, what is implementing its

functionality and what is handling violation of organisational norms. This separation is

essential because recovery procedures that handle sub-ideal situations always depend on

the role of the social entities that play roles within the larger system. Therefore, these

aspects need to be modelled and controlled separately.

In summary, in order to meet the objectives of this thesis, I bring to bear a number

of concepts, formalisms and modelling techniques developed in different areas of computer

science and software engineering. In particular, the research work builds on:

• Software architecture methodology, namely the 3Cs business architectural

approach (Wermelinger 1999, Andrade, Fiadeiro & Wermelinger 2001,

Andrade, Fiadeiro et al. 2002, Andrade & Fiadeiro 2003). The 3Cs stands

for the core concept of separation between Computation, Coordination and

Configuration concerns. The 3Cs architecture provides the required

technical level of the proposed model.

• The graph-based approach to model-based transformation of (Karsai &

Sztipanovits 1999, Engels, Heckel & Sauer 2000, Wermelinger, Lopes &

Fiadeiro 2001), which I adopted for achieving two major purposes:

o The integration of the 3Cs causal modelling primitives with the

dynamic reconfiguration techniques that support adaptation;

o The provision of a visual semantics of the proposed reconfiguration

language through graph transformation rules that can manipulate

instances of structural elements (i.e. roles, tasks and technical

components) defined in the architectural framework.

 Chapter 1 Introduction

6

• Social studies and theories of collaborative agency such as speech acts

(Searle 2002), normative positions (Sergot 1999), behavioural implicit

communication (BIC) (Castelfranchi & Giardini 2003) and the overhelp

concept of adjustable autonomy (Falcone & Castelfranchi 2000).

• Jackson’s Problem Frames approach to problem analysis and decomposition

(Jackson 2001) as a means of capturing patterns of real-world problems and

normative or ideal behaviour that enforces a requirement. In particular, I

build on the extension that has already been defined for socio-technical

systems (Brier, Rapanotti et al. 2004).

• Deontic formalisms such as the ones developed by M. Sergot and

colleagues for normative positions and analysis (Sergot 1998, Liu, Sun et al.

2001a, Lomuscio & Sergot 2003b) as a means of addressing notions of sub-

ideality.

• Organisation structures and policies, e.g. Role Based Access Control

(RBAC) (Sandhu, Coyne et al. 1996b, Moffett & Lupu 1999) and the

Ponder policy language (Damianou, Dulay et al. 2001).

• The Human Interaction Management method (HIM) as a starting point for

methodological steps towards modelling interactions of human-driven

processes within organisations (Harrison-Broninski 2005).

• Agent-based approaches for modelling collaborations within social and

organisational structures (Finin, Labrou & Mayfield 1995, Barbuceanu,

Gray & Mankovski 1999, Weiß, Rovatsos & Nickles 2003, Zambonelli,

Jennings & Wooldridge 2003, Dignum, Vázquez-Salceda & Dignum 2005).

1.4 Contributions

The contribution made by the work reported in the thesis can be summarised as

follows.

1. The thesis puts forward an architectural method together with modelling

primitives that captures socio-technical protocols. The method integrates

techniques imported from architectural description languages (namely the

3Cs conceptual model) for the technical side of systems and newly

introduced concepts that support the separation of control between causal

interactions management and social interaction management. Based on this

 Chapter 1 Introduction

7

conceptual differentiation, a new reconfigurability mechanism has been put

forward to respond to biddable human interactions within a socio-technical

protocol. Within the proposed architectural method, biddable social

interactions are taken into account as they are:

a. anchored on social roles, which model tasks, permission and

capabilities.

b. captured by social laws (an extension of architectural connectors

that can handle system response to unexpected interactions or

contextual changes), which take into consideration capabilities and

permissions as well as the context ideality;

c. governed through reconfiguration rules that ensure self-adaptivity.

2. The proposed method is supported by graph-based formalisation of

reconfiguration operations in which the social roles have structural

semantics, while the laws have operational semantics given by the graph

transformations. These transformations are based on a meta model.

Modellers can exploit domain-independent abstract syntax and

transformation rules presented in this thesis, under the AGG tool support, to

model and animate social-technical protocol as a means of supporting self-

adaptation specifications.

3. The proposed method is supported by methodological steps to locate parts

of the socio-technical system that may involve sub-ideal situations, which

are then dealt with through social laws.

4. A new level of self-adaptivity is achieved that ensures that once a violation

or sub-ideal situation is detected, the system will adapt to enable the

congruence1 of the enacted task (i.e. the required recovery task) to the

current operation condition (i.e. available roles and technical resources), or

to impose sanctions on the role player who disobeys the obliged task

enactment.

5. A generic characterisation of a self-adaptivity manager (the harmoniser),

which extends the 3Cs configuration manager to support collaborative

aspects between social and technical components. An harmoniser is a

1 The degree of congruence corresponds to the degree of “fit” between organisational structures
and properties of the task at hand and/or environment (Donaldson 2001). Donaldson, L., The
Contingency Theory of Organisations, Foundations for Organisational Science, Sage, 2001.

 Chapter 1 Introduction

8

software application that monitors the balance between unexpected

interactions and current role entitlements. It interprets the operational

semantics of triggered social laws (through the graph-based model) in order

to effectuate the empowerment aspects of social interactions or the

imposition of sanctions when appropriate.

6. An extension to the work of Brier at al. (Brier, Rapanotti & Hall 2006) is

also promoted by this thesis. The original work successfully incorporates

Problem Frames in representing human knowledge and guiding

development of real-world socio-technical system. The proposed extension

introduces a uniform model through which designers can represent

capability-based role concepts and their technology-oriented view of tasks.

The proposed approach has been demonstrated and evaluated through peer-

reviewing in different research communities e.g. (El-Hassan & Fiadeiro, 2007) and (El-

Hassan et al., 2008). Case studies have been developed to illustrate how the new primitives

address sub-ideal situations, manage human biddability and guide the system

reconfigurations to self-adapt to changes of context.

1.5 Organisation of the Thesis

Due to the multidisciplinary nature of this research work, I do not present a

dedicated chapter for literature review. Alternatively, I decided to dedicate a literature

review section in certain chapters for a background review. Moreover, an introductory

section is dedicated in certain chapters were background knowledge is relevant. An

introductory section is included to specify how they relate to the mainstream of the thesis.

The organisation of the rest of this thesis is depicted in Figure 1.1 and Figure 1.2 as

follows.

Chapter 2 surveys throughout different paradigms of information systems to

correlate research work in different disciplines and to illustrate the terminology related to

human interactions in various domains. Chapter 3 introduces the software architecture

paradigm and thoroughly describes the 3Cs approach upon which this approach relies to

build the proposed architectural primitives and reconfiguration mechanisms. Chapter 4

describes in detail the approach adopted for managing and reasoning about biddable

interactions: the ternary of norms, roles and reconfigurations. The chapter focuses in

particular on the notion of role across several crosscutting concerns, either non-technical

 Chapter 1 Introduction

9

(organisation theory, communication theory and social sciences) or technical (object-

oriented modelling, agents modelling, and access based policies). I also present a model

that aims at providing a method to model biddability with organisational contexts while

prescribing a norm-based control method to preserve the overall good behaviour of the

system, particularly in sub-ideal situations.

Chapter 5 explains our methodological approach and high-level concepts that have

been advocated through this thesis particularly the abstractions related to biddable

interactions and norms analysis. Chapter 6 includes the graph-based mathematical

formulation of the proposed concepts such as providing operational semantics for

reconfiguration operations and role transitions. Additionally, it touches on practical

implementation issues such as tool support. Chapter 7 is dedicated to evaluating the

proposed architectural approach and its features against the objectives of this thesis using a

number of case studies.

Finally, Chapter 8 summarises the lessons learned from and identifies potential

issues to be further developed. The glossary at the end of the thesis provides key of the

terminology used throughout the thesis. The Appendices include a list of abbreviations and

a mapping from the proposed extension to the 3Cs architectural approach to the conceptual

framework of the planned behaviour theory (PBT).

Figure 1.1 Topics covered in the thesis chapters

 Chapter 1 Introduction

10

Figure 1.2 Modelling and meta-modelling the conceptual framework

Chapter 2

Social Interactions: Premises, Challenges

and Perspectives

2.1 Overview

I address a multi-perspective view of social interactions within “socio-technical

systems”: systems that include a “social dimension” in the sense that people (or groups of

people) need to be considered not as external users but as another class of components that,

together with software and devices, perform roles that are vital for the “good” behaviour of

the system. In order to bring human interaction within the boundaries of systems,

normative concepts such as permissions, obligations and powers should be referred to, in

order to model violations that can take place so as processes and underlying software can

be reconfigured to react to non-normative situations in ways that ensure agreed, possibly

minimal, levels of service.

2.1.1 Objectives

The goal of this chapter is to review the engineering principles, social concepts and

computer science underpinning collaborations, including the interactions of human

components. This review highlights the concepts and abstractions that contribute to a

“dual-view” model, which balances coordinated technical interactions with the biddable

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

12

nature of social entities on which the success of the system depend, particularly at sub-

ideal contexts. Therefore, human interactions are required to be incorporated within the

system’s boundaries.

In this vision, humans are partners of a system, and therefore, what is required is

neither addressing the user-centric view of social components (i.e. improving the way

humans interact with software), nor designing technical artefacts to fit around models of

human intentions, skills and creativity (i.e. human-centred view), but rather defining ways

through which software can orchestrate interactions between humans and technical

components, so as to guarantee optimal or sub-optimal responses to dynamically changing

environments.

2.1.2 Social Interactions

The key role of social interactions in achieving the dependability and evolvability

of socio-technical systems has been emphasised by several recent research articles, e.g.

(Felici 2003, Hall & Rapanotti 2005, Bryle & Giorgini 2006). They exhibit the social

dimension as a first-class concern, which can be perceived as coupled systems whose

performance depends on the interactions of humans together with technical information

systems. One of the main sources of difficulty in socio-technical systems, which are found

in various application domains, is the fact that human participants may deviate from

prescribed social or organisational norms. Such deviations are not “errors” but, rather,

result from the fact that situations may arise in which humans may need to interact with

machines in “sub-ideal” states.

Sheridan summarized the above mentioned fact in (Sheridan, Corker & Nadler

2006): “Technology has become much more capable of performing sensing, decision,

communication and action functions in comparison to humans. Humans are slower, less

accurate and less predictable. Yet under off-normal and unanticipated circumstances,

machines can look stupid and humans are invaluable in perceiving complex patterns of

information, making complex decisions based on probabilistic data and value judgments,

and improvising to recover from otherwise disastrous situations”.

Analogous findings have already been identified and expressed in distinct yet

related research areas, e.g. ad hoc changes in medical business processes (Lenz & Reichert

2007), workflow changes (van der Aalst & Jablonski 2000), and ad hoc resource

management (Russel, van der Aalst et al. 2005). An agent-based framework introduces

patterns overhelp — identifying the way that an agent can help to solve problems—to

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

13

support reasoning about such situations (Falcone & Castelfranchi 2000). Additionally, a

new paradigm in the business process community has recently emerged, namely human-

driven processes (Harrison-Broninski 2005) in which these processes are distinguished

from mechanistic ones. This is a sort of distinction that is similar to my view in the sense

of the differentiation between causal and non-causal interactions in terms of models and

control mechanisms.

The common factor between these research studies is the call for some sort of

freedom of reaction to be ascribed to human participants, thereby contributing to system

flexibility and dependability. Freedom to (re)act matches perfectly the characteristics of

biddable domains as identified by Jackson (Jackson 2001): “[people] can be enjoined to

adhere to certain behaviour, but may or may not obey the injunction”. The problem, as

highlighted in the quote above, is how to endow systems with a degree of flexibility that

allows them to adapt dynamically to changes from ideal to sub-ideal states.

Methodological approaches available for modelling interactions between software

and other technical components do not generalise to social components. This is because

interactions with technical components are causal in the sense that technical components

perform designated actions in reaction to triggers issued by software components, whereas

interactions with social components are only biddable.

The argument extends to techniques that are used for modelling business processes

and workflows in organisations; most of the time they are based on causal models and fail

to take into account the fact that humans reaction(s) cannot be programmed or hardwired.

Workflows tend to be implemented in ways that are too rigid to sustain interactions with

people, leading to fatal incompatibilities with human forms of interaction, which

themselves derive from more relaxed and non-causal if not opportunistic behaviour. These

types of behaviour are of great importance should they be called upon to support the

recovery of a system from sub-ideal situations. Software developers are in need of

modelling social components which in turn require a new set of behavioural models for

their collaborations with both software and hardware components (Fiadeiro 2007).

Humans participating in systems, unlike agents, are not fully independent “agents”

as they are expected to follow norms, and their set of possible interactions are projected to

the set of monitored actions with regards to three important factors:

• The existing and available configurable technical elements: software,

hardware and business entities.

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

14

• The set of existing rules that causally governs interaction between technical

entities.

• Responsibilities — in terms of permissions, obligations and interdictions —

that are conferred upon human participants.

For example, human participants who are both willing and capable of over-helping

a system — in the sense of (Falcone & Castelfranchi 2000) — may or should be exploited

to alleviate sub-ideal situations. A doctor should be empowered to violate his/her assigned

role by accessing a patient’s medical record and performing operations—even if s(he) is

not authorised to do so —when this patient is in a life-threatening situation.

2.1.3 The Chapter’s Structure

This thesis commences by introducing in Section 2.2 a survey on existing

approaches towards incorporating social interactions within systems whether user-centric

or human-centred. Section 2.3 reviews the research in social interaction modelling within

the field of agent-based modelling. Section 2.4 presents concepts and abstractions that are

deemed to be valid for capturing the particularities of social interactions for the sake of

reasoning about them and supporting system participants in different contexts. Section 2.5

examines the capacity of existing approaches with regards to contextualising interactions.

2.2 User-centric and Human-centred Approaches

Tackling the issue of the dependable design and implementation of socio-technical

systems that operate within organisational environments requires novel ways of thinking

about the interconnections and interactions between social systems and technical ones.

Martin and Somerville argued that despite the fact that the structures of these systems

cannot perfectly be composed into a single form in a model (or series of models), a

structural approach still allows us to create intuitive, more fundamental connections

between them (Martin & Somerville 2006).

The meditation between the field of study of social structures in general and human

interactions in particular, on the one hand, and the conceptual and practical modelling of

technical systems, on the other hand, still gains the interest of researchers in social studies

(Akrich 1995, Sutcliffe 2000, Hall & Rapanotti 2005, Dobson & Martin 2006, Coiera

2007), in software engineering (Liu 2000, Ghezzi & Picco 2002, Cebulla 2004, Lock 2004,

Hall & Rapanotti 2005, Bryle & Giorgini 2006, El-Hassan & Fiadeiro 2006), and in

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

15

knowledge domains (Coakes 2002, Reddy, Pratt et al. 2003). Most of these studies were

either biased to putting the human at the centre of the modelling approach — forcing the

design and adaptation of technological aspects to their needs — (e.g. human-centred

approaches), or technology-centric approaches that give priority to the design of

technology or take it for granted, and constrain user interactions accordingly. In the latter

approach users are considered extrinsic entities whose impact is overlooked; this is often

revealed as ill-conceived by usability models.

Human-centredness is a design approach to information systems (IS) that gives the

main concern to humans and their interactions with systems over any technological

aspects. (Gill 1991) defines human-centredness as “a new technological tradition, which

places human need, skill, creativity and potentiality at the centre of the activities of

technological systems”. The human-centred approach to the design of technology emerged

as an answer to the identified deficiency of traditional approaches to software development

which deskill technology users and fail to take into account the rich human qualities of

working environments (Gill 1991).

The perspective in this approach is to develop a language of software interactions

that lies hidden behind the boundaries of “user” interactions with computers. A design that

is built around how users overtly interact with systems is limited due to the focus on the

technology rather than underpinning how that technology supports the system users in their

work. The key concept in this approach is how to enrich interaction design: a paradigm

that addresses the ways in which people collaborate with a technical artefact, and designs

artefacts in a way that reflects the purposes of these collaborations. A definition of the

interaction design term was coined by (Winograd 1994): “My own perspective is that we

need to develop a language of software interaction—a way of framing problems and

making distinctions that can orient the designer [...]. There is an emerging body of

concepts and distinctions that can be used to transcend the specifics of any interface and

reveal the space of possibilities in which it represents one point.”

Conversely, within user-centric systems, user interactions appear to be limited by

the tradition of Human-Computer Interactions (HCI) techniques (Jacko & Sears 2003),

which investigate how a single user might use a predefined technical artefact (i.e. software

or hardware component) to determine how to design the artefact to be usable. These

techniques are inadequate for designers considering aspects of role-dynamicity, context-

ideality and norms significance that would make the system more “human-centred.”

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

16

Human-centredness thus constitutes a feasible solution to the weaknesses of user-

centric approaches and their underlying usability-driven HCI techniques. This research

aims for a departure from the trend of user-centric approaches as it reduces “the world of

possibilities” ascribed to a human participant merely to interactions with a computer-based

system, putting aside interactions with machines and hardware components that could be

well-monitored by the system itself. This limitation is a result of the IS-orientation of both

user-centric and human-centred approaches.

The IS perspective invokes a view of human agency—the capacity for human

beings to make choices and to impose those choices on the world—that reduces human-

centredness to only those considerations required to model individual interactions with a

computer-system. This avoids considerations relating to violations, over-helping, and most

importantly the role of IT configuration in enabling or constraining organisational

processes.

 These aspects are the ones that realise the dimension of collaboration that the

presented approach aims for, and thus, it should be able to provided abstraction and

mechanisms at runtime to allow system participants to take initiatives and exert their

biddability when called upon to respond to emergencies. This sort of opportunistic

behaviour can be achieved through adjusting their normative state (i.e. permissions and

obligations conferred to them at runtime) and providing smart monitoring mechanisms that

manage the system configuration and guarantee both context-awareness and norm-based

interaction management. The next section will shed light on the approaches, frameworks

and techniques that have emerged in the area of agent-based contextualised social

interactions.

2.3 Agent-Based Social Modelling

The agent-oriented research to represent social models has shifted towards role-

based collaborative frameworks instead of agent-based ones. Castelfranchi (Castelfranchi

2003) justified this move by arguing that despite the alleged autonomy of agents, they are

restricted by responsibilities and obligations, which can be perceived as norms.

Additionally, social activities that determine role requirements are relatively stable

whereas the enactment of agents to roles may change rapidly.

Pacheco et al. (Pacheco & Carmo 2003) provided a norm-based view of

organisational modelling that promotes many important concepts e.g. collective agency

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

17

and role autonomy. Their view of deontic logic is standard in terms of operator’s inter-

definability but lacks the flexibility of describing norms deviation.

The OperA Framework, developed by (Dignum 2003, Dignum, Meyer et al. 2003),

devises a concrete approach to support the specification of a multi-agent system. This

approach distinguishes between the various mechanisms through which the structure and

the global behaviour of the model is described and coordinated. This conceptual model

provides both formal semantics that make verification possible and a methodology for

domain directed development. The major achievement of this approach, which I intend to

incorporate into the promoted methodological approach to capture human interaction

within organisational settings, is the provision of an explicit separation between the design

of the organisational components (i.e. the roles) and the active entities that animate those

components (i.e. the human participants or role players).

(Broersen, Dignum et al. 2004) extend this framework to model time-sensitive

obligations (i.e. deadlines), by proposing a combinatory form of contracts that uses multi-

modal logic with dynamic, temporal and deontic operators. This extension facilitates

representing deontic forms with temporal operators (e.g. O(p) until q). The combination of

dynamic and deontic logic, the considerations of adding temporal operators, and the

development of a formal action language were discussed earlier in (Meyer 1988, Dignum

& Kuiper 1997).

A similar approach has been proposed by (Weiß, Rovatsos et al. 2003), namely,

RNS approach which stands for Roles, Norms and Sanctions. It provides a formal schema

for specifying boundaries of autonomous agent behaviour, which consist of roles, norms

and sanctions. This approach has several interesting parallels with the promoted

understanding of norms and how to utilise them since they centred their idea around agent

autonomy and norm deviation management by providing roles space and positive and

negative sanctions respectively. Moreover, this approach provides a GUI to support

dynamic norms validation. The key distinctions between the proposed approach and the

RNS are summarised in the following table (Table 2.1).

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

18

Issue RNS The proposed

architectural approach

First-class citizen(s) Agents, roles, norms and

sanctions

Social norms, laws and tasks

Purpose Modelling and capturing the

autonomy of agents, who act as

owner of roles in order to

puruse goals, and its impact on

the agency of agent behaviour

Modelling collaboration

dependencies by capturing the

consequences of biddable

social interactions putting into

consideration the capabilities

and the qualification of the

system participants and the

context in which these

interactions take place.

Accessibility Stakeholders during

development and XML

enabled computational agents

at runtime

Stakeholder and system

specifiers during the

development and the 3Cs

configuration manager at

runtime

Role structure No explicit role-role

relationships

Explicit hierarchical role-role

relationships

Context sensitivity Included as preconditions for

norm activation and the

feedback of targeted agent’s

obedience to the activated

norm

Explicit speech-act-like

coupling of monitored

interaction and the captured

sub-ideal context which can be

hierarchically organised

Inter-norm relationships Chaining is allowed Chaining is not allowed

Normative impact of events Request events incur

obligations to be activated

Protocol type specification that

allow contextualising the

captured violations

Table 2.1 RNS vs. the proposed architectural approach

Ricci (Ricci 2002, Ricci 2004) has anchored his TuCSon agent coordination

framework on the role enactment operations, which provides contextualized agent-role

enactment procedures. His architecture devises a separate construct named (ACC) Agent

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

19

Coordination Context that allows the agent to perceive the space where they act and

interact. ACC is a protocol to allow engineers to encapsulate rules for governing

applications built as agents systems, and to mediate the interactions amongst agents. The

result is a systematic means of changing the global application behaviour.

2.4 Concepts and Abstractions for Social Interactions

The focus on the proposed approach is on concepts and models that can capture

collaborative and cooperative phenomena in which elements self-adapt to each other and

the environment. Such adaptations should be purposive with regard to the well defined

tasks and roles of an organisation, as opposed to emergent or ad hoc adaptation processes,

and this should allow us to reason about emergent properties resulting from their

interactions and interconnections. The focus herein is to model exactly when and how the

participants will go about their assigned tasks because this is a difficult task; sometimes

their interactions depend on factors that cannot be captured by modelling. What the

approach aims for is to know whether their participants’ interactions match their ascribed

set of permissions, inherited capabilities and imposed directed obligations, or not.

Reaching this goal is vital for reasoning about them and thus allowing the system to

respond in a way that preserves the overall good behaviour of the system.

I represent herein a context-capturing framework (Problem Frames), a formalism

for specifying normative relations (deontic logic), and a communicative framework

(Behavioural Implicit Communication).

2.4.1 Problem Frames

Problem Frames are generic problem types that capture structures and relationships

between various types of domains and system elements. Together they constitute a

problem-decomposition approach that has received a great deal of attention in software

engineering research as it excels in problem analysis, requirements decomposition and

specification. In a similar vein, Michael Jackson exploited his understanding of the

philosophy of phenomenology to relate intuitively requirements together with both

domains and software machines, which interact in a certain context to achieve certain

requirements (Jackson 1995, Jackson 2001).

Software machines are computations that usually reside in some hardware medium

and interact with a set of domains, which are wrapped all together in a Problem Frame

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

20

context. A problem context provides us with a view of collaboration rather than presenting

a function. The requirements of this collaboration are expressed in terms of the context

rather than the machine itself. The machine should be connected to each presented domain,

posing some shared (connection) domain in which both the machine and the domain are

involved (i.e. shared phenomena).

A simple problem frame, as depicted in Figure 1, is represented typically by a

context diagram showing one machine, one domain, and the shared phenomena between

them. The Problem Domain is that part of the world in which those effects are perceived

by the customer. The Requirements are the properties that the customer wants to observe in

the Problem Domain, through the shared phenomena b, as a result of the effects brought

about by the software as it executes and interacts with the domain via the shared

phenomena a.

Figure 2.1. A simple Problem Frame

Problem domains can be classified into three categories according to their inherent

nature of dynamicity:

• Inert — no action can be generated on its own accord

• Active — actions can be performed on their own accord

o Autonomous: actions are uncontrollable

o Programmable: actions can be enforced

o Biddable: actions can be suggested

• Reactive — actions can be generated in response to external stimuli

This research shows interests in biddable domains as identified in (Jackson 2001):

“[people] can be enjoined to adhere to certain behaviour, but may or may not obey the

injunction”. The reason for this is that their characteristics match social entities’ freedom to

re(act) within the premises of organisational norms (i.e. instructions, manuals, processes,

etc.) to respond to a changing environment or normative state (i.e. obligations and

permissions).

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

21

However, the original Problem Frames requirement analysis model has kept the

traditional view of the separation between the machine M and the general description of the

environment W, burying humans’ interactions into the presupposed specification of the

system, which contains HCI specifications among others. Figure 2.2, which is borrowed

from (Hall & Rapanotti 2005), illustrates a two-ellipse requirement analysis model that

contains: the environment description W; the statement of requirements R; the specification

S that maintains the fitting interface between the problem and its solution; and the program

P that resides in the machine and implements the specification S.

Figure 2.2 Problem Frames’ Requirements Analysis Model

Hall and Rapanotti developed an extension that caters for complex socio-technical

systems, and they introduced their three-ellipse model as shown in Figure 2.3. They allow

for separately describing the instructions that humans are supposed to obey in order to

achieve the ultimate goals of a system in general. They introduced a modelling ellipse for

human modelling, consisting of H and his/her knowledge K, which in turn allow other

important areas to emerge UI and I, user interface and instructions, respectively. Hall and

his colleagues (Brier, Rapanotti et al. 2004, Hall & Rapanotti 2005) concretised their

approach by introducing a knowledge domain to be presented in the solution space, thereby

maximising K — to bring in domain knowledge as design — and minimising H (i.e.

making a departure from agentifing human representation). Their objective was to separate

the description of the world from the social components that are subject of design.

I argue that their inclination to agentify human models agents, as found in (Yao,

Moody & Bacon 2001, Dignum, Meyer et al. 2002, Nickles, Rovatsos & Weiß 2002,

Zambonelli, Jennings et al. 2003, Dignum, Vázquez-Salceda et al. 2005) is not appropriate

for modelling viable software methodology to implement reliably evolvable software

S P MRW

Solution Problem

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

22

systems. It invokes Agent-based frameworks, which are usually domain-specific,

accompanied by tools and methods that are difficult to implement for most software

architects and engineers. It can be claimed that the question-marked area in the three-

ellipse diagram demonstrates exactly the dynamicity of collaboration between humans and

technical components, namely the criteria for monitoring and validation, particularly with

machines that are beyond the HCI capacity. These criteria influence the changes that are

required for handling both sub-ideal situations and unexpected human behaviours.

Figure 2.3 Problem Frames’ three-ellipse model of requirements

Throughout this thesis, the approach continues to conform to software architecture

principles by externalising and governing human interactions only. However, the key issue

herein is to compensate the human knowledge K, which is a subject of design, by

providing design constructs (e.g. roles, tasks and social laws) to support generic

representations, as explained in Chapter 4, and a methodological approach elucidated in

Chapter 5.

2.4.2 Speech Acts and Behavioural Implicit Communication

Austin proposed the Speech Act theory in (Austin 1962) and it was carried forward

by (Searle 1969, Searle 2002). The rationale behind the theory is that a language is not

limited to stating the affairs of the world but also has the capability to bring about new

states of affairs. The utterance of specific language sentences constitutes acts, which they

refer to as performative of speech acts (e.g. “I apologise”). Searle classified speech acts

according to one of five fundamental points: assertive, directive, commissive, expressive

and declarative (Searle 2002). If one takes a sample sentence: “I promise to meet you

tomorrow”, the main parts are called illocutionary points of an utterance, which contain

S

P
M

R

W

K
H

?
I

So
lu

tio
n

Pr
ob

le
m

UI

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

23

illocutionary force, (“I promise” as a force indictor) and propositional content (“meet you

tomorrow” as an asserted proposition).

Conversation of Actions is a generic sequence of related speech acts proposed by

(Winograd & Flores 1986), which allowed modelling human-agent interactions and

encouraged agent communication languages such as KQML (Finin, Labrou et al. 1995)

and FIPA ACL language (FIPA 2000) .

Behavioural Implicit Communication (BIC) is another communicative approach

that adopts a more intuitive way to achieve collaboration without explicit communication

(Castelfranchi & Giardini 2003). The BIC approach does not require special or specialised

behavioural signals to be added to the set of purposeful interactions between entities but

rather exploits genuine and purposeful interactions as communicative vehicles to improve

coordination. However, one of the main deficiencies of speech acts as a model of

communication is that it requires direct communication via a formalised language that

might be suitable for agents but not for humans. Very often indirect communication is not

only common, but also more effective. BIC allows effective communication between the

configuration manager and participants via the alteration of software and hardware

components around them. Such alterations would be taken more seriously than a notice

appearing in a user interface. In other words, what a participant does as a purposeful

interaction to bring about a new state of affairs on a certain occasion cannot always be

uttered or asserted, in parallel, into a communication media or protocol e.g. CSCW.

 Putting into consideration that collaboration cannot be realised without

communication, the communicative element pertained to these actions should be

represented as a physical indicator (i.e. certain signified behaviours to be contextually used

as massages that can be perceived by other collaborators to act upon. A common case is

when a participant enjoins a required behaviour that is usually prohibited in ideal contexts

signalling a role or a coordination violation. Unfortunately, this is often overlooked at

design time by system specifiers who are responsible for encoding scheduled processes and

routine practices.

Putting forward actions for communication also coincides with the essence of

workflow management systems. These are recognised among other collaboration-based

technologies, such as Computer Supported Cooperative Work (CSCW), precisely for the

way they bring task allocations to a first-class entity for collaboration rather than any other

communication protocol. Well-defined workflows, with clearly defined initiation actions,

termination actions and final goals, are necessary for overcoming the difficulties of

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

24

extracting intentions and goals of the performing agent, provided that these actions are

performed intentionally.

2.4.3 Social Interactions and Control: the Deontic Way

The inclusion of a “social dimension” means that people (or groups of people) need

to be considered not as external users but as another class of components that, together

with software and devices, perform roles that are vital for the “good” behaviour of the

system. This requires a modelling approach that incorporates normative concepts such as

permissions, obligations and power, and that models the violations that can take place so

that processes and underlying software can be reconfigured to react to non-normative

situations in ways that ensure agreed, possibly minimal, levels of service.

The usefulness of deontic logic for modelling the behavioural aspects of systems

was identified by logicians and computer scientists three decades ago. Deontic-based

frameworks highlight crucial aspects of modelling biddable interactions of social entities

through normative relations which include formalising the logic of obligations and

permission (i.e. deontic logic), capturing sub-ideal situations and imposing obligations on

their presence (i.e. contrary-to-duty obligations), and thereby prompting alternative control

mechanisms to handle violations of norms committed by these entities (i.e. normative

positions).

2.4.3.1 Deontic Logic

Deontic logic is a branch of philosophical logic that provides a formal framework

for modelling and reasoning about permissions, prohibitions and duties or obligations.

What is appealing in deontic based approaches to modelling behaviour, from the point of

view of social interactions, is the clear separation that is achieved at the formal level

between the indicative (how things are) and the optative (how things should be) modes of

system specification2. The distinct advantage in using deontic concepts is that they allow

definitions of concrete normative system behaviour, but at the same time, they sustaining

the possibility of capturing behavioural forms that do not comply with those norms. The

first standardised system of deontic logic was proposed by Von Wright in the fifties (von

Wright 1951) and it has been followed by many variants and variations: e.g. dyadic deontic

2 Specification modes are borrowed and adapted to be used in a slightly different context
from (Jackson 1995). Jackson, M., Software Requirements and Specifications: A Lexicon
of Practice, Principles and Prejudices, 1995.

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

25

logic (von Wright 1964) and deontic dynamic logic (Meyer 1988). The extensive research

in this area gained no successes in unifying these approaches as most of them are still

paradoxical (Hansen, Pigozzi & van der Torre 2007) and semantically problematic in

relating obligations to permissions (Boella & van der Torre 2003).

Deontic-based frameworks do not insist that social participants adhere only to

normative behaviour; they allow for the exploitation of possible violations as sources of

information, before deciding upon which remedial actions must be taken, or which

sanctions to apply on biddable participants when capturing non-compliant behaviour.

In this context, the thesis focuses mainly on the advantages of using deontic

concepts for modelling autonomous interactions as previously established in the following

domains of interest: formal organisational societies (Dignum, Meyer et al. 2002, Dignum,

Vázquez-Salceda et al. 2005), multi-agent coordination (Barbuceanu, Gray et al. 1999),

business processes (Padmanabhan, Governatori et al. 2005), and speech acts (Johannesson

& Wohed 1999). The argument for using these concepts is that organisational models need

to capture social behavioural patterns within business processes operating in open

environments. Thus, this architectural approach requires mechanisms to systemise,

support, and recommend efficacious or “good” behavioural patterns on the one hand, and

impose sanctions on “bad” ones on the other hand. These mechanisms provide reliability

and trust to the overall system behaviour.

The essential element of incorporating such concepts to business processes is to

provide monitoring mechanisms for both expected (requested) and the entitled

(empowered) aspects of actions, in order to deal with possible violations by detection and

sanctions. The concept of normative positions—among other deontic concepts—enables

establishing formal frameworks over which system modellers can reason about the

different degrees of compliance, entitlement and capabilities of social entities.

2.4.3.2 Ideal and Sub-ideal Worlds

The idea of sub-ideality has been developed as a response to a criticism related to

derived obligations, namely obligations that are not conditional but arise under certain

factual circumstances (e.g. obligations that are imposed due to the detection of a violation

of another obligation). Von Wright introduced the first notion of the context-based form of

Standard Deontic Logic (SDL), represented by the following combination of symbols

P(p/q). It is interpreted as follows: “it is permitted that p given that (on condition that) q”

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

26

(Lomuscio & Sergot 2003a). This idea of sub-ideality has been extended in several

research papers (Prakken & Sergot 1996, Carmo & Jones 2002) to provide Contrary-to-

Duty obligations (CTD) that are put into actions when primary obligations are violated. A

well-known example of primary (a) and CTD obligations (b) is:

a) You should not kill Mr. X

b) But if you kill Mr. X, you should do it gently

The CTD obligation is put into action when the primary obligation is violated

which brings about a sub-ideal situation. CTD formalism has several problems:

• There is no provision for controlling the overall behaviour when the

primary and/or the CTD obligation are violated.

• An inherent problem of SDL that it cannot model different levels of sub-

ideality: Modellers can only model a flat range of sub-ideal worlds (Carmo

& Jones 2002).

• The formal relationship between permission and obligation is still subtle

and pose some logical paradoxes as described in (Boella & van der Torre

2003).

2.4.3.3 Normative Positions

Normative position is a method for outlining the space of all logically possible

“positions” of some specified entity. It was originally established by (Kanger & Kanger

1966, Kanger 1972, Lindahl 1977) and extended by (Sergot 1999, Sergot 2001). It can be

viewed as a combination between deontic logic and the logic of action-agencies resulting

in a formal representation of normative concepts like duties, rights, authentication, etc.

Kanger’s and Lindahl’s theory has a normative component for reasoning about

what kinds of actions are ethically or morally desirable or even permissible. It consists of a

normative position together with a corrective action that influences how well a particular

action performs in correcting a sub-ideal situation (Sergot 2001). Such a normative

component is complementary to other “causal rules” in the sense that it provides a guide

for corrective actions to recover — from a sub-ideal situation — to a stable state of a

system.

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

27

2.5 Contextualising Social Interactions

The presented research asserts that human interactions are part of the human

communication and social systems. More specifically, monitored human interactions are

constituents of social systems that enable architectural reconfiguration mechanisms to

interpret reason about and provide the required changes across global configuration

protocols.

In other words reasoning about human interactions as a constituent part of the

monitored contexts can be used as a vehicle to extract these behaviours from their

agentfied aspects e.g. BDI. These can then be exploited as architectural building blocks for

a constructive approach to modelling norm-based socio-technical systems.

In hospital settings for example, system goals are a little blurred; even indicators

like customer satisfaction are quite difficult to measure — at least over the short term. Also

the relations between the participants are complex and the context elements are almost

beyond the cognitive capabilities of existing monitoring systems. Even if the context

elements are successfully captured, normally the doctor’s interpretation and judgment

prevails over statically prescribed rules.

Similarly, these interaction-centric social concepts can be well-extended to cover

different domain of interests with respect to socio-technical systems. Comparing the

above-mentioned medical-oriented role relationships with their counterparts in other

domains (e.g. flight-cockpit interaction modelling), I have perceived more formal relations

between the pilots’ roles with regards to normative positions. I also noticed that, unlike

healthcare settings, the cognitive power gap between system participants (i.e. pilots) and

the cockpit monitoring system is almost negligible in normal situations. Flight cockpit

studies usually concentrate on display concepts, workload and situation-awareness.

Additionally, the intertwining between the auto-pilot system, which includes

monitoring and actuator agents that interact with the environment in a causal way, and the

human pilots, who may take the initiative at any time and override decisions that were

made during automation, clearly defines the borders between causality and biddability.

Nevertheless, the problem is still there: what are the relevant properties for a sub-

ideal situation? The main problems with the context-driven adaptations are:

a) Defining the “minimal set” of the context parameters: as an example

heart-beat rates, whether for an athlete or an 80 year old man.

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

28

b) Guiding humans when there are several alternatives that crosscut a single

defined “sub-ideality”.

These problems are exacerbated when handling intensive software systems that

operate in a technology-rich environment where software components mingle with social

and technical ones. Monitoring mechanisms for the context, and thus interaction

management, are highly dependent on the definition of the constituent context elements.

For example, (Summers, Jansen et al. 1997) shows how tricky and controversial the

standardisation of the minimal data-set in an ICU bed is.

2.6 Discussion

Deontic logics and related formalisms have been the focus of this chapter. Due to

the severe problems that deontic logic poses, this thesis is incorporating its essence in an

engineering context (i.e. configuration-oriented). The modelling of biddable social

interaction dynamics has, however, not attracted widespread interest. In the first place the

impact of such dynamics on system well-being has not been widely recognised. The level

of expertise, data and resources required to build and calibrate such models did not appear

justified; there is a perception that the technological means for tracking these interactions

are insufficient in the face of continuously changing contextual information.

Additionally, in my view, sub-ideality is not only a property of the environment

(e.g. there is a patient in a critical situation) but also include the way the protocol is

behaving in a particular context (an unqualified medical staff manipulating a ventilator

machine that is attached to the patient) or a qualified one insisting upon adjusting the

ventilator when normative conditions are not met.

In order to respond to potentially disastrous situations, every piece of equipment

has to be interconnected with social interactions using social wires: connections that

govern these interactions should exploit normative positions. These wires have to address

the following issues:

• Does the social interaction modelling (and the reconfiguration adaptations

that incur) relate significantly to organisational settings, software and

available resources, and if yes, how?

• How can a faithful representation of people, roles instances, role players

and the context level of ideality be maintained?

 Chapter 2 Social Interactions: Premises, Challenges and Perspectives

29

• Can the model be systematically updated to remain an accurate

representation of the possible technical configurations, on the one hand, and

the organisational structure on the other?

The RNS approach (Weiß, Rovatsos et al. 2003) mentioned in Section 2.3 shows

several interesting parallels with my work since the research team centred their idea around

agent autonomy and norm-deviation management by providing roles space and positive

and negative sanctions respectively. Moreover, the approach provides a GUI to support

norms validation dynamically. Normative actions equate to process change, which

potentially moves the running process from one process to another.

In summary, the presented literature review showed how agent-oriented approaches

to normative agency can be used in the domain of process modelling/management and how

rules can define who should be empowered through rights assignment/alteration. Such

power assignment rules (or competence conferring norms in the sense of (Spaak 2003) are

often represented using a counts-as structure, e.g. (Jones & Sergot 1996), to denote the

context in which they operate.

The main aim of this chapter was to illustrate the kinds of nuances and distinctions

that can be ascribed to biddable human interactions compared with causal ones, and to

pave the way for the subsequent chapters — namely 3, 4 and 5 — to indicate how these

interactions can arise in practical “architectural” settings.

.

Chapter 3

Software Architecture from Different

Perspectives

3.1 Overview

In Software Engineering, interaction-centric approaches can be supported by

“architectural techniques”. In the last two decades, architectural modelling approaches

have promoted interconnections to first-class citizens by extracting the code that, in the

components, is responsible for interactions, into connectors (Shaw & Garlan 1996, Allen &

Garlan 1997a, Bass, Clements & Kazman 1998). Architectural concepts and technologies

provide high-level standards and open interfaces for the delivery of high quality software

systems that are maintainable and evolvable (i.e. agile software systems).

This chapter reviews the terminology and the concepts of software architecture

based on an examination of existing research literature together with my own insight, and

therefore included the interactions of non-technical elements (i.e. social/human

components) within architectural models. Among other architectural concerns, dynamic

evolution of software system has emerged as a crucial feature; it is required by software

business clients to handle changes in system requirements or the environment they operate

in.

 Chapter 3 Software Architecture from Different Perspectives

31

3.1.1 Software Architecture on the Move

“Software Architecture” as a software engineering discipline intuitively borrows

“architecture” as term which refers to architecture in buildings and urban planning

(Alexander, Ishikawa et al. 1977). This informal explanation of software architectures is

tightly coupled to “the structure” of software systems (Allen & Garlan 1997b), namely

bringing apparent architectural skeletons (Kramer 1994) to fore in the sense of those

promoting structural properties that can be perceived as higher level patterns or first class

entities. Conversely, movable parts such as computational units are hanged on these

structural elements (c.f. flesh in the human body). Consequently, they can be abstracted

and thus can be replaced or altered through local adaptation or reconfiguration.

Architectural concepts do not only provide means of controlling the complexity of

developing software, but also play a vital role in supporting the current need for systems

that are evolvable and configurable at runtime (Andrade & Fiadeiro 2003). The demand for

such architectural quality keeps growing as industrial application software systems strive

to provide means for flexible and runtime re-configurations.

3.1.2 Engineering vs. Architecture

Software architecture as a discipline aims at supporting software developers

primarily in creating structural and behavioural blueprints of systems. However, targeting

runtime adaptivity would also maximise the role of customers and users in the

development and the evolution of systems. Software architecture then would incorporate

some features of other architecture disciplines: focusing on the customer’s requirements

and then designing the answers of these requirements in terms of effective software

artefacts within given economic and technological constraints.

Correspondingly, and with regards to agility, software architecture approaches

focus on supporting developers by maximising their role in the evolution processes― an

inclination that is inherited from engineering― whereas they should have focused, as a

tool for architects, on maximising the qualities that should be enjoyed by capable system

users, participants and domain experts (e.g. usability, modifiability and resilience to

runtime changes).

 Chapter 3 Software Architecture from Different Perspectives

32

3.1.3 The Chapter’s Structure

This chapter is structured as follows: Section 3.2 reviews the existing terminology,

concepts and various architectural approaches. It also examines the capacity of existing

architectural approaches with regards to providing suitable abstractions to handle and

reason about the interactions of non-technical elements (i.e. components). The concepts

and practicalities of architectural evolution are the focus of Section 3.3 to explicate the

different approaches to software agility, in general, with particular interest on

reconfiguration techniques. Section 3.4 explains the 3Cs architectural approach to agile

and interaction-centric software architectural modelling which will be used, throughout

this thesis, as a vehicle to convey new concepts, primitives and techniques for addressing

biddable interactions.

3.2 Software Architectural Paradigms

The scope of Software Architectures overlaps several other research areas in

Software Engineering and Programming Languages (Andrade et al 2003). For instance, the

central concept of separation between "Computation units" or subsystems—the way basic

functionalities of system are ensured— and "Communication"—the mechanisms through

which these subsystems can be reconfigured in the sense of Configurable Distributed

Systems (Moazami-Goudarzi 1999).

Software architecture paradigms can be differentiated according to the view of

architectural elements: Perry and Wolf define processing elements as “transformation of

data”(Perry & Wolf 1992), whereas (Shaw & Garlan 1996) promote components as “the

locus of computation and state”. This component based view was elaborated by (Shaw &

Clements 1997): “A component is a unit of software that performs some function at

runtime”. Researchers such as (Fielding 2000) emphasise the differentiation and the

separation between structural and behavioural abstractions of software systems as the

former concentrate on the modularity of the static source code whereas the latter captures

the runtime behaviour of system elements. Others e.g. (Bass, Clements et al. 1998)

advocate that system architects can benefit from a combined view of both abstractions. The

definition of software architecture in their well-known book— Software Architecture in

Practice—is widely acceptable among the software architecture community: ”The software

architecture of a program or computing system is the structure or structures of the system,

 Chapter 3 Software Architecture from Different Perspectives

33

which comprise software elements, the externally visible properties of those elements, and

the relationships among them”.

3.2.1 Architectural Elements

(Garlan & Shaw 1993) describe their view of system architectures as a collection of

computational components associated with a description of the interactions between these

components—the connectors. The architecture of a software system articulates that system

in terms of components and of the behaviours that emerge from interactions among those

components. In addition to specifying the structural and topological view of the system, the

architecture intuitively interlinks system requirements and elements of the constructed

system.

These architectural concepts provided the conceptual framework on which

researchers later develop formal frameworks, models and languages to capture formally the

informal diagramming icons (i.e. boxes and lines) that represent system modules and their

interconnections. Hence, software architectures describe the overall properties of the

system structure in the sense of what has been required for a while by the developers of

complex systems, namely programming-in-the-large (DeRemer & Kron 1976). This

structural view of complex software systems reveals behavioural properties of software

systems. The captured behavioural properties are those that can be modelled through high

level architectural patterns (i.e. connectors) which by their existence and their evolution are

the determinant of system behaviour (e.g. contracts).

3.2.1.1 Components

Components are the most recognisable elements of software architecture. Research

in software architecture devised different understandings of components; however, most of

them can agree upon the aforementioned taxonomy of (Perry & Wolf 1992). (Garlan &

Shaw 1993) describe components simply as the elements that perform computation. My

research builds on Garlan and Shaw’s general view of components as units of computation

and adheres to a generic definition of components, as defined by (Szyperski 1998) which

advocates that components can support multiple interfaces and can be internally composite.

 Chapter 3 Software Architecture from Different Perspectives

34

3.2.1.2 Connectors

Connectors are abstractions by which communication and/or coordination between

components can be achieved. (Perry & Wolf 1992) describe connecting elements as the

glue that holds the various computational elements of the architecture together. A more

precise definition is provided by (Shaw & Clements 1997): “A connector is an abstract

mechanism that mediates communication, coordination, or cooperation among

components”. From the functional point of view, several techniques were used to

implement connectors as mean of communication between components: shared

representations (e.g. Linda’s tuple space (Gelernter 1985)) remote procedure calls,

message-passing protocols, and data streams.

An architectural connector consists of: (1) a set of roles that capture the types of

component that can be interconnected and (2) a glue that enforces an interaction between

components that instantiate the roles. The formalisms that are used for the roles and the

glue differ from one approach to another, as it explained later.

Generally speaking, in interaction-centric approach to modularisation as promoted

in the area of software architecture, connectors coordinate interactions as external entities.

In the connector-based approach coordination mechanisms put in place through connectors

are activated across wires that link components in the underlying communication network

and thus can be superpose dynamically. Hence, evolution can be made to be compositional

over the architectural structure of the system (Andrade, et al. 2003).

3.2.1.3 Configurations

The concept of configuration recalls different meanings to different IT people:

designers, analysts, software engineers and architects. Generally speaking, “a configuration

consists of entities or “items” that are present in a system and the inter-relationships

between them” (Lock 2005). It can be comprehended as a skeleton or an exoskeletal

structure (Kramer 1994) that does not focus on how processes are realised nor how the

internal computations of its basic entities are realised, but rather exhibits the functional

dependencies between various computational units (components) that emerge from their

participation in a certain execution scene or protocol. Within an execution scene, physical

connections are superposed on the participants to control their interactions. A patient

station at an ICU unit or a theatre may be considered as an example of an execution scene

or protocol

 Chapter 3 Software Architecture from Different Perspectives

35

In other words, complex systems can be described in terms of a set of

configurations to convey structural and behavioural properties of such systems at runtime.

Various notations—either textual or graphical—may be used to represent configuration

visually, facilitate the description of possible computations, interactions and

reconfigurations (i.e. possible discrete configurations). When these configurations are

presented formally they are capable of setting configuration constraints to control

interactions, and reconfiguration, thereby facilitating animation and possibly verification of

system properties, which in turn allows us in order to reason about the overall behaviour of

the configuration at hand.

3.2.1.4 Properties

The set of architectural properties within software architecture includes all

properties that derive from the gross decomposition of complex system into configurations

of components and connectors, which ensure they will interact in ways that allow global

system properties to emerge. Properties are either functional properties that are achieved

by architectural elements or non-functional properties, such as component reusability,

dynamic extensibility and robustness. The later type of properties is usually referred to as

quality attributes (Clements, Bachmann et al. 2004).

Properties stem from the set of constraints within an architectural configuration,

which is the sum of all participating elements along with emergent properties that originate

from composing interconnections (e.g. applying a set of connectors on the same

components might generate emergent behaviour).

As an example of these properties, the pipe-and-filter architectural style presented

by (Garlan & Shaw 1993, Allen & Garlan 1997b) attains the qualities of reusability of

components and configurability of the application by applying generality to its component

interfaces—constraining the components to a single interface type. Hence, the architectural

constraint is a "uniform component interface", motivated by the inclination to

generalisation, in order to obtain two desirable qualities that will become the architectural

properties of reusable and configurable components when that style is instantiated within

the architecture (Fielding 2000).

 Chapter 3 Software Architecture from Different Perspectives

36

3.2.1.5 Primitives

Identifying components that correspond to the domain concepts and element along

with types of allowed interconnection are not enough to achieve concrete architectures. In

order to construct architectures or architectural styles, composable architectural primitives

are needed which comprise meta-level semantic modelling constructs that refer to domain

elements and correspond to their implementation-level instances to be manipulated at

runtime. These primitives exhibit well defined behavioural properties to provide

implementation solutions that are compositional with respect to the semantic offered by the

modelling primitives (Andrade & Fiadeiro 2003).

 Compositionality allows not only a structure obtained at the modelling level to

correspond to its concrete instance at the implementation level, but also minimises the

effect of changes that are required at runtime (i.e. reconfigurations at the implementation

level) when changes operated at the level of the business model. Supporting locality of

changes that are performed at runtime, without taking down other services running parallel

to the targeted service is a main objective of agile software systems (Andrade & Fiadeiro

2003).

Alfa framework of (Metha & Medvidovic 2003) is an example of how a

framework can support composing architectural styles from architectural primitives. Their

proposed technique is intuitive; however, the abstraction levels of these primitives are very

low when handling business and domain-specific entities.

3.2.1.6 Styles

Styles in architectures were identified initially by (Perry & Wolf 1992) who

emphasised constraining architectural elements and their relationships. (Garlan & Shaw

1993) defined styles in terms of pattern interaction among typed components continuing to

treat software architectures as formal description of system. (Moriconi & Xiaoli 1994)

coined another definition that highlights the gap between abstract or design elements that

participate in a style and concrete ones. Their view of styles comprises the same

architectural elements as vocabulary of design elements along with a set of well-formed

constraints that must be satisfied by any architecture written in the style, together with a

semantic interpretation of the connectors. The first departure from this static view towards

handling architectures as running systems was given by (Abowd, Allen & Garlan 1995)

who concretised and formalised styles as the syntax of components and connectors,

 Chapter 3 Software Architecture from Different Perspectives

37

behaviour as their semantics, and topological structure as the syntax of configurations;

however, the did not separate interaction and data aspects. In this line, (Mètayer 1998)

formally specified communications based on the geometry of architectural styles in terms

of a graph grammar which model the box-and-line analogy. A more recent view of

architectural styles takes commonality into account in order to abstract a collection of

architectures by common resource types, configuration patterns and constraints (Fiadeiro,

Lopes & Wermelinger 2003).

Supporting a particular architectural style or styles provides the ability to

“specialise” generic interaction-governing patterns in the sense of (Mètayer 1998) and/or

architectural adaptation at runtime. Analogously, and from a methodological point of view,

one would recall Loerke’s view of architectural styles (Loerke 1990), in the sense of

programming styles, which postulated as critic’s view where past architectures are

accumulated and imposed in the form of constraints on the architecture at hand. In other

words, a style is considered as a method of abstraction, rather than a stack of personalised

design experiences. With regards to supporting architectural adaptation, there are few

research attempts that utilise architectural styles to guide the process of adaptation (Garlan,

Cheng & Schmerl 2003). More details in this perspective can be found in Section 3.2.3.1.

3.2.1.7 Views

A view is a projection of a whole system from the perspective of a related set of

concerns and refers to a particular architecture of the system. Kruchten provided a

comprehensive set of views namely 4+1 views: (logical, process, physical, development),

and scenarios without any specific notation (Kruchten 1995). (Hofmeister, Nord & Soni

1999) offer a systematic, detailed architectural design method and a representation of

software architecture. They use UML meta models to define conceptual, module, execution

and code views. Compared to (Hofmeister, Nord et al. 1999) and (Kruchten 1995), Issarny

and his colleagues demonstrate a functional and interaction view along with various quality

attributes such as efficiency and dependability (Issarny, Saridakis & Zarras 1998).

Architectural views are defined by (Clements, Bachmann et al. 2004) as follows:

“A view is a representation of a set of system elements and the relations associated with

them”. They devised three categories of views: Module, Component-and-Connector and

Allocation. Another technical conceptualisation of views given by (Heckel, Engels et al.

1999): “A view is an incomplete specification of a system focusing on a particular aspect

 Chapter 3 Software Architecture from Different Perspectives

38

of a subsystem”. The approach of Heckel et al. to view modelling partially specifies the

structure of the system’s state and analogously captures partially what the effect of an

operation is (Heckel 1998, Heckel, Engels et al. 1999). This provides partial or loose

semantics of transformations where views conform to a reference model. Chapter 6 will

shed more light on how to exploit Graph Transformations (GT) to model and integrate

architectural views.

3.2.2 Architectural Definition Languages (ADLs)

Architectural Definition Languages (ADLs) have been the focus of attention of

architects and developers as means of specifying structural and behavioural properties of

software systems. They facilitate constructions of high level models in which systems are

specified as compositions of architectural elements (i.e., components and connectors) and

support reasoning about structural and/or behavioural properties at early stages of the

software engineering life-cycle. According to (Medvidovic & Taylor 1997), ADL is a

language that provides features for the explicit specification and modelling of a software

system's conceptual architecture, including at a minimum: components, component

interfaces, connectors, and architectural configurations.

Corresponding to aforementioned understandings of the software architecture

concept there are parallel approaches for specifying, implementing and reconfiguring

ADLs. For example, Darwin (Kramer & Magee 1998) is a declarative architectural

definition language which is intended to be a general purpose notation for specifying the

structure of systems composed of diverse components using diverse interaction

mechanisms (Magee, Dulay et al. 1995). Darwin's interesting qualities resulted from

applying lessons learned from a previous framework (i.e., Conic, (Kramer 1990)). The

dynamic composition of architectures is among its distinctive features, which allow for the

specification of distributed architectures. Parallel to this approach, (Allen & Garlan 1997b)

provide a formal basis for specifying the interactions between architectural components

through specifying connector types by their interaction protocols using CSP (Hoare 1985),

CHAM and pi-calculi for formalising the approach.

While earlier ADL proposal focused on presenting the static modular view of the

system code, recent research surveys (Batista, Joolia & Coulson 2005, Gomes, Batista et

al. 2007) have recognised the benefits of coupling ADLs with underlying runtime

environments to support systematic and integrated system development.

 Chapter 3 Software Architecture from Different Perspectives

39

Viewing ADLs from another angle, they can be perceived as methodological

approaches and thus often introduce specific architectural assumptions that may limit their

ability to express some architectural styles. More specifically, an ADL could be designed

particularly for a certain architectural style, thus improving its capacity for capturing the

properties of this style at the expense of generality. Conversely, ACME (Garlan, Monroe &

Wile 1997) is an ADL that attempts to be as generic as possible, however this feature

comes at cost of overlooking style-specific analysis.

With regards to software system agility, coupling ADLs with runtime environments

drew the attention of software architects to invest on “Coordination Languages and

Models”, as presented by (Gelernter & Carriero 1992). The reason for that is it allows

putting forward: (1) concepts such as separation of concerns (Hursch & Lopes 1995, Mens

& Wermelinger 2001, Andrade, Fiadeiro et al. 2002), (2) architectural primitives (Andrade

& Fiadeiro 2003), and (3) mechanisms through which architectural models can be

reconfigured dynamically (Moazami-Goudarzi 1999).

3.2.3 Architectural Reconfiguration Models

Known classes of software systems that are able to benefit from dynamic software

evolution include 24X7 systems, which should adapt to frequent changes in their execution

environment. Emphasis should be placed on achieving agile systems through architectural

reconfiguration or adaptation as a runtime concept which makes a departure from the

well-know term of software evolution devised by (Lehmann 1980) which focuses, instead,

on the whole development process life-cycle steps and requires the system to be off-line

when performing changes.

Conic, as on of the earliest attempts at dynamic ADLs, introduced a general model

for dynamic reconfiguration which only permits change to occur when the affected

portions of the system are in a quiescent state. Structuring systems as interacting

components was the key to address the scale, complexity and evolution involved. This

research pioneered the separation the structural language—referred to as a configuration

language, which describe component configuration of the system—from component

composition support, however it was dependant on a specific programming language and it

lacked separation of concerns.

This led to a new architectural framework, i.e. Darwin, equipped with a language

for describing software structure in terms of components and their bindings. It is a pure

declarative language, with sound semantics. Darwin has been designed to be sufficiently

 Chapter 3 Software Architecture from Different Perspectives

40

abstract to support multiple views in the sense of (Kruchten 1995). More specifically

Darwin corresponds to a couple of Kruchten’s views: the behavioural view and the service

view for the purpose of behavioural analysis and construction, respectively. Each view is

an elaboration of the basic structural view (i.e., the skeleton upon which the flesh of

behavioural specification is hung).

3.2.3.1 Architectural Levels of Reconfiguration

In order to inject dynamic reconfiguration into architectural systems, they need to

be causally connected at runtime to the corresponding high-level software architecture

specification. In more detail, there are two causally-connected models: an architecture-

level model and a runtime-level model. Dynamic reconfiguration can be applied either

through an architectural specification at the architecture level, or through reconfiguration

primitives at the runtime level.

The main goal of successful reconfiguration abstractions is to endow instance

architectures with the capability to manipulate portions of its elements at runtime. These

abstractions reside in either of the following architectural levels of abstraction, which can

be utilised for the purpose of applying changes: ADL/style level and instance level:

• ADL or style level: generic patterns—an example could be a ‘protocol

stacking’ style, which defines a basic set of elements and constraints for

describing linear compositions of ‘protocol’ components.

• Instance level—domain-specific and easy to handle in terms of

adding/deleting components and/or connectors.

An example of the latter (i.e., instance level) is Wermelinger’s approach to

reconfiguration (Wermelinger 1999). This approach provides simple reconfiguration

scripts rather than a modelling language with complex construct. Reconfiguration scripts

consist of primitive reconfiguration operation e.g. adding/deleting components and/or

connectors. However, within the CommUnity framework, reconfigurations modelled using

Graph Transformation (Wermelinger, Lopes et al. 2001). Another example of instance

level reconfiguration is OpenCom (Coulson, Blair et al. 2004) which uses reflection as

mean to query component states and perform ad hoc reconfigurations.

ACME is an ADL promoted by (Garlan, Monroe et al. 1997) that exemplifies

architecture/style level configuration. Its reconfiguration operations depend on:

 Chapter 3 Software Architecture from Different Perspectives

41

• Invariants— ensuring system-preserving constraints despite the dynamic

insertion/removal of ACME elements.

• Extension operator— type extension (extend type at runtime)

• representation (local reconfiguration)—allowing re-instantiation of the

component with different interfaces

• Properties—used to describe how components maybe changed at runtime.

The gap between runtime level and ADL level management of reconfigurations has

been identified by (Joolia, Batista et al. 2005) who provided a causal connection between

the ADL level and the runtime level to support both program and ad hoc reconfigurations.

They came up with the Plastik framework, which is a meta-framework that integrates both

the ADL level management and runtime level management. Such an integration attempts

to address the limitations of depending on one of them in reasoning about architectural

reconfiguration.

Figure 3.1 Palstik meta-framework (Batista, Joolia et al. 2005)

It formally specifies runtime configurations through integration and possesses an

architecture configurator for ADL (ACME) and a runtime configurator for reflective

component runtime (OpenCOM). Consequently, Plastik allows reconfiguration at multiple

architectural levels, which enable considerable flexibility. Both foreseen (i.e. programmed)

and unforeseen (i.e. ad hoc) reconfigurations are supported. Issues involved in handling

these two types of reconfiguration at both levels and the mapping between them, are

Style Level

Instance Level

Runtime Level

ADL
Levels

OpenCOM
Meta-models

Runtime
Configurator

Architectural
Configurator

 Chapter 3 Software Architecture from Different Perspectives

42

discussed in he following subsection. Herein, Figure 3.1 illustrates the architecture of

Plastik.

3.2.3.2 Reconfiguration Operations

Reconfiguration operations are either programmed or ad hoc: programmed

reconfiguration is a predication-action specification that is supported at ADL level (e.g.,

when a patient’s vital signs are below average the respiratory machine might be boosted

beyond the system constraint), whereas ad hoc reconfiguration stipulates changes that are

not and cannot be foreseen at system design. In order to handle such reconfigurations in a

way that preserves system consistency, general invariants have to be incorporated into the

specification of the system, and any changes have to be checked against these invariants,

otherwise, they would be considered as violation. For example a doctor can exceed the

system limits of a respiratory machine to handle a critical situation despite the fact it had

not been considered at design time.

3.3 The 3Cs Approach

3.3.1 Background

Maibaum postulates that software engineering is a departure from other engineering

disciplines where artefacts are conceptual rather than being physical (Maibaum 1993).

Fundamentally, software engineering research is different from other engineering

disciplines as research ideas may take decades to be filtered through sensible engineering

practice. The main reason is that real-world acts as physical constraints on construction of

physical artefacts in a way, which is more or less absent in science, and engineering of

concepts.

An example of this is the extensive research work of Fiadeiro and his colleagues

that put algebraic mathematical specifications at the service of systematic programs

construction, behavioural modelling and evolution. The foundations of this approach falls

in the tradition of general system theory and the underlying mathematical semantics of this

approach is based on category theory, as thoroughly explained in (Fiadeiro 2004).

The purpose of extending these theories is to encompass software application

develop a model of collaboration that extends formal notions of architectural connector as

 Chapter 3 Software Architecture from Different Perspectives

43

mentioned earlier. The semantics of such architectural techniques builds precisely on

Goguen’s categorical approach to general systems theory (Goguen 1973).

Fiadeiro’s approach to formalising software architectures and particularly

systematic program specifications take the above concepts into consideration; it matches

the style of the counterpart formalising approaches that target ADLs in the sense of (Allen

& Garlan 1997b) which in turn became a de facto in (Bass, Clements et al. 1998). The

distinct feature in Fiadeiro’s approach to architectural modelling is that it abstracts the

choice of the underlying design language and behavioural models.

Compared to other language-specific ADLs e.g. (Berry & Boudol 1992, Garlan,

Monroe et al. 1997) which focus on the action-view (and thus models the organisation of

the behaviour of the system as compositions of components ruled by protocols of

communication and synchronisations e.g. CSP and CHAM), the categorical approach of

Fiadeiro et al., focuses on structures and interconnections.

More precisely, the categorical approach of Fiadeiro et al. has built upon on general

system theory to specify systematic software construction (Goguen & Burstall 1992,

Goguen 1996) and pushed it further towards a structure-based architectures. This

categorical approach is reflected by a formalised language CommUnity and its

diagramming tool (i.e., CommUnity Workbench) which formalises system structures as

categorical diagrams where components are programs and connectors are star-shaped

configurations of programs (Fiadeiro & Maibaum 1996, Fiadeiro & Maibaum 1997). The

work of (Wermelinger, Lopes et al. 2001) provide a formalisation approach for specifying

architectural reconfiguration scripts using double-pushout GT approach.

The mathematically rigorous techniques of Fiadeiro et al. informally crystallises the

concepts, styles and primitives that were modelled in their 3Cs business architecture

(Andrade, Gouveia et al. 2002, Andrade & Fiadeiro 2003), which in turn are borrowed

from the CommUnity approach (Fiadeiro & Maibaum 1996, Fiadeiro & Maibaum 1997).

3.3.2 The 3Cs Business Architecture

The 3Cs architectural approach has been demonstrated in (Andrade & Fiadeiro

2003) and (Andrade, Fiadeiro et al. 2001) which includes a business micro-architecture to

support engineers and system specifiers to model and implement evolving component-base

systems. Architectural primitives such as coordination contracts (Andrade, Fiadeiro et al.

2001) model rules that determine how and when components need to interact in order to

fulfil business requirements. The 3Cs can be classified as coordination based approach

 Chapter 3 Software Architecture from Different Perspectives

44

(Gelernter & Carriero 1992) that borrows essential ideas from software architecture (Perry

& Wolf 1992). It does this to externalise interactions from computations, and exploit

superimposition from parallel program design (Fiadeiro & Maibaum 1996) to support

compositional evolution.

Indeed, in software architecture, modelling techniques have been proposed for

supporting interaction-centric approaches. More precisely, such techniques promote

interconnections to first-class citizens (i.e., architectural connectors) by separating the code

that, in traditional approaches, is included in the components for handling the way they

interact with the rest of the system, from the code that is responsible for specifying

computations that are ascribed to services offered by these components.

The 3Cs approach builds on event-condition-action (ECA) rules for coordinating

the joint behaviour that a group of components need to execute in reaction to a trigger

generated by another component or outside the system. A so-called coordination law

defines how a number of partners interact. Partners are not named but rather abstracted as

coordination interfaces that define types of system entities in terms of operations that

instance entities need to make available and events that need to be observed. As an

example, consider the coordination of the way a doctor interacts with a respiratory-control

system:
 coordination interface respiratory-control

 import types pressure, ward;

 services fixed_in(w:ward):Boolean

 verify():pressure

 decrease(p:pressure): post verify() = old verify()-a;

 increase(p:pressure): post verify() = old verify()+a

 end interface

 coordination interface doctor-in-charge

 import types pressure, ward;

 services work_in(w:ward):Boolean;

 in_charge():Boolean

 events plus(p:pressure);

 minus(p:pressure)

 end interface

 coordination law restricted-respiratory

 partners d:doctor-in-charge, r:respiratory-control

 types a:pressure

 Chapter 3 Software Architecture from Different Perspectives

45

 attributes min,max:pressure

 rules when d.minus(a)

 with r.verify – a ≥ min and r.in_charge()

 do r.decrease(a)

 when d.plus(a)

 with r.verify + a • max and r.in_charge()

 do r.increase(a)

 end law

Each rule of the coordination law identifies, under the “when” clause, a trigger to

which the instances of the law will react—e.g. a request by a doctor for an increase or

decrease in pressure. The trigger can be just an event observed directly over one of the

partners or a more complex condition built from one or more events. Under the “with”

clause, conditions (guards) are included and should be observed for the reaction to be

performed (e.g. that the changes in the pressure keep it within the specified bounds and

that the doctor has been authorised to be in charge of the device).

If any of the conditions fail, the reaction is not performed and the occurrence of the

trigger fails, however, it can be subjected to further treatments.

3.3.2.1 Separation of Concerns

Andrade et al. have advocated the benefits of the separation of concerns in their

approach: “separation of concerns helps software developers to get a conceptual grip on

large software systems, to reuse parts of the system and to evolve it.” The 3Cs business

architecture is constructed as depicted in Figure 3.2 and comprises three-layer architecture:

computation, coordination and configuration; and two architectural primitives: contracts

(interactions) and coordination contexts (governing reconfigurations). Each layer is

superposed in a transparent way on the layer below, which facilitates the modification of

coordination and configuration policies to make the system evolve. The motivations behind

the 3Cs approach to software architectures are taming the ever-growing complexity;

modules, objects, components, design patterns; and planning changes whether programmed

or ad hoc.

 Chapter 3 Software Architecture from Different Perspectives

46

Figure 3.2 The 3Cs Business Architecture (Andrade & Fiadeiro 2003)

3.3.2.2 Coordination Contracts

The approach has been supported with a tool to provide runtime management of

Java components behaviour called Coordination Development Environment (CDE). CDE,

as explained in (Andrade, Gouveia et al. 2002), exploits the implementation of a collection

of design patterns, which aim to terminate the drawbacks of object-oriented clientship. It

was a step further toward implementing high level patterns for adding monitoring

capabilities to programming languages in the sense of (Notkin, Garlan & Sullivan 1993).

The approach proved to be sufficient to model the key properties for managing

interactions through contracts among diversified application domains. For example two

case studies: managing software intensive systems (Koutsoukos, Gouveia et al. 2001) and

tackling business-oriented systems (Koutsoukos, Kotridis et al. 2002) have provided a

proof-of-concept and demonstrated its suitability to address industrial software

development needs.

 Chapter 3 Software Architecture from Different Perspectives

47

3.3.3 The 3Cs Approach to Reconfigurations

Normally, in order to enforce specific business policies of the organisation,

reconfiguration steps are either programmed or take place in contexts that set constraints

on the nature of the operations that can be performed on given configurations and states

(Andrade, Fiadeiro et al. 2001). Such contexts capture business activities that can be

described in terms of collections of connected components, coordination contracts that can

be superposed on them, and the rules that define the ways in which this superposition can

or must take place.

Regardless of the way existing components operate, and instead of performing

changes in the components themselves, the architectural approach superposes,

dynamically, new coordination and configuration mechanisms on the components that

capture the basic business entities. If the interactions were coded in the components

themselves, such changes, if at all possible depend on the availability of source code

besides requiring the components to be halted and reprogrammed. Additionally, such

changes would incur massive implications on the class hierarchy, and also may generate

side effects on all the other objects that use their services.

On the other hand the need for explicit reconfiguration layer, with its own

primitives and methodology, is justified by the need to control the evolution of the

configuration of the system according to the business policies of the organisation, or more

generally, to reflect constrains on the configuration that are admissible (configuration

invariants). This layer is also responsible for the degree of self-adaptation that the system

can exhibit.

Reconfiguration operations should be able to be programmed at this level, which

enables the system to react to changes perceived in its environment by putting in place new

components or new contracts. In this way, the system should be able to adapt itself to profit

from new operating conditions, or reconfigure itself to take corrective actions and so on.

3.3.3.1 Coordination Contexts

As an example, in the medical domain that I decided to use as an example in the

earlier section (i.e. Section 3.3.2), a coordination context normally exists for each doctor.

The purpose of this context is to manage the relationships that doctors may hold along with

various medical equipment that are controlled by the coordination system according to the

 Chapter 3 Software Architecture from Different Perspectives

48

hospital’s codes. Coordination contexts are made available to doctors each time they login

to the hospital system. The syntax of contexts can be illustrated as follows:

coordination context doctor(d:doctor)
workspace

 component types doctor, respiratory

 contract types restricted-respiratory, open-respiratory,

constants min-RESTRICTED, max-RESTRICTED, Normal-Average:

pressure

services

subscribe_RESTRICTED(d:doctor,r:respiratory):

 pre: exists r and d.work_in(w)

 post: exists’ restricted-respiratory(d,r) and

 restricted-respiratory(d,r)’.min= min-RESTRICTED and

 restricted-respiratory(d,r)’.max= max-RESTRICTED

subscribe_OPEN(d:doctor,r:respiratory):

 pre: exists r and d.work_in(w)and r.fixed_in(w)

 post: not exists’ restricted-respiratory(d,r)and

 exists’ open-respiratory(d,r)

rules

OPEN-to-RES:

 whenexists open-respiratory(d,r) and

 avg-pressure = Normal

 post: not exists’ open-respiratory(d,r) and exists’

 restricted-respiratory(d,r)

end context

Coordination context is “anchored” to a doctor instance, referred to as d in the

definition of the context (type). Under “workspace” a system specifier identifies the

component and contract types that are made available for evolving the way the anchor

interacts with the rest of the system. Configuration services correspond to operations for ad

hoc reconfiguration, i.e. they are performed on demand from users of the system.

Configuration services involve both components and contracts. The above example

demonstrates contracts for enabling restricted and open manipulations of a respiratory

machine. These services have pre-conditions through which business policies are enforced.

For instance, both contracts are not available if the doctor is not a member of the ward in

which the machine operates.

 Chapter 3 Software Architecture from Different Perspectives

49

Configuration rules allow modelling programmed reconfiguration, i.e. to the

ability of the system to reconfigure itself in reaction to external events or internal state

changes. In the example above, open-respiratory contract is replaced by a restricted–

respiratory one when the average balance of the pressure of a patient reaches the normal

value and captured by the normal-average monitoring contract. Typically, the programmed

configuration rules capture more dynamic properties that model the system reaction to

changes in the configuration properties.

Adaptation logic in the 3Cs business architecture is obtained from both

architectural constraints and configuration operations (Dowling & Cahill 2001). Therefore,

the 3Cs as well as the advocated extension are categorised among self-adaptive systems as

they provides implicit adaptation triggered by changes in the internal state of the system.

Both concepts are similar in providing a clear separation between computations and

reconfigurations.

3.4 Architecture and Non-causality

Software architects have been preoccupied with causality aspects, which prevail in

purely technical systems (e.g. telecommunication systems) or strictly managed ones—

where people can be replaced with machines. Even when they are used to capture business

models (e.g. banking), they lose insight into the workplace environments where people

(knowledge workers) are bid to adhere to codes of norm that embody social and

organisational aspects, when they interact with technical systems.

Putting into consideration the example in the previous section, if there is a need to

alter the respiratory machine pressure out of the allowed scope to save someone’s life and

any of the invariant conditions fails (i.e. invariants that govern both programmed and ad

hoc reconfiguration operations), the reaction is not performed and the trigger fails. Thus,

explicit mechanisms should be defined for handling such failures in such contexts. There is

neither a provision in the 3Cs approach, nor in any other architectural approach that I

know, to model interactions that are only biddable, i.e. situations in which people (social

components) are requested to perform given operations but the system cannot cause (force)

them to perform these operations. For instance, biddable interaction would occur if the

doctor would be requested to alter the current settings. In summary, one needs a richer

model of interaction that can capture the fact that coordination in the presence of social

components cannot be causal.

 Chapter 3 Software Architecture from Different Perspectives

50

One of the early-bird attempts to address dynamic user processes within software

architectures is Aura architectural framework (Sousa & Garlan 2002, Sousa, Poladian et al.

2005) which matches the specific needs of ubiquitous computing. It focuses on the support

of its newly devised attribute of user mobility. User should take the full advantage of local

capabilities and resources according to his captured task-based intents. However, the

dynamicity in this framework was only pertained to the technical view to handle changes

in the environment and the technical resources while the user roam within the system

space.

3.4.1 Discussion

New levels of reconfigurability are needed that enable software intensive systems

to respond, in a way that is both flexible and predictable, to changes in operating

conditions, including those that result from variations in social and organisational contexts.

Coordination contexts fit well with: (1) scheduled tasks, (2) static actors—that are

presented as business entities with fixed sets of permissions toward their operations—and

(3) a data store that can be subjected to querying and manipulation. A coordination context

whether executing a programmed or an ad hoc reconfiguration, causally validates the

preconditions of a new process entry. Yet this process entry corresponds to a routine

process that originates from, in the former case, capturing an expected change in the

environment (i.e., programmed reconfiguration), or executing a reconfiguration script by a

hidden system user with whom this coordination context is associated in the latter. For

example, a branch clerk retains the authority of executing a configuration script that

belongs to a coordination context of a customer account once the corresponding customer

appears before the branch desk.

The challenge is to present an extension of this framework which could handle the

above mentioned situation in a way that distinguish between the case of standing in front

of a clerk or a branch manager for example. The latter can offer more services or can use

his authorisation or capabilities to suppress routine processes or violate certain rules to

handle unexpected situations.

In other words, achieving the balance between the necessity to initiate a certain task

to alleviate an unwanted state or sub-ideal context, in the one hand, and the determining

the capabilities of the human participant enacting a role, on the other hand, is the enabler of

the success of a norm-based reconfiguration mechanism to support biddable interactions in

emergencies. This mechanism should take in to consideration the availability of the

 Chapter 3 Software Architecture from Different Perspectives

51

minimum required technical elements to realise these capabilities when required. Needless

to say, such a mechanism must have an external control sub-system to actuate

reconfiguration by means of facilitations and sanctions that matches norms of code and

behavioural control policies that are found in organisations.

3.4.2 Questions

The review of human interactions handling in software development paradigms

presented in Chapter 2 and the study of coordination-based software architecture as

examined in this chapter jointly concretise the targeted research problem as they both

highlights the need to tackle social interactions at the architectural level and to address

them within organisational processes. The result of both reviews emphasises the

importance of adaptivity (i.e. reconfigurability) in attaining required systems

properties in the face of changing requirements or environments. However, adaptivity

models have to determine what new concepts have to be elected as first-class citizens

in order to enrich the adaptation logic and mechanisms. Thus, the research problem is

expanded to accommodate secondary questions that address such relevant issues. The

subsequent Chapter will be dedicated to specify an extension to the 3Cs framework in

order to provide flexibility and responsiveness to contextual changes and unexpected

human behaviours. The answers for the following question will be discussed in the

subsequent chapters:

• How can social/human interactions be handled as part of system

configurations if they are implemented with the 3Cs architectural approach?

• How much “emergent” behaviour needs to be pre-planned at design time in

order to monitor it and respond to it?

• How can modellers guarantee that the changes caused by human interaction

will be supervised properly in such a model when interactions constitute an

integral part of it?

• Can modellers map human capabilities to context and technical resource

management as a mean for modelling the reconfiguration space for

responding to biddable human interactions?

• Is it applicable to treat social interactions from an organisational perspective

by encoding organisational abstractions (i.e., organisational charts, tasks

and norms) into architectural configurations?

Chapter 4

Architecting Social Interactions: A

Ternary of Roles, Norms and

Reconfiguration

“Reasonable people adapt themselves to the world. Unreasonable people attempt to adapt the
world to themselves. All progress, therefore, depends on unreasonable people.”
George Bernard Shaw

4.1 Motivations & Objectives

The success of today’s organisations depends mainly on the quality of the staff as

well as the flexibility and interactivity of the organisational system they belong to. (Berens

2005) states that: “Today, high demands are made on staff regarding expertise,

communication ability, and commercial skills […] With automations, the purely routine

aspects of the process can be supported more and more effectively or can be omitted

altogether”. Hence, flexibility is an essential condition for the success of any socio-

technical system that exists in any organisation. It should be exhibited in its product

development, software systems, process control and automation, especially for the

knowledgeable staff. This type of flexibility is needed to take on board the biddable

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

53

interaction of social participants as discussed in Chapter 2. From the organisational point

of view, managing such kind of interactions is particularly required to manage fluidity: an

organisational phenomena that results from shifts in focus, priorities and roles of

participants (Moran, Thomas & Anderson 1990, Edwards 1996).

In summary, the key objectives of this chapter is to develop an architectural

framework that could be tailored to the application domain and reason about the actual

behaviour of the application’s active participants, particularly human/social ones. More

specifically, the framework should give answers to the following questions:

1. What norms of the system should be respected by participants?

2. What properties of the system context do these norms rely on?

3. What should be done when these norms are violated and how does the

context and roles of system participants affect the system response to these

violations?

4. How to carry out system adaptations to take on board biddable human

interactions in organisational settings and respond to them by means of high

level reconfiguration operations?

From the organisational point of view, means of control should be provided that are

not limited to the enablement of the causal management of systems’ participants as seen

from the point of view of automated and fixed use-case-like processes down to the level of

monitoring each task they carry out. Therefore, this thesis explores an extension to the 3Cs

architectural approach using new abstractions that support realising higher level processes

(i.e. Human-driven processes).

 The distinction of the above two levels advocated by (Harrison-Broninski 2005),

has shaped my view of separation of control that constitutes, in addition to separation of

concerns, the core of the proposed architectural framework. He differentiates human-

driven processes from the mechanistic ones and provides concepts and notations to model

them. The role of this chapter is to demonstrate how these concepts are carried out further

and integrated with advanced techniques in software architecture bearing in mind the

benefits gained from research disciplines that were discussed in Chapter 2.

Chapter 3 has shown the 3Cs business architecture, which lays the cornerstone for

the intended framework as it provides the event-based mechanism and the contract-based

technology needed for the causal management of systems’ interactions and modelling

primitives (i.e. coordination context) through which systems adaptivity is ensured in a

causal way against expected environment changes and authorised users interventions. This

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

54

chapter aims at modelling and managing human interactions within organisational settings

in a more flexible way by deploying concrete architectural modelling primitives that are

tightly coupled with interactively dynamic concepts borrowed from different paradigms:

norm-based modelling, organisational structures and human-driven processes.

4.2 The Approach in a Nutshell

This research put forward a normative architectural approach, which takes

biddability of social interactions into account as a means for gaining flexibility, allows

systems to benefit from endowing knowledgeable staff the power to intervene when

necessary to bring about new state of affairs. This approach, specifies the system response

to biddable interactions of its participants that cannot be merely controlled by consulting

access lists as observed in Role Based Access Control systems (RBAC) (Sandhu, Coyne et

al. 1996a, Sandhu, Ferraiolo & Kuhn 2000). The system’s response should be reflected by

changing the current system configuration in order to limit the functional effects of these

interactions or support them by means of negative or positive reconfigurations—sanctions

or facilitations, respectively.

 The approach promotes architectural primitives that allow system specifiers to

guide the system’s response towards biddable interactions through a new type of

architectural connectors, namely social laws, which can be made effective across a new

type of architectural wires that link social and technological components. These laws

impose certain architectural enablement on required interactions of participants or

architectural sanctions on forbidden ones, as a result of detecting a norm-violating trigger.

Norms, unlike rules, can be violated either by an unexpected human interaction or a

deviation of the system context that requires launching a human-driven process. In both

cases the adaptation is gained by providing the appropriate reconfigurations to the role

assigned to system participants and/or the technical components that surround them. Role

reconfigurations support humans and social entities in realising their required tasks and

processes within their space of capabilities, whereas technical adaptations put in place

components and connectors needed for coordinating and executing a task’s interactions.

With regard to unwanted interactions, the proposed reconfiguration primitives should

provide sanctions as a tool to suppress or allow unwanted human interactions—with a

report to higher management in the latter case—while being monitored by the

configuration manager, which in turn consults social laws to respond accordingly.

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

55

A system specifier may specify a law that allows an unwanted behaviour by certain

role players, even if they are not permitted to do so, provided that they are capable of doing

the corresponding action. However, some sort of organisational control is required to keep

the system stability (e.g. send a report to the management that contains the incident

details).

The novel idea in this approach is that it provides architectural specifiers with

means to specify architectural primitives that tame the freedom of human participant and

keep their capabilities and rational as a reserve to be utilised in sub-ideal situations,

particularly when the situation’s signs are beyond those specified in the causal

coordination and reconfiguration levels (i.e., coordination contracts and coordination

contexts). I promote architectural constructs that are required to support adapting socio-

technical systems using high level conceptual patterns. These patterns will to capture

interactions within institutional contexts that aim for bringing about a new state of affair.

An example for such patterns is the combination of speech act and deontic operators

introduced by (Johannesson & Wohed 1999).

The focus is particularly placed on research efforts that have discussed design and

modelling issues related to unifying concepts among organisational theory (i.e., roles and

tasks), speech act and deontic logic (i.e., obligations & permissions). Therefore, I stipulate

the necessity to enlighten the reader with a review of current investigations and lessons

learned in these active areas of research before delving into the nitty-gritty of the proposed

approach. The subsequent subsections will provide an interdisciplinary view of the notion

of roles which are apparently still in need of a consensus when it comes to an integrative

definition despite thoroughly research.

4.3 Roles in Organisation Theory

Organisation theory is a discipline that focuses primarily on organisations as units

for identifying common themes for the purpose of solving problems, managing resources

and maximising efficiency and productivity (Kast & Rosenzweig 1970). It covers a variety

of areas that generally include organisation structures and psychology. Mintzberg defined

organisational structures as: ”the sum total of the ways in which its labour is divided into

distinct tasks and then its coordination is achieved among these tasks.”(Mintzberg 1992),

p. 2. Handy pointed that the study of people in organisations is far beyond certainty and

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

56

predictability due to the multiplicity of contextual information and the inherit ability of

human participants to disobey norms of practice (Handy 1985).

4.3.1.1 Roles & Organisational Structures

Organisational structures are key concepts in the role theory and they are

considered cornerstones for developing organisational frameworks. This research agrees

with Hay’s view as he stated it in his book (Hay 2003), p. 30: “Organisational charts are

rarely adequate to describe the complexities of human interactions in an enterprise”.

Any participant in a socio-technical setting occupies a role in relation to a system

configuration. His behaviour as a role player, when enacting a certain role, depends on a

trio of influences:

• The forces of the organisational system’s norms of codes, which include

definition of processes, permissions as well as obligations that are conferred

to the role(s) he/she plays in the light of his/her institutionally recognised

capabilities.

• The forces of the situation, whether ideal/planned or sub-ideal/ unexpected.

• The forces of the availability of technical resources and the possible of

reconfigurations that can add or remove these resources.

To some extent, these sets of influences interact collectively to affect participants’

interactions—discarding selfish or destructive attitudes. The transition of the participant’s

current role to another member of his/her role space is always influenced by the current

context. Conversely, the management of a context, particularly a sub-ideal one, would

require a role transition, which reflects a participant’s capabilities, to take place in order to

empower him to respond to this unwanted context. The role transitions influence system

configurations, and once triggered, might add/remove some hardware/software resources

and manipulate the participant’s permissions to access them.

4.4 Roles for Modelling Software Systems

Several notions of the role concept can be found in many research areas of software

systems modelling. Among these areas that inspired this research: object-oriented

modelling, software architecture and Role-Based Access Control (RBAC). All these

research areas utilise the role concept in analysing behaviours and assets access demands

originated from presumable role players. In this perspective, roles provide a way of

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

57

allocating and qualifying tasks. The behaviour of the role player covers different levels of

abstractions starting from primitive programming language interfaces and ending up with

compound notions like social roles. The rest of this subsection illustrates a review of role

modelling in these paradigms.

4.4.1 Object-oriented Software Systems

 Object-oriented modelling and design has prevailed among software developers as

a successful methodology since early nineties of the previous century. A constituent part of

this methodology (i.e. Object-Oriented Programming (OOP)) does not exhibit roles as first

class entities but are rather introduced as qualifiers for identity-based associations between

objects. Figure 4.1 depicts how roles relate to classes in object oriented models.

The OOram software engineering method developed by (Reenskaug, Wold &

Lehene 1996) was the first approach to modelling objects and objects collaborations using

roles and roles models. Riehle and Gross established a framework to support large scale

object oriented systems through frameworks (Riehle & Gross 1998). They focus on the

problem of describing the complexity of objects collaboration as it emerges in framework

design and integration.

Figure 4.1 Roles in traditional object-oriented methods

Their research contribution was the first departure from the traditional view of roles

in the object-oriented modelling paradigm as they express more sophisticated semantics on

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

58

relationships between roles and system typed objects (i.e., classes as shown in Figure 4.2).

Semantically, having an independent notion of roles can be useful to represent a wider

range of contextual information, such as depicting a role in the absence of the role enactor,

which models a state of sub-ideality, (i.e. (Lee & Bae 2002)).

Figure 4.2 Role as first-class modelling entities (Riehle & Gross 1998)

The traditional view of roles in the object-oriented modelling/programming

paradigm has been given by (Kristensen 1996): “A role of an object is a set of properties

which are important for an object to be able to behave in a certain way expected by a set

of other objects”. He also devised the characteristics of roles in object-oriented modelling,

which includes:

• Visibility: the visibility of and access to, the object (i.e. player)

• Dependency: a role cannot exist without an object

• Dynamicity: a role may be added or removed during the lifetime of the

object

• Multiplicity: several instances of a role have one identity

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

59

• Abstractivity: roles can be classified and organised into generalisations and

aggregation hierarchies

 Many researchers such as (Kristensen 1996, Kendall 1999) advocate the

superiority of objects over roles and adopt these characterisations to use roles as proxies

for filtering objects’ behaviour. Thus, a role is a temporary object that demonstrates the

behaviour of the original object in a context (Steimann 2000). Therefore, the role notion in

object-oriented modelling is inadequate in terms of representing high abstract primitives

that can be associated with organisational concepts.

Object-based structural anomalies have been identified by (Lee & Bae 2002) to

provided means to express role-enacting anomalies and how to alleviate them. As a matter

of fact, this research was a key starting point for the emergence of the approach at hand as

it shows elements of independent role representation and role binding related violations.

Moreover, role-promoting variations of object modelling, which aim at modelling key

features of software agents e.g. proactivity and autonomy, cannot be overlooked. The work

presented by (Depke, Heckel & Küster 2000) has led this trend and encouraged a novel

representation of roles for fine-grained modelling of objects and agent by means of

interaction protocols as well as evolution of agent structure and behaviour. However, their

definition of role at runtime still exhibits life-time dependency on agents. Additional

comments on this work can be found in chapters 5 and 6.

The research on constructing development techniques and methodologies for

organisations and organisational structures will continue to be a major research topic for

many years. Moffet has introduced a hierarchy that is based on organisational control

principles (Moffet 1998). This approach has been adopted by the founders of Ponder in

(Lupu & Sloman 1999) to deploy management principle (i.e. monitoring and control)

through policies specifications over elements of distributed system networks. More details

on this approach are available in the next section.

4.4.2 Roles in Agent-based Systems

One of the early steps toward agent-based modelling has addressed the requirement

specification level, namely the i* framework for enterprise modelling (Yu & Mylopoulos

1997), which was one of the earliest attempts to promote roles as first-class citizens.

However, many modelling approaches have been developed to represent the organisational

societies in Multi-Agent Systems (MAS) (Ferber & Gutknecht 1998, Dignum, Meyer et al.

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

60

2002, Esteva, Padget & Sieera 2002, Dignum, Vázquez-Salceda et al. 2005). These

techniques aimed at yielding social, administrative and business control on autonomous

and proactive agents. Chapter 2 states clearly the similarities and differences between

autonomous and biddable elements in socio-technical settings. Agent based methodologies

such as (Cuesta, Gómez & Rodríguez 2003) and the Gaia model (Zambonelli, Jennings et

al. 2003), in addition to modelling techniques like OMNI (Dignum, Vázquez-Salceda et al.

2005) and (Esteva, Padget et al. 2002) have contributed to the advocated approach.

4.4.3 Roles in Access-based Policies

Access control modelling has become of a great importance as a key technique to

enforce security policies and hence protecting technical elements, i.e. system resources,

from unauthorised access by users or computational agents (subjects). It has been claimed

by (Edwards 1996) that most of the policies that are found in an organisation can be

captured by access control-based models. Control over system reactions to biddable

interactions can be achieved not only by access control primitives but also by incorporating

objects to which access is constrained. Edwards devised three requirements for any

successful access policy-based access control system: (1) expressiveness to capture a wide

spectrum of policy considerations, (2) flexibility to handle collaboration, (3) integration

with information from and about “the real-world” context. Sandhu and his colleagues

(Sandhu, Coyne et al. 1996a) have established the Role-based Access Control model as a

means of enforcing security by assigning permissions to defined roles instead of ascribing

them to users directly. They conceived roles as a means to define positions in organisation,

bundling responsibilities or representing capabilities. Among other compelling features of

RBAC, roles can be naturally organised in hierarchies, and policies can specify various

constraints patterns e.g. Separation of Duties SoD) due to its policy-neutral feature. Figure

4.3 depicts the main elements of a standardised RBAC framework.

Roles may be assigned to several participants and participants may play several

roles at the same time, however, no notion of state is present in this model. Very few

research efforts have contributed to fill in this gap by explicitly adding the state and state

transition notions e.g. (Steinmuller & Safarik 2001),. However, in this work state

transitions referred to changes of user-permission associations for a single control policy

rather than changes in the configuration of access control policies themselves which were

assumed static.

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

61

Figure 4.3 The RBAC meta model (Sandhu, Ferraiolo et al. 2000)

There are significant variations and interpretations of RBAC concepts. These

variations resulted in several RBAC models with different levels of sophistication and

internal modelling dialects (Crook, Ince & Nuseibeh 2003). A unification attempt was

made by developing the NIST framework (Sandhu, Ferraiolo et al. 2000) to reach a

common standard for RBAC family of models based on combining sequences of models

by adding capabilities in a progressive way. The key feature of NIST is that it provides a

means to inherit selectively (i.e. dynamically) permissions from junior to senior roles

through consulting an associated activity hierarchy. For example it is not possible for a

senior role to inherit permissions from a junior role unless they are both activated.

RBAC is only concerned with the causal filtering of information and access to

resources against users’ computer-mediated attempts; therefore, as a conceptual model, it

lacks the comprehensive way of modelling interactions particularly those that cannot be

physically filtered or prevented (i.e., accessing machines or equipment). The approach

advocated by this thesis aims at bringing new state of affairs e.g. adding/deleting resources

or putting in place new access control policies to handle the situation at hand.

In summary, despite of the RBAC’s shortcomings, it still captures focus in this

thesis. This is because it is a policy-neutral security mechanism that poses roles as a first-

class design entity and provides the ability to restrict collaborative interactions. These

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

62

features makee the research findings of the RBAC community suitable for cultivating the

3Cs approach in terms of their various hierarchical structures, role dependencies and

constraints patterns.

4.4.4 Roles in Organisation-oriented System Modelling

This section presents a review of agent-agnostic organisational system modelling

approaches that build on organisational structures and utilise organisational theories. A key

research work of Bacon et al. (Bacon, Lloyd & Moody 2001) demonstrates how roles

based on function and seniority can be combined. In order to be assigned certain roles, a

user must have been assigned other prerequisite roles; for example, a doctor can only be

assigned the role of a senior gastroenterologist if the roles senior doctor and

gastroenterologist have already been assigned to him.

A further step towards role-based design, was taken by (Crook, Ince & Nuseibeh

2005), who borrowed a taxonomy of role types from (Mintzberg 1992) (i.e., market,

functional and seniority) as prerequisite proxies for accessing an operation or set of

operations in the sense RBAC but at a higher level of abstraction compared to its

counterparts. In Crook et al., the access policy is modelled as a ternary relationship

between role sets, set of operations and an asset category. Their framework includes three

types of roles: functional, security and contextual. These policies are related to information

assets only.

For instance, their example demonstrates a regional branch of a retail bank where

bank tellers have access to accounts of the customers of that branch only. Under no

circumstances can access be gained to the accounts of customers in other branches.

Therefore, the bank outlet represents a context, which has to be assigned to both the

account and the bank teller in order for access to be granted.

With regards to higher level methodological approaches, a few research attempts

such as (Odell, Parunak et al. 2003) introduced the analogy of roles and players which has

been further developed by (Colman & Han 2007) to provide an organisation-centric view

of roles. Another view of modelling interactions of human processes within organisations

has been promoted by (Harrison-Broninski 2005), namely Human Interaction Management

(HIM), which supports human-driven processes with an analytical framework which

models interactions and speech act by means of Role-Activity Diagrams (RAD). RAD’s

basic concepts have been introduced by (Holt, Ramsey & Grimes 1983) and later enhanced

by Ould’s variation. HIM plays a key role in the development of the proposed

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

63

methodological approach as it supports the extension of the 3Cs architectural approach.

This methodology will be explained in the next Chapter.

This thesis, will present an approach to managing interactions within organisational

settings that exploits lessons learned from the aforementioned approaches. The specific

adoption of a hybrid role construct, which combines the characteristics of functional and

contextual roles, will be shown by examples. The next section explicates the details of the

advocated architectural approach (El-Hassan & Fiadeiro 2006, El-Hassan, Fiadeiro &

Heckel 2008).

4.5 The Role Model: The Ternary of Roles, Norms and

Reconfigurations

Reasoning about human interactions within organisation settings requires high-

level system modellers to be aware of the effect of biddable human interactions,

particularly at sub-ideal situations, in order to come up with norm-based reconfigurations.

Those will take the form of architectural connectors to be put in place, monitored and

activated by the configuration manager. Norm and norm-based policies have been mainly

explained in Chapter 2.

Making a clear and unambiguous model of these situations permits enacting tasks

and possibly processes that are normally unauthorised in normal contexts where the

coordination layer is causally controlling interactions through coordination contracts. This

could be achieved through enacting capabilities that are not institutionally authorised or

that override the contextual pre-conditions of the existing superposed contracts through

new architectural primitives: i.e. social laws and roles, which provide flexible norm-based

control of social interactions that support collaborative behaviour.

The advocated flexibility can be achieved by tailoring a role-modelling technique

to establish a new perspective (i.e. the process view) which would include tasks within its

definition. Tasks, as explained in this subsection, provide a process-centric view of certain

interactions (i.e. speech act-like interaction). These interactions specify communicative

acts that are signified by both human participants and the reconfiguration manager as a

request for initiating a task, and demonstrate the intersection between:

• The role that is currently played or intended to play by the social component

compared to the role requirements (i.e. qualifications and permissions).

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

64

• Norms that govern whether there is an opportunity to complete the task at

hand successfully3 or not.

• The ideality of the context in which task’s initiation takes place.

Figure 4.4 sketches such a kind of intersection, which requires further elaboration

conceptually and functionally.

Figure 4.4 Role, Norms and Reconfiguration

Herein, the assumptions of the proposed architectural framework for managing and

reasoning about biddable interactions are stated. The framework is inspired by several

research efforts: (Mintzberg 1992, Moffet 1998) which present the perceptions toward

organisational structures, (Crook, Ince et al. 2003, Crook, Ince et al. 2005) for proposing a

hybrid approach to role modelling and the (HIM) approach (Harrison-Broninski 2005) for

its process-aware view. Any individual in any situation occupies a role in relation to a

system configuration.

• His/her performance in that role will depend on a trio set of influences:

3 A task is considered completed once its entry-operation succeeds not only in calling the intended
service but also in bringing about ,through social laws, the configuration that is required for all its
subsumed interactions (i.e. task’s members).

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

65

o The internal forces: role attributes, skills ascribed to this role, and

possible role transitions from that role.

o The contextual forces: whether ideal/planned or sub-ideal/

unexpected

o The normative forces: obligations, interdictions and permissions

Figure 4.5 represents a static and a holistic view of the core elements of an

architectural framework that extends the 3Cs framework presented in the previous chapter.

It shows what the framework’s architectural concepts are and what connections map them

to each other at design time and runtime. This initial view does not state how these

concepts and their connections are maintained and reconfigured to keep overall good

behaviour of the system at hand.

Figure 4.5 Holistic View of Extended Framework

The upper half of the Figure 4.5 shows the high-level concepts that can be used as

meta data to reason about the runtime entities in the lower half of the view. These concepts

relate to highly abstracted notions such as organisational structures and processes to equate

components behaviour to patterns of organisational control. In other words, when a meta

data (e.g. role element) is instantiated and connected at runtime to a component (e.g. social

component), it can be used as a means for supporting the inspection and the modification

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

66

of the properties and the structural interconnections of this component (e.g. reasoning

about the capabilities of the social component can support its interconnections with

equipment). The hypothesis is that this framework can be used by system specifiers to

model and analyse a new type of architectural connectors that can handle system response

to unexpected interactions or contextual change within organisational settings (i.e. social

laws). The case study, which will be explained through out the rest of this chapter,

demonstrates the proposed architectural concepts in the introduced framework.

4.5.1 A Motivating Case Study

 This example was extracted from a survey undertaken at a Gastroenterology

department4 in the UAE. By reviewing their documentation and interviewing the

department staff, the researcher elicited a group of norms that affect the behaviour of

doctors:

(1) No operation can be undertaken without the patient’s permission

(2) Surgical intervention should be carried by surgeons5 only

(3) In the case of emergency, a doctor may commit simple surgical

interventions if surgeons are not available and in a life-threatening situation

For example, consider the social law that applies to minor operations. Such

procedures involve a social role—a GP—who is the anchor role in the sense that the social

laws will apply to the actions performed by instances of this role, e.g. a gastroenterologist.

In addition, three coordination interfaces are required to ensure that the GP interacts with

the right components: the device that is monitoring the procedure—monitor-procedure and

the software component that provides access to administrative data—administrator. In the

configuration of the system, there will be coordination laws modelling the way these

components interact. Chapter 7 will provide more details about the proposed

reconfiguration language that is used within social laws constructs and will demonstrate

qualitative evaluation of the language properties. However, some excerpts from the case

study will be used throughout this chapter to explain the architectural primitives and the

underlying reconfiguration language.

4 A specialised medical unit at a government hospital, Dubai, U.A.E., which provides treatment for
digestive diseases. The reader may refer to Chapter Seven for more details

5 Readers should refer to Figure 4.6, Figure 4.7 and Table 4.1 for roles, tasks and permissions

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

67

4.5.2 Social Roles

The focus of the presented approach to socio-technical systems is on modelling the

technical impact of incorporating people within systems. Such an approach incurs having

mechanisms to combine human autonomy, capabilities and responsibilities through role

models. It is clear that, in order to reach a viable role modelling technique that integrates

well with the 3Cs architectural primitives and allows modelling higher levels of

abstraction, research outcomes that have been discussed earlier in this chapter have to be

considered. Therefore, this chapter also recalls and combines the literature review

concerning these paradigms with earlier discussion in Chapter 2 particularly those handling

human interactions in deontic frameworks, e.g. RNS6 patterns (Nickles, Rovatsos et al.

2002).

Roles are abstract development constructs that specify the expected behaviour of

social components by means of operations and ascribed normative aspects that refer to

certain institutionalised positions or capabilities. More concretely, this approach

distinguishes between having the ability to perform an operation and having the

qualification or authorisation to do so: a social component may have the ability to perform

an operation and still trigger a role violation if it is not an instance of a role that has the

right qualification. Herein, the qualification term refers to the fact that an organisation has

empowered the social component to perform given operations.

A role hierarchy is a tree of special types called role types. The root of this tree

defines a role with the least capability and permission yet universally generalises the

shared tasks’ definitions among its descendants. The other nodes inherit tasks from their

parents as they are or redefine them.

 As discussed below, the execution of operations by a component when playing a

role without the required qualification is governed by a social law. A social law specifies

(social) rules that either impose sanctions or provide a configuration in which the operation

can be safely executed, depending on the context in which the violation takes place.

However, it is worthy to stress that the execution of operations, even by qualified

components, can be governed by coordination laws and, as such, can be refused in certain

circumstances for operational reasons, not deontic ones.

Hence, the following general structure of a social role is sufficient to describe a

social law’s details:

6 RNS: a term that stands for Roles, Norms and Sanctions

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

68

social role rolename {specializes rolename}
types {{par}+:datatype}*
operations {

{'[+]'} opname {⊃ opname}
}*

A social role should have a unique name and has a Java-like way of modelling

single inheritance to construct hierarchies. Types can also be declared to serve for the

forthcoming operations’ parameters. The social role primitive allows declaring a set of

operations that individually label an entry or an exit of a task. Each operation, particularly

entry operations, might be preceded with a modality sign that explicates capabilities and

permissions of enacting this task. I denote operations for which the role is qualified with

 [+]. The following table shows a set of modality signs:

 Table 4.1 Modality Signs for Operations

The subsumption relation between operations can be defined as follows: by

declaring op
1
⊃ op

2
it means that op

1
can only be executed as part of op

2
, in which case a

component qualified to do op
2

is also qualified to do op
1
. For instance, GPs are qualified to

perform routine tasks of seeing patients and registering for shifts in wards. A GP can also

perform minor operations but such an interaction will trigger a role violation unless (s)he is

an instance of a role that is qualified to do so. A registrar_sugeon role inherits the

permission and capabilities of a GP and his role should redefine the permissions regarding

performing minor operations (see Figures 4.6 and 4.7).

Modality Sign Operation Syntax Semantics

empty Not mentioned/empty
Enacting the operation will never be
allowed. Capturing such a biddable
interaction would lead to severe sanctions
(out of the scope of this thesis)

empty opname

The operation is part of the player’s
capabilities, but the permission is not
institutionally granted. The capability is
inherited to children as is. Such an
operation labels declared tasks.

+ [+] opname
The permission pertained to this action is
institutionally granted and is inherited to
children. Such an action labels defined
tasks

_ [-] opname
The institutional permission is revoked
from the current role and downwards
(children).

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

69

Figure 4.6 An example of social roles

4.5.3 Social Tasks

In human-driven processes, processes cannot be simply described as predetermined

sequence of tasks (Harrison-Broninski 2005), unlike automated and mechanistic processes.

Within the execution of a process, the human participant should be capable of redefining

the sequencing and sometimes even overriding the pre-conditions for tasks enactments.

Thus, the advocated approach promotes tasks as building blocks of social roles, as

first class design citizens and as conceptual units of work that group a set of interactions.

Additionally, the interactions that label the inauguration (i.e. the initiation) and the

departure from these tasks, particularly those to which social and organisational meanings

can be assigned, should be emphasised. In other words such interactions, namely entry and

exit operations, could be perceived by monitoring systems or other participants.

Herein, the approach follows the communicative act approach, in the sense of

(Searle 2002) and (Castelfranchi & Giardini 2003), that highlights acts, which are signified

by other humans or monitoring systems as a means to convey social or organisational

messages, e.g. “let us start this particular process”. I stress, herein, that entry/exit

operations are original constituent parts of the required task that trigger a service in the

intended software/hardware component and not just mere behavioural signs or flags.

Chapter Two gives details about communicative acts theories. There are many research

efforts describing suggestions that fit tasks into organisational roles. Among which,

social role GP
types p:patient,op:operation
operations
 [+]seePatient(p)
 collectData(p) ⊃
 checkBloodPressure(p) ⊃
 minorOp(op,p)
 social role registrar_surgeon

specializes GP
types p:patient,op:operation
operations
 [+]minorOp(op,p)
 setupMonitor(op,p) ⊃

 majorOp(op,p)

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

70

(Garlan, Siewiorek et al. 2002, Sousa, Poladian et al. 2005) capitalise on user tasks to

guide self-adaptation.

[+] se e P a tie n t(p)
⊂ c o lle c tD a ta (p)
⊂ c h e c k B lo o d P re ssu re (p)

[+] r e g is te rS h if t(w)
m in o rO p (o p ,p)

G P

[+] m in o rO p (o p ,p)
⊂

s e tu p M o n ito r (p)

re g is tra r
su r g e o n m in o rO p (o p ,p)

[+] re p o r t(o p)
re g is tra r
in te rn a l

[+] g a s tro P ro c (p)
⊂ s e tP ro g ra m (p)
⊂ ta k e B io p sy (p)

m in o rO p (o p ,p)
g a s tro

 Figure 4.7 A role hierarchy example (with task inheritance)

4.5.4 Social Laws

Social laws are the primitives that the current approach proposes for controlling

social interactions. Generally speaking, social laws represent new type architectural

connectors that facilitate changes to architectural configurations. Social laws share many

traits with policies in access control based frameworks, which restrict the accessibility of a

system’s users towards the system resources based on information about the environment

context and the role enacted by the user. Social laws surpass the security view of RBAC

models and capture normative aspects of collaborations between the system’s participants

and other technical components using deontic-like concepts (i.e., obligations and

interdictions), which are applied onto actions once they are performed by social

components (i.e. role player). Social interactions cannot be controlled by physical

causation, as prescribed for coordination laws, but rather by a combination of monitoring,

flexible role models and norm-based reconfigurations.

If the inclusion of the organisational dimension is considered, on the one hand, and

the biddability of social components of the system, on the other, a gap needs to be filled in

order to be able to reason about the behaviours that emerge from the collaborations within

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

71

a system. The notion of collaboration that is adopted matches the work of (Barbuceanu,

Gray et al. 1999): “The coordination in organizations and societies cannot be accounted

for without considering social laws of the organisation and the way they constrain the

behaviour of individual agents”. It requires highly integrated and flexible laws between

people as well as processes and technological components capable of governing the

interactions that emerge according to the policies of the organisation. In order to make

such concepts applicable, social laws need to incorporate three main components: roles,

norms and sanctions.

The proposed approach also builds on normative positions as formalised by (Jones

& Sergot 1996, Sergot 1999), which represent all logically possible (normative, control

and influence) relations between roles in a certain configuration. I argue that human

biddability can be modelled as a set of normative positions that apply to the set of roles

involved. More details about the foundations of normative positions have been discussed in

Chapter Two and the impact of adopting such concept on the overall methodological

approach will be demonstrated in Chapter Five.

4.5.4.1 The Language Design

The trade off between retaining the expressive power and the clarity of the

specification language of social laws has been managed carefully. Since social laws are

interpreted by the configuration manager, their main clauses, particularly (re)configuration

statements, should be clear and unambiguous allowing deterministic interpretation.

However, some sort of ambiguity has to be pertained to the instantiation of the anchor role

type to support the dynamic role binding mechanism—akin to object-oriented

programming—that should be resolved at runtime when role instances are instantiated by

their players. This leads to the corresponding social law capturing a trigger from them.

Otherwise, the system modeller/architect should specify a social law for every candidate

social role.

Additionally, the configuration manager can exploit the current role degree of the

instantiated role type with respect to the role hierarchy to resolve conflicts between

overlapping laws. Consequently, if a social component triggers two social laws, through

the same interaction label and it can instantiate the anchor role of both laws then the law

with the more specialised role would prevail. Such conflicts would be resolved regardless

of the domain of the application. Hence, it can be argued that this approach maximises the

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

72

likelihood of modality conflict resolutions (i.e., domain independent) compared to goal

conflicts ones (i.e., domain-dependent). This taxonomy of conflicts has been promoted by

(Lupu & Sloman 1999).

4.5.4.2 Sub-ideal Contexts

A social law defines what actions should be taken when an operation is initiated by

a social component acting according to a given social role— the anchor role of the social

law—which is not qualified to do so. That is to say, social laws provide a context for the

system to react and adapt to a sub-ideal situation. The reaction can consist of either the

imposition of sanctions or a reconfiguration of the system. The latter can be performed so

as to put in place a context in which the social component can proceed with the operation

in spite of the fact that it is not qualified, for instance, a doctor having to perform a minor

operation in a life-critical situation. For this purpose, new equipment and/or social

components may need to be added to the system configuration to assist the doctor, also

software components that control the system may need to be reconfigured to enable the

doctor to perform operations that, in normative states, should not be enabled. This sort of

reaction captures what is sometimes called the role-binding anomaly as described in (Lee

& Bae 2002). Social laws are put forward to handle role-binding anomalies but at a higher

level of abstraction that can be easily mapped to instances of organisational roles that are

ordered in hierarchies.

Another situation in which a social law allows detecting a violation is when an

operation is initiated in a context in which it is not permitted according to some

organisational norm. For instance, although a surgeon is qualified to perform a minor

operation, the rules of the hospital are such that the consent of the patient is needed before

initiating any operation. However, in a life-critical situation, it may be impossible to obtain

consent. Yet, in spite of this, the surgeon should be allowed to proceed. In this case, a

reconfiguration should again be triggered, implying a change in the structure of the system

in terms of adding/replacing components and/or coordination contracts.

Social laws have the following general structure:
social law name

anchor role social role

partners

 {social role, coordination interface}*

types {{par}+:datatype}*

{violation rule

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

73

 when trigger

 if condition

 reconfiguration task

 sanction {operations}*

}*

Besides the anchor role, a social law identifies other partners through either social

roles or coordination interfaces. The former are useful for reconfiguration operations and

the latter is useful for both detecting triggers and reconfigurations as explained below.

There are three kinds of triggers for specifying violation rules: (1) operations of the

anchor role, which are executed by social components that have no qualification; (2)

operations for which the anchor role is qualified but are initiated in a context in which they

are not permitted; (3) operations of the anchor role that are not executed in contexts in

which they are required. The first takes the form:

unqualified operation

The second takes the form:

operation and not enabling state

The third are of the form:

active state and not operation

Notice that in order to detect a violation of the enabling state (permission), a

coordination interface is required to provide an operation that returns a boolean value and,

in order to detect the violation of the obligation, another coordination interface has to

provide an event. The “negated operation” holds in the states in which the operation has

not been scheduled for execution by the social component that instantiates the anchor role.

Generally speaking, the definitions of permission and obligations and their relation have

been informally adapted from (Boella & van der Torre 2003). Sanctions are used when the

violation cannot be handled through a reconfiguration and it requires, instead, punitive

actions to be taken, possibly with the assistance of system stakeholders identified as

partners. In the above-mentioned example this could be the unit’s head of staff or the

hospital QA manager.

Following the Gastroenterology Unit example (Section 4.5.1), consider the social

law that applies to minor operations. Such procedures involve a social role, a GP, who is

the anchor role in the sense that the social laws will apply to the actions performed by

instances of this role. In addition, three coordination interfaces are required to ensure that

the GP interacts with the right components: the device that is monitoring the procedure –

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

74

monitor-procedure, and the software component that provides access to administrative data

– administrator. In the configuration of the system, there will be coordination laws

modelling the way these three components interact. Chapter 7 will provide a comparison

between the provided social law example and its corresponding coordination laws as an

evidence of the expressiveness of the social law description language.

social law minor-operation

anchor role d:GP

type p:patient, op:operation

partners

 a:administrator

 m:monitor-procedure

when d.minorOp(op,p) and not a.ensureConsent(op,d,p)

 if m.alarm(p)

 reconfiguration reconfCoord(d,op)

 sanction a.record(d,op,”no_consent”)

when unqualified d.minorOp(op,p)

 if m.alarm(p)

 reconfiguration reconfUnqual(d,op)

 sanction a.record(d,op,”unqualified”)

The social law has two rules triggered by the same event: the moment in which the

doctor initiates the operation on the patient. The first rule handles the situation in which

there is no record of consent given by the patient to perform that operation. If the monitor

detects that there is an emergency situation, then a reconfiguration of the context is

performed to put in place the components and coordination contracts that are required for

the operation to proceed. This may involve, for instance, providing access to further

information registered on the patient’s file, say on allergies. However, if the monitor does

not detect an emergency, sanctions apply by recording the violation in the doctor’s file.

The second rule is activated if the actual doctor is not qualified to perform a minor

operation, which is possible because the doctor’s role matches one of the roles in the non-

surgical branch of the doctors’ role hierarchy: GP, registrar internal or gastroenterologist.

In this case, the monitor has to distinguish again if there is an emergency or not. For

simplicity, I used the same alarm condition provided by the monitor. If an emergency is

indeed detected, a reconfiguration of the context is performed to allow the doctor to

proceed, for instance unblocking actions that, in normative states, should be forbidden to

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

75

the doctor. Otherwise, sanctions apply. Notice that the reconfiguration operation takes the

doctor as a parameter: the hospital may have different rules about the context that should

be present during an operation depending on the type of doctor.

Notice that both rules can apply—the doctor may not be qualified and the patient

may not have given consent. In the case of an emergency, both reconfigurations may

apply; otherwise, both sanctions are implemented.

The explanation of the operational part of the reconfiguration language which

explicates generic reconfiguration tasks or operations e.g. reconfCoord(d,op) and

reconfUnqual(d,op) will be presented in the next chapter (i.e. Chapter 6). These

configuration tasks advance the primitives that have introduced in (Andrade, Fiadeiro et al.

2002) for the reconfiguration language used in 3Cs and follow the formalisation techniques

of (Wermelinger, Lopes et al. 2001) in yielding a semantics of reconfiguration based on

GT. The subsequent chapter provides a formalised approach to modelling and reasoning

about social interactions and their corresponding technical and role-based reconfigurations,

in a way that ensure the overall good behaviour of the system in sub-ideal contexts.

4.5.4.3 Summary

This section presents the core of the contributions of this chapter with respect to the

introduction of new architectural modelling primitives that address the collaboration

between biddable human interactions and technical components within organisation

settings at higher-enough level of abstraction. New primitives: social laws, social roles and

tasks are put forward and separated from the ones presented earlier in the 3Cs framework

such as coordination contracts and interfaces. These primitives consist of structural

elements that can be sufficiently explicated in terms of a language-agnostic specification

language yet they embody the elements from which the operational semantics of

reconfiguration from which the stability-preserving behaviour emerges.

4.6 Social Laws vs. Coordination Contexts

Social laws should be concerned with human-driven organisation processes, with

which technical and human resources are associated (i.e., the norm-based level). These

processes require specifying possible reconfiguration to handle the empowerment of social

entities to realise unexpected activities. Conversely, the coordination level codifies causal

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

76

evolutions related to routine tasks: business concepts, scheduled procedures and life cycles

transitions of the system components from the business point of view.

As a matter of fact, social laws enable experts, high-level managers (performance

and quality) oriented managers to supervise social interactions and human-driven processes

in a flexible way, whereas technical system specifiers often focus on routine and

mechanistic processes. Having this combined approach with separation of control would

allow system participants to concentrate on their work, exercise their powers rightly in

their own province (i.e., role space) and interact with their technical surroundings more

effectively.

4.6.1 Separation of Control vs. Separation of Concerns

The separation of control, as a concept, has been borrowed from Harrison-

Broninski’s approach (Harrison-Broninski 2005) which distinguishes, with regards of

organisational processes, roles that inherent the sponsorship of a process (i.e. executive

control) from those that perform day-to-day supervision (i.e. management control). By

modelling norms—as social laws—the target is not to integrate them in terms of contract

compositions with the coordination layer. It would result in unnecessary complexity when

analysing such a relationship by means of a translation or a refinement process because the

composition of contract between different types requires continuous consistency checking,

and management of laws priorities. Instead, this approach adopts an interaction-centric

mechanism based on a multi-level event-based system and context information to decide

the layer in which the interaction at hand should be managed.

In the case of triggering social laws, normative positions patterns organise priorities

and identify how to go about the unexpected social behaviour upon which more radical

interventions are required. In this case, the result would be either to empower the targeted

social entity or to impose sanctions on them based on certain contextual information that

devise the ideality of the situation. Therefore, I advocate a framework that comprises two

levels of abstraction with respect to the process-aware adaptation of systems:

• Higher level: manages human or social component driven interactions that

normally refer to human-driven processes

• Lower Level: supervises lower level changes related to business concepts

and routine or scheduled processes

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

77

It is worthy of note that a process enactment by a participant can be managed at the

lower level reconfiguration approach (i.e. coordination context) provided that it has been

previously scheduled (i.e. coordinated) as part of the participant’s expected and permitted

transitions from one configuration to another (ad hoc reconfiguration) . Conversely, the

same enactment can be treated at the higher reconfiguration level (the norm-based

approach) if the enactment is unexpected. Additionally, the norm-based reconfiguration

mechanism has the ability to impose directed obligations on participants, exhibit these

obligations in terms of facilitating appropriate roles and technical requirement and then

respond to the participant’s reaction accordingly. Directed obligations as explained in (Tan

& Then 1998) are directed obligations from one agent, called the bearer, the configuration

manager, to another agent, i.e. the human participants who fills in the role slot.

Social laws give the modeller what (s)he requires to ensure that sub-ideal situations

can be recovered despite the inevitable drastic adaptations made along the way by

participants or by the configuration manager without losing control over the system. A key

feature of the proposed norm-based reconfiguration is that it facilitates or enables

interactions (as a means of conferring an obligation towards these interactions). Therefore,

they can be used as a flexible, dynamic and powerful tool for communication between

system participants in the sense of the Behavioural Implicit Communication approach

(BIC) that has been introduced by (Castelfranchi & Giardini 2003) as explained in Chapter

2. Manipulating the existing configuration by making roles, machines—e.g. by flashing its

built-in enablement light—and processes available at runtime would be taken more

seriously than a notification appearing in a user interface. In fact, changes to the

configuration are necessary to support the dynamic nature of human interactions to make

the most of their rationale.

However, system specifiers who encode scheduled processes and routine practices

through coordination contexts and contracts fail to consider, at design time, sub-ideal

situations that may emerge due to unexpected human interactions. For instance, there is no

provision to exert social control to motivate human participants to internalise a required

interaction in response to an imposed obligation. Such control mechanism is also necessary

to put into effect a prohibited interaction, which is originated from a capable yet

unauthorised role player, who internalises the interaction to alleviate a captured sub-ideal

context. For example, in a hospital setting, a non-surgeon doctor may wish to qualify a

piece of evidence: (e.g. a patient showing vital signs), to proceed with a surgery that is

usually beyond his permissions. What is needed here is to allow the reconfiguration

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

78

mechanism to rewrite and maybe weaken the pre-conditions pertained to the enactment of

the surgery task.

More concretely, the architectural framework should distinguish between three

types of interactions—instantly coordinated, casually-reconfigured and norm-based

reconfigured— and between the related architectural constructs of coordination contract,

coordination contexts, and social laws and roles.

The separation of concerns is still maintained between coordination and

configuration management, as defined by (Hursch & Lopes 1995) and as adopted in the

original 3Cs framework (Andrade, Fiadeiro et al. 2002). However, when it comes to the

management of the two reconfiguration mechanisms (i.e., coordination contexts and social

laws), the approach adheres to the concept of separation of control as specified in

(Harrison-Broninski 2005) and explained in Section 5.3.2. Figure 4.8 shows a generalised

taxonomy of interactions with regards to architectural configuration from both the

technical view (i.e. coordination context and partners) and the normative one (i.e. human

components associated with their role space).

4.6.2 Modelling Social Laws

This subsection discusses the rationale behind several design decisions that were

made in the course of developing social laws in this framework.

4.6.2.1 Pull vs. Push Modes of Social Laws

The above description of social laws is based on a blend of two modes: push mode

and pull mode. In the Push mode, the configuration manager enables an interaction by

providing the role and technical facilitation to the obliged party: the social component that

is compelled to enact the required task by performing its entry operation. The configuration

manager interprets the social law and makes an implicit directed obligation by preparing

the technical and organisational grounds for the obliged task. In other words, the

configuration manager pushes the message to the obliged party (hence the name push

model).

However, there is one problem with this kind of models: mitigating sub-ideal

situations, they need to keep the expected control of performance and preserve flexibility.

Thus, they require architectural primitives that are capable not only of reasoning about role

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

79

relationships and permissions with regards to interactions, but also about the capabilities of

the participants who are enacting the system.

Suppose role A is ideally fitted by Bob and an urgent task of that role is required

where Alice, who has the required qualifications to do the task but has not been entitled to

that role yet, is the only available person at the given context. It would be very useful to

have a model that distinguishes between authorisations and qualifications in such

situations. If this urgent task is badly needed for the sake of the organisation and its context

then it can be sufficiently captured by the configuration manager’s monitoring

mechanisms. Thus, it would be very beneficial not only to alert Alice but also to translate

this alert in terms of facilitating the required technical elements for this task and be able to

act upon ignoring such an enabled context by Alice (i.e. directed obligation). The main

problems with the Push model are: (a) defining the “minimal set” of the context

parameters, (b) guiding humans when there are several recovery alternatives that crosscut a

single defined “sub-ideality” and (c) dealing with temporal properties of both social

components and configuration manager responses.

Figure 4.8 The space of interactions that emerges from extending the 3Cs business architecture

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

80

The pull mode favours social participants and gives them the upper hand due to

their incomparable cognitive power over monitoring agents and mechanism that a social

law relies on. For example compare the short-sighted and the pre-determined contextual set

of information stated in the body of a social law in most of existing socio-technical settings

to a knowledgeable human’s rational and analytical skills (e.g. the minimal data set of

equipment readings in an Emergency Room, i.e. (Summers, Jansen et al. 1997)).

Capitalising on the above mentioned case, Alice should interact with a flexible

norm-based system to handle situations upon which she can trigger the required task and

force the system to configure itself. This can be achieved either after a successful

consultation of the predetermined context (in a condition-action mode) or by executing the

reconfiguration combined with organisationally-oriented sanctions that aim at ensuring the

overall good behaviour of the system. For example, in a norm-based system, Alice as a

library clerk, would be allowed to let a library member borrow a reference due to some

“urgent” need, despite the fact that only supervisors are entitled to do so. However, the

norm-based mechanism would absorb such a violating interaction and send a message to

her supervisor to ensure that the ideal state is preserved in a reasonable time interval.

This kind of flexible interaction-enabling mechanism can be perceived as a state-

based delegation mechanism that has more rich semantics than the statically enforced,

reactively triggered and causally managed counterparts found in (Sloman & Lupu 2000)

and (Moffet 1998) approaches. The concepts presented in these approaches, many of which

are in line with the advocated approach, have been proved by supporting tools and

industry-oriented case studies. Yet, they are incapable of handling biddable interactions,

managing violating states and bringing new state of affairs (i.e. system response through

reconfigurations).

A major difference between the proposed approach and the one advocated by

Sloman et al. is that the former provides a methodological approach towards developing

role-based architectures that promote compositional design primitives, which superpose

certain behaviours towards the biddable interactions of the populated social components

(i.e. an adaptive role-based model of the system’s enacting participants) at runtime. This,

in turn provides a more practical organisational context where reconfiguration techniques

support the evolution of system configuration as a means of responding to social

interactions and contextual changes that lead to sub-ideal situations. Conversely, Ponder,

as a policy specification language example of Sloman’s approach, focuses on maintaining

a distributed execution environment for utilising technical elements by enforcing post-

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

81

deployment object-based access rules on subject-based obligations and interdictions.

Policies in this approach refer to organisational high level goals and specify authorisations

and obligations that realise long-term requirements and handle general cases. Subjects of

policies can be either automated-agents or actor-like representation of the system’s logged-

in users whose behaviour is fully defined by the refrain and obligation policies that are

imposed on them.

In other words these counterpart policy-based approaches are not capable of

introducing organisational patterns to put legal enablement in effect within institutional

settings as prescribed in law and deontic logic literature. The logic of such an enablement

is based on reasoning about the enacting individual’s capabilities and the norms of the

institution. A detailed review of the research literature in deontic logic discipline has been

discussed in Section 2.4.3 in the previous chapter.

4.7 Extending the 3Cs Framework

This section represents an architectural framework based on the ideas developed in

previous sub-sections and extends the 3Cs framework that has been discussed thoroughly

in the previous chapter. The hypothesisconcludes that the proposed framework’s extension

can be used to reason about and manage human interactions in organisational settings

particularly in sub-ideal situation. This will mimic studies demonstrated in RBAC-base

systems.

4.7.1 The Extended Conceptual Meta Model

The framework demonstrates relationships between the key conceptual components

of the framework in which cardinalities are defined between the different elements. The

extension of the 3Cs framework, introduces a framework that comprises two views: the

role and the component views. The first includes the definition of organisational roles

types, categories of processes’ tasks—in terms of their corresponding configuration

requirements—and finally context types that allow modelling normative contexts (for sub-

ideal situations). The second view is typical to the 3Cs framework, which defines partners,

coordination interfaces, contracts and coordination contexts. Figure 4.9 depicts a reduced

abstract syntax that shows how the proposed role model maps to the 3Cs primitives.

Shaded rectangles label the extended concepts/primitives of the 3Cs framework and

how they relate to the original 3Cs architectural primitives, which are demonstrated as

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

82

unshaded rectangles. Herein, the interactions of human participants are modelled using

collections of defined social roles that crosscut process-based capabilities. Thus, they are

no longer introduced solely to the architectural configuration through pre-defined

computer-mediated interfaces (i.e. actors/ partners) to which technological services and

possible configurations are pertained. The newly introduced task primitive allows grouping

a set of operations among which one is selected to label the task itself. These selected

operations are then leveraged to a higher level of abstraction through the social role

primitive that enables the inclusion of a set of tasks and their related labelling operations.

Figure 4.9 The abstract syntax of the extended 3Cs framework (conceptual elements)

Such operations are of a great importance, particularly if they refer to tasks that are

part of the role capabilities (i.e. declared tasks) yet they are not part of the role’s

institutionally granted permissions (i.e. defined tasks). The taxonomy of these tasks was

presented in Section 4.5.2 (see Table 4.1). The labelling operations of these tasks are

filtered through the monitoring of the configured social roles and thus captured either upon

the unexpected enactment of them or upon the unexpected ignorance of them. Especially,

when they are required and purposefully configured for a human participant to alleviate

some captured context deviation. The management of these operations might interfere with

coordination-based management of social laws, which is limited to causal and reactive

responses to user-defined triggers.

As shown in Figure 4.9., the abstract syntax demonstrates the notational language,

which contains the concepts that populate valid configurations. Despite the fact that these

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

83

newly introduced notational elements are part of the language syntax they have also

structural semantics. These elements can be instantiated at runtime and thus can be

reasoned about and evolved through transformations. For example social roles and tasks

and their interconnections, among the rest of original 3Cs concepts, demonstrate the

structural semantics of the proposed extension. Conversely, social laws cannot be

instantiated, yet they embody the operational semantics, which is given precisely by their

imposed reconfiguration operations. That, in turn, brings about a new state of affairs to

respond to unexpected behaviours or sub-ideal situations (e.g. dispatching a required task).

However, the social law concept and its interconnections are presented in the abstract

syntax in a shallow way for the sake of clarity7 (i.e. presented as rectangles with different

shading pattern).

4.7.2 The Framework’s Layers

In this framework, there are two levels: the normative (i.e. collaborative) level and

the coordination level that refers to the aforementioned 3Cs primitives. The focus herein is

on the normative level, which includes definitions of the proposed architectural primitives:

social role types, social laws, participant’s interactions and contextual signs. The second

level is the coordination-based one, which includes definitions of architectural interfaces

pertaining to technological components, the stiff and unresponsive representation of users

who interact with them, and the coordination rules that causally coordinate their

interactions.

By following this levelling approach, it is possible to provide better evolution

support for those parts that have a higher changeability rate, or to provide different

evolution techniques for different views on the software. This approach is inline with what

(Mens & Wermelinger 2001) have stated: “separation of concerns allows us to separate

parts of the software that exhibit different rates of change or different types of change”.

Another common way to achieve separation of concerns is by raising the level of

abstraction to the level of software architectures, business rules and Meta-models. This

makes software evolution more controllable. These motivations for evolution modelling

provide the support for the argument to separate the social view from the technical one

with regards to evolution as norm-based evolutions have different rate, nature and cause of

change comparing to the coordination-based ones.

7 Social laws, unlike other concepts in the meta model, cannot be instantiated at runtime, and thus
they are not genuine parts of configuration states.

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

84

4.7.3 The Framework’s Reconfiguration Mechanisms

A configuration manager is made so as to provide dynamic reconfiguration features

in architectural models developed in the 3Cs framework. Dynamic reconfiguration

involves the capture of the quiescent state of the target configuration, the addition, removal

and binding of relevant components as well as connectors to transfer the state from the

existing configuration to a new one.

An original view-based solution is proposed: (i) using a new role view for

describing and reasoning about the behaviour of human participants as a set of roles, task,

permissions and obligations; (ii) providing an atomic event-based execution model for the

other technological elements (as components). In this thesis, a generic modelling approach

has been achieved to cater for modelling and reasoning about interactions of human

participants by means of behavioural description extensions to the 3Cs configuration

language and concepts. Figure 4.8 shows the space for different sorts of monitored

interactions with regards to a participant who plays a certain role among his roles space

and instantiates, in the mean time, coordinated interaction (through HCI).

4.8 Related Work

Central to the view of this research is the dominant role of software architecture in

planning, coordinating, monitoring, evaluating and implementing purposeful self-

adaptation (Oreizy, Gorlick et al. 1999). Research on the self-adaptation paradigm has

gained focus among other studies on self-* paradigms such as self-managed, self-organised

and self-healing systems. Each of these paradigms has its own definition that characterises

the functionalities that it focuses on. Self-adaptation is a class of adaptivity that

characterises systems that are endowed with programs that monitor and evaluate

conditional expressions to alter the behaviour of the system based on the outcome (Karsai

& Sztipanovits 1999, Oreizy, Gorlick et al. 1999, Cheng, de Lemos et al. 2008b). Self-

adaptive systems are able to evolve system behaviour after design-time and adapt

themselves at runtime to unanticipated changes in their operating environment, which

includes monitored social interactions and/or the system internal state, without explicit

manual interventions (Dowling & Cahill 2001)

The notion of roles that the approach at hand adopts is inline with (Ould 1995) in

the sense of grouping responsibilities that can be conferred to people or machines in the

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

85

sense of (Tan & Then 1998) and (Cebulla 2004). The ROAD8 framework (Colman & Han

2007) was presented within this new stream and demonstrated an approach, which exploits

organisational theory and promote roles as first class entities to construct adaptive

architectural frameworks. For the sake managing associations (i.e. coordination) between

roles and binding between roles and players ROAD exhibits four-layer architecture:

computational-objects, functional-roles, management-contracts and organisation layers.

The first layer can be mapped to the 3Cs computational layer, which includes deployed

components and their interfaces, while the second and the third layers (i.e., functional-roles

and management contracts layers) play the same role as the coordination layer in the 3Cs

framework. Functional-roles and management control both binding and superimposion

mechanisms (i.e. indirection of instantiation and indirection of composition in ROAD’s

terms) through coordination interfaces and coordination contracts, respectively. The fourth

layer, which does not have a counterpart neither in the 3Cs framework nor in any of its

proponent architectural frameworks. Yet, it targets the organisational abstractions of

adaptive systems and tackles the effects of the autonomy of participating human players, as

presented in (Colman & Han 2005).

ROAD and the proposed framework have foundational differences and some shared

traits. From a bird’s eye view, both ROAD and 3Cs frameworks superpose contracts to

alter the behaviour of the target system. However, ROAD aims at controlling performance

variability through self-management whereas the 3Cs focuses on enforcing business rules

and purposeful behaviours through self-adaptation. Additionally, each framework has its

own communication backbone. ROAD components exchange explicit regulatory control

messages through a coordination network while the 3Cs framework relies on intercepting

interactions in a globally-shared event-based registry between systems components.

Despite the fact that both frameworks put forward roles as first-class runtime

citizen with which organisational players engage, each of these frameworks takes an

opposite approach in defining the separation between roles and players. ROAD adopt a full

separation between roles and player for the sake of supporting the application developer in

creating distributed environment of interacting entities in an organisational form in a way

that is agnostic from the nature of role players (i.e. components, agents or human

operators). Conversely, the proposed approach has targeted the component-based paradigm

and thus drew a line from the beginning between the representation of technical and social

8 An abbreviation that stands for Role Oriented Adaptive Design

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

86

components. Therefore, the proposed method addresses the role and player relationship

from the point of view of social components, which are capable of violating obligations

and permissions whereas the 3Cs traditional primitives tackle both regulation and the

adaptation of purely technical configurations. The key aspect of the separation between

roles and role players is the differentiation between permissions and capabilities as

mentioned earlier in this chapter. Functional roles in ROAD and social roles in the

proposed framework are highly abstract constructs that do not specify how the underlined

system will be implemented. Moreover, they allow having many instances of the same role

type at the same time (i.e. same configuration), and more importantly support representing

organisational positions, which can be temporarily empty and can be played by several

players at different times. The exploitation of social roles has two-fold purposes: regulating

interactions of social components and provide the required knowledge for reasoning about

purposeful self-adaptation in the face of sub-ideal circumstances and the biddable

interactions of participants. Functional roles in ROAD are expressed in terms of purpose,

function, performance requirement, interaction protocols and authority relationships.

The counterpart of the biddability concept and its management mechanism is found

in ROAD in the form of the Organiser Role, which demonstrates high level autonomy in

performing reconfiguration that is suitable to achieve the self-management of compositions

(i.e. configurations). Finally one of distinctive features of ROAD, which is considered

remarkable, is that it allows recursive composition and decompositions of composites at

runtime.

Several research studies have contributed to multi-dimensional role modelling

approach that is proposed in this chapter. From the methodological point of view,

contributions of (Crook, Ince & Nuseibeh 2002, Crook, Ince et al. 2003, Crook, Ince et al.

2005) have focused on an analytical framework to support the requirements engineering

view to cater for role-based security goals without providing any clue concerning the

architecture/implementation level. A similar work that they refer to as a counterpart is the

work of Fontaine (Fontaine 2001) who integrated Ponder language (Damianou, Dulay et

al. 2001) with KAOS (van Lamsweerde, Darimont & Letier 1998) as an approach that

leverages Ponder to a higher level of abstraction. Ponder language is a policy language

designed to provide support for the deployment of security policies within distributed

systems environments, and hence, is meant to be interpreted and executed by a deployment

framework. Thus, Ponder lacks the required level of abstraction to capture the changing

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

87

system’s requirements and stakeholders’ goals. On the other hand, KAOS provides the

means to assign goals to agents that represent the system’s stake holders.

The most fundamental difference between the illustrated approach and Fontaine’s

work is that he aims at modelling the assignment of system constituents (agents) to goals.

Instead, this thesis advocates an architectural framework that contains a single agent (i.e.,

the configuration manager) which interprets biddable interactions by means of social laws,

confers obligations and has the power to enable or suppress participant’s interactions.

OASIS model (Yao, Moody et al. 2001) is an important example that incorporates RBAC

mechanisms and bundles them with Role-Based Access Control using parameters, active

policy management, meta-policies and verification.

4.9 Discussion

The implications of the role theory, with regards to the presented view of modelling

socio-technical system have contributed to the proposed role-based monitoring and

reconfiguration mechanisms. As denoted earlier, the primary difference between this work

and earlier research in this area is the decoupling of the management of human interactions

from the traditional causal approach that normally addresses monitoring and

reconfigurations mechanism at infrastructure or application level, i.e. hardware and

software components. Alternatively, the approach promoted a set of new architectural

primitives that capture the biddable nature of human interactions, a feature that might be

vital in certain situations, to reason about such kind of interactions and allow appropriate

reconfiguration responses that ensure the well-being of the socio-technical system under

focus. A key issue here is how to map the allowed space of interactions that correspond to

human participants to available— or subjected to scheduling—technical components,

which have to be configured correctly to allow the required behaviour of such interactions.

In order to reason about the allowed space of social interactions, social laws are

anchored on (social roles) to embody structural roles relationships and tasks to envisage

key functional operations of social components.

The complimenting fit between the technical requirements of an enacted or

compelled task upon handling a sub-ideal context, in the one hand, and the capabilities and

the permissions of the enacting or compelled to enact social component, on the other hand,

are the enablers of the success of the reconfiguration to alleviate such contexts.

 Chapter 4 Architecting Social Interactions: A Ternary of Roles, Norms and
Reconfiguration

88

Stripped from the context of a particular domain application, the proposed norm-

based reconfiguration mechanism bounds organisational structures, permissions and

capabilities to the participating social components in a flexible way to handle sub-ideal

situations and support convergence to a more stable state. It is worthy to note, as a

conclusion, that when biddable social participants internalise (or engage) in a social law it

does not simply expand participants’ set of permissions by exercising norm-based

reconfigurations, but rather by allowing social participants to act differently, to handle sub-

ideal situations, yet in a way that follows organisational norms and exploits the capability-

based role model.

 Chapter 5 The Methodological Approach

89

Chapter 5

The Methodological Approach

“How design decision shape the emergence of socio-technical system infra-structures and its
accompanying work practice, is fundamental to the technology and ways in which human agency
fits within its borders.”
(Scott & Wanger 2003)

5.1 Overview

The increasing role of information technology in complex systems necessitates a

substantial change in the engineering approach to these systems. This was particularly

characterised by a shift from the conventional software architectures towards service

oriented Architectures (SOA). This wave of service-orientation when applied to socio-

technical systems modelling provides the basis for the composition of the norm-based

architectural primitives that were presented in the previous chapter, to achieve a system

method that offers a normative perspective to socio-technical models.

5.1.1 Objectives

The goal of this chapter is to present the engineering principles for constructing an

architectural method that underpins collaboration dependencies including the interactions

of the participating human components within the boundaries of software systems

modelling. This method highlights concepts and abstractions that contribute to a "dual-

 Chapter 5 The Methodological Approach

90

view" model: this balances coordinated technical models with the biddable nature of social

entities, in order to incorporate human interactions within the systems (i.e. socio-technical

systems) in which these components participate.

The ultimate goal is not to propose a top-down method of engineering collaborative

(sub) systems but to promote a method that utilises architectural primitives, techniques and

styles to develop socio-technical applications. This goal is achieved by constructing a

flexible process-aware view of the collaborations between social interactions and

technological components within socio-technical systems, and making these collaborations

adaptable and "fit for purpose .”

5.1.2 The Chapter’s Structure

This chapter is organised as follows: before the commencement of the next section,

the basis of the proposed process-oriented view of social interactions is provided. Section

5.2 illustrates the relationships between domains, models and properties related to

collaborations that include human interactions. Section 5.3 presents how Problem Frames

would capture concepts and abstraction related to the adaptation of organisational models

in response to changes incurred by biddable behaviours and context ideality. Section 5.4

discusses the perspective for a methodology that can be built to support the proposed

method whereas the related research work is reviewed in Section 5.5. The outcomes of his

chapter are summarised in Section 5.6.

5.1.3 Process-aware Interactions

Smith and Finger define a business process as: “the complete and dynamically

coordinated set of collaborative and transactional activities that deliver value to customers”

(Smith & Finger 2003). Ould stresses that in a socio-technical setting not only information

is needed to perform processes but also technical software and hardware components (Ould

1995). He leads the shift from the information-centric to interaction-centric approach to

process modelling: “[...] in our approach to process modelling a modeller concentrates

unashamedly on what people do, rather than on what people do it with”. This view is inline

with (Smith & Finger 2003) with respect to their observation of the combinatory nature of

business processes which consist of both transactional and collaborative views. The

previous chapter showed that the 3Cs approach fits well in modelling the transactional

 Chapter 5 The Methodological Approach

91

view and promoted social laws, roles and tasks to extend its capabilities towards the

modelling of the collaborative view.

I have recognised the synergies between the proposed architectural approach and

recent research finding on patterns of workflow-based systems, which have been

segregated into three different streams: Workflow Control Patterns (Schnenberg, Mans et

al. 2008), Workflow Data Patterns (Georgakopoulos, Hornick & Sheth 1995, Russel, ter

Hofstede et al. 2005) and Workflow Resource Patterns (Russel, ter Hofstede et al. 2005).

The first stream states that deviation of expected behaviour can be modelled and captured

in terms of alternative paths of behaviour, whereas the last stream is more in line with my

view, which focuses on responding to deviations according to the available resources.

 Recent research on workflow has also shed light on the need for runtime changes

– momentary changes in (van der Aalst & Jablonski 2000). This recent trend of keeping

space for unexpected changes in the process at runtime tries to overlook the rigidity of

design-time approaches to process change such as the Case-based handling of workflows

(Berens 2005). A parallel work has also established a flexible framework for ad hoc

changes in processes to support collaboration for virtual teams (Dustar 2004).

Additionally, Lenz et al. (Lenz & Reichert 2007) stated that there is a price to be paid for

isolating control flow from application logic. They put forward a workflow engine to

accommodate ad hoc changes at different levels of abstractions. Although they distinguish

between stable organisational processes and continuously changing clinical treatment

processes, they are not able to model how knowledge about medical staff may affect such

changes.

As the focus is on modelling biddable social interactions, it is necessary to come

across certain types of processes (i.e. human-driven processes)—a term that was coined by

(Harrison-Broninski 2005)—as an extension of Ould’s view to refer to processes where the

interest is to describe how people do things. This view is distinguished from mechanistic

processes, which define and/or describe how tasks get done. Harrison-Broninski has

emphasised that there is no common set of processes or technology can equally and

efficiently address both types. Therefore, he introduced Human Interaction Management

(HIM), which comprises as set of principles and patterns for structuring, supporting and

controlling human work practices to deal not only with tasks, but also to provide a basis for

innovation and creativity. In practice both processes interweave execution and implicitly

communicate as shown in Figure 5.1.

 Chapter 5 The Methodological Approach

92

Unlike the user-centric approach in which participants presented by actor models,

their role in the system’s well-being cannot be replaced by technical components (i.e.

automation), therefore, the participants’ goal-oriented tasks should be supported by means

of empowerments, rewards or sanctions. This sort of support is realised through a set of

well-defined reconfiguration operations that bring about a new state of affairs, which

facilitates internalising the task or put an end to its progress.

Figure 5.1 Processes Taxonomy of (Harrison-Broninski 2005)

Moreover, human participants deviate from plans (i.e. prescribed processes). These

deviations may be unavoidable or even sometimes desirable from a social/cognitive

perspective that corresponds to the system’s higher level goals (Guindon, Kanser & Curtis

1987). However, addressing these deviations leads to a variety of difficulties at the process

definition, the (sub)system configuration and the instantiations of the underlying

components. The cognitive perspective includes elements such as the participant’s

perception of contextual indicators whether captured or not by the monitoring sub-system,

reasoning based on these perceptions, memory and knowledge. The next section puts

forward a step-wise guiding methodology that aims for the same goal yet departs from the

cognitive perspective and brings to the fore organisational and technical configuration

aspects.

PPrroocceesssseess
Human-driven processes

Machine + Mechanistic processes

Social events: recognisable events that need to be identified by the context modelling and/or
the human cognitive model.

 Chapter 5 The Methodological Approach

93

5.2 A Method for Socio-technical Protocols

As mentioned in Chapter 4, the concepts of separation of concerns and separation

of control have been utilised from software engineering and HIM respectively. Before

delving into the details of the proposed methodological approach the following

assumptions about the environment have to be emphasised:

1. Every human interaction with a complex machine that takes place through

computer/software is considered a Human-Computer Interaction and thus

human-machine interaction is modelled through a piece of software modelled

in coordination interfaces (see Chapter 3 for details).

2. Every human interaction with a complex machine (i.e. tangible parts of

software intensive systems) is monitored via the configuration manager.

3. Normative behaviours refer to entry operations that are enacted by humans or

required by the system in sub-ideal contexts.

With regard to social interactions, the approach provides a design for a machine,

namely an architectural harmoniser, to combine and adapt both interactions of

participating humans and technological components towards the non-causal manner of

social entities and changing environment context through norm-based reconfigurations to

attain the required overall good behaviour of the system. As such this behaviour should

support the convergence from a captured sub-ideal state to a more stable one. Figure 5.2

shows how an architectural harmoniser would interact with other elements within a socio-

technical protocol.

The harmoniser can be perceived as a generic self-adaptivity manager, which

extends the 3Cs configuration manager to support collaborative aspects between social

components (i.e. role players) and technical components. An harmoniser is a software

application that monitors the balance between unexpected interactions and current role

entitlements. It interprets the operational semantics of triggered social laws (through the

graph-based model) in order to effectuate the empowerment aspects of social interactions

or the imposition of sanctions when appropriate

The harmoniser is a constituent part of contributions presented in this thesis as it is

considered the heart of the proposed regulative approach, which consists of indicative and

optative modes. From machine’s perspective, the indicative mode specifies the behaviour

of the controlled domains, regardless of the behaviour of the orchestrator machine (i.e.

behaviours that stem from issuing commands to these machines that are subject to purely

 Chapter 5 The Methodological Approach

94

causal rules. Executing causal commands includes intercepting events, triggering

superposed contracts and calling eligible corresponding services. For instance, an

orchestrator may interpret and execute a rule to allow a lift to stop to serve a caller’s

request if it matches its direction and destination.

Conversely, the optative mode guides the behaviours that the orchestrator desires in

order to maintain the stability of the system or to achieve a certain goal. This includes in

addition to the above-mentioned steps putting into effect system norms that empower the

lift user to direct the lift to a certain floor, despite the fact that it is not in its current

trajectory, if an emergency is detected in this particular floor.

Figure 5.2 A harmoniser’s interactions within a socio-technical protocol

ROLE
PLAYERS

Social Domain -> roles and tasks

TECHNOLOGY

HARMONISER

ROLE
MODELLING

Monitoring Reconfiguration

 Task allocation

Task enactment

Request tasks

Ideality
of the
context

Technical Domain -> technological components

Normative
interactions

Role
transition

 Chapter 5 The Methodological Approach

95

The harmoniser machine takes a further step by providing dynamic requirements

specification for collaboration and identifies a collaborative (sub)system that caters for the

ideality degree of the context and the biddability of the enacting participants. Thus, the

harmoniser presents a new view that considers the orchestrator’s static requirements as

indicative and supports regaining the system stability in response to the occurrence of a

sub-ideal situation and/or an unexpected behaviour of the system’s participant as an

emerging optative behaviour. In other words the harmoniser executes a sort of

reconfiguration that embodies human-in-the-loop. A harmoniser takes the following

elements as inputs:

• A protocol, i.e. a set of social and technical components (which are

identified through models of their behaviour) and the interactions that exist

between them. These correspond to the roles of architectural connectors,

coordination interfaces, as in the 3Cs approach (Andrade & Fiadeiro 2003),

as well as the newly introduced social roles.

• A specification of the collaboration mechanism that applies to interactions,

which corresponds to the identified sub-ideal context or violation and thus

defines the semantic of required social laws.

• A purpose, which is an expression that represents the required behaviour

that is expected to emerge from the interactions within the deviating

protocol and exhibit “fitness of purpose”—what in a problem frame

corresponds to the requirement specification.

As an extension of this work, it would be beneficial for architects to develop a

hierarchy of sub-ideal situations in which the protocol may become involved

together with a way of evaluating the distances that separate them from ideal

states. Herein, the levels of sub-ideality that are captured within the trigger

types of social laws as presented earlier in Section 4.5.4.1:

o Capturing an interaction enactment that is not permitted

 Managed positively through role-based reconfiguration

o Capturing an interaction that is permitted but not enabled

 Managed positively through coordination-based

reconfiguration

o Capturing the ignorance of an enabled (obliged) interaction

 Managed through imposing sanctions

 Chapter 5 The Methodological Approach

96

When the harmoniser acts in a proactive manner, the two triggers demonstrate the

reactive response of the harmoniser to an unexpected social interaction by means of

executing reconfiguration operations that bring about new state of affair in terms of

removing coordination or role obstacles. The third trigger handles the case of detecting the

ignorance violation of social participants to an obligation that has been put to effect

through an architectural reconfiguration. The ignorance violation is assumed by the

detection of the absence of the task enactment yet the proposed modelling language

abstracts away the temporal aspects of the ignorance detection.

5.2.1 Extending the Methodological Principles of the 3Cs Approach

The coordination interfaces of the 3Cs approach constitute the cornerstone for

achieving separation of concerns and business-oriented reuse. They were externalised from

coordination laws for the sake of representing abstract business entities that preserve

compliance relationship with the components that instantiate them (Andrade & Fiadeiro

2003). Coordination interfaces can be organised in hierarchies that exhibit the inheritance

of the component-compliance relationships down the hierarchy.

The key methodological principle of the coordination interface that the approach

capitalises on is the fact that the compliance relationships are driven by business rules and

each of which exposes the business view of a certain usage of the related components

rather than reflecting the essence of the functionalities pertained to these components in the

business domain. Thus, it would be more efficacious to have as many fit-to-purpose

interfaces as required for modelling business rules related to a respiratory machine, for

instance, instead of having a general-purpose interface for this particular machine.

The argument behind this design choice is that it provides some room to manoeuvre

when the system specifier needs to change the usage requirements, which are placed by the

laws not by the entities, and thus, new business rules can be applied. Additionally, the

binding mechanism that allows connectors (i.e. coordination laws) to be superposed over

components instantiating their coordination interfaces, are independent of the target

development environment. The degree of dynamic reconfigurability that can be achieved

through coordination interfaces depends on the ability of the execution environment to

recognise triggers and interactions between entities, and to represent operations and events

(Andrade, Fiadeiro et al. 2001, Andrade, Fiadeiro et al. 2002, Andrade, Gouveia et al.

2002).

 Chapter 5 The Methodological Approach

97

A coordination interface may realise one or more component interface, thereby

adding more constraints through the declared set of services and operations as well as

through pre- and post- operation conditions. Once a component is instantiated and bound to

a coordination law instance through a coordination interface, only operations and services

defined within this interface are recognisable. This state can only be changed after

executing a programmed or ad hoc reconfiguration. Moreover, there are no means by

which the operations of a component can be reasoned about in the case of non-technical

component. Figure 5.3 is a view of layered constraints’ in the 3Cs configurations.

Technical components, particularly machines when they are considered

constituents of a configuration, could be approached by biddable entities in a way that is

beyond the definitions given by the instantiated component and/or coordination interfaces

that correspond to a business component instantiated by such biddable entities. For

example a doctor switching on the emergency mode of a respiratory machine, tuning it

regardless of the normally imposed rules (coordination contract). Such an event has to be

captured despite of the fact that it is not shown in an ordinary coordination interface and

thus is not managed by the corresponding law. This case among others has necessitated the

matching of tasks and their labels (i.e. entry operations), as a means for relating the

biddability of social entities towards technical components, with their actual physical

interface.

Figure 5.3 Constraints spectrum in the 3Cs Approach

 Chapter 5 The Methodological Approach

98

Having the entry operations within the task definitions does not alter the border

between a technical component (i.e. software or hardware) and its environment, but at the

same time it does realise a way for allowing human components to acquire permission for

the particular task labelled by that entry operation at runtime. Once an entry operation is

triggered at the component level, captured and recognised at the role level, and processed

by means of sanctions or facilitation, reconfiguration can take place to instantiate proper

component interfaces and/or laws. As described earlier, a role is a set of related tasks and

thus a role instance model that corresponds to human component presents a mapping of

endorsed tasks, capabilities and permissions ascribed to the participant to whom this

component refers. The following section gives an illustrative example that explains the

argument behind defining social roles, tasks and entry operations and how they are

represented in a configuration.

5.2.1.1 An Example

As an extension of the respiratory machine example that has been proposed in

Section 3.3.2 to introduce the 3Cs coordination primitives and expanded in Section 3.3.3.1

to illustrate 3Cs reconfiguration primitives, I presented how the newly introduced

primitives (i.e. social role, social tasks and entry/exit operations) can support non-causal

management of social interactions. In Section 3.3.4, I showed that if an interaction is

required to adjust the respiratory machine to save a patient’s life (i.e. tuning it out of the

restricted scope) while the appropriate actor is not present then the tuning interaction(s)

will not be performed. In such a case, normally any qualified doctor would be eligible to

perform the operation even if he is not a permanent staff in this ward. Specifying such a

fact in the coordination-context is not viable, as it will incur a scalability problem due to

the need to cascade every constrained ad hoc reconfiguration operation (i.e. constrained by

the truth of d.work_in(w)) with another one that consults the variable indicating the sub-

ideal state). For example the pre-condition section of following reconfiguration operation

should be supported with a reconfiguration operation that incorporates the vital signs

context in every occurrence of d.work_in() to relax the condition of being a ward’s staff.
subscribe_OPEN(d:doctor,r:respiratory):

 pre: exists r and d.work_in(w)and r.fixed_in(w)

 post: not exists’ restricted-respiratory(d,r)and

 exists’ open-respiratory(d,r)

 Chapter 5 The Methodological Approach

99

The reader should consult Section 3.3.31 for the complete specification of the

coordination context example. .Additionally, thing will get more complicated if the system

specifier explicitly delegate the interaction to different categories of users (e.g. nursing

staff) in such situations. Last but not the least, facilitating the appropriate configuration is

not enough to yield the purposeful human-driven interaction anyway, as neither programs

nor devices can ensure the required social interactions. Thus, in such cases organisational

sanctions should be imposed to compel participants or at least to gain a better sub-ideal

state (i.e. freezing their accounts and/or reporting the case to managers to whom they are

accountable).

Suppose that the interaction could be conditionally delegated to nursing-staff,

doctors and ward-doctors (i.e. doctors-in-charge) then each of these categories should

contain a tuning-respiratory task definition in their corresponding role types. Only ward-

doctors will have full permission to the task while the others should have partial access;

however, it should be sufficient to handle sub-ideal situations (e.g. absence of the ward-

doctor and the critical vital signs of the patient).

Figures 5.5 and 5.6 present how defined tasks and entry operations allow for the

modelling capabilities of a role player and how they facilitate reconfigurations at both

technical and role levels. In this example I show how a nurse role is modelled in a way that

allow empowering her, if necessary, to internalise a respiratory machine freely. Figure 5.4

shows the traditional 3Cs user-centric approach posing a nurse’s actor interconnected with

a configured respiratory machine via the coordination contract restricted-respiratory yet it

is eligible to other unknown configurations through coordination context. Herein, I assume

that the respiratory-open contract is not among them.

If designers adopt the proposed approach it would be possible to reason about

situations in which a nurse should be exceptionally enjoined to internalise the respiratory

machine freely; however, such cases have to be addressed at a different level of

abstraction. The designer has to correlate the nurse (the least capable role) and doctors that

are not members of the ward (i.e. alternative roles) to the optimal role (ward-doctor)

through a role hierarchy as shown in Figure 5.5.

 Chapter 5 The Methodological Approach

100

Figure 5.4 The 3Cs based view of a nurse actor

Figure 5.5 Modelling a task that is not part of the configured role

Therein, the nurse configuration includes a social interface that embodies a

reference to respiratory-tuning task, namely to its entry/exit operations (i.e. the operation

that changes the respiratory machine mode from normal to emergency so as to set its

pressure out of the scope).

As shown in Figure 5.5 an entry operation of emergency respiratory tuning is

embodied in the nurse social interface (i.e. which includes his possible tasks and related

coordination interface. It is the responsibility of the social law as seen in the previous

chapter to conclude whether the enacting player is eligible or obliged for an interaction

with respect to the conceived social context. I did not name the entry/exit operations in the

diagram yet it can be simply mapped to the operations found in the open and the restricted

interfaces of the respiratory machine or to some other operations that can be mapped to the

equipment interface (i.e. different buttons or mode-changing switch).

 Chapter 5 The Methodological Approach

101

Figure 5.6 Enacting and permitting technical/role-based reconfigurations in two steps

 Chapter 5 The Methodological Approach

102

5.3 Capturing Biddability: From Concepts to Models

The key reason for my interest in Problem Frames is not to support software

requirements specification and design but rather to shape the methods and techniques that

can be borrowed for supporting:

• The engineering of socio-technical systems: this may involve software

applications as components, but it primarily involves complex interactions

between social and technical components that are indicative in the sense of

(Jackson 1995, Jackson 2001) as described in Chapter 2.

• The evolution of socio-technical systems: evolution should be supported

with a highly abstract model and a reasoning approach to guide the

response to changes in the system environment and the biddable

interactions of its participants, particularly within organisational models, as

specified in (Hall & Rapanotti 2005).

The author emphasises that analogies between Problem Frames and architectural

connectors need to be taken with care. The synergies between software architecture and

problem frames have been identified by (Hall, Jackson et al. 2002). Their research presents

a slight extension to the Problem Frames notation aiming at expanding the definition of the

Problem’s machines to cater for architectural artefacts. This work was carried further by

introducing the Coordinated Problem Frames approach, which correlates both Problem

Frames and 3Cs approaches (Barroca, Fiadeiro et al. 2004), however, it can only be

imposed on causal domains, not biddable ones.

This thesis provides a methodological approach that can model and manage the

collaborations between social and technological components in a way that is adaptable and

“fit for purpose.” The inherent problem of social components, unlike technical ones, is that

assumptions on their behaviour cannot be guaranteed by programs, as they do not control

them. Thus, the aim is to compensate actual social components (i.e. biddable domains)

with models to assist designers in inferring properties to validate possible configuration

scenarios. The fitness-for-purpose view is borrowed from (Fiadeiro 2007) as depicted in

Figure 5.7 where properties stem from the interconnections between the various system

elements, which form purposive configurations and models, to support designers in

inferring the evolution of underlying domains, which in turn represents the physical

entities participating in the system (i.e. software components, devices and people).

 Chapter 5 The Methodological Approach

103

The relation: fit (fix to X, where X represents the model and x a domain), shows

how the three software-intensive system levels might relate. The line between the

properties and models levels represents both logical inference and simulation, which are

the two ways that designers can use to obtain system properties. Models (uppercase letters)

and domains (lowercase letters) relate through fit (dashed arrows).

Figure 5.7 The fit-to-purpose Architecture (borrowed from (Fiadeiro 2007))

As proposed in (Fiadeiro 2007), there are three types of fits according to the

corresponding domain type (Table 5.1).

Domain Fit
Software domains Expressed in the way programs implement the specifications (i.e.

correctness)

Control/embedded systems

domains

In control and embedded systems, the fit, which is based on an

abstract representation in a mathematical domain, must operate an

abstraction from a model of the target plan to the mathematical

domain over which the models are expressed.

Social/human domains The fit cannot be formalised, thus, the model expresses the norms

that social components are expected to observe and defines the basis

on which the component interactions elicit required properties.

Table 5.1 Domains and fit relationships

 Chapter 5 The Methodological Approach

104

5.3.1 Modelling the Proposed Architectural Primitives

Social laws, along with their related role spaces that are enacted and interplayed by

human participants, are suitable to specify the big H (i.e. human component representative

in terms of role space and permissions). The big K (i.e. the knowledge domain) realises the

interpretation of system instructions by means of technical (re)configurations together with

human interactions as mentioned in Chapter 2 (see Figure 5.8). The H-K specification

should differentiate between permissions and qualifications (i.e. competencies) in the light

of possible technical configurations.

Figure 5.8 Problem Frames three-ellipse model of requirements

The knowledge domain has been introduced in the context of socio-technical

requirements in (Brier, Rapanotti et al. 2004, Hall & Rapanotti 2005) to represent humans

for which the instructions I have to be assigned. In a problem diagram, a knowledge

domain is represented as a box with double bars on the right-hand side (unlike machine

domains). Figure 5.9 illustrates a general form of socio-technical problem diagram; both

machine and knowledge domains are subjects of design. I propose an extension to the work

of (Brier, Rapanotti et al. 2006) by introducing the capability-based role concept and the

technology-centric of view of tasks to enrich the knowledge domain.

S

P
M

R

W

K
H

?
I

So
lu

tio
n

Pr
ob

le
m

UI

 Chapter 5 The Methodological Approach

105

Figure 5.9: The general socio-technical problem diagram (Brier, Rapanotti et al. 2004)

Recalling the three-ellipse model, on the one hand, it is required to design a

program P, which runs on the machine M to implement S, and on the other hand, to realise

knowledge of how to execute the available services (i.e. guiding interactions of human H)

to satisfy the set of expected instructions I:

• P + M satisfies S (can be informally perceived e.g. PSQL + MDMBS satisfies

S (the targeted system specifications) and “+” denotes an informal runtime

composition between the machine M and the program P

• K I + H role
9 satisfies I (a human with a sufficient role, knowledge and

resources should satisfy the systems’ instructions)

To present my view of architectural configurations, I promote two novel predicates

namely supported(X) and app(X, Y) as basis of the intended extension of the notation of the

organisational extension of Problem Frames presented in (Brier, Rapanotti et al. 2006).

Both predicates are realised by the monitoring mechanism. The former returns true if the

current (technical) configuration is realised with regard to a certain task X, whereas the

latter examines the last interaction, which has been committed by the monitored human

player X, against the required action Y.

 However, to ensure the overall good behaviour of the system, a machine that can

monitor and manipulate the KI and Hrole models particularly at sub-ideal situations, should

be constructed. More precisely, KI(task) can be supported through adding or deleting

9 Hrole as a model of humans as role space (current/possible role configuration) instead of agents

Socio-technical requirements

Machine
domain

Knowledge
domain

Required
phenomena

Required
phenomena

a

Real-world
domain

b

c

d

 Chapter 5 The Methodological Approach

106

technical components that suit that task, whereas roles can be enabled provided that they

are part of the human player’s capabilities:

1) supported(HI-task) + app(X, Hrole) satisfies I (allow the interaction X)

2) supported(HI-task) + ¬app(X, Hrole) does not satisfy I (impose sanctions on Hrole)

3) ¬supported(HI-task) + app(X, Hrole) satisfies I (impose positive reconfigurations)

HI-task can be supported by providing the technical reconfiguration that is required

to realise the intended task, i.e. providing software, hardware components and

interconnection whose rules allow the required behaviours. A human role is considered

appropriate if the role player is both capable and permitted to enact the task.

The proposed extension to Problem Frames targets finding a way to embed roles

into the knowledge domain, and to use it as vehicle to reason about biddable interactions

within organisational settings. It is akin to the extension presented in Figure 5.10 yet it is

human-centric, taking into account the permissions and capabilities, on the one hand, and

norm-based reconfigurations (i.e. facilitations and sanctions), on the other hand.

Figure 5.10 Extended Problem Frame notation or organisational problems (Brier, Rapanotti et al.
2004).

5.3.2 Separation of Concerns and Separation of Control

In Chapter 4 the concepts of separation of concerns and the separation of control

were borrowed from software engineering and HIM paradigms respectively. With regard to

Socio-technical requirements

Organisation
IT

Org. Employee/
processes

Required
phenomena

Required
phenomena

a

Organisation
real-world

context

b

c

d

 Chapter 5 The Methodological Approach

107

social interactions, a design for a machine, namely an architectural harmoniser, was

presented to combine and adapt both participating humans and technological components

towards the non-causal manner of social entities and changing environment contexts

through norm-based reconfigurations in order to attain the required overall good behaviour

of the system. From this machine’s perspective, the indicative mode specifies the

behaviour that the controlled domains exhibit, according to causal coordination and

reconfigurations (i.e., superposed contracts and coordination contexts), and regardless of

the behaviour of the harmoniser machine. Conversely, the optative mode guides the

behaviours that the harmoniser desires to bring about or maintain in order to keep the

stability of the system. In order to generate this sort of desired behaviour, the proposed

normative approach pays explicit attention to the norm-based self-adaptation rules

enforcing or permitting interactions to human participants in order to achieve an overall

desired behaviour of the system.

5.4 A Prospect of a Normative Methodology

This section discusses the prospect for a methodology that utilises the architectural

primitives and the generic role-based technique that have been developed during the course

of this research to support mapping and reasoning about biddable interactions within

organisational settings. The proposed methodology is based on a new way of thinking,

which injects the biddability of social interaction into early stages of development. It

underlies an adequate formal conceptualization using the 3Cs business architecture (the

technical view), and the newly introduced primitives. The original and the extended

architectural approaches are constructed together in a stepwise way to capture and reason

about social interactions within socio-technical processes (the normative view). In the

proposed methodological approach, sub-ideal contexts in the view of role-player and

optimal technical configuration inconsistencies can be taken as significant issues to

identify perspective dependencies, in order to derive purposeful self-adaptation, and also,

to allocate obligation and permission distributions over participants and/or social driven-

processes.

The interplay between the instantiated primitives in the two views is realised based

on the principle that the two architectural views are to be joined together to obtain the final

architecture. After constructing this holistic view, biddable interactions, once initiated by

social entities in the collaborative-mode, can change the role view and follow the

 Chapter 5 The Methodological Approach

108

consequences of the changes on the technical view, allowing modellers to take the right

decision at design time. Moreover, designers can allocate requirements pertained to the

normative view using a slightly-modified version of the Semiotics approach to

requirements engineering which can be exploited to single out system norms (i.e., optative

behaviours) from descriptive ones as mentioned in Chapter 2.

Semiotics is a relatively new paradigm that constitutes a candidate for the presented

architectural approach to be promoted to a systematic methodology for the construction

and the evolution of norm-based socio-technical systems. Stamper and Liu established the

fundamental blocks of Semiotics: signs, information norms and systems (Stamper 1994,

Liu 2000, Liu, Sun et al. 2001b). They advocate norms analysis as a system method that

offers a normative perspective to system modelling and design, and utilises rich semantics

to depict the ontological dependencies. Moreover, it facilitates the elicitation of system

requirements (Stamper 1994). This method attempts to resolve several issues usually

affecting systems with complex human interactions such as business exceptions, violations

and normative positions. (Stamper 1994) provides an output norm template that can fit well

with the constituents of social laws:

 whenever <condition>

 If <state>

then <role>

is <deontic operator>

 to <action>

Organisational Semiotics presented by (Liu 2000, Gazendam, Jorma & Liu 2005) is

a descendant of Semiotics that focuses on properties and behaviours of signs, that are

exploited within organisational contexts and business-driven practice, as means for

Human-Human and Human-Machine interactions. Despite the fact that Organisational

Semiotics shares similar interest in modelling human interactions with the proposed

framework (e.g. establishing commitments, permissions and obligation), it has a different

scope as it focuses on explicit exchanged information, its structures and its meanings

which constitute the basis of communication and negotiation between the system actors.

Moreover, Organisational Semiotics managed to model the collaborations between

the system actors and facilitated organisational proxies for filtering social interactions yet it

provides no means for generic and implementable applications that explicate the

dependencies between social interactions, role structures and technical configurations in a

predictable and assured manner to achieve desirable behaviours. Semiotics also lacks

 Chapter 5 The Methodological Approach

109

analysable models that show how the current state of affairs (i.e. in role-based or technical

configuration terms) might change as a result of triggering norm-based adaptations (Kayser

& Nouioua 2004) let alone executing the adaptation recipe for guiding the desired change

despite of unexpected social interactions. However, this Semiotic-based methodology has

proposed an elegant requirement elicitation method for deriving norms of systems buried

in textual requirements documents.

A novel method, which extends the above-mentioned methodology, is put forward

to support extracting organisational norms that correspond to normative positions. These

normative positions influence biddable social interactions that are labelled as entry-

operations of tasks required in sub-ideal situations. Norms can be extracted from system

requirements as follows:

(1) Responsibility analysis: contextualised role/task relationships and

human permission-agnostic capabilities.

(2) Partners identification (the coordination view)

(3) Triggers analysis

• Pre

A. Entry and exit operations of task

B. The conditions for activating and invoking norms

• Post

A. The resultant condition after successful norm execution

• Facilitating

B. The resultant condition after unsuccessful norm execution

• Sanctions

C. Actions required, suppressing unwanted behaviour

(4) Norm specification

5.4.1 General Steps of the Methodology

Defining the modelling primitives for specifying flexible self-adaptivity is a first

step towards an architectural methodology for socio-technical systems that takes into

account the biddable nature of social components through self-adaptation. Moreover,

identifying potentials for sub-ideal situations is central to the proposed approach. Thus, I

put forward methodological steps for identifying boundaries of contextual changes that

contribute to sub-ideal situations, their recovery tasks and flexibility points. Flexibility

 Chapter 5 The Methodological Approach

110

points allow relaxing the requirements of these tasks, when required, to equate to existing

operating conditions.

This sub-section draws the outlines of the adapted version of the HIM methodology

that addresses the specific needs of the proposed architectural approach. HIM introduces

process-based support for adaptive and collaborative social interactions, which may

deviate from their prescribed plans, in a way that can be integrated with routinised

processes, which are of a causal nature. In the proposed architectural approach, the

biddability of social-interaction is tackled via self-adaptivity to achieve a system’s high

level goals, which make adopting the top-down design approach a natural choice. Thus,

correlating process-aware tasks, human-driven processes and role-based interactions with

the system adaptivity is a way to operationalise high level system goals such as preserving

the stability of the system following the detection of a sub-ideal situation. Therefore, HIM

is a justified starting point for the proposed methodology to support human participants to

enact tasks that are within their capability-based roles space putting into consideration the

changing organisational context.

The methodology in hand is a result of the combination of the HIM approach and

the proposed extended 3Cs architectural method including its underlying primitives and

patterns. However, further work is needed to evaluate its suitability for large–scale

industrial projects. In this methodology, a couple of concepts are treated as first class

citizens and governed by social laws: roles and tasks. In addition to these newly introduced

concepts or primitives, 3Cs based primitives are still considered but as second class

citizens (e.g. coordination interfaces and coordination laws).

Before describing the methodological steps, assumptions on targeted systems and

the input information (e.g. requirements documents) should be clarified. These

methodological steps are meant to target socio-technical systems that operate within

monitored organisational contexts where roles of social participants are understood in

terms of their capabilities to perform well-defined tasks. The proposed steps are based on

the following assumptions:

• These steps target socio-technical systems that operate within monitored

organisational contexts where roles of social participants are understood in

terms of their capabilities to perform well-defined tasks.

• Tasks are normally parts of unstructured processes.

 Chapter 5 The Methodological Approach

111

• Context-awareness is supported by system monitoring services that capture

the behaviour of social and technical components.

Before delving into the details of the methodological step, the following documents

should be prepared, as they constitute the inputs for commencing with these steps:

• Specifications of the system’s processes that include tasks and operations. It

should include also how people should go about them

• Organisational charts that embodies functional roles that corresponds to

above-mentioned task and roles

• Code of norms that specify organisational obligations, permission and

interdictions that prescribe the behaviours of organisational role players

who should conform to these norms

The proposed steps aim at externalising system tasks that are human-driven and can

be obliged or permitted by the system norms to alleviate certain situations (i.e. sub-ideal

states). Figure 5.11 presents a simplified version of these steps.

These steps build an incremental model of purposeful tasks from the specifications

of business process. A task from the social participant view is a collection of his interfaces

to technical components within a purposeful configuration. A task is endowed with the

“optimal” technical configuration and then related with certain goal. Then, modellers

should query system norms to find when these goals become priorities (i.e. obliged to

alleviate some sub-ideal state). In this context, the modeller should identify contextual

information to be monitored, understand the required knowledge and skills of human

participants in order to find flexible points to relax the task’s operation conditions and role

entitlements (i.e. the permissible space of role players who can lead the task execution),

when required. This is in contrast to building and investigating models of the context of the

environment to discover the physical boundaries of sub-ideal situations as this approach

overlooks the impact of context-awareness technologies and human capabilities in

identifying and managing these situations.

 Chapter 5 The Methodological Approach

112

Figure 5.11 A simplified view of the proposed methodological steps

In more details, I propose the following steps in a systematic and discursive way as

shown in Figure 5.12:

(1) Consult the system’s process architecture to unite business goals with business

process. This is sin qua non unless the methodology implementer starts from

this point, the architecture will be shaky. As the methodology adopts a self-

adaptive approach, goals should be identified first in a top-down manner.

(2) Assess the business processes of the system at hand taking into consideration

the differences between the transactional and collaborative natures of these

processes. Steps 3 to 6 should be iterated for every process.

(3) Based on this understanding, select a routinised process that operatioanalises a

high level system goal/ requirement e.g. organisational goal.

(4) System analyst should concretise the relation between the selected process and

its goal(s) through refining the process’s constituents from the transactional

point of view. Such a refinement incurs having all the required configurations

for the entire process e.g. use case-like in the light of required technical

configurations as if the process’s technical resources and the actors are properly

configured before hand to enact the entire process alternatives (c.f. use cases).

 Chapter 5 The Methodological Approach

113

As such the configuration is pertained to a key actor who should guide the

process progress (i.e. namely the key player) provided that the process is

human-driven, (i.e. not purely mechanistic), otherwise the modeller should stop

here and select another process (i.e. step 3).

(5) The system analyst should divide the process’s use case-like static

configuration into purposeful sub-configurations (e.g. a configuration should

satisfy a specific functional requirement or a user requirement, which may

contain several technological components serving a number of actors. This step

is divided into sub-operations according to the following sequence:

i. Constructing coordination interfaces (i.e. domain level): this step

can be iterated as long as new pieces of software, equipment and

their business-oriented exploitations are added to the socio-technical

system

ii. Accumulation of every actor interfaces to realise purposeful

business needs from the architectural configuration’s point of view

and assign the permission for enacting the defined operations in the

interface

iii. Determining coordination contracts that superpose the required

functional behaviour of small configuration steps on top of the

coordinated entities and organise them on actor basis (i.e.

coordination contexts) to realise the use case-like space of processes

(i.e. configuration steps)

(6) Elicit the organisational structure depicting functional roles of the organisation.

This should include the hierarchical relationships between organisational roles

where lines demonstrate real inheritance of capabilities and knowledge (e.g.

consultant-doctor and specialist-doctor relationship) rather than supervise or

report-to relationship (e.g. manager and engineer one).

(7) Attach tasks to roles as the system designers answer the following questions

after constructing each task: who is the natural role player of the task? In what

natural context this task can be permitted? And what is the optimal system

technical configuration required to achieve the task. Answering these questions

yields the transactional view of the task executions within the socio-technical

systems.

 Chapter 5 The Methodological Approach

114

(8) Identify and analyse the inconsistencies, either the static inconsistencies in role

structures and their relationships, or the dynamic ones, which may require tools

for animating different executions. The main aim of this step is to find and

remove obstacles that hinder the emergence of the required overall system

behaviour. These obstacles can be removed by permitting or obliging the task in

hand. This should be followed by imposing sanctions or rewarding the

corresponding social behaviour afterwards. Obstacles are identified as sub-ideal

situations that considered problematic as they lead to a hazard (i.e. usually

related to valuable resource or a system objective) and can be managed by the

re-definition of a relevant purposeful task. The redefinition of the task in hand

can be achieved through removing one or all of the following obstacles

subcategories:

i. Role obstacles: identifying roles that are capable yet not

permitted to commence the required task allows reasoning

about them to facilitate role-based configurations (i.e. role

transitions) at runtime. Thus, system designers should

allocate the task-capability space of each task to the role

hierarchy by identifying:

1. The least capable role (c.f. the abstract class in

dynamic binding)

2. The optimal role (c.f. the first concrete role)

3. Redefinition roles (roles that are allowed to

redefine the task excluding the entry/exit

operations

ii. Coordination obstacles: In the 3Cs approach a task’s

requirements are modelled through coordination rule

invariants and/or the specification of required technical

entities (i.e. other partners). Both can hinder the execution of

the task when it is urgently required. Thus, this step supports

allocating task redefinition to the above mentioned roles

within the role hierarchy. Such re-definitions include

reducing technical requirements (e.g. engaging less technical

resources) or weakening contextual constraints and they are

specified in the corresponding social laws.

 Chapter 5 The Methodological Approach

115

(9) Based on the previous step, the system analyst plans what sort of self-

adaptivity should take place when the interaction under focus is triggered

and/or obliged beyond the coordination scope, in order to handle sub-ideal

situations and provide runtime evolution. The result would be a set of social

laws that, once triggered, create normative positions normative positions to

empower role players so as to compel them to execute the required/permitted

interaction by means of facilitations and sanction.

Figure 5.12 The proposed methodological steps

 Chapter 5 The Methodological Approach

116

Steps (2) to (5) allows constructing the transactional view of the architectural

approach while the rest of the steps allow reasoning about certain unexpected or blurred

participants’ interactions that have never been taken into account in traditional software

architectural approaches e.g. the 3Cs.

This methodology facilitates the management of emergent collaborative processes

at runtime and keeps the overall stability of the system by providing the appropriate

response to these unexpected interactions that cannot be causally controlled.

5.4.2 Remarks on the Proposed Methodology

The main aim of this methodology is to bring to the fore the detection and the

management of sub-ideal situations and biddable social interactions in order to guide the

system reconfiguration to self-adapt to changes of context. Reconfigurations include

removing role obstacles and coordination obstacles to realise these interactions, when

needed.

These steps support the extension of the 3Cs approach. The 3Cs approach is based

on eliciting and modelling aspects such as business rules, functional requirements and

completely anticipated design time reconfigurations (i.e. programmed and ad hoc

reconfiguration). The processes of eliciting these aspects from specifications, encoding

them through primitives at both coordination and configuration level, and executing them

at runtime are relatively easier than electing, and managing uncertainties (e.g. unexpected

context changes and social interactions).

The above-mentioned methodology steps address a new class of

communication/interactions within systems that is not purely Human-Human (i.e.

negotiation-based) or simply HCI but rather a class of human-driven and task-oriented

interactions (e.g. human using equipment and software pieces) that have purpose and affect

social and technical contexts through transitional and emergent collaborative processes.

While the transactional view of the architectural model is sufficiently addressed by the 3Cs

primitives such as coordination interface, coordination laws and coordination context, the

non-normative collaborative view has just been equipped with new primitives for capturing

possible enactment of unexpected interactions through availing entries for emergent tasks

that aim at attaining well-identified short-term goals.

One of the key issues in this methodology is justifying the order of its steps, which

relies heavily on dependencies between social or process-oriented tasks and coordination

interfaces. The perception of this thesis is that tasks are collections of coordination

 Chapter 5 The Methodological Approach

117

interfaces, and thus, the latter should be defined first as they can be freely extended

without changing the corresponding task template. Moreover, assigning tasks and/or their

entry/exit operations to organisational roles in terms of social roles gives these roles a

multi-dimensional semantics and allows understanding the interactions of the role player

(i.e. social participant) in process terms making it possible to address and manage “hot task

swapping”.

Beside social roles, social laws deal with sub-ideal situations and/or unexpected

interactions as they surface. The critical point is which knowledge of the system participant

is required when they are invited to join it or when they enact it. Moreover, system

specifiers must allocate interactions to which implicit social meanings can be ascribed that

convey the need for hot process swapping. This exactly specifies what emergent

behaviours be pre-planned before hand and then tackled at a higher abstraction level.

Therefore, it is better to concentrate on the entry operations of organisational

tasks/processes and relate them to the participant’s capability representation in the model.

Another argument to support the order of these steps is the fact that positions in

organisations are relatively stable, particularly if they are capability-based, whereas tasks

and their technical details keeps changing as new technologies are introduced to the

system. Thus, if smarter equipment is introduced to the system resources, then another

round of configuration-based analysis has to be performed to re-evaluate the tasks in which

this equipment participate. Such re-evaluation procedure may entail the expansion of the

scope of roles that can enact this particular task as lower levels of knowledge and skills

would be expected from the human participant’s side. This change can be easily tackled

with minimal efforts, as the task will be fit to a new appropriate role that is closer to the

root of the role hierarchy (i.e. parent roles). Chapter 7 provides a case study that

demonstrates the applicability of the proposed methodological steps and evaluates their

outcomes.

5.5 Related Work

Many insightful and interdisciplinary research efforts have targeted social

interaction modelling issues within information systems, but from different perspectives:

(Checkland 1984) Software Practice (Floyd 2002), Ethnography (Martin & Somerville

2006), norm-based requirements analysis (Stamper 1994), Computer supported

 Chapter 5 The Methodological Approach

118

Cooperative work (CSCW) (Moran, Thomas et al. 1990, Grudin 1994, Zhang, Xu & Gu

2005) and Groupware systems (Ellis, Gibbs & Rein 1991, ter Beek, Ellis et al. 2003).

The view of (Taveter & Wagner 2001) to business processes as social interaction

processes for the purpose of doing business matches the presented approach. In the

advocated methodological approach, biddable interactions have been put forward as first-

class citizens and a sub-system for norm-based has been joined to the knowledge domain

to manipulate its settings, i.e. role settings. Their knowledge domain consists of a role

model and a configuration model that is shared with the general-purpose machine M.

The Problem Frames approach to requirement specifications and decomposition

recognises the distinctive characteristics of biddable domains and captures their

phenomenal relations with both problem and solutions domains (Jackson 1995, Jackson

2001). Early studies in the approach propose conceptual structures to model reactive

systems that interplay with social systems, utilising symbolic interactions and norms to

bring the required effects to the social system (Wieringa 2000). An extension of Problem

Frames towards the realm of socio-technical systems and organisational modelling has

been introduced in (Brier, Rapanotti et al. 2004), and carried further towards bringing

together high-level business requirement and low-level Problem Frames through AFrames

patterns in (Hall, Rapanotti et al. 2004). Additionally, a change frame has been put forward

to facilitate the analysis and synthesis of organisational-driven change in socio-technical

systems (Brier, Rapanotti et al. 2006).

The presented methodology moves the 3Cs approach a step forward in providing

flexible and to evolvable architectural based systems. Current software development

methodologies treat system participants as stable elements who always react to the system

in a predictable and “rational” manner. In short, all these methodologies take a technology-

centric approach to system analysis to seek the best design of the system (Checkland &

Scholes 2001).

The first departure from this assumption in the architectural modeling paradigm

was presented in the Aura project, which showed the effectiveness of using architectural

layered models in addressing self-healing mechanism (Garlan, Siewiorek et al. 2002).

Aura’s approach presents the user intent and makes available to the rest of the system a

powerful basis on which user needs can be anticipated and then answered through system

adaptations. The self-adaptation approach in this thesis is top-down and takes into

consideration the differences between the transactional and collaborative natures of human

and mechanistic processes as proposed in (Harrison-Broninski 2005). His work is based on

 Chapter 5 The Methodological Approach

119

maximising the reliance on role models and their dependencies within organisational

settings as shown in (Ould 1995) to reason about interactions in different contexts.

A candidate approach to achieve a stateful organisational model with separation of

concerns has been demonstrated by (Zhang, Xu et al. 2005), which put forward the

Organisational State Machine (OSM) and Role-based State Machine (RSM) over which

the system norms are applied on CSCW interactions. A normative analysis approach has

been proposed by (Liu 2000, Liu, Sun et al. 2001b, Kayser & Nouioua 2004) but at the

requirement level; however, an adapted version of this approach was proposed in this

chapter that provides methodological steps for capturing requirements for social laws that

can be specified at the architectural level. The aim of these steps is to address, analyse and

support the software development method for modelling and implementing social,

collaborative and organisational systems in organisational settings.

5.6 Discussion

The methodological approach at hand supports software-intensive systems, which

operate in organisational settings, and demonstrate a process-aware view of their

interactions. The process-aware view is achieved through the execution of steps 5 to 8 in

the proposed methodology, which links functional goals to processes; correlates tasks to

purposeful participants’ intentions and/or stable-state preserving requirement; and poses

the signified task’s entry/exit operations as communicative behaviours that explained by

the voluntarily enactment or the ignorance of the imposed obligation towards these

operations. These communicative behaviours are considered biddable interactions, which

are put forward as first-class citizens upon which a sub-system for norm-based governance

has been joined to enrich knowledge domain and to support self-adaptivity and manipulate

the existing configuration accordingly, i.e. role settings. The proposed extension provides a

configuration model that consists of two views: a role view and a configuration view. Both

of them are managed by the general-purpose machine M (i.e. the harmonizer as mentioned

in Section 5.2).

In the proposed methodological approach, conflicts or deviations from normal

situations can be used as an efficacious way of identifying perspectives for dependencies,

deriving reconfiguration and also for locating permissions and obligations. Permissions

and obligations have to be adjusted to respond to biddable interactions and changes in the

environment in which social entities operate. Practically, the need for adaptation may result

 Chapter 5 The Methodological Approach

120

from monitoring services such as (Baresi, Ghezzi & Guinea 2004) and imply

reconfiguration of roles and technical components.

Chapter 6

Graph-based Formalisation & Meta-

Modelling of Socio-technical Protocols

“Poor notation can cloud important concepts but notation alone cannot rescue inadequate
concepts.”
Cliff B. Jones

6.1 Overview

Graphs are among the elegant and most universal models for a variety of systems

that include not only computer science, but extend to engineering and biological sciences.

Agile software architectures require—as first-class concern—ways to model how to

predict, support, or react to situations in which systems should evolve in a way that keeps

their overall good state. The Graph Transformation approach (GT) combines the idea of

graph, as a universal modelling paradigm with a rule based approach to specify the

evolution of the system.

This chapter introduces two graph-based approaches namely the view-based

approach and the Dynamic Meta-modelling approach, for specifying an evolutionary

architectural modelling method that aims for constructing normative models for evolvable

and adaptable socio-technical protocols. The key target of this chapter is to demonstrate a

formal definition of the generic reconfiguration operations that have been defined in

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

122

Section 4.5.4.2 and their impact on monitored and evolvable software architectures

particularly at deviating contexts. Herein, graphs precisely define roles as structural

semantics, while the laws’ reconfiguration operations are specified through the operational

semantics given by graph transformations.

6.1.1 Objectives

The main objective of this chapter is introducing a graph-based modelling approach

to address the following issues:

(1) modelling the intertwining between the well-separated technical and

social aspects of socio-technical protocols

(2) proposing the use of GT rules to formalise the operational semantics

of the generic reconfiguration operations in which graph rules

provide precise semantic specifications needed to be interpreted by

the configuration manager so as to reflect the way the systems at

hand should evolve in response to biddable interactions and/or sub-

ideal situations

(3) allowing tool support to validate and animate the structural and

operational properties of the instantiated architectural configuration

based on the GT rules.

Two graph transformation based approaches are examined to achieve the above-

mentioned objectives. It can be argued that the mapping between the textual language and

its graph based semantics is very obvious and there will be no contribution in defining

mathematically this mapping. The challenge is to provide a both structural and operational

semantics that reflects the relationship between the social aspects related to biddable

interactions of human participants, on the one hand, and the and the system response to

theses interactions, on the other hand.

With regards to operational semantics, it is of great importance that the reified

architectural configurations, on which reconfiguration operations will be applied, should be

extended to incorporate the state notion, which constitutes a departure from traditional

meta-modelling approaches and establishes the foundations for defining the operational

semantics of the targeted model.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

123

6.1.2 Incentives for Using Graph Transformation Approaches

Mainly, there are four motivations for the usage of GT techniques: specification,

description of systems, model transformations and formalising concrete systems (Ehrig,

Engels et al. 1999). They allow filling in the gap between the state-transition based view

given by program code and concealed state-based view needed for comprehending and

reasoning about behavioural properties of certain system configurations. In other words,

programs do not illustrate sequences of states but rather sequences of transitions that

emerge from a set of instructions of how to query and then manipulate the current state to

move to another. Hoover, made a simple comparison between programs and musical scores

that resemble state-based models (Hoover 2006): “In a musical score the instructions tell

the performer what state the music is in at any instant of time. The opening of the score for

Beethoven's 5th says to play G three times followed by E. You can open a score at any

point and know immediately what the music sounds like at that point. A musical score is a

sequence of states that the music is in. The meaning of the score is out in the open for all to

see. [...] It’s as if the opening of Beethoven's 5th was described as follows: "Start at G.

Play a note. Play a note. Play a note. Go down a minor third (3 semi-tones). Play a note.”

You would not be able to simply look at the score and see or hear what the music sounds

like mid-piece. In a program, the meaning is all between the lines!”

Comparing with programs, a graph is an abstraction of a system state. It projects

the part of the state, which remains constant between two events states (i.e. interface

graph), as well as all possible event-instances that might be consumed by the state at hand,

in terms of pre-conditions and rewrite rules. The rewrite rules have to cover all the effects

of the events in the abstract model. Thus, graphs and graph transformations enable

checking consistency and completeness with regards to structural properties and provide a

way to query states and animate possible changes starting from a given state.

Additionally, graph models, in contrast to textual ones, are intentionally more

intuitive and suggestive; however, their meaning must be clear to avoid misunderstandings

and mistakes. Like in the case of text-based modelling languages, there are the two

possibilities of operational and denotational semantics to equip these models with the

required sort of formalisation to ensure properties such as consistency and maintainability.

Among the above-mentioned incentives to exploit GT techniques, this thesis aims

at describing valid socio-technical protocols through a synthesised type graph that can be

populated with concrete components and specifying architectural reconfiguration that refer

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

124

to control of self-adaptation of architectures based on given organisational/technical rules.

Technically speaking, this chapter exploits GT to check the consistency of possible role-

based reconfiguration by means of a formal architectural based model that takes role as

structures and specify the effect of social laws’ generic reconfiguration operations in terms

of precise operational semantics given by transformations over a subset of the synthesised

type graph.

These rules are interpreted by the adaptation manager (i.e. the harmoniser) as they

specify how the system should respond to identified sub-ideal situations and role

violations. Controlled by this adaptation manager, social laws can be applied proactively

(i.e. with regards to social interactions) to contextual changes or reactively to unexpected

social interaction. The approach emphasises the analysability of the generic role-based

reconfigurations space pertained to social components. Additionally, I promote abstract

transformation rules that support generic concepts e.g. social roles and tasks to secure the

generality of the approach. Finally, this chapter highlights some preliminary elements for

extending the graphical approach towards correlating both the technical and the social view

of the synthesised type graph (i.e. task-interface relationships) through model-based

transformations.

6.1.3 The Chapter Structure

This chapter introduces a survey on the basis of GT in Section 6.2. Section 6.3

discusses the challenges to face with regards to modelling socio-technical protocols.

Section 6.4 presents the view-based graph transformation concepts and abstractions that

deem to be valid for capturing the particularities of both technical and social views.

Section 6.5 examines the capacity of existing meta-modelling approaches with regards to

providing a semantic model for socio-technical protocols. An extension of the meta-

modelling approach towards formalising reconfiguration operations is presented in Section

6.6.

6.2 Graph Transformation in a Nutshell

GT emerged from extensively researched mathematical theories and supported by

various tools for validating and analysing graph-based modes. This computer science

paradigm was put forward as an answer to the drawbacks of classical approaches to

rewritings, like Chomsky's grammar (Chomsky 1956) and term rewriting (Klop 1992), in

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

125

dealing with non-linear structures. Altogether, the notion of GT has been used to realise

and combine the concepts of graph grammar and graph rewriting.

The first milestone along the path to establishing algebraic basis of the graph

transformation approach was presented by (Ehrig, Pfender & Schneider 1973) which gave

the inspiration for collective research work in this area including mathematical foundations

(Rozenberg 1997), applications-oriented research (Ehrig, Engels et al. 1999) and

concurrency, distribution and parallelism issues (Ehrig, Kerowski et al. 1999). Among

others, the Double-Pushout approach to graph transformation (DPO) (Corradini, Montanari

et al. 1997) has proofed to be suitable for modelling reconfiguration as transformations.

More recently, graphs and graph transformations have been successfully used for

modelling the following:

(1) architectural modelling:

a. specifying architectures and their computations using various

underlying formalisms such as process calculi (Allen, Deuence &

Garlan 1998, Mètayer 1998, Canal, Pimentel & Troya 1999) and

rewriting of labels (Hirsch, Inveradi & Montanari 1998).

b. architectural reconfiguration approaches to which close attention will be

paid such as (Wermelinger 1999, Hirsch, Inveradi & Montanari 2000,

Wermelinger, Lopes et al. 2001).

(2) representations and model transformation (Taentzer, Ehrig et al. 2005,

Biermann, Ehrig et al. 2006).

6.2.1 A Formal Basis of Graph Transformation

The basis of the presented approach to modelling architecture and architectural

reconfiguration are formal GT systems. For that reason, a short introduction to the formal

definition of graphs, graph morphisms, graph transformation is given in the following. For

further explanation, (Rozenberg 1997, Baresi & Heckel 2002) presents the solid

mathematical foundations of graph transformation.

Definition 6.1 (Graph)

Let a graph G = <NG, EG, sG, tG> consists of two finite sets NG, and EG of nodes and

edges, two source and target functions: sG, tG: EG → NG. Graphs are related by graph

morphisms, which map the nodes and the edges of a graph to those of another one. Graphs,

in addition to graph morphisms form the category Graph.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

126

Definition 6.2 (Graph Morphism)

Given two graphs Gi = <Ni, Ei,sGi,tGi) i∈[1,2], a graph morphism ƒ: G1 → G2,

G2, ƒ = (ƒNi, ƒEi) consists of two functions, ƒN: N1 → N2 and ƒE: E1 → E2 that

preserve the source and target functions, i.e. ƒN ◦ sG1 = sG2 ◦ ƒE and ƒN ◦ tG1 = tG2 ◦ ƒE.

6.2.2 Semantic Choices for Graph-based Modelling

This subsection introduces the semantic choices that have to be taken when

modelling with graph, such as: which notion of graph to adopt? What conditions should a

resulted graph fulfil and the different ways to specify the transformation rules?

6.2.2.1 Type Graphs

To allow graphs to describe models of abstract things, especially complex systems,

they should be backed with comprehensive and consistent modelling techniques.

Figure 6.1 Type and typed graphs

A type graph TG in the sense of (Corradini, Montanari & Rossi 1996) defines

collection of types and interconnection constraints to which the instance graph G

conforms. A graph G belongs to TG class if u can find for each node and edge in G the

corresponding node and edge type in type graph TG. A type graph is a “filter” that restricts

the allowed types of the instantiated nodes as well as types and cardinality of edges that

connect them to populate an instance graph (i.e. typed graph as shown in Figure 6.1).

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

127

6.2.2.2 Labelled Graph Grammars vs. Attributed Graph Grammars

Typed graphs as above correlate the valuation of their nodes and edges (i.e. labels)

to types defined in the type graph structure and its label set. Labelled graphs are less

constrained graphs as their nodes and edges conform to a label set but without a graph

structure (Baresi & Heckel 2002). More concretely, if nodes and edges are labelled over a

collection of independent label alphabets LN, LE, the relational variant is given by (N, E, lv)

with E ⊆ N × LE × N and lv: N → LN. Another variation of labelled graphs is the attributed

graph form in which labels refer to pre-defined abstract data types such as strings or

natural numbers (Löwe, Kroff & Wagner 1993). Naturally, when attributed graph instances

respect the structural constraints of a type graph they are called typed attributed graphs in

which nodes may represent classes in, the object oriented sense, containing abstract data

types and their operations. Among other implementations, attributed graph grammars are

popular in describing visual languages (Bardohl 2002). Figure 6.2 shows taxonomy of

graph’s types.

Figure 6.2 A taxonomy of graph types

6.2.2.3 Clan Morphism and Modelling Inheritance

From a philosophic point of view, instance-of relationship between the instance

graph nodes their counterparts in the constraining graphs (e.g. type or type attributed

graphs) could be model at the abstract level. A modeller should decide what properties are

inheritable and what are not. In what follows, a presentation of a formal definition of a

hierarchy graph I is demonstrated, as advocated by (Bardohl, Ehrig et al. 2003, Ehrig,

Küster et al. 2006), for typed graphs and the extended work towards attributed typed

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

128

graphs (de Lara, Bardohl et al. 2007). I borrowed these concepts from those research

contributions to establish a graph-based inheritance model that supports hierarchical

structures of roles and tasks.

6.2.2.4 Definition 6.3 (Inheritance Graph)

Let I be Inheritance graph I = <N, E, s, t>, where N is a finite set of nodes. The

inheritance graph I shares the same set of nodes of N and a set of A ⊆ N, called abstract

nodes. For each node n in I the inheritance clan is defined as follows, clanI(n)={ n’ ∈ N│

∃ path n’ → * n in I} where path of length 0 is included, i.e. n ∈ clanI(n) is included. The

sub-graph spanned by the hierarchy edge must be acyclic. Figure 6.3 extends the main

constituents of the type graph TG depicted in Figure 6.1 by merging them with the

inheritance graph I into a combined one. There is a single abstract node (NamedElement),

which is shown in italics and is connected with rest of I by means of hollow arrows (i.e. is-

a arrows).

6.2.2.5 Definition 6.3 (Type graph with inheritance)

A type graph with inheritance GTI = <GT, I, A> has the following components:

(1) a type graph GT = <N, E, lV>

(2) the set of inheritance edges I ⊆ V × V which must not contain circles

(3) the set of abstract Nodes A ⊆ V

The key advantage of such type graphs is that they allow specifying abstract nodes

that contribute to the conciseness of the type graph (i.e. comparing Figure 6.3 with Figure

6.1), and devising abstract graph transformations, which efficiently group similar

transformation rule. However, if the hierarchical relationships are explicitly specified at the

model level (i.e. type graph level), this would constraints the applicability of rules to

application-specific concepts, and thus make meta modelling out of necessity.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

129

Figure 6.3 A type graph with inheritance

6.2.3 The Graph Transformation Approach

The main idea of GT is the rule-based modification of graphs shown in Figure 6.4.

Figure 6.4 Rule-base Modification of Graphs

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

130

Formally, a GT rule or production p: L → R consists of a pair of TG-typed instance

graphs L ∩ R such that the intersection L \ R is well-defined (this means that, e.g., edges

which appear in both L and R are connected to the same vertices in both graphs, or that

vertices with the same name have to have the same type, etc.). The left-hand side L

represents the pre-conditions of the rule while the right-hand side R describes the post-

conditions. The left-hand side can also state negative pre-conditions (Negative Application

Conditions), i.e. (NAG). Additional definitions with regards the double pushout approach

to graph transformation can be found in literature.

6.2.4 Graph-based Modelling for Architectural Reconfigurations

Using graph transformations to model dynamic architectural reconfiguration in an

abstract and visually compelling way seems to be a natural choice. Applying state-full

transformations, particularly on labelled-graphs as suggested by (Hirsch, Inveradi et al.

1998, Hirsch, Inveradi et al. 2000), allows to perceiving dynamic reconfiguration as a

rewriting process over graphs labelled with program instances (i.e., component instances)

instead of just programs. This ensures that the state of components and connectors that are

not affected by a rule do not change, because labels are preserved, and thus keeping

reconfiguration and computation separate. This approach to modelling architectures has

been advocated by Wermelinger and his colleagues (Wermelinger 1999, Wermelinger,

Lopes et al. 2001, Wermelinger & Fiadeiro 2002), as well as Hirsch and his fellows

(Hirsch, Inveradi et al. 2000, Hirsch 2003).

The research of Wermelinger et al. (Wermelinger, Lopes et al. 2001) presents an

algebraic software architectural approach where architectures are modelled through

labelled graphs that visually explicate instantiated components and their interconnections.

Based on a categorical framework, they provide semantics that result from a mathematical

computation (i.e. “Colimit”) that convert the architectural diagram to an equivalent

component representing the whole system on which computations and transformations can

be performed (Fiadeiro, Lopes et al. 2003). This approach is anchored on the fact that

performing computations on such categorical diagrams relates the architecture and the

computational levels. With regards to reconfigurations, they are modelled as GT

derivations, as defined in DPO, that are associated with additional constraints to preserve

the consistency of the resulted graph (Wermelinger & Fiadeiro 2002). These constraints

yield a reconfiguration step, which is a derivation from a given architecture (configuration)

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

131

G to architecture (configuration) H. The key contribution of this approach is extending the

reconfiguration capabilities of an ADL-like language by specifying clearly the boarders

between computations and configurations.

Additionally, a simple reconfiguration language (i.e. configuration scripts) has been

incorporated to their approach in an attempt to utilise the formality of the ADL (i.e.

CommUnity), however, these scripts lack formal basis, purely imperative (causal), and

address only low-level reconfiguration operation, making it impossible to take into account

higher-level evolution patterns or adaptation perspectives such as the social perspective.

These observations also deemed correct with regard to the reconfiguration primitive (i.e.

coordination context) promoted by the 3Cs approach. The following sections of this

chapter, will study two graph-based approaches to give semantics to the interconnections

between the social and the technical aspects as well as the operational semantics of

reconfigurations: i.e. the view-based approach and graph-based interpreters for formalising

operational semantics of reconfiguration operations.

6.3 Challenging Issues

6.3.1 Biddable Interactions Modelling

In graph-based modelling of user as agents, GT rules determine the overall effect of

the interactions among (agents and objects) and describe local autonomous operations that

the represented humans may react to regardless of changes in the environment or the

obligations imposed on them by the organisation in which they operate. This view of agent

proactivity and goal driven behaviour is a good candidate for enriching the concepts of my

approach. One of the distinctive features of agent behavioural modelling i.e. autonomous

operations—operations that are not triggered by a method call but by the detection of new

objects/agents in the LHS of a GT rule— was cleverly modelled by (Depke, Heckel et al.

2000).

 Agents act autonomously driven by their goals and plans sensing and reacting to

environment, whereas in coordinated activities of business process management, agents

(people) are invited to adhere to the prescribed behaviour; however, they are capable of

violating these prescriptions.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

132

Task
Element

Coordination
Interface Element

Realises/realised by

6.3.2 Task-Interface Relationships

The proposed conceptual framework advocates self-adaptive mechanisms, which

bridge the differences between bound coordination interfaces and the instantiated tasks.

Difference and similarities between the two architectural concepts have been discussed in

the previous chapter. Interconnecting tasks and coordination interfaces brings about

additional information and emergent architectural properties that can be utilised to reason

about possible reconfigurations even those that are not accepted in normal situations. This

could be somehow analogous to the notion of software adaptors, which need to overlook

definitions of communication protocols and type systems to capture anomalies to bridge

applications that have compatible functionality but incompatible interface (e.g., (Yellin &

Storm 1994)).

Architectural views are used to capture the semantics underlying the relationship

between tasks and coordination interfaces. They are useful in representing coordination of

actions from both the role perspective and the configuration context perspective. However,

the way I chose to deploy architectural views makes a departure from classical

architectural views. This decision is justified because the purpose is not projecting two

views on the same model but rather to interconnect two models that have some intersection

in their concepts in a way that allows determining their dependencies. Figure 6.5 depicts

the intersecting parts between the two models.

Generally speaking, a satisfying solution would establish a reference model to

match different yet corresponding concepts in both views. A holistic view of socio-

technical protocol should comprise: (1) a meta class diagram (a structural diagram for the

protocol elements and their interconnections), (2) an extension of the meta class diagram

that caters for a meta state-machine to provide state information e.g. control state for

technical components and role state for human components.

Figure 6.5 The reference model

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

133

6.3.3 Generic Graph Transformation Rules

It would be beneficial to have reusable transformation rules, which can be

exchanged across different platforms or application domains. Issue such as abstract nodes

hierarchies of nodes at different levels of abstraction, and instance-of relationship should

be tackled with care. In GT, abstraction techniques in which state graphs are reduced by

grouping nodes that are sufficiently similar—with regard to their behavioural properties. In

this perspective, roles and tasks are exploited for social entities, and coordination interfaces

for technical ones resulting in smaller states and a reduced evolution space. Moreover, the

application of GT rules will be addressed in a higher level of abstraction, particularly at the

normative view of the model. This approach is similar to the one proposed by (Rensik &

Distefano 2006); however, they were targeting a feasible technique for model checking.

Table 6.1 describes different levels of abstractions in graph-based modelling which

correspond also to textual language modelling. Building transformation rules that tackle

higher level concepts such as role R, human components H instance or task T then these

rules presents generic and domain-independent aspects of a system interpreting the

semantics of the language using meta models. Conversely, these rules query and

manipulates specific problem domain such as GP, patient, etc. then the model targets low

level aspects of the language (i.e. concrete states).

6.4 A Graph-based Approach: Semantics, Views and

Interconnections

The target of the modelling method at hand is to extend the 3Cs architectural

language to address social interactions; therefore, this research proposes a domain-specific

language for the generic domain of software architecture without relying on the concepts

of a certain application domain or a platform. Additionally, it provides a graph-based

integration between the architectural primitives that reflect the technical domain and those

capturing social components and their biddable interactions.

6.4.1 Modelling Socio-technical Protocols

Socio-technical protocols are extended 3Cs sub(systems) that are queried and

manipulated be configuration manager. A configuration graph is a labelled/attributed

graph—as attributes are dealt with as labels. More precisely, a configuration graph is a

graph where nodes are components labelled with instantiated interfaces and edges are

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

134

connectors labelled with law type. It is reified by the configuration manager to control

interactions of the instantiated architectures.

 I developed a specific graph typing structure to distinguish between configuration

entities (nodes) whose corresponding permissions are fixed (e.g. technical components and

configured actors) and some other entities that hold permissions amenable to change at

runtime, e.g. social entities enacting well-defined capability-based social roles. The reader

may refer to Section 3.3.2 as an example for the former type of configurations and Section

4.5.4 for the latter type of configurations. An explanation of changeable permissions is

provided in Table 4.1, with which social roles can be combined and then transiently

manipulated by social laws. This typing structure yields a twofold representation of the

configuration graph that comprises a components configuration graph, similar to

(Wermelinger, Lopes et al. 2001, Wermelinger & Fiadeiro 2002), and the extension

presented in this thesis i.e. role configuration graph that captures instances of roles, tasks

and entry actions of social entities.

More concretely, the components graph is sufficient to reflect casual properties of

software and mechanical components together with their interconnections but it falls short

in providing a suitable representation of human components that are biddable and subject

to organisational norms that can be violated. Conversely, the role graph includes a

biddable dimension and an organisational dimension; the former addresses the biddable

nature of human components, which requires non-causal modelling primitives; the latter

are constructed for modelling human capabilities and permissions within an organisation.

The bridge between the two-configuration graphs, which will be elaborated further in the

next subsection, consists of the common human nodes and the edge between the targeted

task and its associated coordination interface copy that defines the signature of operations

and services included in this task.

The organisational dimension is clearly specified in terms of the explicit

relationship between role elements, which reflect that organisational chart of the

organisation to which participants belong as well as the formulating of the code of

behaviour ascribed to key role players particularly in sub-deal situations.

The biddable dimension of human components within the role model and its

enclosed labels of human-driven processes whose initiations generate speech-act-like

communicative actions are explicated within the role internal structure to enable reasoning

about norm enforcing/ violating interactions and contexts based upon them. Such reasoning

should take into account the organisation’s operational goals e.g. maintaining precious

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

135

resources. The result of the reasoning process is achieved through self-adaptation, which

include role transitions that traverse the role space graph pertained to the key role player.

These transitions demonstrate the operational effect of sanctions or positive

reconfigurations that are triggered due to the capture of norm violating behaviour or

context.

6.4.2 The view-based Approach

From the point of view of architectural reconfiguration primitives, it is obvious that

the model is too complicated to be captured by a single concern. Therefore, I aim for a

semantic framework to support reasoning about the causal and normative reconfiguration

separately. In this view, any reconfiguration operation manipulates the role and the

component view of a socio-technical protocol in a different way. The reconfiguration

operations defined in Chapter 4 are given loose operational semantics through an

interpreter that execute alterations on both role and components view. Views generally and

architectural views in particular have been defined in Chapter 3 (Section 3.2.1.7).

Before delving into the details, I emphasise on the vision of software runtime

modelling techniques that draw a strict and a clear line between the actual world (the

environment) and the corresponding representation of this world, namely the model

(Dijkman, Quartel et al. 2003).

 What this thesis strives to achieve through this multi-view graph-based model, is to

relate the human view (i.e. role graph) with the technological one (i.e. components graph).

More concretely, the world model needs to take into account changes caused by

environment that are beyond the type/structural constraints of the coordinated view of the

model under focus. This is required, particularly to allow certain unspecified changes

(add/delete) of a graph’s elements during the execution of a GT rule. This kind of

transformation rules exhibits the loose semantics of open systems that have been

introduced by (Heckel 1998, Heckel, Engels et al. 1999).

6.4.2.1 Communication between Views

With regards to executing graph transformations there are two distinctive

approaches to model interactions via GT: (1) synchronous: through deploying

Amalgamated Graph Transformation (Taentzer & Beyer 1994), and (2) asynchronous

communications between views: (i.e. shared-memory) like between views where modellers

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

136

use the reference model to present extra construct to mimic the shared memory together

with the intersecting concrete constructs. Technically speaking, a (partial) specification is

called a (view) on another specification, if the renamed version of the first can be

embedded into the second. The formal basis of the view-based graph transformation

system has been described by (Heckel, Engels et al. 1999).

6.4.2.2 Integrating Views

Views are integrated in two steps:

(1) Managing new dependencies (not covered in the reference model) by a model

manager through: renaming, extensions

(2) Doing actual integration automatically

The first step is trivial as the reference model allows sharing domain-specific

notions and operations. The new dependencies that require the intervention of the system

modeller are problem-specific. The methodological approach that was presented in the

previous chapter devises ways of introducing new tasks and/or technical components to the

system specification. It must be emphasised that this view-based approach is meant to cater

for language specification targeting software development. Therefore, it is not suitable for

identifying inheritance and highly abstract behavioural patterns because a modeller cannot

specify domain-independent concepts within the reference model. This approach excels

only in supporting domain-specific frameworks as a starting point for software

development projects. As a result, the reference model approach will be utilised only in

constructing the interconnections between tasks and interfaces and cannot be extended to

abstract nodes posing hierarchical structures i.e. roles.

In the light of theses fundamental discrepancies between technical and Role view, it

is clear that the bridging between these views is not trivial. (Harrison-Broninski 2005)

suggests that the integration or refinement between the two views is not possible simply by

putting them all in one diagram. Inconsistencies such as:

(1) same names (views denotes semantically different concepts)

(2) different names yet representing similar concepts, Ontology and the efforts in

databases research to solve schema integration problem.

In the light of theses fundamental discrepancies between technical and Role view, it

is clear that the bridging between these views is not trivial. I suggest that the integration or

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

137

refinement between the two views in sot possible simply by putting them all in one

diagram.

6.4.2.3 The Reference Model

Types of architectural elements that are shared between the two views are modelled

in an abstract way in a reference model. Such an abstraction would allow these constructs

to be subjected to clan morphisms, renaming and extensions. The reference model,

particularly, include the elements that should be represented in the underlying views by

means of open types systems. Runtime configurations represent instances of architectural

constructs: coordination-based and role-based. The component-based elements have

inherited causal reconfiguration primitives, namely coordination contexts, which provide

simple programmed reconfiguration operations.

The proposed reconfiguration language introduces a new model-based with an

explicit single node inheritance mechanism through clan morphisms. This is in line with

the approach introduced in (de Lara, Bardohl et al. 2007) that allows enriching the type

graph of an attributed and typed graph model with abstract nodes and inheritance

relationships. Such enriched graph types allow the specification of Abstract Graph

Transformation rules c.f. domain independent transformation rules that give the operational

semantics of reconfigurations.

The approach is anchored on a role model with three abstract node types: role, task

and human. All of the three nodes might inherit definitions from their ancestors, however

only the role hierarchy can be represented at the instance level. The argument behind these

design decisions is to capture behaviour inheritance as a means of reusing specification in a

way that is already captured by organisational chart.

Moreover, pushing the domain specific issue to the model level rather than the meta

model, allows flexible entities sub-typing. In this perspective, The (causal) coordination

view is typical to the graph-based approach to reconfiguration in CommUnity provided by

(Wermelinger, Lopes et al. 2001), which can be associated to the 3Cs reconfiguration

primitives (Andrade, Fiadeiro et al. 2001, Andrade & Fiadeiro 2003).

In what follows, an Open Graph Transformation system presents a modelling of the

role’s view of the system. Figure 6.6 puts together the task node, the corresponding

coordination interface node and the runtime linking edge between them. The open types

for deletion and addition are indicated by “-“and/or “+” markers in square brackets

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

138

following type and attribute names. Attributes may be created and deleted along with their

carrier objects. The results of a successful reconfUnqal(role, entryOp) adding new

dispatch/enact edges and reconfiguring the connection with the appropriate coordination

interface accordingly.

At any configuration, active human participants are enacting a role and this in turn

should be bound to a task element. Tasks here represent an open type as it can changed in a

way that is out of the role view control and this also applies to the coordination interface.

The formal description of the integration of views is adapted from ((Heckel 1998, Heckel,

Engels et al. 1999)) .

The essence of this integration approach is the Open Graph Transformation System,

where open types can be specified for deletion and addition even independently from their

carrying objects.

Figure 6.6. The role view of the Open Graph Transformation system

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

139

6.5 Meta Modelling for Reconfiguration

The introduced meta modelling approach lends itself more naturally to the goal of

synthesizing architectural style elements (i.e. the 3Cs primitives and the newly introduced

ones) in the sense of (Metha & Medvidovic 2003) where structures, interaction, data,

behaviour and topology are the concerns of the architectural style. As has been discussed

in Chapter 4, I am only interested in structural and topological properties’ impact on

possible reconfigurations driven by the behaviour of social elements participating in a

configuration (i.e. socio-technical protocol).

From the GT point of view, styles define the structure and operations available to

applications through UML-like meta model such as Meta Object Factory (MOF) in order

to apply transformations over its instances so as to specify the dynamics of a style of that

target a specific domain e.g. socio-technical systems (Cebulla 2004), mobile systems

(Heckel & Guo 2005) and Service-Oriented Architectures (SOA) (Baresi, Heckel et al.

2006). MOF and GT can be integrated by identifying symbol classes that are associated

with node types and associations with edge types (i.e. abstract syntax).

Table 6.1 Different level of modelling abstractions for textual/visual language

6.5.1 Abstract Syntax

Abstract syntax graphs are forms of graphs to define language grammars. The

purpose of forming an abstract syntax is to mark the starting point to define a language

grammar through which simulation and transformations will be applied on the models that

are represented by this language (Bardohl, Ehrig et al. 2004). For instance operational

Level of

abstraction

Languages abstraction Visual modelling abstractions

3 EBNF Meta Meta Model (MOF, EMOF)

2 A Language Grammar CFG
(EBNF-based)

Meta Model (UML Stereotypes) with
CFG representation)

1 Programs with control states Models with control states (e.g.
statechart diagrams)

0 Runtime Instances of states and
configurations

Instance graphs with runtime states
(attributes and labels)

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

140

semantics can be derived by ascribing a sort of “state notion” to the abstract syntax to

allow an interpreter to execute steps by applying transformations. Figure 6.7 illustrates a

MOF-agnostic abstract syntax of socio-technical protocols.

6.5.2 Mapping the abstract syntax to the Textual Syntax of the

Reconfiguration Language

The mapping from the subset of the extended 3Cs configuration language i.e. social

laws and roles (see Sections 4.4.2 & 4.4.4) to a graphical abstract syntax elements is a pre-

condition for providing the operational semantics of the reconfiguration operations that

manipulate models of socio-technical protocols.

Figure 6.7 A MOF-agnostic type graph (initial integration)

I argue that the mapping process is intuitive and does not need mathematical

proofs, as the proposed simple individual text-icon mappings are capable of composing

more complex semantics. Pairs that resulted from the mapping of the basic elements of the

proposed reconfiguration language are defined in a tabular form (Table 6.2), where every

graphic model element is uniquely mapped to a corresponding textual keyword. For

example, red rectangles correspond to the task keyword in the reconfiguration language.

Table 6.3 presents excerpts of more complex expressions in the textual modelling

language and how they are composed from the aforementioned basic graphical notation.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

141

Textual Element Graphical Element Meaning
social law NA
social role

Role as a name along with its collection of
tasks and hierarchical relationships

Task

Tasks are lists of attributes

biddable element

Name anchored to set of role types (high level
roles)

Operation

entry_operation that labels a task

operation {call} A biddable element calls an entry_op
entryOp.task()
{has}

 1-1 relationship (every task labelled with one
entry_op

anchored role {enacts} a biddable element enacts a role i.e.
role is enabled either directly or via inheritance

Specialise Role-role hierarchical relationship
enabling state {dispatches} link biddable element and task

which refers also to coordination aspects
[] action {declares} the operation is part of the player’s

capabilities, but the permission is not
institutionally granted. The capability is
inherited to children as is.

[+] action {defines} the permission of this action is
institutionally granted and is inherited to
children

Table 6.2 Excerpts of basic text-graph elements mapping

Textual Element Graphical Element(s) Meaning
Unqualified operation

operations of the anchor role,
which are executed by social
components that have no
qualification

operation and not enabling
state

operations for which the
anchor role is qualified but
are initiated in a context in
which they are not permitted

active state and not operation

operations of the anchor role
that are not executed in
contexts in which they are
required

Table 6.3 Graph-based mapping of complex expressions

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

142

6.5.3 Specifying Operational Semantics over Abstract Syntax

To specify the operational semantics, at higher level of abstraction, the language

notation is based on meta modelling. The proposal to operational semantics is in line with

the Dynamic meta modelling approach (DMM) (Hausmann 2005). This approach exploits

both GT rules and meta models for specification of operational semantics of a visual

modelling language. It extends the work presented in (Plotkin 1981) and (Corradini,

Heckel & Montanari 2000) in which Structured Operational Semantics (SOS) are

augmented with abstract syntax graph in addition to a state notion (i.e. statechart

diagrams).

This approach was carried further by the research work of (Hausmann 2005) which

comprises: (1) SOS: abstract tree augmented with a statechart diagram and (2) graph

transformation rules to specify semantics.

6.5.3.1 Abstract Syntax Meta Model

The abstract syntax meta model constitutes of a type graph and an augmented

MOF-defined statechart machine to keep the protocol’s configuration state with regards to

roles/tasks. Figure 6.8 illustrates the Abstract syntax together with some productions

starting from an initial graph.

The formalisation of the presented reconfiguration language relies on two main

pillars: the static view, which is represented by the abstract syntax language on the basis of

the UML/MOF extension, and the GT rules that provide its operational semantics, in the

sense of Graphical Operation Semantics approach (GOS) (Corradini, Heckel et al. 2000) to

formalise the derivation of the behaviour of the model specified by reconfiguration

primitives.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

143

Figure 6.8 The MOF-based abstract syntax

6.6 Discussion

At formalised view-based graph transformation semantics that was presented in

(Heckel, Engels et al. 1999) is utilised for the 3Cs extension presented in Chapter 4 (El-

Hassan & Fiadeiro 2006, El-Hassan, Fiadeiro et al. 2008). Despite the fact that I followed

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

144

the steps of the aforementioned view-based technique of (Heckel, Engels et al. 1999), I

was not targeting a systematic software development methodology, as they did, but rather

modelling runtime software evolution (particularly the allowed reconfiguration space).

Additionally, the target is not modelling a full system configuration, as presented in

(Mètayer 1998, Wermelinger & Fiadeiro 2002) to query and preserve a global state,

instead, it addresses a protocol-based configuration (i.e. subsystem). Last, but not the

least, their reference model is highly abstracted and subjected to recursive multi-level

integration, accordingly to their methodology, whereas the current approach maintains only

two fixed views and their interconnections.

Technically speaking, modelling socio-technical protocols rely on adopting graph-

based views to represent the intertwining between coordinated actions of the causal

superposed contracts, on the one hand, and social laws that reflect “slack” control

mechanisms such as norm-conferring, sanctions and rewards, on the other hand. It has been

shown in (El-Hassan, Fiadeiro et al. 2008) how a combination between GT rules and meta

models is capable of representing the semantics of nom-based reconfiguration operations

within socio-technical protocols. Herein, the semantic differences between

reconfigurations that manipulate technical components and those that associate with social

ones are illustrated. I utilised the promoted role-based meta model to establish a reusable

architectural style to support domain-independent and socially-driven reconfigurations that

correspond to human-driven processes particularly when people deviate from their

prescribed behaviour or required to react to sub-ideal contexts.

Despite the fact that most of the applications of GT tend to correlate graphical

syntax and semantics, my approach takes a different path by providing the semantics of

textual reconfigurations (i.e. social laws) without providing a corresponding visual

language. This approach, instead, supports the textual reconfiguration language, by

providing the required operational semantics of the embodied reconfiguration operations

(i.e. reconfigUnqualified()) through the use of typed GT rules. Thus, developing a visual

language over the proposed graph-based abstract syntax is trivial and does not contribute to

the thesis objectives (i.e. formalising the structural and behavioural properties of socio-

technical protocols). Many architectural styles have been defined following the steps of

graph grammar based work of (Mètayer 1998) and (Hirsch, Inveradi et al. 1998). Security

is another research direction that presents complex relationships that can be modelled with

GT rules for reasoning about the consistency of these models (Koch, Mancini & Parisi-

Persicce 2002) and specifications of policies (Koch & Parisi-Persicce 2002).

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

145

As the target is to model reconfiguration operations that manipulate a protocol

state, an abstraction technique that has been presented and explained in Section 6.3.3. It is

worth paying attention to the relationship between the normative layer and the coordination

layer, as it cannot be perceived as a translation relationship, which can be modelled as a set

of transformations between two models in the same level (i.e. horizontal transformation)

as shown in (Akehurst 2000, Biermann, Ehrig et al. 2006). Also it cannot be model as a

refinement relationship in the sense of (Baresi, Heckel et al. 2006), because the concepts

of the source model (i.e. the social aspects) are even richer in terms of concepts than the

target model (i.e. the technical configuration).

Alternatively, the translation relationship, which is strictly opposite to refinement

but the social concepts cannot model the intended relationships as social concepts cannot

be described sufficiently using the available 3Cs primitives. Therefore, another approach

has to be adopted to maintain a third model that keeps the two models running together

putting into consideration their interconnections and communications. In this perspective,

views and viewpoints are advent to reach such a result and therefore the proposed approach

adopts architectural views as a mean to model such relationships.

With regards to context modelling, context modelling is limited to the existence of

entry_operation node, which demonstrates the connection between the environment and

the system domain. It can model required behaviour if it appears without a runtime

connection with a biddable entity, and if any then it models an enactment of this operation

on system components, which, is also an environment event that is beyond the control of

the configuration manager.

6.7 Examples & Tools Support

The scope of this chapter is to demonstrate the applicability of the graph-based

approaches discussed in the previous chapter, which in turn aims at providing the

semantics required for specifying both structural and behavioural properties of socio-

technical protocols. This chapter takes into consideration the existing repertoire of GT

tools and the specific exploitations of the GT approach that is adopted. Additionally, I shed

some lights on the Gastroenterology unit example again to explicate lesson learned from

dealing with such a medical case study.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

146

6.7.1 Scope within the Methodology

With regards to the general methodological steps that have been suggested in

Chapter 5 (Section 5.4.3), it is clear that tool support is required to assist software

engineers to interpret the outputs of step 3 and 4 and animate these inputs graphically to

create models. These models specify when and how interactions can be triggered and/or

obliged beyond the coordination scope, in order to handle sub-ideal situations and provide

runtime evolution. The result would be set of social laws that, once triggered, create

normative positions to empower role players to enact the required/permitted interaction by

means of reconfiguration facilitations or sanctions impositions.

6.7.2 Case study: The Gastroenterology Unit

In this section, proof-of-concept implementation of socio-technical configuration

model is presented. The main concept to prove is the viability of the proposed subset of the

extended 3Cs configuration language i.e. social laws and roles. The language constructs

are represented in terms of graphical abstract syntax elements that are put forward to

provide the operational semantics of the reconfiguration operations that manipulate models

of socio-technical protocols to manage biddable interactions within organisational settings.

Additionally, I address graphical modelling techniques that allow specifying abstract

transformation rules that support generic concepts e.g. roles and task to secure the

generality of the approach.

The selected example shows how the proposed approach, which is based on

coordination and social laws, deems viable in the design, development and the evolution of

a socio-technical model.

The example focuses on a specialised medical unit at a government hospital, Dubai,

U.A.E., which provides treatment for digestive diseases. The unit consists of two

Endoscopy suites containing each of which has four modern and fully equipped

endoscopes with ancillary supporting facilities for patient’s reception, preparation and

post-endoscopies recovery rooms.

An example (instance graph) of a socio-technical protocol is shown in Figure 6.9.

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

147

Figure 6.9 A socio-technical protocol (Configuration graph)

6.8 Tool Support

The theoretical work on Graph Transformation has been widely adopted in the

category of model transformation approaches. These approaches are formally founded and

allow exploiting visual models to represent different approaches of model transformations

as explained in (Taentzer, Ehrig et al. 2005). I decided to model the graph transformation

rules that represent system configurations and their evolution using the AGG tool.

6.8.1 AGG

Using graph transformation for specifying domain specific languages is becoming

popular due to the fact the graphs and graph transformations demonstrate visually

compelling yet mathematically rigorous models.

The AGG tool supports checking termination and consistency of a graph grammar

based on graph constraints. More specifically, it implements the mechanism of critical pair

analysis to check termination and confluence of graph grammars to manage inconsistencies

during execution. Two graph productions may form a critical pair if they are in conflict, in

the sense that they do not preserve the confluence property. This property is needed to

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

148

guarantee that a rewriting system has a functional behaviour and give the same output

graph starting from the same input and GT rules.

6.8.2 Graph Transformation Rules

In what follows I demonstrate a subset of the graph transformation rules that model

the generic reconfiguration operation at a higher level of abstraction and the systematic

approach to modelling flattened role hierarchies and the rules required to traverse them to

reason about the permissions and the capabilities of enacting biddable entities.

6.8.2.1 Dispatching Eligible (DispatchTaskRole)

 For simplicity, I present a simple transformation rule that demonstrates task

replacement within the space of a certain role without the need to specify domain

dependent concepts. This rule can be perceived as an abstract rule that provides the

semantics of dispatching a task provided that the task is requested via a captured call to the

task’s entry operation and the biddable entity is playing a role that sufficiently acquired the

sufficient permissions to run the corresponding task. The corresponding reconfiguration

step is depicted in figure 7.2.

Figure 6.10 DispatchTaskToRole, graph transformation rule

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

149

6.8.2.2 Dispatching Eligible Tasks (direct inheritance)

Herein, a more complex task dispatching process through a transformation rule is

illustrated to demonstrate how a task replacement can be executed via consulting a parent

role node. In this case the current role does not have the permission to execute the task yet

its direct parent does. This rule can be perceived as an abstract rule that provides the

semantics of dispatching a task through a direct parent provided that:

(1) the parent role node has both the capability and the permission

(2) the task is a recognised as part of the capabilities of initial role.

The corresponding reconfiguration step will attach the biddable entity to the task

but there will be no role transition. The transitive closure to search among direct ancestors

is given through the recursive application of the rule illustrated in figure 7.3.

Figure 6.11 The transitive closure rule to compute the ancestors list

6.8.2.3 Dispatching Unqualified Tasks (ReconfigUnqual)

A higher degree of complexity is shown in this rule, which works together with the

above rule to handle situations such as the one presented in the Gastroenterology Unit

example, where the protocol needs to traverse the role hierarchy recursively to find the

most appropriate role, with its configuration facilities, to be borrowed to the enacting

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

150

biddable entities. The gastroenterology example required a Gastroenterologist to acquire a

registrar_surgeon’s permissions in a life-saving context.

Figure 6.12 ReconfigUnqual role transition

6.8.2.4 Dispatching Via Normal Inheritance

This case is not demonstrated in separate graph because it is identical to the first

rule. If a role inherits the capability of executing a task from a parent then it is shown

explicitly be a define edge and thus it could be dispatched.

6.8.3 Remarks

The semantics provided by the above GT rules specifies the operational semantics

of the reconfiguration operations. These rules demonstrate as well how inheritance

hierarchies can be applied and traversed. The rules are abstract and generic in the sense

they can be applied on any application domain that comprises organisational structures and

human-driven processes. Hence, self-adaptation (i.e. reconfiguration) can be perceived as a

mechanism that interleaves with the computation and connect both computation and

coordination with process management. The proposed approach has taken a step forward

towards introducing reconfiguration primitives to collaboration between people and

 Chapter 6 Graph-based Formalisation & Meta-Modelling of Socio-technical
Protocols

151

software intensive system by capturing biddable interactions. However, more complex

patterns of these interactions have to be considered for future research.

For example, the behavioural aspects of a particular rule pattern in social laws (i.e.

active state and not operation) needs further refinements. It models a system response to a

monitored obligation violation; however, the syntax should explicitly define the

“conditional” obligation apart from the social law that monitors its fulfilment. Such

obligations should be modelled separately i.e. in a “separate social law”. However, the two

social laws have to unify “obligation” and “monitoring” laws. The links for such

unification are the role player and/or the “violation context.”

Chapter 7

 Evaluation

“Example is not the main thing in influencing others, it’s the only thing.”
Albert Schweitzer

7.1 The Scope

This chapter describes several case studies used to evaluate the advantages and the

disadvantages of the proposed approach. The objective of these case studies is to

substantiate the contributions of the proposed approach and to evaluate its applicability to

perform architectural self-adaptation as a mean to fit in biddable human interactions that

are vital for addressing sub-ideal situations in a way that ensures the required joint

behaviour to preserve the overall system stability.

This chapter is not an attempt to address stability as a quality that emerges from the

required joint behaviour of the system components (i.e. social and technical components).

Instead, it concentrates on how the self-adaptive approach takes the human biddability into

account and on what impact the proposed modelling primitives have on addressing social

interactions aspects. The evaluation reported in this chapter explicates strength and

weaknesses of the proposed approach, the language and the methodological steps in

realising the sort of dynamic adaptation that is required to handle unexpected human

interactions within changing organisational context.

 Chapter 7 Evaluation

153

I argue that the purposeful self-adaptivity, once achieved, demonstrates the

usefulness of the underlying modelling primitives and reconfiguration mechanisms. Thus,

demonstrating the required properties of self-adaptivity such as being domain-independent,

context-aware and capable of making adaptation decisions at runtime entails the generality

of the approach and the expressiveness and the flexibility of the proposed architectural

primitives.

Self-adaptivity is introduced as an integral part of the system specification (i.e. a

glue of a social laws or connectors in the sense of (Garlan & Shaw 1993)). Self-adaptivity

has been explained and differentiated from other self-* approaches such as self-

organisation and self-healing in Chapter 4 (Section 4.8).

The proposed method, together with its primitives, is evaluated at three different

levels:

(1) The approach level: generality and applicability

(2) The language level: the evaluation of flexibility and the expressive power

(3) The implementation level: the maintainability of the self-adaptivity

mechanism

7.1.1 Concerns of Self-adaptivity

If a system is intended to incorporate dynamic application of adaptation, whether

anticipated or not, it should include features to support the interface between its

constituents and the environment. This interface specifies changes that can be captured and

defines ways to respond to these changes through the adaptation logic. Keneey has

promoted four concerns for anticipated changes: when, where, what and how (Keeney

2004). The approach presented in this thesis has prompted a new concern (i.e. who) which

plays a vital role in enriching the when concern with new semantics (i.e. sub-ideal

situations) that overlooks temporal aspects. Determining role players at runtime supports

the runtime selections of what (i.e. participating components) and how (i.e. the

reconfiguration mechanism) aspects of self-adaptivity. It should be emphasised that

approach overlooks the temporal aspect of the when question as well as location aspects

captured by where.

 Chapter 7 Evaluation

154

7.1.2 Runtime vs. Design-time Adaptation

Changes or adaptation in any system configuration (i.e. a population of valid

system components) can be specified either at design time or runtime. Generally, changes

determined at design time are supported by ECA-based reconfiguration rules that query the

configuration state and perform the specified changes in a fully determined way.

Conversely, runtime changes need the support of the execution environment (via the

runtime infra-structure) to monitor and reflect the properties of the environment (as

captured from sensors) and the system dynamic components (as captured by abstract

models). Once the required dynamic data is captured and reified decisions about changes

can flexibly be made (Di Marzo Serugendo, Fitzgerald et al. 2007, Anderson, De Lemos et

al. 2008).

7.1.3 Anticipated vs. Unanticipated Causes of Change

Anticipated changes are driven by expected changes in the dynamic requirements

of the target system, and thus, they can be prepared before hand, whereas unanticipated

changes are driven by another category of dynamic requirements that include non-

determinant properties that cannot be handled before runtime. In the socio-technical

systems context, alleviating sub-ideal situations, which are requirements accompanied with

non-determinant elements (i.e. biddable social interactions), can only be handled by

performing runtime adaptive changes.

 The degree to which a certain adaptation is anticipated is related to the prior

knowledge about the set of concerns, which have been defined in Section 7.1.1, before

performing the adaptation. If these questions (when, what and how) can be

deterministically answered before performing the adaptation (i.e. the trigger and the

execution mechanism), then this particular adaptation is completely anticipated (e.g.

programmed reconfiguration operations in the 3Cs approach).

Unanticipated adaptations are more complicated than anticipated ones as these

adaptations must be explained at both design-time and runtime levels. This thesis builds on

the who concern, which supports figuring out the answers for the other four ones.

Moreover, it draws the line between the anticipated and unanticipated adaptations. For

example, if the role (i.e. who) for a joint interaction (i.e. performing a task) is

underspecified then technical elements of the corresponding task can be kept undefined, or

the system anticipates a number of alternatives configurations, from which one has to be

 Chapter 7 Evaluation

155

selected. However, the selections can not be determined until the (who) (role-player)

relationship is clarified at the runtime.

7.1.4 The Evaluation Criteria

Since self-adaptivity has been adopted as a means to address the biddability of

social components, the degree of expressivity and flexibility to address and manage

biddable social interactions is central to the discussions of the presented case studies. The

discussions will be broken into the following sub-categories:

• The support for the identification of sub-ideal situations (at the process

level) staring from crosscutting the configured human-driven organisational

processes, role-based norms of the system and the contextual information

(at the system physical environment ranges)

• The support for capturing unexpected human interactions

o Permissions vs. capabilities

• The ability to self-adapt the system in a generalised way

• The flexibility of modelling primitives and the underlying architectural

infra-structure

• The maintainability of the modelling primitives after deployment

7.2 Case Studies

7.2.1 Claim 1: Generality

The first case study is meant to demonstrate the generality of the approach. The

term general-purpose can be understood in several ways. The term addresses generality

with respect to the application domain, problem domain, the independence from any

specific programming language or any runtime environment (Keeney 2004). Achieving

these aspects will support having an agnostic approach to specific implementation of socio-

technical systems. As such, it will be able to incorporate human components randomly to

socio-technical protocol either by embowering them as active role players to enact tasks or

 Chapter 7 Evaluation

156

by alerting and influencing them to obey norms as play the role that they have been

assigned.

7.2.1.1 Motivations

This example is meant to make illustrate the generality of the proposed approach in

terms of its way of addressing problem and applications domains. By making a departure

from the medical domain presented in Chapter 4, the case study demonstrates that the

approach does not rely on concepts that are limited to a certain application domain (i.e. the

medical domain) or a certain software development environments. The following case

study targets a completely different application domain (i.e. flight control systems) where

pilots interact seamlessly with an intensive software system.

7.2.1.2 Design

Herein, I introduce an case study of socio-technical interactions within the aircraft

flight deck as proposed by (Fields, Harrison & Wright 1997). The interactions between the

pilot and the aircraft monitored control system are of a socio-technical nature as they are

beyond the traditional and determined HCI interactions where the pilot collaborates with

an intensive system that includes software to realise well-defined tasks. Mitigating risks or

addressing sub-ideal situations by enacting their recovery tasks requires purposeful

interactions from the pilot side in terms and the support of the control system, if the

interaction is justified, by means of self-adapting the required task to the existing operation

conditions.

In order to express the power of the proposed hierarchical role representation, I

enriched the original case study by introducing the co-pilot as sub-role that has a minimal

set of tasks yet s(he) is capable of enacting all tasks once they are successfully delegated to

her. This alteration in the original case study can be justified as some aircraft accidents

were ascribed to co-pilot errors e.g. Egypt Air 990 (NTSB 1999). If the monitoring system

was able to distinguish the technical command issuer (i.e. the social component), and

correlated him to his assigned role (i.e. the social role), it would have been possible to

analyse the command with respect to the system role-based norms (i.e. social laws). With

such correlations it would have been possible to suppress the action , impose sanctions on

the command issuer or invoke a sub-ideal event that triggers another social law to oblige

 Chapter 7 Evaluation

157

other social participants (i.e. the main pilot) to recover the situation by a enacting a reverse

task to regain the stability of the aircraft.

The case study under focus specifies an aircraft that has two engines each of which

has a couple of extinguishers that can be operated independently by the pilots. As

described in the aircraft manual, the pilot normally enacts normal tasks during a flight yet

he has to give the priority to emergency situation (i.e. sub-ideal situations).

The convergence from sub-ideal situations to a more stable one requires flexible

norm-based governance and purposeful adaptation (e.g. obliging or permitting a recovery

task), together with the pilot’s obedience to the corresponding norm in such situations. The

aircraft manual describes the instructions of recovery tasks to which pilots are enjoined to

enact to achieve the stability of the system. These instructions are encoded in social laws,

which are interpreted by the configuration manager (i.e. the harmoniser), to provide the

means for facilitation and sanctions to affect the overall system behaviour.

Engine Fire

1. Reduce engine thrust to Idle

2. Wait 10 seconds

3. Fire shot one

4. If warning clears, shut down engine

5. If warning persist, fire shot two

6. Shut down engine

Table 7.1 Aircraft engine fire procedure – from (Fields, Harrison et al. 1997)

From the point of view of the 3Cs approach, the task in hand has to be broken down

into fairly simple coordination interfaces. Two coordination interfaces should be created by

the system modeller to avail the aircraft control services for shutting down the engine and

actuating the fire system: pilot, engine_emergency_shutdown and fire_shot. Additionally,

the modeller should devise the actor side from the pilot for calling these services, namely

pilot_shutdown and pilot_fireshot.

 The implementation of the 3Cs extension to the norm-based configuration entails

specifying the recovery task rightEngineFire, which requires the detection of the sub-ideal

situation via the engineFireWarning sensor. This sub-ideal situation is communicated to

the pilots by means of an alarm or a flashing light. Achieving the intended joint-behaviour

 Chapter 7 Evaluation

158

of the system requires the self-adaptivity mechanism to respond the pilot’s omissions such

as refraining from executing a vital recovery task (i.e. initiating the task). Thus, modelling

the self-adaptive behaviour towards the detection of the pilot’s ignorance of the obligation

to perform such tasks when needed is very critical in the control part (i.e. sanctions) of the

adaptation logic of social laws.

coordination interface pilot-enginefire

import types engineType, pilotType, extinguisher

events reduceEngine(e:engineType, p: pilotType)

 wait()

 fireshot1(ex: extinguisher, e:engineType);

 fireshot2(ex: extinguisher, e:engineType);

end interface

coordination interface engine-services

import types engineType, pilotType

services

 stopEngine()

 haltControl()

 isStopped()

end interface

coordination interface extinguisher-services

import types engineType, pilotType

services

 fireShot1(e:engineType)

 fireShot2(e:engineType)

end interface

To take the pre-condition of the task constituents into consideration, coordination

contracts can be used:
coordination law fireshot-pocredure

partners p:pilot-enginefire; e:engineType; ex:extinguish-service,

m:monitor-engine

rules

 when p.fireshot2(e,p)

 with m.ensure_alarm(e);

 do ex.fireShot2(e)

end law

However, such a contract cannot help in preventing the omission of the pilot to the

obligation of using the extinguisher when fire alarm is on. If a system monitor captures the

fact that the alarm is still on and the pilot has omitted the fireshot1 action (because the fire

 Chapter 7 Evaluation

159

seems minor in his opinion). Activating fireshot2 will be permissible to other pilots. This

includes the co-pilot as well, who has less permissions than the first pilot but at such a

situation he would be capable of firing the extinguisher shot. The PILOT type is an abstract

role that includes both pilots and co-pilots.

social law fire-extinguishing

anchor role p:PILOT

type e:engineType, ex:extinguisher

partners

 a:administrator

 m:monitor-procedure

when p.fireshot2(ex,e,p) and a.omitted(fireshot1)

 if m.ensure_alaram(e)

 reconfiguration reconfCoord(p,fireshot2)

 sanction a.record(p,op,”unacceptable jump”)

when unqualified p.fireshot2(ex,e,p)

 if m.ensure-alarm(e)and a.omitted(fireshot1)

 reconfiguration reconfUnqual(p,fireshot2)

 sanction a.record(p,ex,”unqualified”)

7.2.1.3 Discussion

The case study demonstrates the ability of the proposed approach to address

different categories of application domains that tackle different tasks. Moreover, this case

study shows clearly that the problem that the approach addresses within socio-technical

system is not domain specific (i.e. problem of empowering people to act out of their role

scope or handling their failure in performing required tasks). The prerequisites for

addressing a socio-technical domain are having well-defined tasks, role structure and

contextual-awareness mechanisms. With regards to the independence from any

programming language, the approach is built on top of the 3Cs framework whose

supporting language is a textual specification language that is independent from any known

programming language. Although the 3Cs framework was implemented initially in Java

and targeted component-based systems running within an event-based systems, it was

designed to be a language independent.

The approach relatively achieved a level of independence from particular

adaptation. This can be argued as it separates who (i.e. the role player) and when (i.e.

 Chapter 7 Evaluation

160

whether ideal or sub-ideal) from what and how concerns. This separation makes the

adaptation that answers the who question (i.e. role transition) purely generic).

7.2.2 Claim 2: Applicability & Flexibility

The first case study is meant to demonstrate the generality of the approach. Any

application with an organisational role structure and well defined tasks can be equipped

with the proposed self-adaptivity infra-structure without any intrusive preparations in the

components of the target application. This is exactly what the following case-study is

exhibiting. Putting into consideration the case study presented in Chapter 4, the approach

still look to the problem in an abstract way; managing biddable interactions (i.e. when

social components perform tasks that are part of their scope and how the system should

self-adapt to address such behaviours, particularly at sub-ideal situations. Moreover, the

methodological steps that were presented in Chapter 5 is applied to demonstrate the

support for the awareness of sub-ideal situations (at the process level) staring from

crosscutting the known boundaries of vital contextual information (at the system physical

environment ranges) with the identified human-driven organisational processes.

 I also demonstrate the flexibility of the reconfiguration language, which entails the

capability of modelling and performing unanticipated changes as a response to the

interactions of social components, which play well-defined roles in organisational settings.

Since the player of the role to be named or how the role player’s capabilities will be

exploited, demonstrate some features of the unanticipated dynamic adaptation. The ability

to incorporate human components randomly to the socio-technical protocol and enable

them as adaptation drivers or participants is shown also in this case study.

7.2.2.1 Motivation

The main questions to be answered are whether the proposed approach is applicable

to identify the nuances of human interactions within sub-ideal situation that occur in a

socio-technical protocol. Additionally, the proposed modelling primitives should be

examined to demonstrate whether they successfully and flexibly address the following

issues or not:

• dynamically capturing sub-ideal situations and applying normative positions

 Chapter 7 Evaluation

161

• performing adaptation on arbitrary social components which have not been

explicitly determined

• performing runtime adaptation of roles if necessary and binding these

adaptation to select among technical reconfiguration options that are

prepared at runtime

• accommodating the non-deterministic reactions of social component to

normative positions:

o by facilitating reconfiguration if the social component’s reaction is

as expected;

o or imposing sanctions if the monitored social behaviour does not

conform with the normative position

7.2.2.2 Design

The approach provides a mechanism through which a task is operated in an

abnormal context to achieve the stability of the system at hand by exploiting the available

nature and skills of identified participants (i.e. social components). In this section, I expand

the main case study that was presented in Chapter 4 (Section 4.5.4.2) in the light of the

methodological steps sketched in Chapter 5 (Section 5.4).

Analysing how people interact with the intensive software system in the

Gastroenterology department involves several steps to identify technically oriented

recovery tasks, roles, sub-ideal contexts and flexibility points. Further explanations of the

case study, as follows, show clearly how the proposed methodological steps support

extracting and putting into effect the desired joint behaviours in order to realise the

system’s stability requirements, in response to the detection of sub-ideal contexts that may

occur unexpectedly in a collaboration. This sort of requirements has been identified earlier

in (i.e. soft-goals or dynamic requirements (Yu & Mylopoulos 1997, van Lamsweerde,

Darimont et al. 1998, Fontaine 2001)), Such stability requirements have to be addressed

sometimes by enabling a social party, as response to detecting the sub-ideal situation, who

voluntarily takes the initiative and performs a corresponding recovery task.

 Chapter 7 Evaluation

162

However, enabling the required recovery task requires both role and technical level

reconfiguration to facilitate the hot-swapping of tasks. Needless to say, the key element of

quality in this context is the expressiveness of the reconfiguration language. The more the

language minimises the degree of explicit management necessary for constructing the

required subsequent evolution whilst preserving the required properties, the more

expressiveness is ascribed to it.

Applying the Methodological Steps on Gastroenterology Case Study

Herein, I explicate the methodological steps through which social roles and laws

were derived from the documentation of the Gastroenterology department case study as

presented in Chapter 5 (Section 5.4).

Step 1: Inputs for starting the step should be prepared, particularly the architecture

of system processes. In this case study, the department’s medical pathways, the endoscope

manuals, job descriptions and written code of norms were prepared.

Step 2: Initially, I analysed human-driven processes (i.e. medical pathway) in the

beginning as they are deemed to be more related to general concepts and easier to assess

the system’s sub-idealites and their stability-related objectives

Step 3: The targeted process is selected (i.e. the normal Gastroenterology process,

called Gastro for short) and the key actor is identified (i.e. the team leader normally the

Gastroenterologist). The process is a routiniesd process since it should be booked earlier

and role players and equipment should prepared accordingly. Goals are also stated which

includes assessing the interior surface of an organ of a patient but without endangering the

patient life.

Step 4: Equipment, software and medical staff interfaces are prepared taking into

account the three phases of the gastroenterology procedure: pre-endoscope a (i.e.

pre_gastro), the endoscope operation (i.e. gastro_op) and post-endoscope (i.e. post_gastro).

The modeller should demonstrate the required configurations for the entire process e.g. use

case-like in the light of required technical configurations as if the process’s technical

resources and the actors are properly configured before hand to enact the entire process

alternatives (c.f. use cases). As such the configuration is pertained to the gastroenterologist

who should guide the process progress then it is human-driven, (i.e. not purely

mechanistic). It has been noticed that the process key player (i.e. the gastroenterologist)

does not participate in pre-gastro and post-gastro, therefore it is sufficient to present a

concentrate on the gastro_op part of the process.

 Chapter 7 Evaluation

163

The diagram depicted in Figure 7.1 contains the actors and the components

required to execute the process. Identifying the goal of preserving the patient’s life incurs

adding monitoring capabilities and specifying corresponding indicators.

Figure 7.1 An initial use case-like Configuration diagram

Step 5: The global process-view (i.e. the use case-like static configuration) should

be divided into purposeful sub-configurations (e.g. a configuration should satisfy a specific

functional requirement or a user requirement, which may contain several technological

components serving a number of actors. Figure 7.2 illustrates an example of a purposeful

sub-configuration that allows accumulating the gastroenterologist interfaces to both the

endoscope equipment and the monitoring service in the medical record system. It is

purposeful in the sense of achieving a specified sub-goal: performing a Gastro operation

while monitoring the patient’s vital signs.

This step is divided into sub-operations according to the sequence mentioned in the

methodology to produce interfaces, contracts and accumulations of the main actor’s

interfaces. The latter allows the putting into consideration social (role-based) and technical

requirements with respect to needs of the process at hand, from the components or

technical view.

 Chapter 7 Evaluation

164

Figure 7.2 A purposeful task within the gastro process (Gastro_op) which allows operating while
monitoring vital contextual information

Gastroenterologist interface for Gastro-Procedure

coordination interface doctor-gastro_operate

import types endoscope, doctorType, patient

events operateEndoscope(e:endoscope, p: patient)

 biobsyRequest(e:endoscope, p: patient)

 operateendscopr(e:endoscope, p: patient)

 shutEndoscope(e:endoscope, p: patient);

end interface

coordination interface doctor-consult-MR

import types doctorType, MR, patient

events requestVitalsigns(p: patient)

 report_observations(p: patient)

end interface

Patient’s interface for several procedures

coordination interface patient-operation

import types operationType, doctorType,patient-operation;

 Chapter 7 Evaluation

165

services

 give_consent(op:opeationType,p: patient-operation)

end interface

As specified earlier in Chapter 4, coordination interfaces exhibit a certain business

use of a technical or software component (i.e. operation, services and constraints) that are

available to be causally governed by coordination contracts that ensure the functional

requirements of the system. If a social component is configured with a technical

component and their interactions are coordinated with some contract, then one can

consider that the social component is conditionally permitted to access this particular

technical component in a way that respect the interface constraints and the pre-conditions

of the contract.

A Coordination Law: Gastro-procedure

Coordination law gastro-operation

partners d:doctor-gastro_operate; e:endoscope-operate p:patient-

operation, a:allocator-do_operation

rules

 when d.operateEndscope(e,p)

 with a.ensure_consent(GASTRO,d,p);

 do e.endoscopeRun(e,p)

end law

The recurrence of these steps while traversing each of the process’s alternatives,

results in a set of interfaces related to the leading actor. These interfaces can be combined

gradually in the form of task constructs provided that the accumulated tasks refer to shared

technical resources and to a unified unit of work. Also contract specify certain behavioural

properties related to the actor under focus.

Step 6: After identifying tasks, they can be matched with the organisation chart to

allocate these tasks to appropriate roles. The Gastro process for case study revealed the

particularities of the consultant Gastroenterologists who is the natural leader of such a

process. The consultant Gastroenterologists role should be connected with other roles

representing other medical staff members who share parts of his capabilities or exceed

them. These roles have already been explained in Chapter 4.

Step 7: For example, the identified interfaces that are configured to allow the

gastroenterologist to operate the endoscope, query and update the medical record can be

combined together to fill in the Gastroenterology role. However, we have to distinguish

between the two interfaces in terms of the role capability. Querying and reporting to

 Chapter 7 Evaluation

166

certain information about the patient is a mission that any doctor can perform therefore it is

normally placed in the doctor or GP role. Thus, this interface can be accumulated to any

task that can be performed by doctors. Conversely, if the doctor-gastro-operate interface is

accumulated to a task definition, then the achieved task cannot be performed unless the

doctor has already been trained as a gastroenterologist, therefore the interface is

accumulated only to tasks that are placed in the gastroenterologist’s role.

Step 8: Next, the system analyst should identify inconsistencies related to soft-

goals i.e. dynamic goals that might surface as an obstacle to the system stability. As the

most valuable asset to maintain is the patient’s life. It would be normal to correlate to the

patient’s vital signs readings with the contextual information that influence the triggering

and the management of conditional norms of the system.

During the procedure the team leader (i.e. the consultant Gastroenterologist)

delegates the mission of monitoring the vital signs either to an automated software agent or

to nurse staff as part of the Gastro process. In both cases if the O2 sign hits the danger level

(i.e. 20% decreased oxygen level), the self-adaptivity mechanism (i.e. the harmoniser)

interprets the corresponding social law and proactively proceeds to put into effect an

obligation imposition and alert the role player to communicate the sub-ideal state. The sub-

ideal state’s physical information is captured by the framework’s sensors and then handled

by the harmoniser. The context of the collaboration between participants might be diverted

to a life-saving context. Such a hot-swap (as defined in Chapter 5) was discovered while

analysing the routinised human-driven Gastro-operation process.

Step 9: Now the system analyst should concentrate on a purposeful configuration

step that once configured properly may allow managing the discovered threat to the system

stability. Such a purposeful configuration shall include the Gastroenterologist component,

the patient’s record, the patient-monitor and the monitor/allocator of technical resources in

the operation room.

 The system shall permit the Gastroenterologist to violate the first norm (“no

operation can be undertaken without the patient’s permission”) to clear the airway of the

patient by performing tracheotomy operation. This is an example of a coordination

obstacle to realise a purposeful (yet not correct) behaviour.

This behaviour can be achieved by assigning a new role instance to the

Gastroenterologists, which embodies a permission to exercise power. This event “fatal

decrease in oxygen” counts as an emergency context, which turns on some norms and

switches off others. Here the system should leave to the Gastroenterologists’ judgment

 Chapter 7 Evaluation

167

whether to exercise this power or call and wait for a surgeon to come. However, the doctor

will be responsible for whatever decision he takes.

Therefore, the approach emphasises addressing and analysing the system’s code of

norms as they may lead to discover inconsistencies in terms of obstacles to achieving

purposeful behaviours (i.e. goal-oriented tasks) at sub-ideal situations. In this context, the

following norms have been captured from the unit’s specifications of medical procedures:

(1) No operation can be undertaken without the patient’s permission

(2) Surgical intervention should be carried by surgeons10 only

 (3) In the case of emergency, a doctor may commit simple surgical

 Interventions if surgeons are not available and in a life-threatening situation

Obstacles can be interpreted as follows:

A role obstacle:-

detect_alarm(oxemeter, viatal signs_dangerous) → O(do_operation(op, surgeon,
patient)).

A coordination obstacle:-

¬ done(ensure_consent(op,patient)) → O(¬do_operation(op, surgeon, patient))

If the violation is captured and the context is defined (i.e. either ideal or sub-ideal)

the sanctions of this violation should be appropriate to the defined context. In the ideal case

(no dangerous vital signs): the request for operation is blocked, reports to the supervisor

and management will be sent. On the other hand, the modelled sub-ideal case will address

the violation and respond in a permissive manner by facilitating extra role instantiations

and bid the leader to report on the consequences. Incorporating the tracheotomy procedure,

as a hot swap, parallelises the current procedure or terminates it and a new configuration is

realised as new roles, equipment and software pieces are instantiated.

The decisive points of specifying interactions in a socio-technical protocol are

when the context changes to a sub-ideal state. Such a transition of context has been

conveyed to the participating components. In my opinion this can be realised in either of

the following ways:

1. Using Passive messages that contain only data and carry no control

information (e.g., imply no method invocation). Not implying the exchange

10 Readers should refer to Figure 4.6, Figure 4.7 and Table 4.1 for roles, tasks and permissions

 Chapter 7 Evaluation

168

of any control information makes passive messages more abstract and more

flexible than active messages. This approach is adopted by Reo framework

(Arbab 2004).

2. Alternatively, a modeller should identify and exploit events (i.e. speech act

like in the sense of (Searle 2002)) that have institutional/organisational

semantics, which switch the context of the collaborative behaviour.

For example the oxemeter’s message: (vital signs_dangerous) sent by the monitor

brings about a new institutional fact that maps a new obligation toward the surgeon and/or

doctor role. A speech act with a declarative point (i.e. alerting a role player) brings about a

new state of affairs; in the example above when the oxemeter performs a speech act to be

interpreted by the reconfiguration manager to consider a sun-ideal state particularly if no

response is detected or the absence of the optimal role player is identified.

One of the decisive steps in the methodology is where to locate the least role whose

player might be rightly and safely yet exceptionally and temporarily permitted to execute

the required interaction as a result of the triggering of a self-adaptation at both role and

technical levels. The more abstract the role type within the role hierarchy the more

descendants (i.e. role players) will be eligible for participating in such an adaptation. The

required interfaces and contracts will be specified for the least role unless there is a need

for specialising the task particularities if the task is initiated by a certain descendent of the

appropriate role.

Doctor/Surgeon’s interface for Simple Surgeries

coordination interface doctor-doOperation

import types operationType, doctorType, patient-operation

services ensure_consent(op:operationType,

 d:doctorType, patient):Boolean

events

 do_operation(op:opType, p: patient-operation)

end interface

Allocator’s interface for Simple Surgeries

coordination interface allocator-do-operation

import types operationType, doctorType, patient-operation;

events ensure_consent(op:operationType,d:doctorType,

 p:patient-operation):Boolean

 stop (operation:OperationType);

 record(event:eventType, LOG);

 Chapter 7 Evaluation

169

 detect(event:eventType);

end interface

coordination interface monitor-procedure

import types doctorType, patient-operation, SignType, event-id;

events detect_alaram(s:SignType, p:patient-operation)

 report(s:signType,p:patient)

end interface

coordination law emergency-operation

partners d:doctor-surgeon; p:patient-operation Monitor-Procedure,

 allocator-do-operation; Monitor-Procedure

rules

when detect_alaram(s:SignType, p:patient-operation)

with a.ensure_consent(TRAECH,d,,p);

do d.do_operation(TRAECH, d:doctorType, p: patient-operation)

end law

7.2.2.3 Discussion

The applicability of the adopted approach has been demonstrated through going

into the details of the methodological steps presented in Chapter 5. The case study

illustrated the advantages of addressing sub-idealites through making the difference

between routinised transactional view of processes and the ad hoc human-driven view of

the same processes. Moreover, the usefulness of the introduced task-based role structure

has been clearly explained. Constraints on the applicability of the approach is also

exhibited as the existence of a form of a process architecture together with written code of

norms is a pre-requisite for using these steps. Last not least, the approach relies heavily on

the 3Cs configuration and assumes their existence before hand.

 The advocated level of flexibility in the proposed self-adaptive approach matches

the sort of flexibility defined and characterised by (Schnenberg, Mans et al. 2008)., namely

flexibility by underspecification: which offer design time configuration options that can be

dynamically selected at runtime, among other types of flexibility as shown in Figure 7.3.

 Chapter 7 Evaluation

170

Figure 7.3 Taxonomy of flexibility (Schnenberg, Mans et al. 2008)

According to their definition, underspecifying some elements of the social law (i.e.

who enacts a task) allows combining design-time and runtime configuration options. At

design-time, options for managing the identified sub-ideal situations e.g. what technical

configuration are needed, and how they will be configured, are fully determined. However,

when combining social laws with runtime instances of the role hierarchy and the role

profile of available social components, the selection between these options relies heavily

on the actual capabilities and permissions of these components (i.e. role players) whose

properties will not be determined until the late binding (i.e. task enactment) is realised.

Thus, runtime configuration options (i.e. role transitions) are required to enable the

selection between the reconfiguration options (i.e. technical reconfigurations).

Additionally, when the social law proactively detects the physical elements of a sub-ideal

situation, it voluntarily puts into effect the corresponding normative position, provides the

required configuration and communicates the imposition of the obligation of the

corresponding recovery task (e.g. through alerting participating humans). The social

component’s behaviour towards this configuration is undetermined (i.e. either obeying the

normative position or not) and can only be captured and dealt with at runtime either by the

selected reconfiguration (as mentioned above) or by sanctions.

7.2.3 Claim 3: Maintainability

Maintainability can be refined to modifiability and extensibility (Losavio, Chirinos

& Pérez 2002). Extensibility allows designers to alter certain part of the language to their

domain specific requirements without affecting other aspects of the modelling language’s

Meta model. This section builds on the previous case-study and demonstrates and

evaluates modifiability and extensibility features of the proposed modelling primitives.

 Chapter 7 Evaluation

171

Nevertheless, modifiability plays the key role in boosting the maintainability property

since modifiable modelling primitives yield maintainable socio-technical protocols from

the organisational structures, norms and tasks perspectives.

7.2.3.1 Motivations

The separation of control and the shallow dependencies between the role view and

the component view of the socio-technical protocol architecture allows modifiability at

different levels of abstraction. For example existing roles can be added or removed easily

to a participant’s profile without much burden on the architect or system specifier.

Additionally, this case study demonstrates how roles can be added to the hierarchy and

how the self-adaptive mechanism treats an interaction that is subject to more than one

social law

7.2.3.2 Design

The proposed architectural framework has exploited the role hierarchy and its

underlying relationships with social laws to reduce the amount of unpredictability with

regards to human interactions within organisational contexts. Figure 7.4 demonstrates the

role hierarchy template that is used by social laws to determine at runtime the role space

associated to a role player enacting a certain task. During the modelling process of a social

law, the system designer is required to determine the least role and the first appropriate role

in the hierarchy as the signified entry operation will be anchored on the first and the role

configuration mechanism will weaken the binding permissions of the later to allow the role

player to enact the task.

During the continuous maintenance of the system, some more roles can be added to

the hierarchy (i.e. least role descendants or the first-appropriate role descendants) without

any disturbances in the provided services or burdens of rewriting specifications. However,

the anchored task can be redefined at any descendant of the first appropriate role to satisfy

new requirements.

 Chapter 7 Evaluation

172

Figure 7.4 The role space with respect of a social law

For example, a task redefinition may weaken some conditions with regard to

required resources for a successful task enactment, by the role at hand, making it optimal

for more specialised emergency needs but at the expense of the eligible number of players

who can exploit the new social law that cascades the new task re-definition. In other

words, if the role hierarchy is populated with M roles between the least role and least

optimal role and N roles between the least optimal role and the optimal role, then the

specified social role that cascades the defined task in the least optimal role serves all the

player-role enactment in the space of (M+N)-1.

Therefore, the reusability of the proposed architectural approach relies heavily on

the height and the density of the capability-based role hierarchies.

With regards to more complex situations, the approach falls short in resolving

conflicting social laws when more than one required behaviour are triggered for

 Chapter 7 Evaluation

173

enablement due to a change in the system context from ideal to multi-level sub-ideal

situation. Therefore, only one task becomes enabled. Conversely, when a human

participant internalises (i.e. trigger) more than one social law (as they pose the same

interaction label, i.e. entry operation), only the social law with the more specialised anchor

role is activated. For example, consulting Figure 7.5 shows that, if a Gastroenterologist

triggers two social laws by enacting their labelled action and the first is anchored on GP

role and the second is anchored on the Registrar-internal one, only the later will be

activated. As the approach is based on an assumption that restricts having two different

tasks with the same action label, the above example considers only the overlapping

redefined tasks over the role hierarchy.

Figure 7.5 Role-based conflict resolution

7.2.3.3 Discussion

This above mentioned examples provided the evidence of the post-deployment

features of the proposed modelling primitives. Roles can be assigned to the participant’s

profiles with out any side-effects on the role structure or social laws. These abilities

demonstrate the modifiability of the approach’s primitives. An example of the extensibility

features is the hierarchical role structure that the approach proposes. Role can be created

and included within existing role hierarchies. Tasks also can be extended and added to

existing roles without any overheads.

 Chapter 7 Evaluation

174

7.3 Comparisons with Other Self-adaptive Systems

Comparing to other self-adaptive technologies with regards to generality, flexibility

and maintainability, the proposed approach shows interesting and distinctive features. I

present two well-know self-adaptive framework, Aura project (Garlan, Siewiorek et al.

2002) and ROAD framework (Colman & Han 2007), in addition to highlighting the

adaptivity capabilities of the original 3Cs approach to exhibit the newly introduced

features. Aura project presented by Garlan et al. (Garlan, Siewiorek et al. 2002) define a

framework that put forwards the task concept as a first-class citizen and correspond each

task to an identified goal. Their “task-aware” approach presents tasks as: “ set of services,

together with a set of quality attribute preferences expressed as multi-dimensional utility

function, possibly conditioned by context conditions” (Garlan, Siewiorek et al. 2002,

Colman & Han 2007). However, their task models are meant to capture user goals and

intents, which are abstracted away in out approach. Moreover, the approach heavily relies

on utility functions to evaluate and find the optimal balance between conflicting goals to

suit user needs.

Figure 7.6 The Aura Framework (Garlan, Siewiorek et al. 2002)

 Chapter 7 Evaluation

175

One of the features of Aura that might bring it closer to our approach is its

separation between the Task Management (TM), which determines the user requirements

in a specific context putting into consideration his preferences, plans and context

dependencies, and Environment Management (EM) which determines how to configure the

environment in order to facilitate the user’s needs. A general view of the Aura’s

framework is presented in Figure 7.6.

However, sub-ideality is not central to this approach and utility functions bury

many important aspects that the proposed approach emphasises to be externalised. The TM

and the EM participate in a control-oriented adaptation pattern in which control loops are

required as a means for adapting both the internal systems and its environment. However,

users are still treated as external entities to the system, thus flexibilities that the proposed

approach introduced are missing in the Aura framework.

Figure 7.7 The ROAD Framework (Colman & Han 2007)

The ROAD framework has been introduced earlier in Chapter 4, as it was very

useful for the development of the concepts of thesis. Figure 5.7 shows the main

components of the ROAD framework.

 Chapter 7 Evaluation

176

The following table explains in details the advantages and the disadvantages of the

proposed approach comparing with the above mentioned approaches.
 Aura ROAD 3Cs The 3Cs

Extension
Concepts
Modelling social
participants as integral
part of the system

X X X √

Roles as explicit entities X √ ~ (partners) √
Abstract roles/role
hierarchies

X X X √

Structural compositions
at runtime

X √ √ √

Recursive compositions X X X
Normative concepts ~ (through non-

functional
requirements)

~ (through non-
functional

requirements)

X √

Reconfiguration
Possible at runtime? √ √ √ √
Separating human
control from
environment control

√ √ X √

Element of control loop
adaptivity

√ X ~ √

Externalised
management of
conflicting rules

X (utility
function)

X (utility
function)

X √

Formal support √ ~ ~ ~
Anticipated
adaptation

Structurally-driven
adaptations

X ~ √ √

Temporal aspects √ √ ~ event-based ~ event-based
Unanticipated
adaptation

Non-determinism of
executed adaptations

~ X X √

Achieving functional
requirements

√ √ √ √

Achieving functional
requirements

√ √ ~ means to
encode it

~ means to encode
it

Tools
Runtime environment √ √ ~ (java-based

coordination
development
environment)

X

Table 7.2 A comparison between the proposed approach and its counterparts

The comparison shows that the proposed extension to the 3Cs approach provides

means for flexible self-adaptivity, externalised conflict resolution and shows elements of

 Chapter 7 Evaluation

177

managing unanticipated changes in the environment. Abstract role hierarchies secures the

generality of the approach and when instantiated by social components specify the role

space that can be evaluated and traversed through role transitions at runtime to support

reasoning about an expected interactions of the corresponding social component.

Modelling normative positions is the key feature of the approach as it supports the explicit

management of sub-ideal situations and accommodates the non-determinism that

characterises the human participant’s response to it by means of preparing facilitations as

well as sanctions.

7.4 Related Work

A unifying view of the engineering of self-adaptive and self-organising systems has

been presented by (Di Marzo Serugendo, Fitzgerald et al. 2007) supported by generic

framework that integrates both design-time and runtime features, meta data and runtime

infra-structures, respectively. They proposed elements of decentralisation and self-

organisations to the system components reconfiguration as a vehicle for achieving more

freedom in the self-adaptation mechanism. More recent studies in this field emerged in

(Cheng, de Lemos et al. 2008a) among which Anderson et al. have proposed a

classification of modelling dimensions, with regards to self-adaptive system, that take into

consideration the following properties: goals, cause of change, mechanisms and effect.

Addressing self-adaptivity at the requirement level entails complex frameworks

particularly when some element of uncertainty is incorporated (i.e. the conformance of

social entities to the expected behaviour)(Cheng, de Lemos et al. 2008b). There are several

reasons for that including the need to keep an explicit representation of requirements to

monitor them at runtime, to correspond them to the environment changes, in order to solve

conflicting requirements and process them towards the lower-level architectural infra-

structure to guide changes.

The nature of the context change that causes self-adaptation is another distinctive

feature for categorising self-adaptive systems. Anticipated changes are easier to capture

and handle and the dealing with unanticipated ones (i.e. those not foreseen in the design-

time)is still a research challenge, as they cannot be openly and freely handled but rather

should be anticipated at some point of time during the system execution (Keeney 2004).

 Chapter 7 Evaluation

178

7.5 Concluding Remarks

The examined case-studies demonstrated the generality, the applicability, the

flexibility and the maintainability of the proposed approach. These case-studies showed

clearly how the new level of configurability (i.e. self-adaptivity) has widen the range of

possible adaptation that was present in the 3Cs approach in order to accommodate social

interactions and ensure the joint-behaviour of socio-technical protocols in a way that

preserves the system stability.

The first case-study exhibits the ability of the proposed approach to address

different categories of application domains that tackle different tasks and shows clearly

that approach is not domain specific (i.e. problem of empowering people to act out of their

role scope or handling their failure in performing required tasks).

The second case-study demonstrates the power of using roles, task and operations

as meta data and social laws as connector-like constructs to guide the adaptation of socio-

technical models. The separation of control between the technical and the social views

allows a participant (i.e. social component) to have double representations in the system. A

human component can be sufficiently represented by their static actor-like representation

(i.e. coordination interface) when it behaves expectedly. Once the human component is

associated to one of the social roles then it will be amenable to its corresponding social

laws and thus influenced by obligations and can be empowered to violate norms.

The sort of self-adaptivity that the approach poses shows elements of unanticipated

adaptation that can be managed at runtime. It is impossible to anticipate which human

component will be adapted at runtime; therefore, it would be almost impossible to

determine which role it will acquire. It would be infeasible to attach each human

component to its whole set of tasks related to the current role it plays. Instead, as Chapter 5

explained, if a human component is attached to certain role (i.e. it is part of his

capabilities), the entry operations of the tasks of this roles are available for enactment yet

they are subject to the control of social laws. When a task is permitted for enactment by the

social laws then its internal interactions can be governed by the coordination mechanism

(i.e. coordination contracts).

Moreover, this research is distinguished by its ability to characterise violations that

are not only unavoidable but sometimes necessary and useful, where the agent (role player)

enacts a task in order to fulfil a required mission, (not a literal instruction of the task/role).

I should state clearly that one cannot claim that the social and collaborative order will be

 Chapter 7 Evaluation

179

created and maintained mainly by explicit and formal norms, supported by centralised

control, formal monitoring and reporting. However, the promoted architectural primitives

together with the reconfiguration language and the methodological steps are able to fill the

gap caused by the absence of applicable engineering methodologies that address the

biddability of social interactions within organisational settings.

Chapter 8

Concluding Remarks and Directions for

Future Research

“All the world’s a stage
And all the men and women are merely players.
They have their exits and entrances,
And one man in his time plays many parts.”
Shakespeare, “As You Like It (II, vii, 139-142)”

8.1 Summary

In this thesis, new concepts and a method have been developed for modelling

biddable human interactions within the realm of socio-technical systems engineering. This

method borrows its fundamental techniques and primitives from the literature of software

architecture, coordination languages and organisational studies.

The examples that were presented in this research pave the way to exploring

patterns of norm-based reconfiguration modelling, thus tackling the essence of the “social

dimension” within socio-technical (sub)systems. They capture collaborative interactions

between social participants, who carry processes in technology-rich environments, and

 Chapter 8 Concluding Remarks and Directions for Future Research

181

technological components within well-defined organisational settings. However, it can be

argued that those examples demonstrate the management over interactions that remain out

of reach for the technical boundaries of most of up-to-date medical applications. As such, I

refrained from adopting notorious Medical Record (MR) oriented examples that usually

focus on information retrieval and related security and privacy issues (e.g. (Crook, Ince et

al. 2003)).

This thesis emphasises that the presented medical examples, unlike the examples of

security-based approaches to MR, handle collaborative interactions in workplace where the

reasoning about unanticipated human-machine interactions is required to guide purposeful

self-adaptations in the face of context changeability and/or human participants’ deviations

from prescribed routines. Moreover, social interactions are becoming viable for capturing

and managing due to the rapid advances in the technologies of sensing and monitoring.

Medical systems for instance, necessitate more complex intensive systems that include

networks of sensors and actuators. The da Vinci surgical system11 presents an example of

the new trend of theatre systems that bring to the fore the issues that have been discussed

in this research, (see Figure 8.1).

 Figure 8.1 The da Vinci surgical system

11 (Intuitive 2008). Intuitive, Intuitive Surgical, Inc., da Vinci Surgical System, 2008,
http://www.intuitivesurgical.com/index.aspx, accessed in 01-05-2008

 Chapter 8 Concluding Remarks and Directions for Future Research

182

This research aims to explore the various concepts underlying social laws and roles.

It also proposes various means in which it can be related to organisational theory and

access control policies, to manage biddable human interactions within socio-technical

settings. Notwithstanding the simplicity of the case study examples presented in this thesis,

they were successful in presenting crucial properties that are amenable to be generalised

and reused in various domains.

Delineated within this thesis, is the normative extension to 3Cs framework that

recovers from situations in which collaborative commitments between socio-technical

elements have to be reflected by means of new configuration settings, in order to enable or

permit the effects of biddable socio-technical interactions. What this research has provided

is an architectural approach to the development of socio-technical protocols that exhibit

control over biddable interactions through the designated primitives. However, one cannot

claim that this approach maintain a complete social order as it cannot be absolutely verified

by providing explicit formal norms, centralised control mechanisms and monitoring agents.

8.2 Analysis of the Contributions

The architectural support to socio-technical systems is discussed in the light of the

general theoretical areas of focus mentioned in Chapter 2, Three and Four, following the

criteria that was presented by (Crook, Ince et al. 2003, Crook, Ince et al. 2005) on

evaluating access policies against requirements. With regards to the main aim of this

research, i.e. associating the social perspective to software architectures, it has been shown

that in order to address this issue a new type of self-adaptivity has to be brought to the fore

toward biddable human interactions.

The approach at hand put forward abstractions (i.e. architectural primitives), that

are fundamentally different from any applied to date, offering the chance to a relative

control over human interactions in socio-technical systems through a runtime re-evaluation

of the normative state of the system. The normative state constitutes of the system context,

interactions of humans and responsibilities conferred to them. Social laws together with the

role system exert influence on acquiring or enabling more practical capabilities to the

system participants due to certain circumstances (i.e. sub-ideal situations).

The contributions of this thesis are summarised with respect to the following

perspectives:

 Chapter 8 Concluding Remarks and Directions for Future Research

183

1. Problem Identification: the problem was identified through medical

processes examples putting it into an organisational context that

includes clear terms of biddable interactions, organisational

structures, organisational control and context-ideality.

2. Concepts: I identified social and organisational yet domain-

independent architectural elements/concepts that can be

distinguished by the proposed architectural framework in its

conceptual position. Modelling causal relationships within

configurations through using ad hoc and programmed configuration

scripts of coordination context supports two directions of interactions

handling:

 Causality simply models “It has to work right” in the sense

of if a user switched on the key then the light will go on.

 Fixation of human participation in interaction protocols to

conform to the allowed static space of permissions. This

might lead to situations such as “It isn’t my job”, as the

current configuration (role and coordination) just doesn’t cut

it here, even if the interaction is required.

3. Method: These concepts are concretised by mapping them to well-

known software engineering abstractions such as Problem Frames

and a rigorous mathematical approach to formalise operational

models, i.e. Graph Transformation. These mappings allow giving

semantics to the extended architectural framework and organise its

process. Additionally, they support and partially automate the

constructive development, as well as the runtime evolution of socio-

technical systems.

4. Solution: The adopted method as well as its supporting graph-based

model validation editor/tool fits into existing development

methodologies and influences the resulted socio-technical systems in

terms of flexibility and responsiveness to changes in the context.

 Chapter 8 Concluding Remarks and Directions for Future Research

184

8.2.1 Putting All Together

What this research promises to achieve through this method and its accompanied

concepts, framework and methodological steps is to support the emergence of desirable

behaviours in the face of changing context through reasoning about possible social

interactions that are filtered by multi-dimensions role proxies and then regulated by norm-

based social laws. No one can assume that all required adaptation can be known in

advanced yet I claim that the neat separation between permissions and capabilities of

organisational role player provides the basis for reasoning about the required purposeful

adaptations in response to sub-ideal situations, and thus supports assurance of reaching

desired states.

In other words, the description of role capacities: capabilities and permission are

well-separated and also distinguished from their concrete role-players. This allows

redistributing permissions of the players at runtime; enabling dynamic role binding and

managing conflict resolution (see the Section 7.6). The dynamic role binding mechanism is

dynamic and is supported by social laws at design time through monitoring and self-

adaptivity.

8.3 Evaluation

The previous chapter (i.e. Chapter 7) evaluated how well the extension to the 3Cs

architectural approach expresses the qualities necessary for maintaining adaptable socio-

technical systems. The proposed method is evaluated pragmatically against the objectives

that have been mentioned in Chapter 1 using a number of case studies. I concentrated on

the conceptual aspects of the reconfiguration language and how they may contribute to

specify the operational semantics of purposeful behavioural specifications without delving

into the verification issues that can be evaluated through formal proofs of emergent

properties.

The evaluation chapter proposes pragmatic evaluation attempts putting into

consideration the difficulties of evaluating languages at the conceptual level. I agree with

(Cheng, de Lemos et al. 2008b) who stated: “It is unclear whether defining such proofs for

emerging systems properties is even feasible”. Runtime assurance techniques may rely on

demonstratable properties of adaptation like congruence and stability. This sort of the

overall system behaviour’s assurance is beyond current conceptions found in existing

architectural frameworks, which rely on deducing “correct” behaviour. The presented

 Chapter 8 Concluding Remarks and Directions for Future Research

185

example-driven evaluation attempts show that the language is expressive enough and

viable to address different domains of application. Moreover, the underlying architectural

style supports the under-specification of role binding constraints to be determined at

runtime.

These case studies substantiated the contributions of the proposed approach and

demonstrated its applicability to perform architectural self-adaptation as a mean to fit in

biddable human interactions that are vital for addressing sub-ideal situations. The

evaluation focused on demonstrating the required properties of self-adaptivity such as

being domain-independent, context-aware and capable of making adaptation decisions at

runtime as these properties reflected the generality of the approach and the expressiveness

and the flexibility of the proposed architectural primitives.

The first case study demonstrated the ability of the proposed approach to address

different categories of application domains that tackle different tasks. Moreover, this case

study shows clearly that the problem that the approach addresses within socio-technical

system is not domain specific (i.e. problem of empowering people to act out of their role

scope or handling their failure in performing required tasks).

The applicability of the adopted approach has been demonstrated in the second case

study through going into the details of the methodological steps presented in Chapter 5.

The case study illustrated the advantages of addressing sub-idealites through making the

difference between routinised transactional view of processes and the ad hoc human-driven

view of the same processes. Moreover, the usefulness of the introduced task-based role

structure has been clearly explained.

8.4 Future Work

Further improvement can be housed to enhance this approach of modelling

biddable social interactions within organisational settings through roles, norms and

reconfiguration. It would be beneficial to examine the outcomes of this approach to

software architectures and benchmark it against industrial case-studies. There is still a

room for further abstractions through which the dynamics of socio-technical systems can

be incorporated. For example, after a required behaviour is enabled by the reconfiguration

manager, it would be propitious to incorporate a temporal operator to provide timeliness

system response to the human reaction towards the required behaviour if the enacting

participant refrains from fulfilling his directed obligation. Capturing of such violations is

 Chapter 8 Concluding Remarks and Directions for Future Research

186

time-sensitive in certain domains. With regards to collaboration, the open delegation

approach that the approach supports, it could be extended to the standard delegation model

that is found in organisations and well-known IS systems.

From the semantics point of view, the approach advocates a graph-based semantics

that caters for proving the validity of the introduced concepts and providing tool support.

The approach is based on GT rules of a two-view attributed graph-base model, which

provides operational semantics of possible reconfiguration operations. A possible

enhancement to the semantics of the advocated approach would be through providing

Denotational Semantics in the sense of team automata (ter Beek, Ellis et al. 2003) thus

complementing the proposed approach to operational semantic. Advances in this direction

would support formal specifications of the self-adaptivity manager (i.e. the harmoniser)

that was characterised in Chapter 5.

The idea of considering graphs with proactive components (i.e. social components)

as part of the state of the system also poses new challenges for analysis techniques.

Validation and simulation-based techniques for GT have usually regarded graphs as

passive data structures being manipulated. The uncertainty arising from the involvement of

social components requires an integration of GT with stochastic analysis techniques— a

topic of research where first results are emerging only recently (Heckel, Lajios & Menge

2006).

The presented approach would benefit from currently undergoing research and

implementation-driven taskforces. Monitoring as a means for capturing changes in context

is via software intensive devices, requires context-aware software mechanisms that mingle

with participants’ preferences and conditions. This problem is being studied at high level

of abstraction (Salifu, Yu & Nuseibeh 2007). Practically, a task force is getting momentum

to incorporate human representation within Web Service Business Process Execution

Language WS-PEBL definitions.

8.5 Concluding Remarks

Several significant points have been derived through this research, and highlighted

as follows:

• Software architecture technologies advanced throughout the last two decade,

Self-adaptive approaches to software architecture have recently captured a

large audience. Thus, introducing self-adaptive architectures to the

 Chapter 8 Concluding Remarks and Directions for Future Research

187

development of socio-technical is becoming an important and a direct

research area of computer science.

• Almost every socio-technical environment in the world is eager to exploit the

most from the capabilities and the rational of its social components, i.e.

human participants, particularly at sub-ideal situations. However, many lack

the methodology to utilizing architectural technologies to the greatest extent.

The principal requirement of such domains, e.g. healthcare environment, is

having generic architecture styles that support biddable interactions; promote

flexible organisational structures and management control to keep the good

behaviour of the entire system through rewards and sanctions.

• Socio-technical systems require better architectures that support them as well

as other systems that require flexible representation of the interaction of their

human participants. Furthermore, generic architecture styles and models are

necessary, to allow domain-free mechanism, facilitate norm-based

reconfigurations and role-based transitions (which can be easily specialised

and tailored for applications at hand.)

• The study conducted in the Gastroenterology unit showed that concepts that

were promoted in this thesis, in terms of architectural primitives for

modelling and reconfiguration, do exist in practice and are laid beyond the

capabilities of available software development methodologies. Social laws

and roles are made to give technical answers to practical social issues, based

on the biddability of system’s human participants towards other

technological components. Otherwise, a very powerful system can be

sometimes useless or even become an obstacle to achieving a stable state

because of various missing manipulations, that are technically easy but

beyond the authorisation of enacting participants. For example, the

coordination-based blocking of enacting a life-saving procedure because of a

missing patient’s approval should be removed to save the patient’s life.

• Abstracting roles from coordination interfaces assists in engineering systems

that enable the transition of power from automated software control agents to

human operators (e.g. shutting auto-pilot system and flying in the manual

mode).

 Chapter 8 Concluding Remarks and Directions for Future Research

188

• The emphasis on the necessity for differentiating between qualities and

permissions is crucial, together with, providing partial task-based delegations

and giving system specifier a multi-scaled power to blend rewards and

sanctions to manage violating interactions.

• The 3Cs underlying language is not just an ADL-like notation that advocates

the separation of concerns between computation, coordination and

configuration, but it also constitutes a vehicle for integrating the high-level

concepts promoted by this thesis. Norms, roles and role assignments, as high-

level concepts, are associated in this framework with: (1) core business

functionalities (i.e. coordinated interactions), (2) evolvable UML-like

structures of components and connectors that perform scheduled sets of

functionalities (i.e. coordination contexts), and (3) technical interfacing

complexities between social and technical components that surpass the

capabilities of traditional HCI techniques (i.e. relating process-oriented tasks

to coordination interfaces).

The main contribution of this thesis is the leveraging of modelling primitives

developed for software architectures to cater for interactions that involve human

components. The proposed approach primarily takes into account the unanticipated, non-

causal nature of human interactions within organisational settings, and provides a

mechanism for adjusting role-based permissions and obligations imposed on monitored

interactions between technical and human components so as to react and adapt to changes

in the environment in which they operate. Similarly, self-adaptations, which may result

from monitoring changes in the environment, are capable of capturing sub-ideal situations

and applying reconfigurations on both roles and technical aspects. The approach is

equipped with a methodology, a graph-based modelling for role-based adaptations and an

easy to use modelling notation for reasoning about the features of these self-adaptations in

the face of context changeability and the deviations of human participants from their

prescribed routines. Thus, the promoted architectural primitives together with the

reconfiguration language and the methodological steps are able to fill the gap caused by the

absence of applicable engineering methodologies that address the biddability of social

interactions within organisational settings.

 0 Appendix A: Bibliography

ii

Appendix A: Bibliography

(Abowd, Allen et al. 1995). Abowd, G.D., R. Allen, and D. Garlan, "Formalising Styles to
Understand Descriptions of Software Architecture", ACM Transaction on Software
Engineering and Methodology, 4(4), 1995, p. 319-364.

(Ajzen 1991). Ajzen, I., "The Theory of Planned Behavior", Organizational Behavior &
Human Decision Processes, 50, 1991, p. 179-211.

(Ajzen 2005). Ajzen, I., Behavioral Interventions Based on the Theory of Planned
Behavior, 2005, http://people.umass.edu/ajzen/pdf/intervention.pdf, accessed in
May, 2008

(Akehurst 2000). Akehurst, D.H., Model Translation: A UML-based Specification
Technique and Active Implementation Approach, Ph.D., University of Kent at
Canterbury, 2000.

(Akrich 1995). Akrich, M., User Representation: Paractices, Methods and Sociology, in
Managing Technology in Society: The Approach of Constructive Technology
Assessment, A. Rip, T.J. Misra, and J. Schot, (eds.), Printer Publishers: London,
1995, p. 167-184.

(Alexander, Ishikawa et al. 1977). Alexander, C., S. Ishikawa, M. Siververstein, M.
Jacobson, I. Fikdahl-King, and S. Angel, A Pattern Language, Oxford University
Press, 1977.

(Allen, Deuence et al. 1998). Allen, R., R. Deuence, and D. Garlan, Specifying and
Analyzing Dynamic Software Architectures, in Fundamental Approaches to
Software Engineering, Vol. 1382, Springer-Verlag, 1998, p. 21-37.

 0 Appendix A: Bibliography

iii

(Allen & Garlan 1997a). Allen, R. and D. Garlan, "A Formal Basis for Architectural
Connection", Acm Transactions on Software Engineering and Methodology, 6(3),
1997a, p. 213-249.

(Allen & Garlan 1997b). Allen, R. and D. Garlan, "A Formal Basis for Architectural
Connection", ACMTransactions on Software Engineering and Methodology, 6(3),
1997b, p. 213-249.

(Anderson, De Lemos et al. 2008). Anderson, J., R. De Lemos, S. Malek, and D. Weyns,
Modelling Dimensions of Self-Adaptive Systems, in Software Engineering for Self-
Adaptive Systems, B.H.C. Cheng, et al., (eds.), Vol. 5525, Springer-Verlag: Berlin,
Heidelberg, 2008, p. 27-47.

(Andrade, Fiadeiro et al. 2002). Andrade, L., J.L. Fiadeiro, J. Gouveia, and G. Koutsoukos,
"Separating Computation, Coordination and Configuration", Journal of Software
Maintenance and Evolution, 14(5), 2002, p. 353-370.

(Andrade, Fiadeiro et al. 2001). Andrade, L., J.L. Fiadeiro, and M. Wermelinger,
Enforcing Business Policies Through Automated Reconfiguration, in Proc. of the
16th International Conference on Automated Software Engineering: IEEE
Computer Society Press, 2001, p. 426-429.

(Andrade, Gouveia et al. 2002). Andrade, L., J. Gouveia, G. Koutsoukos, and J.L.
Fiadeiro, "Coordination Contracts, Evolution and Tools", Journal on Software
Maintenance and Evolution: Research and Practice, 14(5), 2002, p. 353-369.

(Andrade & Fiadeiro 2003). Andrade, L.F. and J.L. Fiadeiro, Architecture Based Evolution
of Software Systems, in Software Architectures, M. Bernardo and P. Inverardi,
(eds.), Springer-Verlag, 2003, p. 148-181.

(Arbab 2004). Arbab, F., "Reo: A Channel-based Coordination Model For Component
Composition ", Mathematical Structures in Computer Science, 14(3), 2004, p. 329-
366.

(Austin 1962). Austin, J.L., How to Do Things with Words, Oxford, Oxford University
Press, 1962.

(Bacon, Lloyd et al. 2001). Bacon, J., M. Lloyd, and K. Moody, Translating Role-Based
Access Control Policy within Context, in Lecture Notes in Computer Science, 2001,
accessed in

(Barbuceanu, Gray et al. 1999). Barbuceanu, M., T. Gray, and S. Mankovski, "Role of
Obligation in Multi-Agent Coordination", Applied Artificial Intelligence, 13, 1999,
p. 11 - 38.

(Bardohl 2002). Bardohl, R., "A Visual Environment for Visual Languages", Science of
Computer Programming, 44, 2002, p. 181-203.

(Bardohl, Ehrig et al. 2003). Bardohl, R., H. Ehrig, J. de Lara, O. Runge, G. Taentzer, and
I. Weinhold, Node Type Inheritance Concept for Typed Graph Tranformation,
Technical University f Berlin, Berlin, Germany, TR2003_19, 2003

 0 Appendix A: Bibliography

iv

(Bardohl, Ehrig et al. 2004). Bardohl, R., H. Ehrig, J. De Lara, and G. Taentzer,
Integrating Met-modelling Aspects with Graph Transformation for Efficient Visual
Language Definition and Model Manipulation, in Fundamental Approach to
Software Engineering, LNCS, Vol. 2984, Springer: Berlin / Heidelberg, 2004, p.
214-228.

(Baresi, Ghezzi et al. 2004). Baresi, L., C. Ghezzi, and S. Guinea, Smart Monitors for
Composed Services, in Proc. of the 2nd International Conference on Service
Oriented Computing, New York, NY: ACM, 2004, p. 193-202.

(Baresi & Heckel 2002). Baresi, L. and R. Heckel, Tutorial Introduction to Graph
Transformation: A Software Engineering Perspective, in Graph Transformation,
1st International Conference, ICGT 2002, A. Corradini, et al., (eds.), Vol. 2505,
Springer, 2002, p. 402-429.

(Baresi, Heckel et al. 2006). Baresi, L., R. Heckel, S. Thöne, and D. Varró, "Style-Based
Modelling and Refinement of Service Oriented Architectures", Journal of Sofware
and Systems Modelling, 5(2), 2006, p. 187-207.

(Barroca, Fiadeiro et al. 2004). Barroca, L., J.L. Fiadeiro, M. Jackson, R. Laney, and B.
Nuseibeh, Problem Frames: A Case for Coordination, in the 6th International
Conference on Coordination Models and Languages, LNCS, Vol. 2949, Springer:
Berlin / Heidelberg, 2004, p. 5-19.

(Bass, Clements et al. 1998). Bass, L., P. Clements, and R. Kazman, Software Architecture
in Practice, SEI Series in Software Engineering, Reading, MA, Addison Wsley,
1998.

(Batista, Joolia et al. 2005). Batista, T., A. Joolia, and G. Coulson, Managing Dynamic
Reconfiguration in Component-based Systems, in Software Architecture, LNCS,
Vol. 3527, Springer Berlin / Heidelberg, 2005, p. 1-17.

(Berens 2005). Berens, P., The FLOWer Case-Handling Approach: Beyond Workflow
Management, in Process-Aware Information Systems: Bridging People and
Software through Process Technology, M. Duman, W.M.P. van der Aalst, and
A.H.M. ter Hofstede, (eds.), John Wiley & Sons, Inc.: Hoboken, NJ, 2005, p. 386-
395.

(Berry & Boudol 1992). Berry, G. and G. Boudol, "The Chemical Abstract Machine",
Theoretical Computer Science, 96, 1992, p. 217-248.

(Biermann, Ehrig et al. 2006). Biermann, E., K. Ehrig, C. Khler, G. Kuhns, G. Taentzer,
and E. Weiss, EMF Model Refactoring based on Graph Transformation Concepts,
in Proc. of the 3rd Internatinal Workshop on Software Evolution through
Transformations (SETra '06), Natal, Brazil, 2006.

(Boella & van der Torre 2003). Boella, G. and L.W.T. van der Torre, Permissions and
Obligations in Hierarchical Normative Systems, in Proc. of the ICAIL, 2003.

(Brier, Rapanotti et al. 2004). Brier, J., L. Rapanotti, and J. Hall, Problem Frames for
Socio-technical Systems: Predictability and Change, in Proc. of the ICSE, 1st.

 0 Appendix A: Bibliography

v

International Workshop on Advances and Applications of Problem Frames
(WAAPF 2004), Edignburgh, Scotland, 2004, p. 21-25.

(Brier, Rapanotti et al. 2006). Brier, J., L. Rapanotti, and J. Hall, Problem-based Analysis
of Organisational Change: A Real-world Example, in Proc. of the 2006
International Workshop on Advanced and Application of Problem Frames, 2006, p.
13-18.

(Broersen, Dignum et al. 2004). Broersen, J., F. Dignum, V. Dignum, and J.J.C. Meyer,
Designing a Deontic Logic of Deadlines, in Proc. of the Deontic logic in computer
science, Madeira, Portugal: Berlin, 2004, p. 43-56.

(Bryle & Giorgini 2006). Bryle, V. and P. Giorgini, "Self-Configuring Socio-technical
Systems: Redesign at Runtime", ITSSA, 2(1), 2006, p. 31-40.

(Canal, Pimentel et al. 1999). Canal, C., E. Pimentel, and J.M. Troya, Specification and
Refinement of Dynamic Software Architecture, in Proc. of the 1st Working IFIP
Conference on Software Architecture (WICSA1): Kluwer, B.V., 1999, p. 107-126.

(Carmo & Jones 2002). Carmo, J. and A. Jones, Deontic Logic and Contrary-To-Duty, in
Handbook of Philosophical Logic, M. Gabbay and F. Guenthner, (eds.), Vol. 5,
Springer, 2002, p. 266-344.

(Castelfranchi 2003). Castelfranchi, C., "Formalizing the Informal?: Dynamic Social
Order, Buttom-up Social Control, and Spontaneous Normative Relations", Journal
of Applied Logic, 1(1-2), 2003, p. 47-92.

(Castelfranchi & Giardini 2003). Castelfranchi, C. and F. Giardini, Silent Agents.
Behavioural Implicit Communication for M-A Coordination and HMI, in Proc. of
the 2nd Annual Symposium on Autonomous Intelligent Networks and Systems,
Menlo Park, CA, 2003.

(Cebulla 2004). Cebulla, M., Modelling Sociotechnical Specifics using Architectural
Concepts in Proc. of the Proceedings of the 2004 ACM Symposium on Applied
Computing (SAC '04), Nicosia, Cybrus: ACM, New York, NY, 2004, p. 1559-1563.

(Checkland 1984). Checkland, P., Soft Systems Methodology, Chichester, John Wiley,
1984.

(Checkland & Scholes 2001). Checkland, P. and J. Scholes, Soft Systems Methodology in
Action, Chichester, John Wiley & Sons, Inc., 2001.

(Cheng, de Lemos et al. 2008a). Cheng, B.H.C., R. de Lemos, H. Giese, P. Inveradi, and J.
Magee, (eds.), Software Engineering for Self-Adaptive Systems, LNCS Vol. 5525,
Springer-Verlag: Berlin, Heidelberg, 2008a.

(Cheng, de Lemos et al. 2008b). Cheng, B.H.C., R. de Lemos, H. Giese, P. Inveradi, J.
Magee, J. Anderson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Di Marzo
Serugendo, S. Dustar, A. Finkelstein, C. Gacek, K. Geihis, V. Grassi, G. Karsai, H.
Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandloa, H. Muller, S. Prak, M. Shaw,
M. Tichy, M. Tivoli, D. Wyens, and J. Whittle, Software Engineering for Self-
Adaptive Systems: A Research Road Map, in Software Engineering for Self-

 0 Appendix A: Bibliography

vi

Adaptive Systems, B.H.C. Cheng, et al., (eds.), Vol. 08031, Internationales
Begegnnuns- und Forschungszentrum fuer Informatik (IBFI): Schloss Dagstuhl,
Germany, http://drops.dagstuhl.de/opus/volltexte/2008/1500/, 2008b, p. 1-13.

(Chomsky 1956). Chomsky, N., "Three Models for the Description of Language", IRE
Tramsactions on InformationTheory, 2(3), 1956, p. 113-124.

(Clements, Bachmann et al. 2004). Clements, P., F. Bachmann, L. Bass, D. Garlan, J.
Ivers, R. Little, R. Nord, and J. Stafford, Documenting Software Architectures:
Views and Beyond, The SE Series in Software Engineering, 2004.

(Coakes 2002). Coakes, E., Knowledge Management: A socio-Technical perspective, in
Knowledge Management the Socio-Technical World, E. Coakes, D. Willis, and S.
Clarke, (eds.), Springer-Verlag: London, 2002, p. 4-14.

(Coiera 2007). Coiera, E., "Putting the Technical Back into Socio-technical Systems
Research", International Journal of Medical Informatics, 76(1), 2007, p. 98-103.

(Colman & Han 2005). Colman, A. and J. Han, "Organizational Abstractions for Adaptive
Systems", Proceedings of the Annual Hawaii International Conference on System
Sciences, 2005, p. 276.

(Colman & Han 2007). Colman, A. and J. Han, "Roles, Players and Adaptive
Organisations", Applied Ontology: An Interdisciplinary Journal of Ontological
Analysis and Conceptual Modeling, vol 2, 2007, p. 105-126.

(Corradini, Heckel et al. 2000). Corradini, A., R. Heckel, and U. Montanari, Graphical
Operational Semantics, in the Proc. ICALP 2000 Workshop on Graph
Transformation and Visual Modelling Techniques, A. Corradini and R. Heckel,
(eds.), Carelton Scientific: Geneva, Switzerland, 2000, p. 324-336.

(Corradini, Montanari et al. 1996). Corradini, A., U. Montanari, and F. Rossi, "Graph
Processes", Funamenta Informaticae, 26, 1996, p. 241-246.

(Corradini, Montanari et al. 1997). Corradini, A., U. Montanari, F. Rossi, H. Ehrig, R.
Heckel, and M. Löwe, Algebraic Approach to Graph Transformation, Part1: Basic
Concepts and Double Pushout Approach, in Handbook of Graph Grammars and
Computing by Graph Transformation, G. Rozenberg, (ed.), Vol. 1: Foundations,
World Scientific, 1997, p. 163-246.

(Coulson, Blair et al. 2004). Coulson, G., G.S. Blair, P. Grace, A. Joolia, K. Lee, and J.
Ueyama, OpenCOM v2: A Component Model for Building Systems Software, in
Proc. of the IASTED Software Engineering and Applications (SEA '04),
Cambridge, MA, 2004.

(Crook, Ince et al. 2002). Crook, R., D. Ince, and B. Nuseibeh, Towards an Analytical
Role Modelling Framework for Security Requirements, in Proc. of the 8th
International Workshop on Requirements Engineering: Foundations for Software
Quality (REFSQ' 02), Essen, Germany, 2002.

 0 Appendix A: Bibliography

vii

(Crook, Ince et al. 2003). Crook, R., D. Ince, and B. Nuseibeh, "Modelling Access Policies
Using Roles in Requirements Engineering", Information and Software Technology,
45(14), 2003, p. 979-991.

(Crook, Ince et al. 2005). Crook, R., D. Ince, and B. Nuseibeh, On Modelling Access
Policies: Relating Roles to Organisational Contexts, in Proc. of the RE 2005:
Proceedings of the 13th IEEE International Conference on Requirements
Engineering, 2005, p. 157-166.

(Cuesta, Gómez et al. 2003). Cuesta, P., J.C. Gómez, and F.J. Rodríguez, A Framework for
Evaluation of Agent Oriented Methodologies, in Proc. of the Taller de Agentes
Inteligentes en eltercer milenio (CAEPIA 2003), San Sebastian, Spain, 2003.

(Damianou, Dulay et al. 2001). Damianou, N., N. Dulay, E. Lupu, and M. Sloman, The
Ponder Specification Language, in Proc. of the Workshop on Policies for
Distributed Systems and Networks (Policy 2001), HP Labs, Bristol, 2001.

(de Lara, Bardohl et al. 2007). de Lara, J., R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, and
G. Taentzer, "Attributed Graph Transformation with Node Inheritance",
Theoretical Computer Science Archive, 376(3), 2007, p. 111-138.

(Depke, Heckel et al. 2000). Depke, R., R. Heckel, and J.M. Küster, Integrating Visual
Modelling of Agent-based and Object-oriented Systems, in Proc. of the 4th
International Conference on Autonomous Agents, Barcelona, Spain, 2000, p. 82-83.

(DeRemer & Kron 1976). DeRemer, F. and F. Kron, "Programming-in-the-Large Versus
Programming-in-the-Small", IEEE Transactions on Software Engineering SE-2,
2(June 1976), 1976, p. 321-327.

(Di Marzo Serugendo, Fitzgerald et al. 2007). Di Marzo Serugendo, G., J. Fitzgerald, A.
Romanovsky, and A. Guelfi, A Generic Framework for the Engineering of Sel-
Adaptive Systems and Self-Organising Systems, School of Computer Science,
University of Newcastle, Newcastle, UK, Technical Report, 2007

(Dignum & Kuiper 1997). Dignum, F. and R. Kuiper, "Combining Dynamic Deontic Logic
and Temporal Logic for the Specification of Deadlines", Proceedings of the Hawaii
International Conference on System Sciences, 30//V5, 1997, p. 336-346.

(Dignum 2003). Dignum, V., A Model for Organizational Interaction, based onAgents,
founded in Logic, University of Utrecht, 2003.

(Dignum, Meyer et al. 2002). Dignum, V., J.-J. Meyer, H. Weigand, and F. Dignum, An
Organisational Oriented Model for Agent Societies, in Proc. of the International
Workshop on Regulated Agent-based Social Systems: Theories and Applications
(RASTA '02), AAMAST '02: Bologna, Italy, 2002.

(Dignum, Meyer et al. 2003). Dignum, V., J.J.C. Meyer, F. Dignum, and H. Weigand,
"Formal Specification of Interaction in Agent Societies", Lecture Notes in
Computer Science(2699), 2003, p. 37-52.

 0 Appendix A: Bibliography

viii

(Dignum, Vázquez-Salceda et al. 2005). Dignum, V., J. Vázquez-Salceda, and F. Dignum,
OMNI: Introducing Social Structure, Norms and Ontologies into Agent
Organisations, in Programming Multi-Agent Systems: the 2nd International
Workshop ProMAS 2004, R.H. Bordini, et al., (eds.), Vol. 3346, Springer: Berlin /
Heidelberg, 2005, p. 181-198.

(Dijkman, Quartel et al. 2003). Dijkman, R., D. Quartel, L. Pires, and M. van Sinderen, An
Approach to Relate Viewpoints and Modeling Languages, in Proc. of the 17th
International Enterprise Distributed Object Computing Conference (EDOC '03),
2003, p. 14.

(Dobson & Martin 2006). Dobson, J. and D. Martin, Modelling Based on Responsibility, in
Trust in Technology: A socio-technical perspective, K. Clarck, et al., (eds.), Vol.
36, Springer: Netherland, 2006, p. 39-67.

(Donaldson 2001). Donaldson, L., The Contingency Theory of Organisations, Foundations
for Organisational Science, Sage, 2001.

(Dowling & Cahill 2001). Dowling, J. and V. Cahill, The K-Component Architecture
Meta-Model for Self-Adaptive Software, in Proc. of the 3rd International
Conference on Metalevel and Separation of Crosscutting Concerns, Vol. 2192,
Springer-Verlag, 2001, p. 81-88.

(Dustar 2004). Dustar, S., "Caramba—A Process-aware Collaboration System Supporting
Ad hoc and Collaborative Processes in Virtual Teams", Distributed and Parallel
Databases, 15(1), 2004, p. 45-66

(Edwards 1996). Edwards, W.K., Polices and Role in Collaborative Systems, in Proc. of
the ACM Conference on Computer Cooperative Work (CSCW '96), Cambridge,
MA, 1996, p. 11-20.

(Ehrig, Engels et al. 1999). Ehrig, H., R. Engels, J. Kerowski, and G. Rozenberg, (eds.),
Handbook of Graph Grammars and Computing by Graph Transformation, Vol. 2:
Applications, Languages and Tools, World Scientific, 1999.

(Ehrig, Kerowski et al. 1999). Ehrig, H., J. Kerowski, U. Montanari, and G. Rozenberg,
(eds.), Handbook of Graph Grammars and Computing by Graph Transformation,
Vol. 3: Concurrency, Parallelism, and Distribution, World Scientific, 1999.

(Ehrig, Pfender et al. 1973). Ehrig, H., M. Pfender, and H. Schneider, Graph Grammars:
An Algebraic Approach, in Proc. of the 14th Annual IEEE Symposium on
Switching and Automata Theory: IEEE, 1973, p. 167-180.

(Ehrig, Küster et al. 2006). Ehrig, K., J.M. Küster, G. Taentzer, and J. Winkelmann,
Generating Instance Models from Meta Models, in the 8th IFIP WG 6.1
International Conference, FMOODS 2006, LNCS, Vol. 4037, Springer-Verlag:
Berlin / Heidelberg, 2006, p. 4037.

(El-Hassan & Fiadeiro 2006). El-Hassan, O. and J.L. Fiadeiro, Role-based Architectural
Modelling of Socio-Technical Systems, in Proc. of the 3rd International Workshop
on Coordination and Organisation (CoOrg'06), Bologna, Italy: ENTCS, 2006, p.
5-17.

 0 Appendix A: Bibliography

ix

(El-Hassan, Fiadeiro et al. 2008). El-Hassan, O., J.L. Fiadeiro, and R. Heckel, Managing
Socio-technical Interactions in Healthcare Systems, in BPM 2007 Workshops, the
1st International Workshop on Process-oriented Information Systems in
Healthcare, H.M. ter Hofstede, B. Benatallah, and H.-Y. Paik, (eds.), LNCS, Vol.
4928, Springer: Berlin / Heidelberg, 2008, p. 347-358.

(Ellis, Gibbs et al. 1991). Ellis, C., S. Gibbs, and G. Rein, "Groupware—Some Isssues and
Experiences", CACM, 54(1), 1991, p. 38-58.

(Emery & Trist 1960). Emery, F.E. and E. Trist, Socio-technical Systems, in Management
Science, Models and Techniques, C.W. Churchman and M. Verhulst, (eds.), Vol. 2,
Pergamon, 1960, p. 83-97.

(Engels, Heckel et al. 2000). Engels, G., R. Heckel, and S. Sauer, Dynamic Meta
Modeling: A Graphical Approach to the Operational Semantics of Behavioral
Diagrams in UML, in UML 2000, 2000, p. 323-337.

(Esteva, Padget et al. 2002). Esteva, M., J. Padget, and C. Sieera, Formalising a Language
for Institutions and Norms, in Intelligent Agents VIII: the 8th International
Workshop (ATAL 2001), J.-J. Meyer and M. Tambe, (eds.), Springer: Berlin /
Heidelberg, 2002, p. 348-366.

(Falcone & Castelfranchi 2000). Falcone, R. and C. Castelfranchi, Level of Delegation and
Levels of Adoption as the Basis for Adjustable Autonomy, in 6th AI*IA, LNCS,
Vol. 1792, Springer, 2000, p. 273-284.

(Felici 2003). Felici, M., Taxonomy of Evolution and Dependability, in Proc. of the
Proceedings of the 2nd International Workshop on Unanticipated Software
Evolution, (USE '03), Warso, Poland, 2003, p. 95-104.

(Ferber & Gutknecht 1998). Ferber, J. and O. Gutknecht, A Meta-Model for the Analysis
and Design of Organizations in Multi-Agent Systems, in Proc. of the 3rd
International Conference in Multi-Agent Systems, Paris, France: IEEE Press, 1998,
p. 128-135.

(Fiadeiro 2004). Fiadeiro, J.L., Categories for Software Engineering, Berlin & Heidelberg,
Springer-Verlag 2004.

(Fiadeiro 2007). Fiadeiro, J.L., "Designing for Software's Social Complexity", Computer,
40(1), 2007, p. 34-39.

(Fiadeiro, Lopes et al. 2003). Fiadeiro, J.L., A. Lopes, and M. Wermelinger, A
Mathematical Semantics for Architectural Connectors, in Generic Programming,
R. Backhouse and J. Gibbons, (eds.), LNCS, Vol. 2793, Springer-Verlag, 2003, p.

(Fiadeiro & Maibaum 1996). Fiadeiro, J.L. and T. Maibaum, A Mathematical Toolbox for
the Software Architect, in Proc. of the 8th international Workshop on Software
Specification and Design, 1996, p. 46-55.

(Fiadeiro & Maibaum 1997). Fiadeiro, J.L. and T. Maibaum, "Categorial Semantics of
Parallel Program Design", Science of Computer Programming, 40(1), 1997, p. 111-
138.

 0 Appendix A: Bibliography

x

(Fielding 2000). Fielding, R.T., Architectural Styles and the Design of Network-based
Software Architectures, Ph.D. Dissertation, Information and Computer Science,
University of California, 2000,
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

(Fields, Harrison et al. 1997). Fields, B., M. Harrison, and P. Wright, THEA: Human Error
Analysis for Requirements Definition, Department of Computer Science,
University of York, York, YCS-294, 1997

(Finin, Labrou et al. 1995). Finin, T., Y. Labrou, and J. Mayfield, KQML as an Agent
Communication Language, 1995, p.

(FIPA 2000). FIPA, FIPA Communicative Act Library, Doc. XC00037H,
http://www.fipa.org, 2000

(Floyd 2002). Floyd, C., Deconstructing, in Social Thinking—Software Practice, Y.
Ditritch, C. Floyd, and R. Klischewski, (eds.), MIT Press, 2002, p. 1-28.

(Fontaine 2001). Fontaine, P.-J., Goal-Oriented Elaboration of Security Requirements,
M.S. Thesis, Dept. Computing Science, University of Louvain, 2001,
http://citeseer.ist.psu.edu/fontaine01goaloriented.html.

(Garlan, Cheng et al. 2003). Garlan, D., S.-W. Cheng, and B. Schmerl, Increasing System
Dependability through Architecture-based Self-Repair, in Architecting Dependable
Systems, d. Lemos, C. Gacek, and Romanovsky, (eds.), Springer-Verlag, 2003, p.

(Garlan, Monroe et al. 1997). Garlan, D., R. Monroe, and D. Wile, ACME: An
Architecture Description Language, in Proc. of the CASCON`97, 1997.

(Garlan & Shaw 1993). Garlan, D. and M. Shaw, An Introduction to Software
Architecture, in Advances in Software Engineering & Knowledge Engineering,
Ambriola and Tortola, (eds.), Vol. 2, World Scientific Pub Co.: Singapore, 1993, p.
1-39.

(Garlan, Siewiorek et al. 2002). Garlan, D., D. Siewiorek, A. Smailagic, and P. Steenkiste,
"Project Aura: Towards Distraction-Free Pervasive Computing", IEEE Prevasive
Computing, 21(12), 2002, p.

(Gazendam, Jorma et al. 2005). Gazendam, H., R. Jorma, and K. Liu, Organizational
Semitotics, in Proc. of the IAASS 2004 Conference, Round Table Workshop 'An
Organisational Semiotic View on Interculturality and Globalization', Lyon, France,
http://www.irc.rdg.ac.uk/Research/Publications.htm, 2005.

(Gelernter 1985). Gelernter, D., "Generative Communication in Linda", ACM Transaction
Programming Languages and Systems, 7(1), 1985, p. 80-112.

(Gelernter & Carriero 1992). Gelernter, D. and N. Carriero, "Coordination Languages and
their Significance", Communication ACM, 35(2), 1992, p. 97-107.

 0 Appendix A: Bibliography

xi

(Georgakopoulos, Hornick et al. 1995). Georgakopoulos, D., M. Hornick, and A. Sheth,
"An Overview of Workflow Management: From Process Modeling to Workflow
Automation", Distributed and Parallel Databases, 3, 1995, p. 119-153.

(Ghezzi & Picco 2002). Ghezzi, C. and G.-P. Picco, An Outlook on Software Engineering
for Modern Distributed Systems, in Proc. of the the Monterey Workshop on radical
Approaches to Software Engineering, Venice, Italy, 2002, p. 10-17.

(Gill 1991). Gill, K.S., "Summary of Human-Centred System Research in Europe, Part1",
Information Technology and Changes in Organizational Work, 13(1), 1991, p. 7-
27.

(Goguen 1973). Goguen, J., Categorial Foundations for General Systems Theory, in
Advances in Cyberneic and Systems Research, P. Pichler and R. Trappl, (eds.),
Transcripta Books, 1973, p. 121-130.

(Goguen 1996). Goguen, J., Parameterised Programming and Software Architecture, in
Proc. of the Symposium on Software Reliability: IEEE, 1996.

(Goguen & Burstall 1992). Goguen, J. and R. Burstall, "Institutions: Abstrsct Model
Theory for Specification and Programming", Journal of The ACM, 39(1), 1992, p.
95-146.

(Gomes, Batista et al. 2007). Gomes, A.T.A., T.V. Batista, A. Joolia, and G. Coulson,
Architecting Dynamic Reconfiguration in Dependable Systems, in Architecting
Dependable Systems IV, LNCS, Vol. 4615, Springer Berlin/Heidelberg, 2007, p.
237-261.

(Grudin 1994). Grudin, J., "CSCW—History and Focus", IEEE Computer, 27(5), 1994, p.
19-26.

(Guindon, Kanser et al. 1987). Guindon, R., H. Kanser, and W. Curtis, Breakdown and
Processes During Early Activities of Software Design by Professionals, in
Empirical Studies of Programmers: Second Workshop, G.M. Olsen and E.S.
Sheppard, (eds.), Ablex Publishing Corporation: Norwood, NJ, 1987, p. 65-82.

(Hall, Jackson et al. 2002). Hall, J., M. Jackson, R. Laney, B. Nuseibeh, and L. Rapanotti,
Relating Software Requirements and Architectures Using Problem Frames, in Proc.
of the Requirements engineering, Essen, Germany: Ieee, 2002, p. 137-144.

(Hall & Rapanotti 2005). Hall, J. and L. Rapanotti, Problem Frames For Socio-Technical
Systems, in Requirements Engineering for Socio-technical Systems, J.L. Mate and
A. Silva, (eds.), Idea Group Inc.: London, 2005, p. 318-339.

(Hall, Rapanotti et al. 2004). Hall, J., L. Rapanotti, K. Cox, S. Bleistein, and J. Verner, An
Example of Domain Decomposition through Application of the Problem Frames
Approach to Complex Problem, Computing Department, The Open University,
Milton Keynes, TR#2004/24, 2004

(Handy 1985). Handy, C., Understanding Organizations, 3rd edition ed., Penguin
Business, 1985.

 0 Appendix A: Bibliography

xii

(Hansen, Pigozzi et al. 2007). Hansen, J., G. Pigozzi, and L. van der Torre, Ten
Philosophical Problems in Deontic Logic, in Proc. of the Dagstuhl Seminar 07122,
Normative Multi-agent Systems, http://drops.dagstuhl.de/opus/volltexte/2007/941,
2007.

(Harrison-Broninski 2005). Harrison-Broninski, K., Human Interactions: The Heart and
Soul of Business Process Management, Meghan-Kiffer Press, 2005.

(Hausmann 2005). Hausmann, J.H., Dynamic Meta Modelling: A Semantics Description
Technique for Visual Modelling Languages, PhD thesis, Universität Paderborn,
2005.

(Hay 2003). Hay, D.C., Requirement Analysis: From Views to Architecture, Upper Saddle
River, NJ, Pearson Education (Inc.), Prentice Hall PTR, 2003.

(Heckel 1998). Heckel, R., Open Graph Transformation Systems: A New Approach to the
Compositional Modelling of Concurrent and Reactive Systems, Techncial
University, 1998.

(Heckel, Engels et al. 1999). Heckel, R., G. Engels, H. Ehrig, and G. Taentzer, A View-
based Approach to System Modeling based on Open Graph Transformation
Systems, Vol. vol.2; Applications, Languages and Tools, 1999, p. 639-668.

(Heckel & Guo 2005). Heckel, R. and P. Guo, Conceptual Modeling of Styles for Mobile
Systems: A Layered Approach Based on Graph Transformation in Mobile
Information Systems, Vol. 158, Springer Bostion, 2005, p. 65-78.

(Heckel, Lajios et al. 2006). Heckel, R., G. Lajios, and S. Menge, "Stochastic Graph
Transformation Systems", Fundamenta Informaticae, 74(1), 2006, p. 63-84.

(Hirsch, Inveradi et al. 1998). Hirsch, D., P. Inveradi, and U. Montanari, Graph Grammars
and Constraint Solving for Software Architectures Styles, in Proc. of the 3rd
International Software Architecture Workshop (ISAW-3): ACM Press, 1998, p. 69-
72.

(Hirsch, Inveradi et al. 2000). Hirsch, D., P. Inveradi, and U. Montanari, Reconfuguration
of Software Architecture Styles with Name Mobility, in Coordination Languages
and Models, LNCS, Vol. 1906, Springer-Verlag, 2000, p. 148-163.

(Hirsch 2003). Hirsch, D.F., Graph Transformation Models for Software Architectue
Styles, Departmento de Computación Facultad de Ciencias Exactas Naturales,
Universidad de Buenos Aires, 2003.

(Hoare 1985). Hoare, C.A.R., Communicating Sequential Processes, Englewood Cliffs,
New Jersey, Prentice-Hall, 1985.

(Hofmeister, Nord et al. 1999). Hofmeister, R., R. Nord, and D. Soni, Applied Software
Architecture, Boston, Addison-Wesley, 1999.

 0 Appendix A: Bibliography

xiii

(Holt, Ramsey et al. 1983). Holt, A.W., H.R. Ramsey, and J.D. Grimes, "Coordination
System Technology as the Basis for a Programming Environment", Electrical
Communication, 57(4), 1983, p. 308-314.

(Hoover 2006). Hoover, H.J., Freshman Introduction to the Foundations of Computing
2006, http://www.cs.ualberta.ca/~hoover/, accessed in 15-09-2007

(Hursch & Lopes 1995). Hursch, W. and C.V. Lopes, Separation of Concerns, Computer
Science Department, Northeastern University, Boston, MA, 1995

(Intuitive 2008). Intuitive, Intuitive Surgical, Inc., da Vinci Surgical System, 2008,
http://www.intuitivesurgical.com/index.aspx, accessed in 01-05-2008

(Issarny, Saridakis et al. 1998). Issarny, V., T. Saridakis, and A. Zarras, Multi-view
Description of Software Architectures, in Proc. of the ISAW '98: Proceeding of the
3rd international Workshop on Software Architectures: ACM Press, 1998.

(Jacko & Sears 2003). Jacko, J.A. and A. Sears, The Human-Computer Interaction
Handbook: Fundamentals, Evolving Technologies and Emerging Applications,
London, Lawrence Erlbaum Associates, 2003.

(Jackson 1995). Jackson, M., Software Requirements and Specifications: A Lexicon of
Practice, Principles and Prejudices, 1995.

(Jackson 2001). Jackson, M., Problem Frames, Addison Wesley, 2001.

(Johannesson & Wohed 1999). Johannesson, P. and P. Wohed, "The Deontic Pattern: A
Framework for Domain Analysis in Information Systems Design", Data and
Knowledge Engineering, 31(2), 1999, p. 135-153.

(Jones & Sergot 1996). Jones, A.J.I. and M. Sergot, "A Formal Characterisation of
Institutionalised Power", Journal- Igpl, 4(3), 1996, p. 427-444.

(Joolia, Batista et al. 2005). Joolia, A., T. Batista, G. Coulson, and A.T.A. Gomes,
Mapping ADL Specifications to an Efficient and Reconfigurable Runtime
Component Platform, in Proc. of the 5th Working IEEE/IFIP Conference on
Software Architecture (WICSA'05): IEEE Computer Society, 2005, p. 131-140.

(Kanger 1972). Kanger, S., "Law and Logic", Theoria, 38, 1972, p. 105-132.

(Kanger & Kanger 1966). Kanger, S. and H. Kanger, "Rights and Parliamentarism",
Theoria, 32, 1966, p. 85-115.

(Karsai & Sztipanovits 1999). Karsai, G. and J. Sztipanovits, "A Model-Based Approach
to Self-Adaptive Software", IEEE Intelligent Systems, 14(3), 1999, p. 46-53.

(Kast & Rosenzweig 1970). Kast, F.E. and J.E. Rosenzweig, Organization and
Management: A System Approach, New York, McGraw & Hill, 1970.

(Kayser & Nouioua 2004). Kayser, D. and F. Nouioua, "About Norms and Causes",
International Journal of Artificial Intelligence Tools, 14(1-2), 2004, p. 7-24.

 0 Appendix A: Bibliography

xiv

(Keeney 2004). Keeney, J., Completely Unanticipated Dynamic Adaptation of Software,
Ph.D. Thesis, Department of Computer Science,, Trinity College Dublin, 2004.

(Kendall 1999). Kendall, E.A., Role Model designs and Implementations with Aspect-
oriented Systems, in Proc. of the ACM Conference on Object-oriented Systems,
Languages and Applications, Denver, CO, 1999, p. 353-369.

(Klop 1992). Klop, J.W., Term Rewriting Systems, in Hanbook of Logic in Computer
Science, S. Abramsky, D. Gabbay, and T. Maibaum, (eds.), Vol. 1, Oxford
University Press, 1992, p. 1-116.

(Koch, Mancini et al. 2002). Koch, M., L.V. Mancini, and F. Parisi-Persicce, "A Graph-
based Formalism for RBAC", ACM Transactions on Information and System
Security, 5(3), 2002, p. 332-365.

(Koch & Parisi-Persicce 2002). Koch, M. and F. Parisi-Persicce, Describing Policies with
Graph Constraintss and Rules, in Proc. of the First International Conference on
Graph Transformation, LNCS, Vol. 2505, Springer-Verlag: London, 2002, p. 223-
238.

(Koutsoukos, Gouveia et al. 2001). Koutsoukos, G., J. Gouveia, L. Andrade, and J.L.
Fiadeiro, Managing Evolution in Telecommunications Systems, in New
Developments on Distributed Applications and Interoperable Systems, K. Zielinski,
K. Geihs, and A. Laurentowski, (eds.), Kluwer Academic Publisher, 2001, p. 133-
139.

(Koutsoukos, Kotridis et al. 2002). Koutsoukos, G., T. Kotridis, L. Andrade, J.L. Fiadeiro,
J. Gouveia, and M. Wermelinger, Coordination Technologies for Business Strategy
Support: A Case Study in Stock-trading, in Advances in Business Solutions, R.
Corchuelo, A. Ruiz, and M. Toro, (eds.), Catedral Publications, 2002, p. 45-56.

(Kramer 1990). Kramer, J., Configuraion Programming - A Frmaework for the
Development of Distributable Systems, in Proc. of the CompEuro '90: IEEE
Computer Society, 1990, p. 374-384.

(Kramer 1994). Kramer, J., Exoskeletal Software, in Proc. of the 16th ICSE, 1994, p. 366.

(Kramer & Magee 1998). Kramer, J. and J. Magee, "Analysing Dynamic Change in
Distributed Software Architecture", IEE Proceedings - Software, 145(5), 1998, p.
146-154.

(Kristensen 1996). Kristensen, B.B., Object Oriented Modeling with Roles, in Proc. of the
2nd International Conference on Object-oriented Information Systems (OOIS '95),
Dublin, Ireland: Springer, 1996, p. 57-71.

(Kruchten 1995). Kruchten, P.B., "The 4+1 view of Architecture", IEEESoftware, 6(12),
1995, p. 40-55.

(Lee & Bae 2002). Lee, J.-S. and C.-H. Bae, "An Enhanced Role Model for Alleviating the
Role-Binding Anomaly", Software- Practice & Experience, 32(14), 2002, p. 1317-
1344.

 0 Appendix A: Bibliography

xv

(Lehmann 1980). Lehmann, M.M., Programs, Life Cycles, and Laws of Software
Evolution, in Proc. of the IEEE 68, 1980, p. 1060-1076.

(Lenz & Reichert 2007). Lenz, R. and M. Reichert, "IT Support for Healthcare Processes:
Premises, Challenges, Perspectives", Data & Knowledge Engineering, 61(1), 2007,
p. 39-58.

(Lindahl 1977). Lindahl, L., Position and Change—A Study in Law and Logic, D. Reidel,
Dordrecht, Synthese Library 112, 1977.

(Liu 2000). Liu, K., Semiotics in Information Systems Engineering, Cambridge, Cambridge
University Press, 2000.

(Liu, Sun et al. 2001a). Liu, K., L. Sun, A. Dix, and M. Narasipuram, "Norm-based agency
for designing collaborative information systems", Information Systems Journal,
11(3), 2001a, p. 229-248.

(Liu, Sun et al. 2001b). Liu, K., L. Sun, A.J. Dix, and M. Narasipuram, "Norm-based
Agency for Designing Collaborative Information Systems", Information Systems
Journal, 11(3), 2001b, p. 229-248.

(Lock 2004). Lock, S., "The Management of Socio-technical Systems using Configuration
Modelling", Human Systems Management, 23(1), 2004, p. 29-47.

(Lock 2005). Lock, S., Strider: Configuration Modelling and Analysis of Complex
Systems, in Proc. of the 21st IEEE International Conference on Software
Maintenance (ICSM 2005), 2005, p. 495-504.

(Loerke 1990). Loerke, W.C., On Style in Architecture, in Fundamental Issues, F. Wilson,
(ed.), Van Nostrand Reinhold: New York, 1990, p. 203-218.

(Lomuscio & Sergot 2003a). Lomuscio, A. and M. Sergot, "Deontic Interpreted Systems",
Studia Logica, 75, 2003a, p. 69-92.

(Lomuscio & Sergot 2003b). Lomuscio, A. and M. Sergot, "Deontic Interpreted Systems",
Studia Logica, 75(1), 2003b, p. 63-92.

(Losavio, Chirinos et al. 2002). Losavio, F., L. Chirinos, and M. Pérez, "Attribute-Based
Techniques to Evaluate Architectural Styles", Acta Científica Venezolana, 2002, p.
130-18.

(Löwe, Kroff et al. 1993). Löwe, M., M. Kroff, and A. Wagner, An Algebraic Framework
for the Transformation of Attributed Graphs, in Term Graph Rewriting: Theory and
Practice, M.R. Sleep, M.J. Plasmeijer, and v. Eekelen, (eds.), John Wiley & Sons
Ltd., 1993, p. 185-199.

(Lupu & Sloman 1999). Lupu, E. and M. Sloman, "Conflicts in Policy-Based Distributed
Systems Management", IEEE Transactions on Software Engineering, 25(6), 1999,
p. 852-869.

 0 Appendix A: Bibliography

xvi

(Magee, Dulay et al. 1995). Magee, J., N. Dulay, S. Eisenbach, and J. Kramer, Specifying
Distributed Software Architectures, in Proc. of the 5th European Software
Engineering Conference (ESEC `95), Sitges, Spain, 1995, p. 3-14.

(Maibaum 1993). Maibaum, T., Taking More of the Soft of Software Engineering, in Proc.
of the 7th International Workshop on Software Specification and Design, Redondo
Beach, California: IEEE Computer Society Press, 1993, p. 2-7.

(Martin & Somerville 2006). Martin, D. and I. Somerville, Ethnography and Social
Structures of Work, in Structure for Dependability: Computer-based Systems from
an Interdisciplinary Perspective, D. Bernard, C. Gacek, and C.B. Jones, (eds.),
Springer: London, 2006, p.

(Medvidovic & Taylor 1997). Medvidovic, N. and R.N. Taylor, A Framework for
Classifying and Comparing Architecture Description Languages, in Proc. of the 6th
European Software Engineering Conference held jointly with the 5th ACM
SIGSOFT Symposium on the Foundations of Software Engineering, Zurich,
Switzerland, 1997, p. 60-76.

(Mens & Wermelinger 2001). Mens, T. and M. Wermelinger, "Formal Foundations of
Software Evolution: Workshop Report", ACM SIGSOFT Software Engineering
Notes, 26(4), 2001, p. 27-30.

(Mètayer 1998). Mètayer, D.L., "Describing Software Architectures using Graph
Grammars", IEEE Transactions on Software Engineering, 24(7), 1998, p. 521-533.

(Metha & Medvidovic 2003). Metha, N.R. and N. Medvidovic, Composing Architectural
Styles From Architectural Primitives, in Proc. of the ESEC/FSE, Helsinki, 2003.

(Meyer 1988). Meyer, J.-J., "A Different Approach to Deontic Logic: Deontic Logic
Viewed as a Variant of Dynamic Logic", Notre Dame Journal of Formal Logic, 1,
1988, p. 109-136.

(Mintzberg 1992). Mintzberg, H., Structure in Fives: Designing Effective Organisations,
Englewood Cliffs, N. J., Prentice Hall, 1992.

(Moazami-Goudarzi 1999). Moazami-Goudarzi, K., Consistency Preserving Dynamic
Reconfiguration of Distributed Systems, Ph.D. thesis, Department of Computing,
Imperial College, 1999.

(Moffet 1998). Moffet, J.D., Control Principle and Role Hierarchies, in Proc. of the 3rd
ACM Workshop on Role-based Access Control, 1998, p. 63-69.

(Moffett & Lupu 1999). Moffett, J.D. and E.C. Lupu, The Uses of Role Hierarchies in
Access Control, in Proc. of the Role-based access control, Fairfax, VA: New York,
1999, p. 153-160.

(Moran, Thomas et al. 1990). Moran, T., P. Thomas, and R. Anderson, The Work-a-day
World as a Paradigm for CSCW Design, in Proc. of the Conference on Computer-
Supported Cooperatbe Work, Los Angles: ACM, 1990, p. 381-393.

 0 Appendix A: Bibliography

xvii

(Moriconi & Xiaoli 1994). Moriconi, M. and Q. Xiaoli, Correctness and Composition of
Software Architectures, in Proc. of the ACM-SIGSOFT '94, New Orleans, LA:
ACM Press, 1994, p. 164-174.

(Nickles, Rovatsos et al. 2002). Nickles, M., M. Rovatsos, and G. Weiß, A Schema for
Specifying Computational Autonomy, in 3rd International Workshop on
Engineering Societies in the Agent's World (ESAW '02), LCNS, Vol. 2577,
Springer: Berlin, 2002, p.

(Notkin, Garlan et al. 1993). Notkin, D., D.G. Garlan, G., and K. Sullivan, Adding Implicit
Invocation to Languages: Three Approaches, in Proc. of JSSST Symposium of
Object Technologies for Advanced Software, LNCS, Vol. 742, Springer-Verlag,
1993, p. 489-510.

(NTSB 1999). NTSB, Aircraft Accident Brief: EgyptAir Flight 990 Boeing 767-366ER,
SU-GAP, 60 Miles Soucth of Nantucket, Massachusetts, October 31, 1999, ,
Nationa Trasportation Safety Board, Washington, DC 20594, NTSB/AAB-02/01,
http://www.ntsb.gov/publictn/2002/AAB0201.pdf, 1999

(Odell, Parunak et al. 2003). Odell, J., H.V.D. Parunak, S. Brueckner, and J. Sauter,
"Changing Roles: Dynamic Assignement", Journal of Object Technology, ETH
Zurich, 2(5), 2003, p. 77-86.

(Oreizy, Gorlick et al. 1999). Oreizy, P., M.M. Gorlick, R.N. Taylor, N. Medvidovic, A.
Quilici, D. Rosenblum, and A. Wolf, "An Architectural-Based Approach to Self-
Adaptive Software", IEEE Intelligent Systems, 14(3), 1999, p. 54-62.

(Ould 1995). Ould, M.A., Business Processes: Modelling and Analysis for Re-engineering
and Improvement, Chichester, John Wiley & Sons, 1995.

(Pacheco & Carmo 2003). Pacheco, O. and J. Carmo, "A Role Based Model for the
Normative Specification of Organized Collective Agency and Agents Interaction",
Autonomous Agents and Multi Agent Systems, 6(2), 2003, p. 145-184.

(Padmanabhan, Governatori et al. 2005). Padmanabhan, V., G. Governatori, S. Sadig, R.
Colomb, and A. Rotolo, Process Modelling: The Deontic Way, in Proc. of the 3rd
Asia-Pacific Conference on Conceptual Modelling, Hobart, Australia, 2005, p. 75-
84.

(Perry & Wolf 1992). Perry, D.E. and A. Wolf, "Foundations for the Study of Software
Architecture", ACM SIGSOFT Software Engineering Notes, 14(4), 1992, p. 40-52.

(Plotkin 1981). Plotkin, G.D., Structural Operational Semantics, Aarhus University,
DAIMI FN-19, 1981

(Prakken & Sergot 1996). Prakken, H. and M. Sergot, "Contrary-to-Duty Obligations",
Studia Logica, 57, 1996, p. 91-115.

(Reddy, Pratt et al. 2003). Reddy, M., W. Pratt, P. Dourish, and M.M. Shabot,
"Sociotechnical Requirements Analysis for Clinical Systems", Methods of
Information in Medicine, 42(4), 2003, p. 437-444.

 0 Appendix A: Bibliography

xviii

(Reenskaug, Wold et al. 1996). Reenskaug, T., P. Wold, and O.A. Lehene, Working with
Objects—The OOram Software Engineering Method, Addison-Wesley/Manning,
1996.

(Rensik & Distefano 2006). Rensik, A. and D.S. Distefano, Abstract Graph
Transformation, in Software Verification and Validation, ENTCS, Vol. 157,
Elsevier, 2006, p. 39-59.

(Ricci 2004). Ricci, A., Viroli, M., Omicini, A., Role-Based Access Control in MAS using
Agent Coordination Contexts, in Proc. of the The AAAI-04 Workshop on Agent
Organizations: Theory and Practice, San Jose, California, 2004.

(Ricci 2002). Ricci, A.O., Agent Coordination Contexts: Experiments in TuCSoN, in Proc.
of the AI*IA/TABOO Joint Workshop (WOA 2002), Milano, Italy, 2002.

(Riehle & Gross 1998). Riehle, D. and T. Gross, Role Model Based Framework Design
and Integration, in Proc. of the OOPSLA '98, New York: ACM Press, 1998, p. 117-
133.

(Rozenberg 1997). Rozenberg, G., (ed.), Handbook of Graph Transformation and
Computing by Graph Transformation, Vol. 1: Foundations, World Scientific, 1997.

(Russel, ter Hofstede et al. 2005). Russel, N., A.H.M. ter Hofstede, D. Edmond, and
W.M.P. van der Aalst, Workflow Data Patterns, Identification, Representation and
Tool Support, in Proc. of the 24th International Conference on Conceptual
Modelling (ER 2005), L. Delcambre, et al., (eds.), LNCS, Vol. 3520, Springer:
Klagenfurt, Austria, 2005, p. 216-232.

(Russel, van der Aalst et al. 2005). Russel, N., W.M.P. van der Aalst, H.M. ter Hofstede,
and D. Edmond, Workflow Resource Patterns: Identification, Representation and
Tool Support in Proc. of the 17th Conference on Advanced Information Systems
Engineering (CAiSE '05),, O. Pastor and J. Falcão e Cunha, (eds.), LNCS, Vol.
3520, Springer: Berlin /Heidelberg, 2005, p. 216-232.

(Salifu, Yu et al. 2007). Salifu, M., Y. Yu, and B. Nuseibeh, Specifying Monitoring and
Switching Problems in Context, in Proc. of the 15th IEEE International
Requirments Engineering Conference, Habitat Center, New Delhi, India, 2007.

(Sandhu, Coyne et al. 1996a). Sandhu, R., E. Coyne, H. Feinstein, and C. Youmann,
"Role-Based Access Control Models", IEEE Computer, 29(2), 1996a, p. 38-47.

(Sandhu, Ferraiolo et al. 2000). Sandhu, R., D. Ferraiolo, and R. Kuhn, The NIST Model
for Role-based Access Control: Towards a Unified Standard, in Proc. of the ACN
Workshop on Role-based Access Control (RBAC-00), Berlin, Germany, 2000, p.
47-64.

(Sandhu, Coyne et al. 1996b). Sandhu, R.S., E.J. Coyne, H.L. Feinstein, and C.E. Youman,
"Role-Based Access Control Models", Computer, 29(2), 1996b, p. 38-48.

 0 Appendix A: Bibliography

xix

(Schnenberg, Mans et al. 2008). Schnenberg, H., R. Mans, N. Russell, N. Mulyar, and
W.M.P. van der Aalst, Towards a Taxonomy of Process Flexibility, in Proc. of the
CAisSE '08 Forum, 2008, p. 81-84.

(Scott & Wanger 2003). Scott, S.V. and E.L. Wanger, "Networks, Negotiations, and New
Times: the Implementation of Enterprise Resource Planning into an Academic
Administration", Information and Organization, 13(4), 2003, p. 285-313.

(Searle 1969). Searle, J., Speech Acts, Cambridge University Press, 1969.

(Searle 2002). Searle, J.R., "Speech Acts, Mind, and Social Reality", Studies in Linguistics
and Philosophy, 79, 2002, p. 3-16.

(Sergot 1998). Sergot, M., Normative Positions, in Proc. of the Workshop in deontic logic
in computer science; Norms, logics and information systems new studies in deontic
logic and computer science, Bologna, Italy: Ios, 1998, p. 289-310.

(Sergot 2001). Sergot, M., "A Computational Theory of Normative Positions", ACM
Transaction on Computational Logic (TOCL), 2(4), 2001, p. 581-622.

(Sergot 1999). Sergot, M., (ed.), Normative Positions, Norms, Logics and Information
Systems, ed. P. McNamara and H. Prakken, IOS Press: Amsterdam, 1999, 289-310.

(Shaw & Clements 1997). Shaw, M. and P. Clements, A Field Guide to Boxology:
Preliminary Classification of Architectural Styles, in Proc. of the 21st Annual
International Computer Software and Applications Conference (COMPSAC '97),
Washington, D.C., 1997, p. 6-13.

(Shaw & Garlan 1996). Shaw, M. and D. Garlan, Software Architecture, Prentice Hall,
1996.

(Sheridan, Corker et al. 2006). Sheridan, T., K. Corker, and E. Nadler, Final Report and
Recommendations for Research on Human-Automation interaction in the Next
Generation Air Transportation System, Report No. DOT-VNTSC-NASA-06-05,
2006

(Sloman & Lupu 2000). Sloman, M. and E. Lupu, Policy Based Network Management, in
Proc. of the Networked Planet: Management beyond 2000; NOMS 2000: IEEE,
2000, p. 1016.

(Smith & Finger 2003). Smith, H. and P. Finger, Business Process Management: The
Third Wave, Meghan-Kiffer Press, 2003.

(Sousa & Garlan 2002). Sousa, J.P. and D. Garlan, Aura: An Architectural Framework for
User Mobility in Ubiquitous Computing Environments, in Software Architecture:
System Design, Development, and Maintenance (Proc. of the 3rd working
IEEE/IFIP Conference on Software Architecture), Bosch, et al., (eds.), Vol. 224,
Kluwer Academic Publisher, 2002, p. 29-43.

(Sousa, Poladian et al. 2005). Sousa, J.P., V. Poladian, D. Garlan, and B. Schmerl,
Capitalizing on Awareness of User Tasks for Guiding Self-Adaptation, in Proc. of

 0 Appendix A: Bibliography

xx

the International Workshop on Adaptive and Self-Managing Enterprise
Applications, Porto, Portugal, 2005, p. 83-96.

(Spaak 2003). Spaak, T., "Norms that Confer Competence", Ratio Juris, 16, 2003, p. 89-
104.

(Stamper 1994). Stamper, R., Social Norms in Requirements Analysis: An Outline of
MEASURE, in Requirements Engineering: Social and Technical Issues, Academic
Press Professional, Inc.: San Diego, CA, 1994, p. 107-139.

(Steimann 2000). Steimann, F., "On the Representation of Roles in Object-oriented and
Conceptual Modelling", IEEE Data and Knowledge Engineering, 35(1), 2000, p.
83-106.

(Steinmuller & Safarik 2001). Steinmuller, B. and J. Safarik, Extending Role-based Access
Control Model with States, in Proc. of the International Conference on Trends in
Communication, EUROCON '2001, Bratislava, Slovak Republic, 2001, p. 398-399.

(Summers, Jansen et al. 1997). Summers, R., H. Jansen, P.R. Weller, M.V. Gils, and K.
Nieminen, Towards an Optimal Data Set for Intensive Care, in Proc. of the 19th
Annual International Conference of the IEEE Engineering in Medicine and Biology
Society, Chicago, IL, 1997, p. 1025-1028.

(Sutcliffe 2000). Sutcliffe, A.G., "Requirements Analysis for Socio-Technical System
Design", Information Systems, 25(3), 2000, p. 213-233.

(Szyperski 1998). Szyperski, C., Component Software: Beyond Object-Oriented
Programming, Addison Wesley, 1998.

(Taentzer & Beyer 1994). Taentzer, G. and M. Beyer, Amalgamated Graph
Transformation and their Use for Specifying AGG—An Algebraic Graph Grammar
System, LNCS, Vol. 776, Springer, 1994, p. 380-394.

(Taentzer, Ehrig et al. 2005). Taentzer, G., K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T.
Levendovszki, U. Prange, D. Varró, and S. Varró-Gyapay, "Model Transformation
by Graph Transformation: A Comparative Study", 2005, p.

(Tan & Then 1998). Tan, Y.-H. and W. Then, Modeling Directed Obligations and
Permissions in Trade Contracts, in Proc. of the 31st Hawaii International
Conference on Systems Sciences, 1998, p. 166-175.

(Taveter & Wagner 2001). Taveter, K. and G. Wagner, A Multi-perspective Methodology
Based on Business Rules, in ER (Workshops), LNCS, Vol. 2465, Springer, 2001, p.
403-416.

(ter Beek, Ellis et al. 2003). ter Beek, M.H., C. Ellis, J. Kleign, and G. Rozenberg,
"Synchronizions in Team Automata for Groupware Systems", Computer Supported
Cooperative Work, 12(1), 2003, p. 317-370.

(van der Aalst & Jablonski 2000). van der Aalst, W.M.P. and D. Jablonski, "Dealing with
Workflow Changes: Identification of Issues and Solutions", Computer System
Science & Engineering, 15(5), 2000, p. 267-276.

 0 Appendix A: Bibliography

xxi

(van Lamsweerde, Darimont et al. 1998). van Lamsweerde, A., R. Darimont, and E. Letier,
"Managing Conflicts in Goal-Driven Requirements Engineering ", IEEE
Transactions on Software Engineering, 24(11), 1998, p. 908-926.

(von Wright 1951). von Wright, G.H., "Deontic Logic", Mind, 60, 1951, p. 1-15.

(von Wright 1964). von Wright, G.H., "A New System of Deontic Logic", Danish
Yearbook of Philosophy, 1, 1964, p. 173-182.

(Weiß, Rovatsos et al. 2003). Weiß, G., M. Rovatsos, and M. Nickles, Capturing Agent
Autonomy in Roles and XML, in Proc. of the 2nd International Joint Conference
on Autonomous Agent and Multi-Agent Systems, Melbourn, Australia, 2003, p. 105-
112.

(Wermelinger 1999). Wermelinger, M., Specification of Software Architecture
Reconfiguration, PhD, New University of Lisbon, 1999.

(Wermelinger & Fiadeiro 2002). Wermelinger, M. and J.L. Fiadeiro, "A Graph
Transformation Approach to Software Architecture", Science of Computer
Programming, 44(2), 2002, p. 133-155.

(Wermelinger, Lopes et al. 2001). Wermelinger, M., A. Lopes, and J.L. Fiadeiro, A Graph
Based Architectural (Re)configuration Language, in Proc. of the ESEC/FSE '01:
ACM Press, 2001, p. 21-32.

(Wieringa 2000). Wieringa, R.J., The Declarative Problem Frame: Designing Systems that
Create and Use Norms, in Proc. of the 10th International Workshop on Software
Specifications and Design (IWSSD '00): IEEE Computer Society, 2000, p. 75.

(Winograd 1994). Winograd, T., "Designing a Language for Interactions", Interactions,
1(2), 1994, p. 7-9.

(Winograd & Flores 1986). Winograd, T. and F. Flores, "Response to Reviews of
Understanding Computers and Cognitions", Artificial Intelligence, 31, 1986, p.
250-261.

(Yao, Moody et al. 2001). Yao, W., K. Moody, and J. Bacon, A Model of OASIS Role
Access Control and its Support for Active Security, in Proc. of the SACMAT '01,
Chatilly Verginia, 2001.

(Yellin & Storm 1994). Yellin, D. and R. Storm, "Interfaces, Protocols, and Semi-
Automatic Construction of Software Adaptors", ACM SIGPLAN Notices, 29(10),
1994, p. 176-190.

(Yu & Mylopoulos 1997). Yu, E. and J. Mylopoulos, Modelling Organizational Issues for
Enterprise Integration, in Proc. of the Interntaional Conference on Enterprise
Integration and Modelling Technology, Turin, Italy, 1997, p. 529-538.

(Zambonelli, Jennings et al. 2003). Zambonelli, F., N. Jennings, and M. Wooldridge,
"Developing Multi-Agent Systems: The Gaia Methodology", IEEE Transactions on
Software Engineering and Methodology, 12(3), 2003, p. 317-370.

 0 Appendix A: Bibliography

xxii

(Zhang, Xu et al. 2005). Zhang, S., Y. Xu, and N. Gu, OSM: An Organizational State
Machine Model for CSCW Systems, in Proc. of the 9th International Conference
on Computer Supported Cooperative Work in Design, 2005, p. 883-888.

 0 Appendix B: List of Abbreviations

i

Appendix B: List of Abbreviations

This appendix contains a key of the most common acronyms and abbreviations

used in this thesis. These include both technical terms and popular product names.

3Cs ► Computation , coordination and Configuration (Business architecture

ADL ► Architectural Definition Language

AGG ► The Attributed Graph Grammar System

BIC ► Behavioural Implicit Communication

BPM ► Business Process Management

CDE ► Coordination Development Environment

CSCW ► Computer Supported Cooperative Work

CTD ► Contrary To Duty(obligation(s))

DSL ► Domain-Specific Language

ECA ► Event-Condition-Action (rules)

EMF ► Eclipse Modelling Framework

GME ► Generic Modelling Environment

GMF ► Graphical Modelling Framework

GP ► General Practitioner

GT ► Graph Transformation

GUI ► Graphical User Interface

HCI ► Human-Computer Interaction

HIM ► Human Interaction Management

MDA ► Model Driven Architecture

MOF ► Meta-Object Factory

OOAD ► Object-Oriented Analysis & Design

 0 Appendix B: List of Abbreviations

ii

OOP ► Object-Oriented Programming

PSM ► Platform-Specific Model

RBAC ► Role Based Access Control (models)

RNS ► Roles, Norms and Sanctions

SDL ► Standard Deontic Logic

TPB ► Theory of Planned Behaviour

UML ► Unified Modelling Language

 0 Appendix C: Glossary

iii

Appendix C: Glossary

No Concept Definition
1 3Cs An architectural approach to systematic software

development, that separates Computation for coordination
and Configuration

2 Ad hoc
Reconfigurations

Unforeseen changes at design time but which are
nevertheless constrained by invariants specified at the
ADL level.

3 Behavioural
Implicit
Communication

The authors of this work believe that Behavioural Implicit
Communication is the easiest way to achieve
collaboration without explicit communication. BIC does
not require special or specialized signals could be the best
manner to improve coordination in H-M and MAS
domains.

4 Competency

An individual’s actual performance in a particular
situation or the ability to integrate, knowledge and skill to
perform a task under the varied circumstances of the real-
world context

5 Component A unit of composition with contractually specified
interfaces and explicit context dependencies only

6 Configuration A purposeful collection of inter-related components
working together to achieve some common objective.
The properties and behaviour of system components are
inextricably inter-mingled.

7 Context A set of assertions representing the cognitive state of the
individual or a group and situation state of the world at
certain time

8 Contextual
Obligations

Interpreting obligations as being relative to a context.

9 Coordination
Contexts

Having mechanisms for evolving systems is not the same
as prescribing when and how these mechanisms should be
applied. Evolution is a process that needs to be subject to
rules that aim to enforcing given policies of organizations
over the way they wish or require.
Also proposing a primitive– for modelling the
circumstances in which reconfiguration can and should
take place.

10 Coordination
Contracts

A set of analysis techniques, modelling primitives, design
principles, and patterns that have been developed to
externalize interactions into explicit, first class entities
that can be dynamically superposed over system
components to coordinate their joint behaviour.

11 Coordination A set of analysis techniques, modelling primitives, design

 0 Appendix C: Glossary

iv

Technologies principles and patterns that have been developed to
externalize interactions into explicit, first class entities
that can be dynamically superposed over system
components to coordinate their joint behaviour.

12 Domain-Specific
Modeling (DSM)

A software engineering methodology for designing and
developing systems, most often IT systems such as
computer software. It involves systematic use of a
graphical Domain-specific programming language (DSL)
to represent the various facets of a system. DSM
languages tend to support higher-level abstractions than
General-purpose modelling languages, so they require less
effort and fewer low-level details to specify a given
system.

13 Dynamic norm
compliance

Punishments and rewards required where agents have the
freedom to decide whether to conform or violate norms.

14 Dynamic
workflows

A model where each participant implements his own
workflow, very dynamic and self catered. A specific
participant is dynamically chosen for a role in the
workflow.

15 Emergent
properties

A system exhibits emergent properties when those
properties are more than the sum of its parts' properties.

16 Human Interaction
Management
System (HIMS)

A process modelling and enactment system that provides
native support for the six Role Activity Theory object
types (Role, Entity, Activity, User, State and Interaction).

17 Indicative mood

What the environment has or will have regardless of the
behaviour of the machine.

18 Norms Normative sentences, entities of sort similar to
propositions except they lack truth values.

19 Operational
semantics

Abstract machine that treats a program as an instructions
sequence on the states of machines.

20 Optative mood

properties we would like a machine to bring about or
maintain

21 Programmed
Reconfigurations

Foreseen reconfigurations at design time and designed at
ADL level.

22 Reification The act of making an abstract concept or low-level
implementation detail of a programming language
accessible to the programmer.
Actually we abstract the real world as a configuration
graph and then we use this model as a reification by the
configuration manager

23 RNS A formal schema for specifying boundaries of
autonomous agent behaviour. It consists of roles. Norms
and sanctions.

24 Roles 1) Patterns of behaviour agents must follow in order to
respect the dictates of electronic institutions.” An analysis

 0 Appendix C: Glossary

v

of agent speech acts in institutional actions.”

2) The set of policies for which an automated device is
the subject e.g. a BSC reconfiguration agent. An ODP role
is
an “identifier for a behaviour, which may appear as a
parameter in a template for a composite object, and which
is associated with one of the component objects of the
composite object.

3) in RBAC, a role is properly viewed as a semantic
construct around which access control policy is
formulated, bringing together a particular collection of
users and permissions, in a transitory way (Sandhu et al.
1996).

4) A job function within the context of an organization
with some associated semantics regarding the authority
and responsibility conferred on the user assigned to the
role

25 Self-repair systems

Systems with the ability to adapt themselves at runtime to
handle such things as resource variability, changing user
needs and system faults.

26 Software
Architecture

Software Architecture is the level of software design that
addresses the overall structure and properties of software
systems

27 Software
Component

A unit of composition with contractually specified
interface and explicit context dependencies only.

28 Software
Engineering

Software engineering is the application of a systematic,
disciplined, quantifiable approach to the development,
operation, and maintenance of software

29 Software Intensive
Systems

Software-intensive systems are those complex systems
where software contributes essential influences to the
design, construction, deployment, and evolution of the
system as a whole.

30 Software Practice Social activity that allows for variety of social science
approaches to be applied and takes a close look at how
humans act in relation to software.”

31 Stigmergy A functional form of behavioural communication where
the communicative end cannot be represented in the
agent’s mind intention) but it is a functional effect
selected by evolution or built in by a designer.

32 Structural
Operational
Semantics

Recovers compositionality through the syntactic structure
of the language., transition is an encoding of its deduction
tree.

33 Subsumption Premises of syllogism or incorporate something under
more general category

 0 Appendix C: Glossary

vi

34 Validations Early inspection of implications is the best guarantee that
the system being developed is actually the system the
specifier intends (we call such ‘checks’ concerning
conformity with the specifiers intentions),

35 Verifications conceptual errors and internal inconsistencies are
discovered (we call such checks ‘’)

36 Workflow Norms

One approach to workflow management is to attempt to
ensure its compliance by formalizing the business process
as with in the automated workflow system, that is
codifying the process norms. This works fine in certain
incorporate environments, many workplace studies have
found the complex work processes are typically carried
out within richer ecological settings.
In contrast a descriptive codifying of norms, which
contribute to work processes can allow us to asses the
robustness of the process.
Level: social, legal and cultural context

 0 Appendix C: Glossary

a

 0 Appendix D: Mapping the 3Cs Extension to the PBT Conceptual Framework

I

Appendix D: Mapping the 3Cs Extension

to the PBT Conceptual Framework

Conceptualising the Approach

With regards to human interactions or contextual changes that cannot be captured

by causal architectural primitives in the 3Cs framework, a different view put into

consideration the following situations:

• Events originated from social participants:

o If the interaction is not part of the participant’s current role

configuration yet it is part of his/her role set

o If the interaction is part of his/her role configuration but:

 No superposed contract is bridging his/her social component

with the technical component

 Or, the existing contract has coordination rules that block the

interaction due to the values of the queried properties

associated to the rule’s guard condition

o If the interaction is not part of a role within his eligible role set but

he/she has the capability to enact a task that is labelled with this

interaction.

• Events originated from Contextual Changes

o Changes that are signified as indicators for sub-ideal situation confer

obligation(s) to enact certain human-driven tasks

 Roles here are considered slots to be filled with presumable

or available social components.

The system response towards such events includes:

• Reconfigurations at the role level

o Authorising an enacting social component to fill in a role slot

o Unifying an available social component with the role slot as means

for the enablement of the task.

 0 Appendix D: Mapping the 3Cs Extension to the PBT Conceptual Framework

II

• Reconfigurations at the coordination (component level) to equip a role

player with the needed resources of the allocated task

o Adding and removing technical components

 Software components (e.g. GUIs)

 Hardware components (e.g. equipment)

o Adding and removing connectors (contracts)

Mapping the Ideas to PBT Conceptual Framework

I have selected the theory of planned behaviour of (Ajzen 1991, Ajzen 2005) as an

analytical framework for ideas proposed in this thesis. The original derivation of the theory

of planned behaviour (Ajzen 2005) defined intention and its other theoretical constructs in

terms of trying to perform a given behaviour rather than in relation to the actual

performance. More details about the theory have been explained in Chapter 2. The

behaviour in the proposed model is the process of attempting to perform a given behaviour

and measures that deal with the actual performance of the behaviour.

The theory of planned behaviour distinguishes between three types of beliefs—and

between the related constructs of attitude, subjective norms and perceived behavioural

control. Why the necessity of this distinction? The answer is that all beliefs associate the

behaviour of interest with an attribute of some kind, be it an outcome, a normative

expectation or a resource needed to perform the behaviour. A similar view is maintained

with regards to the proposed architectural framework: All types of triggers whether

originated by the configuration manager, coordinated or non-coordinated interactions

associate the behaviour of interest with an attribute of some kind. This could be an

activation of a service call, a normative expectation or a resource reconfiguration needed to

perform the behaviour.

Interventions (reconfigurations) directed at behavioural, normative or control

beliefs may change the attitude towards behaviour, subjective norms and the perception of

behavioural control. These, in turn, change the intention “human attempts” to the desired

direction. Interventions designed to change the behaviour can be directed towards one or

more of its determinants: attitudes, subjective norms or perception of behavioural control

and given adequate control over behaviour. The new intention should be carried out under

appropriate circumstances. This theory has been taken as a vehicle to materialise the

 0 Appendix D: Mapping the 3Cs Extension to the PBT Conceptual Framework

III

effects of the reconfigurations and biddable social interactions on the overall system

behaviour.

Figure The modified PBT for reconfigurable socio-technical systems

Table 4.2 provides the mapping between out framework concepts and the (PBT)

counterpart concepts and Figure 4.9 depicts the relationship between these concepts.

 0 Appendix D: Mapping the 3Cs Extension to the PBT Conceptual Framework

IV

The modified PBT for reconfigurable socio-technical systems

No. Planned Behaviour Theory
components

Socio-architectural
concepts

Rational for
matching/abstraction

1 Behaviour: human successful System response Both constitute the final
result

2 Behavioural beliefs: personal beliefs
about interactions whether desirable or
not

Abstracted away Agent matter

3 Attitude toward a Behaviour: personal
judgment

Abstracted away Cannot be recorded,
differs from a participant
to another

4 Normative Beliefs: set of beliefs about
what constitute desirable behaviour as
defined by individuals and groups

Modelled as social
laws with typed anchor
roles, obligations,
interdictions and
contextual constraints

the intention is to avoid
agent model’s
components, norms are
codified to be interpreted
by reconfiguration
manager but still well-
known to humans and
affect their decisions

5 Subjective Norms: The specific
behaviour norms that a individual sets
for him/self; what an individual believes
that he/she should do

Instantiated social laws
through instance roles
played by social
components and
enacted or enabled
tasks entries

In the original the
subjective norms are
usually subsets of
normative beliefs. Social
laws are always put in
place, yet triggers
activates them

6 Perceived Behavioural Control: The
individual’s perception of the ease (or
difficulty) of performing a specific
behaviour. It has two main components:
Self-efficacy and Control beliefs

The perceived effects
that result from
triggering a social law
on a configuration,
which result from
either contextual
changes and/or human
intervention

Individual perceptions of
ease and difficulties are
reduced in the
architecture to two
levels:1) role and
configuration view
2) facilitations and
sanction (elaborate)

7 a) Self-efficacy: Confidence of
performing the task satisfactorily

Modelled within the
type of connector that
link the social
component with the
service and its instance
role view including
permissions and
obligations

Confidence here
likelihood of the
successful task
allocations smoothly
modelled through
connectors (coordination,
social) and capabilities
with the role model

8 b) Control beliefs: the likelihood that
factors what might prevent a successful
completion of the action/task

Factors that might
prevent the task
allocation depend on
the harshness of
negative configuration
control (i.e. sanctions)
(and/or resource
allocation difficulties

Participants might decide
to refrain from an
obligation or enact to a
forbidden task as they
find the price (sanction)
is cheaper than bearing
the weight of a sub-ideal
situation

