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Abstract

Localisation of places, prey and predators are usually of critical behavioural importance
to an organism’s survival. In this thesis, I conduct an investigation of localisation, con-
sidering specifically the inference of a target, event or the observer itself. I begin with
an exploratory investigation into auditory localisation of a single sound source for a static
(passive) observer. I evaluate the influence (sensitivity) of “cue” variables on localisation
by the curvature of the location belief’s Kullback-Leibler divergence. More generally, from
this I observed a symbol grounding problem – corresponding one location to a data sample
due to multiple locations mapping onto a single observed value. I demonstrate how action
can support the grounding of symbols by breaking such symmetries (inference confusions)
that exist in passive localisation. By considering the breaking of these symmetries, I go on
to develop an information measure that generally selects the best localising action. This is
the action expected to give the “next best view” for the system, hence removing ambiguities
and uncertainties in inference with the greatest efficiency.

From these considerations, my main contribution is a general theoretical framework for
selecting between actions during localisation and inference tasks according to an observer’s
representation. I illustrate this framework by using it to select head casts in localising
binaural level cues for sound source localisation. Further illustration is through a learning
problem, where I evaluate learning performance during directed and undirected selection
of actions. This demonstrates how directed action is important in symbol grounding of the
latent state space to the observation space. Because of its generality, my Bayesian-active
perception framework may be used to derive novel domain specific action-selection and
learning algorithms that optimise inference. It may also provide a principled account for
existing action-selection algorithms (for instance in robotics) and specific animal behaviours
as special cases.
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Glossary of terms

Acoustic flow is the auditory equivalent of optic flow. It uses the dynamic variation of

auditory variables to directly perform useful tasks, an example of which is breaking

control.

Agent denotes the perceiving robot or simulated entity under evaluation.

Breaking control is the behavioural task of dynamically controlling motion according

to the variation of an observable variable. It can imply a number of tasks such as,

breaking to avoid a collision to safely land upon a surface, or to capture a target.

CCD denotes charge coupled device.

CF bats emit a constant frequency (CF) echolocating pulse of sound. This is in contrast

to frequency modulating (FM) bats that modulate their echolocating pulses to form

a descending frequency sweep over the pulses duration.

CML abbreviates concurrent mapping and localisation.

CN abbreviates the cochlea nucleus.

CRLB abbreviates the Cramer-Rao lower bound. This is the lower bound of the FIM.

Dichotic is typically used to denote the simultaneous presentation of sounds to either ear.

DNLL abbreviates the dorsal nucleus of the lateral lemniscus.

EM-algorithm abbreviates the expectation maximisation algorithm. It is an approach to

ML learning for hidden variable problems by iteratively optimising a lower bound of

the models likelihood.

FFT abbreviates the fast Fourier transform.

FIM abbreviates the Fisher information matrix.
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GTM abbreviates the generative topographic model.

HMM abbreviates the hidden Markov model. This is a statistical model of a Markov

process with an unobservable (latent) state. Typically this is used to refer to discrete

states.

HRTF abbreviates the head related transfer function. This is a direction and sound fre-

quency dependent gain function. It is used to normalise between individual physiology

in behavioural hearing experiments.

IC abbreviates the inferior colliculus.

ILD is the interaural level disparities, and is associated like (ITD) with lateralisation of

sound sources. ILD is defined as the difference in perceived loudness between either

ear for a sound event. ILD is synonymous with interaural intensity disparities (IID)

however it emphasises that it is a level (logarithmic) rather than intensity (linear)

comparison.

Individual denotes a biological agent, either human or animal.

Infomax denotes information maximisation.

INLL abbreviates the intermediate nucleus of the lateral lemniscus.

ITD is the interaural time disparities, and is associated like (ILD) with lateralisation of

sound sources. ITD is defined as the difference in time of arrival at either ear of

a sound source. ITD is synonymous with interaural phase disparities (IPD) where

IPDs emphasis the comparison of the two signals in the frequency domain to estimate

ITD.

Latent state space denoted by the symbol L, is the hidden state of interest for the

problem at hand. An instance on this space is denoted by l. An example of this (l)

would be the target location, where L would represent all possible locations. This

space L is however only a representation of the systems true latent space Ltrue.

Lateralisation is the task of inferring the lateral angle of a sound relative to the listener.

Learning data set is used to parameterise a model through an optimisation algorithm

such as the EM-algorithm.

LSO abbreviates the lateral superior olive.

xvi



LWPR abbreviates locally weighted projection regression.

Measurement space denoted by the symbol X, is the space of possible observations

for making inferences upon a latent state space. A measurement from this space is

denoted by x. Examples of measurables can include raw sensory signals or filtered

signals, such as ILD and ITD.

MCMC abbreviates Markov chain Monte-Carlo. It specifies a problem with random

sampling for a Markov problem.

MGB abbreviates the medial geniculate body.

ML abbreviates a maximum likelihood optimisation algorithm. It represents the optim-

isation of a model using the likelihood that a model generated a learning data set.

MNTB abbreviates the medial nucleus of the trapezoid body.

NBV abbreviates the next best view.

NLL abbreviates the nucleus of the lateral lemniscus.

ODE abbreviates ordinary differential equations.

PDF abbreviates probability density function.

PF abbreviates particle filtering.

POMDP abbreviates partially observable Markov decision processes.

RBPF abbreviates Rao-Blackwellized particle filtering.

SLAM abbreviates simultaneous localisation and mapping.

SOC abbreviates the superior olivary complex.

SSM abbreviates the state space model. This is a HMM for continuous latent state vari-

ables, for example the Kalman filter is an SSM.

Symmetry breaking relates to the behavioural consequence of the mathematical prob-

lem of many possible latent state space point mapping to one point on an observable

space. Meaning that there is symmetry between these points. If through some op-

eration upon the process which produces this mapping a second observation can

preclude a large portion of the previously possible latent state space points then such

an operation can be described as symmetry breaking.
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Validation data set is used as a fair test of performance for an optimised model. It is

distinct from the learning data set, thus it is assumed to be identically distributed

to the learning data set.

Variational EM-algorithm is a variant of the EM-algorithm which utilises variation

Bayesian methods to treat the parameters as just another latent variable.

VNLL abbreviates the ventral nucleus of the lateral lemniscus.

VR abbreviates virtual reality.
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Glossary of notation

i, j, k, n denote integers.

i : j denotes an inclusive slice of integers equivalent to the set [i, j]. This is used to indicate

via a subscript a sequence over a range, e.g. xi:j.

u, ut, ut1:t2 indicates the notation for a variable u, the variable at a time t (ut) and a

trajectory of these variables between the times t1 and t2 (ut1:t2).

x, z, s denote vectors.

x, x denotes a measurement variable. In Chapter 2 the measurement variable takes the

form

x̄k,j,n where j indexes the sound source locations for the n’th segment of the received

signal.

y denotes a validation recording and has a notation similar to x. This is specific to

Chapter 2.

s denotes the sound sources signal. This is specific to Chapter 2.

λ denotes the attenuation of a sound signal. This is specific to Chapter 2.

τ denotes the ITD, though in the text δt is sometimes used. This is specific to Chapter 2.

ν, σ, ω are used to denote the variance of variables.

Σ, Q are used to denote the covariance matrices of vector variables.

I denotes the identity matrix.

0D1, 0D1×D2 denote respectively a vector of zeros with length D1, and a matrix of zeros

with D1 columns and D2 rows.

xix



Unitalicised capital letters denote a set. This set can form a space, in which case it is a

complete set. If this is a space the associated lower case letters denote instantiations upon

this space. Special cases are:

x, X represents respectively a measurement variable x and the space of possible measure-

ments X, where x ∈ X.

l, L represents respectively a latent state variable l and the space of possible latent states

L, where l ∈ L.

Probability distributions and information quantities have the following notation,

P (i), Pi is used to represent a probability distribution on a discrete variable i.

P (i| . . .) is used to represent a conditional discrete probability distribution.

p (x) is used to represent a probability distribution on a continuous variable x.

p (x| . . .) is used to represent a conditional continuous probability distribution.

φ (x;µ, σ), φ (x;µ,Σ) are used to denote a Gaussian distribution. This is for the variable

x ofDx dimensions, which is parameterised by the mean µ and either a variance σ or a

covariance matrix Σ. Which notationally is φ (x;µ, σ) =
√

1
2πσ

Dx

exp
{
− 1

2σ
(x− µ)2

}
,

or for a covariance matrix is φ (x;µ,Σ) =
√

1
(2π)Dx |Σ|

exp
{
−1

2 (x− µ)T Σ−1 (x− µ)
}
.

I [L|X, a] represents the Shannon information of the space L, given the space X and the

constraint a. Which is I [L|X, a] =
´

dl dx p (l, x|a) log p (l|x, a).

DKL [p (X| . . .) ‖q (X| . . .)] represents the Kullback-Leibler (KL) divergence between the

probability distributions p (x| . . .) and q (x| . . .). Which is defined notationally to

be DKL [p (X| . . .) ‖q (X| . . .)] =
´

dx p (x| . . .) log p(x|...)
q(x|...) .

Ep(x,y|z) [f (x, y, z)] denotes the expectation of the quantity f (x, y, z) over the variables x

and y given z. Which is defined as Ep(x,y|z) [f (x, y, z)] =
´

dx dy p (x, y|z) f (x, y, z).

xx



Chapter 1

Introduction

1.1 Aims and motivations

My principle research motivation is to shed light on the influence of action in perception. In

this thesis I will consider an individuals perception during localisation. In fact, localisation

is the unifying theme of this thesis. I will begin with the localisation of sound sources,

and then I consider more generally how action influences the inference of latent state

spaces. However, the original motivation for my research topic was the understanding

of sound source localisation, specifically in context with the processes that echolocators

use to navigate and hunt. This led to an exploratory investigation into the influences

and coinfluences of the cues used in sound source localisation, as discussed in Chapter 2.

The investigation indicated the difficulties in understanding perception of location as a

purely passive problem, where the individual does not interact with its environment. The

implication of the acoustic flow argument (Jenison, 1997, Muller and Schnitzler, 1999, 2000,

2001) is that it is not just instantaneous cues which lead to localisation, but also how these

cues change. In passive localisation it is the instantaneously observed cues that define an

individual’s inferences. This causes passive localisation to be a deductive inference problem.

There are however more encompassing arguments, where it is not only the change of these

variables that leads to accurate localisation, but also the individual’s knowledge of its own

motion (Pettorossi et al., 2005, Wallach, 1940, Lewald and Ehrenstein, 1998, Lewald and

Karnath, 2001).

This fits firmly into the concept of embodiment in perception (Nagel et al., 2005,

Lenay et al., 2001), where the joint interaction of the observer and its environment is a

key factor, making the individual embodied within its environment. While reviewing the

1



(a) The observers model L of the world Ltrue. (b) Ambiguity in the observable X due to the mapping from
Ltrue to X.

Figure 1.1: General depiction of the action-perception inference problem. Plot (a) is
a cartoon depiction of the action-perception problem. The ‘world’ has a true hidden
latent state space Ltrue which represents some of its characteristics which are useful for an
‘observer’ to know. The observer cannot perfectly know this true latent state space Ltrue so
must approximate it with L. The ‘observer’ interacts with the ‘world’ by its actions at ∈ A
and its measurements xt ∈ X. In practice this is an iterative process where an action
at is taken and modifies the state of the world in a predictable manner. The new state
ltrue
t ∈ Ltrue can be measured via the observable space X, which produces the measurement
xt. An example of 3 points on Ltrue mapping to X can be seen in plot (b). Of these
three points on Ltrue, two are indicated as ambiguous as they both map to the same point
upon X. The observer will similarly model a prediction of the transition from an old belief
lt−1 ∈ L to a current belief lt ∈ L due to an action at, and then refine this prediction
conditional upon the measurement taken xt.
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literature I found there is a substantial body of work on the concept of action conveying

useful localisation information (Noe, 2004, O’Regan and Noe, 2001, Pettorossi et al., 2005,

Lee et al., 1992, Ashmead et al., 1995, Jenison, 1997) (reviewed in Subsection 1.2.3 and

Sections 1.3 & 1.4), and further that this active perception is important in an individual’s

perceptual development (Held and Hein, 1963). However, this leaves open the topic of how

to best select actions in the light of predicted beliefs about the future – the sensor placement

problem. Exceptions have addressed domains, such as problems similar to chemotaxis in

turbulent flows (Vergassola et al., 2007a) and robotic mapping and localisation (Fox et al.,

1998, Porta et al., 2003). These apply an approach called Infomax, which minimises the

entropy of the predicted a posteriori localisation belief. Infomax is a costly computation

to compute. In Chapter 3, I present an alternative approach, which I show has more

favourable scaling than Infomax for particular classes of problem. Arguments regarding

the best localising actions typically fall under the problem of uncertainty, namely, how to

best locate based upon our knowledge of the problem (cf Figure 1.1 (b)). Best locating

actions also relate to our belief in a solution to the problem, and it is this issue that I

address in Chapters 3 & 4.

1.2 Sound source localisation in biology

This section reviews sound perception in the context of sound source localisation. I start

with an overview of the auditory system in Subsection 1.2.1. I focus upon bat neuro-

physiology, due to the preeminence of audition in bat perception (Altringham, 2001, Neu-

weiler, 2000, Suga, 1990). Following this I discuss various approaches in Subsection 1.2.2

to modelling the auditory perception problem. I then follow this in Subsection 1.2.3 with

a review of the motional cues and the influence of active perception that contributes sig-

nificantly to auditory localisation.

1.2.1 Auditory localisation systems neurophysiology

The problem of sound source localisation typically consists of locating a sound source (the

target) in an environment that may have distracting sources also contributing to the sound

field (Figure 1.2). When the observer is inactive and unmoving (passive observation) the

principle sound cues are based upon the loudness and timing of features within the sound

signals observed at either ear (Blauert, 1997, Hartmann, 1999). These cues are further

categorised as either being perceived between the ears (binaural) or by one ear (monaural)

3



in nature (Blauert, 1997, Hartmann, 1999).

The monaural localisation cues are related to the attenuation of a sound’s loudness

with the distance from the animal to a target. Physiology interacts with the loudness to

further attenuate the perceived loudness based upon the relative direction to the target

from the observer (Kistler and Wightman, 1992, Wightman and Kistler, 1997). The meth-

odology of applying such a directional attenuation is usually through head related transfer

functions (HRTFs). Oldfield and Parker (1984) showed that this directional gain (attenu-

ation through the HRTFs) can provide a correction to specific kinds of localisation error.

However Aytekin et al. (2004) showed that comparing the HRTF of either ear implies the

existence of binaural cues.

The binaural cues are principally considered as either interaural level disparities (ILD)

or interaural time disparities (ITD) (Hartmann, 1999, Forsythe, 2002). In mammals, these

binaural cues are typically associated with the superior olivary complex (SOC). The SOC

comprises the lateral superior olive (LSO) and the medial superior olive (MSO).

The MSO is associated with sound localisation from temporal cues, such as interaural

phase disparities and ITDs (Svirskis et al., 2004, McAlpine and Grothe, 2003). However,

there is ongoing debate as to the mechanism the MSO employs in estimating ITD (Svirskis

et al., 2004, McAlpine and Grothe, 2003). ITDs represent the difference in time of arrival

for a recognisable feature in either ear. There are two disparate mechanisms proposed

for the brain to compute these ITDs. The first is derived from the Jeffress neural delay

model. This uses a bank of neurons to represent the different ITDs, akin to a bank of

coincidence detectors (Pena and Konishi, 2002). The alternative is a phasic comparison

between the signals, where the relative distribution of activities within the population

provides localisation (McAlpine and Grothe, 2003, Joris et al., 1998, Grothe, 2003). This

is similar to computing a cross-correlation between the signals in the frequency domain.

Many of the neurons in the LSO are characterised as excitatory-inhibitory (EI). This

means that these neurons are excited by sound in the ipsilateral ear and suppressed by

sound from the contralateral ear (Park et al., 1997, Forsythe, 2002, Wang and Brown,

2006). The connectivity can be seen in Figure 1.3. The LSO is observed to encode in-

tensity disparities between the ears (Park, 1998). Park et al. (1997) found the particular

ILD that results in complete suppression is constant in a significant number of neurons

and varies across the LSO population. This illustrates that the LSO has a population

encoding strategy for ILD and is similar to the proposed IPD population mechanism for

4
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(d) Signals received (top) and the combined sig-
nal observed at the right ear (bottom).

Figure 1.2: An individual with three similar independent sound sources. Plot (a) depicts
the propagation of the sound field for each of the sound sources by contours of the distance.
This indicates the spreading of the sound field. Plot (b) shows the three source signals
(s(i)) corresponding by colour to the sound source locations in Plot (a). Plots (c) & (d)

show the attenuated (λ(i)
j ) and delayed (τ (i)

j ) signals (top subplots of plots (c) & (d))
and the combined signal (bottom subplots of c & d). The signals at either ear (j’th ear)
are constructed using the geometric attenuation from each source, from the i’th source,
which is λ(i)

j ∝ 1
distance to i′th ear and a delay operation Dτ of time τ for a delay of τ (i)

j ∝
distance to i′th ear. The process mathematically is xj =

∑
i x

(i)
j where the contribution for

each source s(i) each is x(i)
j = λ

(i)
j D

τ
(i)
j

s(i).
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Figure 1.3: Schematic of neural connectivity of the lateral superior olive (LSO). The con-
nectivity of the LSO showing glycinergic inhibitory (−) and excitatory (+) pathways in
the Mexican free-tailed bat. Diagram adapted from Park (1998). Cochlea nucleus (CN)
neurons have excitatory projections to ipsilateral LSO neurons and contralateral medial
nucleus of the trapeziod body (MNTB) neurons. The MNTB neurons have inhibitory
connections to the LSO. The superior olivary complex (SOC) is indicated surrounding the
LSO.

ITDs (Grothe, 1994, 2003, McAlpine and Grothe, 2003).

The mid-brain encompasses the nucleus of the lateral lemniscus (NLL) and the inferior

colliculus (IC). The IC has tuning for localisation cues such as ILD (Park, 1998, Harnis-

chfeger et al., 1985) and ITD (Fuzessery and Lohuis, 2003, Harnischfeger et al., 1985). The

LSO projects its tuning of ILD to IC neurons (Wenstrup et al., 1985, Park and Pollak,

1993, Pollak et al., 2002), Figure 1.4, although there is a disparity in activity profiles of

ILD tuned neurons between the IC and LSO (Park and Pollak, 1993). It is unsurprising

that Fuzessery and Pollak (1985) observed IC neurons tuned for direction. Relatedly, in

the barn owl’s neurophysiology, Pena et al. (2001) report a mapping similar to a Bayesian

logical AND operation for combining the ITD and ILD to roughly map elevation and

azimuth (Konishi, 2003). Bauer et al. (2002) observed the dorsal NLL (DNLL) as being

selective to temporal spectra, and through its inhibition of the IC it can be seen to assist

sound source selectivity (Burger and Pollak, 2001). Neurologically, this shows a form of

classification used for filtering which is exhibited within the bat’s auditory pathway. This

can be seen as a part of the process linking the what with the where in the auditory system

(Nelken et al., 1999).

The auditory pathway ends at the auditory cortex (AC) where various cues are mapped,

examples are:

• range (O’Neill and Suga, 1982, Jenison et al., 1998), in the form of echo delay (time

of flight),

• the fluttering of a target (Condon et al., 1997),

6



Figure 1.4: The interaural level disparity (ILD) pathway in the auditory midbrain. The
connectivity of the inferior colliculus (IC), showing excitatory ( ), glycinergic inhibitory
( ) and GABAergic inhibitory ( ) connections in the Mexican free-tailed bat. Diagrams
adapted from Pollak et al. (2002). The nucleus of the lateral lemniscus (NLL) is divided
into three parts, the dorsal (DNLL), the ventral (VNLL) and the intermediate (INLL).
Although the VNLL and INLL receive differing input from the cochlea nucleus (CN) and
the medial nucleus of the trapezoid body (MNTB) there is a difference in the efficacy of
these projections (Huffman and Covey, 1995). The DNLL receives binaural input from the
LSO, the medial superior olive (MSO) and the CN (Yang et al., 1996). It is observed to
make an inhibitory projection to the IC (Burger and Pollak, 2001).

Figure 1.5: The functional connectivity of the mustached bat’s auditory pathway. The
ascending auditory pathway is represented by the red arrows and the descending (cortico-
fugal) by the blue arrows. Diagram adapted from Suga and Ma (2003b).
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• and a target’s relative velocity (O’Neill, 2003).

Many of these cues are also encoded at the mid-brain. Examples of this are the medial

geniculate body (MGB) which is located in the thalamus (Olsen and Suga, 1991), and

the cochlea nucleus (CN). Figure 1.5 shows the functional connections that make up the

ascending and descending (corticofugal) auditory pathway.

In this subsection I have summarised the bat auditory system and the principle cues

associated with it. I have also mentioned important aspects of human, avian and other

species auditory tuning. This is to illustrate the auditory interactions available to the

individual and provide neurophysiological context for the next subsection, through the

biological grounding of the auditory cues.

1.2.2 Auditory localisation modelling

The question of the properties of the cues themselves was considered by Zurek (1991), who

derived distributions for the ILD and ITD cues. Zurek did so from the assumption that

sound can be characterised as a Rayleigh intensity process, projected onto a logarithmic

loudness domain. Similarly, Nix and Hohmann (2006) showed definitively that ILD and

ITD sound processes are not normally distributed (Gaussian), but have higher order mo-

ments, e.g. non-zero skew (a Gaussian is symmetric and has zero skew) and non-normal

Kurtosis (a Gaussian has a Kurtosis of 3). These moments complemented the lower order

moments of the mean and standard deviation to convey enough information about location

to localise a known sound in the presence of environmental noise. Konishi (2003) mentions

the apparent evidence for the independence of ITD and ILD processing. This is principally

because of the association of ITD and ILD coding for different coordinate axes of elevation

and azimuth due to the barn owl’s physiology. This independence was similarly assumed by

Nix and Hohmann (2006) with results for localisation consistent with behavioural studies.

Theories relating specifically to the interaction of cues in sound localisation have typ-

ically developed from the duplex theory of sound. The duplex theory is related to the

frequency properties of a sound signal. This is where higher frequencies convey greater

resolution in time, making ITDs more precise and lower frequencies have less short time

variation in loudness and so convey more precise ILDs. Cue distributions would hence

depend upon the frequency characteristics of the sound itself (Zurek, 1991). Macpherson

and Middlebrooks (2002) applied manipulations to the cues to evaluate the impact upon

localisation (inference of azimuth or elevation separately) within the context of the duplex

8
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(c) The predicted posterior belief for the best
action using the prior belief in plot (a).
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(d) The predicted posterior belief for the worst
action using the prior belief in plot (a).

Figure 1.6: A toy example of symmetry breaking using an idealised interaural level disparity
(ILD) example. The example depicts the best and worst choices of action using a free field
model of ILD, the action is a head rotation. Using an idealised auditory example (plot (a)),
the tori of confusion (Shinn-Cunningham et al., 2000) can be seen in the isoclines which
indicate locations (ranges and directions) of equal level disparity and time disparity. Plot
(b) depicts a prior belief in location where the source’s position is indicated by a white
filled triangle. The best and worst actions are selected according to the measure developed
in Chapter 3. the expected best action (plot (c)) is clearly seen to collapse ambiguity. In
contrast the expected worst action (plot (d)) retains much of the ambiguity from the prior.
The units of the x and y axes are observer head widths with the observer indicated at the
origin of both the x and y axes. All plots are egocentric to the agent at the origin.
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(d) The predicted posterior belief for the worst
action using the prior belief in plot (a).

Figure 1.7: A toy example of symmetry breaking using an idealised interaural time disparity
(ITD) example. The example depicts the best and worst choices of action using a free field
model of ITD, the action is a head rotation. Using an idealised auditory example (plot
(a)), the tori of confusion (Shinn-Cunningham et al., 2000) can be seen in the isoclines
which indicate locations (ranges and directions) of equal level disparity and time disparity.
Plot (b) depicts a prior belief in location where the source’s position is indicated by a white
filled triangle. The best and worst actions are selected according to the measure developed
in Chapter 3. The expected best action (plot (c)) is clearly seen to collapse ambiguity. In
contrast the expected worst action (plot (d)) retains much of the ambiguity from the prior.
The units of the x and y axes are observer head widths with the observer indicated at the
origin of both the x and y axes. All plots are egocentric to the agent at the origin.
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theory of sound localisation for broadband sounds. Similarly, Wenzel (1995) evaluated the

contribution of ITD and level cues in the duplex theory but with head motion, finding that

head movements helped to resolve location confusions considerably. This indicates that

action plays the role of breaking symmetries in perception. These symmetries are inherent

to the auditory cues, for example Figures 1.6 & 1.7. In the following subsection I review

the influence of motion in sound localisation as this indicates the fundamental influence

that action has upon auditory perception of location.

Pitfalls from these approaches (Nix and Hohmann, 2006, Zurek, 1991) are that:

1. the methodologies assume that the animal is given ILD and ITD variables,

2. an individual actually receives a sound wave at either ear,

3. ILD and ITD are internally computed quantities – these are referred to as hidden

variables.

I tackle this problem in Chapter 2 by applying a graphical model to the problem, from

which I generate a Bayesian solution to passive sound source localisation.

1.2.3 Influence of motion upon sound localisation

In this subsection I overview some of the classic behavioural work on auditory perception

due to egomotion, and then review the more recent research, specifically considering the

impact of egomotion upon perception of source location. This links the introduction of

passive auditory localisation, in the previous two subsections, with the more general con-

cepts of active perception and action selection explored in later sections of this literature

review.

Blauert (1997) enumerates two broad and overlapping classes of motion roughly ap-

plicable to all sensory modalities:

• Reflexive being considered to be unconscious and spontaneous movement of the head

towards the expected position of an auditory event which corresponds to the most

probable position.

• Orienting being considered to be conscious searching movements where the goal is

to assemble more information about an auditory event – the location becomes more

definite during movement.
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In both contexts the belief in where an event occurs should sharpen, becoming more certain

and also more accurate (Thurlow and Runge, 1967). Blauert then lists three groups of

questions that may be addressed:

1. Do head movement effects occur in natural hearing? If so, how are these movements

instantiated?

2. For particular head movements, which attributes of ear input signals are available

for interpretation?

3. What effects do head movements have on the predicted position of the auditory

event?

Thurlow et al. (1967), Thurlow (1967) showed that the first head movement is towards an

auditory event, which fits with the “reflexive” movement. A possible explanation could be

due to those ILDs that correspond to forward directions having greater representation by

neural units when compared with other directions (Park, 1998, Park and Pollak, 1993). It

has the effect of bringing an object of interest into “view”, such that it can be located with

greater accuracy. Further, Thurlow et al. observed that when permitted, subjects initiate

prolonged and repeated head movements to determine the exact direction of a sound event

– rotating and tipping head movements predominated. Wallach (1938) considered the

mechanism of a rotating head movement to provide the angle of elevation for a sound

event. The cues vary in a coherent manner according to direction. So if an agent knows

the rotational shift and the function (of direction) that produces the change in its auditory

cues, it may infer the elevation. This indicates that head movements coupled to the sensory

consequences of these movements are useful for localisation.

Klensch (1948) considered how the interaction of the cues and head movements caused

a sound’s location to be perceived. Klensch’s findings are summarised in Figure 1.8. It

is important to note that the apparent location of the sound migrates due to the changes

in the perceived sound coupled to the head’s motion. Figures 1.8 (b), (d) & (e) show

the considerable impact a simple head motion has upon where a sound will be localised.

Figure 1.8 (a) represents the control situation, and Figures 1.8 (a) & (c) indicate that head

motion impacts localisation by perturbing sound cues. Similar interactions (Figure 1.8)

were investigated by Jongkees and van de Veer (1958), Hofman et al. (2002), Wightman

and Kistler (1999), Wallach (1938, 1939). Wallach (1938, 1939) used a slightly different

methodology where an array of speakers were placed in an arc around the subject with a
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(a) (b) (c)

(d) (e) (f)

Figure 1.8: Cartoon representation of the auditory motional experiments conducted by
Klensch (1948), Jongkees and van de Veer (1958). The bold red arrows indicate the per-
ceived motion of a sound after an indicated head motion and/or motion of the hearing
funnels (small blue arrows), a red dot indicates the perceived location of a sound in cases
(a) & (c) in the centre of the head (cf when listening to sounds via headphones). Adapted
from Blauert (1997).

rotary switch connected to the subject’s head. This caused a head movement to switch

between which speaker was active. This took into account the HRTF cues that Klensch

(1948) neglected through his use of hearing funnels. Wallach found that causing a sound

to always stay at a constant angle to the subject, resulted in them reporting a migration

of the sound event from its true location to a position above their head, cf Figure 1.8 (c).

Conversely, the apparent location of the sound migrated behind the subject when a counter

rotation in the angle of the sound’s movement was engineered relative to the subject’s head

movement, cf Figure 1.8 (e) & (f). Finally, Wallach contrived to make the source appear

at a particular angle and so changed the ratio at which the rotary switch switched.

Jenison (1997) argues for the sufficiency of acoustic information extraction for motion.

This is through the use of acoustic cues (interaural time disparity, sound level and Doppler

shift) as the observables for structural information (spectrum, loudness, target location

and motion) and the hidden variables about a sound source. When the system is static it

leaves some of the hidden variables insufficiently defined, however, motion by the observer

corrects this. Hence, Jenison concluded that observer motion via a head rotation can

disambiguate this uncertainty by essentially giving a second view of the scene. Handzel

and Krishnaprasad (2002) took these ideas and tested them, by using binaurally placed

acoustic sensors to computationally investigate (biomimetically) sound localisation. They
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Figure 1.9: A toy instantiation of pinnae motion illustrating symmetry breaking. This
example is inspired by Walker et al. (1998). Plots (a), (c) & (e) show the ILD with
direction (elevation ϕ and azimuth θ) for a sequence of pinnae configurations. The ILDs
are computed by the difference between a pair of basis functions with coordinates indicated
by the red filled circles. The red rectangle indicates the forward quadrant of the observer.
Plots (b), (d) & (f) show sequential inference of a target at a direction indicated by a
white circle. The figure indicates the utility of combining information from a sequence of
uncertain or ambiguous measurements, that combined, affect a change of view.

found that symmetry in static perception is broken by rotation of the apparatus (cf head

rotation) relative to the sound source. This is similar to Jenison’s findings. Relatedly

Muller and Schnitzler (1999) hypothesised that CF-bats evaluate time-variant cues (cf

Jenison, 1997) defining this as acoustic flow – this is inspired by the parallels with optic

flow (Lee et al., 1992). Time variation is imposed by changes in these cues as the bat

flies past its targets. Muller and Schnitzler found with respect to ambiguity, accuracy

and detectability that such a methodology was sufficient for obstacle avoidance and other

similar behavioural tasks.

Walker et al. (1998) took a similar approach but also evaluated more simple mapping

concepts, as well as the dynamic motion cues of acoustic flow (Muller and Schnitzler,
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1999, 2000, 2001). Firstly, in evaluating the concept of simply creating different views

(perspectives), Walker et al. found that the inherent symmetry (Figure 1.9) in the system

was broken by simply repositioning the pinnae (Jenison, 1997, Wallach, 1940, Klensch,

1948). Secondly, Walker et al. argued that the creation of dynamic cues, for example

frequency and amplitude modulations, allows the individual to derive useful temporal cues

for localisation. Muller and Schnitzler (1999, 2000, 2001) more generally argued this,

defining this theory as acoustic flow.

In evaluating the integration of motional information with auditory cues we must also

consider other sources of motional information, principally proprioception. In investigating

the effect of whole-body rotation (about the earth-vertical axis) for the lateralisation of

dichotic sound, Lewald and Karnath (2001) found a slight but significant influence of

rotation upon sound lateralisation. This suggested a vestibular contribution to accurately

track a static sound source during natural head and body rotations. Expanding this to

include the effect of gaze, Goossens and van Opstal (1999) found the auditory system relies

upon eye-head position for auditory guided behaviours. To summarise, the proprioceptive

senses (Lewald et al., 2000, Lewald and Karnath, 2000, Pettorossi et al., 2005) play a role

in sound localisation, as does the perceived direction of gravity (DiZio et al., 2001), the

orientation of the head related to inertial forces (Prieur et al., 2005), and gaze direction

(Getzmann, 2002, Lewald and Ehrenstein, 1998). This grounds the sense of motion and

its impact on audition by use of proprioception.

As an example of this grounding, Wallach (1940) showed head movements are registered

correctly in the cases where:

• position, tension and posture receptors of the neck muscles, and the cervical vertebrae

provide no information,

• only the vestibular organ provides information,

• and only the sense of vision provides information.

An extension of this by Wightman and Kistler (1999) showed that only when the listener

controlled a sound source’s movement did the ambiguity in the position of an auditory event

disappear. This leads to the wider question of a listener’s interaction with the environment,

which is applicable to all senses rather than just audition.

This section has discussed a range of the motional interactions with perception, includ-

ing the senses of proprioception. This underlies more specifically that auditory localisation

15



is far more than simply the deduction of knowledge (about sound source localisation) from

observed cues, as the other senses play a significant role (e.g. Goossens and van Opstal,

1999). This would indicate that there are wider issues to be considered:

• is this fundamental to perception?

• Is it simply motion or controlled motion that plays an important role?

The first issue is discussed in the next section from a philosophical vantage point. The

second is addressed in Section 1.4. I also present a new quantity for selecting the best

motion in Chapter 3.

1.3 Philosophy of active perception

Leading on from the motional auditory localisation at the end of the previous Section, I

review the background philosophy that has partly led to the development of sensorimotor

contingencies (Noe, 2004). These theories were developed to deal with more logic based

formal rule theories (classicist) of cognition. The principle problems with these classicist

views relate to the rules that ground the symbols used to describe an individual’s precepts

of its environment to the environment itself. This is the symbol grounding problem de-

scribed by Searle (1981), Harnad (1990), Searle (1980). Further, there are arguments for

representations without rules; the expertise problem (Aizawa, 1994).

Gibson (1978) defined an ecological approach to perception that considers the import-

ance of understanding perception in terms of the tasks an individual must perform. In

this context the individual’s environment is considered to offer “affordances”. One inter-

pretation of these affordances are as possibilities for action. Further, the individual is

structured both by nature (genetic) and nurture (development) to register these afford-

ances in its environment. As an aside it is important to note that Gibson was critical of

explanations that sought too detailed a view of the sensory systems. Ecological perception

seeks an explanation, not in terms of what responses of receptors are to stimuli, but rather

an explanation of how the stimulus carries relevant information.

Enactive perception regards behaviour as the “structural coupling” of the individual

to its environment (Varela et al., 1995). Structured coupling is a notion grounded in

evolutionary theory (Varela et al., 1995), this approach to perception is:

• that individuals interact in a complex manner with their environment,
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• that these interactions affect both the internal structure of the individual but also

the environment,

• that these structures (individual and environmental) coevolve over time.

These points lead to the conclusions that it is not possible to understand either the indi-

vidual or its environment in isolation but in context to their interaction. This led Varela

et al. to contend, that to understand perception, we need to know how the nervous system

links the individual’s sensory and motor surfaces (Noe, 2004).

Embodied cognition emphasises the formation role the environment plays in the de-

velopment of cognitive processes (Vernon, 2008, Cowart, 2006). Cognitive processes are

posited to develop from real time, goal directed interactions between an individual and its

environment. The nature of these interactions influence further development and formation

of cognitive capacities. Perceptually, embodiment is understood as the way an individual’s

sensorimotor capacities enable successful interaction with its environment (niche). Quick

et al. (2000) define embodiment more formally as,

A system X is embodied in an environment E if perturbatory channels exist

between the two. That is, X is embodied in E if for every time t at which both

X and E exist, some subset of E’s possible states have the capacity to perturb

X’s state, and some subset of X’s possible states have the capacity to perturb

E’s state.

This describes generally all individuals that perceive information about an environment,

and concurrently make decisions based upon these precepts. This creates a circular de-

pendency between the individual and its environment.

O’Regan and Noe (2001) hold that perception is a function of both the senses and

our ability to interact with them. This they define as sensorimotor contingencies. This

can further be seen as taking aspects of both Gibson’s ecological approach (Scholl and

Simmons, 2001) and the enactive interactions with the organism and its environment.

This is not without its detractors. Prinz (2006) who argued forcefully the relationship

between the senses and action is causal rather than constitutive. Prinz argues that action

causes change in the senses, rather than being fundamental to the process of sensing.

However, O’Regan and Noe’s sensorimotor approach is advantageous as it provides a clearly

principled argument to account for perception. The experience of seeing occurs when the

observer masters the governing laws of the requisite visiomotor contingencies.1

1Though in their comments van Gulick (2001), Schlesinger (2001), Gallese and Keysers (2001) argue
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In this section I have discussed the philosophical underpinnings of how action interplays

with observation to provide sensation. It gives a general explanation of active perception

in the form of sensorimotor contingencies arguing the importance of an individual’s ability

to interact with its environment and sense the consequences of this interaction. The next

section leads with a review of the behavioural work related to embodiment and sensorimotor

contingencies. I then finish the next section and the literature by reviewing practical

methods for selecting actions to aid perception (inference).

1.4 Examples of active perception

This section leads on from the theory of Noe (2004), O’Regan and Noe (2001) of sensor-

imotor contingencies. This is placed in context with a review of active perception and its

development in localisation problems. Such localisation tasks include objects within the

environment, the individual’s position and pose in the environment, and the relation to

tool use (Subsection 1.4.1). This is followed in Subsection 1.4.2 by a review of how best

an individual can generally select a localising action in a range of domains. As, while

the philosophical points made earlier discuss the importance of action in perception, they

say little as to what actions will generally result in the most certain and unambiguous

localisations and inferences.

1.4.1 Sensorimotor contingencies

O’Regan and Noe (2001), Noe (2004) argue that the perceived structure of an individual’s

reality (notions of body, environment, space, object and attribute) is a consequence of

the interaction between the inputs and outputs of its brain. These define the individual’s

sensorimotor contingencies. Philipona et al. (2003) validated this statement by using a

simulated organism to deduce, through only its input and output, the dimensionality of

the phase space that its interactions with the environment engendered. Using differential

geometry to define a subspace through the intersection of the environment and possible

actions, this subspace represented the possible sensory inputs, thus allowing Philipona

et al. to infer the dimensionality of the environment. Philipona et al. (2004) show it is

possible, given access to sensor inputs and motor outputs, for an individual to algorith-

mically infer information about itself (physiology) and its world. Relatedly, Nagel et al.

that preventing internalised representations is unnecessarily limiting and does not appear to be grounded
in evidence.
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(2005) showed the integration of a belt based compass, giving a tactile measure of magnetic

North, provided a subject sensory enhancement.

Grzywacz and Balboa (2002) suggest a mechanism that compares expected results of

tasks to select consistently better representations of the relationships between input and

output. This is grounded in the hypothesis that much of what we consider a priori about

the environment, is deducible without prior knowledge, simply of the brain governing the

linkages between the organisms inputs (senses) and outputs (actions) (O’Regan and Noe,

2001). Similarly, the findings in Blakemore et al. (2002), Droulez and Berthoz (1991),

Blakemore et al. (2001) indicate the cerebellum plays a role in comparing the prediction

of a movement’s sensory consequence, to the actual consequence. This process allows the

individual to deduce changes in the environment.

King et al. (2000) argue that the auditory system requires experience to localise sound.

Neurophysiology studies of animals raised with abnormal sensory inputs, indicate the map-

ping of the auditory space is shaped during development by both visual and auditory exper-

ience (Knudsen and Brainard, 1991, King and Parsons, 1999, Rauschecker and Kniepert,

1994). The usefulness of this adaptation is limited. If for example one ear no longer

provides input then it excludes binaural cues. This hampers an individual’s sound loc-

alisation acuity, though, it does not eliminate the ability to localise (King et al., 1988,

Knudsen, 1985).2 Experience induced plasticity, allows the auditory pathways to be ad-

apted to individual physiology such as the size and shape of an individual’s head and

ears (Middlebrooks, 1999a, Carlile and Pralong, 1994, Middlebrooks, 1999b, Wenzel et al.,

1993). Wilmington et al. (1994) illustrate that binaural ability following corrective sur-

gery exists to varying degrees in these tasks. This suggests there are different effects to

abnormal early experience on different aspects of binaural hearing. Using ideas inspired

by O’Regan and Noe (2001), Aytekin et al. (2008) have shown that a naive agent can learn

the auditory space around it from its HRTFs.

The visiomotor system can influence and guide the calibration of sound source local-

isation in an individual’s development (Knudsen and Knudsen, 1985, 1989, Held and Hein,

1963). Similarly there are other sensory influences upon the auditory system from soma-

tosenses (Kanold and Young, 2001), proprioception (Alexeenko and Verderevskaya, 1976)

and eye position (Groh et al., 2001, Jay and Sparks, 1984). I next discuss the adaptive

properties of the nervous system in active perception.

2This can be related back to the previous sections that discuss the importance of the various auditory
cues, Sections 1.2.1 & 1.2.2.
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While investigating the integration of haptic and visual information after visual ad-

aptation, Rossetti et al. (1993) found evidence to support there being two mechanisms at

work in sensory adaptation:

1. a short-term process that is involved in normal coordination to spatially align eye

and hand systems,

2. a longer-term process that involves remapping spatial misalignments.

The former short-term mechanism may be employed to quickly optimise accuracy in a situ-

ation of misalignment, however complete adaptation must await the slower acting latter

mechanism (Rossetti et al., 1993). This was shown from a prismatic modification to the

spatial alignment of eye and hand through finger pointing to visual targets. During adapt-

ation the average latencies, between the end of an eye saccade to the beginning of a hand

movement, more than doubled when compared to before prismatic modification. However,

after adaptation these latencies had returned to the previous length of time. Illustrating

that the subject’s sensorimotor contingencies had fully adapted to the new configurations.

Using the definition of sensorimotor adaptation as a perceptual adaptation, whose ef-

fects depend upon the occurrence and nature of the performed motor actions, Bompas and

O’Regan (2006) show that a sensorimotor adaptation can also occur for colour perception.

They achieved this by introducing a new connection (sensorimotor contingency) between

eye movements and colour changes. They found that motor activity, in the form of an eye

saccade, allowed the experimental subjects to notice an environmental (e.g. chromatic)

change. Skaff et al. (2002), Clark and O’Regan (2000) had illustrated this effect in model-

ling colour consistency using the non-uniformity of retinal sampling (Roorda and Williams,

1999). This shows the breadth of sensorimotor influence and the adaptability of perception

due in part to this sensorimotor coinfluence.3

Rather than substituting one sense for another (y Rita et al., 1969, y Rita, 2004, Arno

et al., 2001, Meijer, 1992), Nagel et al. (2005) illustrated the integration in human subjects

of a completely alien sensorimodality, the perception of magnetic North through a haptic

belt placed around the waist. They found that this new modality interacted with the

vestibular system and led to half the subjects reporting a change in their sensory experience.

3A robotic example of this Olsson et al. (2006) used mutual information of signals from each unique
pair of pixels to map their relative topology. Similarly to Pierce and Kuipers (1997) the actuator space
was sampled to then extract the average effect, which in this context was the average optic-flow (Smith,
1997). Brenner et al. (2000) indicate that the encoding in contrast and motion neurons in the fly adapt to
their input similarly to the grouping of sensors in Olsson et al. (2005a,b, 2004, 2006).
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This, Nagel et al. concluded, indicated that new sensorimotor contingencies had been

learnt, and further, integrated into the preexisting vestibular sensorimotor contingencies.

Thus emphasising the utility of action-perception in learning, showing that not only small

refinements, but also entire novel sensory modalities can be learnt.

So far I have reviewed the concept of sensorimotor contingencies as they relate to the

influence of the senses on perception. However, sensorimotor contingencies also indicate

adaption of the brain’s motive pathways as well as the sensory pathways. Hochberg et al.

(2006) showed that a tetraplegic human subject, approximately 3 years after a major spinal

injury, could after training operate a computer cursor utilising a neuromotor prosthesis im-

planted in his primary motor cortex. Further, through the use of this prosthesis, the subject

could also perform rudimentary actions with a robotic arm and prosthetic hand. Altern-

ative approaches have used non-invasive EEG sensors (Wolpaw et al., 2000, Müller-Putza

et al., 2005, Mason et al., 2004). However, typically these require constant concentration

on the part of the user (Wolpaw and McFarland, 2004) unlike Hochberg et al.’s invasive

method.

Relatedly, Bongard et al. (2006) showed that a robotic “star-fish” could accurately

model its physiology through investigating its sensorimotor laws. The robot would experi-

ment, continually testing a set of hypotheses of its physiology and continually refine these

by performing actions calculated to maximally distinguish between these alternate hypo-

theses (Bongard and Lipson, 2005). Hence, the robot constantly tested its understanding

of reality according to its environment.

A concept of self, where tools are viewed as extensions of an individual’s body, has

some backing from neural studies. Umilta et al. (2008) showed that the same neurons

in the motor cortex that are activated (hence associated) with hand grasping, are active

when grasping with a tool (a pair of pliers). This effect is not simply associated with

the grasping motion, as these neurons are active even when the tool in question is a pair

of “reverse pliers”.4 Neurons in the premotor cortex in monkeys may encode geometric

positions in space relative to the animal (Graziano et al., 1997). A subset of these neurons

also appeared to encode the expectation of an object’s presence if it was occluded by

darkness.

The review of the sensorimotor and related literature in this subsection shows the fluid-

ity and flexibility of concepts of self with regard to tools, and the flexibility of the brain

4An implement that uses an opening of the fist to close the plier’s jaws.
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in relating cause and effect for representation of the world. This is with the express con-

sequence of extracting behaviourally useful information about the world from the senses.

While this review shows the degree of coinfluence between the senses and action (sensor-

imotor), little is said behaviourally about how actions are typically selected. An exception

in this subsection is Bongard et al. (2006). Bongard et al. had a robot model act, then

contrast its hypotheses of the world with knowledge it extracted from its sensors. This

leads to the question of how best to select an action for sensorimotor purposes. The obvi-

ous answer is to select one that gives the most knowledge for the least effort. In the next

two subsections I discuss the state-of-the-art approaches to this action selection problem

– the sensor placement problem.

1.4.2 Robotic mapping, SLAM/CML

In considering algorithmically the best localising actions, a large part of the literature

pertains to robotic mapping. Robotic mapping is the task of a robot localising itself

upon a map of possible positions. Thrun (2003) argues that robotic mapping can be

categorised into two rough types of mapping: metric mapping, and topological mapping.

Metric mapping tends to take the form of occupancy grids (Elfes, 1989, 1987). This is

where the position is defined according to a grid which models the occupied and free

space of the environment (Borenstein and Koren, 1991, Burgard et al., 1999a,b, Yamauchi

and Langley, 1997). Alternatives include mapping using sets of polyhedra to describe

the environment (Chatila and Laumond, 1985). These deal with directly modelling the

environment. Topological mapping typically represents the environment by using a list

of significant places connected by arcs (Choset, 1996, Kuipers and Byun, 1981, Shatkay,

1999, Zimmer, 1996), though these rely upon knowledge of how to navigate between these

places.

Thrun (2003) argues that mapping can be broken into two further categories:

1. a world centric map where the robot models explicitly its sensors to relate its map

of the environment to the sensor’s recordings,

2. a robot centric map where the maps are described in the sensor’s measurement space,

for example the raw storage of measurements for each location for comparison.

Smith and Cheeseman (1986) introduced a probabilistic framework for robotic mapping and

localisation upon a growing map. The two terms for this are simultaneous localisation and
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mapping (SLAM) (Durrant-Whyte et al., 2003) and concurrent mapping and localisation

(CML) (Thrun et al., 2004). Typically SLAM and CML have implicitly assumed that

ambiguities in belief will automatically disappear as a robot explores its environment.

However, this is not always the case (Thrun, 2003). This eventually led to the development

of more formal and explicit algorithmic methods for selecting actions. These algorithmic

methods have the purpose of removing ambiguity through approaches such as Baysian

state estimation.

1.4.3 Best localisation actions, Bayesian state estimation

Exploration is typically greedy (Choset, 1996, Burgard et al., 2000, Simmons et al., 2000,

Yamauchi and Beer, 1996), though it is also subject to safety constraints (Gonzalez-Banos

and Latombe, 2002). Gonzalez-Banos and Latombe (2002) define a generalised framework

that compliments SLAM and CML by using a next-best-view (NBV) algorithm to guide

navigation. This NBV selects a robot motion, from among a group of safe candidate mo-

tions, according to the information gain of each candidate motion. The gain in information

is defined according to an estimate of the area, or volume, of potentially visible unexplored

space that a motion will bring into view (Briggs and Donald, 1994). This relates to the

question of selecting an action to convey the most information about the robot’s envir-

onment. Gonzalez-Banos and Latombe defined this information in terms of the unknown

geometric area that can potentially be brought into the robot’s view. This causes their

implementation to be limited by the implementor’s prior assumptions, which define how

the robot represents the geometry of its environment.

Likewise, Porta et al. (2005, 2003), Fox et al. (1998) also fall partly within this category

of stochastic forward models known as Bayesian state estimation. Using robotic mapping

of appearance with a stereo camera on a pan-tilt mounting attached to a robot frame, Porta

et al. approximated the expected entropy of the a posteriori belief to select the NBV for

robot self localisation.5 The lower this entropy, the more informative the corresponding

movement can be expected to be. Such entropy minimisation techniques are referred to as

Infomax – information maximisation to solve the sensor placement problem.

Porta et al.’s approach to Infomax uses particle filtering (importance sampling) where as

Fox et al. (1998) used a full discretisation (occupancy grid) of the robot’s latent state space.

Sujan and Dubowsky (2002) by contrast use such a measure for field-of-view selection in

5The selection of a best motor command according to which of a set of candidate motions minimise the
entropy over all possible states in the latent state space given all possible observations.
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integrating the state space of teams of mobile robots with mounted cameras. However,

a limitation in the Infomax implementations of Porta et al. (2003, 2005) and Fox et al.

(1998) is that the measurement space is approximated:

• Porta et al. construct a sample of the joint latent and measurement spaces to ap-

proximate the conditional Shannon information,

• Fox et al. similarly discretise the measurement space to approximate the conditional

Shannon information.

I address this in Chapter 3, where I consider a new measure of the expected informativeness

of an action that has useful properties.

In contrast to robotic localisation, Vergassola et al. (2007a) recreated moth like surges

(forward motion into the wind) and casts (exploratory motion typically going cross wind)

in simulated odour plumes (Murlis et al., 1992, Mafra-Neto and Carde, 1994) using the

reduction of entropy in the tracked posterior belief to select the best action (Fox et al.,

1998). Odour plumes are not just used by moths but also mosquitoes (Geier et al., 1999)

and water crabs which use them for hunting (Zimmer-Faust et al., 1995, Weissburg and

Zimmer-Faust, 1994). These species also exhibit casting and zigzagging upwind (up-flow)

behaviour. While Vergassola et al. did not fully recreate the details of moth behaviour,

their model did capture the coarse cast and surge behaviours exhibited across many species

that use olfaction to search in turbulent environments.6

Similarly, forward models construct predictions of the consequence of a choice of action

by simulating the consequence according to the robot’s sensorimotor model and belief in

the model’s current state (Dearden and Demiris, 2005, Thrun, 2003) (cf Bongard et al.,

2006). Forward models however can be seen as describing all processes that use a predictive

simulation stage to make a decision offering a generalisation of NBV by being applicable

to almost any posed task. As such utilising Bayesian prediction, as I do in Chapters 3 & 4,

falls within this category as stochastic forward models.

The work of Fox et al. (1998), Porta et al. (2003, 2005) and Vergassola et al. (2007a)

shares a commonality of using statistical entropy to judge between choices of action. Al-

though Fox et al. and Porta et al. are both robotic examples, in each the authors use

Baysian state estimation for the robot to locate itself upon a map.

In the field of radar an alternative measure of information to select the best action
6In a turbulent flow a body of gas is broken into intermittent patches of odour, odour packets (Balkovsky

and Shraiman, 2002).
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or manoeuvre is achieved using the a posteriori beliefs Fisher information matrix (FIM)

(Passerieux and van Cappel, 1998, Cadre and Gauvrit, 1996, Logothetis et al., 1998). In

most problems the FIM is difficult to compute, so its complement, the a posteriori Cramer-

Rao lower bound (CRLB) is often used instead (Helferty and Mudgett, 1993). Helferty

and Mudgett (1993) compared both performance criterion, for computing optimal observer

paths, for the problem of target localisation and tracking. They found the CRLB gave

greater utility, as a weighted sum of its trace could be applied, allowing the discounting of

some latent dimensions with respect to others. This allows a trade off between certainty in

the target’s position against certainty in the corresponding target’s velocity. The CRLB is

a covariance derived measure which requires an agent to make constraining assumptions in

its representation of the world. For instance, in radar the latent state space is geometrically

equivalent to the true latent state space.

The review of best localising action selection in this subsection illustrates the domains

to which informatically driven action selection has been applied. Two principle quantities

used to solve the sensor placement problem algorithmically, are the Shannon information

(entropy) and the CRLB. In Chapter 3, I present a viable alternative to the Shannon

information. Then in Chapter 4, I contrast this alternative, the Shannon information and

the CRLB to inferring latent state in a partially observable sensor placement learning

problem. To summarise, I have introduced two different state-of-the-art approaches to the

sensor placement problem.

1.5 Thesis structure

In the light of this literature review, one of the aims of my thesis is to address the question of

the best action selection in circumstances where the situation is uncertain, this is achieved

in Chapter 3. Next, the question of how this impacts learning a viable model is addressed

in Chapter 4. These Chapters evaluate the concept of how to select the best localising

action and how this relates to learning.

While my work for this thesis initially started from the perspective of sound source

localisation depicted in,

Chapter 2: Bayesian passive sound source localisation discusses a passive localiser

and illustrates the difficulties that require prior knowledge for a viable model of the

localisation process. I contrast my passive sound source localisation model with an

application of the approach described in Nix and Hohmann (2006).
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However, I found that the concepts I was developing were better expressed in a more

generalised fashion. As the investigation indicated, there are difficulties in understanding

perception of location where the agent does not interact with its environment. This is

the treatment of perception as a purely passive problem. The implication of this leads to

concepts which include acoustic flow, where it is not just instantaneous cues that lead to

localisation but also how these cues change (Jenison, 1997, Muller and Schnitzler, 1999,

2000, 2001). More generally it is not only the change of these variables that lead to accurate

localisation, but the individual’s knowledge of what caused this change (Pettorossi et al.,

2005, Wallach, 1940, Lewald and Ehrenstein, 1998, Lewald and Karnath, 2001). Working

from this I developed a new quantity, as an alternative to Infomax, for selecting the best

localisation action in a general fashion.

Chapter 3: An information measure for optimal action selection develops and dis-

cusses a fully general framework to the problem of selecting the optimal localising

action in active-perception. This illustrates a solution to the problem of selecting an

action as an alternative to current approaches: Infomax and a posteriori CRLB.

Finally, I applied my framework to a more conceptual problem to illustrate the generality

of my measure.

Chapter 4: Learning a model for an active agent applies the optimal action frame-

work developed in Chapter 3 to a dynamic domain and learns a model concurrently

with action and observing. This addresses the problem of active experimentation

to indicate iteratively, the selected action is better than totally random action se-

lection (body-babbling). I also contrast these methods with two other informatic

action-selection approaches.

These three Chapters report the experimental work I conducted in the pursuit of my

research.

I have approached dual aims in this thesis. My first aim was that of understanding

from a theoretical point of view how the best localisation actions can be selected, with a

focus upon the removal of inference uncertainty. While reviewing the literature I found a

substantial body of work on the concept of action conveying useful localisation information

(Noe, 2004, O’Regan and Noe, 2001, Pettorossi et al., 2005, Lee et al., 1992, Ashmead

et al., 1995, Jenison, 1997), reviewed in Subsections 1.2.3 & 1.4.1 and Section 1.3. In

addition to this, the literature showed that active perception is important in an individual’s
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perceptual development (Held and Hein, 1963). However, these left open the topic of

how to best select actions in the light of predicted beliefs about the future. How to

select the most desirable outcome by applying Bayesian state prediction to predict the

differing consequences of each action – one example for the best outcome, is that which

has the least a posteriori uncertainty. I consider the problem of active localisation, which

has a rich literature on selecting the expected best action, this is the sensor placement

problem. Examples have addressed particular domains such as chemotaxis in turbulent

flows (Vergassola et al., 2007a) and robotic mapping (Fox et al., 1998, Porta et al., 2003) for

Bayesian state estimation, reviewed in Subsection 1.4.3. The principle gaps in the literature

for this problem domain are in terms of the scaling and the necessary approximating

assumptions of the solutions. The necessity that the CRLB and Infomax quantities require

the a posteriori belief to be approximated is the source of these issues. In Chapter 3, I

present and contrast an alternative to Infomax. Then, in Chapter 4, I adapt and compare

my alternative, Infomax and CRLB to a sensor placement learning problem – I shall relate

this to some of the higher order concepts from the literature of sensorimotor contingencies.

My second aim was to consider how this ties into the more general problem of percep-

tion. This would make my work of interest to researchers in fields related to perception,

including robotics and psychophysics, with specific possibilities including:

1. tracking a target in a cluttered environment (Moss and Surlykke, 2001), an emergent

consequence could be in maintaining visibility (LaValle et al., 1997),

2. pack hunting, where Spletzer and Taylor (2003) shared inference between agents.

Other interesting questions could consider lossy channels of communication similar

to vocalisations,

3. the tracking of stealthy targets, which is somewhat related to the problem of clutter

(Ristic et al., 2004b) when looking at the perspective of camouflage.

These aims were developed in the light of my exploratory foray into passive sound local-

isation.

Finally, Table 1.2 summarises the literature review in this chapter. In light of Table 1.2,

my thesis fills a number of important limitations in the state-of-the-art. In Chapter 2 I

present a Bayesian solution to the problem of passive sound source localisation. I compare

and contrast my approach, in Chapter 2, with that of Nix and Hohmann (2006). Nix

and Hohmann, like other state-of-the-art research into auditory perception, consider the
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Field Current state-of-the-art Missing elements and limitations
with the state-of-the-art

Radar and
sonar

Theoretical models (applied
sometimes to radar data) & sensor
network models – typically use an a
posteriori CRLB, to optimise the
FIM, to select an optimal
manoeuvre (or sensor placement).
The state-of-the-art currently uses
particle filters for tracking the
latent state space. Latent state
space prediction is used to estimate
the a posteriori CRLB up to the
modeller’s desired future time step.

A gap exists here for efficiently
selecting actions where the state
spaces are mixed, both continuous
and discrete. The CRLB and
Fisher information only apply to
continuous latent state spaces.

Robotics which
applies
POMDP to
SLAM / CML

Robotic – these typically use a
discretisation of a latent state space
for mapping. Current work is
focused upon applying SLAM/CML
to dynamic environments. The
state-of-the-art currently uses
particle filters to represent the
POMDPs that define the model.

A gap exists here for a more
efficient informatic action selection
process than that of the Shannon
information. Shannon information
is best applied to discretised latent
state spaces, e.g. occupancy grids
or particle filtering.

Bayesian state
estimation

Theoretical models – application of
Infomax, cf robotics and radar and
sonar to chemotaxis and other
inference problem domains.

Infomax is a costly operation to
compute, it also needs
approximations of the
entropy/Shannon information
integral. There is a gap for an
approach which is analytic under
the latent predictions estimations.

Sensory-motor
contingencies

Theoretical – using differential
geometry and arbitrarily small
actions to learn the relationships
between the consequences of an
action to the individual’s
observables.

A gap exists here for applying an
informatic policy to select the best
action for learning the relationships
between actions and consequences
in a Bayesian fashion.

Neurophysiology
and
behavioural
sound source
localisation

Neurophysiology & behavioural –
The state-of-the-art considers time
disparity and level disparity.

One gap for my work in Chapter 2
is the use of a pair of sound signals,
explicitly retaining the two signals
loudness rather than discarding
these when computing the level
disparity.

Modelling (theoretical models) –
The state-of-the-art for passive
sound source localisation is in Nix
and Hohmann (2006). To localise a
sound source, they use histograms
to represent the level and time
disparity distributions.

A further gap is to define a
parametric model to represent
sound source localisation, as Nix
and Hohmann (2006) used
histogram distributions to capture
the data’s variation.

Table 1.2: A summary of the state-of-the-art.
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measured quantities as interaural level and time disparities (ILD and ITD). This however

has the consequence of neglecting the absolute loudness of a sound. My approach in

Chapter 2 addresses this limitation through the use of a graphical model. In Chapter 3

I present a new quantity that can be applied to solve the sensor placement problem. In

this chapter I will describe the advantageous aspects of my approach. I will then compare

and contrast my new quantity with Infomax – the current state-of-the-art in this domain.

I compare my approach to Infomax in two ways:

1. I compare the algorithmic scaling of my approach to the Infomax algorithm of Porta

et al. (2003, 2005),

2. and I also apply my approach to the domain of chemotaxis, through the problem

described in Vergassola et al. (2007a,b).

In Chapter 4 I apply my measure, developed in Chapter 3, to a sensor placement learning

problem. I do this to compare the performance of the different state-of-the-art informatic

policies:

1. the application of Porta et al.’s Infomax,

2. and the application of the a posteriori CRLB (Hernandez, 2004, Martinez-Cantin

et al., 2007).

This summarises my contributions in this thesis.

29



Chapter 2

Bayesian approaches to passive

sound source localisation

2.1 Introduction

At its simplest the problem of sound source localisation consists of locating a single static

sound source, the target, in an environment that does not contribute to the sound field.

When the agent is inactive and unmoving (passive observation) the principle sound cues

are based upon the loudness and timing of features within the sound signals perceived at

either ear (Blauert, 1997, Hartmann, 1999). These cues are further categorised as being

perceived either between the ears (binaural) or by each ear individually (monaural) in

nature (Hartmann, 1999). There is a co-influence between these binaural and monaural

level and timing cues. It is the relationship between these and the source or targets location

which is the subject of investigation in this Chapter.

The monaural localisation cues are related to the attenuation of a sound source’s loud-

ness with the distance from the agent to the target. Physiology interacts with the loudness

to further attenuate the perceived loudness based upon direction of the target relative to

the individual (Kistler and Wightman, 1992). The methodology of applying such direc-

tional attenuation is usually through head related transfer functions (HRTFs). Oldfield

and Parker (1984) showed that this directional gain or attenuation through the HRTFs

can provide a correction to specific kinds of localisation error, for instance front-back con-

fusions. The monaural cues are usually neglected in sound source localisation. Examples

of this approach are Nix and Hohmann (2006), Zurek (1991). My methodology in this

Chapter considers monaural cues as complimentary to binaural cues and forms part of my
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(a) The base activity where Icontra is 0 dB (b) The activity for Iipsi being 27 dB

(c) The activity for Iipsi being 37 dB (d) The activity for Iipsi being 47 dB

Figure 2.1: The response of a lateral superior olive (LSO) neuron to the loudness at either
ear. These plots depict the fitted functional activity of a single typical LSO unit. The
neural response for a contralateral sound intensity of Icontra = 0dB over the ipsilateral
sound intensity, Iipsi, is depicted in plot (a), the activities for three different Iipsi, 27dB,
37dB and 47dB respectively plots (b), (c) and (d). The neural responses are depicted with
red dots. This shows a response curve that is more complicated than simple computation
of level disparity (Iipsi − Icontra). I have fitted the product of two sigmoid functions to the
data presented in Park et al. (1997), this is marked with the blue line. This is a function
of 6 parameters that can represent such LSO units. It is important to note that such a
fitted functionality does not take into account the effect of physiology or timing effects –
therefore neglecting the degree of correlation between either ears received sound signal.
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argument.

The binaural cues are principally considered as either interaural level disparities (ILD)

or interaural time disparities (ITD) (Hartmann, 1999, Forsythe, 2002). ITDs represent

the difference in time of arrival for a recognisable feature in either ear. There are two

disparate mechanisms proposed for the brain to compute ITDs. The first is developed

from the Jeffress model of neural delays, using a bank of neurons to represent the different

ITDs (Pena and Konishi, 2002). The second is a phasic comparison between the signals

and is similar to comparison in the frequency domain (McAlpine and Grothe, 2003, Joris

et al., 1998). Phasic comparisons have an advantage in terms of speed even on computers

(Frey and Jojic, 2001, 2003).

ILDs represent the difference in loudness (the logarithmic sound intensity) between the

ears. The mechanism of computation in the brain is less controversial than that of ITDs.

The accepted model consists of comparing an excitatory projection from one ear to an

inhibitory projection from the other ear in a region of the brain called the lateral superior

olive (LSO) (Forsythe, 2002, Wang and Brown, 2006). However, Park et al. (1997) have

shown that ILD tuning in LSO neurons have a nonlinear dependence upon the absolute

sound level from either ear (Figure 2.1). This gives the absolute sound level at either ear

a role in computing the auditory systems ILD cues for localisation purposes.

The position of a sound event relative to the individual will determine their observed

ITD, ILD and the monaural loudness. Shinn-Cunningham et al. (2000) discussed the local-

isation uncertainty of particular ITDs & ILDs and the dependence of these confusions with

the target position. They defined this to be a “tori of confusion” as, in three dimensions,

the uncertainty forms a toroid centred upon the individual. Further, Shinn-Cunningham

et al. took a simple model of sound propagating in a free field and applied a corrective

directional attenuation due to the HRTF. In their investigation, Shinn-Cunningham et al.

investigated the binaural localisation cues alone, which ignored the monaural localisation

cues. As a result their approach ignored the information about location conveyed by the

absolute sound level. Most work on sound source localisation similarly considers only ILD

and ITD, notably Zurek (1991), Nix and Hohmann (2006), Walker et al. (1998), Suga and

Ma (2003a).

The co-dependence of the monaural level, ILD and ITD cues can lead to a fusion

problem when conducting localisation inference. This presents the problem of how best to

combine the information conveyed by a measurement of each of the cues about the targets
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location to give a best estimate of location. Solutions to this problem have typically been

inspired by biomimetics (Handzel and Krishnaprasad, 2002) which naively combine the

cues by assuming conditional independence with the target’s location (naive Bayes). ITD is

most easily computed by cross correlation based models and as such typically dominate ITD

models (Wang and Brown, 2006). Alternatively, ITD can be computed in the frequency

domain (Nix and Hohmann, 2006, Duda, 1997). In mammalian neurophysiology studies,

level disparities are associated with excitatory-inhibitory (EI) neurons which exhibit a

sigmoidal tuning curve with interaural level disparity (Forsythe, 2002). An example of this

can be seen in Figure 2.1. Nix and Hohmann (2006) and Zurek (1991) respectively showed

experimentally and analytically that for a given sound source location, both the distribution

of measured levels and time disparities are both non-Gaussian. These distributions are also

dependent upon the signal-to-noise ratio. Typical techniques for integrating these cues

filter the inputs and mix the results in a biologically inspired manner (Wang and Brown,

2006). This, when naively computed, is equivalent to naive Bayes which is the approach

taken by Nix and Hohmann (2006). I use the graphical model in Figure 2.2 to define

in the next section a more complete model of sound source localisation. I contrast and

compare this model with an implementation of Nix and Hohmann (2006) which represents

the-state-of-the-art in the analysis of passive sound source localisation.

The structure of my model extends the sound perception component of the audio-

visual inference model of Beal et al. (2003), Attias et al. (2001). The graphical model1 in

Figure 2.2 (a) depicts the dependence of location l upon the detected signals, x1 and x2,

through a latent variable time disparity variable τ and the attenuation parameters λ1 (l) &

λ2 (l). This defines a model that considers the interactions between those quantities that

are not directly observable (τ , λ1, λ2, l and s) and those that are (x1 and x2).

To evaluate the influence of portions of the model that I define in the next section, I

use a variation of local weight analysis (Cook, 1986, Zhu and Lee, 2001). Cook’s weight

analysis considers the curvature of the likelihood of the model to small perturbations of

its parameters or data points of the model. For instance, this allows consideration of

the importance individual data points have for an inferred model (Zhu and Lee, 2001). I

consider the curvature of the KL-divergence between the perturbed and unperturbed joint

distributions. The purpose is to give a measure of the importance that a particular latent

state variable or parameter has in inference tasks for each target location.

1A graphical model represents visually the causal dependencies of quantities that a model uses to
characterise a system. The nodes represent the quantities and the edges the causal dependencies.
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Figure 2.2: Graphical model indicating the dependencies between measurables, hidden
variables and location. The location dependent latent parameters are the attenuations λ1

and λ2. The latent variables are, the relative time delay τ , the source signal s, and the
targets location l. The observable variables are the sound measured at either ear x1 and x2.
Cartoon (b) portrays the spatial relationship between agent at the origin and the location
of a sound event (the target), at a bearing θ and distance d annotated by l = {d, θ}. The
structure of my model (a) extends in two ways the sound perception component of the
audio-visual model in Beal et al. (2003), Attias et al. (2001), Hospedales and Vijayakumar
(2006). The first is by accounting for the dependence of the attenuations, λ1 and λ2, upon
the sound sources location l. The second is due to Nix and Hohmann (2006) who found
that the time disparity of the variance changes with sound source location. I make both
the mean and variance of the time disparities likelihood dependent upon the sound sources
location l. This is defined in Subsection 2.2.2.
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However, it is not possible to analyse Nix and Hohmann’s model using a curvature ana-

lysis as their approach is non-parametric. The curvature analysis applies a perturbation

to parameters and so is only applicable to parametric models. This illustrates a difficulty

in understanding the processes being modelled in non-parametric approaches. To con-

duct a comparison with Nix and Hohmann’s approach I compare and contrast inference

performance.

2.2 Localisation model

My sound localisation model, defined in Figure 2.2, takes as its starting point the seminal

model of Beal et al. (2003) which was further developed by Hospedales and Vijayakumar

(2006). These models are not formally for sound localisation, but targeted at real time

audio-visual tracking. However, the audio component does provide a useful starting point

for my development of a more complete sound localisation model. In Subsection 2.2.1

I restate the audio process from Beal et al.. Following on in Subsection 2.2.2, I extend

this by relating the signal processes to level disparities in order to justify considering the

attenuations as sufficient statistics for the distribution of ILDs. The structure of my model

(Figure 2.2 (a)) extends in two ways the sound perception component of the audio-visual

model in Beal et al. (2003), Attias et al. (2001), Hospedales and Vijayakumar (2006). The

first is by accounting for the dependence of the attenuations, λ1 and λ2, upon the sound

source’s location l. The second is due to Nix and Hohmann (2006), who found that the

time disparity of the variance changes with the sound source’s location l. Hence, I make

both the mean and variance of the time disparities likelihood depend on l. The important

quantities, the distributions and each distributions parameters are tabulated respectively

in Tables 2.1, 2.2 & 2.3.

2.2.1 Sound process

In this subsection I discuss the construction of the data likelihood for the sound component

from the audio-visual model of Beal et al. (2003), Attias et al. (2001), Hospedales et al.

(2007). A binaural sound process can be constructed from a source signal (s), which is

measured at either sensor (x1 and x2). The measured signals are attenuated respectively by

the factors λ1 and λ2. Finally the signals each receive a time delay that can be considered

instead as a relative delay, or, time disparity τ .

Firstly I assume that there is a source signal s consisting of Dx samples, and is char-
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quantity description

x1 the measured sound signal vector at receiver 1 of Dx dimensions,
x2 the measured sound signal vector at receiver 2 of Dx dimensions,
s the source sound signal, which is a vector of Dx dimensions,
τ the relative time delay (or time disparity) between the sound

signals x1 and x2,
D̂τ is an operator that applies a delay of τ ,

λ1 (l) and λ2 (l) the attenuation of the sources sound signal s for the measured
sound signals x1 and x2 at the location l,

l the sound sources location (the latent state),

Table 2.1: Table of important quantities for my sound source localisation model depicted
in Figure 2.2. The variables x1 and x2 are observable. The variables s, τ and l are hidden.
The quantities λ1 and λ2 are parameters.

distribution description

p(s) the prior belief in the source signal s,
p (x1|s, λ1 (l)) the likelihood of the measured signal x1 given the

source signal s,
p (x2|s, λ2 (l) , τ) the likelihood of the measured signal x2 given the

source signal s,
p (τ |l) the likelihood of the time disparity τ given the source

signals location l,

Table 2.2: Table of distributions for my models variables listed in Table 2.1 and Figure 2.2.

distribution parameter description

p (x1|s, λ1 (l)) ν1 the variance of the noise process for the 1st
receivers measured sound signal,

w1 the GTM vector of weights used to construct
λ1 (l) = wT

1 ψ (l), ψ (l) is a vector of location
dependent basis functions,

p (x2|s, λ2 (l) , τ) ν2 the variance of the noise process for the 2nd
receivers measured sound signal,

w2 the GTM vector of weights used to construct
λ2 (l) = wT

2 ψ (l), ψ (l) is a vector of location
dependent basis functions,

p (s) η the variance of the sound signal process,
p (τ |l) ωτ (l) the variance of the time disparities belief for

a given location l,
wω the GTM vector of weights used to construct

ωτ (l) = wT
ωψ (l), ψ (l) is a vector of location

dependent basis functions,
γτ (l) the expected time disparity for a given

location l,
wτ the GTM vector of weights used to construct

γτ (l) = wT
τ ψ (l), ψ (l) is a vector of location

dependent basis functions,

Table 2.3: Table of parameters for the PDFs in Table 2.2.
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acterised as a Gaussian process2,

p (s) = φ (s; 0, η) . (2.1)

While such an assumption is not generally accurate, in this case it is, because the source

signal is Gaussian. This signal s is measured simultaneously at two locations by two

identical sensors, labelled 1 and 2. These sensors are assumed to make measurements

according to the processes,

x1 = λ1s +
√
ν1n0,1, (2.2)

x2 = λ2D̂τs +
√
ν2n0,1, (2.3)

where the source signals are attenuated by the respective factors λ1 & λ2, and a relative

delay τ by the operator D̂τ Beal et al. (2003), Hospedales et al. (2007), Hospedales and

Vijayakumar (2006). In practice both sensors receive a delayed signal, however only the

relative delay is meaningful. Finally there is interference from zero mean additive noise of

variance νi for the respective sensors. The likelihood of the measured signals x1 & x2, given

the source signal s, are both Gaussian processes and characterised by the distributions

p (x1|s, λ1) = φ (x1;λ1s, ν1) , (2.4)

p (x2|s, λ2, τ) = φ
(
x2;λ2D̂τs, ν2

)
. (2.5)

Only the latent variables are stated in the probability density functions, with the para-

meters being neglected for brevity. After marginalising out the signal s̄ the resulting joint

likelihood of the data x1 & x2 conditional upon λ1, λ2 and τ is,

p (x1,x2|τ, λ1, λ2) =

√
νs

2πν1ν2η

Dx

exp

{
− 1

2ν2
1

(
ν1 − λ2

1νs

)
xT

1 x1−

1

2ν2
2

(
ν2 − λ2

2νs

)
xT

2 x2 +
νsλ1λ2

ν1ν2
xT

2 D̂τx1

}
, (2.6)

where 1
νs

= 1
η

+
λ2
1

ν1
+

λ2
2

ν2
. This distribution has two principle portions, the purely loudness

2Taking a Gaussian distributed variable x of Dx dimensions to have the form

φ (x;µ, σ) =

r

1

2πσ

Dx

exp



− 1

2σ
(x− µ)T (x− µ)

ff

,

where µ represents the mean and σ represents the variance.
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term,

exp

{
− 1

2ν2
1

(
ν1 − λ2

1νs

)
xT

1 x1 −
1

2ν2
2

(
ν2 − λ2

2νs

)
xT

2 x2

}
, (2.7)

and the time-disparity term,

exp

{
νsλ1λ2

ν1ν2
xT

2 D̂τx1

}
, (2.8)

which is the cross-correlation of x1 and x2 weighted by the attenuations. The cross-

correlation term is of particular interest as it represents the degree of correlation between

the received signals.

2.2.2 Cue processes

The two principle interaural variables that are considered as localising cues are ILD and

ITD. Intrinsically, ITD is already part of my model as a hidden variable. However, I shall

illustrate that ILD is characterised by the attenuations, λ1 and λ2, and the signal to noise

ratio η
ν
. I will use a common ν = ν1 = ν2 and a time disparity τ of zero as this simplifies

the resulting ILD distribution for the following illustration.

The distribution of interaural level disparities, ILD, can be computed from the joint

likelihood (Equation 2.6) using the distribution to effectively cause a change of variable

(x1, x2 to ILD),

p (ILD|x1, x2) = δ

(
ILD− log

∣∣∣∣
x1

x2

∣∣∣∣
)
. (2.9)

Computing the expectation of Equation 2.9 over the distribution p (x̄1, x̄2|λ1, λ2, τ, ν1, ν2, η)

gives the ILD likelihood,

p (ILD|λ1, λ2, ν, η) =
1

π

√
νs

η




1

eILD + e−ILD − νs

ν

(
λ1e

ILD
2 + λ2e

− ILD
2

)2 +

1

eILD + e−ILD − νs

ν

(
λ1e

ILD
2 − λ2e

− ILD
2

)2


 ; (2.10)

where the time disparity τ has been neglected and for simplicity ν1 = ν2 = ν. This

distribution of ILDs is depicted in Figure 2.4 to illustrate that the attenuations, λ1 and

λ2, relate to the measured ILDs observed in Nix and Hohmann (2006) in Figure 2.3. The

contrast between Figure 2.4 plots (a) and (b) can be related to the contrast in Figure 2.3

between the cases of 15 degrees azimuth (the top pair of subplots) and 60 degrees azimuth
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Figure 2.3: Figure 3 taken from Nix and Hohmann (2006). Histograms of interaural level
disparity (ILD) values, i.e. the number of observations of a specific ILD normalised to the
total count, for the speech target in cafeteria noise. The left panels are for a frequency
of 830 Hz and the right panels are for 2.88 kHz. The upper panels are for 15° azimuth
and the lower panels are for 60° azimuth 0° elevation, respectively. Each panel shows the
distributions for the signal-to-noise ratio values of −5, −2, −1, 0, 1, 2, 3, 5, 10, 15, 20, 30
dB and silence. The curves were shifted in order successively by 0.025 up the y-axis for
clarity.
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(a) Distribution of ILDs for λ2 = 1
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λ1. The peak
of the distribution, as η

ν
decreases (indicated on the

legend), corresponds to ILD = log λ1
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≈ 3.912.
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(b) Distribution of ILDs for λ2 = 1
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λ1. The peak
of the distribution, as η
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decreases (indicated on
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≈
6.908.

Figure 2.4: Plots of the distribution of interaural level disparity (ILD) for variation of
signal-to-noise ratio. Plotting the distribution p (ILD|λ1, λ2, η, ν) (Equation 2.10) with
variation of the signal-to-noise ratio η

ν
, as indicated in the legend: plot (a) has λ1 = 1 and

λ2 = 1
50λ1, plot (b) has λ1 = 1 and λ2 = 1

1000λ1.
η
ν

is roughly equivalent to the signal-
to-noise ratio. This defines for simplicity in this figure that ν = ν1 = ν2. This indicates
the influence of the signal-to-noise ratio upon the distribution, a sharper peak suggests
a greater correlation. This illustrates the dependence on signal-to-noise ratio of the ILD
distributions, which are qualitatively similar to the plots in Figure 2.3 taken from Nix and
Hohmann (2006). The difference between plots (a) and (b) illustrate the impact of the
attenuations, λ1 and λ2, on the distribution of level disparities ILD. This dependence of
ILD upon λ1 and λ2 is starkly illustrated by the peak of the distribution, for decreasing
η
ν
, corresponding closely to ILD = log λ1

λ2
. The curves were shifted in order successively by

0.2 up the y-axis for clarity.
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(the bottom pair of subplots). At both frequencies (Figure 2.3) increasing the signal-to-

noise ratio causes a sharpening and migration of the distribution of ILDs away from an ILD

of 0 to a distribution centred at an ILD characteristic of the azimuth. Figure 2.4 shows the

same sharpening and migration of p
(
ILD|λ1, λ2,

η
ν

)
with increasing signal-to-noise ratio η

ν
.

Also, we can see that the p
(
ILD|λ1, λ2,

η
ν

)
with the sharpest peak3 is related to the ratio

of attenuations λ1
λ2

. This is indicative of the ILD being characterised by the attenuations,

λ1 and λ2. The attenuations convey the location dependence of the loudness cues.

Nix and Hohmann (2006) observed that both the mean and variance of the distribution

of time disparities varied with a sound source’s location. I account for this using as a

likelihood of the time disparity τ for a location l, a Gaussian distribution where the mean

and variance are functions of location,

p (τ |l) = φ (τ ; γτ (l) , ωτ (l)) ; (2.11)

where the mean is γτ (l) and the variance is ωτ (l).

I choose to model the functions which link the source’s location l to the latent variables

using a generative topographic mapping (GTM) (Bishop et al., 1998a,b). This is because of

its linearity with respect to learning and non-linearity with respect to inference. GTMs are

a flexible method for representing a non-linear mapping between two spaces; it is relatively

simple to integrate a GTM into Bayesian models in a principled fashion. This leads to the

representation of the cues as the linear mixing of a previously selected set of functions. A

vector of these functions ψ is constructed. While these functions may be non-linear with

l, by adding a weight vector, this produces the mappings,

λ1 (l) = wT
1 ψ (l) , (2.12)

λ2 (l) = wT
2 ψ (l) , (2.13)

γτ (l) = wT
τ ψ (l) , (2.14)

ωτ (l) = wT
ωψ (l) , (2.15)

which are linear with the weight vectors. This is functionally equivalent to an artificial

neural network with a single layer (Bishop, 1995) and equivalent to charting a manifold

in attenuations and time disparities using location as the point on the manifold. A useful

aspect of the GTM model is due to this linearity with the weightings. This results in a

3The highest peak in Figure 2.4 corresponds to the highest signal-to-noise ratio η

ν
.
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non-linear mapping for inference purposes but linear with its parameters for learning and

analysis purposes.

2.2.3 The joint distribution

Combining my model of the cues with the sound process model of Beal et al. (2003)

produces the joint distribution of measurable and latent variables

p (x1,x2, s, τ |l) = φ (x1;λ1 (l) s, ν)φ
(
x2;λ2 (l) D̂τs, ν

)
φ (s; 0, η) ×

φ (τ ; γτ (l) , ωτ (l)) . (2.16)

Marginalising out the latent variables s and τ of this joint belief leads to the likelihood of

the measured variables x1 & x2 given the sound source’s location l,

p (x1,x2|l) =

√
νs|l

2πν1ν2η

Dx

exp

{
− 1

2ν2
1

(
ν1 − λ2

1 (l) νs|l

)
xT

1 x1−

1

2ν2
2

(
ν2 − λ2

2 (l) νs|l

)
xT

2 x2

}
×

∑

τ

[
exp

{
λ1 (l)λ2 (l) νs|l

ν1ν2
xT

2 D̂τx1

}
×

φ (τ ; γτ (l) , ωτ (l))

]
, (2.17)

where 1
νs|l

= 1
η

+
λ2
1(l)
ν1

+
λ2
2(l)
ν2

.

2.2.4 Latent variable inference

We can infer the latent variables s, τ and l by the application of Bayes law to compute

the posterior belief in the latent variables using the already discussed likelihoods. By

computing the posterior of the source signal conditioned upon the data and latent variables,

p (s|x1,x2, τ, l) =
p (s,x1,x2|τ, l)
p (x1,x2|τ, l)

, (2.18)

=
p (s) p (x1|s, l) p (x2|s, τ, l)

p (x1,x2|τ, l)
, (2.19)

= φ
(
s;µs|τ,l, νs|l

)
, (2.20)

where 1
νs|l

= 1
η

+
λ2
1(l)
ν1

+
λ2
2(l)
ν2

and µs|τ,l = νs|l

(
λ1(l)
ν1

x1 + λ2(l)
ν2

D̂T
τ x2

)
, shows the source

signal remains Gaussian when conditioned upon the evidence (x1 & x2).

The joint belief in the latent variables s and τ over the data is a product of two
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Gaussians and a third term,

p (s, τ |x1,x2, l) = p (s|x1,x2, τ, l) p (τ |x1,x2, l) (2.21)

= φ
(
s;µs|τ,l, νs|l

)
p (τ |x1,x2, l) (2.22)

the likelihood of the source signal given evidence and the likelihood of the time disparities

τ . This leads to the marginalised belief in τ of,

p (τ |x1,x2, l) ∝ p (x1,x2, τ |l) (2.23)

= p (x1,x2|τ, l) p (τ |l) (2.24)

∝ exp

{
λ1 (l)λ2 (l) νs|l

ν1ν2
xT

2 D̂τx1

}
×

φ (τ ; γτ (l) , ωτ (l)) , (2.25)

which is the product of a weighted cross correlation (equation 2.8) and moderated by a

location, l, dependent prior likelihood of τ .

So given a uniform prior belief in location l, the posterior belief in l will simplify to,

p (l|x1,x2) ∝ p (x1,x2|l) p (l) (2.26)

∝
∑

τ

p (x1,x2|λ1 (l) , λ2 (l) , τ)×

φ (τ ; γτ (l) , ωτ (l)) , (2.27)

assuming a uniform prior p (l). Thus, in marginalising the joint distribution I have con-

structed the posterior belief in location, given a stereo signal for passive sound source local-

isation tasks. These quantities are useful for location inference and learning by expectation-

maximisation in the next subsection.

2.2.5 Learning model parameters by expectation-maximisation (EM)

Bayesian methods for learning maximise the likelihood of a data set for a parameterisation.

However, in hidden variable problems an iterative approach is typically taken (MacKay,

2003, Hastie et al., 2001, Bishop, 1995).

The expectation-maximisation (EM) algorithm starts with an initial guess for the para-

meters and maximises a bound upon the complete data likelihood to generate a new and

“better guess” for the parameters (MacKay, 2003, Hastie et al., 2001, Bishop, 1995). This is

applied to a problem with J known locations lj , and taking at each location lj , N measure-
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ments from a pair of sensors to produce a data set Dat = {x1,j,n,x2,j,n, lj : j ∈ [1, J ] , n ∈ [1, N ]}.

The parameters that define the likelihood p (x1,x2|l) are learnt using variational methods.

As the hidden variable s is continuous, the problem is approached using the variational

EM algorithm (Beal et al., 2003, Ghahramani and Beal, 2000, Ghahramani and Hinton,

2000, Verbeek et al., 2003). Assuming a uniform prior p (lj) = 1
J
, the complete data

log-likelihood is used to derive a lower-bound on the likelihood,

L (Dat) =
N∑

n=1

J∑

j=1

log p (x1,j,n,x2,j,n|lj) +
J∑

j=1

log p (lj) , (2.28)

∝
∑

n,j

log
∑

τ

ˆ

ds p (x1,j,n,x2,j,n, s, τ |lj) , (2.29)

=
∑

n,j

log
∑

τ

ˆ

ds
qj,n (s, τ)

qj,n (s, τ)
×

p (x1,j,n,x2,j,n, s, τ |lj) , (2.30)

≥
∑

n,j,τ

ˆ

ds qj,n (s, τ) log p (x1,j,n,x2,j,n, s, τ |lj)−

∑

n,j,τ

ˆ

ds qj,n (s, τ) log qj,n (s, τ) . (2.31)

The inequality between Equation 2.30 and Equation 2.31 is due to Jensen’s inequality, Ap-

pendix D, and is subject to the constraint that the arbitrary distribution q is a normalised

probability density function, hence
∑

τ

´

ds qj,n (s, τ) = 1. This provides a lower-bound

upon the complete data log-likelihood for the optimal fitting problem.

The quantity qj,n (s, τ) is the proposal distribution, and as derived in Appendix B, is

the joint posterior

qj,n (s, τ) ≡ pold (s, τ |lj ,x1,j,n,x2,j,n) , (2.32)

for the initially proposed parameters λold
1|j , λ

old
2|j , γold

τ |j , ωold
τ |j , ν

old
1 , νold

2 and ηold. The joint

posterior factors according to the chain rule for probability4 are:

qj,n (s, τ) = qτ,j,n (s) qj,n (τ) , (2.33)

4A conditional joint distribution can always be factorised as P (A, B|C) = P (A|B,C) P (B|C) =
P (B|A, C) P (A|C). The choice of which factorisation to make is determined by its tractability and utility
to the problem.
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Algorithm 2.1 The variational EM algorithm for learning the parameters for the like-
lihood of my sound source localisation model. My model being defined according to the
graphical model in Figure 2.2 (a) and described in Section 2.2.
Starting with a set of parameters labelled as old. For each location lj construct an initial
guess for λold

1|j , λ
old
2|j , γ

old
τ |j and ωold

τ |j . Make an initial guess for νold
1 , νold

2 and ηold.

1. Compute the responsibilities as derived in Appendix B.

• Calculate for each location lj the quantity νold
s|j = 1

1

ηold +

„

λold
1|j

«2

νold
1

+

„

λold
2|j

«2

νold
2

, µold
s|τ,j,n

is not calculated, instead νold
s|j

(
λold
1|j

νold
1

x1,j,n +
λold
2|j

νold
2

D̂T
τ x2,j,n

)
is inserted into the

parameter updates.

• Compute for each of the N repeated measurements x1,j,n,x2,j,n, indexed by n,
of each location lj the distribution qj,n (τ), see Equation 2.34.

2. Compute the parameter updates as stated in Appendix B for η, w1, w2, ν1, ν2, wτ ,
wω and ωτ |j.

3. If computing another iteration, set λold
1|j = λ1|j, λ

old
2|j = λ2|j, γ

old
τ |j = γτ |j , ω

old
τ |j = ωτ |j,

νold
1 = ν1, νold

2 = ν2 and ηold = η, then goto 1.

where qτ,j,n (s) = φ
(
s;µold

s|τ,j,n
, νold

s|j,n

)
. The second term, which is independent of s is,

qj,n (τ) ∝ exp

{
λold

1|jλ
old
2|j ν

old
s|j

νold
1 νold

2

xT
2,j,nD̂τx1,j,n

}
φ
(
τ ; γold

τ |j , ω
old
τ |j

)
. (2.34)

Equations 2.33 & 2.34 are a restatement of Equations 2.21 & 2.25 from Subsection 2.2.4

for the previous best guess of the EM-algorithms parameters. Therefore, the portion of

the bound that is dependent upon the new parametrisation is:

Bold
new ∝

∑

j,τ

ˆ

ds qj,n (s, τ)
{

log p (x1,j,n|s, lj) + log p (x2,j,n|s, τ, lj) +

log p (τ |lj) + log p (s)
}
, (2.35)

as p (lj) = 1
J
∀j, it is neglected.

I present the derivation of one EM-update in full. This is computed from the gradient

of the bound as follows,

∂

∂η−1
Bold

new =
∑

n,j,τ

ˆ

ds qj,n (s, τ)
∂

∂η−1

{
Dx

2
log η−1 − 1

2η
sT s

}
, (2.36)

=
1

2

∑

n,j,τ

qj,n (τ)

ˆ

ds qτ,j,n (s)
(
Dxη − sT s

)
, (2.37)
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=
1

2

∑

j,τ

qj,n (τ)

(
Dxη −

(
µold

s|τ,j,n

)T

µold
s|τ,j,n −Dxν

old
s|j

)
, (2.38)

which equating to zero and solving for η, results in the EM-update for the variance η of

the source signal s̄ to give the update

η =
1

DxJN

∑

n,j,τ

qj,n (τ)

((
µold

s|τ,j,n

)T

µold
s|τ,j,n +Dxν

old
s|j

)
, (2.39)

where 1
νold

s|j

= 1
ηold +

“

λold
1|j

”2

νold
1

+

“

λold
2|j

”2

νold
2

and µold
s|τ,j,n

= νold
s|j

(
λold
1|j

νold
1

x1,j,n +
λold
2|j

νold
2

D̂T
τ x2,j,n

)
. The

complete set of EM-updates are listed in Appendix B.

The cross-correlation computations (xT
2 D̂τx1) are typically costly to compute and ex-

ist in the calculation of Equation 2.34 and every instance of
(
µold

s|τ,j,n

)T

µold
s|τ,j,n

. However,

using a fast Fourier transform to the Fourier domain (Frey and Jojic, 2001, 2003) ex-

presses the convolution as a multiplication which scales as O (Dx logDx), whereas directly

computing the convolution scales as O
(
D2

x

)
. An additional enhancement I use to reduce

the computation time is to cache the quantities xT
1,j,nx1,j,n, xT

2,j,nx2,j,n and xT
2,j,nD̂τx1,j,n.

This further reduces the calculation time for computing the responsibilities (the E-step)

and the updates (the M-step). This defines the variational EM-updates in Algorithm 2.1

for learning the parameters of my model, the graphical model in Figure 2.2.

2.3 Results

In this section I present the results of comparing my model to that of Nix and Hohmann

(2006). Both models are fit to a learning data set, with the graphed results constructed

using a distinct validation data set.

I collected the data for a selection of locations upon the azimuth plane around a pair

of microphones separated by 10 cm. This produced a set of stereo recordings for each

location as indicated in Figure 2.5. 10 cm was selected in combination with the distri-

butions of source positions in Figure 2.5 to provide experimental data over a range of

locations proportionate to a humans reach relative to separation of the ears. The sound

card used for collecting sound recordings was an M-Audio Audiophile 2496, this was due

to its multichannel capabilities that were required for constructing the binaural signals.

The data set consisted of 60 location recordings, each of approximately 2 second dur-

ation using the default data encoding, RIFF little endian. These were each broken into
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Figure 2.5: Cartoon depicting the spatial distribution of sound source localisation exper-
imental measurements. The location of each microphone, labelled 1 or 2, is indicated by
the label nearest to the cartoon heads ears near the origin.

200, 0.01s segments for use as the learning data set. The validation set was constructed

through offsetting the segments of the learning data set by 0.005s to produce a different

data set. To give the best range and resolution of sound loudness I used a 32 bit PCM

encoding5 and likewise for the best resolution of timing features I used a sample rate of

44.1 kHz.

To have a sound source that was a random signal which exhibits time structure, I

chose to use pink noise. This was generated by convolving Gaussian white noise with an

exponential curve of 1kHz half life, which maintained the Gaussian source distribution.

The source signal was encoded as a mono MPEG layer III (mp3), at a high bit-rate of

128kbits with a sample rate of 44.1kHz, so that the time structure could be resolved to

the physical separation between sample points. This recording was presented through a

speaker connected to an MP3 player (iRiver U10) at each selected location to construct

the data sets. Due to technical constraints6 the source signal was randomly offset in time

at each location, in effect the recording at each location was a different sound source

with identical and stationary spectral characteristics. This produced independently and

identically sampled data sets for the target location depicted in Figure 2.5 for a sound

source with random time structure.
5Though there are logarithmic encodings available, consumer sound-cards seem to only support linear

encoding.
6Having data that is sampled at 44.1kHz and different manual controls for starting the source playback

and recording at each location.
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2.3.1 Nix and Hohmann’s approach

I construct a comparison between my approach and that of Nix and Hohmann (2006) on

modelling passive sound localisation. I then compare the results of my model with the

results of their model. The parameterisation is learnt using the learning data set, then

each model is analysed with a validation data set.

Nix and Hohmann constructed location likelihoods from histograms of the ILD and

IPD variables. The ILD and IPD variables were computed according to Appendix C.7

Each histogram had 50 bins on the range −π to π for the phase difference and −25 to

25dB level difference – They used a range of −50 to 50dB level difference. I used the ILD

range of −25 to 25dB as the ILDs for my data fitted within this range. Both histograms

were normalised and together form the joint likelihood

p (ILD, IPD|li) = p (ILD|li) p (IPD|li) (2.40)

for the measured ILD and IPD given the location li which is indexed by i ∈ [1, J ]. The

posterior for each location is computed according to Bayes law for the n’th segment taken

from the j’th location,

p (li|ILDj,n, IPDj,n) =
p (ILDj,n, IPDj,n|li) p (li)∑
i p (ILDj,n, IPDj,n|li) p (li)

, (2.41)

where the prior p (li) is uniform across all locations, e.g. p (li) = 1
J
.

In contrast, the individual posterior beliefs for my model are constructed from the val-

idation set {y1,j,n,y2,j,n : j ∈ [1, J ] , n ∈ [1, Nval]}. I compute a posterior belief according

to,

p (li|y1,j,n,y2,j,n) =
p (y1,j,n,y2,j,n|li) p (li)∑
i p (y1,j,n,y2,j,n|li) p (li)

, (2.42)

where the likelihood is,

p (y1,j,n,y2,j,n|li) =
∑

τ

p
(
y1,j,n,y2,j,n|λ1|i, λ2|i, τ

)
φ
(
τ ; γτ |i, ωτ |i

)
, (2.43)

and the prior p (li) = 1
J

for all i ∈ [1, J ].

In keeping with Nix and Hohmann, the posterior beliefs were smoothed using a first-

7To summarise Appendix C, the only changes I made to the approach and model of Nix and Hohmann
was in the computations of the ILD and IPD. These changes were to adapt their approach to become a
valid comparison to my model using my data set. Specifically these were the use of one frequency channel,
due to the nature of my data set, and using a segment length of 440 to correspond with the segment length
used in my model.

48



Algorithm 2.2 Pseudocode used to generate inferences of sound source location. The meas-
urement data Datj is taken at a location lj , Datj is segmented into Nval segments de-
noted by Datj,n for n ∈ [1, Nval]. The smoothed posterior is plotted for a selection
of lj’s in Figures 2.6-2.12 using the probability psmoo (li|Datj) = psmoo (li|Datj,0:Nval

).
For my model’s likelihood this is psmoo (li|y1,j,y2,j) = psmoo (li|y1,j,0:Nval

,y2,j,0:Nval
)

and for Nix and Hohmann’s model’s likelihood this is psmoo (li|ILDj , IPDj) =
psmoo (li|ILDj,0:Nval

, IPDj,0:Nval
).

To construct a posterior belief in the location li with a uniform prior belief,

1. for each j ∈ [1, J ],

(a) for each i ∈ [1, J ],

p (li|Datj,n) =
p (Datj|li) p (li)∑
i′ p (Datj |li′) p (li′)

.

The smoothed posterior belief is constructed iteratively using the process,

1. for each j ∈ [1, J ],

(a) for each i ∈ [1, J ],

psmoo (li|Datj,0:n) = αp (li|Datj,n) + (1− α) psmoo (li|Datj,0:n−1) .

Where α = δt
RC+δt

, δt is the segment duration of 10ms, and RC is the filters time constant
of 100ms.

order, low-pass filter with a 100ms time constant.8 This is applied to the sets of posterior

beliefs for both my model and Nix and Hohmann’s model. There is a distinction between

Nix and Hohmann’s analysis compared to mine – They extracted the most probable dir-

ection from each of these sequentially smoothed posteriors to construct a histogram of

estimated locations. In my comparison I shall use the posterior belief itself as this repres-

ents the current best estimate of target location for both models.

In order to make a comparison I smooth the sequential posterior beliefs with the

same first-order, low-pass filter that Nix and Hohmann used. For my model and theirs

these smoothed beliefs are compared, rather than histograms of the maximum a pos-

terior estimates. The final smoothed beliefs are denoted for Nix and Hohmann’s model

as psmoo (li|ILDj, IPDj) and for my model psmoo (li|y1,j ,y2,j). This is summarised in Al-

gorithm 2.2.

2.3.2 Comparison of inferences

A representative sample of the posterior location beliefs, for both my model and Nix and

Hohmann’s, is shown in Figures 2.6-2.12. These Figures are characteristic of the posterior

8For the sequence of 50 time segments constructed by offsetting the learning data set by 128 samples
corresponding to ∼ 0.3s.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.6: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, an accurate most probable posterior belief
with small front-back confusion in the posterior. Plot (b) depicts, for Nix and Hohmann’s
model, an accurate most probable posterior belief with an angular ambiguity and small
front-back confusion in the posterior. The asymmetry in plot (b) is due to peculiarities in
the data, as Nix and Hohmann use a non-parametric model – which uses the learning data
set directly for making inferences.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.7: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, an accurate most probable posterior
belief with a mostly certain posterior. Plot (b) depicts, for Nix and Hohmann’s model,
small angular error in the most likely posterior belief with a small angular ambiguity and
small front-back confusion in the posterior.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.8: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, an accurate most probable posterior belief
with small front-back confusion in the posterior. Plot (b) depicts, for Nix and Hohmann’s
model, small angular error in the most likely posterior belief with a small angular ambiguity
and a small front-back confusion in the posterior.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.9: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, an accurate most probable posterior
belief with a mostly certain posterior. Plot (b) depicts, for Nix and Hohmann’s model,
a significant angular error is the most likely posterior belief with a significant angular
ambiguity and front-back confusion in the posterior.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.10: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, a front-back error for the most probable
posterior belief with a small front-back confusion in the posterior small angular ambiguity
in the posterior. Plot (b) depicts, for Nix and Hohmann’s model, front-back error for the
most probable posterior belief with a small angular ambiguity and a front-back confusion
in the posterior.
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(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.11: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, a small angular error in the most likely
posterior belief with a small angular ambiguity and front-back confusion in the posterior.
Plot (b) depicts, for Nix and Hohmann’s model, an accurate most probable posterior belief
with a small angular ambiguity and front-back confusion in the posterior.

52



;80;60;40;20 0 20 40 60 80
x, cm

;80;60;40;20
0

20

40

60

80

y,
cm

0.00

0.08

0.16

0.24

0.32

0.40

0.48

0.56

0.64

0.72

(a) Posterior probability, psmoo (li|y1,j ,y2,j).
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(b) Nix and Hohmann model’s posterior probab-
ility, psmoo (li|ILDj , IPDj).

Figure 2.12: An auditory location belief for my model contrasted to Nix and Hohmann’s
model. The probability psmoo (li|y1,j ,y2,j) (a) and comparative (Nix and Hohmann, 2006)
posterior belief psmoo (li|ILDj , IPDj) (b) over the location. The true location is indicated
by the white dot. Plot (a) depicts, for my model, a front-back error for the most probable
posterior belief with a mostly certain posterior. Plot (b) depicts, for Nix and Hohmann’s
model, a front-back error for the most probable posterior belief with a significant angular
ambiguity and front-back confusion in the posterior.

distributions for data sampled for all of the locations.

As can be seen from these plots there is a much greater certainty from my model in

each instance when compared with that of Nix and Hohmann’s. This could be caused by

a number of factors. First that my model is significantly better than theirs, possibly due

to the computation of the absolute sound level being discarded. Alternatively, I may have

over simplifying assumptions in my model causing the likelihood to become over-fit by the

learning algorithm (Hastie et al., 2001, Bishop, 1995). This is a point that I shall discuss

further in this chapters Discussion (Section 2.5).

2.3.3 Analysis of inferences

The smoothed posterior distributions in Figures 2.6-2.12 are characterised according to

the accuracy and errors of the most probable location l̂j and also for the shape of the

distribution itself. The most probable location for my model is defined as

l̂j = arg max
li,i∈[1,J ]

psmoo (li|y1,j,y2,j) , (2.44)

where psmoo (li|y1,j,y2,j) is the smoothed posterior over the n ∈ [1, Nval] indexed segments.

Similarly, the same is the case for Nix and Hohmann’s model,

l̂j = arg max
li,i∈[1,J ]

psmoo (li|ILDj , IPDj) , (2.45)
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where p (li|ILDj , IPDj) is the smoothed posterior over the n ∈ [1, Nval] indexed segments.

Firstly, the accuracy and errors for the Figures are characterised as,

1. an accurate most probable posterior belief, l̂i = lj, Figures 2.6(a), 2.6(b), 2.7(a),

2.8(a), 2.9(a) & 2.11(b),

2. a small angular error (with a small ranging error) in the most probable posterior

belief, roughly l̂i ≈ lj, Figures 2.7(b), 2.8(b) & 2.11(a),

3. a front-back error for the most probable posterior belief, roughly l̂i has an opposite

sign along the y-axis and a similar location on the x-axis to lj , Figures 2.10(a),

2.10(b), 2.12(a) & 2.12(b),

4. finally, a significant error, which is none of the previous errors, Figure 2.9(b).

Secondly, the posterior distributions shape is characterised for the Figures as,

1. almost total certainty in the posterior, roughly p
(
l̂i| . . .

)
> 0.8,

2. a mostly certain posterior, roughly p
(
l̂i| . . .

)
> 0.65, Figures 2.7(a), 2.9(a) & 2.12(a),

3. a significant angular ambiguity in the posterior, Figures 2.9(b) & 2.12(b),

4. an angular ambiguity in the posterior, Figure 2.6(b),

5. a small angular ambiguity in the posterior, Figures 2.7(b), 2.8(b), 2.10(a), 2.10(b),

2.11(a) & 2.11(b),

6. a front-back confusion in the posterior, Figures 2.9(b), 2.10(b), 2.11(a), 2.11(b) &

2.12(b),

7. a small front-back confusion in the posterior, Figures 2.6(a), 2.6(b), 2.7(b), 2.8(a),

2.8(b) & 2.10(a).

Both of these characterisations are tabulated for my model in Table 2.4, and for Nix and

Hohmann’s model in Table 2.5.

Looking at the tabulated results for my model in Table 2.4, we can see from the summed

certainties (rightmost column
∑

) that the posterior beliefs tend to be certain with any

ambiguities also tending to be small; of the 60 locations, there are 16 unique certain cases

and 38 unique accurate cases. The inference performance is very good; of the 60 locations

44 unique cases are accurate, 10 are slightly inaccurate and a few 6 have front-back errors.
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errors
accurate small angular front-back significant

∑

total certainty 2 0 0 0 2
certainty 14 1 2 0 17

large angular ambiguity 0 0 0 0 0
angular ambiguity 0 0 0 0 0

small angular ambiguity 14 9 2 0 25
front-back ambiguity 5 1 0 0 6

small front-back ambiguity 14 1 4 0 19

total inference performance 44 10 6 0 60

Table 2.4: Tabulation of the performances for my model compared to a description of its
posterior belief for every sound source location. The columns represent the performances
for my model. The rows represent the description of its posterior belief for every location.
The last row total inference performance is not a sum of each column. This is because each
inference is either accurate or makes one of a number of errors, but the posterior belief may
have multiple descriptions, for instance it may have both angular and front-back ambiguity.

error
accurate small angular front-back significant

∑

total certainty 0 0 0 0 0
certainty 0 0 0 0 0

large angular ambiguity 5 11 5 3 24
angular ambiguity 3 1 3 0 7

small angular ambiguity 17 6 6 0 29
front-back ambiguity 16 8 13 2 39

small front-back ambiguity 2 3 0 1 6

total inference performance 26 17 14 3 60

Table 2.5: Tabulation of the performances for Nix and Hohmann’s model compared to a
description of its posterior belief for every sound source location. The columns represent
the performances for my model. The rows represent the description of its posterior belief
for every location. The last row total inference performance is not a sum of each column.
This is because each inference is either accurate or makes one of a number of errors, but
the posterior belief may have multiple descriptions, for instance it may have both angular
and front-back ambiguity.
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(b) The mean square error from the smoothed
posterior belief.

Figure 2.13: The uncertainty and accuracy of auditory location beliefs. The Shannon
information, I [L|y1,j,y2,j ] for li ∈ L in plot (a), representing belief’s uncertainty. The
Cartesian mean square error of psmoo (li|y1,j ,y2,j) in plot (b), representing belief’s inverse
accuracy. The correlation of the mean square error to the Shannon information is −0.446.
As such this provides a visual summary of ambiguity (a) and error (b) for Table 2.4.

The more certain inferences are associated with accurate inferences; within the 19 cases of

certain inference there are 16 cases of inference accuracy.

A worrying problem is expressed in the cases where a few posterior certainties result in

front-back errors, for example Figure 2.10(a). Similarly, in both cases of front-back error,

the small angular ambiguity is coupled with a small front-back ambiguity, for example

Figure 2.11(a). This indicates that the error is due to a much more probable posterior

location causing a distraction from the actual location.

In contrast looking at the tabulated results for Nix and Hohmann’s model in Table 2.5,

we can see from the cases of the summed certainties (rightmost column
∑

) that the

posterior beliefs tend to have ambiguities in the larger categories; of the 60 locations there

are 47 unique cases that fit into both of the categories, large angular ambiguity and front-

back ambiguity. While the inference performance is good; of the 60 locations 26 unique

cases of being accurate, 17 of slight inaccuracy with 14 cases of front-back errors and a

few (3 cases) of significant errors. However, large ambiguities are associated with inference

errors; within 47 cases of ambiguity in the larger categories there are 30 cases of inference

error.

For my approach the tabulated results in Table 2.4 are visually summarised by the

mean square error (inverse of the accuracy) and the Shannon information (certainty) in

Figure 2.13. For Nix and Hohmann’s approach the tabulated results in Table 2.5 are

visually summarised by the mean square error (inverse of the accuracy) and the Shannon

information (certainty) in Figure 2.14. Both Figure 2.14 and Tables 2.4 & 2.5 indicate a
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Figure 2.14: The uncertainty and accuracy of auditory location beliefs for the Nix and
Hohmann (2006) approach. The Shannon information, I [L|ILDj , IPDj] for li ∈ L in
plot (a), representing belief’s uncertainty. The Cartesian mean square error of the Nix and
Hohmann (2006) comparison belief psmoo (li|ILDj, IPDj) in plot (b), representing belief’s
inverse accuracy. The correlation of the mean square error to the Shannon information
is −0.896. As such this provides a visual summary of ambiguity (a) and error (b) for
Table 2.5.

correlation between the mean square error and Shannon information, −0.886 for Nix and

Hohmann’s approach and −0.446 for my approach. The lower degree of correlation for my

approach appears to be due to the Shannon information being more noisy than that of Nix

and Hohmann’s, respectively Figure 2.13 (a) compared to Figure 2.14 (a). Though in Nix

and Hohmann’s case the regions to either side of the sensors display the greatest certainty

and lowest error.

2.4 The contribution of cues

To consider the influence of the various latent cues upon the model I apply a variation of

local weight analysis (Cook, 1986, Zhu and Lee, 2001) to the KL-divergence (Kullback and

Leibler, 1951) of the model over the latent parameters (Appendix E). I use this to compare

the two models Ωa and Ωb across both the inferred location and the hidden variables s̄ and

τ . My use of local weight analysis considers the curvature of this objective function to a

meta parameter r that operates upon an aspect of the model as indicated by Figure 2.15.

I shall sketch the important parts of this approach, though the full details are described

in Appendix E.

Local weight analysis makes use of the geometric curvature of the likelihood9 to consider

the unit weighting of a part of a model to perturbations. This indicates the influence of

9In Zhu and Lee (2001) the curvature was taken for the EM bound of the model’s likelihood.
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Figure 2.15: Graphical models depicting the perturbations of interest for the dependencies
in Figure 2.2. The importance of these dependencies is evaluated by local weight analysis
for the validation data set {y1,j,n,y2,j,n : n ∈ [1, Nval]} for each sampled location lj indexed
by j.
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a part of the model’s likelihood. The curvature for a curve, c (δ) = {u (δ) , v (δ)} on the

u, v-plane which is a function of δ, is defined as

C (δ) =

∣∣∣∂u
∂δ

∂2v
∂δ2 − ∂v

∂δ
∂2u
∂δ2

∣∣∣
((

∂u
∂δ

)2
+
(

∂v
∂δ

)2) 3
2

. (2.46)

I use as the curve c a quantity representing a functional measure of similarity of a probabil-

ity belief to its unperturbed probability. The measure of similarity between the point belief

of a model Ωa and the perturbation Ωb applied to itself is defined to be the KL-divergence

of these two distributions. The perturbation is defined as a function of δ, Ωb (δ), which

applies the analysis for the cases in Figure 2.15.

As I am considering the spatial dependence of the parameters (Figure 2.15), I consider

the curvature is the line formed by c (δ) =
{
δ, d̃j (δ)

}
– where, for a location lj indexed

by j, d̃j represents the approximated measure of dissimilarity between Ωa and Ωb (δ). The

curvature of c (δ) for the perturbation Ωb (δ) applied to the set of parameters Ω is

Cj (δ)|Ω←Ωb(δ)
=

∣∣∣∣
∂2d̃j

∂δ2

∣∣∣
Ω←Ωb(δ)

∣∣∣∣
(

1 +

(
∂d̃j

∂δ

∣∣∣
Ω←Ωb(δ)

)2
) 3

2

. (2.47)

To construct a measure of similarity d̃j I start from the joint posterior belief in the hidden

variables p (li, s, τ |x1,x2,Ω) and take the KL-divergence for the perturbation defined as

Ω← Ωb (δ) to the unperturbed Ω← Ωa which can be expressed as

DKL [p (li, s, τ |x1,x2,Ωa) ‖p (li, s, τ |x1,x2,Ωb (δ))] . (2.48)

As I wish to analyse the spatial importance of these parameters I take the KL-divergence

over this distribution for each true location lj , indexed by j. I do this by taking the

expectation of the KL-divergence in Equation 2.48 for the validation data sets10 sample

distribution,

p (x1,x2|lj) ≈
1

Nval

Nval∑

n=1

δ (x1 − y1,j,n) δ (x2 − y2,j,n) . (2.49)

Adding the quantity log p(x1,x2)
p(x1,x2)

to Equation 2.48 and averaging over Equation 2.49 gives

10The validation measurements at each sampled location lj are {y1,j,n,y2,j,n : n ∈ [1, Nval]}.
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an expectation of the spatial influence of a perturbation, which is

d̃j ≈ 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

log
p (y1,j,n,y2,j,n, li, s, τ |Ωa)

p (y1,j,n,y2,j,n, li, s, τ |Ωb)
. (2.50)

To compute the curvature Cj (δ) in Equation 2.47, requires the calculation of the first and

second derivatives of d̃j with respect to δ. As only Ωb is dependent upon the perturbation

by a factor δ then the derivatives of dj simplify to

∂d̃j

∂δ

∣∣∣∣∣
Ω←Ωb(δ)

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb (δ)) , (2.51)

and

∂2d̃j

∂δ2

∣∣∣∣∣
Ω←Ωb(δ)

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb (δ)) . (2.52)

The cases of perturbation are (λ1 ← δλ1), (λ2 ← δλ2), (λ1 ← δλ1, λ2 ← δλ2), (λ1 ←

δλ1, λ2 ← δ−1λ2), (λ1 ← δ−1λ1, λ2 ← δλ2) and (γτ ← δγτ ).11 The expected gradients

for each of these perturbations are calculated in Appendix E. Algorithm 2.3 defines the

algorithm to calculate the curvature for the perturbation λ1 ← δλ1, shown in Figure 2.2 (a).

The curvature is a measure of the sensitivity of the model’s belief to variation of the

parameter that the meta parameter δ affects. This allows me to show the importance of

individual perturbations to each of the cases indicated in Figure 2.15 – this represents

perturbations to the cues:

• λ1 or λ2 representing the monaural cues at either ear,

• λ1 &λ2 representing the average interaural loudness or the disparity in interaural
11The joint posterior belief can be factorised by Bayes law to be,

p (li, s, τ |y1,j,n,y2,j,n, Ωa) = p (li|y1,j,n,y2,j,n, Ωa) p (τ |li,y1,j,n, y2,j,n, Ωa)×
p (s|li, τ,y1,j,n,y2,j,n, Ωa) , .

Where p (li|y1,j,n, y2,j,n, Ωa) is defined by Equation 2.27, p (τ |li,y1,j,n,y2,j,n, Ωa) in Equation 2.25
and p (s|li, τ,y1,j,n,y2,j,n, Ωa) in Equation 2.20. As p (s|li, τ,y1,j,n,y2,j,n, Ωa) is a Gaussian, of mean

µs|τ,j,i,n = νs|i

“

λ1|i

ν1

y1,j,n +
λ2|i

ν2

D̂T
τ y2,j,n

”

and the variance νs|i = 1

1

η
+

λ2

1|i
ν1

+
λ2

2|i
ν2

, the integrals over s̄ in

Equations 2.51 & 2.52 are analytical.
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Algorithm 2.3 My curvature analysis for my sound source localisation model. The al-
gorithm used to compute the curvature of the KL-divergence between the joint belief
and the perturbed joint belief. The algorithm is calculated for the case (λ1 = δλ1), Fig-
ure 2.15 (a). Similar computations are made for the other cases by substituting the relevant
quantities for h′ (τ) and h′′ (τ) from Appendix E. These quantities are the gradients under
the expectations. This algorithm constructs the curvature for a set of Nval = 50 validation
data points {y1,j,n,y2,j,n : n ∈ [1, Nval]} for each of the locations lj indexed by j ∈ [1, J ].

for each i ∈ [1, J ],

calculate and save νs|i = 1
„

1
η
+

λ1(li)
2

ν1
+

λ2(li)
2

ν2

« ,

for each j ∈ [1, J ],

for each n ∈ [1, Nval],

for each i ∈ [1, J ],
calculate

p (τ |li,y1,j,n,y2,j,n) ∝ exp

{
λ1 (li)λ2 (li) νs|i

ν1ν2
y2,j,nD̂τy1,j,n

}
φ (τ ; γτ (li) , ωτ (li)) ,

calculate

p (li|y1,j,n,y2,j,n) ∝
∑

τ

p (y1,j,n,y2,j,n|λ1 (li) , λ2 (li) , τ)φ (τ ; γτ (li) , ωτ (li)) ,

normalise p (τ |li,y1,j,n,y2,j,n),

normalise p (li|y1,j,n,y2,j,n),

set δ = 1,

for each j ∈ [1, J ],

set d′j = 0 and d′′j = 0,

for each n ∈ [1, Nval],

set g′ = 0 and g′′ = 0,

for each i ∈ [1, J ],

h′ (τ) = λ1(li)
ν1

(
yT

1,j,nµs|τ,j,i,n − δλ1 (li)
(
µT

s|τ,j,i,n
µs|τ,j,i,n +Dxνs|i

))
,

h′′ (τ) = λ1(li)
2

ν1

(
µT

s|τ,j,i,n
µs|τ,j,i,n +Dxνs|i

)
,

g′ = p (li|y1,j,n,y2,j,n)
∑

τ p (τ |li,y1,j,n,y2,j,n)h′ (τ) + g′,
g′′ = p (li|y1,j,n,y2,j,n)

∑
τ p (τ |li,y1,j,n,y2,j,n)h′′ (τ) + g′′,

d′j = g′ + d′j ,

d′′j = g′′ + d′′j ,

calculate and save Cj =
|d′′j |

“

1+(d′j)
2

”

3
2
,
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(a) Monaural level, (λ1 ← δλ1).
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(b) Monaural level, (λ2 ← δλ2).
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(c) Binaural levels, (λ1 ← δλ1, λ2 ← δλ2).
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(d) Time disparity, (γτ ← δγτ ).

Figure 2.16: Curvature analysis of the perturbations of interest from Figure 2.15. The
average logarithmic curvature of the contribution for a sequence of measurements taken at
each location. Top left (λ1 ← δλ1), top right (λ2 ← δλ2), bottom left (λ1 ← δλ1, λ2 ← δλ2)
and bottom right (γτ ← δγτ ).

loudness

• and τ representing the interaural time disparity.

This cases are plotted in Figures 2.16 & 2.17.

Firstly, the curvatures of λ1 and λ2 (Figure 2.15 (a) and (b)) over space indicate

that a perturbation will influence most the ipsilateral inferences in the near field (Fig-

ure 2.16 (a) and (b) plots respectively λ1 and λ2). The combined curvature of λ1 and

λ2 (Figure 2.15 (c)) co-varying is greatest in the near field (Figure 2.16 (c)). These two

results underline the fact that the influence of the hidden variable s̄ as a perturbation of

the attenuations has the greatest influence, and hence curvature, when either of the λi’s

are highest.

Secondly, the curvature of γτ depicted in Figure 2.15 (d) indicates that a change in γτ

has the greatest impact upon both lateral regions (Figure 2.16 (d)). This is due to the

nature of γτ influence – The Gaussian likelihood p (τ |l) acts as a windowing function that
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Figure 2.17: Curvature analysis of the perturbations of interest from Figure 2.15 continued.
The average logarithmic curvature of the contribution for a sequence of measurements taken
at each location. Left

(
λ1 ← δλ1, λ2 ← δ−1λ2

)
and right

(
λ1 ← δ−1λ1, λ2 ← δλ2

)
. Both

curvatures seem to be identical.

moves away from the maximum of the cross-correlation term

exp

{
λ1 (l)λ2 (l) νs|l

ν1ν2
xT

2 D̂τx1

}
(2.53)

from Equation 2.6. Next, the influence of increasing and decreasing the λi’s relative to one

another (Figure 2.15 (c)) seems identical (Figure 2.17). These curvatures are dissimilar to

those in Figure 2.16, the medial regions to both the agents front and back tend to have

the greatest curvature reaching a minima in the lateral regions (Figure 2.17).

2.5 Discussion

2.5.1 Findings

I chose to compare my approach to that of Nix and Hohmann (2006) as their approach

represents the-state-of-the-art in the analysis of passive sound source localisation. They

define a non-parametric approach to naive Bayes sound source localisation published in

the well read Journal of The Acoustical Society of America. I start my discussion by

contrasting my model with the approach of Nix and Hohmann (2006), which similarly

models passive sound source localisation. The model of Nix and Hohmann only considers

the loudness processes as an ILD distribution. They showed that this ILD distribution is

location and noise dependent in a characteristic fashion (Figure 2.3). Constructing an ILD

likelihood for my model shows a qualitatively similar behaviour for noise dependence and

location (through the attenuations, Figure 2.4).
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My model considers the processes which cause the time and level cues as coinfluencial

and the influence of this coinfluence. In contrast these cues are treated as completely

separable by Nix and Hohmann (2006) in a naive Bayes approach. My model assigns a

high degree of importance to the interaction of the time disparity with the ILD as can

be seen in Equation 2.6. This is in agreement with Park et al. (1996), which found that

latency had a significant influence upon ILD encoding in LSO units. Similarly, for the

sound level perspective, these results suggest that the time disparity component of my

model associating time to location acts as a filter to consider correspondence of events in

the sound field.

In the results section (Section 2.3) of this chapter I have presented a comparison of

inference between my approach and Nix and Hohmann’s. This was through the smoothed

posterior beliefs and relative performances of my approach to theirs. Both approaches con-

struct location dependent likelihoods of the data. Their approach makes use of histograms

of ILD and ITD through interaural phase disparities (IPD), whereas, my approach models

the relationship between hidden variables using the graphical model in Figure 2.2.

My model considers the interactions between various latent quantities. This is in

marked contrast to the approach by Nix and Hohmann (2006) where a non-parametric

model is constructed leading only to the statement that the ILD and IPD play a role in

the inferences. Figures 2.6-2.12 show that my approach has a much greater certainty when

contrasted with that of Nix and Hohmann’s. This could be caused by my model retaining

the absolute sound level. A qualification of the indicated correlation between error (mean

square error) and certainty (Shannon information) from Tables 2.4 & 2.5 are respectively

−0.446 for my approach (Figure 2.13) and −0.886 for Nix and Hohmann’s approach (Fig-

ure 2.14). This indicates another cause to my model’s much greater certainty than Nix

and Hohmann’s approach. Though, an over simplification in my assumptions may have

caused the likelihood to become over-fit (Hastie et al., 2001, Bishop, 1995).

The analysis of curvature demonstrates that a perturbation applied to the monaural

cues (single attenuations) will influence inference most in the contralateral region. That

is because the magnitude of the attenuation is lowest when it is smoothest in Figure 2.19,

hence a perturbation has the greatest impact. To consider the impact upon localisation

the steepness of the attenuations λi|j should be considered between neighbouring lj’s.

The curvature for the covariation of the attenuations has a discordance depending

upon whether the variation is proportional (Figure 2.16 (c)) or inverse proportional (Fig-
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ure 2.17 (a) & (b)). For the case of (λ1 ← δλ1, λ2 ← δλ2), Figure 2.16 (c) depicts the

importance of the same co-influence, ie that increasing or decreasing both attenuations in

concert causes little impact. The curvature of the attenuations with one increasing and

one decreasing causes a marked effect. It shows the importance of the ratio of attenuations

to the medial regions both to the front and back, especially due to the magnitude of the

curvature, Figures 2.16 & 2.17. This is in marked contrast to proportionate variation and

like Macpherson and Middlebrooks (2002), little importance is assigned to monaural cues

in lateral localisation.

We have seen how a perturbation to time disparity has the least impact upon the medial

region as contrasted to the contralateral and ipsilateral regions, Figure 2.16 (d), which is

surprising. My model treats the time disparity as a filter. The portion p (τ |l) acts as a

window through the joint distribution and is equivalent to a convolved window to produce

the likelihood. If the window hides the correlation then it reduces any consequent belief in

that set of attenuations, resulting in a discordance. Hence a perturbation upon τ causes

the greatest change where the correlation is lowest.

Not all Bayesian formulations for sound source localisation apply modelling tools such

as graphical models to understand the rich interaction of the latent variables, Figure 2.2.

This can leave a number of unexpected assumptions hidden due to being implicit within

the framework. This is true of non-parametric methods such as Nix and Hohmann (2006),

who construct likelihoods from histograms of data corresponding to known sound source

locations. In contrast, graphical models provide great utility as a visual summary when

considering the often complex dependencies within a model.

2.5.2 Limitations

There are a number of limitations to the approach I have taken in this Chapter.

Firstly, in learning the parameters for the likelihood p (x1,x2|l) I have constructed the

problem as a fitting problem, learning the distribution p (x1,la ,x2,la |la). Whereas in my ana-

lysis I use the likelihood for the inference of the sound source’s location making the analysis

a hidden variable problem, using the distribution p (lb|x1,la ,x2,la) =
p(x1,la ,x2,la |lb)p(lb)

P

lb
p(x1,la ,x2,la |lb)p(lb)

.

In the analysis of models of passive sound source localisation such an approach is typical of

the field (Nix and Hohmann, 2006). It is impractical to approach learning the locations as

a hidden variable unless there is a further constraint upon it – The EM-algorithm in such a

case converges to a solution where all locations are equally likely for every data point. The

65



choice of a prior has a large impact upon this, by providing a way to break this ambiguity.

Handzel and Krishnaprasad (2002) make two suggestions for breaking such ambiguities:

1. by sensor placement or

2. head rotation.

These lead to concepts of active perception, how to choose a head rotation or other action

and more generally to the sensor placement problem – I consider this problem in Chapter 3.

Secondly, related to the hidden variable problem is the lack of constraints upon the

signals. In learning, this causes a problem of correspondence, which I define the corres-

pondence problem.12 With different types of signals and the co-influence of another sensory

modality this can be overcome, for instance vision (Beal et al., 2003, Hospedales et al.,

2007) which has an impact akin to the ventriloquist effect.13 Most recent work considers

explicit spectral components (Oldfield and Parker, 1984), which can be applied through

frequency channels in a naive Bayes manner. A more complete method could be used to

optimally mix the time and level cues for different frequency channels.

Finally, but partly related to the previous point is the treatment of the distribution of

attenuations as parameters, which is equivalent to an attenuation likelihood of

p (λi|l) = δ (λi − λi (l)) , (2.54)

a Dirac delta function. In Figure 2.18 I have plotted the likelihood p
(
x1,j ,x2,j |λ1, λ2, lj′

)

of the validation data for a selection of locations lj spread over the λ1, λ2-plane. Both plots

in Figure 2.18 represent the EM-algorithms learnt parameters λ1

(
lj′
)

and λ2

(
lj′
)

as filled

circles with the colours corresponding to the locations of the likelihoods as indicated in the

legend. Figure 2.18 (a) indicates the confusion which can cause inference errors with a high

posterior certainty. From Figure 2.18 (b) I hypothesise that the joint likelihood p (λ1, λ2|l)

can be constructed as a two dimensional Gaussian with a full covariance matrix, for example

12The problem of correspondence is a description of how the points on the hidden latent space (li)
correspond to individual measurements (x1,j , x2,j). The difficulty comes when there is no prior constraint
upon relating this latent space to individual measurements (i → j) resulting in a belief P (i|j) being
uniform across a set of measurements. Thus without constraints such as prior knowledge it is difficult for
a passive observer to learn that a measurement x1,j , x2,j corresponds to a particular point on the latent
space (li) rather than a different point li′ for all i′ 6= i.

13Generally the ventriloquist effect is the subsumption of one sensory mode by another. In this framing
it is the dominance of auditory localisation by visual speech cues using a dummy to confound localisation.
Stratton (1897) (cited in Blauert (1997)) who found that if the visual field was flipped upside down then an
auditory event was also inverted if it lay within the visual field. Interesting exceptions to this rule include
Ewert (1930) (cited in Blauert (1997)) who discovered that using a lens system rather than a prism as by
Stratton to distort the visual space that subjects could learn to form a direction despite a distorted visual
field.
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Figure 2.18: Distribution on the λ1, λ2 plane of the data likelihoods, illustrat-
ing the need for a joint distribution of p (λ1, λ2|l). The distribution of each
likelihood p

(
x1,j,n,x2,j,n|lj′ , λ1, λ2

)
is illustrated with a line of the full width

half maximum for the n’th measurement at a location lj , x1,j,n,x2,j,n. In
both plots the legend indicates the location lj′ which defines the distribution of
time disparities p

(
τ |lj′

)
over which τ is marginalised. The joint belief being,

p
(
x1,j,n,x2,j,n, τ |lj′ , λ1, λ2

)
= p (x1,j,n,x2,j,n|τ, λ1, λ2) p

(
τ |lj′

)
, and from marginalising out

τ gives, p
(
x1,j,n,x2,j,n|lj′ , λ1, λ2

)
=
´

dτ p
(
x1,j,n,x2,j,n, τ |lj′ , λ1, λ2

)
. Plot (a) takes the

data x1,j,n,x2,j,n for the location lj = {40cm, 40cm} and compares its likelihood over the
plane λ1, λ2 for the case of the correct location lj (j′ = j) and other incorrect locations lj′
(j′ 6= j). This indicates the confusion which causes inference errors in Figures 2.10-2.12 (a).
Plot (b) takes the data x1,j′,n,x2,j′,n at the locations lj′ and compares these likelihoods
over the plane of λ1, λ2 for each case in plot (a). We can see there is an overlap for a num-
ber of the source locations, which would suggest a greater degree of posterior uncertainty
for each plot (a) in Figures 2.6-2.9.
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Figure 2.19: Learnt parameters for each location using my model in Figure 2.2. The
EM-algorithm’s converged learned attenuations λ1 (l) (a), λ2 (l) (b), the ratio of these
attenuations λ1(l)

λ2(l) (c) and the time disparities γτ (l) (d).

p (λ1, λ2|l) = φ ({λ1, λ2};µλ (l) ,Σλ (l)). This would seem to represent the distribution and

shape of the likelihoods on the λ1, λ2-plane. The difficulty with such an extension is in

estimating the marginal likelihood p (x1,x2|l), as p (λ1, λ2|l) is far broader in the λ1, λ2-

plane than p (x1,x2|λ1, λ2, l) is for a given measurement.

2.5.3 Possible modifications

As seen in Figure 2.19 there is a smooth variation across the space of locations for both

λi’s and the ratio λ1
λ2

. The treatment of attenuation as a parameter, which is equivalent

to a likelihood of a Dirac delta, could have been the cause of any over certainty in my

results. I update the graphical model in Figure 2.2 (a), to account for the variation of the

likelihood on the λ1, λ2-plane in Figure 2.18, making λ1 and λ2 co-dependent. This causes

the computation of the likelihood p (x1,x2|l) to become a non-analytic integral

p (x̄1, x̄2|l) =

ˆ

dλ1dλ2 p (λ1, λ2|l)
∑

τ

p (x1,x2|λ1, λ2, τ) p (τ |l) , (2.55)
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Figure 2.20: The updated graphical model indicating the dependencies between measur-
ables, hidden variables and location. The latent variables are the attenuations λ1 and
λ2, and the relative time delay τ , the source signal s and its location l. The observable
variables are the sound measured at either ear x1 and x2.

=

ˆ

dλ1dλ2 p (λ1, λ2|l) p (x1,x2|l, λ1, λ2) . (2.56)

The integrals over λ1 and λ2 can be approached either by Gibbs sampling (MacKay, 2003)

or grid based methods – both approaches will slow down calculation of the likelihood sig-

nificantly. On the λ1, λ2-plane, in Figure 2.18, for each location l the distribution of like-

lihoods p (x1,x2|λ1, λ2, l) is far broader than the individual likelihoods p (x1,x2|λ1, λ2, l).

Therefore there will be a need for a large number of samples or a high grid resolution to

adequately represent the attenuations joint likelihood p (λ1, λ2|l).

Finally, a more general model will treat the location and source loudness as hidden

variables, though to do so and have the learnt space of locations have any geometric mean-

ing may require an approach similar to Beal et al. (2003), Hospedales and Vijayakumar

(2006), Hospedales et al. (2007) where location is defined as visual offset.14 A compelling

alternative could utilise another method of associating measurement changes to a choice

of action (Aytekin et al., 2008, Noe, 2004, Philipona et al., 2003, O’Regan and Noe, 2001,

Handzel and Krishnaprasad, 2002, Pettorossi et al., 2005), for instance head rotations.

14Beal et al. (2003), Hospedales and Vijayakumar (2006), Hospedales et al. (2007) constrain the problem
such that there is little or no spatial ambiguity in the auditory portion of the problem, they considered
only those portions of the world which are visible. These simplifications are for real time operation of the
algorithms. Though the simplifications do directly constrain their models inferences,

• there is no auditory ambiguity between the forward and rear,

• it can only consider a limited range of attenuations and loudness’s.
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2.5.4 Summary

I have conducted a Bayesian treatment of the spatial dependence of inference upon partic-

ular cues. I have compared the inference results of this treatment to the approach of Nix

and Hohmann (2006). My principle contribution has been to develop a Bayesian treatment

of the sound process for localisation in auditory cue fusion and how these cues influence

the inference of a sound source’s location.

I chose to compare my approach to that of Nix and Hohmann (2006) because their

approach represents the-state-of-the-art in the analysis of passive sound source localisation.

I have presented a comparison of inference, through the smoothed posterior beliefs and

relative performances of my approach to theirs. This indicated my approach has better

inference performance – consistently more certain and accurate, Tables 2.4 & 2.5.

I have also found that the attenuations are better represented as location dependent

variables (as a joint distribution) and not as parameters. I have extended the work of

Beal et al. (2003) concerning auditory localisation, by considering attenuation as location

dependent and using a GTM to represent the relationship between spatial location and

the hidden quantities (the attenuations and time disparities). I have applied a curvature

analysis to indicate the influence of the cue processes as depicted in Figure 2.15. This

methodology of curvature analysis can be applied to many different models to evaluate the

consequence that an individual latent variable, parameter or collection of these has upon

inference. However it is not applicable to non-parametric models. In this Chapter I have

applied curvature analysis to my model of passive sound source localisation.

As a consequence of the curvature analysis we see that the influence of ILD and ITD

upon sound source localisation is more complicated than usually assumed. The implication

ties in with Park et al. (1997) that ILD tuning in LSO neurons of the auditory mid-brain

have a non-linear dependence upon the loudness of perceived sound at either ear. Further

Park et al. (1996) found ITD had an influence upon these LSO units in the mid-brain. A

surprising feature of this coinfluence is that the curvature showed that each cue associated

with a latent variable (Figure 2.15) had definite regions of the azimuth plane where each

were most sensitive to perturbations. This suggests that there should be more coinfluences

between cues in the tuning of neural units.

This work has considered passive localisation as a filtering problem. Patently it is not.

The difficulty however is in considering the location as a hidden variable, due primarily

to the problem of correspondence. Current work by Aytekin et al. (2008) suggests that
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active observation could provide a framework for dealing with the correspondence problem.

I approach this question of active observation and specifically how best to select these

actions in the following Chapters.
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Chapter 3

An information measure for optimal

action selection

3.1 Introduction

A localising action is an action that takes a prior ambiguous belief in an inferred space

such as self location upon a map, and will take an action that will reduce the consequent

ambiguity in the belief after a measurement (posterior) by contrast to the prior belief. This

leads to the question, how are localising actions chosen efficiently when observations have

led to ambiguous and conflicting inferences?

There is little generality in our understanding of what makes different actions better

or worse for such fast or reflexive localisation. Reflexive localisation is the fast or short

time scale choice of action to rapidly increase an individual’s knowledge of the world.

Rapid inference in an uncertain world is critical for an individual’s survival. In the context

of sound source localisation a head rotation (Wallach, 1940, 1939) or pinnae movement

(Walker et al., 1998) is hypothesised to be used by an animal to apply a known effect upon

the sensory cues that such an individual measures with its ears (Aytekin et al., 2008). In

this context a head rotation is literally the animal rotating its head within the sound field

to cause a predictable change in the sensory cues it perceives (Wallach, 1940, 1939). Pinnae

oscillations1 are an oscillatory bobbing of the ears (the ears oscillating out of phase with

each other) that cause a predictable change to the animal’s perception of the perceived

sound field (Walker et al., 1998). This indicates the importance of controlled self motion

(or at least known (Pettorossi et al., 2005)) to an observer’s accuracy and certainty in its

1Pinnae oscillations are restricted to some genus’ of echo-locating bats.
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perceptions. However a typical limitation of such analyses of egocentric action perception

is the specificity of any explanation – These are typically specific to the problem domain

and do not form a fully general framework.2

In their work on robotics Cassandra et al. (1996) have shown that the expected en-

tropy of belief in self localisation can be combined with other action selection methods,

to concurrently generate a choice of action that actively reduces uncertainty in a filtered

latent state space if it becomes too high. A general depiction of this problem can be

seen in Figure 3.1. On average, taking a measurement will reduce inference ambiguity.

Equivalently this can be stated as, the tracked a posteriori belief will be expected to be-

come less ambiguous than its prior belief. Fox et al. (1998) continued to develop this and

applied it as a method of reducing ambiguities for a robot localising itself upon a map

(self localisation). Porta et al. (2003, 2005) further developed this concept by utilising

an appearance based templating method (Beal et al., 2003, Kristjansson et al., 2004) for

self localisation upon a previously constructed graph of positions representing the latent

state space (similar to a self-organising map (Rojas, 1996)). The state of the art for this

methodology is to select the optimal action when the ambiguity in an a priori belief has

passed a certain threshold. This optimal action is performed as an alternative to other

tasks which are typically exploitative of the individual’s knowledge rather than seeking to

add to that knowledge (Porta et al., 2003, 2005, Fox et al., 1998, Cassandra et al., 1996).

Vergassola et al. (2007a) have presented a similar approach but with the distinction that

the information measure is the complete policy for action selection. They utilised a model

of mating behaviour, where a male must locate and capture a female within a turbulent

odour plume (Murlis et al., 1992). Vergassola et al. define a method called Infotaxis which

chooses the action expected to minimise the entropy in belief over the hidden latent state

space of possible source positions. Infotaxis results in similar behaviour to the moth’s cast

and surge behaviours (Baker, 1986, Vickers and Baker, 1994) and has a similar form to

the best action selection framework of Cassandra et al. (1996), Fox et al. (1998). This

suggests that an approach similar to Infotaxis, utilising statistical entropy in belief, can be

generalised to construct a localising action selection framework (policy).

The approach of Vergassola et al. works in the tracking problem domain due to the

existence of a smooth attractor of belief around the target. Put simply, the closer the agent

2The active models expressed in Walker et al. (1998), Muller and Schnitzler (1999, 2000, 2001) are
limited to the sonar domains. Those models described in Baker (1986), Vickers and Baker (1994) are
limited to Chemotaxis and olfactory domains. The model described in Olsson et al. (2006, 2005a), Smith
(1997) is principally limited to visual problems.
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(a) The observers model L of the world Ltrue.

ltlt−1

xt

at

at

(b) Graphical model
of the Markov trans-
itions.

(c) Ambiguity in the observable X due to the mapping from
Ltrue to X. This can be dependent upon an action at.

Figure 3.1: A depiction of the active-perception inference problem. In plot (a), the ‘world’
has a true hidden latent state space Ltrue which represents some of its characteristics which
are useful for an ‘observer’ to know. The observer cannot perfectly know this true latent
state space Ltrue so must approximate it with L. The ‘observer’ interacts with the ‘world’
by its actions at ∈ A and its measurements xt ∈ X. In practice this is an iterative process
where an action at is taken and modifies the state of the world in a predictable manner.
I denote this change in plot (b) using a graphical model to depict the Markov transition,
namely that a prior state lt−1 and a choice of action at causes a transition to a state lt.
The choice of at can also impact the measurement process. This graphical model captures
the complete class of Markovian sensor placement problems. The new state lt can be
measured via the observable space X, which produces the measurement xi. Plot (c) shows
an example of 3 points on Ltrue mapping to X. Of these three selected points on Ltrue, two
map to the same point upon X and are therefore ambiguous. The observer will similarly
model a prediction of the transition from lt−1 to lt due to at, and then refine this prediction
conditional upon the taken measurement xt also dependent on at.
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gets to its target within the plume the more likely it is to detect a packet of pheromone

and hence its certainty will increase until it reaches a maximum at its target. If the reverse

were true then there would be no symmetry between the Infotaxis and Chemotaxis policies

leading to the observer fleeing the target.

The work in Porta et al. (2003, 2005), Fox et al. (1998), Cassandra et al. (1996) and

Vergassola et al. (2007a) provide an insight into more complex localisation tasks. For

example, if a consequence of an action is to capture a target then the best localisation

action naturally has the result of being exploitative. Hence, such informatic policies deal

implicitly with the exploitation versus exploration dilemma for such classes of problem.

Information based approaches provide a set of tools for the analysis of reflexive localising

actions. Examples of such actions include head rotations and pinnae movements3 of animals

for auditory localisation. The advantage of these frameworks are the inherent flexibility

and emergent consequence of the rules that can be elucidated when applied to particular

problems. These tools are not limited to any particular sensory cues or modes of perception.

Infomax approaches are typically costly in time complexity. In this Chapter I introduce

an alternative information measure with some useful properties. I will place it upon a

concrete footing and relate it to the Shannon information and mutual information. I will

show by application to a toy active sound source localisation problem that it will select

a near optimal action. I then experimentally compare my method to a state of the art

problem (Vergassola et al., 2007a) where an information based policy was presented. This

allows me to show the usefulness of my method to localisation problems when compared

to approaches such as Porta et al. (2003, 2005), Fox et al. (1998), Cassandra et al. (1996),

Vergassola et al. (2007a).

I have developed an alternative method to Shannon information and mutual informa-

tion for solving the sensor placement problem satisfactorily. I consider the mathematical

consequences of my solution in Section 3.4 and the algorithmic complexity in its estimation

when contrasted to Shannon information (Section 3.5). I then compare it to Infomax in

two problems:

• A toy perception problem related to the sound localisation problem from previous

chapter in Section 3.6.

• A state-of-the-art problem taken from the literature (Vergassola et al., 2007a) in

3Pinnae movements (oscillations) refer to the controlled movement of deformation of the auricle of the
ear (pinnae) for a given task, in this context to aid auditory perception; for example Walker et al. (1998)
provided an explanation of pinnae oscillation for echo-locating bats.
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Section 3.7.

3.2 Hypothesis of active perception

With reference to Figure 3.1, there exists an observable space X which is assumed to

be dependent upon a hidden latent state space L. Taking a prior belief on this hidden

latent state space at the (t− 1)th time as p (lt−1) for all lt−1 ∈ Lt−1,4 what is the optimal

approach to the selection of an action at? Both the latent dynamics p (lt|lt−1, at) and the

measurement process p (xt|lt, at) can be effected by an action at. The action at is selected

so as to maximise our expected knowledge of the latent space Lt for a future measurement

xt.5

The current state of the art is described as Infomax (Porta et al., 2003, 2005, Fox et al.,

1998, Cassandra et al., 1996, Vergassola et al., 2007a). It selects an action to maximise

the conditional Shannon information,

I [Lt|Xt, at] =

ˆ

dlt dxt p (xt, lt|at) log p (lt|xt, at) , (3.1)

which is the expectation of the Shannon information for the posterior belief. An agent will

then take the action expected to give the most informative a posteriori belief p (lt|xt, at).

These Infomax calculations can be slow and non-analytic. These calculations usu-

ally need approximation, for instance by approximating the posterior p (lt|xt, at). In this

chapter I describe a method for constructing a measure that scales more favourably, and

does not need to approximate the posterior belief. There is a class of problem that I show

has a lower algorithmic complexity to equivalent Infomax approaches.

Instead of looking directly at the posterior, maximising the expected posterior inform-

ation (conditional Shannon information, Equation 3.1), I consider the action to maximally

distinguish between the hypotheses of the latent space Lt for a measurement using the

likelihood p (xt|lt, at). The purpose is to construct the situation where the measurement

will distinguish most between the hypotheses on the latent space. I do this through the

KL-divergence (Cover and Thomas, 2006) between the likelihood of two latent hypotheses,

4A note on notation, the space Yt for the tth time step is equivalent to Y.
5 Typically this will tend to decrease the uncertainty from lt−1 to lt with a measurement of xt, however

it is not possible to prove that this is the case, see Isard and Blake (1998).
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lt and l′t,

DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
=

ˆ

dxt p (Xt|lt, at) log
p (Xt|lt, at)

p (Xt|l′t, at)
. (3.2)

This is a measure of the divergence between two distributions and as such it is not symmet-

ric for lt and l′t. It is not a metric quantity. Therefore it does not define a distance between

the two hypotheses. However, it does form a premetric quantity which can generate a

topology on the space of hypotheses of l′t given a hypothesis lt and an action at.

To account for the distribution of latent predictions hypotheses (p (lt|at) and p (l′t|at)),

the expectation over the latent predictions of the KL-divergence is taken

BXt|at

[
Lt‖L′t

]
=

ˆ

dlt dl
′
t p (lt|at) p

(
l′t|at

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
. (3.3)

This is the expected divergence between sections of the latent prediction. I shall show that

maximising this measure gives the choice of action that will cause a measurement xt to

distinguish most between the latent state predictions.

3.3 Sketch of Infomax

In this section I sketch some interpretations of the Infomax approach to action selection

through the use of various standard identities (Cover and Thomas, 2006 and Appendix I).

There are two closely related Infomax measures, conditional Shannon information and mu-

tual information. However, problems containing continuous measurement variables require

approximation when computing either of these two Infomax measures. This can be ap-

proached using either sampling (Porta et al., 2005), grid based methods or assuming the

form of the marginal distribution (Vergassola et al., 2007a). The choice of action is achieved

by conducting a brute force argument maximisation over all of the possible actions.

The conditional Shannon information for the posterior belief p (lt|xt, at) is the expected

posterior Shannon information

I [Lt|Xt, at] = Ep(xt|at) [I [Lt|xt, at]] , (3.4)

by Definition I.1. Where I [Lt|xt, at] is the Shannon information or negentropy of the

posterior belief for a measurement xt, the notation Ep(x|...) [f (x)] indicates the expecta-

tion of f (x) over the distribution p (x| . . .). The conditional Shannon information can be
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ltlt−1

xt

at

at

Figure 3.2: Graphical model of the action-perception model, repeated from Figure 3.1.
For a prior belief in some latent state space Lt−1, p (lt−1), is used to make a prediction
p (lt|at) of the current belief lt for a choice of action at using the likelihood p (lt|lt−1, at).
The measurement (xt ∈ Xt) process is modelled using the likelihood p (xt|lt, at) for a
current belief lt and choice of action at. This graphical model captures the complete
class of Markovian sensor placement problems except for those cases where an action is
constrained by the agent’s pose – Pose can be modelled as part of the latent space lt.
A common action at is used for both the dynamics of the latent state, p (lt|lt−1, at), and
the choice of measurements, p (xt|lt, at). I do this to simplify the notation as it avoids
notational collisions when the choice of actions is from a discrete set.
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separated by Bayes law into,

I [Lt|Xt, at] = I [Lt|at] + I [Xt|Lt, at]− I [Xt|at] , (3.5)

= I [Lt|at] + IMI [Xt; Lt|at] , (3.6)

by Theorem I.2 and Definition I.3. The conditional Shannon information is equivalent to

the mutual information and the Shannon information of the predicted latent prior p (lt|at).

There are two interpretations of maximising I [Lt|Xt, at]:

1. Maximising the expected predicted posterior Shannon information, or the average

“order” in the posterior (Equation 3.4).

2. Maximising the mutual information between the latent and measurement variables,

lt and xt subject to a penalisation of disorder in the predicted latent prior p (lt|at)

(Equation 3.6).

The mutual information is an Infomax measure that is used to assist image classification

and registration tasks (Pluim and Maintz, 2003, Maes et al., 2003, Meyer et al., 2006, Peng

et al., 2005).

Mutual information is a measure of the independence for the variables xt and lt given

a choice of action at,

IMI [Xt; Lt|at] = I [Xt|Lt, at]− I [Xt|at] ≡ I [Lt|Xt, at]− I [Lt|at] , (3.7)

= DKL [p (Xt,Lt|at) ‖p (Xt|at) p (Lt|at)] , (3.8)

which is Definition I.3. This is a measure that maximises the expected divergence between

the distributions p (Xt,Lt|at) and p (Xt|at) p (Lt|at). What this means is that maximising

the mutual information chooses an action at to maximise the co-dependence between xt

and lt and so the average divergence between the posterior p (lt|xt, at) and the prior p (lt|at)

is maximised, as

IMI [Xt; Lt|at] ≡ Ep(xt|at) [DKL [p (Lt|xt, at) ‖p (Lt|at)]] , (3.9)

which is Theorem I.4. This is a quantification of the expected information gain in taking

a measurement xt for a choice of action at between the predicted posterior p (lt|xt, at) and

the prior prediction p (lt|at).

79



(a) A choice of ‘bad’ action, a′
t. (b) A choice of ‘good’ action, at.

Figure 3.3: Cartoons of the consequence of “good” and “bad” localising actions. Plot (a)
depicts a “good” action at which causes the two hypotheses upon Lt−1 to be well separated
in Xt. By contrast, in plot (b), a “bad” action a′t does not lead to separation in Xt.
It is important to note that this is only a cartoon and I have implicitly assumed that
separation upon Lt leads to separation upon Xt, but this is not necessarily the case. It
cannot be assumed that greater separation upon Lt leads to greater separation in Xt, as the
distance between any set of hypotheses will be related to the projection of each according
to p (Xt|Lt). A measurement xt for a choice of action a′t (a) will find it hard to differentiate
between either hypothesis upon Lt. However for a choice at (b) will find it much easier as
the separation of hypotheses on Lt cause a similar separation on Xt.

Maximising IMI [Xt; Lt|at] is also finding a tradeoff between minimising I [Xt|at] and

maximising I [Xt|Lt, at], which intuitively is the trade off between

1. a smoother more distributed probability density function p (xt|at), and

2. a preference for sharper conditional distributions p (xt|lt, at), over the latent predic-

tion p (lt|at).

This indicates a preference for actions as sketched in Figure 3.3.

In non-linear models with a continuous measurement variable both Infomax quantities

have a degree of difficulty being computed due to the necessity of calculating or estimating

the marginal p (xt|at). This difficulty is dealt with in Vergassola et al. (2007a) by assuming

a simplified marginal distribution p (xt|at). Whereas Porta et al. (2005) construct the

Shannon information using a sample set to represent the space of X
⋃

L states.

In most cases the Shannon information and the mutual information are not easily

computable without careful approximation. These quantities form two related quantitative

measures of knowledge that an agent can expect to extract for a choice of action. Instead,

I apply a different measure to the problem of maximising an agent’s expected knowledge

(my hypothesis, Section 3.2) which is related to the mutual information. A formal proof

that maximising my method also maximises the Shannon information is not forthcoming,

nor is it likely except in special cases, Figures 3.4 & 3.5. Although, I will show in the
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(b) The information measure contrasted to the
bound using the prior belief in plot (a).
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(c) The predicted best actions posterior belief
using the prior belief in plot (a).
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Figure 3.4: A toy example of the best and worst selections of action for inference using
an idealised interaural level disparity (ILD). This depicts the selection of the best and
worst localising actions using a free field auditory model. Plot (a) depicts a prior belief in
location where the source’s position is indicated by a white filled triangle. In plot (b) the
two information measures (I [Xt|Lt, at] − I [Xt|at] and its bound BXt|at

[Lt‖L′t]) are com-
puted across a range of possible head rotations at. The contribution to I [Lt|Xt, at] of the
dynamic component I [Lt|at] is neglected as the evolution of lt is deterministic. It can be
clearly seen that both measures of action roughly agree which actions are good and bad.
The noise in the calculated I [Xt|Lt, at]−I [Xt|at] is due to I [Xt|at] being approximated by
Gibbs sampling. The integral I [Xt|at] =

´

dxt p (xt|at) log p (xt|at), using a sample set to
represent the expectation of the log probability over a sample from the belief p (xt|at). This

approximates, p (xt|at) ≈ 1
N

∑
i δ
(
xt − x(i)

t

)
, where the x(i)

t sample is drawn by sampling

first from the distribution p (lt|at) a set l(i)t , then for each l(i)t sampling a corresponding x(i)
t .

This gives an approximation to the integral as I [Xt|at] = 1
N

∑
i log p

(
x

(i)
t |at

)
. The expec-

ted best action (plot (c)) is clearly seen to collapse ambiguity. In contrast the expected
worst action (plot (d)) retains much of the ambiguity from the prior.
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(b) The information measure contrasted to the
bound using the prior belief in plot (a).
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(c) The predicted best actions posterior belief
using the prior belief in plot (a).
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(d) The predicted worst actions posterior belief
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Figure 3.5: A toy example of the best and worst selections of action for inference using
an idealised interaural time disparity (ITD). This depicts the selection of the best and
worst localising actions using a free field auditory model. Plot (a) depicts a prior belief in
location where the source’s position is indicated by a white filled triangle. In plot (b) the
two information measures (I [Xt|Lt, at] − I [Xt|at] and its bound BXt|at

[Lt‖L′t]) are com-
puted across a range of possible head rotations at. The contribution to I [Lt|Xt, at] of the
dynamic component I [Lt|at] is neglected as the evolution of lt is deterministic. It can be
clearly seen that both measures of action roughly agree which actions are good and bad.
The noise in the calculated I [Xt|Lt, at]−I [Xt|at] is due to I [Xt|at] being approximated by
Gibbs sampling. The integral I [Xt|at] =

´

dxt p (xt|at) log p (xt|at), using a sample set to
represent the expectation of the log probability over a sample from the belief p (xt|at). This

approximates, p (xt|at) ≈ 1
N

∑
i δ
(
xt − x(i)

t

)
, where the x(i)

t sample is drawn by sampling

first from the distribution p (lt|at) a set l(i)t , then for each l(i)t sampling a corresponding x(i)
t .

This gives an approximation to the integral as I [Xt|at] = 1
N

∑
i log p

(
x

(i)
t |at

)
. The expec-

ted best action (plot (c)) is clearly seen to collapse ambiguity. In contrast the expected
worst action (plot (d)) retains much of the ambiguity from the prior.
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following Section that my method will reduce the expected overlap between the predicted

posterior latent beliefs.

3.4 Properties of my hypothesis

In this section I evaluate the utility of my informatic measure (Section 3.2) and its rela-

tionship to the Infomax quantities described in the previous section.

Theorem 3.1. The measure

BXt|at

[
Lt‖L′t

]
=

ˆ

dlt dl
′
t p (lt|at) p

(
l′t|at

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
(3.10)

is the upper bound of the mutual information, IMI [Xt; Lt|at], ie

IMI [Xt; Lt|at] ≤ BXt|at

[
Lt‖L′t

]
. (3.11)

Proof. Starting with,

IMI [Xt; Lt|at] =

ˆ

dxt dlt p (xt, lt|at) log
p (xt, lt|at)

p (xt|at) p (lt|at)
, (3.12)

=

ˆ

dxt dlt p (xt, lt|at) log
p (xt|lt, at)

´

dl′t p (xt, l′t|at)
, (3.13)

≤
ˆ

dxt dlt dl
′
t p (xt, lt|at) p

(
l′t|at

)
log

p (xt|lt, at)

p (xt|l′t, at)
, (3.14)

=

ˆ

dlt dl
′
t p (lt|at) p

(
l′t|at

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
. (3.15)

Equation 3.15 is BXt|at
[Lt‖L′t], and thus completes the proof.6

Definition 3.2. (Axiom) The quantity

DKL [p (X) ‖q (X)] +DKL [q (X) ‖p (X)] (3.16)

is a symmetric measure of the dissimilarity between the two distributions p (x) and q (x),

and was originally defined in Kullback and Leibler (1951).

Theorem 3.3. The following equality holds,

BXt|at

[
Lt‖L′t

]
= IMI [Xt; Lt|at] + εB (3.17)

6Equation 3.14 is the upper bound of Equation 3.13 by Jensen’s inequality, Appendix G.
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where εB = DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)]. εB quantifies how much greater than the

mutual information the quantity BXt|at
[Lt‖L′t] is.

Proof. From the definition

BXt|at

[
Lt‖L′t

]
=

ˆ

dxt dlt dl
′
t p (lt|at) p

(
l′t|at

)
p (xt|lt, at) log

p (xt|lt, at)

p (xt|l′t, at)
, (3.18)

=

ˆ

dxt dlt p (xt, lt|at) log p (xt|lt, at)

−
ˆ

dxt dlt p (xt|at) p (lt|at) log p (xt|lt, at) , (3.19)

=

ˆ

dxt dlt p (xt, lt|at) log p (xt, lt|at)

−
ˆ

dxt dlt p (xt|at) p (lt|at) log p (xt, lt|at) , (3.20)

=

ˆ

dxt dlt p (xt, lt|at) log
p (xt, lt|at)

p (xt|at) p (lt|at)

−
ˆ

dxt dlt p (xt|at) p (lt|at) log
p (xt, lt|at)

p (xt|at) p (lt|at)
, (3.21)

= DKL [p (Xt,Lt|at) ‖p (Xt|at) p (Lt|at)]

+DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] , (3.22)

hence proving the identity, as DKL [p (Xt,Lt|at) ‖p (Xt|at) p (Lt|at)] = IMI [Xt; Lt|at].7

Remark 3.4. Theorem 3.1 follows from Theorem 3.3 as the KL-divergence is always non-

negative.

Remark 3.5. The mutual information is a measure of the statistical independence between

the two variables xt and lt, where IMI [Xt; Lt|at] = 0 indicates total independence of xt and

lt.

Theorem 3.6. DKL [p (X) p (L) ‖p (X,L)] is a measure of independence between the vari-

ables x and l, such that DKL [p (X) p (L) ‖p (X,L)] = 0 implies that x ∈ X and l ∈ L are

independent.

Proof. For x and l to be independent implies that p (x, l) = p (x) p (l) so,

DKL [p (X) p (L) ‖p (X,L) = p (X) p (L)] ≡
ˆ

dx dl p (x) p (l) log
p (x) p (l)

p (x) p (l)
, (3.23)

= 0, (3.24)

as limb→a log a
b
→ 0, thus completing the proof.

7Equation 3.20 is arrived at by the addition of I [Lt|at] − I [Lt|at] to Equation 3.19. Equation 3.21 is
arrived at by the addition of I [Lt|at] + I [Xt|at]− I [Lt|at]− I [Xt|at] to Equation 3.20.
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Remark 3.7. Conversely when DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] 6= 0 it indicates that

p (xt, lt|at) 6= p (xt|at) p (lt|at).

Remark 3.8. For a selected at, DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] can similarly be seen

as a measure of the independence of xt and lt similarly to IMI [Xt; Lt|at].

Theorem 3.9. The bound BXt|at
[Lt‖L′t] can be re-expressed as the quantity

BLt|at

[
Xt‖X′t

]
=

ˆ

dxt dx
′
t p (xt|at) p

(
x′t|at

)
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
. (3.25)

Proof. Starting from the definition

BXt|at

[
Lt‖L′t

]
=

ˆ

dlt dl
′
t p (lt|at) p

(
l′t|at

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
, (3.26)

=

ˆ

dxt dlt p (xt, lt|at) log p (xt|lt, at)

−
ˆ

dxt dlt p (xt|at) p (lt|at) log p (xt|lt, at) , (3.27)

=

ˆ

dxt dlt p (xt, lt|at) log p (lt|xt, at)

−
ˆ

dxt dlt p (xt|at) p (lt|at) log p (lt|xt, at) , (3.28)

=

ˆ

dlt dl
′
t p (xt|at) p

(
x′t|at

)
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
(3.29)

which completes the proof.8

I interpret the measure BXt|at
[Lt‖L′t] as maximising the average divergence between

the measurement likelihood of every pair of hypotheses. Using Theorem 3.9 shows that

this is the same as maximising the average divergence between projected posterior beliefs.

As a final statement from Theorem 3.6, I can state that like the mutual information

IMI [Xt; Lt|at], BXt|at
[Lt‖L′t] is a measure of statistical independence between xt and lt for

a given action at. However, BXt|at
[Lt‖L′t] differs from mutual information IMI [Xt; Lt|at] in

the consequent preferences for an at.

As BXt|at
[Lt‖L′t] is closely related to the mutual information by Theorem 3.3, we can

see it is a similar but distinct measure of the independence of the variables xt and lt for a

choice of at. Mutual information has been used in a number of Infomax applications such

as image registration (Pluim and Maintz, 2003, Maes et al., 2003, Meyer et al., 2006, Peng

et al., 2005).

8Equation 3.28 is arrived at by the addition of I [Lt|at]+I [Xt|at]−I [Lt|at]−I [Xt|at] to Equation 3.27.
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Theorem 3.10. That maximising BXt|at
[Lt‖L′t] will maximise the expected dissimilarity

between every pair of predicted latent posterior beliefs p (lt|xt, at) and p (lt|x′t, at). Every

possible pair of measurements are denoted as xt and x′t and have the respective weights

p (xt|at) and p (x′t|at).

Proof. Starting with Theorem 3.9,

2BXt|at

[
Lt‖L′t

]
= 2BLt|at

[
Xt‖X′t

]
, (3.30)

= 2

ˆ

dxt dx
′
t p (xt|at) p

(
x′t|at

)
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
, (3.31)

=

ˆ

dxt dx
′
t p (xt|at) p

(
x′t|at

) {
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]

+DKL

[
p
(
Lt|x′t, at

)
‖p (Lt|xt, at)

]}
, (3.32)

as
´

dxt p (xt|at) f (xt) =
´

dx′t p (x′t|at) f (x′t), Equation 3.32 leading to

BXt|at

[
Lt‖L′t

]
=

1

2

ˆ

dxt dx
′
t p (xt|at) p

(
x′t|at

) {
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]

+DKL

[
p
(
Lt|x′t, at

)
‖p (Lt|xt, at)

]}
, (3.33)

which by Definition 3.2 is half the average dissimilarity between the posterior beliefs over

every pair of measurements xt and x′t. Hence completing the proof.

Corollary 3.11. That

BXt|at

[
Lt‖L′t

]
=

1

2

ˆ

dlt dl
′
t p (lt|at) p

(
l′t|at

) {
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]

+DKL

[
p
(
Xt|l′t, at

)
‖p (Xt|lt, at)

]}
, (3.34)

is the average dissimilarity (Definition 3.2) between measurement likelihood beliefs over

every pair of latent hypotheses, lt and l′t.

Corollary 3.12. The quantity

1

2

ˆ

dxt dx
′
t p (xt|at) p

(
x′t|at

) {
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
+DKL

[
p
(
Lt|x′t, at

)
‖p (Lt|xt, at)

]}

(3.35)

can be defined instead as the expectation over the unique pairs of measurement {xt, x
′
t} to
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be

ˆ

d
{
xt, x

′
t

}
p
({
xt, x

′
t

}
|at

){
DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
+DKL

[
p
(
Lt|x′t, at

)
‖p (Lt|xt, at)

]}

(3.36)

where p ({xt, x
′
t} |at) = 1

2p (xt|at) p (x′t|at). Hence we can say that my measure is the aver-

age dissimilarity between every unique pair of predictions for the latent posterior belief.

Theorem 3.10 shows that the posterior bound BLt|at
[Xt‖X′t] may be re-expressed to be

an average of the addition of the two KL-divergences,

DKL

[
p (Lt|xt, at) ‖p

(
Lt|x′t, at

)]
+DKL

[
p
(
Lt|x′t, at

)
‖p (Lt|xt, at)

]
. (3.37)

Therefore this is a symmetric premetric measure of the dissimilarity between the distribu-

tions p (lt|xt, at) and p (lt|x′t, at). The consequence of this and Theorem 3.9 is to express

BXt|at
[Lt‖L′t] as maximising the average dissimilarity between latent posterior beliefs, giv-

ing the at expected to distinguish most between the predicted future measurements.

The preferences of my measure BXt|at
[Lt‖L′t] differs from that of Shannon information

I [Lt|Xt, at] and mutual information IMI [Xt; Lt|at]. Intuitively I [Lt|Xt, at] selects the action

with least uncertainty. In the simplest unimodal case this is typically the action expected to

produce the sharpest posterior p (lt|xt, at) from a measurement. In contrast BXt|at
[Lt‖L′t]

will by Theorem 3.10 select the action expected to maximise the dissimilarity between

each pair of predicted a posteriori beliefs, p (lt|xt, at) and p (lt|x′t, at) (averaged over the

expected measurements xt and x′t). This is equivalent to selecting an action at to maximise

the expected dissimilarity between each possible pair of posterior beliefs p (lt|xt, at) and

p (lt|x′t, at), weighted according to each unique pair of measurements xt and x′t by a factor

1
2p (xt|at) p (x′t|at). Hence, while I [Lt|Xt, at], IMI [Xt; Lt|at] and BXt|at

[Lt‖L′t] will select

at to increase our knowledge of the latent space Lt, the actions will differ due to each

measure’s description of useful knowledge.

To summarise:

• Maximising BXt|at
[Lt‖L′t] selects an action at to maximise the statistical dependence

between xt and lt. This is also equivalent to maximising over all possible pairs of

expected measurements the consequent posterior beliefs in lt (Theorem 3.10). This

indicates the measure will select an action that most distinguishes between all possible

posterior predictions.
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• Maximising IMI [Xt; Lt|at] selects the action at (maximising the mutual information)

that will maximise the dependence between the variables lt and xt, cf BXt|at
[Lt‖L′t].

By Theorem 3.3 this relates as

BXt|at

[
Lt‖L′t

]
= IMI [Xt; Lt|at] +DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] (3.38)

where the second term on the right-hand-side of the equation is also a measure of

the statistical dependence between xt and lt for a choice of action at.

• Maximising I [Lt|Xt, at] is the maximisation of the expected latent posterior’s Shan-

non information

I [Lt|Xt, at] = Ep(xt|at) [I [Lt|xt, at]] , (3.39)

by Theorem I.1. By Theorems I.2 & I.3, this quantity is related to the mutual

information as

I [Lt|Xt, at] = I [Lt|at] + IMI [Xt; Lt|at] . (3.40)

Due to Theorem 3.1, it is also related to my measure through the inequality

I [Lt|Xt, at] ≤ I [Lt|at] +BXt|at

[
Lt‖L′t

]
. (3.41)

From these properties I argue that BXt|at
[Lt‖L′t] is a reasonable substitute for Shannon

information or the mutual information as an information quantity. If other quantities are

being considered it can also be constructed as an upper bound. This allows it to include

terms to penalise other features of the belief model (Figure 3.2), such as I [Lt|at] which

penalises higher entropy in the latent prediction p (lt|at).

My measure is the average dissimilarity between possible posterior beliefs. This is not

necessarily the least entropy but the greatest dependence between measurable and latent

variable (respectively xt and lt conditional upon at).

3.5 Algorithmic complexity

Any analysis of the time complexity of an informatic measure is by necessity dependent

upon the agent’s model of the environment. In this section I will contrast the application

of my method to the problem defined in Porta et al. (2005), to which the authors applied

an Infomax algorithm. This will illustrate the time complexity of my approach compared
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to state-of-the-art Infomax solutions.

In Appendix K I have, for partially observable Markov decision processes (POMDPs),

contrasted the time complexity of Infomax (I [Lt|Xt, at]) to my measure (BXt|at
[Lt‖L′t]).

Both of these informatic quantities scale equivalently. This scaling is linear with the number

of latent states, measurement states and choices of action. However, for other problems

my method can be defined to scale more favourably.

An example of such a problem is based on Gaussian processes. Fox et al. (1998) con-

sidered the problem of mobile robot localisation with sonar and radar sensors. Porta et al.

(2005) applied Fox et al.’s Infomax method to a stereo vision robot. It is the algorithmic

time complexity of Porta et al.’s algorithm that I shall contrast with my method. Key

features of their agent’s model of the environment and its sensors were:

1. As this is a visual problem, the dimensionality of any raw measurement is large.

A PCA is applied to significantly reduce the dimensionality of any measurement

calculations, making a measurement x have Dx dimensions.

2. The union of the two complete sets representing the measurement and latent variables

is approximated by a joint set S ≈ X
⋃

L which is used to construct a sample Xat

and p (x|x0:t−1, a0:t) ∀x ∈ Xat for a latent prediction p (lt|x0:t−1, a0:t).

3. The latent prediction is constructed deterministically using the approach of Fox et al.

(1998). This leads to the approximation

p (lt|x0:t−1, a0:t) ≈
N∑

i=1

π
(i)
t−1|t−1δ

(
lt − l(i)t|t−1 (at)

)
, (3.42)

where l(i)
t|t−1 (at) = g

(
l
(i)
t−1|t−1, at

)
from the forward process, and g (·, ·) represents the

deterministic aspect of the latent state model p (lt|lt−1, at).

4. A further approximation made use of a nearest-neighbour approximation for each

point x in S. The likelihood of the latent point l is given by

p (x|l, at) =

J∑

j=1

λjφ (l; lj , σj) , (3.43)

with the collection {λj , lj , σj : j ∈ [1, J ]} corresponding to the measurement x from

the set S.

The general approach taken by Fox et al., to estimate the conditional Shannon information,
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is still state-of-the-art (Porta et al., 2005, Thrun et al., 2006). However, the details of a

particular system imposes the specific extensions necessary for computation (e.g. Porta

et al., 2005 and also the next Chapter for a chaotic dynamical system).

In Porta et al. (2005), the author’s construct I [Lt|Xt, at] by starting with a sample

set S =
{(
l(i),x(i)

)
: i ∈ [1, NS ]

}
. The implicit assumption is that the set S represents a

uniform sample. This is sampled to construct action dependent subsets of unique x(i)’s to

form a set X̃at with a distribution p
(
x(i)|at

)
being the sum of the weights for those samples

l
(j)
t|t−1 (at) closest to l(i). This leads to the Shannon information being approximated as

I [Lt|Xt, at] ≈
∑

x∈eXat

N∑

j=1

π
(i)
t−1|t−1p

(
x|l(j)

t|t−1 (at) , at

)
log

π
(j)
t|t−1p

(
x|l(j)

t|t−1 (at) , at

)

p (x|at)
. (3.44)

The marginal belief in a measurement is approximated as p (x|at) ≈
∑K

k=1 π
(ik)
t , with the

ik’s representing the particle indexes associated with the measurement x.

Porta et al.’s algorithm is illustrated in Algorithm 3.2 and has a time complexity of

O
(
NaN

2J
)
. This is because the size of Xat is at most N (the number of particles), and J

is the number of nearest-neighbours to compute the sensor model’s likelihood.

There are two methods for applying my method to Porta et al.’s problem. The first

is by not using the nearest neighbour approach. If the likelihood of the PCA data can be

represented as a Gaussian of the form

p (xt|lt, at) = φ (xt;µ (lt, at) ,Σ (lt, at)) , (3.45)

then the KL-divergence is both analytic and separable, Appendix D. To calculate my

approach, using the identities µ(i)
at = µ

(
l
(i)
t|t−1 (at)

)
and Σ

(i)
at = Σ

(
l
(i)
t|t−1 (at)

)
for compact-

ness, leads to the identity

BXt|at

[
Lt‖L′t

]
=

1

2

{
tr

[(
N∑

i=1

π
(i)
t−1|t−1 Σ(i)

at

−1

)(
N∑

i=1

π
(i)
t−1|t−1Σ

(i)
at

)]
−Dx

+tr

[(
N∑

i=1

π
(i)
t−1|t−1 µ

(i)
at

T
µ(i)

at

)(
N∑

i=1

π
(i)
t−1|t−1 Σ(i)

at

−1

)]

−2

(
N∑

i=1

π
(i)
t−1|t−1µ

(i)
at

)T ( N∑

i=1

π
(i)
t−1|t−1 Σ(i)

at

−1
µ(i)

at

)

+
N∑

i=1

π
(i)
t−1|t−1 µ

(i)
at

T
Σ(i)

at

−1
µ(i)

at

}
. (3.46)
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Algorithm 3.1 The generic particle filtering algorithm. This algorithm is a simplification
of the examples from Isard and Blake (1998), Murphy and Russell (2001), Doucet et al.
(2000).

1. Selection step,

• sample N samples from l
(i)
t−1|t−1 according to the importance distribution

π
(i)
t−1|t−1 to obtain N random samples l⋆(i)

t−1|t−1 approximating the distribution
p (lt|x0:t).

2. Sequential importance sampling step,

• for i ∈ [1, N ], sample

l
(i)
t|t−1 ∼ p

(
lt|l⋆(i)

0:t−1,x0:t−1, a0:t

)
,

• for i ∈ [1, N ], evaluate the importance of the proposed trajectory according to

π
(i)
t|t ∝ p

(
xt|l(i)t|t−1,x0:t−1, a0:t

)
,

where these weights are normalised,
∑N

i=1 π
(i)
t|t = 1.

3. Set t = t+ 1, and goto 1.

To contrast the expectation over the latent posterior belief of a function f (l) is

Ep(lt|x0:t,a0:t) [f (lt)] =
N∑

i=1

π
(i)
t|t f

(
l
(i)
t|t

)
,

similarly the expectation for the prediction is

Ep(lt|x0:t−1,a0:t) [f (lt)] =
N∑

i=1

π
(i)
t|t−1f

(
l
(i)
t|t−1

)
,

where π(i)
t|t−1 = 1

N
. The expectation for a prediction can be approximated deterministically

as

p (lt|x0:t−1, a0:t) = Ep(lt−1|x0:t−1,a0:t−1) [δ (lt − g (lt−1, at))] ,

≈
N∑

i=1

π
(i)
t−1|t−1δ

(
lt − l(i)t|t−1 (at)

)
,

for the dynamical process

lt ∼ g (lt−1, at) + wt

where wt represents a noise term indicating the uncertainty in the system states evolution
and g (lt−1, at) is the deterministic component of the system states evolution (Porta et al.,
2003, 2005, Fox et al., 1998).
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Algorithm 3.2 The algorithm used by Porta et al. to calculate Infomax for the robotic
situation as described in Porta et al. (2003, 2005). The sensor model is constructed as using
a nearest-neighbour based approach. This scales with a time complexity of O

(
NaN

2J
)
,

where there are N particles representing the latent belief p (lt|x0:t−1, a0:t), J basis functions
representing the nearest-neighbours, and Na possible choices of action at. The storage
scales as O (NSJ) where NS is the size of the set S, this represents number of the nearest-

neighbours. The latent belief is p (lt|x0:t−1, a0:t) ≈
∑N

i=1 π
(i)
t−1|t−1δ

(
l
(i)
t|t−1 (at)− lt

)
and is

constructed using Algorithm 3.1.
Calculation of Porta et al.’s method,

1. for each at,

Xat = Ø

(a) for each i ∈ [1, N ]

select (x, l) ∈ S with minimum
∥∥∥l − l(i)t|t−1 (at)

∥∥∥
i. if x ∈ Xat then

p (x|at) = p (x|at) + π
(i)
t−1|t−1

ii. else
Xat = Xat

⋃ {x}
p (x|at) = π

(i)
t−1|t−1

h = 0

(a) for each x ∈ Xat

i. for each i ∈ [1, N ]

g = π
(i)
t−1|t−1

∑J
j=1 λjφ

(
l
(i)
t|t−1 (at) ; lj , σj

)

h = h+ g log
(

g
p(x|at)

)

I [Lt|Xt, at] = h

2. select the at that maximises I [Lt|Xt, at].
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Algorithm 3.3 An implementation of my information measure (Equation 3.3) for the ro-
botic situation described in Porta et al. (2003, 2005). The observable variables are collected
together as xt, the hidden variables are collected as lt, and the decision variables are collec-
ted as at. This is if the measurement model is Gaussian, p (xt|lt, at) = φ (xt;µ (lt) ,Σ (lt)).
This scales as O

(
NaND

2
x

)
, where there are N particles representing the latent be-

lief p (lt|x0:t−1, a0:t) for Na possible choices of action at and Dx is the number of di-
mensions in the measurable xt. The storage scales as O

(
D2

x

)
. The latent belief is

p (lt|x0:t−1, a0:t) ≈
∑N

i=1 π
(i)
t−1|t−1δ

(
l
(i)
t|t−1 (at)− lt

)
and is constructed using Algorithm 3.1.

Calculation of my method,

1. for each at,

H1 = 0Dx×Dx, H2 = 0Dx×Dx , h3 = 0Dx , H4 = 0Dx×Dx , h5 = 0Dx , h6 = 0

(a) for each i ∈ [1, N ]

Σ−1 =
[
Σ
(
l
(i)
t|t−1 (at) , at

)]−1
, Σ = Σ

(
l
(i)
t|t−1 (at) , at

)
and µ = µ

(
l
(i)
t|t−1 (at) , at

)

H1 = H1 + π
(i)
t−1|t−1Σ

H2 = H2 + π
(i)
t−1|t−1Σ

−1

h3 = h3 + π
(i)
t−1|t−1µ

H4 = H4 + π
(i)
t−1|t−1µµ

T

h5 = h5 + π
(i)
t−1|t−1Σ

−1µ

h6 = h6 + π
(i)
t−1|t−1µ

T Σ−1µ

BXt|at
[Lt‖L′t] = 1

2

(
tr [H2H1]−Dx + tr [H4H2]− 2hT

3 h5 + h6

)

2. select the at that maximises BXt|at
[Lt‖L′t].
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Algorithm 3.4 An alternative implementation of my information measure (Equation 3.3)
for a robotic situation described in Porta et al. (2003, 2005). The sensor model is con-
structed as using a nearest-neighbour based approach. This scales as O

(
NaN

2J
)
, where

there are N particles representing the latent belief p (lt|x0:t−1, a0:t), J basis functions rep-
resenting the nearest-neighbours, and Na possible choices of action at. The storage scales
as O (NSJ) where NS is the size of the set S, this represents the number of the nearest-

neighbours. The latent belief is p (lt|x0:t−1, a0:t) ≈
∑N

i=1 π
(i)
t−1|t−1δ

(
l
(i)
t|t−1 (at)− lt

)
and is

constructed using Algorithm 3.1.
Calculation of my method,

1. for each at,

Xat = Ø

(a) for each i ∈ [1, N ]

select (x, l) ∈ S with minimum
∥∥∥l − l(i)t|t−1 (at)

∥∥∥
i. if x /∈ Xat then

Xat = Xat

⋃ {x}

h1 = 0, h2 = 0, h3 = 0

(a) for each x ∈ Xat

i. for each i ∈ [1, N ]

g =
∑J

j=1 λjφ
(
l
(i)
t|t−1

(at) ; lj , σj

)

h1 = h1 + π
(i)
t−1|t−1g log g

h2 = h2 + π
(i)
t−1|t−1g

h3 = h3 + π
(i)
t−1|t−1 log g

BXt|at
[Lt‖L′t] = h1 − h2h3

2. select the at that maximises BXt|at
[Lt‖L′t].

This quantity can be calculated using Algorithm 3.3, and scales as O (NaN) for a selection

of one from Na actions with N particles. The second is by using the nearest-neighbour

approach for calculating the likelihood p (x|lt, at). This gives a solution of the form,

BXt|at

[
Lt‖L′t

]
=

∑

x∈Xat

{
N∑

i=1

π
(i)
t−1|t−1p

(
x|l(i)

t|t−1, at

)
log p

(
x|l(i)

t|t−1, at

)
−

[
N∑

i=1

π
(i)
t−1|t−1p

(
x|l(i)

t|t−1, at

)][ N∑

i=1

π
(i)
t−1|t−1 log p

(
x|l(i)

t|t−1, at

)]}
(3.47)

where p (xt|lt, at) =
∑J

j=1 λjφ (lt; lj , σj), Equation 3.43. This quantity can be calculated

using Algorithm 3.4. This approach scales with a time complexity of O
(
NaN

2J
)

as the size

of Xat is at most N (the number of particles), and J is the number of nearest-neighbours

to compute the sensor model’s likelihood. Like Porta et al.’s Infomax algorithm, Al-

gorithm 3.4 can be modified such that it has a time complexity of O
(
NaN

2
)

by precom-
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puting the sensor model and replacing the latent point l(i)t (at) with the closest point in

the training set, making p (xt|lt, at) fully precomputed (Porta et al., 2005). If the number

of principle components is favourably small then, for my method, there is an advantage

in time complexity when comparing Algorithm 3.3 to Algorithm 3.4, these have respective

time complexities of O
(
NaND

2
x

)
and O

(
NaN

2
)

(or O
(
NaN

2J
)
).

More generally, if the likelihood p (xt|lt, at) produces an analytic KL-divergence, there

is a short cut in computing BXt|at
[Lt‖L′t]. This is due to the structure of the measurement

model p (xt|lt, at). For instance, if it is Gaussian or Poisson then the KL-divergence takes

the form

DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
= h0 (lt, at) +

K∑

k=1

hk (lt, at)hK+k

(
l′t, at

)
+ h2K+1

(
l′t, at

)
:

(3.48)

allowing my measure to be separated and optimised to give

BXt|at

[
Lt‖L′t

]
=

N∑

i=1

π
(i)
t|t−1

(
h0

(
l
(i)
t|t−1

, at

)
+ h2K+1

(
l
(i)
t|t−1

, at

))
+

K∑

k=1

[
N∑

i=1

π
(i)
t|t−1hk

(
l
(i)
t|t−1, at

)][ N∑

i=1

π
(i)
t|t−1hK+k

(
l
(i)
t|t−1, at

)]
, (3.49)

which scales as O (NaNK) for example Algorithm 3.3. For a Gaussian measurement model

K is a polynomial of the dimensionality of xt as the sum over K represents 2 matrix

multiplications. If the cost of computing the K variables is smaller than the cost of

computing N × J nearest neighbours it makes an approach like Algorithm 3.3 viable. In

contrast, if

DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
= g1 (lt, at) + g2

(
lt, l
′
t, at

)
+ g3 (lt, at) , (3.50)

then

BXt|at

[
Lt‖L′t

]
=

N∑

i=1

π
(i)
t|t−1

(
g1

(
l
(i)
t|t−1, at

)
+ g3

(
lt|t−1, at

))
+

N∑

i=1

N∑

i′=1

π
(i)
t|t−1π

(i′)
t|t−1g2

(
l
(i)
t|t−1, l

(i′)
t|t−1, at

)
(3.51)

which will scale as O
(
NaN

2
)

due to the double sum over i and i′. Therefore, if the

KL-divergence of the measurement processes model is analytic then any computation of

Equation 3.3 will scale as either O (NaN) or O
(
NaN

2
)
. This indicates a potential com-
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(a) ILD isoclines.

(i) (ii)

(iii) (iv)

(b) Head rotations, (i) and (ii) are
world centric, (iii) and (iv) are observer
centric.

Figure 3.6: Cartoons indicating a toy auditory head rotation problem. A contour line plot
(plot (a)) of the free-field interaural level disparity (ILD) with respect to the latent space,
l = {lx, ly}. A figure (plot (b)) indicating the shift in perspective caused by a head rotation
and the consequent impact with respect to the latent space, l, for the observer (plot (b,iii)
to plot (b,iv)) and observing the observer (plot (b,i) to plot (b,ii)).

putational advantage when compared to sampling approaches, for instance Porta et al.

(2005). Though this may be lost due to the addition of other penalisation terms such as

I [Lt|x0:t, a0:t] in the next section.

3.6 Simulated head rotations for active sound source local-

isation

In this section I apply my action selection framework to a concrete but simplified non-linear

case. I approach this using a free-field simulation of sound propagation with an observable

space of interaural level disparity9 (Figure 3.6 (a)), and with the possible actions only being

head rotations (Pettorossi et al., 2005). I selected this problem as my illustrative example

due to my familiarity with sound perception and the ease with which non-practitioners

can understand it. The tracked posterior belief is computed using a particle filter (Doucet

et al., 2001, Ristic et al., 2004c). While this case is highly constrained, it is still a concrete

example of the applicability of my framework to a localisation problem.

The model is constructed according to two distributions that are needed for the Bayesian

filtering (Algorithm 3.1 and Appendix H). Firstly from the distribution,

p (lt|lt−1, at) = φ (lt;R (at) lt−1, σl) , (3.52)

9Interaural level disparity is defined as the difference in perceived loudness between either ear for a
sound event.
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(a) t = 1. (b) t = 2.

(c) t = 3. (d) t = 4.

(e) t = 5. (f) t = 6.

Figure 3.7: Contours of egocentric location belief for a sequence of randomly selected
actions. The hue in the above figures indicates the belief p (lt|x1:t, a1:t). The true location
is indicated by a triangle outlined with black and white filled. The initial prior p (l0) is
uniform.
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where R (at) is a rotation matrix defined by the action at (which is an angle) as depicted

in Figure 3.6 (b) and a variance representing the model’s uncertainty in the dynamics of

σl = 1
4 . Secondly the distribution,

p (xt|lt) = φ (xt; f (lt) , σx) , (3.53)

where the variance represents uncertainty in the mapping σx = 1
1000 and the mapping

f (lt) represents the calculated difference in loudness between the ears. The level disparity

is represented as,

f (lt) = log d

(
lt,

[
1

2
w, 0

])
− log d

(
lt,

[
−1

2
w, 0

])
, (3.54)

for a unit head width (w = 1) depicted in Figure 3.6 (a). The function d (·, ·) is the

Euclidian distance. I use these to define a particle filter according to Algorithm 3.1 using

N = 400 particles.

My proposed information policy BXt|at
[Lt‖L′t] (+I [Lt|x0:t−1, a0:t]) is constructed with

an implementation of the Shannon information. These two policies are also compared

to a uniform random policy, which acts as a minimum standard against which the other

policies must be better. If a policy cannot outperform a random policy which has little

computation cost then it has no utility.

The possible actions are selected from a set of actions, at ∈
{
π
(

j
8 − 1

)3
: j = 0, . . . , 8

}
.

This results in a bias toward little or no action if the likelihood of the action is uniformly

distributed. So the j’th action a(j)
t = π

(
j
8 − 1

)3
is selected from one of the following three

policies:

1. A random action policy where the likelihood of each action being selected is equal.

An example trajectory of belief can be seen in Figure 3.7. This policy is included as

a base comparison against which the other policies must perform better.

2. Through Infomax by selecting the j’th action which maximises the Shannon inform-

ation, I
[
Lt|Xt, a

(j)
t , x0:t−1, a1:t−1

]
. This represents the Infomax comparison and is

by necessity approximated, see Algorithm 3.5.

3. Through selecting the j’th action which maximises my policy measure construc-

ted as the upper bound to the Shannon information, I
[
Lt|a(j)

t , x0:t−1, a1:t−1

]
+

B
Xt|a

(j)
t

[Lt‖L′t], see Algorithm 3.5.
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Algorithm 3.5 Calculation of Infomax for active sound source localisation using a
particle filter defined in Algorithm 3.1. Infomax is represented by the conditional
Shannon information I [Lt|Xt, x0:t−1, a1:t]. This utilises Gibbs sampling for the in-
formation quantities I [Lt|x0:t−1, a1:t] and I [Xt|x0:t−1, a1:t]. I use the latent prior be-

lief p (lt−1|x0:t−1, a1:t−1) =
∑N

i=1 π
(i)
t−1|t−1δ

(
l
(i)
t−1|t−1 − lt−1

)
and the latent prediction

p (lt|x0:t−1, a1:t) =
∑N

i=1 π
(i)
t|t−1δ

(
l
(i)
t|t−1 (at)− lt

)
, π

(i)
t|t−1 = π

(i)
t−1|t−1 and l

(i)
t|t−1 (at) ∼

p
(
lt|l(i)t−1|t−1, at

)
. This algorithm scales as O

(
NaN

2
)
.

To calculate the Shannon information,

1. for each at

(a) for each i′ ∈ [1, N ]

select an i⋆ according to the probabilities π(i)
t|t−1

sample a point x(j)
t|t−1 (at) ∼ φ

(
xt; f

(
l
(i⋆)
t|t−1 (at)

)
, σx

)

h0 = 0, h1 = 0 and h2 = 0

(a) for each i′ ∈ [1, N ]

g0 = 0, g1 = 0

i. for each i ∈ [1, N ]

g2 = φ
(
x

(i′)
t|t−1 (at) ; f

(
l
(i)
t|t−1 (at)

)
, σx

)

g0 = g0 + π
(i)
t−1|t−1φ

(
l
(i′)
t|t−1 (at) ;R (at) l

(i)
t−1|t−1, σl

)

h1 = h1 +
π

(i)
t|t−1

N
log g2

g1 = g1 + π
(i)
t|t−1g2

h0 = h0 + π
(j)
t|t−1 log g0

h2 = h2 + 1
N
g1 log g1

I [Lt|Xt, at] = h0 + h1 − h2

2. select the at that maximises I [Lt|Xt, at].
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Algorithm 3.6 An implementation of my information measure (Equation 3.3) for act-
ive sound source localisation using a particle filter defined according to Algorithm 3.1.
This utilises Gibbs sampling for the information quantity I [Lt|x0:t−1, a1:t]. I use the

latent prior belief p (lt−1|x0:t−1, a1:t−1) =
∑N

i=1 π
(i)
t−1|t−1δ

(
l
(i)
t−1|t−1 − lt−1

)
and the lat-

ent prediction p (lt|x0:t−1, a1:t) =
∑N

i=1 π
(i)
t|t−1δ

(
l
(i)
t|t−1 (at)− lt

)
, π(i)

t|t−1 = π
(i)
t−1|t−1 and

l
(i)
t|t−1 (at) ∼ p

(
lt|l(i)t−1|t−1, at

)
. This algorithm scales as O

(
NaN

2
)
, though if the quantity

I [Lt|x0:t−1, a1:t] were neglected it would be equivalent to Algorithm 3.3 and hence scale as
O (NaN).
Calculation of my method,

1. for each at,

h0 = 0, h1 = 0, h2 = 0, h3 = 0, h4 = 0, h5 = 0, h6 = 0

(a) for each i ∈ [1, N ]

h0 = h0 + π
(i)
t|t−1 log

(∑N
i′=1 π

(i)
t−1|t−1φ

(
l
(i′)
t|t−1 (at) ;R (at) l

(i)
t−1|t−1, σl

))

h1 = h1 + σ
(
l
(i)
t|t−1 (at)

)
π

(i)
t|t−1

h2 = h2 + 1

σ
“

l
(i)
t|t−1

(at)
”π

(i)
t|t−1

h3 = h3 + f
(
l
(i)
t|t−1 (at)

)
π

(i)
t|t−1

h4 = h4 + f
(
l
(i)
t|t−1 (at)

)2
π

(i)
t|t−1

h5 = h5 +
f

“

l
(i)
t|t−1

(at)
”

σ
“

l
(i)
t|t−1

(at)
”π

(i)
t|t−1

h6 = h6 +
f

“

l
(i)
t|t−1

(at)
”2

σ
“

l
(i)
t|t−1

(at)
” π

(i)
t|t−1

I [Lt|at] +BXt|at
[Lt‖L′t] = h0 + 1

2 (h1h2 − 1 + h3h4 − 2h4h5 + h6)

2. select the at that maximises I [Lt|at] +BXt|at
[Lt‖L′t].
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(a) The tracked posterior Shannon information, cf

certainty.
(b) The tracked posterior root mean square error,
cf inverse accuracy.

Figure 3.8: Time course plots indicating that inference certainty increases in the same
fashion as inference accuracy. Plots of the tracked measured Shannon information, plot
(a), and the tracked root mean square error, plot (b), for multiple reruns of each action
policy: random action selection, conditional Shannon information I [Lt|Xt, x0:t−1, a1:t] and
the bound upon the conditional Shannon information I [Lt|x0:t−1, a1:t] + BXt|at

[Lt‖L′t].
This indicates that certainty (measured Shannon information) increases at the same rate
as accuracy (root mean square error). The average correlation between the measured
Shannon information and root mean square error for each policy, for the random action
selection is −0.950, the maximum conditional Shannon information I [Lt|Xt, x0:t−1, a1:t] is
−0.909, and the bound upon this information content I [Lt|x0:t−1, a1:t] + BXt|at

[Lt‖L′t] is
−0.914. This shows that in this system, certainty (the measured Shannon information) is
strongly correlated with accuracy (the inverse root mean square error).

These policies are evaluated by stepping one iteration forward through the model for each

possible choice of action. I consider the behaviour of each of these informatic policies.

Then construct stochastic alternatives to these from the behaviour. Finally, I evaluate the

utility of thee stochastic alternatives in the same way as the informatic policies.

The process of evaluating each policy starts with the selection of a point ltrue
t−1 repres-

enting the true state of the world. For each action a(j)
t I simulate a step forward in time by

generating a new true state as ltrue
t = R

(
a

(j)
t

)
ltrue
t−1 . This in turn is used to generate a meas-

urement from the cue space x(j)
t = f

(
ltrue
t

)
. I take the prior belief p (lt−1|x0:t−1, a1:t−1) and

constructing the tracked posterior p
(
lt|x(j)

t , a
(j)
t , x0:t−1, a1:t−1

)
to evaluate the measured

Shannon information I
[
Lt|x(j)

t , a
(j)
t , x0:t−1, a1:t−1

]
(a measure of certainty) and the root

mean square error
√

E
p

“

lt|x
(j)
t ,a

(j)
t ,x0:t−1,a1:t−1

”

[
(lt − ltrue

t )2
]

(an inverse measure of accur-

acy). This allows a comparison for each possible action a(j)
t to evaluate if the policy’s chosen

action is in fact the best or simply acceptable according to these measures of certainty and

accuracy.
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(a) The change between iterations of the tracked
posterior Shannon information, cf change in cer-
tainty.

(b) The change between iterations of the tracked
posterior root mean square error, cf change in in-
verse accuracy.

Figure 3.9: Time course plots of the change in inference certainty and inference accuracy.
Plots of the change in the tracked measured Shannon information plot (a) and change
in the tracked root mean square error plot (b) of the different action policies with mul-
tiple reruns. Quantifying the number of times that the maximum change in certainty (the
measured Shannon information) and inverse accuracy (the root mean square error) occurs
for the first action a1 of each policy is: 6/12 for the random policy, 11/12 for the condi-
tional Shannon information (Infomax), and 11/12 for the upper bound upon the conditional
Shannon information.

(a) Correlation of the Shannon information (cer-
tainty) and the root mean square error (inverse ac-
curacy).

(b) Correlation of the change in Shannon informa-
tion and the change in root mean square error, cf

change in certainty compared to the change in in-
verse accuracy.

Figure 3.10: Scatter plots indicating the correlation of accuracy with certainty, and the
correlation of the equivalent changes. The tracked measured Shannon information repres-
ents the certainty. The tracked root mean square error represents the inverse accuracy.
All policies result in a bulk of certainty (measured Shannon information) and accuracy
(inverse root mean square error) and changes in these between iterations.
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3.6.1 Analysis

It can be seen when considering the actual performance of each policy across multiple

reruns (Figure 3.8) that there is a noisy bound upon the certainty (measured Shannon

information) and accuracy (inverse root mean square error). Overall the random policy is

the worst at guaranteeing an increase in the certainty and accuracy, Figure 3.9. This is to

be expected as the random policy has no explicit mechanism to avoid the worst localising

actions.

The correlation between accuracy and certainty is depicted in Figure 3.10. This shows

a propensity for the information policies to hold tracked posterior beliefs in a region of

high accuracy and certainty (Figure 3.8). The changes have a propensity to stabilise, see

Figure 3.9. This indicates that the best actions cause a larger shift in both accuracy and

certainty.

The information based policies each consistently collapse the uncertainty and con-

sequently increases the accuracy of the tracked posterior for the first chosen action a1.

This corresponds to a front-back ambiguous belief as can be seen in Figure 3.7 (a-d) (for

instance in Figures 2.6-2.9). Hence, the information policies will “seek” to collapse any

ambiguity in the latent space at the earliest opportunity, Figures 3.8 & 3.9. Out of a

total of 12 runs for each policy the number of times the maximum change in certainty

and accuracy occurs for the first action is 6 for the random policy, 11 for the conditional

Shannon information, and 11 for the bound upon the conditional Shannon information.

This indicates that when a gain in certainty and accuracy can be made, either information

policy is consistent in selecting an action that provides such a gain, though not necessarily

the best.

The importance of the prior accuracy and certainty upon the variability of the possible

accuracies and certainties across the choices of action is indicated in Figure 3.11. The

covariance between the single step look ahead accuracies and certainties is contrasted to

the degree of prior certainty (Figure 3.11 (a)) and accuracy (Figure 3.11 (b)). The degree of

covariance is dependent upon the level of prior ambiguity. The greater the prior ambiguity

the greater the correlation is between the look ahead accuracies and certainties. Finally,

when the prior ambiguity has receded these covariances approach zero. This suggests

that once the tracked posterior has localised, the differences in projected certainties and

accuracies over the possible actions are dominated by the noise in the data. The result of
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(a) Relation of the covariance between the Shannon
information and the root mean square error, to the
corresponding time steps Shannon information of
the prior belief (prior certainty).

(b) Relation of the covariance between the Shannon
information and the root mean square error, to the
corresponding time steps root mean square error of
the prior belief (prior inverse accuracy).

Figure 3.11: Scatter plots indicating covariation of accuracy with certainty, and covariation
of a one-step look ahead accuracy with certainty. The prior measured Shannon informa-
tion I [Lt−1|x0:t−1, a1:t−1], in plot (a), represents the prior certainty. The prior root mean

square error

√
Ep(lt−1|x0:t−1,a1:t−1)

[(
lt−1 − ltrue

t−1

)2]
, in plot (b), represents the prior inverse

accuracy. Both plots consider the covariance between the look ahead measured condi-

tional Shannon information I
[
Lt|x(j)

t , a
(j)
t , x0:t−1, a1:t−1

]
and the root mean square error

√
E

p
“

lt|x
(j)
t ,a

(j)
t ,x0:t−1,a1:t−1

”

[
(lt − ltrue

t )
2
]

using the tracked priors p (lt−1|x0:t−1, a1:t−1) from

Figure 3.8 for comparison between actions.

greater covariance between look ahead accuracy and certainty10 show that there is also a

larger variance between the consequent ambiguities for the choices of action.

Similarly, the conditional Shannon information (Equation 3.5) or its bound (Equa-

tion 3.3) actually select for more accurate and certain future posterior beliefs p (lt|x0:t, a1:t)

(Figure 3.12). This indicates that a choice of action according to either information policy

will select better actions according to both accuracy and certainty.

10The look ahead accuracy and certainty denote a simulated single step forward for the system to
compare across the possible choices of action; essentially taking a single step in the simulation and rolling
back the system to take a different action and again taking a single step in the simulation.

prior situations policy certainty accuracy

all I [Lt|x0:t−1, a1:t] +BXt|at
[Lt‖L′t] 6.79 6.79

only ambiguous I [Lt|x0:t−1, a1:t] +BXt|at
[Lt‖L′t] 7.14 7.29

all I [Lt|Xt, x0:t−1, a1:t] 6.87 6.72

only ambiguous I [Lt|Xt, x0:t−1, a1:t] 6.88 6.82

Table 3.1: The tabulated performance of information policies for all situation and ambigu-
ous situations. The area under each ROC in Figures 3.12 & 3.13 can be used to indicate
the performance of each policy, for the selection of all prior cases (Figure 3.12) in contrast
to only those cases that are ambiguous (Figure 3.13). A perfect action selection policy
would be 8.5, in contrast the random policy would be 4.5.
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(a) The Shannon information. (b) The upper bound of the Shannon information.

Figure 3.12: The receiver operator curves (ROC) illustrating performance of the informa-
tion measures ordering of actions in all situations. The ROCs depict when the predicted
best action is amongst either information policies best n alternatives. These ROCs are
for each policy and show the probability that the best action is taken, according to ac-
curacy and certainty – this is for the conditional Shannon information in plot (a) and my
approach in plot (b). The expected result of a uniform random policy is indicated by the
black dashed line. The best action is judged by the one-step look ahead simulations. The
certainty is proportional to the look ahead measured Shannon information. The accuracy
is proportional to the look ahead inverse root mean square error.

(a) The Shannon information. (b) The upper bound of the Shannon information.

Figure 3.13: The receiver operator curves (ROC) illustrating performance of the inform-
ation measures ordering of actions in only the most uncertain and ambiguous situations.
The ROC for the most ambiguous prior beliefs depict when the predicted best action is
amongst either information policies best n alternatives. These ROCs are for each policy
and show the probability that the best action is taken, according to accuracy and certainty
– this is for the conditional Shannon information in plot (a) and my approach in plot (b).
The expected result of a uniform random policy is indicated by the black dashed line. The
best action is judged by the one-step look ahead simulations. The certainty is proportional
to the look ahead measured Shannon information. The accuracy is proportional to the
look ahead inverse root mean square error.
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Figure 3.14: Histograms of the two informatic policies showing the selection of actions.

The performance for all cases of these two information policies in selecting the best

action is indicated by the receiver operating curves (ROC) Figure 3.12. This indicates

that although the best action is not guaranteed for either policy, it or the next best has a

greater than even chance of selection. This is more pronounced (Table 3.1) when only the

most ambiguous prior beliefs are considered, see Figure 3.13. In comparing Figure 3.13 (b)

and Figure 3.13 (a) we can see that where the a priori belief is ambiguous the ROC for my

policy (Algorithm 3.6) is smoother than the Shannon information policy (Algorithm 3.5).

I account for this as the distribution of N samples in Algorithm 3.5 must represent a more

complex p
(
xt|a(j)

t , x0:t−1, a1:t−1

)
distribution than when the prior is not ambiguous. This

is especially true for the “worse” actions, Figure 3.13 (a).

3.6.2 An alternative stochastic strategy

In this subsection I consider an alternative stochastic strategy to the uniform random

case. I define two strategies that broadly mimic the behaviour of the informatic strategies:

the conditional Shannon information, and my measure I [Lt|x0:t−1, a1:t] + BXt|at
[Lt‖L′t].

The histograms of an action, a head rotation, for each of these policies is shown in Fig-

ure 3.14. The Infomax approach selects larger rotations with a higher probability, cf

Figures 3.5 (b) & 3.6 (b) with the most likely rotations as ±π
2 for an initial prior. How-

ever, from Figure 3.14, my measure seems to show a preference for smaller head rotations.

Such a simple analysis does not seem to capture either informatic policies complexity.

In Figure 3.15 (a) we can see the distribution of prior certainties, the Shannon in-

formation of the prior belief I [Lt−1|x0:t−1, a1:t−1]. For both policies there is a long tail of
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p0.6p0.4p0.2 0.0 0.2 0.4 0.6
head rotation,qradians0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
(h

ea
d
ro
ta
ti
o
n

|…
)

shannon, I[L0 :tr1|x0 :tr1,a0 :tr1]>s3.5
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(b) Conditional histograms of actions for each in-
formatic policy.

Figure 3.15: The conditional histograms of actions for each informatic policy. The con-
ditional histograms in plot (b) are used to define alternative stochastic policies to each
informatic policy. In plot (a), for both informatic policies, the histogram of information
content of the prior beliefs I [Lt−1|x0:t−1, a1:t−1] shows a long tailed distribution with neg-
ative skew. The detail shows a second peak below I [Lt−1|x0:t−1, a1:t−1] of −5. I segment
the priors at −3.5 to give the conditional histograms of actions in plot (b).

prior situations policy certainty accuracy

all stochastic I [Lt|x0:t−1, a1:t] +BXt|at
[Lt‖L′t] 4.35 4.16

only ambiguous stochastic I [Lt|x0:t−1, a1:t] +BXt|at
[Lt‖L′t] 6.38 6.88

all stochastic I [Lt|Xt, x0:t−1, a1:t] 5.71 6.11

only ambiguous stochastic I [Lt|Xt, x0:t−1, a1:t] 7.19 7.62

Table 3.2: The tabulated performance of stochastic policies derived from the behaviour of
the information policies for all situation and ambiguous situations. The area under each
ROC in Figures 3.16 & 3.17 can be used to indicate the performance of either stochastic
policy, for the selection of all prior cases (Figures 3.16 & 3.16 (a)) in contrast to only those
cases that are ambiguous (Figures 3.16 & 3.16 (b)). A perfect action selection policy would
be 8.5, in contrast the random policy would be 4.5.

ambiguous prior beliefs for I [Lt−1|x0:t−1, a1:t−1] < −3.5, with a substantial peak of unam-

biguous priors for I [Lt−1|x0:t−1, a1:t−1] > −3.5. Constructing histograms of the informatic

choice of actions conditional upon this cut at I [Lt−1|x0:t−1, a0:t−1] = −3.5 produces Fig-

ure 3.15 (b). We can see that larger ambiguities, for both informatic policies, leads to

larger head rotations of ±π
2 . In contrast the distributions of actions for the less ambiguous

prior situations of both policies retain the same shape, Figure 3.14.

I use the histograms in Figure 3.15 (b) to define two stochastic policies. Both stochastic

strategies define a probability of selecting an action conditional upon the prior beliefs

Shannon information I [Lt−1|x0:t−1, a1:t−1]. The resultant ROCs for using these stochastic

policies can be seen in Figures 3.16 & 3.17.

The stochastic policy’s ROC defined from the Shannon information in Figure 3.16 (a)
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(a) All prior beliefs.
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(b) Only ambiguous priors.

Figure 3.16: The ROC that a stochastic policy will favour taking the best action according to

accuracy or certainty. The stochastic policy is derived from the action selection histograms of the

Shannon information in Figure 3.15. Plot (a) depicts the ROC for all prior beliefs, and plot (b)

depicts the ROC for only the most ambiguous prior beliefs. The expected result of a uniform

random policy is indicated by the black dashed line.
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(a) All prior beliefs.
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(b) Only ambiguous priors.

Figure 3.17: The ROC that a stochastic policy will favour taking the best action according to

accuracy or certainty. The stochastic policy is derived from the action selection histograms of the

upper bound of the Shannon information in Figure 3.15. Plot (a) depicts the ROC for all prior

beliefs, and plot (b) depicts the ROC for only the most ambiguous prior beliefs. The expected

result of a uniform random policy is indicated by the black dashed line.
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has an almost identical curve to that of the Shannon information’s, Figure 3.12 (a). Fur-

ther, in contrasting Table 3.2 and Figure 3.16 (b) to Table 3.1 and Figure 3.13 (a), we

can see that the stochastic policy can be expected to outperform the Shannon information

policy for the ambiguous priors.

The contrast between the ROCs using the stochastic policy defined from my approach,

for ambiguous priors and all situations in Figure 3.17 is striking. It indicates that the

stochastic policy does not take into account import factors of the prior belief that my

approach does. This is illustrated best by comparing Figure 3.17 (a) to Figure 3.12 (b), as

the stochastic policy for all situations is worse than the uniform random case.

Comparing Tables 3.2 & 3.1 we can see, for ambiguous prior situations, that stochastic

policies have expected performances which approach or exceed the comparative informatic

policies. However, in the wider context of all the situations, only the stochastic policy

defined from the Shannon information policy achieves a similar expected performance

(Table 3.2).

The cost of calculating a stochastic policy is far less than an informatic policy. This

leads to the conclusion that a policy which captures the behaviour of an informatic policy

can be an acceptable substitute, for instance I [Lt|Xt, x0:t−1, a1:t] policy. However, com-

paring Figure 3.17 (a) to Figure 3.12 (b) illustrates the case where a stochastic policy has

failed to capture the specific behaviour of the informatic policy. This is most catastrophic

for the general case of all situations.

3.7 Comparison with Infotaxis (Vergassola et al., 2007a)

Infotaxis (Vergassola et al., 2007a) is applied to the chemotaxis in turbulent diffusive

mediums. This is modelled as the use of discrete events to navigate towards a source, for

instance a chemical source emitting a number of chemical packets. There is no smooth

gradient of increasing chemical concentration that can be followed to the source. Thus

there is no concentration gradient that can be followed using hill climbing techniques.

Infotaxis considers the expected change in information about a source’s location ∆I

between two time steps. The prior time steps information content does not change with a

choice of action. Thus, this makes arg maxat E [∆I|at] equivalent to arg maxat E [I|at] the

Shannon information of the expected posterior belief in source latent location.

The posterior belief in a source’s location lt at time t is annotated as p (lt|x0:t,a0:t)

where x0:t represents the sequence of measured odour encounters along the traversed tra-
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jectory a0:t. Two effects contribute to the posterior p (lt|x0:t,a0:t). First that p (lt|x0:t,a0:t) =

0, as the source has not been found. Secondly, the estimated posterior is modified by xt

observed detections. Therefore the expected change in Shannon information for the agent

moving into one of the neighbouring cells at is defined in Equation 3.58. There is neither

drift nor uncertainty in the location of the agent. This leads to the posterior being pro-

portional to the product of the likelihoods p (xt′ |lt′ ,at′) for t′ ∈ [0, t], as a consequence

p (lt|x0:t−1,a0:t−1) ≡ p (lt−1|x0:t−1,a0:t−1). This posterior is

p (lt|x0:t,a0:t) =
exp

{
−
´ t

0 dt
′R (at′ |lt)

}∏t
t′=0R (at′ |lt)xt′

´

dl′t exp
{
−
´ t

0 dt
′R (at′ |l′t)

}∏t
t′=0R (at′ |l′t)xt′

, (3.55)

this is taken from Vergassola et al. (2007a) where R (at|lt) is the rate of detections that an

agent located at at can be expected to detect from a source at lt.11 This can be computed

in closed form, as a hidden Markov model (HMM), using

p (lt|x0:t,a0:t) =
p (xt|lt,at) p (lt−1 = lt|x0:t−1,a0:t−1)

´

dl′t p (xt|l′t,at) p (lt−1 = l′t|x0:t−1,a0:t−1)
. (3.57)

The likelihood p (xt|lt,at) is a Poisson distribution taking the form R(at|lt)
xte−R(at|lt)

xt!
.

The expected change in Shannon information for moving to one of the neighbouring

points at (or standing still) is

E [∆I|at] = p (lt = at|x0:t−1,at−1) [−I [Lt|x0:t−1,a0:t−1]]

+ (1− p (lt = at|x0:t−1,at−1))

[
∞∑

xt=0

ρ (xt; x̄ (at)) E [∆I|at, xt]

]
. (3.58)

The first term represents the situation of the agent finding the source by moving into

it, making the posterior belief collapse to a delta function and causing the Shannon in-

formation to become zero. We cannot, with any certainty, state how many detections

the agent will make, instead this is estimated using a Poisson law ρ (x; x̄) = x̄xe−x̄

x! for

independent detections over the time-step ∆t. The expected number of detections is

x̄ (l) = ∆t
´

dlt p (lt|x0:t−1,a0:t−1)R (l|lt), where R (l|lt) denotes the mean rate of detec-

11The mean rate of detections for an agent located at l = {lx, ly} and a source located at lsource =
˘

lsource
x , lsource

y

¯

for a 2D grid (Vergassola et al., 2007a,b) is,

R (l|lsource) =
R

log
`

λ
a

´e
(lsource

y −ly)v

2D K0

„

|l− lsource|
λ

«

; λ =

s

Dτ

1 + v2τ
4D

(3.56)

where the parameters of this equation are τ is the particle lifetime, v is the wind speed along the y-axis,
D is the diffusivity and a is the size of the searcher corresponding to one grid cell.
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Algorithm 3.7 The Infotaxis algorithm, implementing Vergassola et al. (2007a,b), for
selecting the action that maximises the expected change in Shannon information. The
possible actions at, at a time t, consist of the agent remaining stationary or moving to one
of the adjacent grid cells. The algorithm takes a prior belief in the position of the source lt
over the field of locations Lt as p (lt|x0:t−1,a0:t−1) which has a Shannon information of It.
This algorithm scales as O (NlNxNa), where Na is the number of candidate actions, Nx

is the assumed maximum possible number of detections, and Nl represents the number of
locations in the set of possible source locations Lt. The mean rate of detections R (at|lt)
for the agents proposed location at and the source locations lt can be precomputed for the
field of source locations Lt and each of the possible agent locations at. This algorithm is
elucidated from Vergassola et al. (2007a) and its supplementary material (Vergassola et al.,
2007b).
To select the expected most informative movement at of an agent from a location at−1.

1. for each at,

(a) calculate x̄ (at) =
∑
∀lt∈Lt

p (lt|x0:t−1,a0:t−1)R (at|lt)
(b) for each xt ∈ [0, Nx],

calculate p (xt|at) = x̄(at)
xte−x̄(at)

xt!

initialise Z = 0,

i. for each lt ∈ Lt,
calculate p (lt, xt|x0:t−1,a0:t) ∝ p (lt|x0:t−1,a0:t−1) e

−R(at|lt)R (at|lt)xt

accumulate Z = Z + p (lt, xt|x0:t−1,a0:t)

ii. for each lt ∈ Lt,
calculate p (lt|x0:t,a0:t) = p(lt,xt|x0:t−1,a0:t)

Z

calculate I [Lt|Xt, x0:t−1,a0:t] =
∑
∀lt∈Lt

p (lt|x0:t,a0:t) log p (lt|x0:t,a0:t),

calculate E [∆I|xt,at] = I [Lt|Xt, x0:t−1,a0:t]− I [Lt|x0:t−1,a0:t−1],

calculate the expected change in Shannon information

E [∆I|at] = p (lt = at|x0:t−1,a0:t−1) [−I [Lt|x0:t−1,a0:t−1]] +

(1− p (lt = at|x0:t−1,a0:t−1))

Nx∑

xt=0

p (xt|at) E [∆I|xt,at] ,

2. select the at that maximises E [∆I|at].
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tions at position l if the source is located at lt. This assumes that a particular number

of detections xt causes a change in information E [∆I|at, xt] between the probability fields

p (lt|x0:t,a0:t) and p (lt|x0:t−1,a0:t−1). This is the Infotaxis policy model of Vergassola et al.,

and is expressed in Algorithm 3.7.

I convert E [∆I|at] to the expected conditional Shannon information with the addition

of I [Lt|x0:t−1,a0:t−1] (the prior Shannon information) making Equation 3.58 compatible

with my notation in this chapter,

I [Lt|Xt, x0;t−1,a0:t] = p (lt = at|x0:t−1,a0:t−1) [−I [Lt|x0:t−1,a0:t−1]]

+ (1− p (lt = at|x0:t−1,a0:t−1))×[
∞∑

xt=0

ρ (xt; x̄ (at)) I [Lt|x0:t,a0:t]

]
, (3.59)

= p (lt = at|x0:t−1,a0:t−1) [−I [Lt|x0:t−1,a0:t−1]]

+ (1− p (lt = at|x0:t−1,a0:t−1)) I [Lt|Xt, x0:t−1,a0:t] . (3.60)

The quantity I [Lt|Xt, x0:t−1,a0:t] = Ep(xt|x0:t−1,a0:t) [I [Lt|x0:t,a0:t]] takes an approximation

of the marginal probability for the number of detections as, p (xt|x0:t−1,a0:t) ≈ ρ (xt; x̄ (at))

which is a unimodal distribution (x̄ (at) =
´

dlt R (at|lt) p (lt|x0:t−1,a0:t−1)). In contrast

the true distribution is

p (xt|x0:t−1,a0:t−1) =

ˆ

dlt p (xt|lt,at) p (lt|x0:t−1,a0:t−1) , (3.61)

=

ˆ

dlt ρ (xt;R (at|lt)) p (lt|x0:t−1,a0:t−1) . (3.62)

This is the approximation of Vergassola et al. for speeding the Infotaxis algorithm.

My measure, the quantity BXt|at
[Lt‖L′t] is computed as the upper limit to I [Lt|Xt, x0:t−1,a0:t]−

I [Lt|x0:t−1,a0:t], producing the bound

I [Lt|Xt, x0;t−1,a0:t] ≤ p (lt = at|x0:t−1,a0:t−1) [−I [Lt|x0:t−1,a0:t−1]]

+ (1− p (lt = at|x0:t−1,a0:t−1))×
(
I [Lt|x0:t−1, a0:t] +BXt|at

[
Lt‖L′t

])
, (3.63)

= (1− 2p (lt = at|x0:t−1,a0:t−1)) I [Lt|x0:t−1,a0:t−1]

+ (1− p (lt = at|x0:t−1,a0:t−1))BXt|at

[
Lt‖L′t

]
. (3.64)
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The likelihood of xt detections at the agents location at for a source at lt, p (xt|lt,at)

is governed by a Poisson law (where the expected number of detections is R (at|lt)), the

KL-divergence between the likelihood of two hypothesis’ lt and l′t can be constructed ana-

lytically as

DKL

[
p (Xt|lt,at) ‖p

(
Xt|l′t,at

)]
=

∑

xt

p (xt|lt,at) log
p (xt|lt,at)

p (xt|l′t,at)
, (3.65)

= R (at|lt)
(

log
R (at|lt)
R (at|l′t)

− 1

)
+R

(
at|l′t

)
. (3.66)

Thus the bound of the mutual information is computed as,

BXt|at

[
Lt‖L′t

]
=

ˆ

dlt dl
′
t p (lt|x0:t−1,a0:t−1) p

(
l′t|x0:t−1,a0:t−1

)

DKL

[
p (Xt|lt,at) ‖p

(
Xt|l′t,at

)]
, (3.67)

=

ˆ

dlt p (lt|x0:t−1,a0:t−1)R (at|lt) logR (at|lt)

+

[
ˆ

dlt p (lt|x0:t−1,a0:t−1)R (at|lt)
]
×

[
ˆ

dl′t p
(
l′t|x0:t−1,a0:t−1

)
logR

(
at|l′t

)]
. (3.68)

We can see that in none of these expectations over the prior prediction p (lt|x0:t−1,a0:t−1)

is it necessary to estimate the posterior p (lt|x0:t,a0:t) for any xt ∈ [0,∞). The quantity

Equation 3.64 (with Equation B.9 inserted for BXt|at
[Lt‖L′t]) defines a policy model I call

Boundtaxis which is expressed in Algorithm 3.8.

Algorithms 3.7 & 3.8 are used to compute respectively Infotaxis, and Boundtaxis.

These two ’taxis algorithms can be seen to scale differently. For a grid of Nl possible source

locations, Na choices of action12 and a maximum number of expected detections Nx, my

Boundtaxis algorithm scales as O (NlNa), whereas Infotaxis scales as O (NlNxNa). Hence

Boundtaxis scales better than Infotaxis. Though, comparing the real time performance of

the two algorithms, I run both algorithms with no detections, finding that the Infotaxis

algorithm on average takes 10 times as long as Boundtaxis to calculate one choice of action.

This is using Nx = 20, but as the Infotaxis algorithms time complexity scales linearly with

Nx, we can expect Nx = 10 to only take Infotaxis about 5 times, and Nx = 5 to take about

21
2 times as long to make a choice of action as Boundtaxis. Nx must be selected so as to

represent the extent of the highest mean rate R (a|l)’s for the Poisson likelihood. Another

way to improve the computational speed of Infotaxis would be to choose an Nx dependent

12There are 5 choices of at at any at−1, the 4 neighbouring grid cells or remaining in the same cell.
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Algorithm 3.8 The Boundtaxis algorithm for selecting the action that maximises a term
proportional to the upper bound of the expected Shannon information. The possible
actions at, at a time t, consist of the cases of the agent remaining stationary or moving to
one of the adjacent grid cells. The algorithm takes a prior belief in the position of the source
lt over the field of locations Lt as p (lt|x0:t−1,a0:t−1) which has a Shannon information of
It. This algorithm scales as O (NlNa), where Na is the number of candidate actions, and
Nl represents the number of locations in the set of possible source locations Lt. The mean
rate of detections R (at|lt) for the agents proposed location at and the source locations
lt can be precomputed for the field of source locations Lt and each of the possible agent
locations at.
To select the expected most informative movement at of an agent from a location at−1.

1. for each at,

initialise h1 = 0, h2 = 0 and h3 = 0,

(a) for each lt ∈ Lt,

accumulate h1 = h1 + p (lt|x0:t−1,a0:t−1)R (at|lt) logR (at|lt),
accumulate h2 = h2 + p (lt|x0:t−1,a0:t−1)R (at|lt)
accumulate h3 = h3 + p (lt|x0:t−1,a0:t−1) logR (at|lt),

calculate the upper bound of the Infotaxis Shannon information

Bupper [at] = (1− 2p (lt = at|x0:t−1,a0:t−1)) I [Lt|x0:t−1,a0:t−1] +

(1− p (lt = at|x0:t−1,a0:t−1)) (h1 − h2h3) ,

2. select the at that maximises Bupper [at].

on x̄ (at).

3.7.1 Analysis

The simulation for this comparison Infotaxis (Vergassola et al., 2007a) was based around

the Infotaxis paper Vergassola et al. (2007a) and the supplementary material (Vergassola

et al., 2007b). Vergassola et al. derived the mean rate of detections R (at|lt) for a turbulent

and diffusive packet model which is the basis of both the simulations and the policy models

for Infotaxis (Algorithm 3.7) and my Boundtaxis (Algorithm 3.8). Boundtaxis uses the

measure constructed in Equation 3.64 as the upperbound to the Infotaxis information

change Equation 3.58.

A single track of the agent’s path for my Boundtaxis policy model compared to Infotaxis

is shown in Figure 3.18. The posterior belief p (lt|x0:t,a0:t) is symmetric around the agent’s

starting point and the agent starts spiralling around it. In Figure 3.18 (a), Boundtaxis

constructs a far wider spiral than Infotaxis then spirals inwards (Figure 3.18 (b)). This

example uses the parameterisation for R (at|lt) used in Vergassola et al. (2007a) and applies
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(a) Boundtaxis. (b) Infotaxis.

Figure 3.18: A single track for the agent using each of the Boundtaxis (a) and Infotaxis
(b) policies. The time is indicated by a colour spectrum. The detections are indicated by
filled black circles. The inset figure provides detail of the search for the immediate locale
around the source. The grey scale depicts the expected rate of detection. Plot (b) is taken
from Vergassola et al. (2007a), the axis and scale was not indicated in their paper.

to Figures 3.18-3.21.13

I compare the performance of Infotaxis (Vergassola et al., 2007a) and Boundtaxis search

times in Figure 3.19. The error bars indicate the standard deviation of the average search

times. On average Boundtaxis has consistently faster search times than Infotaxis. There

are two interesting and problematic features:

1. Boundtaxis has a significantly greater variance.

2. The trend for larger initial distances is unfavourable for those greater than 110 (the

extent of the figures range).

The Boundtaxis policy has the trend that larger distances have increasing variance in the

search times. However, comparing the distribution of search times between the two policy

models (Figure 3.20) would suggest that an agent can expect to find its target (the source)

quicker by using Boundtaxis than Infotaxis. The evolution of the posterior entropy with

the remaining search time in Figure 3.21 shows clearly that Boundtaxis is not targeted at

minimising the posterior entropy.

I compare Boundtaxis with the results from Vergassola et al. (2007b) in Figures 3.22 &

3.23. These figures use a different set of parameters to the simulations in Figure 3.18-

3.21.14 Figure 3.23 is a comparison between the probability density functions (PDF) of

13An emission rate of R = 1, a particle lifetime τ = 2500 and diffusivity of D = 1. The simulations are
performed on a grid of 5122, with no wind and a starting position along one axis away from the source.
Which equates to an average particle lifetime of

√
Dτ = 50.

14An emission rate of R = 1, a particle lifetime τ = 400 and diffusivity of D = 1. The simulations are
performed on a grid of 2562, with no wind and a starting position along one axis away from the source.
Which equates to an average particle lifetime of

√
Dτ = 520.
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Figure 3.19: Comparison between the performance of Infotaxis and Boundtaxis search
times. The error bars indicate the standard deviation of the average search times. While
Boundtaxis has consistently faster search times than Infotaxis, there are two interesting
and problematic features: (1) the Boundtaxis has a significantly greater variance, (2) the
trend for larger initial distances is unfavourable for those greater than 110 (the extent of
the figures range). The trend for Boundtaxis is that at larger distances the variance in
the search times is almost double that of smaller distances. The Infotaxis data is taken
directly from Vergassola et al. (2007a).

Figure 3.20: Comparison between the probability density functions (PDF) of the search
times for Infotaxis and Boundtaxis. The PDF of search times for the Boundtaxis has a
much sharper peak than for the Infotaxis policy. The peak of the PDF for the Boundtaxis
policy also corresponds to a quicker search time than the peak search time for the Infotaxis
policy. The Infotaxis data is taken directly from Vergassola et al. (2007a).
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Figure 3.21: Comparison between the residual entropy of the Infotaxis and Boundtaxis
posterior beliefs versus the remaining search time. Infotaxis data taken directly from
Vergassola et al. (2007a).
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Figure 3.22: Comparison between the probability density functions (PDF) of the search
times for Infotaxis, Boundtaxis and a variety of other policies (Vergassola et al., 2007b).
The PDF of search times for the Boundtaxis policy has three distinct peaks, this is in
contrast to the other policies, which are all unimodal distributions. The other policies are
described in the text. The data for Infotaxis and the other comparative policies are taken
directly from Vergassola et al. (2007b).
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(a) Longest range of search times. (b) Shortest range of search times.

(c) Midrange of search times.

Figure 3.23: The tracks (grey lines) of individual runs for the Boundtaxis policy. The first
detection for each individual track is indicated by an opaque filled blue circle; hence a
region of darker blue indicates an area of first detection for the segment of search times.
The default behaviour of Boundtaxis seems to be highly exploratory on the field of possible
source locations {lx, ly} ∈ Lt.
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(a) 3D plot of search time distributions.
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(b) Comparison to mean and median for Boundtaxis.

Figure 3.24: The probability distribution function (PDF) of search times with the initial
distance. This illustrates that with reducing concentration (increasing initial distances in
Figure 3.20) the PDF of search times becomes multi-modal (Figure 3.22). Plot (a) depicts
the distribution of search times for each initial distance. Plot (b) extends Figure 3.19
by plotting the data (in red) of the median µ 1

2
with the error bars indicating the upper

and lower quartiles: 50% of the distribution of search times are within the red error bars.
The median in plot (b) indicates a more favourable scaling for the bulk of the search time
distributions for Boundtaxis. Plots (a) and (b) explain the sharpness of aggregate PDF of
search times in Figure 3.20.

the search times for Infotaxis, Boundtaxis and a variety of other policies (Vergassola et al.,

2007b). These other policies are:

• A locally greedy strategy where the agent moves towards locations with the highest

estimated probability of the source location, p (lt|x0:t−1,a0:t−1).

• A strategy greedy for detections, where the agent moves to maximise the probability

of detection, e.g. p (xt|x0:t−1,a0:t).

• A strategy greedy for certainty, where the impact of finding the source is neglected,

e.g. I [Lt|Xt, x0:t−1,a0:t].

The data for Infotaxis and the other comparative policies are taken directly from Vergas-

sola et al. (2007b). The PDF of search times for the Boundtaxis policy has three distinct

peaks, this is in contrast to the Infotaxis, locally greedy, greedy for detections and greedy for

certainty policies which are all unimodal distributions. The three peaks of the Boundtaxis

search times are correlated to regions on the latent space where the agent makes its first

detection, Figure 3.23. So why does the Boundtaxis make such circuitous paths in Fig-

ure 3.23 (a)? In this case the Boundtaxis policy has already explored the perimeter of the

latent space before the agent makes its first detection.

The difference between the shapes of the Boundtaxis PDFs of search times in Fig-
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ures 3.20 & 3.22 is due to the contrasting parameterisations combined with the degree to

which the Boundtaxis will explore the latent space. The particle lifetime of Figure 3.20 is
√
τD = 50 whereas for Figure 3.22 is

√
τD = 20. The agent’s search time PDFs for each

of the different starting distances from Figure 3.19 can be seen in Figure 3.24 (a), which

for the larger distances has a second cluster of search times. This shows that the PDF

of search times for the larger starting distances has a multi-modal distribution where the

second mode is an order of magnitude less likely.

The BXt|at
[Lt‖L′t] quantity alone is similar to the greedy for certainty. Though while

using BXt|at
[Lt‖L′t] alone did find the source’s location, e.g. p

(
lt = ltrue|x0:t,a0:t

)
≈ 1,

the agent did not capture it. In contrast to this, adding the term which accounts for

finding the source−p (lt = at|x0:t−1,a0:t−1) I [Lt|x0:t−1,a0:t−1], leads to no failures in source

capture on any Boundtaxis run. Adding the term accounting for the source’s capture makes

the Boundtaxis algorithm an upper bound of E [∆I|at] rather than IMI [Xt; Lt|x0:t−1,a0:t].

Finally, the Boundtaxis algorithm’s probability of failure is less than 2 in 10−4 as it did

not fail to capture the source in any of the computed runs.

To summarise:

• Boundtaxis has more variance in its distribution of search times than Infotaxis (Fig-

ure 3.19). Though the bulk of these search times (50% of runs) are significantly

quicker than Infotaxis (Figure 3.24).

• Boundtaxis is typically quicker to calculate and scales more favourably, see Al-

gorithms 3.7 & 3.8.

• Boundtaxis makes a larger initial spiral than Infotaxis (Figure 3.18). From Fig-

ures 3.19-3.21 and Figure 3.24 we can see Boundtaxis can be expected to outperform

Infotaxis. Though for a different configuration depicted in Figure 3.22, this cannot

be guaranteed.

• Boundtaxis is not reliant upon the assumption that the marginal p (xt|x0:t−1,a0:t−1)

is unimodal, which is an assumption of Infotaxis in Vergassola et al. (2007a,b).
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3.8 Discussion

3.8.1 Findings

I have developed an alternative method to Infomax (Shannon information and mutual

information) for solving the sensor placement problem satisfactorily. I have considered the

mathematical consequences of my solution in Section 3.4 and the algorithmic complexity

in its estimation when contrasted to a state-of-the-art approach to Infomax (Section 3.5). I

then compare it to Infomax in two problems. The first is a toy perception problem related

to the previous chapter (Section 3.6). The second is a state-of-the-art system from the

literature (Vergassola et al., 2007a) in Section 3.7.

In this Chapter I have developed and presented a tool to explain generally why and

how perceptual ambiguity is collapsed by a choice of action. My work relates to the prior

work of Fox et al. (1998) and Cassandra et al. (1996) by considering approximations to the

more general localisation problem rather than a robot’s self localisation upon a map. This

leads to a general method for distinguishing most between latent posterior predictions, and

consequently to collapse localisation ambiguity in the sensor placement problem.

The group of domains, where my approach has the potential to be superior to Infomax,

have the properties that the likelihood p (xt|lt, at) is non-linear. As a consequence it is

necessary in applying Infomax to approximate I [Lt|Xt, at] and IMI [Xt; Lt|at]. For instance,

two approaches taken in the literature are:

1. approximating of p (xt|x0:t−1, a0:t) as in Vergassola et al. (2007a)

2. or sampling the distribution p (xt, lt|x0:t−1, a0:t) as in Porta et al. (2005).

An example of such a domain is sound source localisation. As seen in Section 3.6, the

target location (latent space) can typically be treated as a linear process and the mapping

from location to sound level and time disparity are non-linear and many-to-one.

How is the Infotaxis of Vergassola et al. (2007a) related to the entropy action selection

of Fox et al. (1998)? One assumption by both methodologies is that either the target or

environment is static and unchanging. This is achieved by neglecting the uncertainty in

latent dynamics. This was true of Fox et al. (1998) and Porta et al. (2005). The model of

Vergassola et al. (2007a) also has uncertainty in updating the latent state space and only

an action directed state change – hence, Vergassola et al. assumed deterministic dynamics.

As well, the model in Vergassola et al. (2007a) assumes the agent knows where it is and

that the source will remain static. In most Markov processes there is a diffusion process to
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account for uncertainty in the latent state space dynamics. This is where the agent cannot

be certain that its actions will succeed, or that the target or scene is static.

The conditional Shannon information is typically incomputable without some approx-

imation Porta et al. (2005), Fox et al. (1998), Vergassola et al. (2007a). In developing my

method I have presented a valid alternative to Shannon information (Infomax) for sat-

isfactorily solving the problem of optimal action selection. My framework makes action

selection easier and faster if the averaged quantities are analytic, making it less computa-

tionally costly when compared with Infomax approaches like Fox et al. (1998), Porta et al.

(2005), Cassandra et al. (1996), Vergassola et al. (2007a).

In Section 3.3 I have shown that there exists an upper bound, upon the conditional

Shannon information of the form,

I [Lt|Xt, at] ≤ I [Lt|at] +BXt|at

[
Lt‖L′t

]
, (3.69)

and the mutual information,

IMI [Xt; Lt|at] ≤ BXt|at

[
Lt‖L′t

]
. (3.70)

This upper bound is fully quantified by Theorem 3.3 as,

BXt|at

[
Lt‖L′t

]
= IMI [Xt; Lt|at] +DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] , (3.71)

= DKL [p (Xt,Lt|at) ‖p (Xt|at) p (Lt|at)]

+DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] , (3.72)

which is a measure of the statistical independence of the variables xt and lt for a choice of

action at (Theorems 3.3 & 3.6). BXt|at
[Lt‖L′t] is the averaged KL-divergence between the

likelihoods of pairs of hypotheses in the measurable space,

BXt|at

[
Lt‖L′t

]
=

ˆ

dltdl
′
t p (lt|at) p

(
l′t|at

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
. (3.73)

Thus, considering the contribution from the measurable Xt, the upper bound is minimised

when the expected overlap of projected posterior beliefs is minimised (Theorem 3.10).

In Sections 3.6 & 3.7 I have used my measure to evaluate the upper bound of the

expected Shannon information as an informatic policy model. These two examples show
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that my policy model is an adequate but distinct alternative to Infomax approaches.

3.8.2 Limitations

Vergassola et al. (2007a) postulate that these information terms are computed by an indi-

vidual for localisation. However, particular action policies may be represented satisfactorily

with a cheaper approximation. An example of this is the use of finite state machines (Thill

and Pearce, 2007). Hence, leading to the question, why does a more expensive information

calculation needs to be computed when a simpler method produces an equivalent result

and similar choice of action?

For example, in the multimodal case, it is a reflex action of human subjects to seek

to bring a sound event within view of their eyes (Blauert, 1997). This is in agreement

with my hypothesis, as in this instance, the individual can only increase its localisation

certainty with a simple and easy heuristic to select an action.

This is most useful to problems that can be represented behaviourally. Taking as an

example, head rotations for auditory localisation, it is easy to argue that a priori beliefs

can be classified (e.g. in Sections 2.3.2 & 2.3.3) and assigned a probability distribution

for the candidate actions. An example of this approach can be seen in Subsection 3.6.2. I

classified an a priori belief according to its Shannon information as either ambiguous or

unambiguous. I used this to construct two stochastic policies according to the informatic

policies in Section 3.6. The Infomax policy was well represented by this stochastic strategy,

making the stochastic strategy a valid alternative. In contrast my framework had a more

complex relationship with a priori belief than Infomax, therefore making the stochastic

strategy significantly under perform my approach.

As mentioned in the introduction, moth behaviour can be explained using a similar

information measure (Vergassola et al., 2007a) or to have an equivalent choice of predicted

action using a finite state machine. It is obvious from a neural perspective, that a finite

state machine is far cheaper to construct than an entropy based measure. Therefore if a

behavioural representation of a policy exists, to construct a decision process for selecting

an action equivalent to an information model of policy decision, the agent should use this

behavioural representation.

Infomax and related information policy models, such as my approach, can provide

insight into more complex localisation tasks. As an example, if a consequence of an action

is to capture a target then the best localisation action naturally has the result of being both
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exploitative and exploratory. Though as reported in Section 3.7 the independence of xt and

lt is not sufficient to move into the source. Adding a term to account for the agent capturing

the source rectified this and leads to the source’s capture. Therefore with care, information

based policies can deal implicitly with the exploitation versus exploration dilemma for both

target localisation and capture. Specifically my method does not assume the structure of

the marginal p (xt|x0:t−1, a0:t), whereas Vergassola et al. imposes a unimodal distribution.

In making this assumption they limit the applicability of Infotaxis to a subset of the source

capture problems.

I have not considered directly the case of non-linear dynamics. This class of problem

has the difficulty of accurately representing the projected posterior belief, though this is

the class of problem dealt with in the next Chapter. This difficulty is especially acute for

the more chaotic problems, as the causal relations which an observer has learnt may not be

general or even accurate. Worse still, depending on the dynamics, in such a problem there

is a requirement for a near infinite number of tracked hypotheses to adequately represent

the projected belief in the latent state space. However, such problems can be approached

if there is conditional structure in the latent state space. A technique to approach such a

class of problem is Rao-Blackwellization. I use this approach in the next Chapter.

I purposefully kept the framework’s model (Figure 3.1) simple by neglecting a condi-

tional relationship between the prior latent space and the choice of action. This relationship

would be in the form of the observer’s pose constraining which actions are possible. This

may require the inclusion of a risk term to prevent catastrophic actions being taken. One

potential consequence of this is to have an observer learn its morphology by pruning pos-

sible morphologies in a directed manner similarly to Bongard et al. (2006), rather than

through completely random (undirected) body babbling as Olsson et al. (2005a, 2006). A

difficulty is that even a simple morphology would have a massive dimensionality making

it an intractable problem if approached naively.

3.8.3 Future work & summary

This framework considers the problem of reflexive localisation actions. This complements

the work on sensorimotor contingencies of Noe (2004). Sensorimotor contingencies con-

sider the relationship between actions and sensory measurements to map the correlations

of these as a latent space Noe (2004), O’Regan and Noe (2001), Bompas and O’Regan

(2006), Philipona et al. (2003, 2004), Aytekin et al. (2008). This however neglects ambi-
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guity, which exists in a large number of problems and can cause difficulty for any learning

process. Hence an informatic policy model such as mine or Infomax, which by its nature,

assumes an uncertain and noisy world will have an advantage when combined with a learn-

ing algorithm. Further, my model is useful for a class of problems such as POMDPs

or likelihoods where the KL-divergence is analytic by scaling as well as, or better than,

other informatic approaches. Examples of this for Infomax are approximating the marginal

p (xt|x0:t−1, a0:t) in Vergassola et al. (2007a), or assuming a sample of the joint latent and

measurement variables L
⋃

X in Porta et al. (2005).

The consequence of this for the animal is that there exists a informatic computation

other than Infomax. Meaning that if an animal uses information to make reflexive localising

actions, it needs to do so in as fast and generalisable a fashion as possible. My approach

is favourable if the animal can represent its environment such that the KL-divergence is

separable, Section 3.5. Using an informatic policy an animal can learn and act in a new

and unknown environment, or learn to best utilise a new sense (Nagel et al., 2005).15

While, if the animal’s sensorimotor contingencies do not change, then a heuristic strategy

for selecting localising actions would be favourable, for instance Subsection 3.6.2.

A major assumption of my framework and also that of Porta et al. (2003, 2005), Vergas-

sola et al. (2007a) is that an applicable model exists and has been suitably parameterised.

The scenario of having a suitably parameterised model of the system, is typical of most

research involving Infomax. However, an agent can use an informatic decision process to

enhance its learning process. It is this issue which I consider in the next Chapter.

15Given the assumption that an information quantity is used to select an action, it is possible to test
which measure of knowledge is used by defining a pathological case.
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Chapter 4

Learning a model for an active agent

4.1 Introduction

In general, an animal in its natural environment can accurately and robustly perceive the

state of the environment around itself. Examples of this are the individual’s abilities to see

objects and structures within the environment amongst clutter, to focus upon one voice

among others, to smell one complex scent among many, and to relate information from

these sensory modes to one another. This is in part due to an evident change in the view

of the world that an animal imposes by its actions causing a predictable alteration to its

view of the scene. An example of this is a head rotation to localise a sound which makes

one ear of an individual perceive an increase in loudness and at the same time the other

ear to perceive a decrease in loudness (see Chapter 3). Noe (2004) argued that an ability

to affect1 the scene an individual sees, hears and feels leads to what we term perceiving.

This is related to the concept of being embodied within the world.

Noe (2004) also argued that an individual’s entire understanding of the world is due to

its grounding within the world, for instance:

1. an individual’s understanding of cause and effect, and

2. the geometric relationship between sections of the retina.

This view is supported by the work of Held and Hein (1963) who showed that a kitten’s

sensory development was critically dependent upon its ability to direct its body’s motion.

1There are two ways to affect an observed scene:

1. To cause a change in the environment, to affect the scene.

2. To change the view of the world, to affect the observation.
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The individual makes a prediction of the consequences of an action, and reinforces the

accurate predictions.

O’Regan and Noe (2001) further developed this idea of embodiment by using differential

geometry to show how an agent can infer the dimensionality of a contrived problem domain.

This is the combined dimensionality of the agent’s physiology and environment. Olsson

et al. (2006, 2005a) investigated this concept more specifically with regards to robot visual

perception. They used an information metric to relate a CCD camera’s pixels to a visual

map. They achieved this by using each pixel pair’s mutual information with respect to

time during random pans and tilts of the camera. These random pans and tilts are referred

to as body babbling. Philipona et al. (2003, 2004) used a correlation based approach derived

from differential geometry to infer the sensory configuration of the agent. The approach

of Philipona et al. and O’Regan and Noe was extended into the auditory domain by

Aytekin et al. (2008). Aytekin et al. constructed an approach to infer the relationships

between location relative to the agent and the frequency domain – making the agent

essentially learn the mapping of the latent state space to the measurable cues. These

approaches do not consider the problem from a Bayesian perspective but more specifically

as a Markov problem. A Bayesian perspective allows the explicit accounting for uncertainty

and ambiguity and the relative weighting of competing hypotheses.

An assumption made by Olsson et al. (2006, 2005a) was that there exists a period

in an individual’s life that is specific to learning its own sensory configuration; this is

the body babbling phase which is assumed to occur during childhood. An alternative

argument that can be developed is that adult sensory systems have a relatively stable

configuration. This configuration can be refined until radically different information is

presented to it, for example by a change in physiology (Rossetti et al., 1993, 1998, Welch

et al., 1993). Rossetti et al., Welch et al. have definitively shown that there is significant

plasticity in adult humans’ sensory perception. They did this through the use of prisms,

illustrating rapid visual adaptation, similar to the adaptation caused by Olsson et al.’s

robotic body babbling. Moreover, Hofman et al. (1998) showed adaptation in the human

auditory system’s spatial tuning to a mould placed upon the subject’s pinnae. Similarly,

Mrsic-Flogel et al. (2001) suggested that neural units in the ferret’s auditory cortex are

tuned to the physiological peculiarities of an individual’s ears.

Hence it is reasonable to posit that (in certain situations or contexts) individuals re-

tain the ability to learn new sensory motor relationships throughout life. In adulthood
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specifically, there are examples of adults learning to utilise new senses, for example mag-

netic perception within the body-modification community through insertion of rare earth

magnets into the finger tips (Norton, 2006). Similarly Nagel et al. (2005) showed the integ-

ration of a belt based compass (giving a tactile measure of magnetic North) for a subject’s

sensory enhancement. There are also examples in vision and audition being augmented

to create a bistable state of adaptation for conflicting sensory mappings in Hofman et al.

(1998), Welch et al. (1993). There is also the mapping between the motor system and the

visual system in Koerdig and Wolpert (2004). Also, using prisms to modify an individual’s

visual perception (Rossetti et al., 1993, 1998, Welch et al., 1993), an already utilised sense

can be successfully perturbed. Hence, this suggests a general feature of perception. It

appears possible to learn to perceive a new sense, and learn modifications to an existing

sense, well into adulthood. I take this to mean that there is no special learning phase

but more lifelong learning that can refine or radically alter an individual’s sensorimotor

contingencies as required.

This Chapter expands upon the work in the previous Chapter 3, by investigating the

consequence of information driven action selection to learning in a non-trivial dynamic

system. I contrast this with two other measures from the literature which also seek to

maximise the agent’s expected knowledge: an Infomax approach adapted from Porta et al.

(2003, 2005), and an a posteriori Cramer Rao Lower Bound (CRLB) from the radar and

sonar literature (Hernandez, 2004, Helferty and Mudgett, 1993). Details of each of these

measures are described in Section 4.5.

I develop a system to investigate this by first defining the structure of the model I shall

work with and the measure used to define the “goodness” of an action according to how

much information a consequent measurement will convey. However, to select a set of actions

requires a stable parameterisation of the model. I have approached this problem using a

sequence of episodes. I define an episodic modification to maximum likelihood learning

that allows the previous episode’s knowledge of a model’s parameters to be retained in

constructing a new parameterisation.

I then describe in Section 4.3 the non-linear dynamical system (the Lorenz attractor)

that I shall use. In Section 4.4 I define the specifics of the model I use to describe this

dynamical system. The measure of expected goodness for a choice of action and its inter-

pretation is discussed in Section 4.5. Section 4.6 has 3 parts:

1. the contrast between my approach from Chapter 3 and other informatic approaches,
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2. analysis of the utility of localising actions for an agent,

3. then a re-learning of correspondence due to a continued change to the measurement

process.

Finally I place these results in context in the discussion. This allows me to state that

directed action can construct a better model which is more certain in inference and more

likely than undirected action. Moreover directed action coupled with episodic learning

allows for re-learning of correspondence.2

4.1.1 Hypothesis

I argue that a good localising choice of action, which is more certain in inference and

more likely, will allow a better model to be learnt from a sampled data set than random

and undirected actions. Accordingly, an active agent can learn a more optimal model

of the world than an inactive agent (Chapter 2) or one that explores in an undirected

manner. More strongly, it can be argued from Held and Hein (1963) that active and

directed perception is a critical developmental requirement of learning to represent the

world. However, what is the mechanism that directs directed perception? My argument

is contingent upon the agent having an internalised measure of uncertainty, for example,

the measure of knowledge I developed in Chapter 3. My measure constructed in Chapter 3

selects an action to maximise the expected disparity in predicted a posteriori beliefs. This

leads to a measurement causing the most predicted hypotheses to be discarded due to a

measurement. This is contrasted with two other informatic approaches for selecting an

action in the sensor placement problem.

What I shall show is that directed actions, selected to increase an agent’s expected

knowledge of the system’s state, is better for learning than undirected action. I will com-

pare between the performance for different models of future knowledge. I then construct

a stochastic variation of my method to create a graduated analysis between a uniform

random policy and my approach developed in Chapter 3. I will accomplish this by using a

linear switching state space model (SSM) (Ghahramani and Hinton, 2000) with the action

defining which measure of the state space is observed. This choice of measure is defined

as the action. However the correspondence of actions to the measures will be unknown to

the observer and have to be relearnt. This Chapter applies the action selection method de-

2The problem of correspondence is a description of how to relate a hidden latent space to individual
measurements.
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Figure 4.1: The graphical model indicating the action-perception dependencies of a se-
quence of sample and learn episodes. This figure represents a sequence of cliques that
depend upon the n’th episode’s parameter Ωn. Ωn represents the agent’s model of the
system and is used to generate the set of actions An that interact with a belief in the
latent state space Ln that constructs the set of measurements Datn. These are then used
to construct the new parameterisation Ωn+1 using the arg max operation of Equation 4.1.
Making Ωn+1 = arg maxΩ f (Ω, An,Datn, Ln,Ωn), where f is an objective function such as
a measure of the parameter Ω’s likelihood or error. The episode is indicated by number in
the subscripts.

veloped in Chapter 3 to a dynamic problem. This in part addresses the problem of an agent

learning by active experimentation. This will illustrate the combination of exploration for

new knowledge and exploitation of learnt knowledge applied to a learning problem.

4.2 Episodic learning

For an agent that is learning to represent its environment (the system) by exploration,

there is the influence of causality. The agent needs a model of the system from which

it can construct an informatic policy. Hence, a series of actions are selected according

to a model to generate a corresponding series of measurements. Figure 4.1 shows the

dependence for this influence between each episode’s system model Ω, the choice of actions

A and consequent measurements Dat.

4.2.1 Learning requirements

The requirements for a learning algorithm is to learn the parameters of a system which

has a hidden latent space that can be constructed from the sequence of measurements x0:T

that comprises the data set Dat. The data set is generated sequentially according to a

set of actions a0:τ . As such it is dependent completely upon the parameter Ω due to the

recursive selection of each action at using an expectation of knowledge, to then generate a

corresponding measurement xt.
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To learn a new parameterisation Ωnew from this data set and action set I use maximum

likelihood (ML), hence applying argument maximisation to a model’s log-likelihood,

Ωnew = arg max
Ω
L (Ω; a0:T , x0:T ) , (4.1)

where L (Ω;Dat) = log p (Dat|Ω). Though any measure of goodness such as prediction

error et = (E [xt]− xt)
2, could be used rather than the likelihood.

Typically however, this neglects any prior parameterisation of θ which contains know-

ledge of the past data and action sets. This would be akin to an individual waking up

each day with a sensory system that reconfigures its connections and weights to optim-

ally represent only that day’s actions and measurement. However if all prior actions and

data could be accounted for then there would be an episodic refinement to the parameter

learning. An example of an episodic refinement using the expectation-maximisation (EM)

algorithm is discussed in the next section.

4.2.2 Episodic maximum-likelihood

Episodic learning uses a prior parameter to help construct a current estimate for this

parameter for a data set. To do this I utilise a Lagrangian based upon a measure of

dissimilarity between these parameters, the prior parameter and a new estimate, to derive

the learning rules. I use the EM-algorithm for this learning process due to its utility

as a pseudo Bayesian learning method and its wide acceptance for constructing optimal

parameters.

Retaining the previous episode’s optimal parameterisation gives a way of retaining

knowledge of past data without needing to maintain a copy of the past data set. This can

be a significant space saving for a small loss with respect to optimality. The degree of influ-

ence upon the current parameterisation is managed via the magnitude of the Lagrangian

multipliers. This can be interpreted by contrast to standard EM. EM sequentially optimises

a bound B
[
Ω;Ωold

]
upon the likelihood L (Dat|Ω) of the data Dat for a parameterisation

Ω over a set of latent variables L, which are related by,

L (Dat|Ω) = log p (Dat|Ω) (4.2)

= log

ˆ

dL p (Dat, L|Ω) (4.3)

≤
ˆ

dL p
(
L|Dat,Ωold

)
log

p (Dat, L|Ω)

p (L|Dat,Ωold)
(4.4)
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= B
[
Ω;Ωold

]
, (4.5)

when the parameters have converged the bound will tend to the likelihood (Appendix A).

The episodic EM modifies the bound by a Lagrangian multiplier γΩ and a measure of dis-

similarity d
(
Ω; Ω̄

)
between the parameterisation Ω and the prior parameter Ω̄ to become,

G
[
Ω;Ωold|Ω̄

]
=

ˆ

dL p
(
L|Dat,Ωold

)
log

p (Dat, L|Ω)

p (L|Dat,Ωold)
+ γΩd

(
Ω; Ω̄

)
, (4.6)

where the prior parameter is distinct from the old update for standard EM. This suggests

that, if we assume a prior p (Ω)
△
= 1

ZΩ̄
eγΩd(Ω;Ω̄) where ZΩ̄ =

´

dΩ eγΩd(Ω;Ω̄), then the joint

belief of the parameterisation and the data is,

J (Dat,Ω) = log p (Dat,Ω) (4.7)

= log p (Dat|Ω) + γΩd
(
Ω; Ω̄

)
− ZΩ̄. (4.8)

Hence such a Lagrangian multiplier is equivalent to applying a prior belief to the likelihood

of Ω (Equations 4.2 to 4.5) making any optimisation of G
[
Ω;Ωold|Ω̄

]
an optimisation of

the joint belief J (Dat,Ω).

The methodology of the EM-algorithm is to first construct a proposal distribution over

the hidden latent variables L conditioned upon the data Dat and the prior parameters

Ωold, p
(
L|Dat,Ωold

)
. This constructs the expectation or E-step of the EM-algorithm.

The EM-algorithm finds the stationary point of the bounds Lagrangian G
[
Ω;Ωold|Ω̄

]
with

respect to the parameters Ω, which maximises the joint belief J (Dat,Ω). This constructs

the new parameters and so constitutes the maximisation or M-step of the EM-algorithm.

The EM-algorithm is conceptually a pseudo maximum likelihood where the expectation

p
(
L|Dat,Ωold

)
is used in the maximisation of p (Dat, L|Ω) with respect to Ω and the

prior defined by the Lagrangian multiplier γΩd
(
Ω, Ω̄

)
. In the following I use the gradients

to construct analytical updates for the learning rules as stationary points to the episodic

Lagrangian G
[
Ω;Ωold|Ω̄

]
. This is somewhat like an iterative maximum a-posteriori (MAP)

algorithm rather than an ML-algorithm. Though implicitly all ML algorithms assume a

uniform prior for the parameters.

An episodic ML-algorithm optimisation for a unimodal Gaussian process is depicted

in Figure 4.2. To emphasise the flexibility of the episodic process, a transition in the

parameters at episode 80 illustrates the influence through γ of the weight assigned to a
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Figure 4.2: Convergence of the episodic maximum-likelihood (ML) estimates. The episodic ML
estimates are compared according to the ratio γ which indicates the weighting given to
the previous episodes parameters. At episode 80 there is a transition in the data from one
parameter to another. The purpose of this transition is to indicate the varying speed with
which the different γ’s converge to the new parameters. The true parameters are indicated
with dashed lines. For γ → 1 acts as a smoothed variational estimate for the parameters.
Where each episode’s sample size is N = 100 and γΩ = γN .

past episode’s parameters. The episodic ML-algorithm converges to the true parameters

at an episodic rate dependent upon γ.

The advantage of this episodic EM-algorithm is that it may be applied to any model

that is learnable using a likelihood based method, including expectation-maximisation

based variational learning methods such as Ghahramani and Beal (2000), Ghahramani

and Hinton (2000), Jordan et al. (1999), Verbeek et al. (2003), Beal et al. (2003), Hos-

pedales and Vijayakumar (2006), Hospedales et al. (2007). It does however require that a

suitable measure of dissimilarity exists for the particular parameter being learnt. I develop

a few measures and consider the application of one to a ML-algorithm (Figure 4.2) in

Appendix R.

4.3 Systems background

The seminal discovery of Lorenz that originated the field of chaos was originally motivated

by the problem of weather prediction. Lorenz investigated a series of equations derived

from thermal convection in the atmosphere (Ott, 2002). His demonstration that thermally

driven convection could result in chaos raised the possibility that the atmosphere is chaotic.

The dynamic equations for the Lorenz attractor are,

∂x(1)

∂t
= a

(
x(2) − x(1)

)
, (4.9)
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Figure 4.3: The Lorenz attractor. The parameters for the attractor are a = 10, b = 25
and c = 8

3 . The starting point is indicated by a red dot. Sampling this trajectory was
implemented using the Python scientific package Scipy (using the included ODE solver).
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Figure 4.4: The sensitivity of the Lorenz attractor to small perturbations of the initial
starting conditions. A small collection of similar starting conditions is indicated in plot (a)
by a red dot. The trajectories from these initial points are also indicated in the same plot.
Plot (b) shows this sensitivity more clearly in depicting the average distance between the
trajectories in plot (a) by the black line and the limits of these distances are indicated
by grey block in plot (b). Sampling these trajectories was implemented using the Python
scientific package Scipy (using the included ODE solver).
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∂x(2)

∂t
=

(
b− x(3)

)
x(1) − x(2), (4.10)

∂x(3)

∂t
= x(1)x(2) − cx(3), (4.11)

where the state vector x =
{
x(i) : i = 1, 2, 3

}
. See Figure 4.3 for an example attractor

for the parameters a = 10, b = 25 and c = 8
3 implemented using the Python scientific

package Scipy (using one of the included ordinary differential equation (ODE) solvers, see

Appendix Q). The Lorenz attractor is the classic example of a chaotic dynamical system.

It is for this reason that I choose to use it as the state dynamics for my problem.

The exponential sensitivity of chaotic trajectories means that as time progresses small

errors in the solution grow exponentially with time. Thus, after some time, effects such

as noise and computer rounding can cause significant divergence between a solution and

what it would be in the absence of these effects. An example for the Lorenz attractor

(implemented using Scipy) can be seen in Figure 4.4. The fact that chaos makes prediction

past a certain time difficult, is relevant principally for making specific predictions as to what

the future state of the system shall be. This is not such a problem for filtering (Grewal

and Andrews, 2001), as the problem of uncertainty due to chaotic divergence is countered

by conditioning upon a sequence of measurements.

The Lorenz attractor has a dynamic when converted to discrete time of,

xt = F (xt−1) , (4.12)

where F (·) is a non-linear process, making a naive application of a linear process inapplic-

able, e.g.,

xt 6= Axt−1 + b. (4.13)

However there are regions of the attractor (Figure 4.3) which can be said to be locally

linear where

xt = Akxt−1 + bk. (4.14)

This leads to modelling the dynamics of x with a hidden variable k that defines which

Ak and bk to use to evolve x. The structure of this approximation can be defined from a

Bayesian perspective and will be approached in the next Section.
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4.4 Partially observable switched state space model

4.4.1 Background

Most common probability models for tracking time series are developed from discrete

hidden Markov models (HMM) (Ghahramani, 1998) or stochastic linear dynamical systems

which are also referred to as state-space models (SSM) (Sontag, 1999, Kalman, 1960). The

latent state in HMMs is usually represented as a sequence of discrete random variables.3

This posterior probability of the state is constructed from transitioning the previous hidden

state via a transition matrix and conditioning upon an observation. Knowing the state at

any time makes the past, present and future observations statistically independent. This

however depends upon complete knowledge of the present.

This conditional independence of the future and the past, given the present, is the

property that defines Markov models. SSMs represent information about the past using a

continuous hidden state vector. Like HMMs an SSM is a Markov model; conditioning upon

the state vector makes the past, present and future observations statistically independent.

The dependency between the current and previous state vector is specified via a dynamic

equation and a noise model to represent a system.4

Most real processes cannot be described completely as either discrete or continuous

processes. An example would be a manoeuvring aircraft (Ristic et al., 2004c). This has

discrete modes of manoeuvre, each with a dynamic that is approximately linear. Such

processes however can be expressed as a switched SSM (Ghahramani and Hinton, 2000).

This addresses those processes that can be construed as having locally linear dynamics.5

Switched SSMs are a generalisation of HMMs and SSMs in which a continuous dynamic

process can transition in a discrete manner from one linear regime to another. Signal

processing and other fields make wide use of such models (Ghahramani and Beal, 2000,

Ghahramani and Hinton, 2000, Ristic et al., 2004c). Though one difficulty is the explosion

in computational complexity with the number of discrete states and the number of time

steps.

3HMMs are similar conceptually to symbolic dynamics (Smale, 1967, Levi, 1981). Symbolic dynamics
will represent a systems dynamical process using a set of discrete symbols representing the system’s state
entering a portion of the state space. HMMs represent a discrete state space using a tabulated posterior
belief in the discrete states conditional upon a set of observables.

4When the dynamic equations are linear and the noise model Gaussian, the SSM is called a Kalman
filter.

5In dynamics as discussed by Ott (2002) this is equivalent to the mixing of embedding and symbolic
dynamics which can be used for prediction (Farmer and Sidorowich, 1987, Abarbanel et al., 1990, Poggio
and Girosi, 1990, Linsay, 1991), noise removal (Kostelich and Yorke, 1988) and process control (Ott et al.,
1990, Shinbrot et al., 1990, Ditto et al., 1990, Dressler and Nitsche, 1992, Ott, 2002).
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As many continuous hidden Markov problems are not possible to solve accurately using

either HMMs or SSMs alone, switching SSMs can be used to account for non-linear dy-

namics. However there is a problem with the number of required tracked states with each

time-step (Murphy and Russell, 2001). Instead, approximating the belief in the model’s

state can be constructed using techniques such as importance sampling. The development

of importance sampling methods allowed many previously intractable non-linear problems

to be numerically modelled with relative ease. Importance sampling methods, when ap-

plied to Markov problems, are typically referred to as either Markov chain Monte Carlo

(MCMC) or particle filtering (PF) (Isard and Blake, 1998, Ristic et al., 2004c, Doucet et al.,

2001). PFs can represent distributions of arbitrary shape over a sequence of measurements.

A PF model maintains the probability of the state space (be it discrete of continuous) by

using a set of samples weighted by importance. Using this technique allows computational

resources to be focused upon regions of the state space that the model deems to be more

likely. See Appendix S for a more formal definition of a PF.

In high dimensional state spaces PFs can be inefficient (Doucet et al., 2000, Murphy

and Russell, 2001). A technique used to increase the efficiency of the particle filter is to

reduce the size of the sampled state space by marginalising out some variables analytically.

This takes advantage of the conditionality in the state space. The marginalised variables

can then be constructed analytically using HMMs, SSMs or other filtering methods. Such

a technique is referred to as Rao-Blackwellization and for my problem results in a Rao-

Blackwellized particle filter (RBPF) (Murphy and Russell, 2001).

4.4.2 System models algorithmic definition

Using a state space Lt, I wish to compute the distribution p (lt|x0:t, a0:t) where lt is the

latent state at a time t, x0:t is the sequence of measurements and a0:t is the sequence of

actions. In general, the required integrals cannot be computed in closed form. Therefore I

shall use an RBPF which approximates a part of the posterior using sequential importance

sampling and calculate the rest analytically.

Suppose the state space Lt is partitioned into two sub-spaces Kt and Zt, where the

variable kt represents a switching process and the variable zt represents a continuous linear

process of Dz dimensions. There is also a further hidden variable jt which is used to denote

uncertainty in the choice of measure an action at elicits. Hence the problem of estimating

P (jt|at) is the same as the correspondence problem discussed in Chapter 2. Then, by the
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Figure 4.5: Graphical models representing a generalised dynamic transition process and a
switching dynamic transition process with similar measurement processes. Plot (a) depicts
the latent state variable lt with the measurement process p (xt|lt). Plot (b) depicts a
switching Markov process with the switching variable kt and a continuous variable zt

with the measurement process p (xt|lt = {kt, zt, jt}) ≡ p (xt|zt, jt). The node labelled jt
indicates our uncertainty as to which measure is actually conducted. The node labelled
at in both plots represents the choice of measure in sampling xt. If lt = {kt, zt, jt} then
plot (b) is a special case of plot (a), cf Figure 3.2.

chain rule for probability I may write

p (z0:t, k0:t, j0:t|x0:t, a0:t) = p (z0:t|k0:t, j0:t, x0:t)P (k0:t, j0:t|x0:t, a0:t) , (4.15)

if p (z0:t|k0:t, j0:t, x0:t) can be updated efficiently and analytically then only the distribution

P (k0:t, j0:t|x0:t, a0:t) need be importance sampled (Murphy and Russell, 2001). As this is

sampling a smaller space, there is a need for fewer particles to represent the space of

K0:t
⋃

J0:t in contrast to Z0:t
⋃

K0:t
⋃

J0:t.

In a RBPF each particle k(i)
0:t, j

(i)
0:t is a sample from P (k0:t, j0:t|x0:t, a0:t). Each particle

has an associated parametric representation of the distribution p (z0:t|k0:t, j0:t, x0:t) de-

noted as α(i)
t . The samples from the space Kt

⋃
Jt are updated using standard PF, then

the parametric conditional distributions for zt are updated using an exact filter. This gen-

eral RBPF algorithm is expressed in Algorithm 4.1. A property of this algorithm is that

at any moment in time the particle filtering component is smoothed. A consequence of

this is that it is unnecessary to construct a backwards filter to generate a smoothed set of

particles. However the α(i)
t ’s do need to be smoothed to produce a new parameter set to

represent the distribution p
(
z0:T |k(i)

0:T , j
(i)
0:T , x0:T

)
. Smoothed distributions are useful for

pseudo Bayesian learning via ML-algorithms such as the EM-algorithm. These distribu-
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Algorithm 4.1 A generic Rao-Blackwellized particle filtering algorithm. A shorthand

s = {j, k} is used, this has the consequence that St = Jt ∪ Kt, s
(i)
t =

{
j
(i)
t , k

(i)
t

}
and

s
(i)
0:t =

{
j
(i)
0:t , k

(i)
0:t

}
. If references to st are replaced with the full latent space lt = {jt, kt, zt}

and step 3 is omitted, the result is a regular (non Rao-Blackwellized) particle filter. Notice
that if only a filtering solution is desired then there is no need to store the full trajectories
s
(i)
0:t for each particle, just its most recent component, s(i)t , since α(i)

t is updated online (α(i)
t

forms a parametric representation of p
(
zt|s(i)0:t, x0:t

)
). This algorithm is adapted from

Murphy and Russell (2001) who in turn adapted it from Doucet et al. (2000).
1. Sequential importance sampling step,

• for i ∈ [1, N ], sample

s
⋆(i)
t ∼ P̂

(
st|s(i)0:t−1, x0:t−1, at

)
, (4.16)

and set
s
⋆(i)
0:t

△
=
{
s
⋆(i)
t , s

(i)
0:t−1

}
. (4.17)

• for i ∈ [1, N ], evaluate the importance of the proposed trajectory according to,

π
(i)
t ∝ p

(
xt|s⋆(i)

0:t , x0:t−1

) P
(
s
⋆(i)
t |s

(i)
0:t−1, x0:t−1, at

)

P̂
(
s
⋆(i)
t |s

(i)
0:t−1, x0:t−1, at

) , (4.18)

where these weights are normalised,
∑N

i=1 π
(i)
t = 1.

2. Selection step,

• resample N samples from s
⋆(i)
0:t according to the importance distribution π(i)

t to

obtain N random samples s(i)0:t approximating the distribution p (s0:t|x0:t, a0:t).

3. Exact step,

• update α(i)
t given α(i)

t−1, s
(i)
t , s(i)t−1, xt and at.
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tions represent the current parameter’s complete data posterior belief in the hidden latent

state space, over which, the EM-algorithm constructs a pseudo maximum-likelihood. In

Appendix V the EM-updates for the smoothed Kalman process is constructed variation-

ally using the analytic portion of the RBPF derived in Appendix U. Appendix U con-

structs the filtered distribution p
(
zt|k(i)

0:t, j
(i)
0:t , x0:t

)
, followed by the smoothed distribution

p
(
zt|k(i)

0:T , j
(i)
0:T , x0:T

)
and the smoothed cross distribution p

(
zt−1:t|k(i)

0:Tτ , j
(i)
0:T , x0:T

)
. The

importance sampling terms k(i)
0:T and j(i)0:T that are used to construct these distributions are

stated in Appendix T.

4.5 Measures of expected knowledge

The prediction of expected knowledge requires the agent to construct prediction distri-

butions for the latent variables lt = {zt, jt, kt}. Hence, I shall construct the distribution

p (zt, jt, kt|x0:t−1, a0:t). To derive this I first start with the joint distribution which by

Bayes law factorises as

p (zt, j0:t, k0:t|x0:t−1, a0:t) = p (zt|j0:t, k0:t, x0:t−1)P (j0:t, k0:t|x0:t−1, a0:t) . (4.19)

By Bayes law the distribution of j0:t and k0:t factorises as

P (j0:t, k0:t|x0:t−1, a0:t) = P (jt|at)P (kt|kt−1)P (j0:t−1, k0:t−1|x0:t−1, a0:t−1) , (4.20)

and as this is a PF, with the definition that

P (j0:t−1, k0:t−1|x0:t−1, a0:t−1) =
1

N

N∑

i=1

δ
j
(i)
0:t−1

j0:t−1
δ
k
(i)
0:t−1

k0:t−1
≡ 1

N

N∑

i=1

t−1∏

t′=0

δ
jt′

jt′
δ
kt′

kt′
. (4.21)

I use the last two equations to construct the prediction distribution

p (lt = {zt, jt, kt} |x0:t−1, a0:t) =
∑

j0:t−1,k0:t−1

p (zt, j0:t, k0:t|x0:t−1, a0:t) , (4.22)

=
∑

j0:t−1,k0:t−1

p (zt|j0:t, k0:t, x0:t−1)P (jt|at)P (kt|kt−1)×

P (j0:t−1, k0:t−1|x0:t−1, a0:t−1) , (4.23)

=
1

N
P (jt|at)

N∑

i=1

p
(
zt|jt, kt, j

(i)
0:t−1, k

(i)
0:t−1, x0:t−1

)
×

P
(
kt|k(i)

t−1

)
, (4.24)
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≈ 1

N
P (jt|at)

N∑

i=1

p
(
zt|k⋆(i)

0:t , j
(i)
0:t−1, x0:t−1

)
×

P
(
k

⋆(i)
t |k(i)

t−1

)

P̂
(
k

⋆(i)
t |k(i)

t−1

)δk
⋆(i)
t

kt
, (4.25)

where as can be seen from Algorithms 4.1 & T.1 that the sample k
⋆(i)
t is taken from

P̂
(
kt|k(i)

t−1

)
, which accounts for the ratio of P

P̂
. These equations construct a prediction

representing the belief p (lt|x0:t−1, a0:t) and is used in the following subsection to estimate

the amount of knowledge an action will give the agent.

4.5.1 Adaptation of Porta et al.’s approach (Infomax)

There are many methods for approximating the conditional Shannon information. In this

subsection I shall use the approach discussed in Porta et al. (2003, 2005), as it is a recent

addition to the literature. Using the assumptions from Porta et al. I construct a sample

distribution S to represent the joint space of A
⋃

L
⋃

X, where A is the space of possible

actions. The addition of actions to S is necessitated by the dependency illustrated in

Figure 4.5 between the variables at and xt. The sample distribution S is used to construct

a set Xat , for each unique x ∈ Xat construct the marginal distribution p (x|at). Each

p (x|at) represents the sum of the weights for the particle that is best attributed to the

pair x and at. This is used, as in Porta et al. (2003, 2005), to approximate the conditioned

Shannon information

I [Lt|Xt, at] ≈
∑

x∈Xat

N∑

i=1

J∑

j=1

1

N

P
(
k

⋆(i)
t |k(i)

t−1

)

P̂
(
k

⋆(i)
t |k(i)

t−1

)P (j|at)φ
(
x;Bj ẑ

(i)
t|t−1

, BjΣ
(i)
t|t−1

BT
j + ν

)
×

log


 1

N

P
(
k

⋆(i)
t |k(i)

t−1

)

P̂
(
k

⋆(i)
t |k(i)

t−1

)P (j|at)φ
(
x;Bj ẑ

(i)
t|t−1, BjΣ

(i)
t|t−1B

T
j + ν

)

 . (4.26)

This is a costly Algorithm to compute, as within the summation is Gaussian computation.

The Algorithm to compute this is expressed in Algorithm 4.2 and scales as O
(
NaN

2J
)
.

4.5.2 Application of CRLB

The CRLB is the expected error or variance in the estimate of a continuous latent state

space,

Ep(xt,zt|x0:t−1,a0:t)

[
(zt − µt (xt))

2
]

= Ep(zt|x0:t−1,a0:t)

[
z2

t

]
−Ep(xt|x0:t−1,a0:t)

[
µ2

t (xt)
]
, (4.27)
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Algorithm 4.2 Porta et al.’s Infomax calculation algorithm adapted to a partially observ-
able switching SSM. This scales with a time complexity of O

(
NaN

2J
)
, where there are N

Rao-Blackwellized particles representing the latent belief p (lt = {zt, kt, jt} |x0:t−1, a0:t), J
choices of measure and Na possible choices of action at. S is constructed from the previous
episodes learnt distribution, as the individual trajectories upon the space Z. For every
time t from 1 to T , each point of the RBPF trajectory is assigned to the corresponding
measurement xt and chosen action at. The storage scales as O (NS) where NS = NT . The

shorthand r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

” is used in the Algorithm.

Calculation of Porta et al.’s method adapted to a switching SSM,

1. for each i ∈ [1, N ]

r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

”

ẑ
(i)
t|t−1 = Ak(i) ẑ

(i)
t−1|t−1 + bk(i)

Σ
(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q

2. for each at

Xat = Ø

(a) for each i ∈ [1, N ]

(z, a, x) ∈ S for a minimum
∣∣∣z− z

(i)
t

∣∣∣ and at = a

i. if x ∈ Xat then
p (x|at) = p (x|at) + 1

N
r (i)

ii. else
p (x|at) = 1

N
r (i)

Xat = Xat

⋃ {x}
(b) for each x ∈ Xat

h = 0

i. for each i ∈ [1, N ]

A. for each j ∈ [1, J ]

g = 1
N
r (i)P (j|a)φ

(
x;Bj ẑ

(i)
t|t−1, BjΣ

(i)
t|t−1B

T
j + ν

)

h = h+ g log (g/p (x|a))
I [Lt|Xt, at] = h

3. select the at that maximises I [Lt|Xt, at].
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where

µt (xt) = Ep(zt|x0:t,a0:t) [zt] , (4.28)

=
(
IDz −K

(i)
t|jB

(j)
)

ẑ
(i)
t|t−1 +B(j)xt. (4.29)

Hernandez (2004), Martinez-Cantin et al. (2007) define a CRLB that utilises stochastic

prediction of the predicted latent state space. As I am applying this to a chaotic dynamical

system I only use one step forward along the Markov chain. Using Equation 4.27, we can

construct the CRLB as the difference between the two quantities,

Ep(zt|x0:t−1,a0:t)

[
z2

t

]
=

1

N

N∑

i=1

r(i)
(

ẑ
(i)
t|t−1

T
ẑ
(i)
t|t−1 + tr

[
Σ

(i)
t|t−1

])
(4.30)

and

Ep(xt|x0:t−1,a0:t)

[
µt (xt)

2
]

=
1

N3

{
∑

i,i′,j,j′

P (j|at)P
(
j′|at

) P
(
k

⋆(i)
t |k(i)

t−1

)

P̂
(
k

⋆(i)
t |k(i)

t−1

)
P
(
k

⋆(i′)
t |k(i′)

t−1

)

P̂
(
k

⋆(i′)
t |k(i′)

t−1

) ×

∑

i′′

(((
IDz −K

(i)
t|jB

(j)
)

ẑ
(i)
t|t−1 +B(j)x̂

⋆(i)
t|t−1

)T

((
IDz −K

(i′)
t|j B

(j′)
)

ẑ
(i′)
t|t−1 +B(j′)x̂

⋆(i′)
t|t−1

)

+tr
[
B(j)H

⋆(i′′)
t|t−1 B

(j′) T
])}

, (4.31)

where i, i′ ∈ [1, N ], j, j′ ∈ [1, J ] and the Kalman gain for the i’th particle is K(i)
t|j =

Σ
(i)
t|t−1 B

(j) T
(
B(j)Σ

(i)
t|t−1 B

(j) T
+ ν
)−1

. These equations can be used to construct Al-

gorithm 4.3, which scales as O (NaJ (N + J)).

4.5.3 Application of my approach from Chapter 3

The information measure of action is used to select an action such that the filtered pos-

terior’s variance is expected to be minimised. The measure takes the upper bound over

the conditional Shannon information from Theorem 3.1 in the previous Chapter

I [Zt, Jt,Kt|Xt, at, . . .] = I [Zt,Kt| . . .] + I [Jt|at] + IMI [Xt; Zt, Jt,Kt|at, . . .] , (4.32)

≤ I [Zt,Kt| . . .] + I [Jt|at] +BXt|at

[
Zt, Jt,Kt‖Z′t, J′t,K′t

]
, (4.33)
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Algorithm 4.3 An implementation of the a posteriori CRLB (Hernandez, 2004, Martinez-
Cantin et al., 2007) adapted to a partially observable switching SSM. This scales with a
time complexity of O (NaJ (N + J)), where there areN Rao-Blackwellized particles repres-
enting the latent belief p (lt = {kt, jt, zt} |x0:t−1, a0:t), J choices of measure and Na possible

choices of action at. The shorthand r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

” is used in this Algorithm. The P

P̂

quantity is used in Algorithm 4.1 to construct the prediction particles for p (lt|x0:t−1, a0:t).
Calculation of the a posteriori CRLB,
g0 = 0Dz , G1 = 0Dz×Dz

1. for each i ∈ [1, N ]

r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

”

ẑ
(i)
t|t−1 = Ak(i) ẑ

(i)
t−1|t−1 + bk(i)

Σ
(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q

g0 = g0 + r (i) ẑ
(i)
t|t−1

G1 = G1 + r (i)

(
ẑ
(i)
t|t−1

(
ẑ
(i)
t|t−1

)T

+ Σ
(i)
t|t−1

)

2. for each at

G3 = 0Dz×Dz , g4 = 0Dz , g5 = 01×Dz

(a) for each i ∈ [1, N ]

ẑt|t−1 = ẑ
(i)
t|t−1

Σt|t−1 = Σ
(i)
t|t−1

i. for each j ∈ [1, J ]

K = Σt|t−1B
T
j

(
ν +BjΣt|t−1B

T
j

)−1

G3 = G3 + P (j|a)
(
ν +BjG1B

T
j

)

g4 = g4 + P (j|a) r (i) (IDz −KBj) ẑt|t−1

(b) for each j ∈ [1, J ]

g5 = g5 + P (j|a)Bj

CRLB(at) = 1
N

tr [G1]− 1
N3

(
1
ν2 tr

[
gT

5 G3g5

]
+ gT

4 g4 + 2
ν
hgT

4 gT
5 g5g0

)

3. select the at that maximises CRLB(at).
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where Lt = Zt ∪ Kt ∪ Jt. As the contribution from I [Zt,Kt| . . .] is independent of at it is

neglected. The contribution of Jt for Equation 4.32 is the Shannon information of Jt,

I [Jt|at] =
∑

j

P (j|at) log P (j|at) . (4.34)

The bound portion which represents an easily computable contribution of Xt to Equa-

tion 4.32 is expressed fully as,

BXt|at

[
Zt, Jt,Kt‖Z′t, J′t,K′t

]
=

∑

jt,j′t,kt,k′
t

ˆ

dztdz
′
tp (zt, jt, kt|x0:t−1, a0:t) p

(
z′t, j

′
t, k
′
t|x0:t−1, a0:t

)
×

DKL

[
p (Xt|zt, jt) ‖p

(
Xt|z′t, j′t

)]
. (4.35)

From the definition of the KL-divergence in Appendix D for one dimensional Gaussian

measurement beliefs from Equation U.2,

p (xt|zt, jt) = φ
(
xt;B

(jt)zt, ν
)
, (4.36)

which gives

DKL

[
p (Xt|zt, jt) ‖p

(
Xt|z′t, j′t

)]
=

1

2ν

(
B(jt)zt −B(j′t)z′t

)T (
B(jt)zt −B(j′t)z′t

)
, (4.37)

the B(j) mappings are interpreted as unit vector filters. An interpretation of this divergence

is depicted in Figure 4.6, for a prior state belief p (z| . . .) comprised of a mixture of two

Gaussians on the z-plane, and the ability to choose a known mapping to the measurable

x-line from z is interpreted as measuring along this unit vector. As the correspondence of

a to j is fully known in this contrived example it means that Figure 4.6 indicates that the

bound BXt|at
[Zt,St‖Z′t,S′t] shall select the mapping B(j) that has the greatest separation

for the mappings onto the x-line for the two Gaussians. Figure 4.6 is for the special case

where the correspondence between j and a is known and for simplicities sake is chosen to

be B′(a) = B (j) for a = j. The insight this contrived example gives to the more general

problem is that the action that corresponds to the unit vector filter which gives the greatest

separation upon X between the competing hypotheses as represented by the particles will

be favoured.
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(a) The pair of distributions on the z plane,
p(z|1) and p(z|2) are indicated respectively
by solid and dashed lines. The B(i) map-
pings are indicated by a dotted arrow.
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Figure 4.6: A visual interpretation of the measurement process for a contrived example.
The figure indicates an interpretation of the measurement process B(a) as defined in Sub-
section 4.4.2 for a contrived example. Using a mixture of two equally likely Gaussians
(p (z|i) = φ (z;µi,Σi)) representing a pair of hypotheses of the z-plane as depicted in plot

(a). Further in plot (a) a number of unit transpose vectors B(j) (e.g. B(j) B(j) T
= 1 ∀j)

representing a choice of measurement through the process p (x|j, z) = δ
(
x−B(j)z

)
. In

keeping with the notation in the text the shape of B(j) is the same as the transpose of
z. Plots (b) through (e) depict the overlap of p (x|i, j) =

´

dz p (x|j, z) p (z|i) and both
KL-divergences for the hypotheses are indicated. This shows that the bound, cf Equa-
tions 4.35 & 4.37 which is in this case the average of the two KL-divergences, and will
favour the mapping to the x-line of B(0) and B(3).
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Algorithm 4.4 An implementation of my information measure (Equation 3.3) adapted
to a partially observable switching SSM. This is an application of Chapter 3. This scales
with a time complexity of O (N +NaJ), where there are N Rao-Blackwellized particles
representing the latent belief p (lt = {zt, kt, jt} |x0:t−1, a0:t), J choices of measure and Na

possible choices of action at. The shorthand r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

” is used in the Algorithm.

Calculation of my method from Chapter 3,
g1 = 0
g2 = 0Dz , G3 = 0Dz×Dz

1. for each i ∈ [1, N ]

r (i) =
P

“

k
⋆(i)
t |k

(i)
t−1

”

P̂
“

k
⋆(i)
t |k

(i)
t−1

”

ẑt|t−1 = Ak(i) ẑ
(i)
t−1|t−1 + bk(i)

Σ
(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q

g1 = g1 + r (i)

g2 = g2 + r (i) ẑt|t−1

G3 = G3 + r (i)
(
Σt|t−1 + ẑt|t−1ẑ

T
t|t−1

)

2. for each at

g4 = 01×Dz , G5 = 0Dz×Dz , g6 = 0

(a) for each j ∈ [1, J ]

g4 = g4 + P (j|at)Bj

G5 = G5 + P (j|at)B
T
j Bj

g6 = g6 + P (j|at) logP (j|at)

I [Jt|at] +BXt|at
[Lt‖L′t] = 1

νN2

(
g1tr [G5G3]− gT

2 gT
4 g4g2

)
+ g6

3. select the at that maximises I [Jt|at] +BXt|at
[Lt‖L′t].

147



Algorithm 4.5 The protocol for learning episodically using a variety of informatic policies.
1. Generate a new trajectory of actions and measurements with a policy selecting actions

according to one of Algorithms 4.2, 4.3 & 4.4. The latent state space is constructed
using Algorithms 4.1 & T.1,

2. optimally update the parameters based upon this data and the previous episode’s
parameters using the smoothing updates from Algorithm T.2 and the EM-updates
defined in Appendix V until the likelihood converges or a set number of EM iterations
is reached,

3. return to 1.

Accordingly Equation 4.35 becomes,

BXt|at

[
Zt, Jt,Kt‖Z′t, J′t,K′t

]
=

1

2ν

ˆ

dztdz
′
t

∑

jt,kt,j
′
t,k

′
t

p (zt, jt, kt|x0:t−1, a0:t) p
(
z′t, j

′
t, k
′
t|x0:t−1, a0:t

)
×

(
B(jt)zt −B(j′t)z′t

)T (
B(jt)zt −B(j′t)z′t

)
, (4.38)

=
1

2νN2

∑

j,j′

P (j|at)P
(
j′|at

)∑

i,i′

P
(
k

⋆(i)
t |k(i)

t−1

)

P̂
(
k

⋆(i)
t |k(i)

t−1

)
P
(
k

⋆(i′)
t |k(i′)

t−1

)

P̂
(
k

⋆(i′)
t |k(i′)

t−1

) ×

{(
B(j)ẑ

⋆(i)
t|t−1 −B

(j′)ẑ
⋆(i′)
t|t−1

)T (
B(j)ẑ

⋆(i)
t|t−1 −B

(j′)ẑ
⋆(i′)
t|t−1

)
+

tr
[
B(j)Σ

⋆(i)
t|t−1 B

(j) T
]

+ tr
[
B(j′)Σ

⋆(i′)
t|t−1 B

(j′) T
]}
. (4.39)

This measures the overlap between each and every pair of trajectories (including a traject-

ory to itself) after mapping to the measurable space Xt according to an action at via B(jt)

and the belief in the correspondence between jt and at using P (jt|at). A simplified example

of which can be seen in Figure 4.6. Algorithmically this is constructed as Algorithm 4.4,

which scales as O (N +NaJ).

4.6 Results

In Subsection 4.1.1, I pose the hypothesis that a good localising choice of action will allow

a better model to be learnt from the data set rather than random and undirected actions.

This is to test the hypothesis that an active agent can learn a more optimal model of

its environment than an agent that explores in a random manner. The random policy is

uniform and so represents undirected exploration through a choice of action.

I accomplish this by using a linear switching state space model (SSM) as discussed in

Section 4.4. The action defines which measure (unit vector filter) of the state space is

observed by an action. However, the correspondence of an action to the measures will be
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(a) The learning log-likelihood with EM-iterations. (b) The validation log-likelihoods with EM-
iterations.

Figure 4.7: The likelihoods of the learning data sets and validation data sets for each of the
informatic policies defined in Algorithms 4.2, 4.3 & 4.4 contrasted with a uniform random
policy. The dots indicated in plot (a) represent the likelihood for an episode after the EM-
algorithm has ceased to increase the likelihood. It is important to notice the upward trends
in the likelihood of the selected parameterisation for each episode (with a dot indicating its
termination). The distribution of the validation data set’s log-likelihoods, for each learnt
model, can be seen in plot (b). Each line ending with a dot indicates the mean of the
validation likelihoods over the validation data sets. The opaque blocks indicate the range
of the standard deviation of the validation likelihoods for the collection of validation data
sets. The deterministic upper bound can be seen to significantly outperform each of the
other policies.

unknown and have to be learnt. The switching state space model used K = 25 states. Each

of these states represent a distinct linear process of the form zt = Akzt−1 + bk. 25 states

were observed to be an adequate number to represent the dynamics of the attractor with a

fully observed latent space (cf HMM). The particle filter between time steps (a time t to a

time t+ 1) stores N = 40 particles. A super sample of 80 particles is used to process each

prediction of the latent state space. This was found to be an adequate tradeoff between

increasing the number of particles N and the time complexity of the learning algorithm.

In my development of this model I found that N = 40 particles was sufficient for tracking

the latent state space.

The action policies derived in Section 4.5 for this switching SSM use varying measures

of knowledge. The learning phase for each episode uses a fresh sample of T = 500 time

steps from the Lorenz attractor – this is referred to as the learning data set. The graphs

used for analysis have a set of 15 samples each of T = 50 time steps from the Lorenz

attractor to validate the models constructed in the learning phase – this is referred to as

the validation data set.

I shall show that an action selection policy with directed localising actions (Section 4.5)
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(a) Learnt models’ “certainties” in their inferences
for the learnt parameters for each episode.

(b) Learnt models’ “accuracies” in their inferences
for the learnt parameters for each episode.

Figure 4.8: Figure indicating the episodic evolution, of each policy, for the learnt mod-
els’ inference “certainties” and “accuracies”. Plot (a) indicates the validation “certain-
ties” as quantified by the conditional Shannon information I [Zt|K0:t, J0:t, x0:t, a0:t] =
´

dzt

∑
k0:t,j0:t

p (zt, k0:t, j0:t|x0:t, a0:t) log p (zt|k0:t, j0:t, x0:t). Plot (b) indicates the valid-
ation “accuracies” as quantified by the validation likelihood, see Figure 4.7. The opaque
blocks indicate the range of the standard deviation of the quantities for validation data
sets. The deterministic upper bound can be seen to significantly outperform each of the
other policies.

is better than unbiased random actions. In this section I analyse different action policies

for an agent which has a choice of measure as an action. I then consider the case of a

change of correspondence due to a change in the measurement processes B′(a). This allows

me to test my hypothesis that directed action can construct a better model than undirected

action. Further, that directed action coupled with episodic learning allows for successful

re-learning of a model of the system Ω.

4.6.1 Comparison between informatic policies

In this subsection I compare and contrast the performances of each policy described in

Section 4.5. Further, these informatic policies are compared to a uniform random policy.

The purpose of the random policy is to act as a base comparison against which the other

policies must perform better.6 I approach this by constructing models of the Lorenz at-

tractor’s dynamics according to Algorithm 4.5 for 15 episodes. Each episode consists of

up to 5 EM-updates. The number of iterations of the EM-algorithm for each episode is

low, because the aim is to compare the impact of each policy upon learning, as having the

learning algorithm converge in the first episode would be counter productive.

As can be seen in Figure 4.7 both the CRLB and Infomax policies, respectively Al-

6A uniform random policy acts as a minimum standard against which other policies must be better. If
a policy cannot outperform a random policy which has little computation cost then it has no utility.
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.9: The data trajectory, inferred trajectories and the learnt measurement process
for the a posteriori Cramer-Rao lower bound (CRLB). The filtered trajectory in plot (b)
and the smoothed trajectory in plot (c) for the data set indicated in plot (a). The B′(a) for
the measurement process of the data in plot (a) is distinct from the model’s assumed B(j),
as can be seen in the optimised correspondence belief table ζj|a plot (d) which represents

the belief P (j|a). The mean of the filtered trajectories represents ẑt|t = 1
N

∑N
i=1 ẑ

(i)
t|t and

for the smoothed trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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(a) A sample z′ trajectory.
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.10: The data trajectory, inferred trajectories and the learnt measurement process
for the adapted Infomax approach of Porta et al. (2003, 2005). The filtered trajectory
in plot (b) and the smoothed trajectory in plot (c) for the data set indicated in plot
(a). The B′(a) for the measurement process of the data in plot (a) is distinct from the
model’s assumed B(j), as can be seen in the optimised correspondence belief table ζj|a plot
(d) which represents the belief P (j|a). The mean of the filtered trajectories represents

ẑt|t = 1
N

∑N
i=1 ẑ

(i)
t|t and for the smoothed trajectories ẑt|T = 1

N

∑N
i=1 ẑ

(i)
t|T .

152



z�(1)�15�10�5 0
5

10
15

z
�(2)�20�15�10�5 0
5
10

15

z

�(3)
5

10

15

20

25

30

35

(a) A sample z′ trajectory.
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.11: The data trajectory, inferred trajectories and the learnt measurement process
for a policy based upon my approach from Chapter 3. The filtered trajectory in plot (b)
and the smoothed trajectory in plot (c) for the data set indicated in plot (a). The B′(a) for
the measurement process of the data in plot (a) is distinct from the model’s assumed B(j),
as can be seen in the optimised correspondence belief table ζj|a plot (d) which represents

the belief P (j|a). The mean of the filtered trajectories represents ẑt|t = 1
N

∑N
i=1 ẑ

(i)
t|t and

for the smoothed trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.12: The data trajectory, inferred trajectories and the learnt measurement process
for a uniform random policy. The filtered trajectory in plot (b) and the smoothed trajectory
in plot (c) for the data set indicated in plot (a). The B′(a) for the measurement process
of the data in plot (a) is distinct from the model’s assumed B(j), as can be seen in the
optimised correspondence belief table ζj|a plot (d) which represents the belief P (j|a).
The mean of the filtered trajectories represents ẑt|t = 1

N

∑N
i=1 ẑ

(i)
t|t and for the smoothed

trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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gorithms 4.2 & 4.3, are out performed by the upper bound (Algorithm 4.4). The learning

data sets’ log-likelihood for each informatic policy shows the Infomax policy to initially be

higher for the EM-iterations 20 to 50. This though does not translate to better perform-

ance in later EM-iterations. Nor does this translate into a higher validation likelihood,

Figure 4.7 (b). The CRLB and Infomax algorithms finish performing slightly better than

a uniform random policy.

Figure 4.7 shows a far smoother incline for my approach, labelled as the deterministic

bound, when contrasted to the Infomax policy. The cause of the zig-zagging in the mean

validation likelihood, in Figure 4.8 (b), for Infomax can be attributed to the use of a sample

S of the latent state space L, action A and measurements X.7 If a combination has not

been explored, then it cannot be considered by the Infomax policy (Algorithm 4.2).

This shows a separation between my approach and the other informatic policies – my

approach is cheaper to compute than both the CRLB and Infomax policies, with favourable

Algorithmic scaling, Section 4.5. Also from Figure 4.8 (a), my policy (the upper bound) has

a consistently higher mean Shannon information. The mean Shannon information equates

to a higher certainty in inferences upon Z. There is also a trend for use of my policy

to cause the learning algorithm to outperform the use of the other policies in accurately

modelling the validation data sets. This is shown through the average validation likelihood

in Figure 4.8 (b).

To verify, for each policy, that the episodic EM-algorithm can adequately represent

the Lorenz attractor I present Figures 4.9-4.12. Each figure depicts in plot (a) a sample

trajectory, in plots (b) & (c) the inferred trajectories and in plot (d) the belief table P (j|a).

The switched SSMs expected filtered Z state space is

ẑt|t = Ep(zt|x0:t,a0:t) [zt] , (4.40)

=

ˆ

dzt zt

∑

j0:t,k0:t

p (zt, j0:t, k0:t|x0:t, a0:t) , (4.41)

=
1

N

N∑

i=1

ˆ

dzt zt p
(
zt|j(i)0:t , k

(i)
0:t, x0:t, a0:t

)
, (4.42)

=
1

N

N∑

i=1

ẑ
(i)
t|t , (4.43)

which are depicted in plot (b) for each figure. Similarly, for the smoothed case depicted in

7The set S = A
S

L
S

X and is constructed from the previously learnt episodes trajectory for this joint
space.
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plot (c) of each figure, the expected smoothed Z state space is

ẑt|T =
1

N

N∑

i=1

ẑ
(i)
t|T . (4.44)

In plot (b) & (c) for Figures 4.9, 4.11 & 4.12, which correspond respectively to the CRLB,

my approach and the random policies show that visually the trajectories ẑt|t and ẑt|τ have

a similar structure to the Lorenz attractor (each figure’s corresponding plot (a)). The

exception is the Infomax policy’s trajectories in Figure 4.10. Figure 4.10 (b) & (c) shows

that the episodic EM-algorithm using this policy, is unable to adequately track one of

the Lorenz attractor’s loops. As already mentioned, the cause of the zig-zagging in the

mean validation likelihood using the Infomax policy, can be attributed to the use of an

inadequate sample S of the latent state space, action and measurements. Therefore, if a

combination of a, z and x have not been explored, and hence stored, then Algorithm 4.2

cannot consider such a combination. This also explains the contradiction in Figure 4.10 of

a fully one-to-one association of a to j of the P (j|a) table in plot (d), with the shape of

the filtered and smoothed trajectories in plots (b) & (c).

Plot (d) of Figures 4.9-4.12 shows each policies learnt P (j|a) table. These all exhibit

a bias for a one-to-one association between j and a via the learnt ζj|a tables. However,

my approach in Figure 4.11 (d) has a caveat, one of the directions is not queried uniquely

for one particular action (a = 1). A probable explanation for this, not seriously affecting

inference of ẑt|t and ẑt|T , is that the dynamics cause the filtered posterior to be well mixed.

This makes an inference on one dimension convey information about other dimensions. A

further explanation is that there are some regions of the attractor where one dimension of

z has the same value as another dimension. This is what can allow the EM-algorithm to

maintain any uncertainty in P (j|a) for an action a. Considering the topologically accurate

inferences when comparing Figures 4.11 (b) & (c) to Figure 4.11 (a), the general topology

of the Lorenz attractor seems to have been learnt – this topology being the double loop

in Z. The same also is true for Figures 4.9 & 4.12, indicating the system (the Lorenz

attractor) has been adequately represented.

To summarise the analysis of this subsection, I have made a comparison between three

informatic policies:

1. my approach from Chapter 3,

2. an Infomax approach which is an adaptation of Porta et al. (2003, 2005),
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Algorithm 4.6 The protocol for learning episodically using a stochastic policy.
1. Generate a new trajectory of actions and measurements with a policy select-

ing actions according to P (at| . . .) = en·C(at)
P

at
en·C(at)

, where C (at) = I [Jt|at] +

BXt|at
[Zt, Jt,Kt‖Z′t, J′t,K′t], iteratively over time with Algorithms 4.1 & T.1,

2. optimally update the parameters based upon this data and the previous episode’s
parameters using the smoothing updates from Algorithm T.2 and the EM-updates
defined in Appendix V until the likelihood converges or a set number of EM iterations
is reached,

3. return to 1.

3. and the application of an a posteriori CRLB estimator.

In terms of accuracy and certainty, these are found to outperform a uniform random policy.

However, it is clear that my approach retains some ambiguity in the measurement process

Figure 4.11 (d). The Infomax policy though, has the filtered and smoothed trajectories

(Figure 4.10 (b) & (c)) that represent worst the sample trajectory Figure 4.10 (a). In

contrast, the policies other than Infomax have each represented the double loop of the

Lorenz attractor.

4.6.2 A stochastic modification

How do we consider a continuum of policies between an informatic policy, such as Al-

gorithm 4.4, and the uniform random policy? This can be approached by treating the

measure of information as an energy like quantity and varying the temperature of the

distribution. Using the shorthand

C (at)
△
= I [Jt|at] +BXt|at

[
Zt,St‖Z′t,S′t

]
, (4.45)

which is the components of Equation 4.32 that depend upon at. This allows for a transition

between actions being informatically exploitative of knowledge and purely exploratory. The

probability of choosing an action at is defined to be,

P (at| . . .) =
en·C(at)

∑
at
en·C(at)

, (4.46)

where n is used to make the policy more or less greedy in terms of knowledge by respectively

decreasing or increasing n – n being the temperature of the belief P (at| . . .). In the

next two subsections, this is used to learn episodically according to the policy defined in

Subsection 4.5.3 which is described in Algorithm 4.6.
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(a) The learning log-likelihood with EM-iterations
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(b) The learning log-likelihood with episode

Figure 4.13: The learning data set’s likelihood across different weightings of uniform to
greedy stochastic action selection. The different weightings n for the quantity C (at) to
make a stochastic selection of at, Equation 4.46. n = 0 represents a completely ran-
dom policy and n = 2 represents the greediest localising policy considered. In both
plots (a) & (b) the filled dots indicate the likelihood for an episode after the EM-algorithm
has reached either of its stopping conditions; these conditions are either five EM-iterations,
or if the likelihood drops. It is important to notice the upward trends in the likelihood of
the selected parameterisation for each episode (dots).

4.6.3 Directed localising action is better than undirected actions

In this subsection I analyse different action policies for an observer that can make a choice

of measure, to consider the best choice of policy, be it entirely exploratory (n = 0) or mostly

greedy (n = 2). As can be seen in Figure 4.13 (a) the log-likelihood in every episode always

rises, though there can be a drop from the end of one episode to the start of the next episode

due to each episode using a new data sample. Figure 4.13 (b) indicates that after episode 7

the learning data likelihoods for some n’s drop. The validation likelihood does not always

match this, however like Figure 4.13 (a) the validation likelihoods in Figure 4.14 (b) begin

to diverge after episode 7. This indicates there is an initial learning phase where all n’s are

essentially the same, followed by a reinforcement phase where inference certainty appears

to be more important for the model’s accuracy as measured by the validation likelihood.

I use Figure 4.15 to show that the model and learning algorithms have made acceptable

inferences for the system’s state space. For the filtered case depicted in Figure 4.15 (b)

the actual state space is depicted in Figure 4.15 (a), the switched SSMs expected filtered
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(a) The validation log-likelihoods with EM-
iterations.

(b) The validation log-likelihoods with episode.

Figure 4.14: The range of validation data sets’ likelihood across different weightings of
uniform to greedy stochastic action selection. The different weightings n for the quantity
C (at) to make a stochastic selection of at, Equation 4.46. n = 0 represents a completely
random policy and n = 2 represents the greediest localising policy considered. In plot (a)
each line ending with a filled dot indicates the mean of the validation likelihoods over the
validation data sets. In plot (b) the distribution of validation likelihoods at the end of each
learning episode is indicated by filled dots. The coloured blocks indicate the range of the
standard deviation of the n’s validation likelihoods with EM iteration for plot (a) and the
end episode for plot (b).
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(a) A sample z′ trajectory.
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.15: The data trajectory, inferred trajectories and the learnt measurement process.
The filtered trajectory in plot (b) and smoothed trajectory in plot (c) for the data set
indicated in plot (a) and the learnt model for n = 2. The B′(a) for the measurement
process of the data in plot (a) is distinct from the model’s assumed B(j), as can be seen in
the optimised correspondence belief table ζj|a plot (d) which represents the belief P (j|a).
The mean of the filtered trajectories represents ẑt|t = 1

N

∑N
i=1 ẑ

(i)
t|t and for the smoothed

trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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(a) Learnt models’ “certainties” in their inferences
for the learnt model of the final episode.
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(b) Learnt models’ “accuracies” in their inferences
for the learnt model of the final episode.

Figure 4.16: Figure of the final learnt models’ inference certainties and accuracies
across the different weightings of uniform to greedy stochastic action selection.
Box and whisker plots of the learnt model’s validation inference certainties in plot
(a) as measured by the conditional Shannon information I [Zt|J0:t,K0:t, x0:t, a0:t] =
´

dzt

∑
s0:t

p (zt, j0:t, k0:t|x0:t, a0:t) log p (zt|j0:t, k0:t, x0:t). Box and whisker plots of the
learnt model’s accuracy in plot (b) as measured by the final iterations validation likeli-
hoods for each n. The conditional Shannon information is related to the model’s certainty
and not its accuracy, it is not a measure of how well a model represents a system, but how
certain the model is in its inferences. The distribution of validation likelihoods in plot (a)
do indicate an unbiased estimate of how accurately each n’s learnt model represents the
system from which these validation data sets were drawn.

(a) Learnt models’ “certainties” in their inferences
for the learnt parameters for each episode.

(b) Learnt models’ “accuracies” in their inferences
for the learnt parameters for each episode.

Figure 4.17: Expansion of Figure 4.16 to indicate the episodic evolution of the certainties
and accuracies. The episodic evolution of certainties is depicted in plot (a) and accuracies
are depicted in plot (b). The filled dots on both plots indicate the end of a learning episode.
There is a trend for greater n to have both a higher “certainty” and “accuracy” as well as
a greater variance (the final episode is shown in more detail in Figure 4.16).
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Z state space is,

ẑt|t =
1

N

N∑

i=1

ẑ
(i)
t|t , (4.47)

and similarly for the smoothed case depicted in Figure 4.15 (c), the expected smoothed Z

state space is,

ẑt|T =
1

N

N∑

i=1

ẑ
(i)
t|T . (4.48)

Figure 4.15 (b) & (c) show that the trajectories ẑt|t and ẑt|τ visually have a similar structure

to the Lorenz attractor Figure 4.15 (a). The difficulty is that some of the directions are not

queried properly, as the correspondence table in Figure 4.15 (d) assumes that two directions

are identical. This is mostly due to the dynamics causing the filtered posterior to be well

mixed, making an inference on one dimension convey information about other dimensions.

However, this is contingent upon miss-corresponding inferences not being too misleading.

Considering the topologically accurate inferences when comparing Figures 4.15 (b) & (c) to

Figure 4.15 (a) this appears to be the case. This indicates the model has adequately learnt

the system in spite of miss-corresponding some actions to measures in the correspondence

table, Figure 4.15 (d). While Figure 4.15 shows the model has learnt to represent the

system, it says little as to which n has constructed the best representation.

Next I consider which n is most accurate and certain. I take the conditional Shannon

information I [Zt|J0:t,K0:t, x0:t, a0;t] as my measure of an individual model’s certainty in its

inferred belief for zt. I use the validation likelihood as a measure of an individual model’s

accuracy in its representation of the system. The certainty and accuracy of the final learnt

models for each n from Figure 4.16 shows a trend to more certainty and accuracy for larger

n’s. The long tails in both plots in Figure 4.16 are accounted for by initialising the prior

p (z0) to be a Gaussian and covering the entire attractor on the space Z, and P (k0) to be

a uniform prior. These priors are chosen for validation data sets as the priors learnt for

the learning data sets will be meaningless. I expand the comparison from Figure 4.16 to

look back at the learnt models across the episodes in Figure 4.17, this shows that it takes

6 to 8 episodes for the accuracies and certainties to meaningfully diverge. This is likely to

be an artifact of both the episodic learning algorithm (Section 4.2) and the policies being

mostly exploratory. The divergence is likely due to the n 6= 0 policies becoming more

greedy or exploitative of knowledge as C (at) differs more between different choices of at,

Equations 4.45 & 4.46.

To summarise the analysis of Figures 4.13-4.17, we see that the more uniformly random
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(a) The learning log-likelihood with EM-iterations. (b) The validation log-likelihoods with EM-
iterations.

Figure 4.18: The learning and validation likelihoods for relearning a model with a change
to the system. This is for the weighting n = 1

4 in C (at) using the stochastic selection of
at, Equation 4.46. The dots indicated in plot (a) represent the likelihood for an episode
after the EM-algorithm has ceased to increase the likelihood. It is important to notice
the upward trends in the likelihood of the selected parameterisation for each episode (with
a dot indicating its termination). The range of validation data sets log-likelihoods for
the corresponding iteration’s model can be seen in plot (b). Each line ending with a dot
indicates the mean of the validation likelihoods over the validation data sets. The grey
blocks indicate the range of the standard deviation of the validation likelihoods for the
collection of validation sets. The dashed red line in both plots (a) & (b) indicates the shuffle
ofB′(a) (learning other variables intact) with the consequence that the correspondence table
ζj|a is no longer valid. The substantial difference in the learning versus re-learning phases
can be accounted for by the initial policy being primarily exploratory (learning) versus
exploratory re-evaluation of hypotheses (re-learning).

a policy is, the more inferior it tends to be to stochastic directed action selection for

learning to localise – learning to track upon an unknown latent state space. This is due to

the “greedy” policy of n = 2 being exploratory relative to how “certain” the measure C (at)

is in Equations 4.45 & 4.46. This lends further credence to my argument that the policy

for all the n’s are equivalently exploratory of the system until a reinforcement phase where

certainty is more important for the model’s accuracy.

4.6.4 “Adult” learning of correspondence

In this subsection I analyse the effect of an imposed change to the measurement process

as modelled by p (x|z, j). This change is to the sampling process as denoted by B′(a), and

takes the form of a shuffle. This causes the correspondence of j to a, to change due to

the shift in B′(a) relative to B(j) making the learnt correspondence table P (j|a) = ζj|a

obsolete. This is a simple analysis of the mechanism of an agent adapting its model of its

environment to a contrived change in physiology – it relates to the work in Hofman et al.

(1998), Rossetti et al. (1993, 1998).
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Figure 4.19: The KL-divergence of the learnt parameters with episodes after a change in
the system’s measurement process. The KL-divergence of the learnt parameters after the
change in B′(a) to the learnt parameters before the change in B′(a), ie U = 10 and U ′ varies
from U to 2U . U ′ − U are the episodes since the change in B′(a). U ′ −U = 0 corresponds
to the red dashed line in Figure 4.18.

After the change of B′(a) the model’s data and validation likelihoods fall dramatically

(Figure 4.18). This is to be expected, as the system has been arbitrarily changed. This

makes the agent’s model of the system incorrect and necessitates relearning of the afford-

ances/contingencies. Initially the learning algorithm appears to optimise specifically for

the learning set and not the validation sets in Figure 4.20. Though after this initial lack of

learning generality, the model’s accuracy, as measured by the validation likelihood, returns

to its previous high a few episodes after the change in B′(a). This indicates that an equally

good representation of the system has been relearnt. These changes can be associated in

Figure 4.19 with an initial change to the learnt dynamics (parameterised by A, b and σ)

not affecting the accuracy. This is followed by a change in correspondence after 3 epis-

odes seeming to cause the most significant shift in the accuracy (validation likelihood in

Figure 4.18 (b)).

Using the filtered and smoothed expectations of z with respect to time t, and contrasting

these with the sample from the Lorenz attractor, the end of the initial learning phase (upto

the 10th episode) is depicted in Figure 4.20. The structure of the attractor has been learnt

for both the initial B′(a) (Figure 4.20) and after its transition to a new B′(a) (Figure 4.21).

The difficulty is that some of the directions are not queried properly, as the correspondence

table in Figure 4.21 (d) assumes that two directions are identical. This is mostly due to

the dynamics causing the filtered posterior being well mixed, making an inference on one

dimension convey information about other dimensions. However, this is contingent upon

miss-corresponding inferences not being too misleading. Considering the topologically
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(b) The mean of the filtered trajectories, ẑt|t.
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.20: The data trajectory, inferred trajectories and the learnt measurement process
for the initial system in Figure 4.18. The filtered trajectory in plot (b) and the smoothed
trajectory in plot (c) for the data set indicated in plot (a). The B′(a) for the measurement
process of the data in plot (a) is distinct from the model’s assumed B(j), as can be seen in
the optimised correspondence belief table ζj|a plot (d) which represents the belief P (j|a).
The mean of the filtered trajectories represents ẑt|t = 1

N

∑N
i=1 ẑ

(i)
t|t and for the smoothed

trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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(c) The mean of the smoothed trajectories, ẑt|T .
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(d) The learnt correspondence table ζj|a

(which represents the belief P (j|a)) for an
action a to a choice of measure j. Where
the probabilities are represented by the area
of the white square.

Figure 4.21: The data trajectory, inferred trajectories and the learnt measurement process
after the change in the system in Figure 4.18. The re-learnt model’s trajectories for filtered
expectation ẑt|t in plot (b) and smoothed expectation ẑt|τ in plot (c) trajectories for the

data set indicated in plot (a) for a learnt model of n = 1
4 . The B′(a) for the measurement

process of the data in plot (a) is distinct from the model’s assumed B(j), as can be seen in
the optimised correspondence belief table ζj|a plot (d) which represents the belief P (j|a).
The mean of the filtered trajectories represents ẑt|t = 1

N

∑N
i=1 ẑ

(i)
t|t and for the smoothed

trajectories ẑt|T = 1
N

∑N
i=1 ẑ

(i)
t|T .
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accurate inferences when comparing Figures 4.21 (b) & (c) to Figure 4.21 (a) this appears

to be the case.

To summarise the analysis of Figures 4.18 to 4.21 in this subsection, I have shown that

an episodic learning algorithm can adapt a model to a reconfiguring of the measurement

process represented by P (j|a) parameterised using ζj|a. This is similar to the findings

of Hofman et al. (1998), Rossetti et al. (1993, 1998) where a previously stable sensory

configuration is arbitrarily modified (in the cases via the individual’s physiology) and the

individuals adapt to this. Finally comparing Figures 4.20 & 4.21 I have shown that an

imposed change upon the measurement process results in a reconfiguration of the model’s

representation of the measurement process.

4.7 Discussion

4.7.1 Findings

To validate my hypothesis that a directed active agent can learn a better model, which is

more certain and accurate in its inferences than an undirected active agent, I have used

a RBPF to construct a Bayesian representation of a partially observable system. In the

development of this Chapter I have found the following requirements for active perception:

1. A representable latent space.

2. A method of refining a learnt parameter over a number of episodes.

3. The observables are dependent upon a choice referred to in this thesis as an action.

This defines the requirements that a system or problem must have for learning active-

perception. My instantiation of these respective conditions are:

1. To represent a partially observable non-linear dynamical process using a linear switch-

ing SSM, defined in Section 4.4.

2. An episode has a data set which is learnt optimally using an episodic EM-algorithm

which I defined as a method to allow the EM-algorithm to bootstrap from a previous

episode’s learning (see Section 4.2).

3. The data set of an episode is generated with reference to an informatic policy, ex-

amples are defined in Section 4.5.
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Putting these together I have constructed a useful model of observation systems.

In approaching the optimisation part of the problem and its consequent requirements

for a solution, I have constructed an episodic learning algorithm. This episodic learning

algorithm takes the form of a Lagrangian upon the EM updates and can be interpreted as

a joint belief update according to a prior episode’s learnt parameter. This episodic learning

is especially important in problems with rare dynamic events which are unlikely to be seen

in any one episode. Prior rare dynamic events will not be ignored by the episodic updates,

but if too rare, these may be forgotten. This is especially important for policies that make

use of previous experience, for instance my adaptation of Infomax from Porta et al. (2003,

2005).

In Subsection 4.6.1, I contrast three informatic policies:

1. my approach from Chapter 3,

2. an Infomax approach which adapted Porta et al. (2003, 2005)

3. and the application of an a posteriori CRLB estimator.

These policies were defined mathematically and algorithmically in Section 4.5. There is

a clear difference between the results of these informatic policies. Firstly, my approach is

cheaper to compute with favourable Algorithmic scaling, Section 4.5. Secondly, my policy

has a consistently higher mean Shannon information, which I equate to a higher inference

certainty. Thirdly, there is a trend for my policy to be the most accurate, which I equate to

the validation likelihood. In terms of accuracy and certainty, all three informatic policies

are found to outperform a uniform random policy. However, my approach retains some

ambiguity in the measurement process Figure 4.11 (d). The Infomax policy though, has

the filtered and smoothed trajectories (Figure 4.10 (b) & (c)) that represent worst the

sample trajectory Figure 4.10 (a). In contrast, the policies other than Infomax have each

represented the double loop of the Lorenz attractor.

In Subsection 4.6.3, I have shown that a choice of action that implicitly localises and

explores when necessary, will allow a better model to be learnt from the data set than

completely random and undirected actions. Hence, an active agent can learn a more

optimal model of the world than an inactive agent (which can be seen in Chapter 2), or

one that explores in an undirected manner (a policy defined in Section 4.5 by Equation 4.46

setting n = 0). More strongly it can be argued from Held and Hein (1963) that active

and directed perception is a critical developmental requirement of learning to represent the
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world. In this context a representation of an agent’s environment is better than another

one due to having more certain inferences, which equates to a higher accuracy. This is

an obvious but important definition of “better” for making inference based decisions. In

addition, having greater inference certainty, this can result in a learnt model of the system

that is better at representing the systems dynamics. This is especially important for

a sensorimotor system where the former constraint, being more certain in inferences, is

utilised to define what the best actions are. Both constraints are used in this Chapter to

firstly infer the most certain inferences by selecting actions to increase certainty and then

refining the model’s parameters to fit these more certain inferences to the data set.

What I show is a slightly stronger statement, that informatically directed action se-

lection is better for learning than undirected or random action selection. Though both

of these are better than the passive case where prior knowledge is required (Chapter 2).

I have accomplished this by using a linear switching state space model (SSM) discussed

in Section 4.4 where the action defines which unit vector measure of the state space is

observed. However, the correspondence of an action to the measures is unknown and has

to be inferred. I derived an action selection policy in Section 4.5 using the information

measure I developed in Chapter 3. I compared this with two other widely accepted meas-

ures of knowledge from the literature. I then analysed different action policies for an agent

for which an action is a choice of measure. I have shown that a directed localising policy

which can explore when necessary is generally better for inferences. The more directed a

policy, the greater are its expected certainty and expected accuracy (Figure 4.16) than an

entirely random action selection (Subsection 4.6.3). This allows me to state that directed

action can construct a generally better model than undirected action.

In my analysis of different stochastic action policies I showed that a policy which is

informatically greedy is typically best. In contrasting Figure 4.8 to Figures 4.13 & 4.14 we

see that the stochastic policy forms a range of roughly ordered performance from uniformly

random policy up to the deterministic informatic policy (Algorithm 4.4). Performance is

defined according to accuracy and certainty. In Subsection 4.6.3, these stochastic policies

take on the aspect of the random policy when the information measure does not distin-

guish between actions. However, the non-stochastic policy in Figures 4.7 & 4.8 show a

consistently higher validation likelihood than the stochastic policies for all episodes.

The uniform stochastic policy did however remove the ambiguity in the measurement

process, Figure 4.11 (d) to Figure 4.12 (d). Subsection 4.6.3 shows that there is an initial
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learning phase where each policy performs equivalently, followed by a reinforcement phase

where the importance of inference certainty is more exaggerated. The consequence is to

make all policies appear to “body babble” initially (Olsson et al., 2005a, 2006), as can be

seen most clearly in Figure 4.22, where a higher entropy indicates a smoother distribution.

Though, as the episodes pass, for the policies where n 6= 0, the entropies in Figure 4.22

drift away from the purely exploration or uniformly random policy.

I then showed that a change of the measurement process had the effect that my episodic

learning algorithm reconfigured the model’s measurement process to match the new envir-

onment. This is similar to re-learning to localise due to a contrived change in physiology

as observed by Hofman et al. (1998), Rossetti et al. (1993, 1998) where a previously stable

sensory configuration is arbitrarily modified (in those cases via the individual’s physiology)

and the individuals adapt to this. This showed concretely that an active agent can learn

refinements of the world when the world changes. Hence, I have shown that for a previ-

ously learnt model, an episodic learning algorithm can adapt this model to an arbitrary

reconfiguring of the measurement process. This is without special alterations being made

for either inference or learning. This is similar to Hofman et al.’s and Rossetti et al.’s

findings that adult humans could adapt their sensory configuration to continue to localise

events. This could suggest that humans have a meta representation of previous sensory

experience against which we learn episodically.

4.7.2 Limitations

In discussing my findings it is important to note that a learnt latent space Z will not

always correspond, in a one to one fashion, with the true latent state space Z′. This is

obvious with respect to Figures 4.15 & 4.21 in Section 4.6, which, due to the structure of

the respective correspondence tables ζj|a, makes it impossible for Z to map perfectly to Z′.

This is because some directions will never be queried properly if the correspondence table

ζj|a assumes that some a’s are identical, Figures 4.15 & 4.21 (d). In-spite of this, those

same figures show that the attractor’s structure has been learnt.

A difficulty with my episodic learning algorithm is that a miss-correspondence by the

likelihood P (j|a) occurs. This assumes that some actions have identical consequences, e.g.

that P (j|a) ≈ δja is not the case, this is illustrated in Figures 4.15 & 4.21. A potential

solution to this is to construct a Lagrangian multiplier which sets the constraint that the
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Figure 4.22: Plot of the smoothness of the action selection policies; the different weightings
of uniform to greedy stochastic action selection. The initial validation action entropies for
each episode as measured using H [At| . . .] = −

∑
at
P (at| . . .) logP (at| . . .). The lower

entropies indicate greater bias towards one action. According to definition n = 0 has no
bias to any action. The figure indicates that all actions are equally likely over the first few
episodes. An entropy of 0.0 indicates certainty in P (at| . . .).

table ζj|a, representing the likelihood P (j|a), is orthonormal for a choice of action a.8

4.7.3 Behavioural implications

Though my findings do not show the completely passive case that Held and Hein (1963)

consider, I have shown that random undirected action will only yield so much accuracy

and inference certainty. The suggestion in Olsson et al. (2005a, 2006) is that an initial

developmental phase of body babbling can be observed in even the greediest stochastic

policy (n = 2) when it produces a uniform P (at| . . .), Figure 4.22. This is due to the

system model for initial episodes having very uncertain latent state space beliefs.

In contrast to Philipona et al. (2003, 2004), Aytekin et al. (2008) who used a correlation

based approach to model learning I have used a pseudo Bayesian learning algorithm on

a Bayesian model. One advantage of a correlation based approach is it will typically be

cheaper to construct than a fully Bayes approach. Though this is sometimes at the cost

of correctness as correlation does not indicate causation. This does not cause a difficulty

8For ζj|a to be orthogonal the following conditions must hold: firstly, for all a and a′

J
X

j=1

ζj|aζj|a′ = 0. (4.49)

Secondly, for all a
J

X

j=1

ζj|aζj|a = ε, (4.50)

where ε 6= 0.The second condition can be strengthened to make ζj|a orthonormal by making ε = 1.
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in arguing that an agent can relearn a sense when the relationship between Z′ and Z has

changed. When an individual relearns, there will be other senses grounding and hence

restrain the reconfiguration of the dynamics.9

A future area of enquiry could develop a neural network for a connectionist based model

of the world for an active agent. This would be especially useful where there are a large

number of sensory channels, for instance:

1. in vision, for the rods and cones in the eye,

2. in audition, for the inner hair cells along the basilar membrane,

3. and in olfaction, for the genetic tuning to molecules.

Then all that would need to be learnt are the relationships between the responses of these

filters and the action signals sent to the agent’s actuators. This would make a generalisable

active perceiver and would provide a model to investigate interesting questions of Nagel

et al. (2005), Noe (2004), O’Regan and Noe (2001).

9From Beal et al. (2003), Hospedales and Vijayakumar (2006) we see an agent can simply learn the
hyperplane of correlated cues, similarly to Philipona et al. (2003, 2004), where actions may be considered
among these cues. However, this should include knowledge of the dynamic state of the system as in
Hospedales et al. (2007) and this Chapter.
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Chapter 5

Concluding remarks

5.1 Preamble

The overarching theme that ties this thesis together is that of localisation. Following the

development of my research described in Section 1.5, I examined passive sound source

localisation (Chapter 2) and then progressed to the selection of the best localising action

in Chapters 3 & 4. For each Chapter, I review the context of my findings, I examine the

limitation of my work and I suggest future directions for research into these problems.

5.2 Sound source localisation

In Chapter 2 “Bayesian passive sound source localisation” I discussed a passive localiser and

illustrated the difficulty, that a passive model requires prior knowledge for viable localisa-

tion. In the context of my thesis the principle finding of Chapter 2 is essentially related to

the symbol grounding problem (Harnad, 1990). In Chapter 2 I refer to this as the problem

of correspondence, that a location corresponds to a particular measurement. I suggested

that extra information is required rather than simply having a data set of readings and

locations. While this does not show definitively that action is required to adequately learn

a representation of location, it does indicate the limitations of passive localisation when

placed in context with Wallach (1938, 1939, 1940), Jenison (1997), Klensch (1948), Aytekin

et al. (2008).

In comparison to Nix and Hohmann (2006), who used a naive Bayes approach (cf Pena

and Konishi, 2002), I defined a more complete model of the hidden variables dependencies.

I compared the results of my model with the application of Nix and Hohmann’s. I found my

approach gave both a higher certainty in inferences and greater accuracy (Tables 2.4 & 2.5).
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My model’s purpose was to capture the influence of the cue variables to the sound signals.

In accordance with Park et al. (1996), a cursory inspection of my model from Chapter 2

revealed that signal latency had a marked influence upon sound level encoding. The spatial

dependency of source location, from Section 2.4, upon the cues showed analytically that:

1. monaural loudness had the greatest influence on location inferences to the ipsilateral

sensor,

2. absolute loudness had little if any influence upon location inferences and was generally

swamped by the other cues (coinfluences),

3. time disparity however had the greatest influence upon non-medial location infer-

ences. This was due to the windowing of time disparities, almost subordinating time

disparity to the loudness terms,

4. level disparity had the greatest influence on the medial location inferences both ahead

and to the rear of the apparatus.

Similar work has been done by Macpherson and Middlebrooks (2002) though it does not

focus on the same issues as my research. I have principally explored sound source local-

isation, relating hidden variables in my model to sensory cues and evaluated the causal

influence of these to localisation. Macpherson and Middlebrooks applied manipulations

to the cues to evaluate the consequences for the inference of azimuth and elevation. Us-

ing the duplex theory of sound perception, they considered the localisation of broadband

sounds. Similarly, the contribution of ITD and level cues in the case of head motion were

considered by Wenzel (1995). Wenzel found that head movements helped considerably to

resolve localisation confusions (inference ambiguities). This indicates the direction I took

in my research, which was towards localisation as an active problem. A future development

of my model in Chapter 2 could look at the frequency channels, allowing it to be related

more fully to the duplex theory of sound perception.

The limitations of Chapter 2 stem from two sources, over-fitting and symbol grounding.

Firstly, I argued that over-fitting is due to a number of factors:

1. Taking advantage of the knowledge that can be extracted from multiple frequency

channels. This is similar to the problem of multisensory integration. It could be

useful to apply an approach that integrates the different frequency channels using

the concept of inference of structure Hospedales et al. (2007), Hospedales and Vi-

jayakumar (2006). This was originally applied to the sensory integration of sound and
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vision (Beal et al., 2003, Hospedales et al., 2007, Hospedales and Vijayakumar, 2006).

However this could be problematic, as unlike the visual scene imposing a location

(the latent state space), the signals in each channel would covary in a systematically

similar fashion. This would still leave a problem of how to uniquely correspond one

location to each measurement. Finally, it is important to note that the frequency

decomposition of a sound signal, performed by the cochlea (Lyon, 1982, Slaney, 1988,

Givelberg and Bunn, 2003), is preserved in almost all regions of the auditory path-

way (Covey et al., 1991, Suga and Tsuzuki, 1985, Wenstrup et al., 1986). This could

be used to mimic the results from Rayleigh’s Duplex theory of sound for different

frequencies by the use of the multiple channels for inference.

2. Taking advantage of the attenuations for each location forming a distribution – mak-

ing the attenuations variables rather than parameters. Further, the attenuations

should form a joint distribution dependent on a sound source’s location (Figure 2.20).

3. I may have been using an unrealistic noise model. Hence, one might investigate using

other distributions such as the Rayleigh distribution (Zurek, 1991) or the Pearson

family of distributions. The Pearson family of distributions can represent paramet-

rically the skew and kurtosis, which would allow the explicit representation of ILD

and ITD processes (Nix and Hohmann, 2006) rather than constructing a model from

the sound intensity processes.

Secondly, the problem of symbol grounding is due to fitting the data of known locations

to sound samples rather than holding the locations as hidden variables. If target locations

are hidden variables, we run up against the symbol grounding problem. By posing it as

a sensorimotor problem (O’Regan and Noe, 2001), Aytekin et al. (2008) elegantly illus-

trated a method of solving this problem of symbol grounding. If we however consider the

problem as lacking an active component, partly from the active motional theories of sound

localisation (Subsection 1.2.3) and Noe (2004), then approaching the influence of action

upon localisation becomes an important issue. This led me to consider in Chapter 3, the

problem of active-perception and a novel method to solve the sensor placement problem

under uncertainty.
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(a) A choice of ‘bad’ action, a′
t. (b) A choice of ‘good’ action, at.

Figure 5.1: Cartoons of the consequence of “good” and “bad” localising actions, repeat of
Figure 3.3. This depicts a “good” action at (right cartoon) which causes the two hypotheses
upon Lt−1 to be well separated in Xt. By contrast a “bad” action a′t (left cartoon) does
not lead to separation in Xt. It is important to note that this is only a cartoon and I
have implicitly assumed that separation upon Lt leads to separation upon Xt, but this is
not necessarily the case. It cannot be assumed that greater separation upon Lt leads to
greater separation in Xt, as the distance between any set of hypotheses will be related to
the projection of each according to p (Xt|Lt). A measurement xt for a choice of action a′t
plot (a) will find it hard to differentiate between either hypothesis upon Lt. However for
a choice at plot (b) will find it much easier as the separation of hypotheses on Lt cause a
similar separation on Xt.

5.3 Optimal action selection

In Chapter 3 “An information measure for optimal action selection” I developed and dis-

cussed a general information measure to the problem of selecting the optimal localising ac-

tion in the sensor placement problem. This illustrated a solution to the problem of selecting

an action to automatically give the next-best-view (NBV) (Gonzalez-Banos and Latombe,

2002) regardless of the measurement process or system dynamics.1 Similarly Bongard et al.

(2006) tracked hypotheses for robot physiology (body configuration), though my focus was

upon Bayesian state space estimation for localisation. They selected an action to maximise

the disagreement between candidate hypotheses (Bongard and Lipson, 2005). This had a

similar effect to my measure (Chapter 3) which selected actions to maximally separate the

latent hypotheses according to possible measurements, Theorem 3.10.

Principally, in using my measure for action selection, we find that the best and worst

actions follow the cartoon in Figure 5.1. My measure is the average dissimilarity between

possible posterior beliefs. This is not necessarily the least entropy but the greatest de-

pendence between measurable and latent variable (respectively xt and lt conditional upon

at). To repeat the summary, from Chapter 3, of my measure’s properties:

1This concept of NBV is related to the use of stochastic forward models (Dearden and Demiris, 2005).
These can be used to predict the sensory consequence of an agent’s actions, and are equivalent to the
Bayesian prediction which I use extensively in Chapters 3 & 4. Though Gonzalez-Banos and Latombe
(2002) construct the predicted latent state space through more deterministic methods.
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• Maximising BXt|at
[Lt‖L′t] selects an action at to maximise the statistical dependence

between xt and lt. This is also equivalent to maximising over all possible pairs of

expected measurements the consequent posterior beliefs in lt (Theorem 3.10). This

indicates the measure will select an action that most distinguishes between all possible

posterior predictions.

• Maximising IMI [Xt; Lt|at] selects the action at (maximising the mutual information)

that will maximise the dependence between the variables lt and xt, cf BXt|at
[Lt‖L′t].

By Theorem 3.3 this relates as

BXt|at

[
Lt‖L′t

]
= IMI [Xt; Lt|at] +DKL [p (Xt|at) p (Lt|at) ‖p (Xt,Lt|at)] (5.1)

where the second term on the right-hand-side of the equation is also a measure of

the statistical dependence between xt and lt for a choice of action at.

• Maximising I [Lt|Xt, at] is the maximisation of the expected latent posterior’s Shan-

non information

I [Lt|Xt, at] = Ep(xt|at) [I [Lt|xt, at]] , (5.2)

by Theorem I.1. By Theorems I.2 & I.3, this quantity is related to the mutual

information as

I [Lt|Xt, at] = I [Lt|at] + IMI [Xt; Lt|at] . (5.3)

Due to Theorem 3.1, it is also related to my measure through the inequality

I [Lt|Xt, at] ≤ I [Lt|at] +BXt|at

[
Lt‖L′t

]
. (5.4)

From these properties I argued that BXt|at
[Lt‖L′t] is a reasonable substitute for Shannon

information, or the mutual information, as an information quantity.

If other quantities as well as BXt|at
[Lt‖L′t] are considered, my approach can also be

constructed as an upper bound to the Shannon information. This allows it to include

terms to penalise other features of the belief model, such as I [Lt|at] which penalises higher

entropy in the latent prediction p (lt|at). This point was illustrated experimentally in

both comparisons in Chapter 3. The consequence of maximising the upper bound of the

conditional Shannon information, is to select those actions that result in a measurement

causing the greatest separation in hypotheses upon Lt according to the predicted a posteri-
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ori belief, Theorem 3.9. To summarise a bad action will generally result in a measurement

being uninformative for inference, as the hypotheses are identical for any measurement

(Figures 3.4 (d) & 3.5 (d)).

In Sections 3.6 & 3.7 I have used my measure to experimentally evaluate, through com-

puter simulation, my approaches performance against Infomax in two localisation problems.

In the first example, of head rotations in a free-field environment, I illustrated that:

• the target location can typically be treated as a linear process and the relationship

between location to sound level, or time disparity, is non-linear and many-to-one.

• my approach slightly out performed Infomax in terms of certainty and accuracy.

• my approach and Infomax each had significantly different distributions of chosen

actions. This made a general stochastic approximation untenable to represent the

consequent policy of my approach. However, the reverse was the case for Infomax –

the stochastic approximation had a similar performance.

In the second example, of detecting and capturing a source through chemotaxis in a tur-

bulent medium (Vergassola et al., 2007a), I illustrated that:

• using my approach I constructed an algorithm which I called Boundtaxis. Vergassola

et al. had constructed an Infomax measure called Infotaxis.

• my Boundtaxis algorithm had a much greater variance in its distribution of search

times than Infotaxis. Though the bulk of these search times (50% of runs) are

significantly quicker than Infotaxis (Figure 3.24).

• algorithmically Boundtaxis scales more favourably than Vergassola et al.’s Infotaxis

algorithm. Also my Boundtaxis algorithm was quicker to compute, by a factor of

20. Though this computation time is dependent upon the range of detections that

Infotaxis is calculated for.

• my Boundtaxis algorithm will make a circuit of the latent space and then spiral

in towards the source after a detection. Infotaxis by contrast will make a slowly

increasing spiral from the agent’s starting position (Vergassola et al., 2007a). The

behavioural advantages and disadvantages of either approach do however need further

study.
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• my Boundtaxis algorithm is not reliant upon the assumption that the marginal distri-

bution p (xt|x0:t−1,a0:t−1) is unimodal, which is an assumption of Vergassola et al.’s

Infotaxis.

These two comparisons have shown that my approach is a distinct and valid alternative to

Infomax for solving the sensor placement problem.

The preferences of my measure BXt|at
[Lt‖L′t] differs from that of Shannon information

I [Lt|Xt, at] and mutual information IMI [Xt; Lt|at]. Intuitively I [Lt|Xt, at] selects the action

with least uncertainty. In the simplest unimodal case this is typically the action expected to

produce the sharpest posterior p (lt|xt, at) from a measurement. In contrast BXt|at
[Lt‖L′t]

will by Theorem 3.10 select the action expected to maximise the dissimilarity between

each pair of predicted a posteriori beliefs, p (lt|xt, at) and p (lt|x′t, at).2 This is equivalent

to selecting an action at to maximise the expected dissimilarity between each possible

pair of posterior beliefs p (lt|xt, at) and p (lt|x′t, at), weighted according to each unique

pair of measurements xt and x′t by a factor 1
2p (xt|at) p (x′t|at). Hence, while I [Lt|Xt, at],

IMI [Xt; Lt|at] and BXt|at
[Lt‖L′t] will select at to increase our knowledge of the latent space

Lt, the actions will differ due to each measure’s description of useful knowledge.

The group of domains, where my approach has the potential to be superior to Infomax,

has the property that the likelihood of a measurement p (xt|lt, at) is non-linear. This in

turn causes the a posteriori belief p (lt|xt, at) to be non-linear. As a consequence, when

applying Infomax, it is necessary to approximate the integral I [Lt|Xt, at]. For instance,

two approaches taken in the literature are:

1. approximation of p (xt|x0:t−1, a0:t) as in Vergassola et al. (2007a),

2. or sampling the distribution p (xt, lt|x0:t−1, a0:t) as in Porta et al. (2005).

The conditional Shannon information is typically incomputable without some approxim-

ation Porta et al. (2005), Fox et al. (1998), Vergassola et al. (2007a). In developing my

method I have presented a valid alternative to Infomax for satisfactorily solving the prob-

lem of optimal action selection. My approach makes action selection easier and faster when

the averaged quantities are analytic, making it less computationally costly when compared

with Infomax approaches like Fox et al. (1998), Porta et al. (2005), Cassandra et al. (1996),

2The KL-divergence between each pair of a posteriori belief is averaged over the expected measurements
xt and x′

t as

BLt|at

ˆ

Xt‖X′
t

˜

=

ˆ

dxtdx
′
t p (xt|at) p

`

x
′
t|at

´

DKL

ˆ

p (Lt|xt, at) ‖p
`

Lt|x′
t, at

´˜

. (5.5)
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Vergassola et al. (2007a). Also, in Appendix K I have shown that my framework scales as

well as Infomax for partially observable Markov decision processes (POMDPs).

An important point regarding my approach is that even when the KL-divergence

DKL [p (Xt|lt, at) ‖p (Xt|l′t, at)] is analytic, the a posteriori belief p (lt|x0:t, a0:t) is not guar-

anteed to be analytic.3 Therefore, an average over an analytic KL-divergence is likely to be

a more stable computation than an average over a sampled a posteriori belief. This makes

the estimation of BXt|at
[Lt‖L′t] likely to be more stable than that of I [Lt|Xt, at]. However,

this stability argument does not necessarily apply to those cases where the KL-divergence

of the measurement likelihoods is non-analytic.

The work of Porta et al. (2003, 2005), Fox et al. (1998), Cassandra et al. (1996) and

Vergassola et al. (2007a) provides insight into more complex localisation tasks. For instance

if a consequence of an action is to capture a target then the best localisation action nat-

urally has the result of being both exploitative and exploratory. Vergassola et al. (2007a)

postulate that these information terms are computed by an individual for localisation.

However, particular action policies may be represented satisfactorily with a cheaper ap-

proximation. An example of this is the use of finite state machines (Thill and Pearce,

2007). Hence, leading to the question, why does a more expensive information calculation

needs to be computed when a simpler method produces an equivalent result and similar

choice of action?

This is most useful to problems that can be represented behaviourally:

1. For example, in the multimodal case, it is a reflex action of human subjects to

seek to bring a sound event within view of their eyes (Blauert, 1997). This is in

agreement with my hypothesis, as in this instance, the individual can only increase

its localisation certainty with a simple and easy heuristic to select an action.

2. Taking as an example, head rotations for auditory localisation, it is possible to argue

that a priori beliefs can be classified, as in Subsections 2.3.2 & 2.3.3, and assigned a

probability distribution for the candidate actions. An example of this approach can

be seen in Subsection 3.6.2. I classified an a priori belief according to its Shannon

information as either ambiguous or unambiguous. Then I used this to construct two

stochastic policies according to the informatic policies in Section 3.6. The Infomax

3Many problems use Gaussian processes for the likelihood of the continuous spaces. When the meas-
urement space is continuous, this leads to the term BXt|at

[Lt‖L′
t] averages being analytic. In contrast the

term I [Lt|Xt, at] averages is the a posteriori belief and is not necessarily so – this is due to a non-linear
Gaussian likelihood, causing the posterior to be non-linear as well.
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policy was well represented by this stochastic strategy, which makes the stochastic

strategy a valid alternative. In contrast my approach BXt|at
[Lt‖L′t] had a more

complex relationship with a priori belief than Infomax does – the stochastic strategy

constructed from my approach significantly under performed my approach.

3. Moth behaviour can be explained as using either an Infomax measure (Vergassola

et al., 2007a) or to have an equivalent choice of predicted action using a finite state

machine. It is obvious from a neural perspective, that it is far cheaper to compute

an action from a finite state machine than to perform an argument-maximisation

on an informatic quantity. Therefore if a behavioural decision process for selecting

an action equivalent to an informatic policy exists, then the agent should use this

behavioural representation and its policy.

The consequence of this for the animal is that there can exist a heuristic to give a cheaply

calculated but good localising action.

A constraint for reflexive localising action selection is that any calculation needs to

be fast and applicable to the individual’s senses. However, should the animal utilise an

informatic method, like my approach or Infomax, it can learn and act in a new and unknown

environment or learn to best utilise a new sense (Nagel et al., 2005). This is the principle

advantage of the informatic approaches over an approach using approximated heuristic.

Chapter 3 considered the problem of reflexive localisation actions. This complements

the work on sensorimotor contingencies of Noe (2004), O’Regan and Noe (2001). Sensor-

imotor contingencies consider the relationship between actions and sensory measurements

to map the correlations of these as a latent space Noe (2004), O’Regan and Noe (2001),

Bompas and O’Regan (2006), Philipona et al. (2003, 2004), Aytekin et al. (2008). This

however neglects ambiguity, that exists in a large number of problems, which can cause dif-

ficulty for any learning process. Hence an informatic policy model such as mine or Infomax,

which by its nature assumes an uncertain and noisy world, will have an advantage when

combined with a learning algorithm. Further, my approach is useful for a class of problem

such as POMDPs or likelihoods, where the KL-divergence is analytic, by scaling as well

as or better than other informatic approaches. Examples of this for Infomax approximate

the marginal p (xt|x0:t−1, a0:t) as in Vergassola et al. (2007a), or assuming a sample of the

joint latent and measurement variables L
⋃

X as in Porta et al. (2005).
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5.3.1 Future comparisons

The most interesting aspect of Vergassola et al. (2007a) was linking turbulent chemotaxis

to an informatically guided selection of action that resulted in qualitatively equivalent

biological behaviours. This leads to interesting questions of what insights could be garnered

for other perception tasks that have an active component and operate under uncertainty?

Some possibilities include:

1. Tracking a target in a cluttered environment (Moss and Surlykke, 2001). An emergent

consequence could be in maintaining visibility (LaValle et al., 1997).

2. Pack hunting, where Spletzer and Taylor (2003) shared inference between agents.

More interesting questions would consider lossy channels of communication similar

to vocalisations.

3. Stealthy targets, which is somewhat related to the problem of clutter (Ristic et al.,

2004b) when looking at the perspective of camouflage.

Any investigation of such questions must consider multimodal and multiobject tracking

under uncertainty – this should be posed in a unified manner (e.g. Hospedales et al., 2007).

Thus, there are examples where information guided active-perception could be applied to

examine the behavioural consequences, as Vergassola et al. did with chemotaxis search in

turbulent flows.

Next, I consider the analogues between Chapters 3 & 4, the Fisher information matrix

(FIM) and the Cramer-Rao lower bound (CRLB) measures for selecting optimal man-

oeuvres in radar and sonar problems (Passerieux and van Cappel, 1998, Cadre and Gauv-

rit, 1996, Helferty and Mudgett, 1993, Logothetis et al., 1998, Ristic et al., 2004a). The

result of my framework (Chapter 3) can be seen specifically in Figures 3.4 & 3.5 where

most directional ambiguity will be removed through a head rotation. The next best action,

if it were available in both cases, would be to approach or pass by the target. Similarly,

this combination of turn and fly by is exhibited as a consequence of selecting manoeuvres

according to FIM (Helferty and Mudgett, 1993). This indicates a potential commonality

of the behaviour between the selection of informatic based actions or manoeuvres.

Passerieux and van Cappel (1998), Cadre and Gauvrit (1996), Helferty and Mudgett

(1993), Logothetis et al. (1998), Ristic et al. (2004a) used the model’s FIM which is the
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higher dimensional representation of Fisher information

IF [L|X, a] = −
ˆ

dl dx p (x, l|a) ∂2

∂x2
log p (l|x, a) . (5.6)

Fisher information (IF ) can be seen as the expected sharpness in any belief of l ∈ L

according to x ∈ X. By contrast my work is related to the conditional Shannon information

I [L|X, a] =

ˆ

dl dx p (x, l|a) log p (l|x, a) . (5.7)

Shannon information is an inverse measure of the smoothness of a probability distribution.

A more complete investigation of the shared properties for identical models of these two

information measures would be interesting. While there is likely to be great similarity,

there is the prospect for subtle differences in the respective consequences for particular

situations and problems. An example would be considering a time slice of future beliefs,

similar to the application of CRLB in radar (Helferty and Mudgett, 1993). According to

Theorem J.3 my measure becomes

BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
=

t+δt∑

t′=t

ˆ

dlt′dl
′
t′ p (lt′ |at:t′) p

(
l′t′ |at:t′

)
×

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
. (5.8)

Though, the Shannon information is not as easy to simplify, it remains as

I [Lt:t+δt|Xt:t+δt, at:t+δt] =

ˆ

dlt:t+δtdxt:t+δt p (xt:t+δt, lt:t+δt|at:t+δt) log p (lt:t+δt|xt:t+δt, at:t+δt) .

(5.9)

This is the expectation of the complete data a posteriori belief. For any problem calcu-

lating the integral for I [Lt:t+δt|Xt:t+δt, at:t+δt] will be very difficult and require significant

computation resources. In contrast, calculating BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
simply needs

a prediction of the latent state a prior i belief p (lt′ |at:t′), where t ≤ t′ ≤ t+ δt. A possible

implementation could constrain this using NBV algorithm (Gonzalez-Banos and Latombe,

2002) with collections of possible action chains
{
a

(j)
t:t+δt

}
j=1:N

.4

4Also, from Helferty and Mudgett (1993) the CRLB measure allowed discounting of particular latent
state space (L) axes. For my approach, particular dimensions in L could be marginalised to favour certainty
in portions of this latent state space L. Though this would complicate the computation of BXt|at

[Lt‖L′
t].
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This approach considers the problem of reflexive localisation actions. This complements

the work on sensorimotor contingencies of Noe (2004). Sensorimotor contingencies consider

the relationship between actions and sensory measurements to map the correlations of these

as a latent space Noe (2004), O’Regan and Noe (2001), Bompas and O’Regan (2006),

Philipona et al. (2003, 2004), Aytekin et al. (2008). This however neglects uncertainty

and ambiguity, which exists in a large number of problems and can cause difficulty in any

learning process. Hence an approach such as mine, which by nature assumes an uncertain

and noisy world, should have an advantage when combined with a learning algorithm.

Further, an informatic approach such as mine, as I have already shown, is useful as it

appears to reduce latent space uncertainty.

5.4 Active learning

In Chapter 4 “Learning a model for an active agent” I applied my approach developed in

Chapter 3 to a dynamic problem domain to learn a model semi-concurrently with action

selection and observing. This addressed the problem of active experimentation, and in-

dicated that selecting an action according to its expected knowledge is better than simply

body-babbling (Olsson et al., 2004, 2005a,b, 2006). My findings show a trend for the more

directed policies to achieve higher certainties in inference and system model likelihoods

after repeated iteration of learning and sampling episodes. This is due to the influence of

actions allowing the agent to learn from more certain and accurate inferences. However, an

interesting qualification was that the applied Infomax and CRLB policies constructed in-

ference certainties and likelihoods that were only marginally better than the body-babbling

policy.

A further finding was that when the measurement process is arbitrarily remapped the

system can readily adjust to this remapping more quickly than it took to originally learn

the unremapped system. This is similar in consequence to the bistable sensory adaptation

observed by Welch et al. (1993), Hofman et al. (1998), a short period of adaptation followed

by a return to prior performance (cf Figure 4.18).

Chapter 4 is limited to learning a predefined model’s parameterisation for iterating

between querying the model’s belief in the system and refining its parameterisation through

learning. Though this illustrates the utility in active-perception for adapting the corres-

pondence (symbol grounding) of the model’s state to observations by an active choice of

what to measure, it does not fully ground my framework in the sensorimotor ideas of Noe
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(2004), O’Regan and Noe (2001). This limitation does however elicit more general direc-

tions that I could take in future research. A significant potential area of research concerns

those active perception problems where the agent holds no real prior knowledge about the

structure of its environment. One solution is to apply a neural network model (Droulez and

Berthoz, 1991) for retaining the contingencies between the sensory and motor spaces and

using my approach, in Chapter 3, to automatically explore the sensorimotor contingencies

to best effect. A further solution could model the sensorimotor contingencies using a loc-

ally weighted projection regression (LWPR). This is a locally linear non-parametric model

that uses receptive weighting to maintain its locality (Vijayakumar and Schaal, 1998, 2000,

Vijayakumar et al., 2005). DeMarse et al. (2001) and DeMarse and Dockendorf (2005) il-

lustrate this for biological neural networks, which are certainly capable of this. Specifically

DeMarse and Dockendorf (2005) used rat neurons to operate an aircraft in a flight simu-

lator. The implication of my thesis, from Chapters 3 & 4, is how to best select the actions

to explore these contingencies efficiently.

5.5 Final remarks

Localisation of places, prey and predators are usually of critical behavioural importance to

any organism and hence to its survival. In this thesis I have illustrated the difficulties of

passive localisation (Chapter 2) and the advantages of being an active observer, specifically

with a measure to select the action giving the NBV (Chapters 3 & 4). Though, not a true

sensorimotor model, it does indicate that the choice of view (Walker et al., 1998) and NBV

(Gonzalez-Banos and Latombe, 2002) are important and influential for an individual in

learning to represent its environment.

To think of action as merely a physical motion or manoeuvre is to ignore its usefulness

as a metaphor for a much wider class of problems and processes. We can instead see an

action as Gibson (1978) does as the offering of affordances by the environment – making

our senses the channel by which the environment answers the questions asked by our

actions. This leads to the idea of sensorimotor contingencies between actions (queries)

and sensations (answers) (Noe, 2004, O’Regan and Noe, 2001). This is the structured

coupling of action and perception related to enactive perception (Vergassola et al., 2007a).

This makes the distinction between the brain’s representation of a tool and the hand that

wields it irrelevant, as we should instead be considering the effect (Hochberg et al., 2006,

Umilta et al., 2008). Also, this makes irrelevant the distinction between how we view the
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world and our feeling of presence within it. For example, there are distinctions between

remote viewing, virtual reality and local reality (Lenggenhager et al., 2007, Ehrsson, 2007,

IJsselsteijn and Reiner, 2004).

Finally, one might consider O’Regan and Noe (2001) sensorimotor contingencies from

the perspective of Ito’s Lemma, as this would take into account uncertainty through the

dynamic propagation of probability in continuous time. This would be an interesting dir-

ection to try to take (Philipona et al., 2003, 2004, Aytekin et al., 2008) for the sensorimotor

hypothesis, as the analysis of the stochastic differential equations could provide a unique

insight into the policy directives of action selection under sensorimotor relationships.
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Appendix A

Analysis of the EM-algorithm

Expressing the bound, Equation B.9, in a more compact form, where,

qj (s, τ) = pold (s, τ |x1,j ,x2,j , lj) , (A.1)

which takes the bound,

Bnew
old =

∑

j,τ

ˆ

ds qj (s, τ) log p (x1,j,x2,j , s, τ |lj)−

∑

j,τ

ˆ

ds qj (s, τ) log qold (s, τ) . (A.2)

So taking this representation and expanding,

Bnew
old =

∑

j,τ

ˆ

ds qj (s, τ) log p (x1,j,x2,j , s, τ |lj)−

∑

j,τ

ˆ

ds qj (s, τ) log qj (s, τ) , (A.3)

=
∑

j,τ

ˆ

ds qj (s, τ) log p (x1,j,x2,j , s, τ |lj) +

∑

j,τ

ˆ

ds qj (s, τ) log
qnew
j (s, τ)

qj (s, τ)
, (A.4)

=
∑

j

log p (x1,j ,x2,j |lj) +

∑

j,τ

ˆ

ds qj (s, τ) log
qnew
j (s, τ)

qj (s, τ)
, (A.5)

= L (x1,j=1:J ,x2,j=1:J |lj=1:J)−
∑

j

DKL

[
qj (s, τ) ||qnew

j (s, τ)
]
. (A.6)
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As the KL-divergence between two distributions is always non-negative we see that,

Bnew
old ≤ L (x1,j=1:J ,x2,j=1:J |lj=1:J) . (A.7)

Thus both Equations 2.31 & A.7, requires that any selection of a new parameter is that

the bound touches the likelihood. Thus each iteration of the EM-algorithm selects a

new parameterisation (conditional upon the old) such that both the bound and the log-

likelihood are maximised. This is typically iterated until convergence; when the sum of

the divergence terms between the old latent posterior qj (s, τ) and the new latent posterior

qnew
j (s, τ) becomes zero.
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Appendix B

The variational responsibilities and

updates

I shall show that the optimal q is in fact the posterior of the hidden latent variables over

the data,

qj,n (s, τ) = pold (s, τ |lj ,x1,j,n,x2,j,n) , (B.1)

where pold (s, τ |lj ,x1,j,n,x2,j,n) represents the old parameterisations posterior belief. Hence

the responsibilities have already been defined in Subsection 2.2.4. Firstly using the bound

upon the likelihood,

Bold
new =

∑

n,j,τ

ˆ

ds qj,n (s, τ) log p (x1,j,n,x2,j,n, s, τ |lj)−

∑

n,j,τ

ˆ

ds qj,n (s, τ) log qj,n (s, τ) , (B.2)

now, I add a Lagrangian multiplier αj,n for the set of constraints expressed by,
∑

τ

´

ds qj,n (s, τ) =

1 ∀j, n. Thus the Lagrangian is,

Gold
old = Bold

old −
∑

n,j

αj,n

(
1−

∑

τ

ˆ

ds qj,n (s, τ)

)
. (B.3)

Taking the gradient with respect to qj,n of the Lagrangian and equating it to zero to find

the Lagrangian stationary point with respect to qj,n (s, τ) gives,

qj,n (s, τ) =
pold (x1,j,n,x2,j,n, s, τ |lj)

e1−αj,n
. (B.4)
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So as qj,n is normalised, according to the conditions
∑

τ

´

ds qj,n (s, τ) = 1 ∀j, n, then the

denominator is,

e1−αj,n =
∑

τ

ˆ

ds pold (x1,j,n,x2,j,n, s, τ |lj) , (B.5)

= pold (x1,j,n,x2,j,n|lj) . (B.6)

Inserting this into Equation B.4 and applying Bayes law give the responsibilities,

qj,n (s, τ) =
pold (x1,j,n,x2,j,n, s, τ |lj)
pold (x1,j,n,x2,j,n|lj)

, (B.7)

= pold (s, τ |lj ,x1,j,n,x2,j,n) . (B.8)

Substituting qj,n, Equation B.8, into the bound, Equation 2.31, produces,

Bold
new =

∑

j,τ

ˆ

ds qj,n (s, τ) log p (x1,j,n,x2,j,n, s, τ |lj)−

∑

j,τ

ˆ

ds qj,n (s, τ) log qj,n (s, τ) . (B.9)

Hence the responsibilities are the old parameterisations latent variable posterior beliefs

defined in Subsection 2.2.4. Now the bound is in a form that can be optimised.

The derivatives of the bound for each parameter allows the EM-updates to be derived.

I present the derivation of one EM-update in full. This is computed from the gradient of

the bound as follows,

∂

∂η−1
Bold

new =
∑

n,j,τ

ˆ

ds qj,n (s, τ)
∂

∂η−1

{
Dx

2
log η−1 − 1

2η
sT s

}
, (B.10)

=
1

2

∑

n,j,τ

qj,n (τ)

ˆ

ds qτ,j,n (s)
(
Dxη − sT s

)
, (B.11)

=
1

2

∑

j,τ

qj,n (τ)

(
Dxη −

(
µold

s|τ,j,n

)T

µold
s|τ,j,n −Dxν

old
s|j

)
, (B.12)

which equating to zero and rearranging, results in the EM-update, for the variance of the

source signal,

η =
1

DxJN

∑

n,j,τ

qj,n (τ)

((
µold

s|τ,j,n

)T

µold
s|τ,j,n +Dxν

old
s|j

)
, (B.13)

where 1
νold

s|j

= 1
ηold +

“

λold
1|j

”2

νold
1

+

“

λold
2|j

”2

νold
2

and µold
s|τ,j,n

= νold
s|j

(
λold
1|j

νold
1

x1,j,n +
λold
2|j

νold
2

D̂T
τ x2,j,n

)
. The
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remaining list of these updates are,

w1 =



∑

j

ψjψ
T
j

{
∑

n,τ

qj,n (τ)

((
µold

s|τ,j,n

)T

µold
s|τ,j,n +Dxν

old
s|j

)}

−1

∑

j

ψj

∑

n,τ

qj,n (τ)xT
1,j,nµ

old
s|τ,j,n, (B.14)

w2 =



∑

j

ψjψ
T
j

{
∑

n,τ

qj,n (τ)

((
µold

s|τ,j,n

)T

µold
s|τ,j,n +Dxν

old
s|j

)}

−1

∑

j

ψj

∑

n,τ

qj,n (τ)xT
2,j,nD̂τµ

old
s|τ,j,n, (B.15)

which causes λ1|j = wT
1 ψj and λ2|j = wT

2 ψj ,

ν1 =
1

DxJN

∑

n,j,τ

qj (τ)

[(
x1,j,n − λ1|jµ

old
s|τ,j,n

)T (
x1,j,n − λ1|jµ

old
s|τ,j,n

)
+Dxλ

2
1|jν

old
s|j

]
,

(B.16)

ν2 =
1

DxJN

∑

n,j,τ

qj,n (τ)

[(
x2,j,n − λ2|jD̂τµ

old
s|τ,j,n

)T (
x2,j,n − λ2|jD̂τµ

old
s|τ,j,n

)
+Dxλ

2
2|jν

old
s|j

]
,

(B.17)

wτ =


N

∑

j

ψjψ
T
j



−1
∑

j

ψj

∑

n,τ

qj,n (τ) τ, (B.18)

which causes γτ |j = wT
τ ψ̄j ,

w̄ω =


N

∑

j

ψjψ
T
j



−1
∑

j

ψj

∑

n,τ

qj,n (τ)
(
τ − γτ |j

)2
, (B.19)

where 1
νold

s|j

= 1
ηold +

“

λold
1|j

”2

νold
1

+

“

λold
2|j

”2

νold
2

and µold
s|τ,j,n

= νold
s|j

(
λold
1|j

νold
1

x1,j,n +
λold
2|j

νold
2

D̂T
τ x2,j,n

)
.
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Appendix C

Nix and Hohmann (2006) ILD and

IPD computations

The interaural level disparities (ILD) and interaural phase disparities (IPD) were computed

by Nix and Hohmann (2006) using a windowed short-term fast Fourier transform (FFT)

analysis. I specifically use only one frequency channel, this makes their model directly

comparable to mine. The data set was constructed as segments of length 440 to correspond

with the segment length used for my model, these were each zero padded up to a length

of 512 for applying an FFT. Nix and Hohmann used segments of length 400 with zero

padding. The segments each overlapped by 220 samples. This corresponds to a window

duration of ∼ 10ms and a window time shift ∼ 5ms.

Each of these segments were multiplied by a Hann window and transformed using a

FFT. These short-term FFT spectra of the right and left sensors, respectively sensors 1

and 2, are denominated F1 (f, n) and F2 (f, n) where f and n are respectively the frequency

and time segment index.

A simplification that I apply is to consider only one frequency channel, due to the

simplicity of my sound source and experimental setup by contrast to that of Nix and

Hohmann. They constructed an analysis for far more complex signals, including speech,

in the presence of background noise. Hence they used multiple frequency channels. In

contrast my experimental setup used a sound of very simple time and intensity structure

without frequency dependence. This means there is no necessity for multiple frequency

channels; hence, I used a single channel.

To compute the ILD and IPD Nix and Hohmann made use of frequency averaging using
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the squared magnitude spectrums and the complex-valued cross spectrum,

F11 (n) =
∑

f

|F1 (f, n)|2 , (C.1)

F22 (n) =
∑

f

|F2 (f, n)|2 , (C.2)

F12 (n) =
∑

f

F1 (f, n)F2 (f, n)∗ , (C.3)

where F2 (f, n)∗ indicates the complex conjugate of F2 (f, n). The ILDs and IPDs were

computed as,

ILDn = 10 log

∣∣∣∣
F11 (n)

F22 (n)

∣∣∣∣ , (C.4)

IPDn = argF12 (n) , (C.5)

for each segment indexed by n.

To summarise, the only changes I made to the approach and model of Nix and Hohmann

was in the computations of the ILD and IPD. These changes were to adapt their approach

to become a valid comparison to my model using my data set. Specifically these were the

use of one frequency channel, due to the nature of my data set, and using a segment length

of 440 to correspond with the segment length used in my model.

193



Appendix D

The Kullback-Leibler divergence

The Kullback-Leibler (KL) divergence between two probability density functions, p and q,

over the space x ∈ X is defined to be (Cover and Thomas, 2006, Kullback and Leibler,

1951),

DKL [f ||g] =

ˆ

dx f (x) log
f (x)

g (x)
. (D.1)

it has the property DKL [f ||g] ≥ 0, and where f (x) = g (x) ∀x it follows that DKL [f ||g] =

0. As DKL [f‖g] = α does not imply that DKL [g‖f ] = α. The KL-divergence is not

symmetric as can be seen,

DKL [f‖g] 6= DKL [g‖f ] , (D.2)

by,
ˆ

du f (u) log
f (u)

g (u)
6=
ˆ

du g (u) log
g (u)

f (u)
. (D.3)

To apply the KL-divergence to a pair of Gaussian distributions. Using,

DKL [p‖q] △=
ˆ

dx p (x) log
p (x)

q (x)
, (D.4)

with p (x) = φ (x;µp, σp) and q (x) = φ (x;µq, σq). So,

DKL [p‖q] = −1

2
log (2πσpe)−

ˆ

dx p (x) log q (x) , (D.5)

where the cross term simplifies to,

ˆ

dx p (x) log q (x) =

ˆ

dxφ (x;µp, σp) log φ (x;µq, σq) , (D.6)

=
1

2

ˆ

dxφ (x;µp, σp)
{

log
σq

2π
− σq (x− µq)

2
}
, (D.7)
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(d) KL-divergences for different variances, spe-
cifically.

Figure D.1: Figure illustrating the impact that varying the mean offset between two Gaus-
sians has upon the KL-divergence. The offset δµ is between the mean of the two Gaussian
distribution. Two cases are considered, (i) identical variances σp = σq, plot (a) and (b)
different variances σp 6= σq; specifically σp < σq, plot (b). Plot (c) depicts the case of
identical variance which causes both divergences DKL [p‖q] and DKL [q‖p] to be identical
across δµ. In contrast, plot (d) depicts the case of differing variances which causes the
divergences to diverge with increasing absolute offset |δµ|. Plot (d) depicts the case that
DKL [q‖p] > DKL [p‖q] ∀δµ iff σp < σq. As can be seen the KL-divergence is inversely
related to the overlap of the two densities labelled p and q.
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= −1

2
log (2πσq)

− 1

2σq

ˆ

dxφ (x;µp, σp)
(
x2 − 2xµq + µ2

q

)
, (D.8)

= −1

2
log (2πσq)−

1

2

σp

σq
− 1

2σq
(µp − µq)

2 . (D.9)

So the divergence is,

DKL [p‖q] =
1

2

(
σp − σq

σq

)
+

1

2σq
(µp − µq)

2 +
1

2
log

σp

σq
, (D.10)

as µq → µp and σq → σp then the divergence DKL [p‖q]→ 0. As can be seen the polynomial

term makes the divergence sensitive to large differences between µp and µq. This can be

seen in Figure D.1.

The KL-divergence of two Gaussian distribution with full covariance matrices, repres-

ented by φ (x;µ1,Σ1) with mean µ1 and covariance Σ1 and φ (x;µ2,Σ2) with mean µ2

and covariance Σ2, is

DKL [φ (x;µ1,Σ1) ‖φ (x;µ2,Σ2)] =

ˆ

dxφ (x;µ1,Σ1) log
φ (x;µ1,Σ1)

φ (x;µ2,Σ2)
, (D.11)

=
1

2
log
|Σ2|
|Σ1|

+
1

2
tr
[
Σ−1

2 (Σ1 − Σ2)
]

+
1

2
(µ1 − µ2)

T Σ−1
2 (µ1 − µ2) . (D.12)
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Appendix E

Local weight analysis

Local weight analysis uses the curvature (from geometry) of the likelihood (or a bound

upon it) to consider the unit weighting of a factor or portion of a model to perturbations.

For a curve, c (δ) = {u (δ) , v (δ)} on the u, v-plane which is a function of δ, the curvature

is defined as,

C (δ) =

∣∣∣∂u
∂δ

∂2v
∂δ2 − ∂v

∂δ
∂2u
∂δ2

∣∣∣
((

∂u
∂δ

)2
+
(

∂v
∂δ

)2) 3
2

. (E.1)

I use as the curve c a quantity representing a functional measure of similarity of a probabil-

ity belief to its unperturbed probability. The measure of similarity between the point belief

of a model Ωa and the perturbation Ωb applied to itself is defined to be the KL-divergence

of these two distributions. The perturbation is defined as a function of δ, Ωb (δ), which

applies the analysis for the cases in Figure 2.15.

As I am considering the spatial dependence of the parameters (Figure 2.15), I consider

the curvature is the line formed by c (δ) =
{
δ, d̃j (δ)

}
– where, for a location lj indexed

by j, d̃j represents the approximated measure of dissimilarity between Ωa and Ωb (δ). The

curvature of c (δ) for the perturbation Ωb (δ) applied to the set of parameters Ω is

Cj (δ)|Ω←Ωb(δ)
=

∣∣∣∣
∂2d̃j

∂δ2

∣∣∣
Ω←Ωb(δ)

∣∣∣∣
(

1 +

(
∂d̃j

∂δ

∣∣∣
Ω←Ωb(δ)

)2
) 3

2

. (E.2)

for the perturbation Ωb (r) applied to the parameters Ω. To construct a measure of similar-

ity d̃j I start from the joint posterior belief in the hidden variables p (li, s, τ |x1,x2,Ω)1and

1The distribution can be factorised by Bayes law as

p (li, s, τ |x1,x2, Ω) = p (li|x1,x2, Ω) p (τ |li,x1,x2, Ω) ×
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take the KL-divergence for the perturbation defined as Ω ← Ωb (δ) to the unperturbed

Ω← Ωa which can be expressed as

DKL [p (li, s, τ |x1,x2,Ωa) ‖p (li, s, τ |x1,x2,Ωb (δ))] . (E.3)

As I wish to analyse the spatial importance of these parameters I take the KL-divergence

over this distribution for each true location lj , indexed by j; I do this by taking the

expectation of the KL-divergence in Equation E.3 for the validation data sets2 sample

distribution,

p (x1,x2|lj) =
1

Nval

Nval∑

n=1

δ (x1 − y1,j,n) δ (x2 − y2,j,n) . (E.4)

Putting this together gives an expectation of the spatial influence of a perturbation as

d̃j = Ep(x1,x2|lj) [DKL [p (li, s, τ |x1,x2,Ωa) ‖p (li, s, τ |x1,x2,Ωb)]] , (E.5)

=

ˆ

dx1 dx2p (x1,x2|lj)
J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |x1,x2,Ωa)×

log

(
p (li, s, τ |x1,x2,Ωa)

p (li, s, τ |x1,x2,Ωb)
× p (x1,x2)

p (x1,x2)

)
, (E.6)

=

ˆ

dx1 dx2p (x1,x2|lj)
J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |x1,x2,Ωa)×

log
p (x1,x2, li, s, τ |Ωa)

p (x1,x2, li, s, τ |Ωb)
, (E.7)

≈ 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

log
p (y1,j,n,y2,j,n, li, s, τ |Ωa)

p (y1,j,n,y2,j,n, li, s, τ |Ωb)
. (E.8)

To compute the curvature Cj (δ) in Equation E.2 I need to calculate the first and second

derivatives of d̃j with respect to δ. As only Ωb is dependent upon the perturbation by a

factor δ then the derivatives of d̃j simplify to

∂d̃j

∂δ

∣∣∣∣∣
Ω←Ωb(δ)

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb (δ)) , (E.9)

p (s|li, τ,x1, x2, Ω) ,

which are Equations 2.27, 2.25 & 2.20 respectively.
2The validation measurements are, for each sampled location lj , {y1,j,n, y2,j,n : n ∈ [1, Nval]}.
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and

∂2d̃j

∂δ2

∣∣∣∣∣
Ω←Ωb(δ)

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb (δ)) . (E.10)

The curvature is a measure of the model’s belief to perturbation of a parameter – through

variation of the meta parameter δ. I am considering perturbations to the cues:

1. through variation of λ1 or λ2, to represent the monaural cues at either ear (λ1 ← δλ1

or λ2 ← δλ2),

2. through variation of λ1 & λ2„ to represent the average loudness (λ1 ← δλ1, λ2 ←

δλ2) or the disparity in interaural loudness (either λ1 ← δλ1, λ2 ← δ−1λ2 or λ1 ←

δ−1λ1, λ2 ← δλ2),

3. and through variation of τ , to represent the interaural time disparity (γτ ← δγτ ).

I calculate both of the gradients in Equations E.9 & E.10 for each of these cases. The joint

posterior belief can be factorised by Bayes law to be

p (li, s, τ |y1,j,n,y2,j,n,Ω) = p (li|y1,j,n,y2,j,n,Ω) p (τ |li,y1,j,n,y2,j,n,Ω)×

p (s|li, τ,y1,j,n,y2,j,n,Ω) , (E.11)

where p (li|y1,j,n,y2,j,n,Ω) is defined by Equation 2.27, p (τ |li,y1,j,n,y2,j,n,Ω) by Equa-

tion 2.25 and p (s|li, τ,y1,j,n,y2,j,n,Ω) by Equation 2.20. As the belief p (s|li, τ,y1,j,n,y2,j,n,Ωa)

is a Gaussian, of mean µs|τ,j,i,n = νs|i

(
λ1|i

ν1
y1,j,n +

λ2|i

ν2
D̂T

τ y2,j,n

)
and the variance νs|i =

1

1
η
+

λ2
1|i
ν1

+
λ2
2|i
ν2

, the integrals over s in Equations E.9 & K.2 are analytic.

The expected gradients, of the KL-divergence of the joint belief, in Equations E.9 & E.10

for the cases (λ1 ← δλ1), (λ2 ← δλ2) and (γτ ← δγτ ) are:

• for (λ1 ← δλ1),

∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1

, (E.12)

= − 1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×
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ˆ

ds p (s|li, τ,y1,j,n,y2,j,n,Ωa)
λ1|i

ν1

(
yT

1,j,ns− δλ1|is
T s
)
, (E.13)

= − 1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

λ1|i

ν1

(
yT

1,j,nµs|τ,j,i,n − δλ1|i

(
µT

s|τ,j,i,nµs|τ,j,i,n +Dxνs|i

))
, (E.14)

and

∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1

, (E.15)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

ˆ

ds p (s|li, τ,y1,j,n,y2,j,n,Ωa)
λ2

1|i

ν1
sT s, (E.16)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

λ2
1|i

ν1

(
µT

s|τ,j,i,nµs|τ,j,i,n +Dxνs|i

)
, (E.17)

• for (λ2 ← δλ2),

∂d̃j

∂δ

∣∣∣∣∣
λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ2←δλ2

, (E.18)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×
ˆ

ds p (s|li, τ,y1,j,n,y2,j,n,Ωa)
λ2|i

ν2

(
yT

2,j,nD̂τs− δλ2|is
T s
)
,(E.19)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

λ2|i

ν2

(
yT

2,j,nD̂τµs|τ,j,i,n − δλ2|i

(
µT

s|τ,j,i,nµs|τ,j,i,n +Dxνs|i

))
,(E.20)

and

∂2d̃j

∂δ2

∣∣∣∣∣
λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ2←δλ2

, (E.21)
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=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

ˆ

ds p (s|li, τ,y1,j,n,y2,j,n,Ωa)
λ2

2|i

ν2
sT s, (E.22)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

λ2
2|i

ν2

(
µT

s|τ,j,i,nµs|τ,j,i,n +Dxνs|i

)
, (E.23)

• and for (γτ ← δγτ ),

∂d̃j

∂δ

∣∣∣∣∣
γτ←δγτ

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
γτ←δγτ

, (E.24)

= − 1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)
∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)×

γτ |i

ωτ |i

(
τ − δγτ |i

)
, (E.25)

and

∂2d̃j

∂δ2

∣∣∣∣∣
γτ←δγτ

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
γτ←δγτ

, (E.26)

=
1

Nval

Nval∑

n=1

J∑

i=1

p (li|y1,j,n,y2,j,n,Ωa)×

∑

τ

p (τ |li,y1,j,n,y2,j,n,Ωa)
γ2

τ |i

ωτ |i
. (E.27)

I construct the gradients used to calculate the curvatures of the interaural attenuations

from a combination of the gradients of both monaural attenuations. These gradients for

the interaural attenuations are:

• for (λ1 ← δλ1, λ2 ← δλ2) representing the average loudness,

∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1,λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1,λ2←δλ2

, (E.28)
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=
∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1

+
∂d̃j

∂δ

∣∣∣∣∣
λ2←δλ2

, (E.29)

and

∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1,λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1,λ2←δλ2

,(E.30)

=
∂

∂δ

∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1,λ2←δλ2

, (E.31)

=
∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1

+
∂2d̃j

∂δ2

∣∣∣∣∣
λ2←δλ2

, (E.32)

• for (λ1 ← δλ1, λ2 ← δ−1λ2) representing average interaural loudness,

∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1,λ2←δ−1λ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1,λ2←δ−1λ2

,(E.33)

=
∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1

− 1

δ2
∂d̃j

∂δ

∣∣∣∣∣
λ2←δλ2

, (E.34)

and

∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1,λ2←δ−1λ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δλ1,λ2←δ−1λ2

,(E.35)

=
∂

∂δ

∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1,λ2←δ−1λ2

, (E.36)

=
∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1

+ 2
1

δ3
∂d̃j

∂δ

∣∣∣∣∣
λ2←δλ2

− 1

δ2
∂2d̃j

∂δ2

∣∣∣∣∣
λ2←δλ2

,(E.37)

• and for (λ1 ← δ−1λ1, λ2 ← δλ2) also representing average interaural loudness,

∂d̃j

∂δ

∣∣∣∣∣
λ1←δ−1λ1,λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂

∂δ
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δ−1λ1,λ2←δλ2

,(E.38)
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=
∂d̃j

∂δ

∣∣∣∣∣
λ2←δλ2

− 1

δ2
∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1

, (E.39)

and

∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δ−1λ1,λ2←δλ2

= − 1

Nval

Nval∑

n=1

J∑

i=1

∑

τ

ˆ

ds p (li, s, τ |y1,j,n,y2,j,n,Ωa)×

∂2

∂δ2
log p (y1,j,n,y2,j,n, li, s, τ |Ωb)

∣∣∣∣
λ1←δ−1λ1,λ2←δλ2

,(E.40)

=
∂

∂δ

∂d̃j

∂δ

∣∣∣∣∣
λ1←δ−1λ1,λ2←δλ2

, (E.41)

=
∂2d̃j

∂δ2

∣∣∣∣∣
λ2←δλ2

+ 2
1

δ3
∂d̃j

∂δ

∣∣∣∣∣
λ1←δλ1

− 1

δ2
∂2d̃j

∂δ2

∣∣∣∣∣
λ1←δλ1

.(E.42)

This defines the gradients, used to construct the curvature Cj (δ), for each perturbation of

the curve c (δ) =
{
δ, d̃j (δ)

}
.
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Appendix F

Levels versus level disparities

The levels and level disparity models are, derived from the prior model in the previous

Chapter on the contribution of cues, Equation 2.6 but with the noise processes of equivalent

variance ν = ν1 = ν2,

p (x1, x2|λ1, λ2, τ) =

√
νs

2πν2η
exp

{
− 1

2ν2

(
ν − λ2

1νs

)
x2

1−

1

2ν2

(
ν − λ2

2νs

)
x2

2 +
λ1λ2νs

ν2
x1D̂τx2

}
, (F.1)

where 1
νs

= 1
η

+
λ2
1

ν
+

λ2
2
ν

. The graphical model in Figure 2.2 is modified to project onto

two distinct logarithmic domains Figure F.1. Both projected distributions normalised

probability density functions.

F.1 The distribution of levels

For the levels, lvl1, lvl2, having likelihoods of,

p (lvli|xi) = δ (lvli − log |xi|) , (F.2)

which results in,

p (lvl1, lvl2|λ1, λ2, ν, η) =

√
νs

πν2η
elvl1+lvl2 exp

{
−ν − λ

2
1νs

2ν2
e2·lvl1 − ν − λ2

2νs

2ν2
e2·lvl2

}
×

(
exp

{
νsλ1λ2

ν2
elvl1+lvl2

}
+ exp

{
−νsλ1λ2

ν2
elvl1+lvl2

})
, (F.3)

where 1
νs

= 1
η

+
λ2
1

ν
+

λ2
2

ν
.

For the levels distribution, Equation F.3, in Figure F.2 we see that as we vary the at-
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l

s

x1 x2

λ1 λ2 τ

(a) Dependence of intensities upon lat-
ent variables.

x1 x2

lvl1 lvl2

(b) Projection of in-
tensities to levels.

x1 x2

x1

x2

ILD

(c) Projection of in-
tensities to level dis-
parities.

Figure F.1: Graphical models depicting the relationship between the latent variables and
the observable variables in a model of sound source localisation. The latent variables of
location l, time disparity τ and the sound source s, and the attenuations λ1 &λ2. The
observable variables of sound intensity x1 &x2 (plot a), levels lvl1 & lvl2 (plot b) and level
disparity ILD (plot c) in a model of sound source localisation.

tenuation λ2, the levels lvl1 & lvl2 become more correlated as λ2 approaches λ1. Figure F.3

shows that increasing the signal-to-noise ratio causes the levels lvl1 & lvl2 become more

correlated.

These two results are unsurprising, and are depicted more clearly using the negentropy

(Shannon information) over lvl1 & lvl2.1 In Figure F.4 we see that the sharpness of the

distributions increases with decreasing attenuation, similarly the same is true for increasing

signal-to-noise ratios.2

1In the case of a unimodal distribution negentropy is a direct measure of the distributions sharpness.
2A smaller r as defined in Equation F.3 indicates a greater contribution of the signal to the measured

signals.
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Figure F.2: Plots of the distribution of sound levels with attenuation. The distribution of
sound levels p (lvl1, lvl2|λ1, λ2) is depicted for variation of λ2, where λ1 = 0.9, ν = 1

100 and
η = 1. This illustrates the importance of attenuation upon correlation.
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(a) r = 1 and ν = 2.620
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(c) r = 100 and ν = 0.016
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Figure F.3: Plots of the distribution of sound levels with signal-to-noise ratio. The distri-
bution of levels p (lvl1, lvl2|ν, η) with variation of the ratio between η and ν so as to keep
the expected lvl1 and lvl2 constant, where λ1 = 0.9 and λ2 = 0.9. Indicating the influ-
ence of the signal-to-noise ratio upon correlation, a sharper diagonal indicates a greater
correlation.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9Á10.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Â2

-7.225

-7.100

-6.975

-6.850

-6.725

-6.600

-6.475

-6.350

-6.225

-6.100

(a)

100 101 102

r=
ÃÄ7.2Å7.0Å6.8

Å6.6Å6.4Å6.2
Å6.0
ÆH[lvl 1,lvl 2|r]

(b)

Figure F.4: The negentropy of the distribution of levels for variation of attenuation and
signal-to-noise ratio. The negentropy, in (a) −H [lvl1, lvl2|λ1, λ2] over λ1 and λ2 where ν =
1

100 and η = 1, and in (b) −H [lvl1, lvl2|r] depict the influence of the signal-to-noise ratio
r = η

ν
where ν = 1

100 , λ1 = 0.9 and λ2 = 0.9, for the distribution p (lvl1, lvl2|λ1, λ2, η, ν).
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F.2 The distribution of level disparities

Similarly the level disparity, ILD, has a likelihood,3

p (ILD|x1, x2) = δ

(
ILD− log

∣∣∣∣
x1

x2

∣∣∣∣
)
, (F.4)

which results in,

p (ILD|λ1, λ2, ν, η) =
1

π

√
νs

η




1

eILD + e−ILD − νs

ν

(
λ1e

ILD
2 + λ2e

− ILD
2

)2 +

1

eILD + e−ILD − νs

ν

(
λ1e

ILD
2 − λ2e

− ILD
2

)2


 , (F.5)

with 1
νs

= 1
η

+
λ2
1

ν
+

λ2
2
ν

.

For the level disparity distribution, Figure F.3 shows that increasing the signal-to-noise

ratio causes the levels lvl1 & lvl2 become more correlated. The attenuation dependent term

can be seen in the νs as the switch deciding correlation as 1
νs

increases then so does the

correlation.

These two results are unsurprising, and are depicted more clearly using the negentropy

(Shannon information) over lvl1 & lvl2, in the case of a unimodal distribution it is a

direct measure of the distributions sharpness. In Figure F.4 we see that the sharpness

of the distributions increases with decreasing attenuation, similarly the same is true for

increasing signal-to-noise ratios.

3The derivation was approached in parts, first by computing the ratio p (ratio|x1, x2) = δ
“

ratio−
˛

˛

˛

x1

x2

˛

˛

˛

”

to give the distribution of p (ratio|λ1, λ2, ν, η), and then p (ILD|ratio) = δ (ILD− log ratio).
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Figure F.5: Plots of the distribution of ILD for variation of signal-to-noise ratio. The
distribution of interaural level disparities (ILD) p (ILD|r) with variation of r = η

ν
(indicated

in the legend), for λ1 = 0.9 and λ2 = 1
50λ1. Indicating the influence of the signal-to-noise

ratio upon the distribution, a sharper peak suggests a greater correlation.
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Figure F.6: The negentropy of the ILD distributions for variation of attenuation and signal-
to-noise ratio. The negentropy, in (a) −H [ILD|λ1, λ2] over λ1 and λ2 where ν = 1

100 and
η = 1, and in (b) −H [ILD|r] depicting the influence of the signal-to-noise ratio r = η

ν

where ν = 1
100 , λ1 = 0.9 and λ2 = 0.9, for the distribution p (ILD|λ1, λ2, η, ν).
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Appendix G

Jensen’s inequality

Jensen’s inequality (Cover and Thomas, 2006): if f is a concave function, g is some function

of a random variable x,

ˆ

dx p (x) f (g (x)) ≤ f
(
ˆ

dx p (x) g (x)

)
, (G.1)

where p (x) is a normalised probability distribution. The logarithm is such a concave

function.
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Appendix H

Optimal statistical filtering

The purpose of this section is to concretely define the model’s structure and derive the

conditional Shannon information for such a system.

Bayes law, for a prior belief A, p (A), and a likelihood of B given knowledge of A,

p (B|A), states that the posterior belief in A given B is defined according to the relation,

p (A|B) =
p (B|A) p (A)

p (B)
, (H.1)

where p (B) is the marginal of the product of the prior p (A) and the likelihood p (B|A),

p (B) =

ˆ

dAp (B|A) p (A) . (H.2)

These are the principle tools for constructing the time evolution updates in belief or Markov

relations.

The Markov relations are defined by two stages. Working from a prior belief p (lt−1) and

an arbitrary dynamical process characterised by, p (lt|lt−1, at), a prediction in the latent

space can be made,

p (lt|at)
△
=

ˆ

dlt−1 p (lt|lt−1, at) p (lt−1) . (H.3)

Next, working from this prediction and conditioning upon a measurement, xt, using Bayes

law the posterior belief in the latent space lt ∈ Lt given a measurement xt and action at,

p (lt|xt, at)
△
=
p (xt|lt, at) p (lt|at)

p (xt|at)
, (H.4)

where,

p (xt|at)
△
=

ˆ

dlt p (xt|lt, at) p (lt|at) . (H.5)
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This defines the Markov relations and as such are entirely general.
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Appendix I

Information identities

Definition I.1. The conditional Shannon information is the expectation of the posterior

Shannon information,

I [Lt|Xt, at] = Ep(xt|at) [I [Lt|xt, at]] . (I.1)

Proof. That,

Ep(xt|at) [I [Lt|xt, at]] =

ˆ

dxt p (xt|at)

ˆ

dlt p (lt|xt, at) log p (lt|xt, at) , (I.2)

=

ˆ

dxt dlt p (xt, lt|at) log p (lt|xt, at) , (I.3)

completing the proof as, I [Lt|Xt, at]
△
=
´

dxt dlt p (xt, lt|at) log p (lt|xt, at).

Theorem I.2. Bayes law for information, making

I [Lt|Xt, at] = I [Lt|at] + I [Xt|Lt, at]− I [Xt|at] . (I.4)

Proof. Follows from Bayes law,

p (lt|xt, at) =
p (xt|lt, at) p (lt|at)

p (xt|at)
, (I.5)

where, by definition

I [Lt|Xt, at] =

ˆ

dxt dlt p (xt, lt|at) log p (lt|xt, at) , (I.6)

=

ˆ

dxt dlt p (xt, lt|at) log
p (xt|lt, at) p (lt|at)

p (xt|at)
, (I.7)

=

ˆ

dlt p (lt|at) log p (lt|at) +

ˆ

dxt dlt p (xt, lt|at) log p (xt|lt, at)
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−
ˆ

dxt p (xt|at) log p (xt|at) , (I.8)

≡ I [Lt|at] + I [Xt|Lt, at]− I [Xt|at] , (I.9)

completing the proof.

Definition I.3. The mutual information is the difference between two information terms,

IMI [Xt; Lt|at] = I [Xt|Lt, at]− I [Xt|at] , (I.10)

≡ I [Lt|Xt, at]− I [Lt|at] . (I.11)

Proof. Starting with

IMI [Xt; Lt|at] =

ˆ

dxt dlt p (xt, lt|at) log
p (xt, lt|at)

p (xt|at) p (lt|at)
, (I.12)

=

ˆ

dxt dlt p (xt, lt|at) log
p (xt|lt, at)

p (xt|at)
, (I.13)

=

ˆ

dxt dlt p (xt, lt|at) log p (xt|lt, at)

−
ˆ

dxt p (xt|at) log p (xt|at) , (I.14)

= I [Xt|Lt, at]− I [Xt|at] , (I.15)

proving the first equality of the definition. Next,

I [Xt|Lt, at]− I [Xt|at] =

ˆ

dxt dlt p (xt, lt|at) log p (xt|lt, at)

−
ˆ

dxt p (xt|at) log p (xt|at) , (I.16)

=

ˆ

dxt dlt p (xt, lt|at) log
p (xt|at) p (lt|xt, at)

p (lt|at)

−
ˆ

dxt p (xt|at) log p (xt|at) , (I.17)

=

ˆ

dxt p (xt|at) log p (xt|at)

+

ˆ

dxt dlt p (xt, lt|at) log p (lt|xt, at)

−
ˆ

dlt p (lt|at) log p (lt|at)

−
ˆ

dxt p (xt|at) log p (xt|at) , (I.18)

= I [Xt|at] + I [Lt|Xt, at]− I [Lt|at]− I [Xt|at] , (I.19)

completing the proof.
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Theorem I.4. That

IMI [Xt; Lt|at] = Ep(xt|at) [DKL [p (Lt|xt, at) ‖p (Lt|at)]] . (I.20)

Proof. Starting with

Ep(xt|at) [DKL [p (Lt|xt, at) ‖p (Lt|at)]] =

ˆ

dxt p (xt|at)

ˆ

dlt p (lt|xt, at)×

log
p (lt|xt, at)

p (lt|at)
, (I.21)

=

ˆ

dxt dlt p (xt, lt|at) log p (lt|xt, at)

−
ˆ

dlt p (lt|at) log p (lt|at) , (I.22)

= I [Lt|Xt, at]− I [Lt|at] . (I.23)

Corollary I.5. IMI [Xt; Lt|at] = Ep(lt|at) [DKL [p (Xt|lt, at) ‖p (Xt|at)]] which follows by

simply switching xt and lt for each other.
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Appendix J

My measure for a sequence

Theorem J.1. For a sequence pair of sequences un1:n2 and vn1:n2, which are related by the

conditional distribution p (un1:n2|vn1:n2). Also subject to the constraint that n1 < n2. Then

the following identity holds

ˆ

dun1:n2p (un1:n2|vn1:n2)

n2∑

n′=n1

fn′ (un′) =

n2∑

n′=n1

ˆ

dun′p (un′ |vn1:n2) fn′ (un′) . (J.1)

Proof. As

ˆ

dun1:n2p (un1:n2|vn1:n2)

n2∑

n′=n1

fn′ (un′) =

ˆ

dun1+1:n2p (un1+1:n2 |vn1:n2)×

n2∑

n′=n1+1

fn′ (un′) +

ˆ

dun1p (un1 |vn1:n2) fn1 (un1) , (J.2)

it follows that

ˆ

dun1:n2p (un1:n2|vn1:n2)

n2∑

n′=n1

fn′ (un′) =

n2∑

n′=n1

ˆ

dun′p (un′ |vn1:n2) fn′ (un′) . (J.3)

Hence proving the theorem.

Corollary J.2. If we replace n with t, un with xt, vt with at and lt, and make the sum

over the quantity log p (xt|l′t, at) then the identity in Theorem J.1 leads to the identity

ˆ

dxt:t+δtp (xt:t+δt|lt:t+δt, at:t+δt)

t+δt∑

t′=t

log p
(
xt′ |l′t′ , at′

)
=

t+δt∑

t′=t

ˆ

dxt′p (xt′ |lt:t+δt, at:t+δt) log p
(
xt′ |l′t′ , at′

)

(J.4)
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If we set l′t = lt this gives the identity,

DKL

[
p (Xt:t+δt|lt:t+δt, at:t+δt) ‖p

(
Xt:t+δt|l′t:t+δt, at:t+δt

)]
=

t+δt∑

t′=t

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
.

(J.5)

Theorem J.3. For a sequence of actions at:t+δt over the time interval t to t+δt, the space

of measurements Xt:t+δt and for the latent hypotheses, lt:t+δt and l′t:t+δt gives the identity

BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
=

t+δt∑

t′=t

ˆ

dlt′dl
′
t′p (lt′ |at:t′) p

(
l′t′ |at:t′

)
×

DKL

[
p (Xt|lt′ , at′) ‖p

(
Xt|l′t′ , at′

)]
, (J.6)

≡
t+δt∑

t′=t

BXt′ |at:t′

[
Lt′‖L′t′

]
. (J.7)

Proof. According to the definition

BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
=

ˆ

dlt:t+δtdl
′
t:t+δtp (lt:t+δt|at:t+δt) p

(
l′t:t+δt|at:t+δt

)
×

DKL

[
p (Xt:t+δt|lt:t+δt, at:t+δt) ‖p

(
Xt:t+δt|l′t:t+δt, at:t+δt

)]
.

Due to each measurement xt being conditionally independent to all other measurements,

the KL-divergence becomes a summation

DKL

[
p (Xt:t+δt|lt:t+δt, at:t+δt) ‖p

(
Xt:t+δt|l′t:t+δt, at:t+δt

)]
=

t+δt∑

t′=t

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
.

(J.8)

Putting this together with Corollary J.2 equates to

BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
=

ˆ

dlt:t+δtdl
′
t:t+δtp (lt:t+δt|at:t+δt) p

(
l′t:t+δt|at:t+δt

)
×

t+δt∑

t′=t

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
, (J.9)

=
t+δt∑

t′=t

ˆ

dlt′dl
′
t′p (lt′ |at:t+δt) p

(
l′t′ |at:t+δt

)
×

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
. (J.10)

As this is a Markov problem the prediction beliefs p (lt|a0:T ) ≡ p (lt|a0:T ) according to the

principle that the current state lt being independent of future states lt+1:T . Finally using
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the notation that

BXt|a0:t

[
Lt‖L′t

]
=

ˆ

dltdl
′
tp (lt|a0:t) p

(
l′t|a0:t

)
DKL

[
p (Xt|lt, at) ‖p

(
Xt|l′t, at

)]
, (J.11)

makes

BXt:t+δt|at:t+δt

[
Lt:t+δt‖L′t:t+δt

]
=

t+δt∑

t′=t

ˆ

dlt′dl
′
t′p (lt′ |at:t′) p

(
l′t′ |at:t′

)
×

DKL

[
p (Xt′ |lt′ , at′) ‖p

(
Xt′ |l′t′ , at′

)]
, (J.12)

=
t+δt∑

t′=t

BXt′ |at:t′

[
Lt′‖L′t′

]
. (J.13)

This proves the theorem.
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Appendix K

POMDP informatic action policy

comparisons

Starting with a POMDP where the latent (lt) and measurement (xt) variables are both

discrete. The calculation for the Shannon information is,

I [Lt|Xt, at] =
∑

lt,xt

p (lt, xt|at) log p (lt|xt, at) , (K.1)

=
∑

lt

p (lt|at) log p (lt|at) +
∑

lt

p (lt|at)
∑

xt

p (xt|lt, at) log p (xt|lt, at)−

∑

xt

p (xt|at) log p (xt|at) , (K.2)

which can be calculated algorithmically using Algorithm K.1. In contrast my measure is

calculated according to,

BXt|at

[
Lt‖L′t

]
=

∑

lt,l
′
t

p (lt|at) p
(
l′t|at

)∑

xt

p (xt|lt, at) log
p (xt|lt, at)

p (xt|l′t, at)
, (K.3)

=
∑

lt

p (lt|at)
∑

xt

p (xt|lt, at) log p (xt|lt, at)−

∑

xt



∑

lt

p (lt|at) p (xt|lt, at)


×



∑

lt

p (lt|at) log p (xt|lt, at)


 , (K.4)

which can be calculated in Algorithm K.2. Both algorithms have a time complexity of

O (NxNlNa); xt can take one of Nx possible states, lt can take one of Nl possible states,

and there are Na possible decision choices. In Fox et al. (1998) the authors reduced the
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Algorithm K.1 An Infomax algorithm for a POMDP. The observable variables are col-
lected together as xt, the hidden variables are collected as lt, and the decision variables
are collected as at. This scales as O (NxNlNa); xt can take one of Nx possible states, lt
can take one of Nl possible states, and there are Na possible decision choices.
Calculation of Shannon information,

1. for each at,

h1 = 0, h2 = 0

(a) for each xt in Xt

h3 = 0

i. for each lt in Lt

g = p (xt|lt, at) p (lt|at)
h1 = h1 + g log g
h3 = h3 + g

h2 = h2 + h3 log h3

I [Lt|Xt, at] = h1 − h2

2. select the at that maximises I [Lt|Xt, at].

Algorithm K.2 An implementation of my information measure (Equation 3.3) for a
POMDP. The observable variables are collected together as xt, the hidden variables are
collected as lt, and the decision variables are collected as at. This scales as O (NxNlNa);
xt can take one of Nx possible states, lt can take one of Nl possible states, and there are
Na possible decision choices.
Calculation of my method,

1. for each at,

h1 = 0, h2 = 0

(a) for each xt in Xt

h3 = 0, h4 = 0

i. for each lt in Lt

g0 = p (lt|at)
g1 = p (xt|lt, at) g0
h1 = h1 + g0g1 log g1
h3 = h3 + g0 log g1
h4 = h4 + g1

h2 = h4h3

BXt|at
[Lt‖L′t] = h1 − h2

2. select the at that maximises BXt|at
[Lt‖L′t].
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number of latent states to consider defined by p (lt|at) > ε where ε is small but greater

than zero. This reduces the time complexity for both Algorithms K.1 & K.2 by reducing

Na. For POMDP both algorithms scale equivalently: for other problems my measure can

be defined to scale more favourably.
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Appendix L

Gaussian notation

A Gaussian is defined according to its first two moments; the mean µ and variance σ. A

Gaussian is defined for a space x as

φ (x;µ,Σ) =

√
1

(2π)Dx |Σ|
exp

{
−1

2
(x− µ)T Σ−1 (x− µ)

}
, (L.1)

with a mean µ and the covariance defined by Σ. If the covariance has the form Σ = IDxσ

then σ represents the variance of the distribution.
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Appendix M

Bayes law

Bayes law, for a prior belief A, p (A), and a likelihood of B given knowledge of A, p (B|A),

Bayes law states that the posterior belief in A given B is defined according to the relation,

p (A|B) =
p (B|A) p (A)

p (B)
, (M.1)

where p (B) is the marginal of the product of the prior p (A) and the likelihood p (B|A),

p (B) =

ˆ

dAp (B|A) p (A) . (M.2)

These are the principle tools for constructing the time evolution updates for Markov track-

ing.
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Appendix N

Gaussian identities

Important relations are from the Matrix Cookbook (Petersen and Pedersen, 2008).

For a normally distributed random variable y with mean µ and covariance Σ

φ (y;µ,Σ) =

√
1

(2π)Dy |Σ|
exp

{
−1

2
(y − µ)T Σ−1 (y − µ)

}
. (N.1)

The following identities exist

φ (x;Ay,Σ) = κ (x)φ
(
y;
(
AT ΣA

)−1
AT Σx,

(
AT ΣA

)−1
)
, (N.2)

φ (y;a, A) φ (y;b, B) = φ
(
y; (A+B)−1 (Aa +Bb) , (A+B)−1

)
. (N.3)

Also if z = {x,y}, µ =
{
µx,µy

}
and, Σ =




Σxx Σxy

Σyx Σyy


 , then marginalising out y gives

x ∼
ˆ

dy φ (z;µ,Σ) = φ (x;µx,Σxx) , (N.4)

and conditioning x upon y gives

x|y ∼ φ (z;µ,Σ)

φ
(
y;µy,Σyy

) = φ
(
x;µx − ΣxyΣ

−1
yy

(
µy − y

)
,Σxx − ΣxyΣ

−1
xy Σyx

)
, (N.5)

as a consequence

E
p(x|y=µy)

[x] = E [x] . (N.6)
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Appendix O

Matrix identities

Important relations are from the Matrix Cookbook (Petersen and Pedersen, 2008). For a

d× d matrix P > 0, a k× k matrix R > 0 and a k× d matrix B where P > 0 implies that

aTPa > 0 ∀a e.g. the positive eigenvectors. The following equalities hold,

(
P−1 +BTR−1B

)−1
= P − PBT

(
BPBT +R

)−1
BP, (O.1)

(
P−1 +BTR−1B

)−1
BTR−1 = PBT

(
BPBT +R

)−1
. (O.2)
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Appendix P

Trace equivalence

It is possible to show that

xTAz = tr
[
AzxT

]
. (P.1)

First by defining y = Az, show that

xTy = tr
[
yxT

]
. (P.2)

The vectors are be defined as y = {yi : i = 1, . . . , N} and x = {xi : i = 1, . . . , N}, which

makes

xT y
△
=

N∑

i=1

xiyi. (P.3)

Defining yxT △= M , and given that

M
△
=




m11 · · · m1N

...
. . .

...

mN1 · · · mNN



, (P.4)

then mij = yixj ∀i, j, and as

tr [M ]
△
=

N∑

i=1

mii, (P.5)

then

tr
[
yxT

]
=

N∑

i=1

yixi, (P.6)

≡ xTy. (P.7)
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Thus as it can be said that

xTy = tr
[
yxT

]
, (P.8)

then as a corollary

xTAz = tr
[
AzxT

]
. (P.9)

What about linear operations, so F (x) where F (x + y) = F (x) + F (y). With the

behaviour

F (x)
△
=




F (x1)

...

F (xN )



, (P.10)

and

F (M)
△
=




F (m11) · · · F (m1N )

...
. . .

...

F (mN1) · · · F (mNN )



. (P.11)

Then hence due to F being a linear operation the following are true

F
(
xT y

)
= F

(
N∑

i=1

xiyi

)
, (P.12)

=
N∑

i=1

F (xiyi) , (P.13)

and,

F
(
tr
[
yxT

])
= F

(
N∑

i=1

yixi

)
, (P.14)

=

N∑

i=1

F (yixi) , (P.15)

thus the following identity is true,

F
(
xTy

)
= tr

[
F
(
yxT

)]
. (P.16)
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Appendix Q

Sampling from the Lorenz attractor

The seminal discovery of Lorenz that originated the field of chaos was originally motivated

by the problem of weather prediction. Lorenz investigated a series of equations derived

from thermal convection in the atmosphere (Ott, 2002). His demonstration that thermally

driven convection could result in chaos raised the possibility that the atmosphere is chaotic.

The Lorenz attractor is a series of ordinary differential equations

∂x(1)

∂t
= a

(
x(2) − x(1)

)
, (Q.1)

∂x(2)

∂t
=

(
b− x(3)

)
x(1) − x(2), (Q.2)

∂x(3)

∂t
= x(1)x(2) − cx(3), (Q.3)

where the state vector x =
{
x(i) : i = 1, 2, 3

}
. See Figure Q.1 for an example attractor for

the parameters a = 10, b = 25 and c = 8
3 implemented using the Python scientific package

Scipy.

To use the Scipy ODE package I constructed a Python function returning the vector

of derivatives

def foo(t,x):

A = 10.

B = 25.

C = 8./3.

dx = zeros([3])

dx[0] = -A*x[0]+A*x[1]

dx[1] = -x[0]*x[2]+B*x[0]-x[1]

dx[2] = x[0]*x[1]-C*x[2]

return dx

Then a function to sample the Lorenz attractor for this set of parameters (a = 10, b =
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Figure Q.1: The Lorenz attractor. The attractor with the parameters a = 10, b = 25
and c = 8

3 . The starting point is indicated by a red dot. Sampling this trajectory was
implemented using the Python scientific package Scipy (using the included ode solver).

25 and c = 8
3). This makes use of the variable-coefficient ordinary differential (VODE)

equation solver. This is wrapped in Python using the function

def sample_lorenz(x0,t0,dt,tEnd=50.):

x = []

t = []

index = 0

r = scipy.integrate.ode(foo).set_integrator(’vode’).set_initial_value(x0,t0)

while r.successful() and r.t < tEnd:

r.integrate(r.t+dt)

x.append(r.y)

t.append(r.t)

index += 1

return array(x,dtype=’float64’),array(t,dtype=’float64’)

Finally, the usage of these functions to construct a Lorenz sample is

x0 = [0.,1.,1.]

dt = 0.05

tEnd = 50.

t0 = 0.

x,t = sample_lorenz(x0,t0,dt,tEnd)

This is from the start point x (t0) = {0, 1, 1}, for 50 time steps of length δt = 0.05.
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Appendix R

Episodic learning

R.1 Learning requirements

The purpose is to learn the parameters of a system which has a hidden latent space that

can be constructed from the sequence of measurements x0:τ that comprises the data set

Dat. The data set is generated sequentially according to a set of actions a0:τ . As such

it is dependent completely upon the parameter Ω due to the recursive selection of each

action at using a measure of goodness based upon I [Lt|Xt, x0:t−1, a0:t,Ω], to then generate

a corresponding measurement xt.

To learn a new parameterisation Ωnew from this data set and action set I use maximum

likelihood (ML), hence applying argument maximisation to a models log-likelihood,

Ωnew = arg max
Ω
L [Ω; a0:τ , x0:τ ] . (R.1)

Though any measure of goodness such as prediction error et = (E [xt]− xt)
2, could be used

rather than the likelihood.

However typically this results in neglecting the prior parameterisation of Ω which con-

tains knowledge of the past data and action sets. This would be akin to an individual

waking up each day with a sensory system that reconfigures its connections and weights

to optimally represent only that episodes actions and data. However if a prior actions and

data could be accounted for then there would be an episodic refinement to the parameter

learning. An example of an episodic refinement is discussed in the next section.
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R.2 Episodic maximum-likelihood

Episodic learning uses a prior parameter to help construct a current estimate for this

parameter with a data set. To do this I utilise a Lagrangian based upon a measure of

dissimilarity between these parameters, the prior parameter and a new estimate, to derive

the learning rules. I use the EM-algorithm for this learning process due to its utility

as a pseudo Bayesian learning method and its wide acceptance for constructing optimal

parameters.

Retaining the previous episodes optimal parameterisation gives a way of retaining know-

ledge of past data without needing to maintain a copy of the past data set. This can be a

significant space saving for a small loss with respect to optimality. The degree of influence

upon the current parameterisation is managed via the magnitude of the Lagrangian mul-

tipliers. This can be interpreted by contrast to standard EM. EM sequentially optimises

a bound B upon the likelihood L of the data Dat for a parameterisation Ω over a set of

hidden variables H, which are related by,

L (Dat|Ω) = log p (Dat|Ω) (R.2)

= log

ˆ

dH p (Dat,H|Ω) (R.3)

≤
ˆ

dH p
(
H|Dat,Ωold

)
log

p (Dat,H|Ω)

p (H|Dat,Ωold)
(R.4)

= B
[
Ω;Ωold

]
, (R.5)

when the parameters have converged the bound will tend to the likelihood (Appendix A).

The episodic EM modifies the bound by a Lagrangian multiplier γΩ and a measure of

dissimilarity d
(
Ω; Ω̄

)
between the parameterisation Ω and the prior parameter Ω̄, to be,

G
[
Ω;Ωold|Ω̄

]
=

ˆ

dH p
(
H|Dat,Ωold

)
log

p (Dat,H|Ω)

p (H|Dat,Ωold)
+ γΩd

(
Ω; Ω̄

)
, (R.6)

where the prior parameter is distinct from the old update for the EM. This suggests that,

if we assume a prior p (Ω)
△
= 1

ZΩ̄
eγΩd(Ω;Ω̄) where ZΩ̄ =

´

dΩ eγΩd(Ω;Ω̄), then the joint belief

of the parameterisation and the data is,

J (Dat,Ω) = log p (Dat,Ω) (R.7)

= log p (Dat|Ω) + γΩd
(
Ω; Ω̄

)
− ZΩ̄. (R.8)
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Hence such a Lagrangian multiplier is equivalent to applying a prior belief in the estimation

of Ω making any optimisation that of the joint belief.

The methodology of the EM algorithm is to first construct a proposal distribution over

the hidden latent variables H conditioned upon the data Dat and the prior parameters Ωold,

p
(
H|Dat,Ωold

)
; this constructs the expectation or E-step of the EM-algorithm. Then find-

ing the stationary point of the bounds Lagrangian G
[
Ω;Ωold|Ω̄

]
with respect to the para-

meters Ω to iteratively maximise the joint J (Dat,Ω); this constructs the new parameters

and so constitutes the maximisation or M-step of the EM-algorithm. The EM-algorithm is

conceptually a pseudo maximum likelihood where the expectation p
(
H|Dat,Ωold

)
is used

in the maximisation of p (Dat,H|Ω) with respect to Ω and the prior defined by the Lag-

rangian multiplier γΩd
(
Ω, Ω̄

)
. In the following I use the gradients to construct analytical

updates for the learning rules as stationary points to the episodic Lagrangian G
[
Ω;Ωold|Ω̄

]
.

This is somewhat like an iterative maximum a-posteriori (MAP) algorithm rather than an

ML algorithm. Though implicitly all ML algorithms assume a uniform prior.

The advantage of this episodic EM-algorithm is that it may be applied to any model

that is learnable using a likelihood based method, including expectation-maximisation

based variational learning methods such as Ghahramani and Beal (2000), Ghahramani and

Hinton (2000), Jordan et al. (1999), Verbeek et al. (2003), Beal et al. (2003), Hospedales

and Vijayakumar (2006), Hospedales et al. (2007). It does however require that a suitable

measure of dissimilarity exists for the particular parameter being learnt. Such measures

are developed in the following subsection.

R.3 The dissimilarity between parameters

A suitable measures of dissimilarity for Bayesian parameters can be constructed from the

KL-divergence between two probability distributions. After a bound B
[
Ω;Ωold

]
has been

constructed a dissimilarity measure d
(
Ω, Ω̄

)
between the current parameter θ and the prior

episodes parameter Ω̄, where the Lagrangian is

G
[
Ω;Ωold|Ω̄

]
= B

[
Ω;Ωold

]
− γΩd

(
Ω, Ω̄

)
. (R.9)
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So for example, for a discrete probability distribution P (a|b) = πa|b the dissimilarity being

measured directly by the KL divergence

d
(
πa|b, π̄a|b

)
=
∑

a,b

π̄a|b log
π̄a|b

πa|b
. (R.10)

Taking the derivative of this divergence gives

∂

∂πa|b
d
(
πa|b, π̄a|b

)
= −

π̄a|b

πa|b
, (R.11)

which is suitable for maximum likelihood methods. A suitable measure of distance for

Gaussian parameters is the KL divergence between two Gaussians p (x) = φ
(
x;µp,Σp

)

and q (x) = φ
(
x;µq,Σq

)
is

ˆ

dxφ
(
x;µp,Σp

)
log

φ
(
x;µp,Σp

)

φ
(
x;µq,Σq

) , (R.12)

which analytically gives the measure of dissimilarity

d (p, q) =
1

2
log
|Σq|
|Σp|

+
1

2
tr
[
Σ−1

q (Σp − Σq)
]
+

1

2

(
µp − µq

)T
Σ−1

q

(
µp − µq

)
. (R.13)

The divergence between the various parameters in most models can be constructed by

suitable selection of the Σ’s and µ’s. As an example the gradient of this divergence for a

covariance matrix Σp by setting µp = µq = 0D, gives

∂

∂Σ−1
p

d (p, q) =
1

2
(Σp − Σq) , (R.14)

and for µp and by setting Σp = Σq, gives

∂

∂µp

d (p, q) = Σ−1
p

(
µq −µp

)
, (R.15)

which is suitable for maximum likelihood methods for learning Gaussian problems. There-

fore by a suitable selection of the variables most parameters may have an episodic Lag-

rangian applied to its learning algorithm.
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R.4 The Lagrangian multiplier

How should γθ be interpreted? I consider this in the context of optimising a Gaussian. For

the ML case of fitting a Gaussian distribution of mean µ and variance σ,

p (x) = φ (x;µ, σ) , (R.16)

to a data set Dat = {xi : i = 1, . . . , N} and the parameterisation Ω = {µ, σ}. The likeli-

hood and its Lagrangian becomes

L (Dat,Ω) ∝ log p (Dat|Ω) + γΩd
(
Ω; Ω̄

)
, (R.17)

=
N∑

i=1

log φ (xi;µ, σ) − γθ

(
1

2
log

σ̄

σ
+

1

2σ̄
(σ + σ̄)

+
1

2σ̄
(µ+ µ̄)2

)
. (R.18)

As can be seen the Lagrangian maintains a relationship between the mean µ and the

variance σ.

To start I define the episodic Lagrangian multiplier to take the form γΩ = γα. I extract

α after holding γ = 1; hence γ can be interpreted as a ratio. Starting by extracting the

ML mean
∂L
∂µ

= −
N∑

i=1

1

σ
(xi − µ)− γΩ

1

σ
(µ̄− µ) . (R.19)

Equating the gradient of the likelihood to zero and rearranging to make µ the subject of

the equation gives

µ =
1

N + γΩ

(
N∑

i=1

xi + γΩµ̄

)
. (R.20)

Using an independent but identically distributed data set for µ̄ which can be expressed as

µ̄ =
1

N̄

N+N̄∑

i=N+1

xi, (R.21)

inserting γΩ = γα and holding γ = 1,

µ =
1

N + α




N∑

i=1

xi + α
1

N̄

N+N̄∑

i=N+1

xi


 =

1

N̄ +N

N̄+N∑

i=1

xi, (R.22)
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from which I imply α = N̄ . Accordingly the episodic update becomes

µ =
1

N + γN̄

(
N∑

i=1

xi + γN̄µ̄

)
. (R.23)

Continuing for σ and setting γΩ = γN̄ thus

∂L
∂σ−1

=
N

2
σ − 1

2

N∑

i=1

(xi − µ)2 − γΩ
1

2
(σ̄ − σ) . (R.24)

Equating the gradient of the likelihood to zero and making σ the subject of the equation

gives the update,

σ =
1

N + γΩ

(
N∑

i=1

(xi − µ)2 + γΩσ̄

)
. (R.25)

Using the same notation for Equation R.23 then I may say

σ̄ =
1

N̄

N+N̄∑

i=N+1

(xi − µ)2 , (R.26)

and substituting in γΩ = γN̄ and setting γ = 1,

σ =
1

N + N̄




N∑

i=1

(xi − µ)2 +
N+N̄∑

i=N+1

(xi − µ̄)2


 6= 1

N + N̄

N+N̄∑

i=1

(xi − µ)2 . (R.27)

This discrepancy with Equation R.23 is principally due to the variance σ being computed in

terms of the mean µ. However as the number of episodes increases the estimated variance

should converge to the true variance. The maximum-likelihood episodic update for the

mean is,

µ =
1

N + γN̄

(
N∑

i=1

xi + γN̄µ̄

)
, (R.28)

and the variance is

σ =
1

N + γN̄

(
N∑

i=1

(xi − µ)2 + γN̄σ̄

)
, (R.29)

where N̄ is the size of the prior episodes data set and γ represents the weight assigned

to the prior episodes parameterisation relative to the current episodes data set. This is

illustrated in Figure R.1 with different γ ratios. The effect of the different ratios is best

seen at episode 80 where the data sampling transitions to a new parameterisation. The

closer γ is to 1 the greater the number of episodes the ML optimisation needs to approach

the new parameters. This is however mitigated by γ → 1 planning less relative emphasis
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Figure R.1: Convergence of episodic maximum-likelihood (ML) estimates compared with
the ratio γ for initial divergent proposals. At episode 80 there is a transition in the data
from one parameter to another. The purpose of this transition is to indicate the varying
speed with which the different γ’s converge to the new parameters. The true parameters
are indicated with dashed lines. For γ → 1 acts as a smoothed less variational estimate
for the parameters. Where each episodes sample size is N = 100.

on the data and its estimates jump less.

In practical terms it is easiest to set N̄ = N which results in γ simply being a ratio

(γ ≥ 0), where γ = 1 causes µ̄ to have the same importance as the data set x1:N , where

γ < 1 means the update holds the current episodes data to be more relevant than prior

episodes. This is applied to the EM updates to set the individual Lagrangian multipliers

to γΩi
= γαΩi

where each Ωi represents a set of linked parameters such that γ is a ratio

across all parameters. An example of which would be for a Gaussian mixture model where

the belief in each mixture would have one d
(
Ωi; Ω̄i

)
Equation R.13 and the class weights

would have one d
(
Ωi; Ω̄i

)
similar to Equation R.11.
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Appendix S

Particle filtering

Tracking is a fundamental aspect of surveillance, guidance and obstacle avoidance systems,

with the role being to determine the number, position and motion of any targets. The prin-

ciple building block of a tracking system is the filter (a recursive state estimator). However

an implicit building block of the filter is the model. In many domains the model’s paramet-

erisation is assumed (Ristic et al., 2004c). A backward process whereby previous estimates

of the state are typically used to modulate previous estimates with current measurements.

Using a state space Lt I wish to compute the distribution p (Lt|x0:t) where Lt is the

hidden state at a time t, x0:t is the sequence of measurements {xi : i ∈ [0, t]}. In general

the required integrals cannot be computed in a closed form. Therefore I shall use particle

filtering which approximates the posterior using sequential importance sampling.

A particle filter can be defined according to the simple graphical model of Figure S.1.

Firstly the prior belief p (lt−1) is approximated using a mixture of Dirac deltas,

p (lt−1) =
1

N

N∑

i=1

δ
(
lt−1 − l(i)t−1

)
, (S.3)

lt−1 lt

xt

Figure S.1: Graphical model of the general filtering problem. The figure represents a
generalised dynamic process Lt−1 7→ Lt with the measurement process Lt 7→ Xt. The
nodes represent the space that random variables will exist upon and the direction of the
edges indicate causality within the model.
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Algorithm S.1 The generic particle filtering algorithm. This algorithm is a simplification
of the examples from Isard and Blake (1998), Murphy and Russell (2001), Doucet et al.
(2000).

1. Sequential importance sampling step,

• for i = 1, . . . , N , sample

l
⋆(i)
t ∼ p

(
lt|l(i)0:t−1, x0:t−1

)
, (S.1)

• for i = 1, . . . , N , evaluate the importance of the proposed trajectory according
to,

π
(i)
t ∝ p

(
xt|l⋆(i)

t , x0:t−1

)
, (S.2)

where these weights are normalised,
∑N

i=1 π
(i)
t = 1.

2. Selection step,

• resample N samples from l
⋆(i)
t according to the importance distribution π

(i)
t to

obtain N random samples l(i)t approximating the distribution p (Lt|x0:t).

where the set of l(i)t represent the particles. This is used to feed forward through the

stochastic dynamic process defined as p (lt|lt−1) to generate a latent space prediction,

p (lt) =

ˆ

dlt−1 p (lt|lt−1) p (lt−1) , (S.4)

=
1

N

N∑

i=1

p
(
lt|l(i)t−1

)
. (S.5)

A new proposal particle distribution for p (lt) is generated according to Equation S.5.

This is however difficult to develop further, hence a set of sample properties are generated

each denoted as l⋆(i)
t . Such that for each particle sample a point l⋆(i)

t ∼ p
(
lt|l(i)t−1

)
,1

approximating the prediction distribution as

p (lt) ≈
1

N

N∑

i=1

δ
(
lt − l⋆(i)

t

)
. (S.6)

Each point in this set of points has a likelihood or weight π(i)
t assigned according to a

measurement xt,

π
(i)
t ∝ p

(
xt|l⋆(i)

t

)
, (S.7)

where
∑N

i=1 π
(i)
t = 1. Finally a set of l(i)t ’s are sampled according to the weights of each

1Sampling an arbitrary distribution is relatively simple using sampling methods MacKay (2003).
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particle l⋆(i)
t to generate the posterior belief,

p (lt|xt) =
1

N

N∑

i=1

δ
(
lt − l(i)t

)
. (S.8)

This process is summarised in Algorithm S.1 to define the generic particle filter.
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Appendix T

The RBPF model

Assuming that trajectories representing the posterior filtered belief in K0:t, J0:t are sampled

according to Algorithm 4.1. This gives a joint posterior distribution of

P (k0:t, j0:t|x0:t, a0:t) =
1

N

N∑

i=1

t∏

m=0

δk
(i)
m

km
δj

(i)
m

jm
. (T.1)

Henceforth for brevity a shorthand s = {j, k} is used where appropriate, this has the

consequence that St = Jt ∪ Kt, s
(i)
t =

{
j
(i)
t , k

(i)
t

}
and s

(i)
0:t =

{
j
(i)
0:t , k

(i)
0:t

}
. The state of

the Kalman filter at a time t is denoted by zt and remains unobserved. At every time t

there is a vector of observations denoted by xt which depend linearly upon the state vector

with some additive Gaussian noise and a given choice of action at. I assume the following

dynamic process,

p (zt|zt−1, k) = φ
(
zt;A

(k)zt−1 + b(k), Q
)
, (T.2)

the dynamics are governed by a Markov process; the state zt is independent of all preceding

states given the prior state zt−1 and k. This is only a Markov process for the RBPF in

Figure 4.5 (b) if it is also conditioned upon a particles trajectory of k(i)
0:t, as the dynamics

are dependent upon k
(i)
t as denoted by A(i)

t = A(k) and b
(i)
t = b(k) for k = k

(i)
t . I assume

the following measurement process,

p (xt|zt, j) = φ
(
xt;B

(j)zt, R
)
, (T.3)

where the measurement process is based upon a choice of measure j which is conditioned

upon the i’th particle through j
(i)
0:t , I use the shorthand of B(i)

t = B(j) for j = j
(i)
t . The
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measurement mapping B(j) is assumed to be fixed with the choice of jt corresponding to

at through the belief P (jt|at).

To generate the filtering terms a proposal distribution is generated for each particle

(mathematical details in Appendix U.3) which has a Gaussian form,

p
(
zt|s(i)0:t,x0:t−1

)
= φ

(
zt; ẑ

(i)
t|t−1,Σ

(i)
t|t−1

)
, (T.4)

where the projected mean is

ẑ
(i)
t|t−1 = A

(i)
t ẑ

(i)
t−1|t−1 + b

(i)
t , (T.5)

and the projected covariance is

Σ
(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q. (T.6)

These are used to construct the weights of the particles p
(
xt|s(i)0:t,x0:t−1

)
by taking the

expectation of Equation U.2 (mathematical details in Appendix U.3) to give the belief

p
(
xt|s(i)0:t,x0:t−1

)
= φ

(
xt; x̂

(i)
t|t−1,H

(i)
t|t−1

)
, (T.7)

where the expected measurement is

x̂
(i)
t|t−1 = B

(i)
t ẑ

(i)
t|t−1, (T.8)

and its covariance is

H
(i)
t|t−1 = R+B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
. (T.9)

Conditioning upon a measurement (mathematical details in Appendix U.3) results in the

terms for the filtered mean and covariance to give the belief

p
(
zt|s(i)0:t,x0:t

)
= φ

(
zt; ẑ

(i)
t|t ,Σ

(i)
t|t

)
, (T.10)

where the filtered mean is

ẑ
(i)
t|t = ẑ

(i)
t|t−1 +K

(i)
t

(
xt −B(i)

t x̂
(i)
t|t−1

)
, (T.11)
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the filtered covariance is

Σ
(i)
t|t =

(
I −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1

(
I −K(i)

t B
(i)
t

)T

+K
(i)
t R K

(i)
t

T
, (T.12)

and the Kalman gain is

K
(i)
t = Σ

(i)
t|t−1 B

(i)
t

T
(
R+B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
)−1

. (T.13)

This defines the stages necessary to compute the analytic component updates for my RBPF,

which allows me to express Algorithm 4.1 more fully as Algorithm T.1.

The state space smoothing terms are conditioned upon the trajectories s(i)0:τ =
{
k

(i)
0:τ , j

(i)
0:τ

}

which represent the distribution P (s0:τ |x0:τ , a0:τ ) as

P (s0:τ |x0:τ , a0:τ ) =
1

N

N∑

i=1

τ∏

t=0

δ
s
(i)
t

st . (T.19)

The analytic smoothing terms (mathematical details in Appendix U.4) can be represented

as

p
(
zt|s(i)0:τ ,x0:τ

)
= φ

(
zt; ẑ

(i)
t|τ ,Σ

(i)
t|τ

)
, (T.20)

where the smoothed mean is

ẑ
(i)
t|τ = ẑ

(i)
t|t + J

(i)
t

(
ẑ
(i)
t+1|τ −A

(i)
t+1ẑ

(i)
t|t − b

(i)
t+1

)
, (T.21)

the smoothed covariance is

Σ
(i)
t|τ = Σ

(i)
t|t + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
, (T.22)

and the term

J
(i)
t = Σ

(i)
t|t A

(i)
t+1

T
Σ

(i)
t+1|t

−1
. (T.23)

This is however only half of the solution as the joint distribution

p
(
zt−1:t|s(i)0:τ ,x0:τ

)
= φ







zt−1

zt


 ;




ẑ
(i)
t−1|τ

ẑ
(i)
t|τ


 ,




Σ
(i)
t−1|τ Σ

(i)
t−1,t|τ

Σ
(i)
t,t−1|τ Σ

(i)
t|τ





 , (T.24)
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Algorithm T.1 The Rao-Blackwellized particle filtering algorithm for a switching SSM
problem. The shorthand s = {j, k} is used, this has the consequence that St = Jt ∪ Kt,

s
(i)
t =

{
j
(i)
t , k

(i)
t

}
and s

(i)
0:t =

{
j
(i)
0:t, k

(i)
0:t

}
. Notice that the full trajectories s(i)0:t for each

particle represents an instantiation of P (s0:t|x0:t, a0:t). This algorithm is adapted from
Algorithm 4.1 which was in turn adapted from Murphy and Russell (2001).

1. Sequential importance sampling step,

• for i ∈ [1, N ], sample

s
⋆(i)
t ∼ P̂

(
st|s(i)0:t−1,x0:t−1, at

)
, (T.14)

and set s⋆(i)
0:t

△
=
{
s
⋆(i)
t , s

(i)
0:t−1

}
.

• for i ∈ [1, N ], evaluate the importance of the proposed trajectory according to,

π
(i)
t ∝ φ

(
xt; x̂

⋆(i)
t|t−1,H

⋆(i)
t|t−1

) P
(
s
⋆(i)
t |s

(i)
0:t−1,x0:t−1, at

)

P̂
(
s
⋆(i)
t |s

(i)
0:t−1,x0:t−1, at

) , (T.15)

where, x̂⋆(i)
t|t−1 = B

(i)
t ẑ

⋆(i)
t|t−1, H

⋆(i)
t|t−1 = R+B

(i)
t Σ

⋆(i)
t|t−1 B

(i)
t

T
, ẑ⋆(i)

t|t−1 = A
⋆(i)
t ẑ

(i)
t−1|t−1+

b
⋆(i)
t and, Σ

⋆(i)
t|t−1

= A
⋆(i)
t Σ

(i)
t−1|t−1

A
⋆(i)
t

T
+Q. Then normalise these weights such

that,
∑N

i=1 π
(i)
t = 1.

2. Selection step,

• resample N samples from s
⋆(i)
0:t according to the importance distribution π(i)

t to

obtain N random samples s(i)0:t approximating the distribution p (s0:t|x0:t, a0:t).

3. Exact step,

• update the parameters with the selected s(i)0:t using,

ẑ
(i)
t|t = ẑ

(i)
t|t−1 +K

(i)
t

(
xt −B(i)

t ẑ
(i)
t|t−1

)
, (T.16)

Σ
(i)
t|t =

(
It −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1

(
It −K(i)

t B
(i)
t

)T

+K
(i)
t R K

(i)
t

T
, (T.17)

K
(i)
t

△
= Σ

(i)
t|t−1 B

(i)
t

T
(
R+B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
)−1

, (T.18)

where, ẑ
(i)
t|t−1 = A

(i)
t ẑ

(i)
t−1|t−1 + b

(i)
t and Σ

(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q.
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Algorithm T.2 The Rao-Blackwellized particle smoothing algorithm for a switching SSM
problem. Σ

(i)
t|t , Σ

(i)
t+1|t, z

(i)
t|t and z

(i)
t+1|t have been previously by filtering in Algorithm T.1. A

shorthand s = {j, k} is used, this has the consequence that St = Jt ∪Kt, s
(i)
t =

{
j
(i)
t , k

(i)
t

}

and s
(i)
0:t =

{
j
(i)
0:t , k

(i)
0:t

}
. The full trajectories s(i)0:τ for each particle represents a smoothed

instantiation of P (s0:τ |x0:τ , a0:τ ) from Algorithm T.1.
1. Exact step,

• update the parameters for the selected s(i)0:τ using,

ẑ
(i)
t|τ = ẑ

(i)
t|t + J

(i)
t

(
ẑ
(i)
t+1|τ −A

(i)
t+1ẑ

(i)
t|t − b

(i)
t+1

)
, (T.27)

Σ
(i)
t|τ = Σ

(i)
t|t + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
, (T.28)

Σ
(i)
t,t−1|τ =

(
Σ

(i)
t|τ + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
)
J

(i)
t−1

T
, (T.29)

where, J (i)
t

△
= Σ

(i)
t|t A

(i)
t+1

T
Σ

(i)
t+1|t

−1
.

where the cross-covariance is

Σ
(i)
t,t−1|τ =

(
Σ

(i)
t|τ + J

(i)
t

(
Σ

(i)
t+1,t|τ −A

(i)
t+1Σ

(i)
t|t

))
J

(i)
t−1

T
, (T.25)

Σ
(i)
t,t−1|τ = Σ

(i)
t−1,t|τ

T
as the covariance of




zt−1

zt


 is by definition positive definite. The

backward smoother for the cross covariance term is initialised with

Σ
(i)
τ,τ−1|τ =

(
I −K(i)

τ B(i)
τ

)
A(i)

τ Σ
(i)
τ−1|τ−1. (T.26)

These define the analytic component smoothing relations for the RBPF as expressed in

Algorithm T.1 and are expressed in Algorithm T.2.

The smoothing distributions Equations T.20 & T.24 as dedicated in Algorithm T.2

are used to iteratively and optimally update the model parameters which I derive in Ap-

pendix V.
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Appendix U

Kalman filtering & smoothing

U.1 The Kalman filter

I assume that trajectories for K0:t and J0:t have already been sampled (Algorithm 4.1),

therefore algorithmically these are neglected in the following. Much of this appendix is a

generalisation of typical Kalman filtering adapted from Welling (2008) to include a time

dependent state dynamic and measurement processes.

The state of the Kalman filter is denoted by zt at a time t and remains unobserved. At

every time t there is a vector of observations denoted by xt which depend linearly upon the

state vector with some additive Gaussian noise and a given choice of action at. I assume

the following dynamic process,

zt ∼ φ
(
·;A(k)zt−1 + b(k), Q

)
, (U.1)

the dynamics are governed by a Markov process; the state zt is independent of all pre-

ceding states given the prior state zt−1. This is only a Markov process for the RBPF in

Figure 4.5 (b) if it is also conditioned upon a particles trajectory k(i)
0:t, as the dynamics are

dependent upon k(i)
t as denoted by A(i)

t = A(k) and b
(i)
t = b(k) for k = k

(i)
t .

xt ∼ φ
(
·;B(j)zt, R

)
, (U.2)

where the measurement process is based upon a choice of measure j which is conditioned

upon the i’th particle through j
(i)
0:t , I use the shorthand of B(i)

t = B(j) for j = j
(i)
t . This

model can be seen as a mixture of conditionally independent factor analyses (FA) over

time; at every instant there is a FA model where the factors depend upon the prior time
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steps factors. Finally the initial state z0 is normally distributed according to,

z0 ∼ φ (·;µ0,Σ0) . (U.3)

Since the initial state is Gaussian, the evolution is linear and the noise from the measure-

ments and state evolution are also Gaussian, this then implies that the state at later times

will remain Gaussian.

U.2 Kalman filter properties

I want to be able to estimate the state and covariance of the state at any time t given a set of

observations x0:τ = {x0, . . . ,xτ}, a set of hypothesised measurements j(i)0:τ =
{
j
(i)
0 , . . . , j

(i)
τ

}

and the trajectory k
(i)
0:τ =

{
k

(i)
0 , . . . , k

(i)
τ

}
. The actual choice of actions at are neglected

in this Appendix for the purposes of brevity and that conditioning upon J0:τ makes Zt

independent of at for 0 ≤ t ≤ τ . If τ is equal to the current time t this this is a filter for

the state, if τ is smaller than t then this is a prediction of the state, and finally, if τ is

larger than t this is a smoothing of the state. The probability that describes these is,

p
(
zt|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
, (U.4)

as it conveys all of the information regarding zt at a time t given all the observations up

to a time τ and a trajectory of states k(i)
0:τ and j

(i)
0:τ upto a time τ . As this probability is

Gaussian I need only calculate the mean and covariance (these being the sufficient statistics

for such a distribution), denoted by,

ẑ
(i)
t|τ = E

p
“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

” [zt] , (U.5)

Σ
(i)
t|τ = E

p
“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

”

[
z̃
(i)
t|τ z̃

(i)
t|τ

T
]
, (U.6)

where z̃
(i)
t|τ = zt − ẑ

(i)
t|τ is defined as the state prediction error. Note that these quantities

depend upon the random variables x0:τ and hence are also random variables. We can see

that the covariance P does not depend upon x0:τ , thus Σ maybe considered a parameter in

the following derivations. To prove this claim I show the correlation between the random

variables z̃
(i)
t|τ and x0:τ vanishes. For normally distributed random variables this implies

independence.
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The random variables z̃
(i)
t|τ = zt − ẑ

(i)
t|τ and x0:τ = {x0, . . . ,xτ} are independent,

Ep(zt,x0:τ )

[
x0:τz

T
t

]
− Ep(x0:τ )

[
x0:τ ẑ

(i)
t|τ

T
]

=

ˆ

dztdx0:τp (zt,x0:τ )x0:τz
T
t

−
ˆ

dx0:τp (x0:τ )x0:τ ×
[
ˆ

dztp (zt|x0:τ ) zt

]T

, (U.7)

=

ˆ

dztdx0:τp (zt,x0:τ )x0:τz
T
t

−
ˆ

dztdx0:τp (x0:τ )×

p (zt|x0:τ )x0:τz
T
t , (U.8)

= 0, as p (zt,x0:τ ) = p (zt|x0:τ ) p (x0:τ ) ,(U.9)

this implies,

Σ
(i)
t1,t2

= E

[
z̃
(i)
t1

z̃
(i)
t2

T
]
, (U.10)

= E
[
zt1z

T
t2

]
− E

[
ẑ
(i)
t1

ẑ
(i)
t2

T
]
, (U.11)

another useful result is that the prediction measurement error εt = xt − B
(i)
t ẑ

(i)
t|t−1 is

independent of the past measurements x0:t−1. The predicted measurement error is also

called the innovation, as it represents that part of the new measurement xt that cannot be

predicted using knowledge of the x0:t−1 measurements as they are independent.

U.3 Kalman filtering

I shall now derive the Kalman filter update equations. First using,

p
(
zt|k(i)

0:t, j
(i)
0:t ,x0:t

)
=
p
(
xt|zt, j

(i)
t

)
p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)

p
(
xt|k(i)

0:t, j
(i)
0:t ,x0:t−1

) , (U.12)

where,

p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
=

ˆ

dzt−1p
(
zt|zt−1, k

(i)
t

)
p
(
zt−1|k(i)

0:t−1, j
(i)
0:t−1,x0:t−1

)
. (U.13)

The denominator in Equation U.12 is important as it defines the likelihood of the i’th

particle in Algorithm 4.1 but can only be calculated from marginalising zt out of the
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numerator. This is calculated at the end of this section. The remaining densities are

defined to be,

p (xt|zt, j) = φ
(
xt;B

(j)zt, R
)
, (U.14)

where for compactness I use the shorthand B(i)
t

△
= B

“

j
(i)
t

”

where appropriate, and,

p (zt|xt−1, k) = φ
(
zt;A

(k)zt−1 + b(k), Q
)
, (U.15)

where I use for compactness the shorthands A
(i)
t

△
= A

“

k
(i)
t

”

and b
(i)
t

△
= b

“

k
(i)
t

”

where

appropriate. Equations U.12 and U.13 may be interpreted as a reactive re-enforcement due

to an observation following a switched drift and Gaussian diffusion between observations.

Equation U.12 is simply the application of Bayes law to a posterior,

p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
= φ

(
zt; ẑ

(i)
t|t−1,Σ

(i)
t|t−1

)
, (U.16)

this is simply updating the belief in an unknown random variable by the inclusion of

evidence, the effect is to decrease the variance cf uncertainty. The second equation, Equa-

tion U.13 evolves the hidden state from one instant to the next without the consideration of

evidence, this has the effect of increasing the variance and hence the uncertainty. Together

these equations express p
(
zt|x0:t, k

(i)
0:t

)
in terms of p

(
zt−1|k(i)

0:t−1, j
(i)
0:t−1,x0:t−1

)
and form

a recursive updating of belief in the hidden state zt. It is easy to verify that in the case of

prediction, as only Equation U.13 remains,

p
(
zt|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
=

ˆ

dzt−1p
(
zt|zt−1, k

(i)
t

)
p
(
zt−1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
. ∀ τ < t (U.17)

I shall deal with smoothing (τ > t) in the next section. Though for filtering I need a pre-

diction to apply evidence to Equation U.12. I calculate the projected mean ẑ
(i)
t|t−1 and co-

variance Σ
(i)
t|t−1

of the probability density function (PDF) p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
in terms

of the mean ẑ
(i)
t−1|t−1 and covariance Σ

(i)
t−1|t−1 of the PDF p

(
zt−1|k(i)

0:t−1, j
(i)
0:t−1,x0:t−1

)
.

These two estimators determine the conditional densities completely as the densities are

Gaussian.

To calculate the updates the mean ẑ
(i)
t|t−1 and the covariance Σt|t−1, first I rearrange

the joint belief by exploiting both forms of conditionality,

p
(
zt−1:t|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
= p

(
zt|zt−1, k

(i)
t

)
×
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p
(
zt−1|k(i)

0:t−1, j
(i)
0:t−1,x0:t−1

)
(U.18)

= p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
× (U.19)

p
(
zt−1|zt, k

(i)
0:t, j

(i)
0:t−1,x0:t−1

)
, (U.20)

which means the equality holds,

φ
(
zt;A

(i)
t zt−1 + b

(i)
t , Q

)
φ
(
zt−1; ẑ

(i)
t−1|t−1,Σ

(i)
t−1|t−1

)
= φ

(
zt; ẑ

(i)
t|t−1,Σ

(i)
t|t−1

)
φ
(
zt−1; e

(i)
t , E

(i)
t

)
,

(U.21)

with the unknowns ẑ
(i)
t|t−1, Σ

(i)
t|t−1, e

(i)
t and E(i)

t . Using Equations N.2 & N.3 gives,

E
(i)
t =

(
A

(i)
t

T
Q−1A

(i)
t + Σ

(i)
t−1|t−1

−1
)−1

, (U.22)

and

e
(i)
t = E

(i)
t

(
A

(i)
t

T
Q−1

(
b

(i)
t − zt

)
+ Σ

(i)
t−1|t−1

−1
ẑ
(i)
t−1|t−1

)
. (U.23)

It follows that the projected covariance,

Σ
(i)
t|t−1 =

(
Q−1 +Q−1A

(i)
t E

(i)
t A

(i)
t

T
Q−1

)−1

, (U.24)

so by Equation O.1,

Σ
(i)
t|t−1 = A

(i)
t Σ

(i)
t−1|t−1 A

(i)
t

T
+Q, (U.25)

by and the mean,

Σ
(i)
t|t−1

−1
ẑ
(i)
t|t−1

= (U.26)

Q−1b
(i)
t +Q−1A

(i)
t E

(i)
t

(
Σ

(i)
t−1|t−1

−1
ẑ
(i)
t−1|t−1 − A

(i)
t

T
Q−1b

(i)
t

)
,

by Equations O.1 & O.2 applying to the first and second right hand terms respectively

leads to,

Σ
(i)
t|t−1

−1
ẑ
(i)
t|t−1 = Σ

(i)
t|t−1

−1
b

(i)
t + Σ

(i)
t|t−1

−1
A

(i)
t Σ

(i)
t−1|t−1 Σ

(i)
t−1|t−1

−1
ẑ
(i)
t−1|t−1, (U.27)

cancelling the Σ
(i)
·|· matrices gives the projected mean,

ẑ
(i)
t|t−1 = A

(i)
t ẑ

(i)
t−1|t−1 + b

(i)
t . (U.28)
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Together Equations U.25 & U.28 are used to calculate the projected belief for a trajectory

and to calculate the i’th trajectories likelihood.

Next to calculate ẑ
(i)
t|t and Σ

(i)
t|t in terms of the one step prediction I use Equation U.12,

rewritten to be the joint belief,

p
(
xt, zt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
= p

(
xt|zt, j

(i)
t

)
p
(
zt|k(i)

0:t, j
(i)
0:t−1,x0:t−1

)
, (U.29)

= p
(
xt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
×

p
(
zt|k(i)

0:t, j
(i)
0:t ,x0:t

)
, (U.30)

which leads to the equality

φ
(
xt;B

(i)
t zt, R

)
φ
(
zt; ẑ

(i)
t|t−1,Σ

(i)
t|t−1

)

= (U.31)

φ
(
xt; x̂

(i)
t|t−1,H

(i)
t|t−1

)
φ
(
zt; ẑ

(i)
t|t ,Σ

(i)
t|t

)
,

with

Σ
(i)
t|t =

(
B

(i)
t

T
R−1B

(i)
t + Σ

(i)
t|t−1

−1
)−1

, (U.32)

which by application of Equation O.1 gives

Σ
(i)
t|t =

(
I −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1, (U.33)

where

K
(i)
t = Σ

(i)
t|t−1 B

(i)
t

T
(
B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
+R

)−1

, (U.34)

and

ẑ
(i)
t|t = Σ

(i)
t|t

(
Σ

(i)
t|t−1

−1
ẑ
(i)
t|t−1 + B

(i)
t

T
R−1xt

)
(U.35)

which by application of Equations O.1 & O.2 for the first and second components on the

right hand side of the relation gives

ẑ
(i)
t|t =

(
I −K(i)

t B
(i)
t

)
ẑ
(i)
t|t−1 +K

(i)
t xt, (U.36)

≡ ẑ
(i)
t|t−1 +K

(i)
t

(
xt −B(i)

t ẑ
(i)
t|t−1

)
. (U.37)

The likelihood is computed from x̂
(i)
t|t−1 and H(i)

t|t−1 which come from the solution to Equa-
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tion U.31 as

H
(i)
t|t−1 =

(
R−1 − K

(i)
t

T
Σ

(i)
t|t

−1
K

(i)
t

)−1

, (U.38)

which is expanded using the updates then rearrange both K(i)
t ’s using the reverse of Equa-

tion O.2 this cancels Σ
(i)
t|t

−1
then rearrange using the reverse of Equation O.1 to give the

result

H
(i)
t|t−1 = R+B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
, (U.39)

and similarly for the mean,

x̂
(i)
t|t−1 = H

(i)
t|t−1 K

(i)
t

T
Σ

(i)
t|t

−1 (
I −K(i)

t B
(i)
t

)
ẑ
(i)
t|t−1, (U.40)

after expanding K(i)
t and expanding using the Σ

(i)
t|t update, these cancel to give

x̂
(i)
t|t−1 = B

(i)
t ẑ

(i)
t|t−1. (U.41)

Therefore in summary these relations give the filtered mean and covariance,

ẑ
(i)
t|t

= ẑ
(i)
t|t−1

+K
(i)
t

(
xt −B(i)

t x̂
(i)
t|t−1

)
, (U.42)

Σ
(i)
t|t =

(
I −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1, (U.43)

K
(i)
t = Σ

(i)
t|t−1 B

(i)
t

T
(
R+B

(i)
t Σ

(i)
t|t−1 B

(i)
t

T
)−1

, (U.44)

where K(i)
t is defined as the Kalman gain. The equations are initialised by setting ẑ

(i)
0|−1 =

µ0, and Σ
(i)
0|−1 = Σ0 from Equation U.3. These equations as well as Equations U.28 & U.25

characterise the parametric component of my RBPF which represents the continuous on-

line estimate of the systems state. Note that the Kalman gain grows if the observables

covariance R decreases, thus assigning more weight to the measurements residual (the dif-

ference between the predicted and actual measurement). Further if the covariance Σ
(i)
t|t−1

becomes smaller less emphasis is placed by the model upon the measurement residual

(xt − B(i)
t ẑ

(i)
t|t−1). Numerically Equation U.43 is not ideal due to it being the difference

of two positive definite matrices, which is not guaranteed to result in a positive definite

matrix and in implementation can lead to numerical instabilities. This is simple to fix,

noting that Equation U.44 implies

K
(i)
t R K

(i)
t

T
=
(
I −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1 B

(i)
t

T
K

(i)
t

T
, (U.45)
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then

Σ
(i)
t|t =

(
I −K(i)

t B
(i)
t

)
Σ

(i)
t|t−1

(
I −K(i)

t B
(i)
t

)T

+K
(i)
t R K

(i)
t

T
, (U.46)

which is the sum of two positive definite matrices and hence is guaranteed to result in a

positive definite matrix. Therefore Equations U.42 & U.46 define the analytic component

represented by α(i)
t of the RBPF in step 3 of Algorithm 4.1,

p
(
zt|k0:t = k

(i)
0:t, j0:t = j

(i)
0:t ,x0:t

)
= φ

(
zt; ẑ

(i)
t|t ,Σ

(i)
t|t

)
. (U.47)

Next I consider the likelihood of a trajectory.

U.3.1 The likelihood of a trajectory

To construct the denominator of Equation U.12 and hence compute the generic RBPF

weights as defined in Algorithm 4.1. I compute the likelihood of a trajectory k(i)
0:t, j

(i)
0:t given

all prior evidence x0:t−1 for a measurement xt, which is computed from the marginalising

zt from the joint distribution of xt and zt,

p
(
xt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
=

ˆ

dztp
(
xt|zt, j

(i)
t

)
p
(
zt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
, (U.48)

which is according to Equations N.2 & N.3 Gaussian. The mean x̂
(i)
t|t−1 and covariance

H
(i)
t|t−1 of this Gaussian distribution p

(
xt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
is computed in the filtering

section. The relations defined as Equations U.41 & U.39 previously fully describe the

calculation of importance in step 1 of Algorithm 4.1 for the RBPF, as

p
(
xt|k(i)

0:t, j
(i)
0:t ,x0:t−1

)
= φ

(
xt; x̂

(i)
t|t−1,H

(i)
t|t−1

)
. (U.49)

Next I define the likelihood of a filter, which is equivalent to the likelihood of the model.

The likelihood can merely be constructed from the individual trajectory weights,

L (x0:τ ; a0:τ ) = p (x0:τ |a0:τ ) , (U.50)

=

τ∏

t=0

p (xt|x0:t−1, a0:t) , (U.51)

where p (x0|x0:−1, a0)
△
= p (x0|a0) where x0:−1 can be interpreted as an empty set. Using

p (xt|x0:t−1, a0:t) =
∑

k0:t,j0:t

p (xt|k0:t, j0:t,x0:t−1)P (k0:t, j0:t|x0:t−1, a0:t) , (U.52)
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=
∑

k0:t,j0:t

p (xt|k0:t, j0:t,x0:t−1)
1

N

N∑

i=1

δ
k

⋆(i)
0:t

k0:t
δ
j
⋆(i)
0:t

j0:t
, (U.53)

≡ 1

N

N∑

i=1

p
(
xt|k⋆(i)

0:t , j
⋆(i)
0:t ,x0:t−1

)
, (U.54)

hence, the likelihood becomes

L (x0:τ ; a0:τ ) =
τ∏

t=0

1

N

N∑

i=1

p
(
xt|k⋆(i)

0:t , j
⋆(i)
0:t ,x0:t−1

)
. (U.55)

This produces a log-likelihood of,

L (x0:τ ; a0:τ ) =

τ∑

t=0

log

(
1

N

N∑

i=1

p
(
xt|k⋆(i)

0:t , j
⋆(i)
0:t ,x0:t−1

))
, (U.56)

where k⋆(i)
0:t and j

⋆(i)
0:t are the filtering constructs of Algorithm 4.1 and constructs the dis-

tributions,

p
(
xt|k⋆(i)

0:t , j
⋆(i)
0:t ,x0:t−1

)
= φ

(
xt; x̂

⋆(i)
t|t−1,H

⋆(i)
t|t−1

)
. (U.57)

In the next section I define the smoothing process which I will use for learning the models

parameters.

U.4 Kalman smoothing

Next I shall solve the smoothing problem for this model. This will use future measurements

for x0:τ , e.g. τ > t, to improve the estimates for the states zt ∈ z0:τ . The resultant

estimates will be less noisy and hence smoother. This however causes the estimation to be

performed offline.

Starting with the smoothed joint posterior,

p
(
zt:t+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
= p

(
zt|zt+1, k

(i)
0:τ , j

(i)
0:τ ,x0:τ

)
×

p
(
zt+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
, (U.58)

= p
(
zt|zt+1, k

(i)
0:t, j

(i)
0:t ,x0:t

)
×

p
(
zt+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
, (U.59)

=
p
(
zt+1|zt, k

(i)
t

)
p
(
zt|k(i)

0:t, j
(i)
0:t ,x0:t

)

p
(
zt+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

) ×

p
(
zt+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
, (U.60)
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then taking advantage of the fact that all of these quantities are Gaussian then,

p
(
zt:t+1|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
= φ







zt

zt+1


 ;




ẑ
(i)
t|τ

ẑ
(i)
t+1|τ


 ,




Σ
(i)
t|τ Σ

(i)
t,t+1|τ

Σ
(i)
t+1,t|τ Σ

(i)
t+1|τ





 , (U.61)

if I use the substitution,




Σ
(i)
t|τ Σ

(i)
t,t+1|τ

Σ
(i)
t+1,t|τ Σ

(i)
t+1|τ


 =




F
(i)
t F

(i)
t,t+1

F
(i)
t+1,t F

(i)
t+1




−1

, (U.62)

then there are the following equalities hold as a result of Equation U.60 and Equa-

tions U.61 & U.62,

F
(i)
t = Σ

(i)
t|t

−1
+ A

(i)
t+1

T
Q−1A

(i)
t+1, (U.63)

F
(i)
t+1 = Q−1 − Σ

(i)
t+1|t

−1
+ Σ

(i)
t+1|τ

−1
, (U.64)

F
(i)
t,t+1 = − A(i)

t+1

T
Q−1, (U.65)

and

F
(i)
t,t+1x̂

(i)
t+1|τ + F

(i)
t x̂

(i)
t|τ = A

(i)
t+1

T
Q−1b

(i)
t+1 + Σ

(i)
t|t

−1
x̂

(i)
t|t . (U.66)

Relating individually leads to




Σ
(i)
t|τ Σ
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Σ
(i)
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=
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(U.67)

=


G−1
t,i − F (i)

t

−1
F

(i)
t,t+1G

−1
t+1,i

− F (i)
t+1

−1
F

(i)
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−1
t,i G−1

t+1,i




where

Gt,i = F
(i)
t − F

(i)
t,t+1 F

(i)
t+1

−1
F

(i)
t+1,t, (U.68)

and

Gt+1,i = F
(i)
t+1 − F

(i)
t+1,t F

(i)
t

−1
F

(i)
t,t+1, (U.69)
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these two maybe rearranged to give

Σ
(i)
t|τ = F

(i)
t

−1
+ F

(i)
t

−1
F

(i)
t,t+1G

−1
t+1,iF

(i)
t+1,t F

(i)
t

−1
(U.70)

≡ G−1
t,i , (U.71)

and

Σ
(i)
t+1|τ = F

(i)
t+1

−1
+ F

(i)
t+1

−1
F

(i)
t+1,tG

−1
t,i F

(i)
t,t+1 F

(i)
t+1

−1
, (U.72)

≡ G−1
t+1,i. (U.73)

Firstly solving for

F
(i)
t

−1
=

(
Σ

(i)
t|t

−1
+ A

(i)
t+1

T
Q−1A

(i)
t+1

)−1

, (U.74)

I expand this using Equation O.1 then substitute the update Σ
(i)
t+1|t (Equation U.25) in

giving the result

F
(i)
t

−1
= Σ

(i)
t|t − J

(i)
t Σ

(i)
t+1|t J

(i)
t

T
, (U.75)

where

J
(i)
t = Σ

(i)
t|t A

(i)
t+1

T
Σ

(i)
t+1|t

−1
. (U.76)

Secondly solving

F
(i)
t

−1
F

(i)
t,t+1 = −

(
Σ

(i)
t|t

−1
+ A

(i)
t+1

T
Q−1A

(i)
t+1

)−1

A
(i)
t+1

T
Q−1, (U.77)

by first using Equation O.2 then replacing the trailing term with the projection Σ
(i)
t+1|t then

noting that the result is simply −J (i)
t therefore

F
(i)
t

−1
F

(i)
t,t+1 = −J (i)

t . (U.78)

These two terms insert into Equation U.71, which gives

Σ
(i)
t|τ = F

(i)
t

−1
+ F

(i)
t

−1
F

(i)
t,t+1G

−1
t+1,iF

(i)
t+1,t F

(i)
t

−1
(U.79)

noting that F (i)
t,t+1 = F

(i)
t+1,t

T
and substituting G−1

t+1,i = Σ
(i)
t+1|τ gives

Σ
(i)
t|τ = Σ

(i)
t|t − J

(i)
t Σ

(i)
t+1|t J

(i)
t

T
+ J

(i)
t Σ

(i)
t+1|τ J

(i)
t

T
, (U.80)
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≡ Σ
(i)
t|t + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
. (U.81)

The cross covariance update can be seen to be

Σ
(i)
t+1,t|τ = −G−1

t+1,iF
(i)
t,t+1 F

(i)
t

−1
, (U.82)

substituting in Equation U.73 and the transpose of Equation U.81 gives

Σ
(i)
t+1,t|τ = Σ

(i)
t+1|τ J

(i)
t

T
, (U.83)

this gives

Σ
(i)
t,t−1|τ = Σ

(i)
t|τ J

(i)
t−1

T
, (U.84)

expanding these with Equation U.81 gives

Σ
(i)
t,t−1|τ =

(
Σ

(i)
t|τ + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
)
J

(i)
t−1

T
, (U.85)

substituting in Equation U.83 and using the identity Σ
(i)
t+1|t J

(i)
t

T
= A

(i)
t+1Σ

(i)
t|t gives

Σ
(i)
t,t−1|τ =

(
Σ

(i)
t|τ + J

(i)
t

(
Σ

(i)
t+1,t|τ −A

(i)
t+1Σ

(i)
t|t

))
J

(i)
t−1

T
, (U.86)

thus defining the backwards recursive update for the cross covariance terms. This recursion

is initialised with

Σ
(i)
τ,τ−1|τ = Σ

(i)
τ |τ J

(i)
τ−1

T
, (U.87)

=
(
I −K(i)

τ B(i)
τ

)
Σ

(i)
τ |τ−1 J

(i)
τ−1

T
, (U.88)

=
(
I −K(i)

τ B(i)
τ

)
A(i)

τ Σ
(i)
τ−1|τ−1, (U.89)

where Σ
(i)
τ |τ is expanded using Equation U.43 and J (i)

τ−1 and finally cancel the Σ
(i)
τ |τ−1 terms.

This gives the initialisation to the cross-covariance backwards recursion.

Finally constructing the mean from

ẑ
(i)
t|τ = − F (i)

t

−1
F

(i)
t,t+1ẑ

(i)
t+1|τ + F

(i)
t

−1
(

Σ
(i)
t|t

−1
ẑ
(i)
t|t − A

(i)
t+1

T
Q−1b

(i)
t+1

)
, (U.90)
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substituting in Equation U.78 gives

ẑ
(i)
t|τ = J

(i)
t ẑ

(i)
t+1|τ +

(
Σ

(i)
t|t − J

(i)
t Σ

(i)
t+1|τ J

(i)
t

T
)(

Σ
(i)
t|t

−1
ẑ
(i)
t|t − A

(i)
t+1

T
Q−1b

(i)
t+1

)
, (U.91)

which rearranges to give after applying Equation O.2 the term multiplies b
(i)
t+1 to give

J
(i)
t and expanding the J (i)

t ’s and substituting the projection J (i)
t+1|t to the term multiplying

ẑ
(i)
t|t to give

ẑt|τ = J
(i)
t ẑ

(i)
t+1|τ − J

(i)
t b

(i)
t+1 +

(
Σ

(i)
t|t − Σ

(i)
t|t A

(i)
t+1

T
Σ

(i)
t+1|τ

−1
A

(i)
t+1Σ

(i)
t|t

)
Σ

(i)
t|t

−1
ẑ
(i)
t|t , (U.92)

removing those terms that cancel and substituting in J (i)
t in gives

ẑ
(i)
t|τ = J

(i)
t ẑ

(i)
t+1|τ − J

(i)
t b

(i)
t+1 +

(
I − J (i)

t A
(i)
t+1

)
ẑ
(i)
t|t , (U.93)

≡ ẑ
(i)
t|t + J

(i)
t

(
ẑ
(i)
t+1|τ −A

(i)
t+1ẑ

(i)
t|t − b

(i)
t+1

)
. (U.94)

Thus giving the smoothed means update.

Equations U.94, U.81 & U.86 define the parametric smoothing for my RBPF. Therefore

in summary the recursive relations for the smoothed mean,

ẑ
(i)
t|τ = ẑ

(i)
t|t + J

(i)
t

(
ẑ
(i)
t+1|τ −A

(i)
t+1ẑ

(i)
t|t − b

(i)
t+1

)
, (U.95)

and covariances are given by

Σ
(i)
t|τ = Σ

(i)
t|t + J

(i)
t

(
Σ

(i)
t+1|τ − Σ

(i)
t+1|t

)
J

(i)
t

T
, (U.96)

Σ
(i)
t,t−1|τ =

(
Σ

(i)
t|τ + J

(i)
t

(
Σ

(i)
t+1,t|τ −A

(i)
t+1Σ

(i)
t|t

))
J

(i)
t−1

T
, (U.97)

where the cross covariance term is initialised by

Σ
(i)
τ,τ−1|τ

=
(
I −K(i)

τ B(i)
τ

)
A(i)

τ Σ
(i)
τ−1|τ−1

, (U.98)

and

J
(i)
t = Σ

(i)
t|t A

(i)
t+1

T
Σ

(i)
t+1|t

−1
. (U.99)

If the (i) superscripts were neglected then these equations would define the Kalman smooth-

ing relations. To estimate the state zt given a state trajectory k(i)
0:τ and a set of measure-
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ments x0:τ where t < τ , firstly a ‘forward’ process must be computed, then a ‘backward’

smoothing process is computed to construct the complete data posterior. This produces a

better estimate of xt as the smoothing case takes advantage of measurements both before

and after t, by contrast the filtering case only considers measurements upto t. So the

joint smoothed belief is defined completely by Equations U.94, U.81 & U.86 to define the

density,

p
(
zt−1:t|k(i)

0:τ , j
(i)
0:τ ,x0:τ

)
= φ







zt−1

zt


 ;




ẑ
(i)
t−1|τ

ẑ
(i)
t|τ


 ,




Σ
(i)
t−1|τ Σ

(i)
t−1,t|τ

Σ
(i)
t,t−1|τ Σ

(i)
t|τ





 , (U.100)

where Σ
(i)
t,t−1|τ

= Σ
(i)
t−1,t|τ

T
as the covariance of




zt−1

zt


 is by definition positive definite.
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Appendix V

Learning updates

I will now proceed to estimate the parameters of the RBPF model using the EM algorithm.

Much of the state space model (SSM) updates are derived similarly Welling (2008). I

consider the states zt and kt as hidden variables while x0:τ are the observations. I assume

I have observed one sequence of length τ . Starting from the joint belief of the complete

data

p (z0:τ , k0:τ , j0:τ ,x0:τ |a0:τ ) = p (z0)P (k0)

[
τ∏

t=1

p (zt|zt−1, kt)P (kt|kt−1)

]
×

[
τ∏

t=0

p (xt|zt, jt)P (jt|at)

]
, (V.1)

= φ (z0;µ0,Σ0)πk0

[
τ∏

t=1

φ
(
zt;A

(kt)zt−1 + b(kt), Q
)
χkt|kt−1

]
×

[
τ∏

t=0

φ
(
xt;B

(jt)zt, R
)
ζjt|at

]
. (V.2)

The quantity to optimise is the bound upon the complete data log-likelihood

B
[
Ω;Ωold

]
=

ˆ

dzτ
∑

jτ ,kτ

pold (z0:τ , k0:τ , j0:τ |x0:τ , a0:τ ) log p (z0:τ , k0:τ , j0:τ ,x0:τ |a0:τ ) , (V.3)

=
N∑

i=1

1

N

ˆ

dz0:τp
old
(
z0:τ |k(i)

0:τ , j
(i)
0:τ ,x0:τ

){
−1

2
Dz (τ + 1) log 2π − 1

2
Dx (τ + 1)

−1

2
log |Σ| − 1

2
τ log |Q| − 1

2
(τ + 1) log |R|

−1

2
(z0 − µ0)

T Σ−1 (z0 − µ0)

−1

2

τ∑

t=1

(
zt −A

“

k
(i)
t

”

zt−1 − b

“

k
(i)
t

”

)T

Q−1

(
zt −A

“

k
(i)
t

”

zt−1 − b

“

k
(i)
t

”

)

−1

2

τ∑

t=0

(
xt −B

“

j
(i)
t

”

zt

)T

R−1

(
xt −B

“

j
(i)
t

”

zt

)
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+ log π
k
(i)
0

+

τ∑

t=1

logχ
k
(i)
t |k

(i)
t−1

+

τ∑

t=0

log ζ
j
(i)
t |at

}
. (V.4)

Inspecting the bound reveals that the only sufficient statistics which need be calculated in

the E-step are

E
p

“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

” [zt] = ẑ
(i)
t|τ , (V.5)

E
p

“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

”

[
ztz

T
t

]
= Σ

(i)
t|τ + ẑ

(i)
t|τ ẑ

(i)
t|τ

T
, (V.6)

△
= M

(i)
t , (V.7)

E
p

“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

”

[
ztz

T
t−1

]
= Σ

(i)
t,t−1|τ + ẑ

(i)
t|τ ẑ

(i)
t−1|τ

T
, (V.8)

△
= M

(i)
t,t−1, (V.9)

further, as I can say xTy
△
= tr

[
yxT

]
from Appendix P, then

E
p

“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

”

[
zT

t Dzt

]
= tr

[
DE

p
“

zt|k
(i)
0:τ ,j

(i)
0:τ ,x0:τ

”

[
ztz

T
t

]]
, (V.10)

= tr
[
DM

(i)
t

]
, (V.11)

together these sufficient statistics determine an analytic solution to the integral in the

bound. The later equations are easier to compute in this form than any other due to the

notational conventions of python and Scipy which were the tools I used to implement these

algorithms.

Starting by constructing the Lagrangian multipliers for the parameters defining the

dynamical evolution for the continuous state. For d
(
A(k), Ā(k)

)
, using the KL-divergence

between two Gaussian measures, Equation R.13, and setting µp = A(k)α and µq = Ā(k)α

with ααT = IDx and Σq = Q gives a relation similar to Equation R.15, which values the

gradient of the Lagrangian,

∂G

∂A(k)
= −Q−1 1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k

(
M

(i)
t,t−1 −A(k)M

(i)
t−1 − b(k) ẑ

(i)
t−1|τ

T
)
−γσQ

−1
(
Ā(k) −A(k)

)
,

(V.12)
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which produces the relation

A(k)

[
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k M
(i)
t−1 + γσIDx

]
=

1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k

(
M

(i)
t,t−1 − b(k) ẑ

(i)
t−1|τ

T
)

+ γσĀ
(k).

(V.13)

Similarly for bk using Equation R.13, where inserting into Equation R.15 µq = b(k),

µq = b̄(k) and Σq = Q, the Lagrangian gradient is

∂G

∂b(k)
= −Q−1 1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k

(
ẑ
(i)
t|τ −A

(k)ẑ
(i)
t−1|τ − b(k)

)
− γσQ

−1
(
b̄(k) − b(k)

)
, (V.14)

which produces the relation

b(k)

[
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k + γσ

]
=

1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k

(
x̂

(i)
t|τ −A

(k)ẑ
(i)
t−1|τ

)
+ γσb̄

(k). (V.15)

Then solving for Ak by inserting bk into Equation V.13 gives

A(k) =

[(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k M
(i)
t,t−1 + γσĀ

(k)

)(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k + γσ

)
−

(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k x̂
(i)
t|τ + γσb̄

(k)

)(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k ẑ
(i)
t−1|τ

)T



[(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k M
(i)
t−1 + γσIDx

)(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k + γσ

)
−

(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k ẑ
(i)
t−1|τ + γσb̄

(k)

)(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k ẑ
(i)
t−1|τ

)T


−1

(V.16)

and,

b(k) =
1

1
N

∑N
i=1

∑τ
t=1 δ

k
(i)
t

k + γσ

(
1

N

N∑

i=1

τ∑

t=1

δ
k
(i)
t

k

(
ẑ
(i)
t|τ −A

(k)ẑ
(i)
t−1|τ

)
+ γσb̄

(k)

)
. (V.17)

There updates trivialise to the non-episodic EM updates when both γσ = 0. These updates

are similar to a least square estimate of the dynamic process with a prior belief in the

parameter.

Constructing the state evolution noise, where Σq = σIDx and Σp = σ̄IDx , gives

∂G

∂σ−1
= − 1

2N

N∑

i=1

ˆ

dz0:τp
old
(
z0:τ |j(i)0:τ , k

(i)
0:τ ,x0:τ

){
−τDzσ +

τ∑

t=1

(
zt −A

“

k
(i)
t

”

zt−1 − b

“

k
(i)
t

”

)2
}

−γσ

2
Dz (σ̄ − σ) , (V.18)
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which by Appendix P may be expressed as the trace of the expected cross product,

σDz (τ + γσ) =
1

N

N∑

i=1

τ∑

t=1

tr

[
M

(i)
t −A

“

k
(i)
t

”

M
(i)
t−1.t − b

“

k
(i)
t

”

ẑ
(i)
t|τ

T
−M (i)

t,t−1 A

“

k
(i)
t

” T

+A

“

k
(i)
t

”

M
(i)
t−1 A

“

k
(i)
t

” T

+ b

“

k
(i)
t

”

ẑ
(i)
t−1|τ

T
A

“

k
(i)
t

” T

− ẑ
(i)
t|τ b

“

k
(i)
t

” T

+A

“

k
(i)
t

”

ẑ
(i)
t−1|τ b

“

k
(i)
t

” T

+ b

“

k
(i)
t

”

b

“

k
(i)
t

” T
]

+ γσDzσ̄. (V.19)

Using the previously derived state evolution equations to simplify this, so the identity

∑N
i=1

∑τ
t=1

(
ẑ
(i)
t|τ −A

“

k
(i)
t

”

ẑ
(i)
t−1|τ − b

“

k
(i)
t

”

)
b

“

k
(i)
t

” T

=

∑K
k=1

[∑N
i=1

∑τ
t=1 δ

k
(i)
t

k

(
ẑ
(i)
t|τ −A(k)ẑ

(i)
t−1|τ − b(k)

)]
b(k) T

=

Nγσ

∑K
k=1

(
b(k) − b̄(k)

)
b(k) T

,

(V.20)

which is a consequence of Equation V.15, and similarly

∑N
i=1

∑τ
t=1

(
M

(i)
t,t−1 −A

“

k
(i)
t

”

M
(i)
t−1 − b

k
(i)
t

ẑ
(i)
t−1|τ

T
)
A

“

k
(i)
t

” T

=

∑K
k=1

[∑N
i=1

∑τ
t=1 δ

k
(i)
t

k

(
M

(i)
t,t−1 −A(k)M

(i)
t−1 − b(k) ẑ

(i)
t−1|τ

T
)]

A(k) T

=

Nγσ

∑K
k=1

(
A(k) − Ā(k)

)
A(k) T

,

(V.21)

which is a consequence of Equation V.13. Inserting these identities (Equations V.20 & V.21)

into the update equation Equation V.19 gives

σ =
1

Dz (τ + γσ)

{
1

N

N∑

i=1

τ∑

t=1

tr

[
M

(i)
t −A

“

k
(i)
t

”

M
(i)
t−1.t − b

“

k
(i)
t

”

ẑ
(i)
t|τ

T
]

+γσ

K∑

k=1

tr
[(

b̄(k) − b(k)
)

b(k) T
+
(
Ā(k) −A(k)

)
A(k)

]

+γσDzσ̄

}
. (V.22)

Thus the state evolutions noise is dependent upon both the prior episodes state evolution

dynamics and noise.

To generate the measurement noise where R = νIDx and the Lagrangian multiplier has
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Σp = νIDx and Σq = ν̄IDx , then, after computing the expectation of the gradient with

respect to ν gives,
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= − 1
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Solving Equation V.23 with respect to ν gives the stationary point of G,

ν =
1

Dx (τ + 1 + γν)

{
1
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. (V.24)

Hence Equation V.24 forms the episodic EM update ν, this is equivalent to the variance

between the expected residuals for each trajectory and a weighted contribution from the

prior episodes ν of ν̄.

To generate the symbolic dynamic transition matrix χ update I use a second Lagrangian

to the episodic Lagrangian to give,

G
[
χ; Ωold|Ω̄

]
∝ 1
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, (V.25)

Taking the gradient of this equation with respect to the elements of χ gives
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. (V.26)

Equating Equation V.30 to zero and rearranging to make the elements of χ the subject

gives

χl|m =
1

λ
(χ)
m

{
1

N

N∑

i=1
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t=1

δ
k
(i)
t

l δ
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}
. (V.27)

Finally using the condition
∑

l χl|m = 1 to remove the Lagrangian multiplier λ1 gives the
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episodic EM update,
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. (V.28)

Equation V.32 is simply the normalised tabulation of the switching transitions from time-

step to time-step across the trajectories k(i)
0:τ with the weighted addition of the prior episodes

transitions χ̄.

To generate the belief matrix ζj|a for the believed measure j for action a update I use

a second Lagrangian to the episodic Lagrangian to give

G
[
ζ; Ωold|Ω̄

]
∝ 1
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Taking the gradient of this equation with respect to the elements of χ gives
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Equating Equation V.30 to zero and rearranging to make the elements of χ the subject

gives

ζl|m =
1
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. (V.31)

Finally using the condition
∑

l ζl|m = 1 to remove the Lagrangian multiplier λ1 gives the

episodic EM update,

ζl|m =
1

1
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∑N
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∑τ
t=0 δ

at
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{
1

N

N∑

i=1
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}
. (V.32)

Equation V.32 is simply the normalised tabulation of the trajectories j(i)0:τ and the chosen

actions a0:τ with the weighted addition of the prior episodes correspondence ζ̄.

The episodic EM algorithms Lagrangian multiplier is interpreted in a similar context

to that of the Gaussian distribution in the main text, Subsection R.4. So the dynamic

processes γ’s are set to γσ = γχ = γD (τ − 1) and the measurement and correspondences

are set to γν = γζ = γMτ .
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