

Techniques for the implementation of control algorithms

using low-cost embedded systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

By

Ricardo Bautista Quintero
BEng., MSc

Embedded System Laboratory

Department of Engineering

 December 2008

Techniques for the implementation of control algorithms

using low-cost embedded systems

Ricardo Bautista Quintero

Abstract

The feedback control literature has reported success in numerous implementations of
systems that employ state-of-the-art components. In such systems, the quality of computer
controller, actuators and sensors are largely unaffected by nonlinear effects, external
disturbances and finite precision of the digital computer. Overall, this type of control
systems can be designed and implemented with comparative ease. By contrast, in cases
when the implementation is based on limited resources, such as, low-cost computer
hardware along with simple actuators and sensors, there are significant challenges for the
developer.

This thesis has the goal of simplifying the design of mechatronic systems implemented
using low-cost hardware. This approach involves design techniques that enhance the links
between feedback control algorithms (in theory) and reliable real-time implementation (in
practice).

The outcome of this research provides a part of a framework that can be used to design
and implement efficient control algorithms for resource-constrained embedded computers.

The scope of the thesis is limited to situations where 1) the computer hardware has limited
memory and CPU performance; 2) sensor-related uncertainties may affect the stability of
the plant and 3) unmodelled dynamic of actuator(s) limit the performance of the plant.

The thesis concludes by emphasising the importance of finding mechanisms to integrate
low-cost components with nontrivial robust control algorithms in order to satisfy multi-
objective requirements simultaneously.

Acknowledgement

Firstly, I would like to express my appreciation to my supervisor Dr. Michael Pont for his

guidance throughout this research project.

Next, I would like to thank to the Mexican Government (Coordinación Sectorial del

Desarrollo Académico) for awarding a full-time scholarship. In addition, I would like to

acknowledge to my colleges of the Centro Nacional de Actualización Docente for their

support over these years of research.

I also would like to thank to my colleges, Ayman G. Adi M., Ali I., Ali N., Azura, A.,

Farah, L., Keith A. Chisanga M., Dong L., Huiyan W., Kam C., Mouaaz N., Musharaf H.,

Muhammad A., Susan K., Teera P., Peter V., Zemian H. All of them are my friends from

Embedded System Laboratory. I am gratefully for all their help and support, especially

Dr. Devaraj Ayavoo who encouraged me to keep ahead in this hard working project.

A special acknowledge to Dr. Fernando Schlindwein and George Loukadaki who help me

with the proofreading of this thesis.

My greatest support comes from my beloved wife. She played a truly instrumental role on

seeing this project to completion. Thank you for all your help in this challenging stage, I

may not be able to express enough gratitude in my whole life.

I also would like to thank my children, my little Ricardito, who has made me the happiest

Dad in the world. His joy is the motivation to do my best. My little Yaretzi you just came

to this world one day after the submission of this thesis, thank you for your patience, and

remember, “You will be loved for ever”.

Finally yet importantly, thank my parents, Maria del Carmen Quintero Ruiz and Enrique

Bautista Garces, my sisters Chayo and Carmelita, my brothers, Felipe and Victor.

I cannot thank enough for their constant support over the last few years. Thank you for

always being there for me.

i | P a g e

I dedicate this work to my beloved family

Sonia Maribel Garcia-Garcia,
Ricardo Bautista-Garcia
Yaretzi Bautista-Garcia

ii | P a g e

Table of contents

Chapter 1 Introduction ... 1
1.1 Introduction .. 1
1.2 Bridging the theory-practice gap in control systems 2
1.3 Background of embedded systems .. 3
1.4 Designing and implementing ECSs ... 5
1.5 Aims of the project described in this thesis ... 8
1.6 Key contributions ... 10
1.7 Thesis layout .. 11
1.8 Conclusion ... 11

Chapter 2 Literature review of ECSs .. 12
2.1 Introduction .. 12
2.2 Evolution of ECSs ... 13
2.3 Do ECSs have enough support? ... 29
2.4 Supporting tools for embedded systems applications 34
2.5 Conclusions .. 36

Chapter 3 The testbed ... 38
3.1 Introduction .. 38
3.2 General description of the testbed ... 38
3.3 The benchmark control implementation .. 46
3.4 Experimental results of the PID implementation ... 50
3.5 Choice of computing platform ... 55
3.6 Conclusions .. 57

Chapter 4 Supporting the implementation of FLC for ES 59
4.1 Introduction .. 59
4.2 FLC, implementation in embedded systems .. 59
4.3 The testbed ... 61
4.4 Design and implementation of the FLC ... 61
4.5 Comparing the algorithms ... 69
4.6 Neuro-FLC approach for embedded systems .. 69
4.7 Case study 1 (Servomotor control) .. 77
4.8 Case study 2 (Inverted pendulum) ... 80
4.9 Conclusions .. 81

Chapter 5 Assessing resource requirements for the optimal LQR 83
5.1 Introduction .. 83
5.2 The testbed ... 84
5.3 Design of an LQR controller ... 84
5.4 Implementation of an LQR controller ... 86
5.5 Comparing the simulations and system implementations 88
5.6 Comparing the basic performance of the two controllers 88

iii | P a g e

5.7 Comparing the robustness of the two controllers .. 97
5.8 Comparing the resources used for the two controllers 101
5.9 Conclusions .. 103

Chapter 6 H-infinity control for sensor-constrained mechatronic systems . 104
6.1 Introduction .. 104
6.2 Problems caused by low-resolution sensors .. 105
6.3 Related work .. 106
6.4 Selecting a cost-effective position sensor .. 107
6.5 Robust H∞ control .. 109
6.6 Optimal mixed-sensitivity design of H∞ control algorithms 110
6.7 Designing the controller ... 113
6.8 Effective weight selection for sensor noise rejection 113
6.9 Optimising the controller for limited computational resources 116
6.10 The testbed ... 122
6.11 Processor hardware and software architecture ... 122
6.12 H∞ implementation ... 123
6.13 Conclusions .. 128

Chapter 7 Discussion ... 130
7.1 Introduction .. 130
7.2 Initial discussion based on the hypothesis proposed 131
7.3 Discussion of the benchmark implementation ... 132
7.4 Is FLC a practical choice for ECSs? .. 133
7.5 Discussion of the optimal control .. 135
7.6 Finding a cost-effective alternative with H∞ control 136
7.7 Conclusions .. 138

Chapter 8 Conclusions ... 139
8.1 Introduction .. 139
8.2 Goals and achievements ... 140
8.3 Relevance of the contributions .. 141
8.4 Future research recommendations ... 141
8.5 Conclusions .. 142

Bibliography ... 143

iv | P a g e

List of figures

Figure 1-1 Autonetics D-17, the first digital embedded computer used in MINUTEMAN
missile guidance systems (Image courtesy of Computer History Museum) 4

Figure 2-1 Relation between computer science and engineering according to
[Sangiovanni-Vincentelli and Pinto, 2005] .. 13

Figure 2-2 Control hardware of an industrial robot arm using two computers: general
purpose HP-2100 and the embedded microprocessor 4004. The parallel computer
suggests a structure similar to modern embedded distributed control systems.
Diagram adapted from [Goksel et al., 1975] .. 15

Figure 2-3 General process control program used in the second generation of
microprocessors Flow diagram adapted from [Donaghey, 1976] 18

Figure 2-4 The third generation of embedded system was featured for vast contributions
in the field of servo-controllers (adapted from [Dote, 1990] Figure 1.6). 22

Figure 2-5 Factors that affect embedded system design integration between the new
hardware and software (Aisys Inc. [Napper, 1998]) .. 33

Figure 3-1 Diagram of the inverted pendulum and its variables (figure taken from
[Bautista-Quintero et al., 2005]) .. 39

Figure 3-2: The pendulum is driven by a DC motor with integrated gearbox and encoder,
figure taken from [Bautista-Quintero et al., 2005]. .. 40

Figure 3-3: The interface between the PWM output from the microcontroller and the
motor itself. For this system β0 = VM/2Bits_PWM. ... 41

Figure 3-4. Open-loop response to the cart movement for a step input of 1.8 volts step
input .. 46

Figure 3-5 Inverted pendulum and PID controller block diagram. The cart is controlled
using a PID action and the rod is controlled using a PD action. The set point for the
cart is 0.3 metres and the set point to the rod is 0 radians (upright position). 51

Figure 3-6: Step input response (position of the cart and rod) using PID algorithm, actual
implementation. .. 52

Figure 3-7: Histogram of the tasking time of the PID algorithm (Ts=10ms) 53
Figure 3-8: Histogram of the jitter for PID algorithm (Ts=10ms) 54
Figure 3-9 Cart plots using PID control with 4000, 2000 and 1000 ppr rod sensor

resolution, actual implementation. ... 55
Figure 3-10 Rod plots using PID control with 4000, 2000 and 1000 ppr rod sensor

resolution, actual implementation. ... 55
Figure 3-11 Performance and cost of different families of processors marking the

boundaries of embedded control (source [Schlett, 1998]) .. 57
Figure 4-1: Block diagram of the inverted pendulum using a fuzzy logic algorithm 62
Figure 4-2 Step input response of fuzzy controlled implemented in ARM 7

microcontroller ... 67
Figure 4-3: Histogram of the task timing of FLC algorithm. .. 67
Figure 4-4: Jitter histogram of FLC algorithm .. 68
Figure 4-5 Comparing the traditional FLC structure of full rule evaluator system and the

decoupled approach. ... 70
Figure 4-6 Two degree of freedom Robot prototype developed by R. Kelly, see [Kelly

and Santibanez, 2003]. ... 71
Figure 4-7 Relation of the total load torques against the interaction between links. 73

v | P a g e

Figure 4-8 FLC trained using an ANFIS algorithm based on real-time acquisition. The
acquisition is taken from the system in close loop using an auxiliary algorithm to
teach the FLC. .. 74

Figure 4-9 System step-response (q1 –teta1– and q2 –teta2–) using a FLC trained by an
ANFIS algorithm. ... 74

Figure 4-10 Structure of controller and plant using a full set of rules. 75
Figure 4-11 System step-response (q1 –teta1– and q2 –teta2–) using a decoupled FLC

trained by an ANFIS algorithm. ... 75
Figure 4-12 Structure plant and decoupled controlled (2 inputs, 1 output each, 4 triangular

MF, 32 rules), where the non-linear model of the robot is in the box robot2DOF. .. 76
Figure 4-13 Flow diagram of the rule optimisation process. .. 77
Figure 4-14 Model of DC motor with mechanical load with position and velocity

feedback. Data [1:n,0,0], Data[0,1:n,0] are the input vectors used for training, and
Data[0,1:n,0] output vector for the training. ... 78

Figure 4-15 Actual implementation diagram of the FLC for two-inputs one-output
system. .. 79

Figure 4-16 Actual implementation of the DC motor, it shows the position and velocity
responses using both PID and FLC controllers. The set-point of 0.25 metres in the
interval 0 to 2 seconds and 0 metres from 2 to 5 seconds. 79

Figure 4-17 Distributed control using two FLCs for a system with four inputs and one
input .. 80

Figure 4-18 Actual control implementation of the pendulum, using the auto-learning
approach. Step response to the system using PID control (left) and FLC (right). 81

Figure 5-1: Block diagram of LQR controller and testbed ... 86
Figure 5-2 Actual implementation of the system using LQR controller, a step input for the

cart position is set (SPcart = 0.3 metres). ... 87
Figure 5-3: LQR Tracking control using a dynamical SP=0.135 sin (wt), Frequency=1Hz.

 .. 90
Figure 5-4: PID Tracking control using a dynamical SP=0.135 sin (wt), Frequency=1Hz.

 .. 90
Figure 5-5: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.5Hz. .. 91
Figure 5-6: PID Tracking control using a dynamical SP=2000 sin (wt), Frequency=0.5Hz.

 .. 91
Figure 5-7: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.25Hz. .. 92
Figure 5-8: PID Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.25Hz. .. 92
Figure 5-9: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.125Hz ... 94
Figure 5-10: PID Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.125Hz ... 94
Figure 5-11: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.0625Hz. .. 95
Figure 5-12: PID Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.0625Hz. .. 95
Figure 5-13: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.03125Hz. .. 96

vi | P a g e

Figure 5-14: PID Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.03125 Hz. ... 96

Figure 5-15: LQR controller, parameters fully known. .. 97
Figure 5-16: PID controller, parameters fully known. .. 98
Figure 5-17: LQR controller, half-length of the rod. .. 99
Figure 5-18: PID controller, half-length of the rod. .. 99
Figure 5-19: LQR controller, 165 grams in the top of the rod. 100
Figure 5-20: PID controller, 165 grams in the top of the rod. ... 101
Figure 6-1 Block diagram whose the stability is studied using the small gain theorem . 110
Figure 6-2 Block diagram of a feedback control system including disturbances (dynamic

not modelled) and external noise (due to sensor imperfections). 111
Figure 6-3 Block representation of multiplicative uncertainty of the plant output. For this

application uncertainty ∆ increases in proportion to the frequency of the encoder
signal and in inverse proportion to the encoder resolution. 114

Figure 6-4 Basic representation of the design-implementation process of the H∞ algorithm
using a TTC scheduler. From the segment program A, B, C are the offsets and T1,
T2 and T3 are the number of ticks: for further details, see [Pont, 2001]. 117

Figure 6-5 Frequency response of the maximum error between the estimated sensor signal
ϕ and the disturbed signal ϕ̂ using three sampling periods (Ts=0.1 s; Ts=0.01s;
Ts=0.001s). A is the plot using a sensor of 256 ppr; B is a sensor of 1000 ppr and C
is a sensor of 4000 ppr. wmax is approximately 8 Hz based on the maximum
dynamic error. .. 124

Figure 6-6 System using H∞ with 4000 ppr rod sensor resolution, the set-point for the cart
is 50 centimetres, and 0 radians for the rod angle. Positions in the real experiments
show behaviour similar to the numerical simulation, however small differences are
shown; they are caused by uncertainties in the model and external disturbances. . 126

Figure 6-7 System using H∞ with a rod sensor resolution of 2000 ppr. By reducing the rod
resolution, the performance of both, the simulation and the real experiment
deteriorates. However, the robustness of the mixed-sensitivity approach maintains a
stable system. ... 127

Figure 6-8 System using H∞ with 1000 ppr in the rod sensor resolution. In contrast to the
previous experiments, the reduction in the resolution of the rod sensor has an impact
to the performance. However the system remains stable. In contrast, the PID
algorithm was not robust enough to keep the system stable. 127

Figure 6-9 Comparison of memory and execution time between PID and H∞ control
algorithms. .. 128

vii | P a g e

List of publications

Directly-related publications

A number of papers have been published during the course of the work described

in this thesis. These are listed below. Please note that the contents of some of

these papers have been adapted for presentation in this thesis: where applicable, a

footnote at the beginning of a chapter indicates that material from one or more

papers has been included.

Bautista-Quintero R. and Pont, M. J. (in preparation) “Supporting the use of auto-

code generation tools in feedback control implementations using resource-

constrained embedded systems”. Transactions of the Institute of

Measurement and Control.

Bautista-Quintero, R. and Pont, M. J. “Implementation of H-infinity control

algorithms for sensor-constrained mechatronic systems using low-cost

microcontrollers” in press, IEEE Transactions on Industrial Informatics,

Vol. 4, issue 3, Aug. 2008, Pages 175-184.

Bautista-Quintero, R. and Pont, M. J. "Is fuzzy logic a practical choice in

resource-constrained embedded control systems implemented using

general-purpose microcontrollers?" Proceedings of the 9th IEEE

International Workshop on Advanced Motion Control. Vol. 2, March 2006,

Pages 692-697.

Bautista-Quintero R. and Pont, M. J. “The application of fuzzy logic control in

resource-constrained embedded systems”. Poster presented at the

Postgraduate Festival, University of Leicester, May 2006.

viii | P a g e

Bautista-Quintero, R., Pont, M. J. and Edwards T. “Comparing the performance

and resource requirements of “PID” and “LQR” algorithms when used in a

practical embedded control system: A pilot study”, presented in the

Embedded System Forum, Birmingham UK, Oct. 2005, pages 262-289,

Published by the University of Newcastle.

Associated publication

Pont, M.J., Kurian, S. and Bautista-Quintero, R. “Meeting real-time constraints

using ‘Sandwich Delays”. In press on Transactions on Pattern Languages of

Programming.

ix | P a g e

List of Abbreviations, Symbols and Units
Abbreviations

ACCS Adaptive Cruise-Control System
ADC Analogue to Digital Converter
CASE Computer Aided Software Engineering
CPLD Complex Programmable Logic Device
DAC Digital to Analogue Converter
DC Direct Current
DSP Digital Signal Processor
ESL Embedded Systems Laboratory
ECSs Embedded Control Systems
FBD Function Block Diagram
FLC Fuzzy Logic Control
FPGA Field Programmable Gate Array
FWR Finite Word Length
HIL Hardware-in-the-Loop
I/O Input/Output
IL Structured List
IMP Implementation
Kbps kilo bits per second
LCD Liquid Crystal Display
LED Light Emitting Diode
MF Membership Function
MIMO Multiple input multiple output
MPC Model Predictive Control
H∞ H infinity
LQR Linear Quadratic Regulator
LD Ladder Diagram
SISO Single Input Single Output
SIMO Single Input Multiple Output
SFC Sequential Function Chart
SMC Slide Mode Control
ST Structured Text
PID Proportional Integral Derivative
PLD Programmable Logic Device
ppr Pulses Per Revolution
PTTES Patterns for Time-Triggered Embedded Systems
PWM Pulse Width Modulation
UML Unified Modelling Language

x | P a g e

Symbols

a Acceleration
Fr Frictional coefficient
m Mass
vf Final speed
vi Initial speed
Δx Displacement

Units
kg Kilogram
m/s Metres / Second
ms Millisecond
s Second
μs Microsecond

1 | P a g e

Chapter 1
Introduction

This chapter explains the context, relevance, aims, and contributions of the

research project which is described in this thesis.

1.1 Introduction

Feedback control is one of the most astonishing mechanisms found in nature.

According to Charles Darwin’s theory, feedback control is the self-regulative

process that preserves life through evolution [Lewis, 1992]. This mechanism, by

which a dynamic system maintains equilibrium (by monitoring its own outputs

and modifying appropriate inputs) has been widely studied.

Construction of systems based on these self-regulative principles – more

commonly known as automatic control [Franklin et al., 1993] – has a long history.

However, the early development stage of such systems might suggest a lack of the

use of complex theoretical tools. For example, although the seminal work of

James Watt on the fly-ball governor was completed in the 1760s [Bishop, 2006]

(and is perhaps the first self-regulative machine of the modern era), no

mathematical analysis of the machine’s dynamics was published at that time:

development and performance improvements of this machine were based on

purely experimental work. It was not until a century later that James C. Maxwell

proposed the first non-trivial dynamic model of the fly-ball governor [Maxwell,

1868].

This mismatch in time between the practical invention and analytical description

might be the first evidence of the gap of knowledge between theory and practice

in the field of feedback control. This appears to have occurred because the central

2 | P a g e

ideas of feedback control in practice were developed separately from the

theoretical perspective.

While control theory grew as part of applied mathematics [Bernstein, 1998], the

implementation of feedback control – in general – combines multi-disciplinary

techniques [Joshi, 1999].

Today, although the control theory has matured and evolves slowly in comparison

to practice, there are still multiple impediments to bridge the gap between the two

[Bernstein, 1999]. This also entails important research and development

challenges.

1.2 Bridging the theory-practice gap in control systems

For non-trivial control applications, bridging the gap has gained enormous

relevance. A proper integration of theoretical ideas with practical techniques

increases significantly the performance of products and processes. Therefore,

products and processes can be more competitive and profitable [Bernstein, 2002].

The development of technology over the last century facilitated the

implementation of control ideas using conventional systems such as: mechanical

devices and electro-mechanical tools [Minorsky, 1922]; pneumatics [Bennett,

1993]; hardwired circuits [Gill, 1998] and analog electronic components [Black,

1984]. Nevertheless, most of this conventional technology used for automatic

control was replaced by the use of digital computers [Donaghey, 1976], [Wang,

1981]. The re-programmability feature of such devices enhances the flexibility

and adaptability in the control system’s design. For those reasons, computers

have been credited as the most influential tool in the systematic integration of

control theory with practical implementation [Bahram and Hassul, 1993].

In this context, electronics contributed enormously in the invention of digital

computers. Transistor development, in particular, made such computers more

3 | P a g e

compact and reliable than previous designs (e.g. those based on vacuum tubes).

Transistor integration in micro-chips was the key factor for advances in computer

design. Development has progressed from small, medium, large, very-large, ultra-

large, wafer-scale of integration (SSI, MSI, LSI, VLSI, ULSI), to more recent

system-on-chip (SoC) and three-dimensional integrated circuits (3D-ICs). The

result of all this progress in technology has allowed an efficient combination of

power and affordability of computer systems.

Among various digital computer-hardware designs, one category has grown

enormously. This category is called embedded computer systems, or simply

“embedded systems”. Many applications of feedback control using embedded

systems (embedded control systems) have contributed to the challenging task of

understanding the theory-practice interaction.

1.3 Background of embedded systems

Although the meaning of embedded systems is unfamiliar in a social context, a

modern society has eagerly bought products based on this technology. Many

everyday products, like MP3 players, mobile phones, cars’ computers, electronic

medical equipment and many more are associated with the embedded system

world. The variety of such products is virtually limitless. In fact, 98 percent of

the digital programmable devices produced nowadays belong to the embedded

system category [Gaetano and Roy, 2000]. In 2004, there were three embedded

systems per person on Earth [WSTS, 2005] and indicators predict an exponential

growth for the coming years [Fisher et al., 2004].

1.3.1 Definition

Several influential definitions of embedded systems have been suggested from

different authors [Butazzo, 2002], [Pont, 2001], [Laplante, 2005] and more

recently [Apneseth, 2006]. However, in 1990 the IEEE standard glossary of

software engineering terminology [Standards Coordinating Committee of the

4 | P a g e

IEEE Computer Society, 1990], defined embedded system as “a computer system

that is part of a larger system and performs some of the requirements of that

system”. In fact, an embedded computer is designed for special-purpose

applications [Ganssle and Barr, 2003]. In a wider and multidisciplinary context,

an embedded system is not only a computer, but also hardware (electronic,

mechanical structures, etc.) designed for a specific application [Henkel et al.,

2003]. In this thesis, the kind of embedded systems studied are such related to

control applications including the electronic interface, actuators and sensors.

1.3.2 Origins of embedded control systems

The history of embedded control systems (ECSs) dates back to 1961, when the

first special-purpose computer, Autonetics D-17 (see Figure 1-1), was used for the

US missile guidance systems [Lin, 2003]. Based on the same technology, in

1964, the Apollo guidance computer (AGC) was programmed to control the

navigation functions of the Apollo spacecraft [Eldon, 1996]. Almost

simultaneously, the first automotive embedded-system was employed in the

Volkswagen 1600, controlling the engine’s fuel injection [Baumann, 1967].

Figure 1-1 Autonetics D-17, the first digital embedded computer used in

MINUTEMAN missile guidance systems (Image courtesy of Computer History
Museum)

5 | P a g e

The revolutionary technology of ECSs opened new possibilities in different

commercial sectors. According to [WSTS, 2005], the most influential areas in

ECSs are: automotive, avionics, telecommunications, consumer electronics,

industrial automation and medical products.

The demand of a rapid growth in this field introduced – of course – many

challenges in the scientific and technical domain.

1.4 Designing and implementing ECSs

Designing and implementing ECSs can be extremely challenging. This section

discusses some of the challenges faced in this field.

1.4.1 Varying hardware platforms

ECSs – in general – offer unique advantages of cost-efficiency, reliability,

flexibility and performance [Donaghey, 1976]. This is perhaps because

microprocessors hardware has improved based on the well-known Gordon

Moore’s law (integrated circuits would double in performance every two years

approximately) [Moore, 1979]. However, it is becoming much more difficult to

develop and integrate effective software for a range of different hardware

patforms [Napper, 1998]. This is mainly because embedded hardware is designed

according to requirements for specific circumstances. The software tools

available are oriented more to desktop applications rather than embedded systems.

There is a lack of software support tools for the vast options of new hardware

[Napper, 1998].

In some safety-critical applications, unreliable software has led to many human

losses [Leveson and Turner, 1993], [Grottke and Trivedi, 2007]. In fact, if the

software has an error rate of 0.1 percent, it could lead to 500 exceptions per week

in medical surgeries that rely on embedded systems and 18 airplane crashes per

day [Balzert, 2000].

6 | P a g e

In general, the cost of software errors is becoming very high. For instance, 31

companies, reported losses due to software-related issues of about $17,348.450

million, between 1992 and 2005 [Charette, 2005]. All of these errors were

entirely preventable [Charette, 2005].

1.4.2 Limitations of traditional control algorithms

Implementing ECSs demands practical methods for customisation in different

control applications. One algorithm extensively used in control applications is

“proportional-integral-derivative” (PID), which is computationally simple to

implement [Åström and Hägglund, 2001], [Bishop and Dorf, 2004], [Ogata,

2002]. In fact, PID is a dominant form of feedback control in industry, [Åström,

1985], [Bennett, 1993], [Donaghey, 1976]: more than 90% of all feedback loops

are based on this technique [Åström and Hägglund, 2001].

Despite its polularity, the PID algorithm is incapable of coping with some control

problems, see for instance [Atherton and Majhi, 1999], [Dicheng et al., 2004]; the

system performance using a PID control often depends of some specific

parameters of the system, that constrains appropriate control tuning [Bekit et al.,

1998]. In addition, some tuning methods are performed on-line, which limits

implementation of unstable open-loop systems [Atherton and Majhi, 1999];

[Kawaji and Kanazawa, 1991]. For multivariable systems where the dynamics are

complex, it is rarely possible to find an efficient PID solution which will provide

good performance [Atherton and Majhi, 1999], [Machado and Galhano, 1995],

[Tang et al., 2001].

Limitations of the traditional techniques to cope with real control problems have

motivated the invention of new forms of control in order to improve performance;

see for instance, [Doyle et al., 1989], [Zadeh, 1965], [Maciejowski, 2000], [Tang

et al., 2001] and [Lewis, 2005]. Some of these approaches were developed in the

last few decades in order to be robust against uncertainties found in actual

7 | P a g e

implementations (where there is not a straightforward mechanisim to identify and

quantify uncertainties using numerical simulations). However these modern

approaches are largely irrelevant for today’s requirements. This is due to different

factors, for instance:

1) The conservatism of industry to use classic and off-the-shelf methods

[Auslander et al., 1978].

2) The short life-cycle of today’s products, that constrains extended research and

development programs [Schlett, 1998].

The complexity of integrating advanced forms of control algorithms – usually

more sophisticated in terms of computer requirements – into common practices

presents additional challenges. Moreover, the tools available for support of more

advanced algorithms are used mainly in research [Skogestad and Postlethwaite,

2005], and rarely in industry [Åström and Hägglund, 2001].

In addition to the lack of support for these modern control techniques, the

implementation of control algorithms requires an efficient and reliable software

architecture platform1. For low-cost computers, multiple trade-offs have to be

studied. For instance, the reliability of the execution sequence of the control tasks

can improve the robustness against failure. However, this can limit the flexibility

and adaptability for multiple scenarios (uncertainties caused for acquisition,

algorithm processing or actuation).

1.4.3 Low-cost ECSs

One of the main factors to consider in embedded systems design is the cost (see

[Slomka et al., 2000] and [Napper, 1998]). Such cost constraints can be a factor

that limits achieving of the desired performance. For example, many aerospace

and military control systems employ state-of-the-art sensors, actuators and

1 In this context, “software architecture platform” is the program that manages the execution
sequence of the application routines.

8 | P a g e

computer systems. Such systems are accurate, predictable and efficient. By

contrast, many commercial applications face severe cost constraints and must be

implemented using simpler and cheaper sensors and actuators along with limited

computer power (low memory and CPU performance): see for instance,

[Henriksson, 2006], [Li and Meijer, 1998], [Kaul et al., 1997] and [Rauta et al.,

1996].

Different implementation approaches are required for these “resource rich” and

“resource constrained” system designs: see the the computational contrast

between [Campbell, 1999] and [Wang and Yang, 2004].

For resource-constrained systems, detailed mathematical analysis is essential to

represent accurately the dynamics of such systems. However the inclusion of

low-cost hardware (sensors, actuators and controllers) leads to complex models

which are rarely studied in the educational literature [Bishop and Dorf, 2004],

[Ogata, 2002], [Franklin et al., 1993]. Even for specialised scientific literature,

neglecting the dynamics of actuators and sensors is a common practice [Kawaji

and Kanazawa, 1991], [Spong, 1987], [Sun and Meng, 2004]. For that reason,

success in the implementation (integration of software with hardware) of control

algorithms in situations where there is large uncertainty over the system’s

dynamics still requires a long and tedious process that is prone to errors. These

challenges are compounded when the control system is to be implemented using a

low-cost computer platform which has severe resource constraints compared to a

modern “desktop computer”.

1.5 Aims of the project described in this thesis

The project described in this thesis suggests that, when “ideal” system

components are used in a resource-rich design it may be possible to deal with

simple theory-based models for implementation purposes. However, when

9 | P a g e

dealing with low-cost system components, it is rarely possible to find a

straightforward mechanism to implement an effective controller directly.

1.5.1 Specific problem studied in this thesis

There are well stablished computer control implementation issues previously

studied in the literature of this field, see for example [Forsythe and Goodall,

1991], [Williamson, 1991] and [Istepanian and Whidborne, 2001]. In general

control implementation nowadays deals with problems related to limitations in

actuators, sensors and digital computers. Non-linearities in the response of

actuators, noise, rate limits such torque and bandwidth. In sensors the inevitable

delay response, range quantifications errors, sampling rate. Particularly in the

field of embedded computer quantification of jitter computation time, loading,

variables wordlenghts, precision, numerical conditioning, round-off errors,

memory, concurrencies, fix-point and floating point considerations, ADC

sampling time, PWM frequencies and precision, etc.

Amoung the universe of discussion of all these factors, the specific problems

studied in this thesis are focused on finding efficient implementation techniques

for uncertainties in the sensor (low-resolution) and actuator (unknown dynamic)

along limited memory and CPU performance. Consideration of the wordlengh of

the variables are taken into acount in order to reduce the computational load and

memory requirements.

In this context, the thesis explores the implementation of modern control

algorithms for mechatronic systems using low-cost embedded systems. The

techniques used to support the design of reliable controllers are investigated in

situations where:

1) The design is implemented using a resource-constrained computer.

10 | P a g e

2) Sensor limitations and their effects on affecting the overall performance or

stability.

3) There are restrictions in the actuator system.

The initial phase of this research explores the implementation of classic control

algorithms (as a benchmark) in different scenarios that entail restrictions due to

the low-cost components. The second phase of the research investigates modern

and intelligent control algorithms and the feasibility of their implementation in

resource-constrained computers.

1.6 Key contributions

This work presents three important contributions to this research area:

First, this thesis shows the techniques for implementing modern control structures

based on an optimal LQR using a very low-cost embedded microcontroller.

Second, the thesis demonstrates the importance of characterising actuator

dynamics when the overall system employs low-cost components. Theoretical

and practical aspects in this context are suggested in order to facilitate the design

of custom applications. PID and fuzzy logic control (FLC) algorithms are used to

illustrate the experimental validation of this aspect.

Third, the research introduces a novel method which is intended to assist in the

design and implementation of optimal H-infinity (H∞) algorithms in low-cost

mechatronic applications. The problem considered here is a position control

system in a situation where there are both sensor-related uncertainties (caused by

low–resolution sensors) and limited computational resources. A model of how the

uncertainties can be seen from the low computational resources controller is

proposed. Additionally the impact in memory reduction and CPU load is

measured when a proper realisation of the dynamic control is chosen.

11 | P a g e

1.7 Thesis layout

Following this introduction, Chapter 2 presents the literature review that surveys

the research and development of low-cost embedded systems. Chapter 3

describes the test-bed used in this project and practical design and benchmark

control implementation based on the classic PID. Chapter 4 shows a case study of

implementating a controller for intelligent control (Fuzzy logic). Chapter 5

explores the implementation of the optimal linear quadratic regulator (LQR).

Chapter 6 explores the use of robust control (H-infinity) in computers with limited

resources and sensors with low resolution used in typical mechatronic

applications. Discussions are presented in Chapter 7. General conclusions are

presented in Chapter 8. Appendix A contains the source code of the control

programs used for this research. Appendix B includes the paper Meeting Real-

Time Constraints Using “Sandwich Delays”.

1.8 Conclusion

This introduction chapter has presented a summary of the importance of the gap

between the theory and practice in control systems design. In particular, it

showed the role played by the computer technology in bridging this gap. Based

on the issues presented, embedded systems used for control applications appeared

as the key element in the understanding between the theoretical control systems

design and their real-time implementation. Special attention was drawn to the

situations when the system has important limitations in hardware resources.

The remainder of this thesis will describe the work undertaken throughout this

project.

12 | P a g e

Chapter 2
Literature review of ECSs

This chapter provides a review of previously published work in the area of ECSs.

First, it considers the historical evolution of embedded control hardware and the

algorithms reported for different applications. Second, the importance of

reducing cost in the design and implementation of embedded systems is

considered. Over the last few decades, this economical factor has had an

enormous influence in the research and development of control systems.

Additionally, this chapter surveys the current state-of-the-art developments in

ECSs and future trends.

2.1 Introduction

Embedded systems and computer science share some common interests and

history. In fact, according to [Sangiovanni-Vincentelli and Pinto, 2005] the core

of embedded systems emerged as the conjunction between engineering and

computer science, see Figure 2-1. However, they have some very basic

differences.

Traditionally computer science deals with general-purpose computer problems; in

contrast, embedded systems cope with optimisation of special purpose hardware

and software. Research in embedded systems is specialised in –for instance–

scheduling2 algorithms [Liu and Layland, 1973], [Butazzo, 2005], [Cervin, 2003];

power efficiency [Moyer, 2001], [Simunic et al., 2001], [Dongkun et al., 2002];

2 Scheduler in embedded systems is the policy used to execute multiple computer tasks in order to perform a process

13 | P a g e

code size reduction [Leupers, 2002], [Pinnepalli et al., 2007] and reliability for

safety-critical applications [Fernandes and Maciel, 2003], [Pont and Banner,

2002] and [Short and Pont, 2005].

Figure 2-1 Relation between computer science and engineering according to
[Sangiovanni-Vincentelli and Pinto, 2005]

Embedded systems research in this thesis deals with the real-time implications of

limited computational resources. This condition constrains the execution tasks

before maximum execution time is completed, since a missing deadline produces

unpredictable responses in the control signal (hard real-time) [Liu and Layland,

1973], [Veysel et al., 2001].

In the field of ECSs real-time synchronisation of execution tasks is generally

required. In most control applications the completion of the computer tasks

before any deadlines is crucial [Henriksson, 2006]. These challenges impose

some hardware requirements in order to achieve specific system performance.

Typically the resources required are both enough CPU power and memory

capacity [Cervin, 2003].

The development of ECSs has grown exponentially in the last few decades. A

summary of the most important achievements in this area is shown next.

2.2 Evolution of ECSs

In the 1960s, general-purpose computers were not a cost-efficient choice for many

commercial applications. However, a revolution in the embedded systems world

Computer
science

Engineering Embedded
Systems

14 | P a g e

in the early 1970s brought the ability to integrate a low-cost computer in one chip

[Faggin et al., 1996]. This paradigm shift caused a tremendous impact in

industrial process control [Auslander et al., 1978] and consequently in many other

areas.

Due to the historical progress of the hardware and control algorithms employed in

embedded systems, this thesis has divided a survey into four generations

(approximately each generation constitutes one decade of evolution) which are

presented next.

2.2.1 First generation of ECSs

The history of microprocessors dates back to 1971 when Intel launched the 4004.

This device is recognized as the first microprocessor used in embedded

applications [Pratt and Brown, 1975], [Goksel et al., 1975]. The 4004 was a 4-bit

CPU and had a maximum speed clock of 740 kHz. Using that speed of clock the

microprocessor executed 94,000 instructions per second (IPS), which is about

5000 times slower than a modern microprocessor. Nevertheless, that CPU power

was enough to perform different computer tasks.

Originally, Intel designed the 4004 for Busicom. It was used in the construction of

several models of calculators, office-printing machines and cash-registers.

However, the designers of the 4004 considered that its primary market was

oriented to control devices [Faggin et al., 1996]. In the early stage of the use of

this microprocessor, combinatorial and sequential control applications were

predominant, see for instance [Pratt and Brown, 1975].

In other control applications, like industrial robots, the very first approach was the

Unimate (universal automation) system [Spong and Vidyasagar, 1989], patented

in 1954. This control system had two non-embedded computers, PDP-10 and

PDP-15 [Goksel et al., 1975]. However, this approach was important for

15 | P a g e

embedded robotics applications, since further developments were based on the

same parallel processing architecture. For instance, the microcomputer MCS-4

(which included a 4004 microprocessor) was one of the first embedded systems

used for the dynamic control of the robots. This approach is perhaps the first

industrial distributed embedded control system. See Figure 2-2.

The robotic system described in [Goksel et al., 1975] had two computers. One

was a general-purpose computer performing supervisory work (coordination and

planning trajectories, communications, etc.), whereas the second computer was

based on embedded processors used for executing the control tasks (dynamic

control of links and gripper). See Figure 2-2.

Figure 2-2 Control hardware of an industrial robot arm using two computers:
general purpose HP-2100 and the embedded microprocessor 4004. The parallel
computer suggests a structure similar to modern embedded distributed control

systems. Diagram adapted from [Goksel et al., 1975]

Using multiple computers with different capacities (working together for a

common purpose) made possible the extensive development of distributed control

systems in this field [Auslander et al., 1978].

16 | P a g e

Subsequent developments in microprocessors hardware, such as the Intel 8008,

(8-bit microprocessor) made possible the implementation of more sophisticated

algorithms for automatic control processes. For instance, in the field of industrial

machines, the 8008 replaced impractical hard-wired control systems, improving

the flexibility and quality of the final products: see [Seim, 1975] and [Ridgeway,

1975].

The rapid growth of microprocessor-based technology made it possible to design

special-purpose mini-computers for industrial applications. Embedded computers

called “programmable logic controllers” (PLCs) substituted the tedious hard-wire

process, commonly practiced in the 1960s [Erickson, 1996]. PLC hardware was

commonly designed using embedded systems with enhanced temperature range

and noise immunity.

In terms of software, the first language used in PLCs was Assembly, which

became obsolete when Ladder language later appeared. This change in

embedded-software development was driven by forces of compatibility with older

systems (based on hardwired electronic, pneumatic and electromechanical

controllers) [Colnaric, 1999]. In the 1970s, the power of Ladder language

allowed a familiar direct interface to the user with the common scripts used for

hard-wired practices.

2.2.2 Second generation of ECSs

For processing and control of real-time tasks, sophisticated systems with higher

microprocessor speed were required [Donaghey, 1976]. Enhancements based on

8-bit technology, allowed the use of embedded microprocessors in a wide range of

applications. For instance: in medical equipment [Bronzino, 1982]; enhanced

Engine Control Units (ECU) for commercial vehicles [Cuatto et al., 1998]; cost-

effective mechatronic machinery used in industry for production lines [Nakamura

17 | P a g e

et al., 2004]; office and commercial machines such as printers [East, 1984]. In

this context, perhaps the most influential area for automatic control implemented

with embedded systems was the chemical industry. A wide range of development

in this area was based on monitoring and control processes [Donaghey, 1976].

Microcomputers in this generation included embedded system processors, with

different types of peripherals such as memory, interface ports, communication

systems and displays [East, 1984].

Software developments in embedded systems soon introduced added

functionalities in order to improve the development of software [Donaghey,

1976]. For example, special editing facilities such as breakpoints during program

debugging, memory address pointers and floating-point-multiplication

subroutines. These approaches were merely meant to simplify the program

codification. In control algorithms (both sequential and automatic control), the

use of these subroutines improved the maintenance of code. These software

features were mostly implemented in 8-bit CPU microprocessors, such as the

8008 and 8080 from Intel, the Z80 from Zilog and the 6800 by Motorola

Corporation. This hardware appeared as an optimal trade-off between the data

bus size and CPU performance, minimizing expensive system support [Donaghey,

1976].

General processes for feedback control and small versions of operating systems

were designed for this second generation of microprocessors [Donaghey, 1976].

The basic scheme of the process-control program is shown in Figure 2-3. The

fundamental core of this routine was composed of 1) Acquisition; 2) Control

algorithm; 3) Actuation. The operating system program was meant to organize

the execution of these basic tasks and coordinate with additional functions. These

functions included the management of both analogue-to-digital (inputs) and

digital-to-analogue (outputs) conversions. Additionally the microprocessor

18 | P a g e

required data storage in order to perform the control algorithm. Data processing

was also executed by the microprocessor (signal filtering, variables estimation,

breaker position, alarms, etc.). The real-time synchronisation provided by the

operating system was designed to run in a sequential basis [Donaghey, 1976].

Execution of control algorithms, data acquisition and data analysis in real-time

were programmed in the FORTRAN language using 8-bit technology [East,

1984].

Initialization of
program control

Start

Processing of
inputs

measurements

Processing of
structure data

Control?

Calculate control
variable from

control algorithm

Output correcting
variables

Output digital state
signals

Time delay?

Keyboard
control inputs

Analog
inputs

Digital
inputs

Data
storage

Reset
structure
values

Analogue
outputs

Digital
ouputs

Yes

No

Yes

No

T1

Figure 2-3 General process control program used in the second generation of
microprocessors Flow diagram adapted from [Donaghey, 1976]

The core of the operating system –the scheduler– is responsible for assigning

priorities in the execution of the control tasks [Donaghey, 1976]. In applications

where computational resources were highly constrained, schedulers became

19 | P a g e

popular. In the early stage of control applications they were used with a fixed and

predefined execution sequence for acquisition, control and actuation tasks

[Butazzo, 2005].

PID control algorithms and other forms of control were implemented using either

operating systems or even simple schedulers in customised applications. For

instance, in the chemical industry cascade control (PI with inner-loop controller),

nonlinear half-proportional, deadbeat response control, optimum state feedback,

compensator control, adaptive control with linear filtering (3rd order) were some

of the common control algorithms using embedded systems [Donaghey, 1976].

Introduction of new control structures was primarily limited by the memory

available [Donaghey, 1976]. On the other hand, the PID designs were relatively

simple to program with the 8008, 6800 and Z80 technologies due to fewer

requirements in memory and CPU load. Additionally such microprocessors

supported floating-point mathematical operations through software subroutines

[Maples, 1975].

As it was shown in the previous generation, many control applications in the

1970s using embedded systems substituted the common use of desktop

computers. Nevertheless, for some chemical plant applications, the computing

capacity of embedded systems was not able at that time to compete with analogue

controllers [Donaghey, 1976]. The required computational resources for those

applications were only found in desktop microprocessors. This might have been

the reason that Intel hardware (e.g. 8008) evolved into general-purpose power

microprocessors that eventually were confined to desktop applications. In

contrast, Zilog (e.g. Z80) continued the path of embedded applications in almost

all of its subsequent developments [Morse et al., 1980].

20 | P a g e

In the late 1970s, some control applications became economically feasible only

when embedded processors were incorporated, for instance: missile guidance

control [Mersten, 1979]; medical issues like the prosthetic arm described in

[Graupe et al., 1978]; high precision machine tools [Lamb and Whelan, 1976];

control of solar heating systems [Eisenberg et al., 1977]. In some of theses cases,

implementation of the control algorithm on embedded microprocessors allowed

important advances with respect to previous technologies. For example, in

[Graupe et al., 1978] it is shown that the implementation of an artificial limb

without microprocessors was simply impossible.

Due to the flexibility offered by embedded systems, digital PID algorithms

outperformed the analogue designs used in servo-systems [Nakamura et al.,

2004]. This was particularly useful in multiple loop interactions such as cascade

and feed forward [Auslander, 1996].

The software for multi-loop control systems was implemented with a main

program and an interrupt service subroutine [Ahson et al., 1983]. This multi-loop

approach used a combination of various program modules with different control

algorithms, for instance: dead-beat, Kalman and Dahlin. In microprocessors such

as the Intel 8085 each algorithm was accommodated in 1k byte of memory: see

description in [Ahson et al., 1983]. The complexity of these algorithms in terms

of computational resources was close to the discrete PID feedback controller. For

instance, [Ellis, 2004], in “control systems design guide” shows how the lead/lag

and several forms of PID control could be implemented. A discussion of the

implementation on 8-bit microprocessors of such algorithms using a distributed

arithmetic approach is shown in [Ahson et al., 1983].

The use of “larger” (in terms of memory) algorithms than PID started to be more

common in the early 1980s. For example, nonlinear control algorithms

21 | P a g e

(integrated error squared with a variable dead-zone) reported important savings in

comparison with the analogue controllers [Lipták, 2006].

2.2.3 Third generation of ECSs

For special control purposes, microprocessors evolved into microcontrollers

[Schlett, 1998]. This technology integrated a CPU core with some basic

peripherals (memory, I/O ports, timers, analogue-to-digital converters, pulse

width modulation) in order to integrate a self contained device for more specific

control purposes [Ganssle and Barr, 2003]. The more influential microprocessors

were upgraded into microcontrollers; for instance, 8080 to 8048; 6800 to 6805,

6808, 6811 and Z80 to Z84.

In the 1980s, embedded technology was initially oriented to control of electric

machines. See for instance [Rauta et al., 1996], [Wang, 1981] and [Ahson et al.,

1983].

Digital microcontrollers replaced the conventional analogue servo controllers for

different types of electric motors [Wang, 1981]. Some control techniques were

too expensive or too complicated (interaction of multiple loops) to be

implemented using analogue systems. By contrast, VLSI technology made

possible the integration of different digital devices in one chip. The

microcontroller structure allowed independent operation of the peripheral systems

that improved both the performance of the system and the CPU overhead [Rauta

et al., 1996]. These factors opened the door to cost-effective applications

employing microcontrollers.

In motor-control applications over the 1980s, the US alone used 80 million motors

in electronic printers, disk drives, tape drives and similar devices [Bose, 1988].

This tendency was followed in other motion applications, for instance industrial

robots, numerical control machines and general-purpose industrial drives. Home

22 | P a g e

applications included appliance drivers for washing machines, dryers, air

conditioners, blenders, mixers, etc. In order to cope with such requirements,

position and velocity control as well as monitoring of system parameters were a

vibrant research topic over that period [Wang, 1981].

As result of servomotor control research, new techniques were developed. For

example, Blaschke introduced the direct or feedback method of vector control

[Bose, 1988]. Similarly, Hasse proposed the indirect feed-forward control method

[Bose, 1988]. Modern control algorithms were introduced for advanced military

control applications [Gully and Coleman, 1981]. Linear quadratic (LQ)

controllers and modern observer theory were widely exploited in state-of-the-art

applications using embedded systems [Korn et al., 1981].

Figure 2-4 The third generation of embedded system was featured for vast
contributions in the field of servo-controllers (adapted from [Dote, 1990] Figure 1.6).

A study presented in [Rajulu and Rajaraman, 1984] examined the suitability of

microprocessors for control applications in relation to the execution-time using

several algorithms. This study also compared the performance of several

23 | P a g e

microprocessors (16-bit and 32-bit) executing floating-point arithmetic operations.

The fact of considering such computing elements for control algorithm

implementation was merely inspired due to the inefficiency to find cost-effective

solutions in some embedded control applications.

The computational capacity (memory and CPU load) used to implement Linear

Quadratic Gaussian (LQG) Control in embedded systems was first presented in

[Farrar and Eidens, 1980]. LQG methods have been tested in many aerospace

applications where accurate models are characterised [Gu et al., 2005]. The

relatively low computational load of such algorithms makes them suitable for

embedded systems [Farrar and Eidens, 1980], however due to poor robustness for

industrial applications [Gu et al., 2005], this approach has not been widely used in

real-time applications.

The introduction of variable structure control algorithms in microprocessors

started in robotics applications [Bose, 1988]. Robotics was –in fact– considered a

major area of research in the late 1980s [Machado and De Carvalho, 1988].

Sliding mode control (SMC) was the pioneer of the non-linear algorithms

implemented in this generation of embedded systems. The low computational

complexity was an attractive feature of this kind of controller [Machado and De

Carvalho, 1988].

Inadequate performance with the linear approaches and the high computational

burden of adaptive control schemes made SMC a practical choice for high

performance robot systems [Machado and De Carvalho, 1988].

2.2.4 Fourth generation of ECSs

The memory limitations and CPU performance of both microcontrollers and

microprocessors used for advanced control and processing algorithms motivated

further hardware developments in embedded systems [Dote, 1990]. One approach

24 | P a g e

invented in the 1960s and exploited almost 20 years later was the reduced

instruction set computer (RISC), see [Bose, 1988]. This technology proposed an

important simplification mnemonic instruction codes (compared with other

hardware platforms). This was widely adopted in control applications with low-

cost embedded microcontrollers [Leach, 1995].

The common use of compilers in this generation of embedded systems introduced

additional challenges to the implementation of efficient code. Fast processors

were developed for such purposes; for example, the digital signal processors

(DSP), which were used to process very fast calculations [Dote, 1990]. Signal

processing used in acquisition and control, made heavy use of DSPs and has been

extensively documented [Embree, 1995]. Additionally, advanced processing

algorithms (like observers) using DSP, were used in industry for sensorless

applications [Dote, 1990]. The capacity of compilers to codify floating-point

operations directly reduced the execution time of complex mathematical

operations [Embree, 1995].

Diverse forms of PID, in single and multi-loop form, were still the predominant

algorithm used with DSPs [Dote, 1990]. Nevertheless, the limitations of the PID

design to address control problems due to non-linear plants with delays motivated

the use of some more sophisticated control algorithms. One instance is the auto-

tuning PID based on a neural network (N-N) [Dicheng et al., 2004] Moreover,

adaptive control combined with PID and N-N is described in [Sheng et al., 2002]

using the microcontroller 80C196KF3. These approaches were meant to combine

the simplicity of PID and self-learning features of using adaptive N-N structures.

An example of the industrial application of such techniques is the Foxboro M-760

controller [Bose, 1988].

Single and combined approaches based on both PID and fuzzy logic algorithms

were developed for Motorola microcontrollers [Leach, 1995], [Jackson, 1997]. In

25 | P a g e

addition, a recent microcontroller MC68HC12 (16-bit core) included special

hardware to perform fuzzy logic operations directly [Jackson, 1997].

Introduction of these advanced embedded systems added intelligence and

diagnostic capacity to the control system [Bose, 1988].

In multivariable applications, the DSP was the first processor family suitable to

implement sophisticated control algorithms [Dote, 1990]. DSPs achieved higher

sample-frequencies than conventional 16-bit processors of the 1990s, see Table

2-1.

Due to their high cost, embedded systems based on DSPs were mainly employed

in expensive applications. This motivated many contributions in the field of

advanced computational software optimisation [Laub et al., 1987], [Balakrishnan

et al., 2001], [Raghunath and Parhi, 1994]. Advance control, acquisition and

signal processing were possible with the inexpensive technology of 8-bit and 16-

bit microprocessors. For instance, the Z-80, 6502 and 68000 were used to

implement adaptive control algorithms based on model reduction [Bruijn et al.,

1988].

Table 2-1 Achievable sampling frequencies of different microprocessors (table taken
from [Dote, 1990])

Microprocessor Clock Sample frequency

8086 8 MHz <2 kHz

Z8000 5 MHz <2 kHz

68000 10 MHz <4 kHz

32016 10 MHz <5 kHz

DSP TMS32010 31 KHz

Model reduction algorithms appeared as a functional tool in control design

software; for instance, MATLAB or Simnon. In addition to this and with the

26 | P a g e

introduction of new and affordable families of 32-bit microprocessors and

microcontrollers the use of more complex strategies for control applications was

made possible.

Advanced RISC machinery (ARM) microcontroller technology incorporated

multiple advantages compared to previous 32-bit microprocessors [Schlett, 1998].

Although cost-efficiency and low power consumption were the common

benchmark with other 32-bit embedded processors (Motorola 68000), ARM

introduced a new strategy to reduce the code density. This strategy was based on a

subset of 32-bit ARM instructions recoded into 16-bit opcodes.

Several control application using ARM embedded processors have been reported,

in both research and industrial applications. For instance, [Chen et al., 2007]

presented a highly complex distributed embedded controller with multiple forms

of control. In such application, an ARM microcontroller is used as an interface to

a personal computer (dedicated, for example, to control planning trajectories using

neural-network algorithms). USB3 is employed to communicate commands from

the computer to ARM microcontroller. This system incorporates a program to

translate the high-level PC commands into low-level commands for the specific

purpose controllers that implement PID control. The internal system’s

communication is based on the CAN4 bus.

The theoretical contribution of optimal FLC+PID designs [Tang et al., 2001],

[Pavlica and Petrovacki, 1998], [Huang and Yasunobu, 2000] inspired some real-

time applications. For instance, motor control [Betin et al., 2000] and pressure

control processes (using a hybrid algorithm FLC+PI) [Kanagaraj et al., 2008].

The use of such algorithms became common practice for ARM processors. In

general, these algorithms are based on a small set of linguistic rules and their

3 Universal serial bus
4 Controller area network

27 | P a g e

implementation does not require big memory allocation. The mechanism of FLC

avoids modern control algorithms along with complex model representations

[Passino and Yurkovich, 1998]. However, for relatively complex systems with

MIMO structures, selection of an appropriate set of linguistic rules has led to

auto-learning approaches [Jang, 1993], [Nomura et al., 1996], [Zhou et al., 2003],

[Passino and Yurkovich, 1998]. Consequently, the complexity of the algorithm

increases and implementation of this algorithm for low-cost processors depends

strongly on the memory and CPU performance available.

In the hardware terrain, the new technology that emerged in the evolution of more

sophisticated hardware for control was the field programmable gate array

(FPGA). FPGAs are the result of development in the field of the programmable

gate array (PLD) and complex PLDs (CPLD). Today’s FPGAs can contain up to

2 PowerPC processors, 10 MegaBytes of memory, and 11.1 GigaBytes/s IO,

along with other logic gate enhanced features [Sevcik, 2006].

Multiple efforts between companies and universities have been made in order to

adopt this relatively new technology in embedded systems designs [Sevcik, 2006].

The FPGA provides fast digital implementation of control systems, for instance in

[Shouling and Xuping, 2007] an embedded hardware/software co-design of a

hybrid control algorithm is performed. An adaptive PID estimates the parameters

online, in contrast to the traditional offline implementations. The computational

capacity of the FPGA for this application allows execution of parameter

identification using an ADALINE neural network. Although experimental results

indicate satisfactory performance, the cost of the overall system is higher than

with the stand-alone microcontroller used in similar applications.

A relative new control technique currently used for nonlinear and multivariable

systems is the model predictive control (MPC). MPC has been successfully tested

28 | P a g e

in the petrochemical industry, and is currently used in a wide range of industrial

processes [Ling et al., 2006].

In embedded systems, the design of an MPC algorithm depends fundamentally on

the application. In general, this algorithm requires high computational capacity.

However, the use of FPGAs offers important advantages for the efficient

implementation of floating-point operations and matrix inversions, since these

devices contain specialised modules that perform such operations directly. For

instance, the Spartan-3L FPGA with 1.5 million gates can handle a 128x128

matrix inversion problem with IEEE single precision floating point arithmetic (8-

bit exponent and 23-bit mantissa) [Ling et al., 2006].

Other applications of MPC in embedded systems can be found in micro-chemical

and drug-delivery systems [Parker et al., 1999].

The parallel execution of control algorithms using FPGAs allows exploration of

more complex control designs. For instance, a LQ design is reported in [Piotr-

Jastrzebski, 2007] used for high precision control of active magnetic bearings.

Today, different software is available to design control systems using FPGAs.

Nevertheless, the compilation time is still growing faster than the computational

power (it may take hours or even days to complete a compilation of a 2-million

gate chip [Fobel et al., 2007]).

In the PLC domain, the fourth generation of embedded systems has reached

tremendous functionality in terms of software support. Five standard languages

have been established for these industrial controllers: ladder diagram (LD);

function block diagrams (FBD); structured text (ST); instruction list (IL) and

sequential function chart (SFC) [Colnaric, 1999].

29 | P a g e

The extensive use of LD has been substituted for highly functional software for

SFC. It has improved tremendously the design and maintenance of code in this

matter. However, the practice of automatic control in PLC remains the standard

choice for use in simple controllers like PID. A few exceptions can be found in

some PLC vendors (e.g. Omron), that include some advanced control algorithms,

such as FLC.

Next generations of embedded systems hardware indicate a clear tendency

towards wide use of reconfigurable hardware (such as FPGAs). For control

applications, this opens new possibilities to use advanced control algorithms (in

comparison to the traditional PID) [Ling et al., 2006], [Shouling and Xuping,

2007]. The way to customise this reconfigurable hardware is still an open

problem.

Additionally, multi-core processor technology is a good alternative to develop

efficient, single and multipoint distributed embedded applications. In order to

achieve high performance and power reduction, the ideal hardware platform is

still a matter of debate. In this context, homogeneous and heterogeneous multi-

core processor architectures have been recently under intensive research according

to [Pozzi and Paulin, 2007].

2.3 Do ECSs have enough support?

After nearly 40 years of evolution, embedded systems is considered one of the

most important sectors for semiconductor applications [WSTS, 2005]. Based on

this fact, a brief survey is presented next; it explores what supporting tools

(theoretical and practical) have been developed to facilitate implementation for

ECSs.

30 | P a g e

2.3.1 Which algorithms have been supported for ECSs?

As it was shown in the survey presented in the Section 2.2 PID algorithms (P, PD,

PI, lead-lag) are the most dominant forms of automatic control in the context of

embedded systems. Additionally, in practice, there are multiple techniques in

order to deal with their tuning procedures using digital computers. For example,

the well known tuning method Ziegler-Nichols [Franklin et al., 1993] widely used

for proportional, proportional integral and PID controllers in different

applications. Anti-windup algorithms prevent actuator saturation, thus avoiding

overshoots and plant instability [Ellis, 2004]. Some methods were designed to

avoid problems associated with the derivative action, even when a filter is used

[Atherton and Majhi, 1999]. Additionally, “bumpless” action technique was

implemented to avoid an aggressive jump of the output signal caused by the

commutation between the manual and automatic control stages [Youbin et al.,

1996]. Design of feed-forward strategies combined with the classic PID

controller were used to deal with plant parameters uncertainties [Jones et al.,

1996].

Most of these techniques and many more have successfully improved the general

performance of the systems. However, some applications using PID in high

performance mechatronic systems still face multiple challenges. For instance, in

[Lin, 1989], dry friction and gravity vector forces cannot be compensated using

this approach. In contrast to some other applications for example [Arteaga and

Kelly, 2004], the implementation of PID provides high performance. However, it

requires expensive actuators in order to give the desired performance. In

theoretical decoupling approaches such as [Coelho et al., 2004] there are problems

in the algorithm’s implementation for real industrial applications. In general, the

payload is not fixed and the daily work increases system uncertainties. Similarly,

for hybrid approaches (like PID+Neural-Networks approaches or FLC) which still

require multiple support tools to make some applications cost-effective: see for

instance, [Lewis, 2005] and [Sun and Meng, 2004]. The effectiveness of PID for

31 | P a g e

some applications can open the discussion on incorporation other of, non-

traditional, forms of control in order to improve performance.

In this context, embedded software to support control application in embedded

systems plays an important role in the efficient implementation in current and

future hardware.

2.3.2 Is the software ready to catch up with hardware?

Some reasons that cause a mismatch between hardware and software development

in embedded systems are described below:

1) In recent years, one of the most important challenges is related to improving

the power efficiency for microprocessors (MIPS/watt ratio). An extensive

survey in this topic is presented in [Venkatachalam and Franz, 2005]. Instead

of software, hardware improvements have played the central role in this

matter [Moyer, 2001].

2) The rapid demand of high performance devices is currently the driving force

to develop embedded systems with multiple functionalities [Wolf et al., 2002].

3) There is no efficient software to deal with high code density [Leupers, 2002].

Instead, the main contributions are based on hardware.

4) Very-large-scale integration (VLSI) helped to introduce processing

capabilities. The advances in multimedia functions have been based on the

potential power given by the VLSI revolution [Dahlgren, 2001]. Emerging

hardware developments force the software development to handle multiple

functionalities. In order to meet the increase in hardware capacity, software

development has to innovate at the same level. This becomes more

complicated when there is a tendency to reduce the product’s life cycle.

5) Embedded hardware is traditionally “disposable” technology; new

components substitute previous devices. In contrast, embedded software

demands tools to deal with maintenance issues, which add to the cost of the

32 | P a g e

final product. For instance, for the US department of defence the software

maintenance cost for some mission critical applications represented $110 per

line of code, while the cost for non-embedded software was $5.60 per line of

code [Clark et al., 1999].

In the end, customised software in embedded systems for specific applications has

been constrained by the imbalance between hardware and software tools

available.

Some research in embedded software has focused on the practices and tools used

in order to increase the price/performance ratio of the products. For instance,

embedded software for avionics development is one of the pioneering sectors that

have introduced new tools in the integration (software into emerging hardware)

[Audsley et al., 2003]. In 2003, software/hardware verification and validation for

this commercial avionic application represented between 40-50 percent of the

total software integration budget [Prisaznuk, 2003]. The reason that motivates

research and development of efficient integration was not only the cost but also

safety issues [Storey, 1996].

In other products such as mobile phones, commercial pressure has led to the

increase of multi-functionality. Consequently, code size has increased

enormously. It is estimated that by 2010 a typical mobile phone will have 20

million lines of embedded software [Charette, 2005]. By the same year, every car

produced for General Motors Co. will require 100 million lines of code [Charette,

2005]. The consequences of adding complexity to the software often constrains

integration with hardware, and increases the cost.

Previous research to various strategies to facilitate integration of embedded

software is shown in [Napper, 1998]. According to this research, there are four

reasons that affect integration. The lack of good automation tools (39 percent)

33 | P a g e

and shortage of trained engineering resources (38 percent), design teams require

more software expertise (15 percent) and tools are becoming as complex as chips

(8 percent).

This study revealed that 47 percent of developers were interested in code reuse

and 27 percent in hardware/software co-design tools in order to deal with the

integration problem.

A recent study has reported a similar tendency to that, see [Napper, 1998]. It

shows how the gap between the software tools and practical implementation

affects developers’ productivity [Dormoy, 2005]. In the same context, some

leading European companies are becoming cautious regarding the inclusion of

new technology due to difficulties at the integration stage [Graaf et al., 2002].

The following sub-section surveys the science involved in integrating software

and hardware for low-cost embedded systems.

Tools are becoming
as complex as chips

8%

Design teams
require more

software expertise
15%

Shortage of trained
engineering
resources

38%

Lack of good
automatization tools

39%

Figure 2-5 Factors that affect embedded system design integration between the new
hardware and software (Aisys Inc. [Napper, 1998])

34 | P a g e

2.4 Supporting tools for embedded systems applications

For economic reasons, industry has set up initiatives to standardise the software

architecture in order to facilitate complex implementation scenarios [Dormoy,

2005], [Reynaert, 2008]. Nowadays these software tools are ubiquitous for some

applications [Teng, 2000], [Martin et al., 2001], [Maclay, 1997].

The evolution and impact of the most relevant approaches in the field of

hardware-software integration is presented next.

Perhaps the most influential software tools used to facilitate integration of the

software in hardware are the program compilers. In general, these programs are

able to link high-level language into machine code [Sammet, 1969]. The history

of compilers dates back to 1954 with the development of FORTRAN I compiler

[Backus, 1978]. The IBM team led by John W. Backus designed this compiler to

reduce the job of coding and debugging. The continuation of the compiler

evolution is detailed in “History of Programming Languages” [Bergin and

Gibson, 1996].

Although these tools emerged in non-embedded applications, they have been

adopted for embedded systems. In general, mid-level languages showed

important advantages in terms of the efficiency of the written code. In fact,

nowadays the most common language for embedded systems is “C” [Schlett,

1998], [Pont and Banner, 2002].

While the C programming language translates either mid-level or high-level

programmes into object-code [Bergin and Gibson, 1996] new tools have been

used to further simplify the codification problem. For instance, the unified

modelling language (UML) is a tool designed to specify, visualise, construct and

document software for general purpose systems [Lange et al., 2006]. UML shows

important advantages for desktop applications. Several efforts are being made in

35 | P a g e

order to design a well defined modelling language for embedded systems

[Kukkala et al., 2005], [Vanderperren and Dehaene, 2005]. Presently there is a

mismatch between UML design models and embedded software designs due to

timing constrains, limited memory and CPU power [Schatz et al., 2003], [Martin

et al., 2001].

A recent extension of UML is the system-modelling language (sysML) [SysML,

2005]. This approach is a customised UML for systems engineering applications

that can be used to integrate hardware and software. However, for embedded

systems this tool still lacks formalisation [Mwelwa, 2006].

Similar software tools to UML deal also with specific engineering requirements in

order to cope with the code-automation problem. For instance, integration

methods like model-based code generation [Schulz et al., 1998], [Hammarström

and Nilsson, 2006], [Nossal and Lang, 2002] are used for:

1) Design application with desired requirements rather than random

specifications.

2) Communicate design ideas across the design team.

3) Provide maintainability in the design.

Some advanced tools, based on auto-code generation, deal with the complexity of

acquisition and control of real implementations. For instance, LabView RT

[Mrad et al., 2000]; real-time MATLAB toolbox [Teng, 2000]; simulink/RTW

and hard real-time Linux environment [Quaranta and Mantegazza, 2001]; FWR

MATLAB toolbox (INRIA); TrueTime (University of Lund) [Henriksson, 2006]

and MATLAB RTW Toolbox MIRCOS 167 [Wörnle and Murillo-Garcia, 2002].

These technologies offer to speed-up the implementation of computational

designs.

36 | P a g e

In connection with all these software tools, dedicated hardware was developed in

order to provide an integral experimental toolset. This dedicated hardware has

been used to simplify the design-implementation loop. Two commercial

technologies like hardware in the loop [Maclay, 1997] and rapid prototyping

[Wootaik et al., 2004] have been extended recently in the automotive sector, in

particular, for safety critical applications [Nossal and Lang, 2002]. However,

software integration for low-cost applications has limited support using these tools

[Wörnle and Murillo-Garcia, 2002].

Limited support for low-cost embedded systems is related to:

1) Both limited memory and CPU performance that often constrain

implementations of relatively large and complex systems. It is unlikely to

increase the flexibility and adaptability of the system for different

circumstances [Henriksson, 2006].

2) Software tools have not been developed for some microcontroller families,

and even when they are supported, it requires specific knowledge of the target

hardware in order to use these tools efficiently [Nair et al., 2004],

[Hammarström and Nilsson, 2006].

3) There is a trade-off between the complexity of obtaining an accurate plant

model and the minimum performance requirements [Åström, 1985].

2.5 Conclusions

In this chapter, the history of embedded system hardware and the control

algorithms used for these platforms was reviewed.

Among the control algorithms used for embedded systems, Fuzzy Logic Control

(FLC) and hybrid approaches have shown satisfactory performance for different

applications. Therefore, it is worth considering a study to find practical methods

to support their implementation in low-cost embedded processors.

37 | P a g e

The open problem to implement FLC in embedded processor is related to the

complexity of reducing the rules efficiently without affecting the performance and

robustness of the system.

Similarly, other forms of control like Linear Quadratic Regulator (LQR) and H-

infinity have not been efficiently supported for low cost platforms. These

techniques can be integrated in common industrial practice where traditional

techniques cannot achieve the performance or robustness desired.

The latest technology in embedded systems came to reduce the cost and increase

the performance. However, the steep learning curves that accompany both

product development and modern control algorithms reduce the incorporation of

such technology in many industrial applications.

Some issues related to the optimisation of embedded systems were explored. It

was shown that the principal impediment to reduce the cost in embedded systems

is the clear imbalance between the hardware and software development. The

support in many embedded control applications is becoming costly and

ineffective. In this context, the creation of effective methods to facilitate

integration between control theory, software and hardware is required.

38 | P a g e

Chapter 3
The testbed

This chapter provides the description of the testbed used in this thesis. A model of

the plant along with the specifications of the control hardware is included.

Information related to the benchmark controller is introduced including

additional implementation and relevant issues of the testbed.

3.1 Introduction

Mechanical, electronic and control software for four different testbeds were

designed for this research. These mechatronic systems were: 1) a robot with three

degrees of freedom, 2) a micro-mobile robot (two driven wheels), 3) a servo

system based on a brushless DC motor and 4) a sub-actuated robot (inverted

pendulum). The design of these systems enriched the “know-how” of the whole

project. However, the only apparatus employed as a case study for published

papers was the inverted pendulum. The relative difficulty (non-linear system

SIMO5 system) of the inverted pendulum and the inherent instability in open loop

suggested its appropriateness.

3.2 General description of the testbed

Dynamic systems are described using differential equations; conventional control

algorithms are designed to maintain these systems stable. However, in low-cost

applications the system model must to include uncertainties in actuators, sensors

and controllers. This is due to the nonlinearities of the components that cause a

5 SIMO stands for “Single Input Multiple Output”.

39 | P a g e

mismatch between the ideal and actual model. When this mismatch is largely

inconsistent, it is almost impossible to design a proper controller by using

traditional approaches. In order to provide an accurate model of the testbed,

inclusion of the actuator dynamics was necessary. Chapter 7 includes a dynamic

model of the sensors of this testbed.

The inverted pendulum has two equilibrium points, one is stable (down position)

and the other is instable (upright position). The unstable equilibrium point is the

focus of the analysis presented in the next section.

Figure 3-1 shows the basic free body representation of the inverted pendulum.

Figure 3-1 Diagram of the inverted pendulum and its variables (figure taken from
[Bautista-Quintero et al., 2005])

mg

(Px, Py)

L/2

θ

F

x

40 | P a g e

Note that the control goal is not only to hold the pendulum upright, but it also to

maintain the cart at a pre-defined “set point” (SP) position on the track (Figure

3-1). As a result, it is essential to measure both the rod angle and the cart

position. In both cases, incremental encoder sensors are attached to the system to

achieve this.

Figure 3-2 shows the motor assembly used to drive the pendulum, along with the

gearbox and integrated encoder.

Figure 3-2: The pendulum is driven by a DC motor with integrated gearbox and
encoder, figure taken from [Bautista-Quintero et al., 2005].

Equation 3-1 defines the relation between the pulses given by the encoder and the

position of the pendulum cart:

boxGearEncs
r

CAR __Re
2

1 ⋅
⋅

=
πβ

Equation 3-1

where r is the radius of the pulley, Res_Enc is the resolution of the encoder and

Gear_Box is the reduction ratio of the gears in the motor.

For the rotational sensor in the base of the rod, another encoder is attached. The

resolution is given in Equation 3-2:

RODEncs _Re
2

2
πβ = Equation 3-2

r

Gearbox

(5.9:1)

Encoder

(512 ppr)

41 | P a g e

Table 3-1 Parameters of the sensors and actuator

Constant parameters Abbreviation Value Units
Pulley radius r 0.036 metres
Resolution of the
encoder_c Res_EncCAR 512 ppr

Resolution of the
encoder_r Res_EncROD 40006 Ppr

Gear box ratio Gear_box 5.9 Non-dimensional

An ARM microcontroller is used to drive the motor. It uses a 10-bit resolution

PWM signal that is adapted (conditioner circuit) and amplified (power amplifier)

in current and voltage in order to provide the control signal to the actuator. The

relation between the digital signal u and the real voltage applied to the system is

directly proportional to the constant β0 , see Figure 3-3.

Figure 3-3: The interface between the PWM output from the microcontroller and

the motor itself. For this system β0 = VM/2Bits_PWM.

Based on appropriate empirical tests, the actual parameters are listed in Table 3-2

3.2.1 Dynamic model of the testbed

Using the Euler-Lagrange representation [Spong and Vidyasagar, 1989] it is

possible to obtain a nonlinear mathematical model of the testbed: such an

6 Some of the experiments in this thesis will use encoders of 2000 and 1000 ppr

VM =19.1 V

PWM
(10 bits) POWER Motor u

u0

β0

42 | P a g e

approach considers the kinetic and potential energy of the mechanical chain and

obtains a model of the torque at each link.

Table 3-2: Real motor and sensor parameters

Parameter Description

β0=19.1/1024 Bits/Volt Dimension factor of the voltage (Bits_PWM =10
bits)

β1=6.8327e-5 Metres/Pulses Dimension factor of the linear position (related to
encoder, pulley and gearbox)

β2=1.57e-3 Radian/pulses Dimension factor of the angular position (related
to the rod sensor)

The centre of gravity of the rod is located at Px, Py, where:

θsinlxpx +=

θcoslPy =
Equation 3-3

The moment of inertia of the rod is J, which is approximately:

)(
12
1 2mLJ = Equation 3-4

The kinetic energy of the pendulum is given by the following equation,

222

2
)(

2
θ&&&

Jppm
yx ++ Equation 3-5

where the rod’s mass is m.

The total kinetic energy is given in Equation 3-6,

[] 2222

2
)sin()cos(

22
θθθθθ &&&&&

Jllxmx
M

K c ++++= Equation 3-6

where l is L/2 and Mc is the mass of the cart.

The Rayleigh dissipation function is:

43 | P a g e

22

2
1

2
1 θμμ θ

&& += xD x Equation 3-7

The potential energy is:

θcosmglP = Equation 3-8

In order to represent the general movement of the system we substitute the above

results in the Lagrange equation:

i
ii q

L
q
L

dt
d τ=

∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
& Equation 3-9

The general coordinates are:

Substituting Equation 3-6, Equation 3-7 and Equation 3-8 in Equation 3-9,

Equation 3-10 is obtained. This nonlinear expression represents the mathematical

model of the pendulum:

FxmlmlxmM x =+−++ &&&&&& μθθθθ sincos)(2

0sin)(cos 2 =+−++ θμθθθ θ
&&&&&& mglmlJxml

Equation 3-10

In order to simplify the model around the unstable equilibrium point (θ=0) we

have: ,sin θθ ≈ ,1cos ≈θ ,0sin2 ≈θθ& 0,0 =≈ θμμ θ
&&xx

Thereby the model given in Equation 3-10 can be approximated by Equation 3-11:

FmlxmM =++ θ&&&&)(

0)(2 =−++ θθ mglmlJxml &&&&
Equation 3-11

As previously noted, a DC motor activates the cart. The model considers force as

an input variable; therefore, it is crucial to find the dynamic relation between the

input voltage u0 and force F:

0120
12

2 ucxcxMu
r

x
r

x
r
J

F o
M +−−=+−−= &&&&&&

αα
Equation 3-12

0,,, 2121 ==== ττθ Fqxq

44 | P a g e

where:

JM is the inertia of the rotor of the DC motor

r is the radius of the pulley

α1 and α2 are factors that depend on the electric characteristics of the

DC motor

Substituting Equation 3-12 in Equation 3-11, Equation 3-13 is obtained:

012)(ucxcmlxmM =+++ &&&&& θ

0)(2 =−++ θθ mglmlJxml &&&&
Equation 3-13

Equation 3-13 shows the differential equation of the pendulum. In this, the states

x and θ are variables that are expressed in metres and radians respectively.

For space-state representation, the following vector state is chosen:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
•

•

4

3

2

1

x
x
x
x

x

x

θ

θ
χ Equation 3-14

Simplifying, by using state equations:

Equation 3-15

where:

Hmlcg
HcmlJg

Hmlcf
HmglmMf
HcmlJf

Hglmf

/
/)(

/
/)(
/)(

/

12

1
2

1

24

3

2
2

2

22
1

=
+=

=
+=
+=

=

u

g
g

x
x
x
x

ff
ff

x
x
x
x

dt
d

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

2

1

4

3

2

1

43

21

4

3

2

1

0
0

00
00
1000
0100

45 | P a g e

2)(MmlJmMH ++=

The output vector then is:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

4

3

2

1

2

1

0010
0001

x
x
x
x

y
y

y Equation 3-16

3.2.2 Model parameterisation

Although most of the parameters can be characterised (i.e. obtain the closest to the

real physical value) by direct measurement, for example, mass of the rod, the

coefficients of the motor depend on the load (mass of the cart and friction in the

rail), so that, these parameters require a different method in order to characterise

them. A method to obtain such values is proposed next.

1. Obtain a partial dynamic model of the system; for this testbed this is the

relation between the actuator and the linear movement of the cart.

2. Obtain the Laplace expression of this equation.

3. Find the solution in the time domain.

4. Obtain the parameters c1 and c2 based on measurements in the step input

response and mass of the cart (M), see Figure 3-4.

The differential equation of the cart movement is given by Equation 3-17.

0
2

1

2

u
c
cvv

c
M

=+& Equation 3-17

Using the Laplace transform of Equation 3-17, is obtained in Equation 3-18 is

obtained:

1
)(

2

1

2

+
=

s
c
M

c
c

sV Equation 3-18

46 | P a g e

The following graph shows the results obtained by finding the solution to the step

input and transforming to the time domain:

Figure 3-4. Open-loop response to the cart movement for a step input of 1.8 volts

step input

2

0
2

1 ,)1()(

c
M

ue
c
ctv

t

=

−=
−

τ

τ

Equation 3-19

Based on Equation 3-19 τ is obtained (time when 63.1% of the steady state value

is reached). In addition, using Equation 3-19 the values of c1 and c2 can be

calculated in the relation c1/c2 (i.e. voltage-velocity 1.8Volts/0.225 m/s). The

parameters characterised are shown in Table 3-3.

3.3 The benchmark control implementation

Throughout this thesis, PID is used as the common benchmark algorithm for

comparison with other forms of control. This benchmark control implementation

47 | P a g e

is described in this section. Description of the implementation is divided into

three parts: data acquisition, control algorithm and actuation.

Table 3-3 Real parameters of the testbed

Constant Symbol Value Units
Cart mass M 0.028 kilograms
Rod mass m 0.05 kilograms
Rod length l 0.305 metres
Rod inertia j 0.00155 kg metres2
Gravity
acceleration g 9.81 m/s2

Coefficient 1 c1 4.48 Nw/Volts
Coefficient 2 c2 38.14 kg metres/s

3.3.1 Data acquisition

The data acquisition system is designed to measure the rod and cart positions.

Both sensors attached to these links are incremental optical encoders. For the

measurements of the rod position (encoder shaft directly attached to the rod, see

Figure 3-1), the sensor used is RI 32-0/1000ER, (1000 ppr). Moreover, for the

measurements of the cart position (the encoder is indirectly attached to the cart

movement using a gearbox and a pulley Figure 3-1).

A digital filter is implemented in order to eliminate the noise produced during the

speed measurement process. A recursive filter is used for this application (see

Equation 3-20).

vvv ff
~)1(~~ αα −+= Equation 3-20

where:

fv~ Speed after the filter process

α Filter coefficient

This filter is based on obtaining the average of a signal.

48 | P a g e

∑
+−=

=
k

nki
ik x

n
x

1

1
Equation 3-21

Similarly, at the previous time instant, k-1, the average of the latest n samples is:

∑
−

−=
− =

1

1
1 k

nki
ik x

n
x Equation 3-22

Therefore,

[]nkk

k

nki
i

k

nki
ikk xx

n
xx

n
xx −

−

−=+−=
− −=⎥

⎦

⎤
⎢
⎣

⎡
−=− ∑∑ 11 1

1
1 Equation 3-23

This, after rearrangement:

[]nkkkk xx
n

xx −− −+=
1

1 Equation 3-24

If n
1=α :

1)1(−−+= kk xxx αα Equation 3-25

The weight of α determines how smooth and fast the response of the filter will be.

The bigger the value (near 1) the filter makes the change between the last sample

and the current sample smoother. For smaller values (near 0) the filter has a faster

response between the last sample and the current sample.

Such a filter is easy to implement even using resource constrained embedded

processors.

3.3.2 Control algorithm

The control algorithm is the classic PID; its implementation is as follows.

The PID is made up of three parts, 1) action proportional to the error, 2) action

proportional to the integral of the error and 3) action proportional to the derivative

of the error. Equation 3-26 describes the PID action:

49 | P a g e

⎥
⎦

⎤
⎢
⎣

⎡
++= ∫ dt

tdeTe
T

teKtU D
I

)()(1)()(ττ Equation 3-26

In order to obtain the integral part, several methods have been suggested for

implementation in digital computers, see [Ellis, 2004]. Here, a simple -yet

effective- integration method based on Euler’s integration is proposed. This

approximation is shown in Equation 3-27.

nsnn RTII += −1 Equation 3-27

where: R is the input, I is the integrator output, Ts is the sample time.

Equation 3-27 can be translated to the z-domain to facilitate the algorithm’s

implementation:

)()()(1 zRTzzIzI s+= − Equation 3-28

Likewise, the differential part is obtained based on the approximation of the

inverse Euler’s integration.

s

nn
n T

RRD 1−−
= Equation 3-29

Translating Equation 3-29 into the z-domain gives Equation 3-30

sT
zzRzRzD

1)()()(
−−

= Equation 3-30

The pendulum requires two control regulators, a PID to control the cart and a PD

to control the rod. The constants are, KPcart, KIcart, KDcart, KProd and KDrod.

The tuning process for the pendulum was based on trial-and-error using the

following rules:

1. Change KProd from 0 to a certain value, such that the rod remains stable in

the upright position regardless of the cart’s position (the cart may move

beyond the rail limits, in which case the experiment must be repeated).

Keep the value of KProd and record the speed of the cart (speedcart_openloop).

50 | P a g e

2. Gradually increase KDrod without causing instability to the pendulum

(likewise in the previous step regardless of the cart’s position). Keep the

value.

3. Put KProd=0 and KDrod=0, let the set point of the cart’s position equal zero

SPcart=0, and adjust KPcart in such way that the cart moves away from the

centre of the rail (assuming SP=0). Increase it until the cart has the same

speed as in step 1 (speedcart_openloop). Keep the value.

4. Increase the gain KDrod before the system becomes unstable. Keep the

value.

5. Apply all gains together and test the pendulum.

6. If the system is unstable reduce KPcart and KDcart

7. Adjust KIcart if there is a steady-state-error in the cart’s position (this action

will require an anti-windup reset).

The gains obtained for this testbed from the above procedure are: KPcart=-4.18

volts/metres, KIcart=1.5 volts/metres seconds KDcart=15.28 volts seconds/metres

and KProd=-31.38 volts/rad and KDrod=7.574 volts seconds/radians.

3.3.3 Actuation section

The system has only one actuator, a DC servomotor. There are some

considerations related to this motor in order to implement the code. For this

system, there are three aspects to consider: 1) anti-windup algorithm, 2) dead zone

in the actuator response, 3) sign change of the output using an external signal (in

order to control the direction of motion in the motor).

3.4 Experimental results of the PID implementation

The discrete version of Equation 3-15 (using Tustin’s method) of the model

presented in Equation 3-15 is shown in Equation 3-31.

51 | P a g e

)(

2106.0
0856.0
0013.0
005.0

)(

0013.17927.12585.00
02756.00070.00
01.00109.00013.10
00056.001

)1(kukxkx

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

−
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=+ Equation 3-31

Ts is the sample interval; like any control system (in a resource-constrained

design), the selection of the sample interval involves a trade-off between

performance and computational resources. For example, the shorter the values of

Ts, the harder it is to meet the deadlines to execute acquisition, control algorithm

and actuation tasks. Based on the dynamics of the plant and guidelines from

[Åström and Wittenmark, 1984] the sample interval is 0.01 seconds (10ms).

Figure 3-5 shows the block diagram of PID control used to stabilize the inverted

pendulum:

Figure 3-5 Inverted pendulum and PID controller block diagram. The cart is
controlled using a PID action and the rod is controlled using a PD action. The set
point for the cart is 0.3 metres and the set point to the rod is 0 radians (upright

position).

SP _ROD1

SP _CART1

KP _ROD

-K-

KP _CART

-K-

KI _CART- K-

KD_ROD

-K-

KD_CART

-K-

Discrete State -Space
Pendulum model 1

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Derivative 2

K (z-1)
Ts z

Discrete Derivative 1

K (z-1)
Ts z

Clock

CART AND ROD

Add5

Add3

 UD 1
z

1

 Sampling time
Ts

time

52 | P a g e

For the experiment shown in the block diagram of Figure 3-5, the gains of the

controller were KPcart=-4.18 volts/metres, KIcart=1.5 volts/metres seconds,

KDcart=15.28 volts seconds/metres , KProd=-31.38 volts/radians and KDrod=7.574

volts seconds/metres.

0 2 4 6 8 10 12
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Time (seconds)

P
os

iti
on

s
of

 th
e

ro
d

an
d

ca
rt

(ra
di

an
s

an
d

m
et

re
s)

Cart position (real)
Rod position (real)
Cart position (simulation)
Rod position (simulation)

Figure 3-6: Step input response (position of the cart and rod)
using PID algorithm, actual implementation.

The execution time of the PID control task is considered next: see Figure 3-7.

53 | P a g e

29.0µ 30.0µ 31.0µ 32.0µ 33.0µ 34.0µ 35.0µ 36.0µ 37.0µ 38.0µ
0

50

100

150

200

250

300

350

400

Sa
m

pl
es

Tasking time (μSeconds)

Figure 3-7: Histogram of the tasking time of the PID algorithm (Ts=10ms)

As an analysis of the results shows (Table 3-4), the execution time of the PID task

is short (mean duration 30 µs in a sample time of 10,000 µs) and does not vary

greatly (making it easy to schedule).

Table 3-4: Task timing statistics (PID algorithm)

Mean Standard
Deviation

Standard
error Min Max Range

33.8979μs 2.0002x10-6 5.77411x10-9 29.3667μs 37.7 μs 8.3 μs

Analysing more closely the interval between the actuation times (the actuation

“jitter”) for the PID algorithm the following results are obtained (Figure 3-8 and

Table 3-5).

54 | P a g e

0.010030 0.010032 0.010034 0.010036 0.010038
0

100

200

300

400

500

Sa
m

pl
es

Time (seconds)

Figure 3-8: Histogram of the jitter for PID algorithm (Ts=10ms)

Table 3-5: Jitter statistics.

Mean Standard
Deviation

Standard
error Min Max Range

0.01003 1.66607μs 4.80954e-8 0.01003 0.01004 8.36667μs

The range over which execution time varies is about 8 μs.

3.4.1 Implementation using different rod sensor resolutions

The numerical simulation and real-time signals of the cart’s position and of the

rod are compared in Figure 3-9 and Figure 3-10 . The lack of resolution in the rod

sensor affects both the performance and stability of the system. Specifically, the

plant behaviour becomes unpredictable when the 1000 ppr encoder is used to

acquire the angular position of the rod.

55 | P a g e

0 2 4 6 8 10 12
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t (

m
et

re
s)

cart (rod 4000 ppr)
cart (rod 2000 ppr)
cart (rod 1000 ppr)

Figure 3-9 Cart plots using PID control with 4000, 2000 and 1000 ppr rod sensor

resolution, actual implementation.

0 2 4 6 8 10 12
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Time (seconds)

R
od

 p
os

iti
on

 (r
ad

ia
ns

)

Rod position (encoder 4000 ppr)
Rod position (encoder 2000 ppr)
Rod position (encoder 1000 ppr)

Figure 3-10 Rod plots using PID control with 4000, 2000 and 1000 ppr rod sensor

resolution, actual implementation.

3.5 Choice of computing platform

The computing platform used in this research is a NXP LPC2129 microcontroller

device based on a 32-bit ARM7 core that costs about $1 (US).

56 | P a g e

Instead of using an operating system (OS) as the software-architecture for the

code to run this research employs a simple yet effective scheduler. This kind of

software architecture is used in applications with severely resource-constrained

control hardware. In this research, a co-operative scheduler was chosen for the

features related to simplicity and predictability in the processing of the tasks. The

programs were written in the C language for the microcontroller mentioned above.

As it was mentioned in the introduction, the scope of this research includes

multiple control strategies applied to low-cost microcontrollers used in

mechatronic systems. If the combination of different mechanical hardware,

actuators, sensors and electronic interfaces are chosen randomly, the outcome

would be catastrophic. On the contrary, this work combines strategies to select

the proper hardware and software using optimisation criteria based on system

performance and cost.

In the last decade, the market of embedded 32-bit processors started to narrow the

performance gap between embedded and desktop systems [Schlett, 1998] Figure

3-11.

Nevertheless, more recently the market for 32-bit devices has been growing with a

direct consequence that the cost for such processors has dropped substantially, see

Table 3-6.

57 | P a g e

Figure 3-11 Performance and cost of different families of processors marking the

boundaries of embedded control (source [Schlett, 1998])

Table 3-6 Average selling price for embedded processors (Source: [WSTS, 2005])

Device Type Average Selling Price
Microprocessor, 32-bit $92.89
Microprocessor, 16-bit $6.87
Microprocessor, 8-bit $3.72
Microcontroller, 32-bit $7.57
Microcontroller, 16-bit $4.23
Microcontroller, 8-bit $1.44
Microcontroller, 4-bit $0.78
Peripherals $6.08
Digital signal processor (DSP) $6.44
Average price for category $6.12

Based on these facts, the applications in this research will focus at this level of

small embedded computers of 32- bits that combine not only great computational

power but also low cost.

For mechatronic applications in which floating-point operations are performed,

32-bit devices show important advantages over other architectures.

3.6 Conclusions

This chapter was meant to show the technical aspects of the testbed (dynamic

model) and the benchmark controller (PID). It has shown all the theory elements

58 | P a g e

and practical knowledge to achieve a successful implementation. Moreover, the

control hardware was selected in a trade-off manner between system functionality

and overall cost.

59 | P a g e

Chapter 4
Supporting the implementation of
FLC for ES

This chapter’s focus is to explore the mechanism to implement FLC in resource-

constrained embedded systems.

4.1 Introduction

The chapter7 is divided in two parts. The first part shows an implementation of

Fuzzy Logic Control (FLC) using simple heuristic rules. The second part includes

an automatic learning method in order to tune the FLC algorithm. The inverted

pendulum is used for the real-time experiments, in addition, simulation of two

dynamic systems are presented.

4.2 FLC, implementation in embedded systems

Although principles of feedback control have been used for a long time, just in the

last century many new approaches in this field caused an important technological

impact in technology. Nevertheless there are a number of challenges that still

require – for example – the development of theory for local output-input stability

[Liberzon, 2003]. When dealing with a multi-variable, non-linear plant, etc. there

are certain restrictions in the adoption of adaptability schemes [Polycarpou, 1996].

7 Part of this chapter was presented in the paper: Bautista-Quintero, R. and Pont, M. J. "Is fuzzy
logic a practical choice in resource-constrained embedded control systems implemented using
general-purpose microcontrollers?" Proceedings of the 9th IEEE International Workshop on
Advanced Motion Control, Volume 2, pp.692-697. IEEE catalogue number 06TH8850. ISBN 0-
7803-9511-5

60 | P a g e

The emergence of “fuzzy logic” [Zadeh, 1965] and its introduction for non-trivial

control applications [Yamakawa, 1992] were seen by many researchers as a way

of avoiding the need for complex mathematical analysis and – instead – allowing

the use of simple linguistic rules when developing complex control systems

[Jinwoo et al., 1996]. However, in some applications, it has proved difficult to

identify a set of linguistic rules [Alvarez et al., 1999]. To address this problem,

self-learning inference methodologies have been developed. For example,

Hiroyoshi Nomura in 1996 reported a novel technique based on an inference

approach for an automatic learning fuzzy system [Nomura et al., 1996] used in

industrial applications for Matsushita Electric Co. Another approach is based on

adjustable fuzzy sets and rules under the principle of the on-line adaptive system

[Wang, 1998]. A similar technique for auto-tuning FLC using neural networks

was widely accepted [Jang, 1993].

All this effort to support the use of FLC has attracted the attention of industrial

developers of embedded systems [Jackson, 1997]. In the field of research, there

have been many previous contributions, in which “real” hardware has been

implemented, for example: [Yamakawa, 1992], [Song et al., 2005], [Faa-Jeng and

Po-Hung, 2006], [Magana and Holzapfel, 1998] and [Gaixin et al., 2002]. In

some cases, contributions are based on simulation environments, including

MATLAB and similar tools [Teng, 2000]. However, most studies fail to consider

the cost of implementing and tuning the control algorithm (take into account

optimisation of the CPU and memory usage). In this context, the computational

resources (CPU and memory) are often greatly constrained when compared to

equivalent desktop designs [Mrad et al., 2000].

The problem to implement FLC in resource-constrained systems is related to what

has been called the “rule explosion” problem [Bellman, 1996]. This can be

described as follows: if the system has n inputs and each input has m fuzzy sets

(membership functions) it requires mn rules. To deal with what may be a

61 | P a g e

significant rule set, it seems inevitable that it will require a fast processor with a

large supply of memory: such requirements are incompatible with the resource

constraints in many embedded designs.

In the next section, a simple FLC algorithm will be implemented using a heuristic

rule design. A set of experiments will be conducted to show the memory and

CPU performance on the embedded system employed.

4.3 The testbed

The ways in which an inverted pendulum may be used as an effective testbed by

researchers who wish to explore different design options for reliable embedded

systems have been previously described, see for instance, [Edwards et al., 2004]

and [Bautista-Quintero et al., 2005]. One reason for selecting such a testbed is

that this system is inherently unstable and provides a demanding control task, with

a simple – clearly visible – indication of performance. In addition, as this is a

well-studied control problem [Bishop and Dorf, 2004] and [Franklin et al., 1993],

a great deal of useful information is available to support the development of such

a testbed [Ogata, 2002].

The dynamic model of the testbed is shown in Chapter 3 and further information

is given elsewhere [Bautista-Quintero et al., 2005].

4.4 Design and implementation of the FLC

As noted in the introduction, the rule explosion problem arises as follows: if the

system has n inputs and each input has m fuzzy sets (membership functions), it

requires mn rules. For the work described in this Chapter, the number of inputs

(n) is 4 and it was determined (using experience of an expert) that at least 5 (m =

5) fuzzy sets would be required: this means that the number of rules would be

625.

62 | P a g e

In order to implement the controller using the ARM processor, the rule set was

“compacted”. Specifically, greater priority was given to the rules that control the

rod angle, with the control of the cart position treated as a lower priority. The

process of selecting a compact set of rules was performed off line with a desktop

computer running a C++ compiler and using experimental values obtained from

the testbed. Similar rule reductions could be achieved using other techniques

[Wang, 1998].

In Figure 4-1 illustrates how the resulting FLC controller was connected to the

pendulum system.

Figure 4-1: Block diagram of the inverted pendulum using a fuzzy logic algorithm

To make the operation of the fuzzy algorithm clear, Code 4-1 and Code 4-2 show

“pseudo code” for the two subroutines used in the embedded system to “fuzzify”

the real input variables (position and velocities of the cart and rod).

63 | P a g e

void fuzzy_inputs(float data_in,int num_var)
{
i=num_var;
crisp_in[i]=data_in;
for(j=0;j<num_input_mfs[i];j++)
 {
for(k=0;k<Coord_Points-1;k++)
 {xa=inmem_points[i][j][k];
 xb=inmem_points[i][j][k+1];
 if((xa<= crisp_in[i]) && (xb>=crisp_in[i]))
 {
 if(xa==xb)fuzzy_in[i][j]=1;
 else{ if(k==0)fuzzy_in[i][j]=(crisp_in[i]-xa)/(xb-xa);
 if(k==1)fuzzy_in[i][j]=1;
 if(k==2)fuzzy_in[i][j]=(crisp_in[i]-xb)/(xa-xb);
 }
 }
 }
 }
 }

Code 4-1: Crisp input into fuzzy world

In Code 4-1, the function fuzzy_inputs has two inputs (data_in, num_var). The

use of this function is to transform the real value of the position and velocity of

the cart and rod into “fuzzy variables”. For reasons of simplicity, the fuzzy sets

are based on trapezoidal and triangular shapes: the microcontroller requires only a

4-element array to represent such membership functions.

In Code 4-2, the function rules_eval calculates the minimum fuzzy value of each

rule and the consequent is evaluated based on the maximum value of each

strength rule. The output is calculated using a COG “defuzzification” method

using a singleton-output membership function [Passino and Yurkovich, 1998].

64 | P a g e

float rules_eval(char set_num)
{
for(j=0;j<num_inputs;j++)
 {
 for(i=0;i<num_rules[set_num];i++)
 {
 a=rules[set_num][i][j];
 ante[j][i]=fuzzy_in[j][a];
 }
 }
for(i=0;i<num_rules[set_num];i++)
 {
 a=rules[set_num][i][num_inputs];
 conse[set_num][i]=outmem_points[set_num][a];
 }
 suma_num=0;
 suma_den=0;

 for(i=0;i<num_rules[set_num];i++)
 {
 min[i]=ante[1][i];
 for(j=0;j<num_inputs;j++)
 if(ante[j][i] < min[i])
min[i]=ante[j][i];
 sum_num=sum_num+conse[set_num][i]*min[i];
 sum_den=sum_den+min[i];
 }if(sum_den==0){return 0;}
return sum_num/sum_den;}

Code 4-2 Function to evaluate fuzzy rules and calculate the output

65 | P a g e

float rules[num_sets][num_rules1][no_ante+no_conse]=
{
{
{ 2, 1, 2, 1, 2 },// ang zero & vel_ang zero then volta zero
{ 1, 1, 2, 1, 3 },// ang - & vel_ang zero then volta +
{ 0, 1, 2, 1, 4 },// ang -- & vel_ang zero then volta ++
{ 3, 1, 2, 1, 1 },// ang + & vel_ang zero then volta –
{ 4, 1, 2, 1, 0 },// ang ++ & vel_ang zero then volta –
{ 1, 0, 2, 1, 0 },// ang - & vel_ang -- then volta –
{ 3, 2, 2, 1, 4 },// ang + & vel_ang ++ then volta ++
{ 2, 0, 2, 1, 3 },// ang zero & vel_ang – then volta +
{ 2, 2, 2, 1, 1 },// ang zero & vel_ang + then volta –
{ 2, 1, 2, 1, 2 },// car zero & vel_car zero then volta zero
{ 2, 1, 1, 1, 3 },// car - & vel_car zero then volta +
{ 2, 1, 0, 1, 3 },// car -- & vel_car zero then volta +
{ 2, 1, 3, 1, 1 },// car + & vel_car zero then volta –
{ 2, 1, 4, 1, 1 },// car ++ & vel_car zero then volta –
{ 2, 1, 1, 0, 0 },// car - & vel_car – then volta –
{ 2, 1, 3, 2, 3 },// car + & vel_car + then volta +
{ 2, 1, 2, 0, 1 },// car zero & vel_car – then volta –
{ 2, 1, 2, 2, 3 } // car zero & vel_car + then volta +
}
};

Code 4-3: Set of rules to evaluate rules and calculate the output

The rules are expressed numerically in a three dimensional array (Code 4-3). At

the system output, singleton membership functions are implemented in order to

use the minimum amount of memory for the actuation function, see Code 4-5.

The step input response to the cart position is shown in Figure 4-2, where the

simulation of the FLC (using a small set of rules) degrades its performance in the

real system. Additionally, the overall performance of the real system compared

with the result shown in Figure 3-6 (PID) performance is largely inconsistent with

the original design presented (using PID control).

66 | P a g e

float inmem_points[num_inputs][num_max_MSF][Coord_Points] =
{ {
 { -30.000000, -30.000000, -10.000000, -5.000000 },
 { -10.000000, -5.000000, -5.000000, 0.000000 },
 { -5.000000, 0.000000, 0.000000, 5.000000 },
 { 0.000000, 5.000000, 5.000000, 10.000000 },
 { 5.000000, 10.000000, 30.000000, 30.000000 }
 },
{
 {-5.000000, -5.000000, -3.000000,0.000000 },
 { -3.000000, 0.000000, 0.000000, 3.000000 },
 { 0.000000, 3.000000, 5.0000000, 5.0000000 }
},
 {
 { -40.000000, -40.000000, -32.000000, -21.000000 },
 { -32.000000, -21.000000, -21.000000, 0.000000 },
 { -21.000000, 0.000000, 0.000000, 21.000000 },
 { 0.000000, 21.000000, 21.000000, 32.000000 },
 { 21.000000, 32.000000, 40.000000, 40.000000 }
 },
{
 {-40.000000, -40.000000, -20.000000,0.000000 },
 { -20.000000, 0.000000, 0.000000, 20.000000 },
 { 0.000000, 20.000000, 40.000000, 40.0000000 }
 }
};

Code 4-4: Rules and fuzzy sets used for the sub-actuated robot fuzzy control

float outmem_points[1][num_conse1] =
{
 {
 { -16.000000 },
 { -12.000000 },
 { 0.000000 },
 { 12.000000 },
 { 16.000000 }
 }
};

Code 4-5: Singleton membership function

67 | P a g e

0 2 4 6 8 10 12
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (seconds)

P
os

iti
on

 f
th

e
ro

d
an

d
ca

rt
(ra

di
an

s
an

d
m

et
re

s)

Cart position (simulation)
Rod position (simulation)
Cart position (real)
Rod position (real)

Figure 4-2 Step input response of fuzzy controlled implemented in ARM 7
microcontroller

The measurements of the task timing and actuation jitter for the FLC system are

presented in Figure 4-3, and Figure 4-4.

435.0µ 440.0µ 445.0µ 450.0µ 455.0µ
0

50

100

150

200

250

300

350

400

Sa
m

pl
es

Time tasking (μ sec)

Figure 4-3: Histogram of the task timing of FLC algorithm.

68 | P a g e

Table 4-1: Task timing for the FLC algorithm

Mean Standard
Deviation

Standard
error Min Max Range

442.7μs 3.919 μs 8.7x10-8 434.4 μs 456.2μs 21.8 μs

0.010385 0.010390 0.010395 0.010400 0.010405 0.010410
0

50

100

150

200

Sa
m

pl
es

Time (sec)

Figure 4-4: Jitter histogram of FLC algorithm

Table 4-2: Jitter statistics of the FLC algorithm

Mean Standard
Deviation

Standard
error Min Max Range

0.0104 2.439μs 1.344x10-7 0.01039 0.01041 25.0μs

The task timing for this FLC controller that incorporates only 18 rules (625 rules

constitute the complete set) averages 443 μs (compared with around 30 μs for the

PID controller). There is also significantly more actuator jitter (in the test

implementation): a range of 25 μs (compared with around 9 μs for the PID

algorithm).

69 | P a g e

4.5 Comparing the algorithms

The differences between the two controller implementations are summarised in

the Table 3-4.

Table 4-3: Comparing the two controller implementations

Parameter PID Fuzzy
Task timing (% of tick interval) 0.303% 4.42%
Actuator jitter (% of tick interval) 0.09% 0.25%

RAM memory requirement 1284 bytes 2251 bytes
Constants used 128 bytes 961 bytes
Flash memory program 4044 bytes 4740 bytes

Please note that, where specialist hardware (with support for FLC) is available,

this is likely to have an impact on the results obtained.

4.6 Neuro-FLC approach for embedded systems

The difficulty of designing and developing reliable code using a heuristic FLC for

embedded systems suggested that an implementation technique should be

considered. A self-learning algorithm called Adaptive-Network-Based Fuzzy

Inference System (ANFIS) approach was employed for this purpose.

ANFIS algorithm (described in [Jang, 1993]) automates FLC tuning using linear

regression models to minimise the sum of the square errors (inputs-output map)

between a functional controller and the FLC. However, the rule explosion

problem limits implementation in low-cost processors.

There have been various attempts to deal with what may be a significant rule

reduction in fuzzy-logic controllers. Some methods developed in 1969 address

the problem using clustering methods [Ruspini, 1969]. Other methods have used

neural network algorithms [Heckenthaler and Engell, 1994] which are based in

probabilistic approaches that change according to the application. A technique for

70 | P a g e

rule reduction is described in [Rovatti et al., 1995] in which some conditions can

be discarded by Boolean logic. Alternatively, a new technique presented more

recently [Bezine et al., 2000] decouples a multivariable Fuzzy system in n

subsystems in order to control them as a distributed control system. In this

context, the rule explosion problem can be addressed by dividing the general

system in sub-blocks.

Decoupling FLC implies a division in subsets of “n” controllers dedicated to

maintain stable every subsystem. These controllers should be robust enough to

control the local dynamic interaction in the whole plant. Since stability issues

have not been presented, an empirical design is presented in order to reduce the

number of MFs. In Figure 4-5 the decoupling approach is shown. The number of

rules in the system is MFn and by using the decoupling rule reduction algorithm it

becomes:)2(
2

MFn .

Figure 4-5 Comparing the traditional FLC structure of full rule evaluator system
and the decoupled approach.

Fuzzy_in(n)

Full Rule

Evaluator

Fuzzy_in(1)

Fuzzy_in(2)

Fuzzy_in(n)

*

*

deFuzzy_out(1)

defuzzy_out(2)

defuzzy_out(m)
*

*

Partial Rule

Evaluator 1

Partial Rule

Evaluator 2

Partial Rule

Evaluator n

Fuzzy_in(1)

Fuzzy_in(2)

*

*

Fuzzy_in(n-1)

Fuzzy_in(3)

Fuzzy_in(4)

deFuzzy_out(1)

deFuzzy_out(2)

deFuzzy_out(n)

Rules = MFn

Rules =)2(
2

MFn

*

*

71 | P a g e

4.6.1 Decoupling example

A two-degrees-of-freedom (2-DOF) robot is presented to implement a decoupled

ANFIS FLC algorithm. An independent controller is dedicated to provide

stability to the position for each link. Interaction between links is considered a

disturbance for each controller. So that, in order to assure that disturbances do not

exceed the actuator limits, an estimation of this interaction between the links of

the robot must be obtained. A dynamic model is used to perform such estimations.

The dynamic model is taken from [Reyes and Kelly, 2001] using Euler-Lagrange

equation see Equation 4-1. The 2-DOF robot is shown in Figure 4-6

Figure 4-6 Two degree of freedom Robot prototype developed by R. Kelly, see [Kelly
and Santibanez, 2003].

τ=⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡ •

••

••
••

)(
)(

),(),(

),(),(
)()(
)()(

2

1

2221

1211

2221

1211

qG
qG

q
qqCqqC

qqCqqCq
qMqM
qMqM

 Equation 4-1

72 | P a g e

where:

[]
[]
[]

[]
)sin()(

)sin()sin()(
0),(

)sin(),(

)sin(),(

)sin(),(

)(

)cos()(

)cos()(

)cos(2)(

21222

2122112111

22

1221221

21221212

2221211

2
2
2222

2221
2
2221

2221
2
2212

21221
2
2

2
12

2
1111

qqglmqG
qqglmqglmlmqG

qqC

qqllmqqC

qqqllmqqC

qqllmqqC

IlmqM

IqlllmqM

IqlllmqM

IIqllllmlmqM

c

cc

c

c

c

c

cc

cc

ccc

+=
+++=

=

=

⎥⎦
⎤

⎢⎣
⎡ +−=

−=

+=

++=

++=

+++++=

•

••

•••

••

Where the parameters of the robot are shown in Table 4-4.

Table 4-4 Robot parameters (taken from [Kelly and Santibanez, 2003])

Description Notation Value Units
Length of link 1 l1 0.45 M
Length of link 2 l2 0.45 m
Distance to centre of mass (link 1) lc1 0.091 m
Distance to centre of mass (link 2) lc2 0.048 m
Mass of link 1 m1 23.9 kg
Mass of link 2 m2 3.88 kg
Inertia of link 1 i1 1.266 kg m2
Inertia of link 2 i2 0.093 kg m2
Gravity acceleration g 9.81 m/s2

Due to the high requirements in memory to implement a FLC, the decoupling

technique offers important reduction in terms of processing time and memory.

Implementation of such technique needs two decoupled fuzzy controllers (one for

each link). The interaction torque (force) between the robot link1 due to link 2 is

shown in Equation 4-2

[]
)sin(

)sin(2)cos(3

2122

222122221
2
221

qqglm

qqllmIqlllmInte

c

ccc

++

−++=
•

τ Equation 4-2

73 | P a g e

Now the torque (force) interaction of link 2 due to link 1 is shown in Equation 4-3

)sin()sin(2122122122
qqglmqqllmInte cc ++=

•

τ
Equation 4-3

Having equations Equation 4-2 and Equation 4-3 the interaction among the links

can be plotted in order to estimate disturbances for each link. In Figure 4-7 the

level of interaction among the direct torque effect and the interaction torque is

shown.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-100

-80

-60

-40

-20

0

20

40

60

80

100

To
rq

ue
 (N

-m
)

Time (sec)

 Total Torque link 1
 Interaction Torque link 2 in Link 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
-4

-2

0

2

4

6

8

10

 Total Torque link 2
 Interaction Torque link 1 in Link 2

To
rq

ue
 (N

-m
)

Time (sec)

Figure 4-7 Relation of the total load torques against the interaction between links.

For this simulation, the dynamic model was tested in close loop with a PID

controller using the following gains: Kp1=350 N-m/rad, Ki1=50 N-m/seconds

radians, Kd1=35 N-m-seconds/rad, Kp2=350 N-m/rad, Ki2=50 N-m/seconds and

Kd2=35 N-m seconds/rad.

Using an ANFIS algorithm a FLC is trained in order to adjust the MF of the

controller, see Figure 4-8. The trajectory used to train the system was a linear

segment with parabolic bends (LSPB) using an acceleration path of 9.03 rad/s2

with a maximum speed of 6.28 rad/s.

74 | P a g e

Figure 4-8 FLC trained using an ANFIS algorithm based on real-time acquisition.
The acquisition is taken from the system in close loop using an auxiliary algorithm

to teach the FLC.

For comparison purposes, the control system without the decoupling technique

has a four input system (positions and velocities of links 1 and 2) and two outputs

(actuators of links 1 and 2). Using seven Gaussian MFs, the FLC system has 2401

rules for each output.

The system’s response for a step input is shown in Figure 4-9, the two links are

meant to reach 1 radian.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Te
ta

1
(ra

d)

Time (sec)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Te
ta

2
(ra

d)

Time (sec)

Figure 4-9 System step-response (q1 –teta1– and q2 –teta2–) using a FLC trained by

an ANFIS algorithm.

The structure of the FLC controller and plant interconnection is shown in Figure

4-10. Positions and velocities of each link are fed back to the control system. The

response is poor in terms of performance and the number of rules makes

implementation in small resources impractical. By contrast, when the system is

75 | P a g e

divided to two FLC trained with the same methodology an important reduction in

memory and execution time can be obtained. See Figure 4-11.

Figure 4-10 Structure of controller and plant using a full set of rules.

The decoupling approach reduced the number of rules and improved the system’s

performance.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
ta

1
(ra

d)

time (sec)
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

time (sec)

Te
ta

2
(ra

d)

Figure 4-11 System step-response (q1 –teta1– and q2 –teta2–) using a decoupled FLC

trained by an ANFIS algorithm.

Figure 4-12 shows the structure of the decoupled controllers, which has two

inputs (position and velocity of each link) and one output each actuator (u1 and

u2). Considering four MF in each controller the system has 32 rules to control the

whole plant.

76 | P a g e

4.6.2 Implementation guidelines

A method to use these tools (FLC, ANFIS, decoupling-control) can be

summarised in the flow diagram shown in Figure 4-13. It is a practical way to

identify the number of rules required according to the resources available.

Figure 4-12 Structure plant and decoupled controlled (2 inputs, 1 output each, 4
triangular MF, 32 rules), where the non-linear model of the robot is in the box

robot2DOF.

77 | P a g e

Figure 4-13 Flow diagram of the rule optimisation process.

4.7 Case study 1 (Servomotor control)

Servomotor position control is one of the most common tasks demanded in

industry [Dote, 1990], [Godfrey, 2005], [Chang et al., 2001]. New approaches to

make easier tuning and improve robustness for hostile environments have been

developed. This case study presents a method to implement a FLC using a low-

cost and off-the-shelf microcontroller. A numerical model is presented for

validation purposes.

The model of the servomotor and load is presented in Equation 4-4. The variables

are the velocity and position of the shaft, the external torque disturbance is (Tex).

the motor constant Km (Volts/rad/s), the stator resistance R (Ohms), the motor

inductance L (Henry) and the inertia moment Jm (Kg m2). The states are the

/* this system don’t require
optimization, it can be implemented
the complete rule fuzzy set in the
embedded processor */

Calculate
time tasking

TimeT<TIC
Use without decouple
the control system

TIC can be
greater?

Performance
required? Increase MF

Can be
fewer MF?

Use Decoupling

approach

RTS

i

Y

Y

Y

Y

/* decoupling approach is one
alternative to control if the system can
meet some requirements related to
interaction among the variables */

78 | P a g e

velocity of the motor and armature current the inputs are armature voltage and

external torque disturbance.

u

L

Jmx

L
R

L
K

J
K

x
m

m

m

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
+

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
=

01

100
& Equation 4-4

A block diagram of the system is shown in Figure 4-14.

Figure 4-14 Model of DC motor with mechanical load with position and velocity

feedback. Data [1:n,0,0], Data[0,1:n,0] are the input vectors used for training, and
Data[0,1:n,0] output vector for the training.

A PID controller is employed to train the FLC. The vector Data (where inputs are

data[1:n,0,0] and data[0,1:n, 0] and outputs are data[0,0,1:n]).

Following the flow diagram shown in Figure 4-13 the suitable sample period is

given according to a specific number of MF are chosen in order to implement the

system.

Once the system is trained the implementation was tested in the real plant, see

block diagram Figure 4-15.

∫ KP Plant

KD

∫ ΙΚ

SP

Disturbance
Torque (Tex)

Data[1:n,0,0]

Data[0,0,1:n]

Data[0,1:n,0]

Armature
current

79 | P a g e

Figure 4-15 Actual implementation diagram of the FLC for two-inputs one-output
system.

The FLC block contains the information to control the plant along the range of

movement (previously trained). A comparison between PID and Neuro-FLC (N-

FLC) showed the efficiency for this simple dynamic system. A step input

response is shown in Figure 4-16. The performance of the system using FLC is

similar to the PID design.

0 1 2 3 4 5
-0.025

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

po
sit

io
n

(m
ts

)

Time (sec)

 PID
 Fuzzy

SP=0.25 [0,2]
SP=0.00 [2,5]

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

ve
lo

cit
y

(m
/s

)

Time (sec)

 PID
 Fuzzy

Figure 4-16 Actual implementation of the DC motor, it shows the position and

velocity responses using both PID and FLC controllers. The set-point of 0.25 metres
in the interval 0 to 2 seconds and 0 metres from 2 to 5 seconds.

Table 4-5 comparing the resources of memory and task timing in the testbed.

Element and resource PID FLC
Average execution-time 20.5 x10-6 s 82.8 x10-6 s
RAM (variables in program) 1276 Bytes 1350 Bytes
FLASH (Program memory) 3156 Bytes 3556 Bytes
Constants used in the program 112 192

SP dt
d

Real Plant

Disturbance
Torque

FLC
Armature
current

80 | P a g e

For this system, 16 rules were required and memory requirements are shown in

Table 4-5.

4.8 Case study 2 (Inverted pendulum)

For this case study, two controllers were used; one dedicated to control of the cart

dynamics, and the other the rod dynamics. The FLC is tuned using a PID system

described in the previous chapter.

As in the previous case study, position and velocity are fed back to the controller

and the two FLCs provide the control signal to the plant (see Figure 4-17).

Figure 4-17 Distributed control using two FLCs for a system with four inputs and
one input

For this case study, four MFs were used for each FLC, having 32 rules in total. In

order to use the minimum resources while keeping the plant stable, the guidelines

presented in the flow diagram shown in Figure 4-13 were followed.

Although the FLC tuned MF based on the PID controller, the system still showed

important limitations in its ability to maintain a robust performance in presence of

actual uncertainties. See the comparison between the two approaches in Figure

4-18.

81 | P a g e

The resources required to implement the N-FLC approach simplify enormously

the empirical rule selection and tuning process. Additionally, using the

decoupling technique, an important rule reduction is achieved. However, for this

application (inverted pendulum), uncertainties caused for the inherent noise in the

acquisition are difficult to parameterized during the self-learning algorithm. That

limits the performance compared with the original controller (PID).

0 1 2 3 4 5 6 7 8 9 10 11 12

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

 Cart
 Rod

Po
sit

io
n

ca
rt

(m
ts

) r
od

 (r
ad

)

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12

-0.04
-0.02

0.00
0.02

0.04
0.06
0.08

0.10
0.12

0.14
0.16

0.18
0.20
0.22

0.24

 Cart
 Rod

Po
sit

io
n

ca
rt

(m
ts

) r
od

 (r
ad

)

Time (sec)

Figure 4-18 Actual control implementation of the pendulum, using the auto-learning

approach. Step response to the system using PID control (left) and FLC (right).

Table 4-6 Comparing the resources of memory and task timing in the testbed

Element and resource PID FLC
Average execution time 32 x10-6 s 176 x10-6 s
RAM (program data) 1284 Bytes 1480 Bytes
FLASH (program code) 3952 Bytes 4480 Bytes
Constants used in the program 128 300

4.9 Conclusions

In this chapter, the performance and resource requirements of a “conventional”

(PID) controller and a fuzzy logic controller were compared, using an inverted

pendulum testbed. In each case, the controller was implemented on a low-cost

microcontroller with limited CPU and memory resources. The results obtained

suggest that, as expected, the resource requirements of the FLC design outweigh

those of the “conventional” controller in this study. It is suggested that – where

82 | P a g e

embedded systems have severe resource constraints and “off the shelf”

microcontrollers are used – fuzzy control (at least in the form implemented here)

is unlikely to be a practical option for non-trivial control systems.

N-FLC was then considered as a means of alleviating the problems of tuning the

controller and the lack of performance.

Numerical simulation of the self-learning algorithm shows important advantages

in terms of simplicity of design and performance. Nevertheless, the case studies

suggested that FLC is limited in terms of memory, execution time and

performance when compared with PID.

83 | P a g e

Chapter 5
Assessing resource requirements for
the optimal LQR

This chapter explores the linear quadratic regulator (LQR) technique and its

implementation requirements using a resource-constrained embedded system.

5.1 Introduction

As discussed in the literature review (Chapter 2), LQR control emerged as an

alternative algorithm in embedded systems in order to improve robustness and

performance [Gully and Coleman, 1981]. The theory behind LQR deals with

minimisation of a cost function [Bishop and Dorf, 2004]. In this chapter, an

appropriate state-feedback controller is proposed to optimise the energy used in

the plant controller (inverted pendulum). The goal is to show an analytical

approach combined with the techniques to implement a robust control algorithm

in resource-constrained embedded system. The particular focus of the chapter is

on the LQR control algorithm and its comparison with the classic PID (showed in

Chapter 3)8.

This chapter employs an extended and modified version of the inverted pendulum

testbed [Edwards et al., 2004] in order to explore the impact of different control

algorithms on the system performance and resource requirements.

8 Some of the elements presented in Chapter 5 have been published in R. Bautista-Quintero et.
al. “Comparing the performance and resource requirements of “PID” and LQR algorithms
when used in a practical embedded control system: A pilot study”, Proceedings of the UK
Embedded Forum, October 2005.

84 | P a g e

5.2 The testbed

As mentioned in Chapter 3, the inverted pendulum testbed is a system inherently

unstable and provides a demanding control task, with a simple – clearly visible –

indication of performance. The present work employs an extended and modified

version with an incremental sensor (with simple, double and quad sensor

resolution routines) and interchangeable mechanical hardware (mass and length of

rod) in order to explore the impact of different control algorithms on the system

performance and resource requirements.

During the course of the chapter, there are two main comparisons: the

performance and robustness of these two different control algorithms when the

mass and length of the rod is changed. The frequency response of the two

algorithms is determined and it is compared with results obtained through the

numerical simulations. Resources required for both algorithms are also presented

for comparison purposes.

5.3 Design of an LQR controller

When the dynamic model of the system is available, it is possible to design a

state-feedback controller. Modern control based on state-space methods (such as

the LQR) is explored. This control algorithm is commonly used for multivariable

linear systems [Chen, 1999]. For this particular problem, LQR is appropriate since

the aim is not only to maintain the pendulum in an upright position but also to

control the position of the cart. Additionally, the system control aims to minimise

the energy consumed for the actuator. This method uses a cost function based on

the solution of the differential Riccati equation (see [Franklin et al., 1993] for

more details).

In Equation 5-1, Q and r that are positive-definite matrices. The second term of

this equation represents the expenditure of the energy of the control signal. The

85 | P a g e

matrices Q and r determine the relative importance of the error and the

expenditure of this energy, however the formulation assumes that vector u(t) is

unconstrained. Consequently, in a practical implementation, it is important to

make a trade-off between the energy used and the performance of the system.

Vector x consists of four states (position of the cart x1, velocity of the cart x3,

position of the rod x2, velocity of the rod x4) multiplied by the gain vector (k) to

provide the input voltage. Therefore the control law u=-kx is employed in order

to minimise the quadratic cost function to the form:

 Equation 5-1

For this application, the goal is meant to minimize not only the energy used in the

system but also keep the system stable with effective robustness. The system is

stable and the current that flows in the motor is minimal according to the cost

function.

Q and r are positive-definite and are used to define the weights of the states

(variables, positions and velocities of the cart and rod).

The relationship between the elements in the diagonal of the Q matrix represents

the relative importance of the four terms (position and velocities of the cart and

rod) to the control law. For the first approach, the same value was chosen in each

“slot”. As far as r is concerned, altering the value can change the speed of

response of the controlled system (larger values of r make the response slower).

The values shown in Equation 5-2 were chosen according the numerical simulator

(MATLAB). The aim was to reach the goal in the shortest rise-time without

exceeding the maximum actuator limit. For this particular system the actuator

limit is Vmax (u(t) < Vmax =19.1 volts).

})()()({
2
1 2

0
krukQxkxJ T

k
+= ∑

∞

=

86 | P a g e

[]12,10,350,120diagQ =

r=0.1

Equation 5-2

Based on the discrete model and using an LQR controller, the gains for the linear

version around equilibrium point are, k1=-4.18 volts/radians, k2=-33.27

volts/radians, k3=-18.09 volts-seconds/radians and k4=-7.89 volts-seconds/radians.

Figure 5-1: Block diagram of LQR controller and testbed

5.4 Implementation of an LQR controller

In this implementation of the LQR algorithm, the microcontroller obtains readings

directly from two states from the system (the cart position and the rod angle). In

addition, it approximates two states (velocity of the cart, velocity of the rod).

To determine the velocity of the rod, its position is measured periodically (at

known time intervals, in this case, every 4 ms) and used as a simple “pseudo

derivative” (first order derivative) to approximate the velocity. Then a low-pass

filter is implemented to reduce the impact of the high frequency harmonics

Sum 1

Sum

Step

Rod

G4

k4

G3

k3

G2

k2

G1

k 1

Discrete State -Space

y(n)=Cx(n)+Du(n)
x(n+1)=Ax(n)+Bu(n)

Discrete Derivative 2

K (z-1)
Ts z

Discrete Derivative 1

K (z-1)
Ts z

Demux

Cart

87 | P a g e

generated in this approximation. In this case, the algorithm employed is the

moving-average filter presented in Section 3.3.1 An identical procedure was

followed when calculating the cart position.

In order to determine the control feedback gains, the discrete function for linear

quadratic regulator (dlqr9) is used (based on the discrete model of the pendulum).

Figure 5-2 shows the step response of the resulting implementation.

0 2 4 6 8 10 12
-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Time (seconds)

P
os

iti
on

 o
f t

he
 ro

d
an

d
ca

rt
(ra

di
an

ds
 a

nd
 m

et
re

s)

Rod position (real)
Cart position (real)
Rod position (simulation)
Cart position (simulation)

Figure 5-2 Actual implementation of the system using LQR controller, a step input
for the cart position is set (SPcart = 0.3 metres).

The PID control implementation is shown in Section 3.4 and it is compared in the

next section.

9 MATLAB function

88 | P a g e

5.5 Comparing the simulations and system
implementations

In this simple comparison, some features are measured from the step response

given from the numerical simulation and the real-time implementation. The data

is presented in both Table 5-1 and Table 5-2.

Please note that – based on this comparison - LQR seems to be both more

accurate and faster than PID. However, in situations with high frictional forces

(higher than in the present testbed), the ability of PID control to meet the set point

may be particularly advantageous (see Figure 3-6).

Table 5-1: Features of the system using LQR with a SP=0.3 metre.

 Simulation Testbed

Feature For the cart: For the rod: For the cart: For the rod:
Undershot 12.32 mm 0 rad -50.8 mm 0.042 rad
Overshot 0 mm 0.025 mm 0 mm 0.057 rad
Steady state error 0 mm 0 mm 10.49 mm 0.01157 rad
Rising time 4 s - 99% at 4.5 s -

Table 5-2: Features of the system using PID with a SP=0.3 metre.

 Simulation Testbed

Feature For the cart: For the rod: For the cart: For the rod:
Undershot 11.9 mm 0 mm 27.3 mm 0.046 rad
Overshot 0 mm 0 mm 50.1 mm 0.037 rad
Steady state error 0 mm 0 mm 0 mm t=20s 0.0092 rad
Rising time 2 s - 3.2 s -

5.6 Comparing the basic performance of the two controllers

The performance of the two controllers in terms of dynamic set-point is compared

in this section. One effective way of comparing the performance of different

control algorithms is to consider the response of the controlled system to a

89 | P a g e

dynamic set point [Reyes and Kelly, 2001]. In the comparisons described in this

section, the set point (SP) used is specified as follows:

)sin(wtASP = Equation 5-3

The initial frequency used was 1 Hz and this was reduced to 0.5 Hz, 0.25 Hz,

0.0125 Hz, 0.0625 Hz, and finally 0.03125 Hz. Identical tests were performed for

the LQR and PID controllers and the results are presented in this section.

Overall, if PID is used in SISO systems the design may require simple rules for

tuning. However, the MISO approach presented in this chapter (which requires

several objectives to perform simultaneously) LQR control may be a more

appropriate choice. In this context, the frequency response of the two algorithms

shows important results to be discussed.

As can be seen from Figure 5-3 and Figure 5-4, the system response controlled by

PID has more amplitude attenuation due to the frequency than the plant using

LQR.

Additionally, the system under PID control tries to eliminate the effect of a sub-

harmonic frequency presented in the experiment shown in Figure 5-4.

90 | P a g e

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Set-Point
Rod Position

Figure 5-3: LQR Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=1Hz.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Set-Point
Position of the cart

Figure 5-4: PID Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=1Hz.

91 | P a g e

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Cart position
Set-Point

Figure 5-5: LQR Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.5Hz.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t P
os

iti
on

 (m
et

re
s)

Cart Position
Set-Point

Figure 5-6: PID Tracking control using a dynamical SP=2000 sin (wt),

Frequency=0.5Hz.

92 | P a g e

With a 0.5 Hz signal (Figure 5-5 and Figure 5-6), PID and LQR systems have the

same attenuation and phase delay.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Cart position
Set-Point

Figure 5-7: LQR Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.25Hz.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t P
os

iti
on

 (m
et

re
s)

Set-Point
Cart Position

Figure 5-8: PID Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.25Hz.

93 | P a g e

The LQR controller used for the experiments shown in Figure 5-7, Figure 5-9 and

Figure 5-11 gradually becomes more stable and follows the trajectory smoothly:

that is, the errors reduce over time.

By contrast, the system under PID control becomes erratic and the error between

the equilibrium point and the rod position does not improve over time (Figure 5-8,

Figure 5-10, Figure 5-12 and Figure 5-14).

94 | P a g e

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t P
os

iti
on

 (m
et

re
s)

Set-point
Cart position

Figure 5-9: LQR Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.125Hz

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Set-Point
Cart Position

Figure 5-10: PID Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.125Hz

95 | P a g e

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Set-Point
Cart Position

Figure 5-11: LQR Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.0625Hz.

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Cart Position
Set-Point

Figure 5-12: PID Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.0625Hz.

96 | P a g e

0 2 4 6 8 10 12
-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Set-point
Cart Position

Figure 5-13: LQR Tracking control using a dynamical SP=0.135 sin (wt),
Frequency=0.03125Hz.

0 2 4 6 8 10 12

0

0.05

0.1

0.15

0.2

0.25

Time (seconds)

C
ar

t p
os

iti
on

 (m
et

re
s)

Set-Point
Cart Position

Figure 5-14: PID Tracking control using a dynamical SP=0.135 sin (wt),

Frequency=0.03125 Hz.

97 | P a g e

5.7 Comparing the robustness of the two controllers

The robustness was tested experimentally in both system controllers. The mass

and the length of the rod were changed without altering the gains of the

algorithms.

Specifically, two different types of changes to the system were done:

• Adding a mass of 165 grams at the top of the rod

• Reducing half of the rod

Original system, SP=0:

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Cart Position
Rod Position

Figure 5-15: LQR controller, parameters fully known.

98 | P a g e

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Cart Position
Rod Position

Figure 5-16: PID controller, parameters fully known.

In Figure 5-15 is shown the LQR system tuned to the original parameters: the

system is stable and reaches the equilibrium point in around 8 seconds (for both

states).

Figure 5-16 shows the behaviour of the PID controller. The gains used are the

same as those used in the experiments shown in Figure 3-6. The system is stable;

however, performance of PID is affected by external disturbances.

99 | P a g e

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

P
os

iti
on

 o
f t

he
 c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Cart Position
Rod Position

Figure 5-17: LQR controller, half-length of the rod.

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

P
os

iti
on

 c
ar

t a
nd

 ro
d

(m
et

re
s

an
d

ra
di

an
s)

Cart Position
Rod position

Figure 5-18: PID controller, half-length of the rod.

100 | P a g e

When the pendulum rod length is reduced by half, it can be seen that – for the

LQR controller (Figure 5-17) - the offset of the cart position increases

considerably and a measurable oscillation can be detected in the rod position.

However the PID controller compensates this effect in the rod and shows better

performance compared to the LQR see Figure 5-18.

Changing the rod mass:

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time (seconds)

P
os

iti
on

 o
f c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Cart Position
Rod Poistion

Figure 5-19: LQR controller, 165 grams in the top of the rod.

For the LQR controller (Figure 5-19), changing the mass of the rod has less

impact than the change in the length: however, there is still oscillation in the rod

position.

By contrast, the performance of the PID controller is more significantly degraded

by the mass change (Figure 5-20).

101 | P a g e

0 2 4 6 8 10 12

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Time(seconds)

P
os

iti
on

 o
f c

ar
t a

nd
 ro

d
(m

et
re

s
an

d
ra

di
an

s)

Cart Position
Rod Position

Figure 5-20: PID controller, 165 grams in the top of the rod.

5.8 Comparing the resources used for the two controllers

Although the way to obtain the gains for the LQR and the PID are completely

different, the embedded microcontroller algorithms are essentially the same.

Overall, there are just two important differences:

i) The PID controller has an integral term, which the LQR design does not

include.

ii) Because of the lack of the integral term, the LQR algorithm does not include

an anti-windup approach.

The number of additions and multiplications that perform the two control

algorithms are the same; however, the compilation results show slight differences.

A brief discussion of these differences on the system resource requirements as

follows.

102 | P a g e

5.8.1 Requirements for implementation of the two controllers

For the LQR controller, the following processes must be implemented:

i) The position information was acquired for the cart and rod using the

microcontroller hardware (timers and interrupt handling).

ii) An approximation of the speed was obtained using pseudo derivates and

digital filters.

iii) The control algorithm requires four states, position of cart and rod and their

speeds.

iv) The program multiplies each state by a gain and adds the results. The total of

these were four multiplications and four additions, after which the output is

compared with a maximum value.

v) The program determines the direction of movement and uses this information

to control the direction pin at the power stage.

vi) An offset is added to avoid the “dead zone” of the actuator (DC motor)

For the PID controller, the following processes must be implemented:

i) The position information of the cart and rod were obtained practically like the

LQR program using the microcontroller hardware (timers and interrupt

handling).

ii) An approximation of the speed using pseudo derivates and digital filters

(different coefficients from LQR but the same filter order).

iii) The control algorithm requires five variables (position of cart and rod, speed

of cart and rod, plus the integral of the cart position - including the stored

integral).

iv) The program multiplies each state by a gain and adds the results. This

amounts to five multiplications and four additions, after which the output is

compared with a maximum value.

103 | P a g e

v) The program determines the direction of movement and uses this information

to control the direction pin at the power stage.

vi) An offset is added to avoid the “dead zone” of the actuator (DC motor)

Table 5-3 Summary of the memory requirements for PID and LQR implementation

Algorithm Data Constants Code
PID 1308 152 4328
LQR 1308 148 4064

Overall, according to Table 5-3 the PID has a slightly higher memory requirement

than the LQR algorithm.

5.9 Conclusions

In the study described in this chapter, the control of an inverted pendulum system

using both LQR- and PID-based embedded systems was considered and

implemented.

Overall, the two systems have been shown (in the tests discussed here) to have

similar control performance. In addition, the LQR control algorithm was seen to

have similar resource requirements to the PID algorithm.

104 | P a g e

Chapter 6
H-infinity control for sensor-
constrained mechatronic systems

This chapter10 explores the robustness properties of H-infinity control for

implementations with limited sensor resolution. The guidelines described in this

chapter are the main contribution of this thesis.

6.1 Introduction

Based on limitations in the control algorithms shown in previous chapters, this

section introduces a novel method that is intended to assist in the design and

implementation of optimal H-infinity (H∞) algorithms in low-cost mechatronic

applications. This algorithm deals with uncertainties in the model plant and

exogenous disturbances. The particular problem considered is position control in a

situation where there are both sensor-related uncertainties (caused by low–

resolution sensors) and limited computational resources. The first part of the

method presented in this chapter describes how to design the H∞ algorithm based

on the dynamic features of the sensor. The second part of the method involves

finding a suitable numerical controller representation in order to reduce memory

and CPU load. Evaluation of the method is based on empirical studies using three

industrial sensors employed in an under-actuated11 robot. Results for a classic

PID controller are included, in order to provide comparisons with the H∞

approach.

10 This chapter was presented in the paper: Bautista-Quintero, R. and Pont, M. J.
“Implementation of H-infinity control algorithms for sensor-constrained mechatronic systems
using low-cost microcontrollers” IEEE transactions on Industrial Informatics, Digital Object
Identifier: 10.1109/TII.2008.2002703

11 In the context of this chapter, “under-actuated” refers to mechanical systems that have fewer
actuators than degrees of freedom.

105 | P a g e

6.2 Problems caused by low-resolution sensors

In low-cost systems, and in particular those with imperfect sensors, the quality of

the sensors can lead to a degradation of the system’s dynamic behaviour (because

lack of sensor precision can be seen as uncertainty in the controller input signal

[Bernstein, 2001]).

One feedback control algorithm that has the potential to overcome sensor-related

uncertainties is the robust H∞ technique [Zames, 1976], [Francis, 1987], [Gu et al.,

2005], [Skogestad and Postlethwaite, 2005]. In spite of its theoretical maturity,

the implementation of robust H∞ presents some significant challenges when

resource-constrained computer processors are employed [Chandrasekharan,

1996]. In addition, the design process deals with frequency-domain specifications

that do not address the fundamental time-domain requirements directly [Selekwa,

2006].

In this context, this chapter introduces a method that is intended to assist in the

design and implementation of effective H∞ algorithms in low-cost mechatronic

applications used for position control. The new method consists of two parts.

The first part involves the derivation of numerical specifications for weighting

functions using an H∞ mixed-sensitivity approach that is based on the dynamics of

the sensor. The second part involves finding an alternative numerical controller

representation in order to implement the system using a microcontroller with

limited resources.

Evaluation of the method is based on experimental studies using three industrial

sensors of 1000, 2000 and 4000 pulses per revolution (ppr), employed in a sub-

actuated robot (inverted pendulum). As in previous chapters, a classic PID is also

used in order to provide comparisons with the dynamic H∞ approach.

106 | P a g e

The remainder of the chapter is organised as follows. Section 2 is divided in two

parts: the first part surveys previous work in sensor technology used for position

control in mechatronic applications. The second part introduces fundamental

issues of H∞ control in order to illustrate the implementation challenges for

resource-constrained computer systems. Section 3 explains how the dynamic

features of the sensor can be used to define the weighting function of the

controller and summarises the implementation method in detail. Section 4

presents the results from an empirical study that was used to evaluate the

proposed method. Our conclusions are presented in Section 5.

6.3 Related work

In situations where there are few restrictions on memory and CPU resources,

implementation of both classic and modern control algorithms will generally

prove straightforward [Teng, 2000]. Even where the implementation places

important limitations on computational resources, this is not necessarily a

problem, provided that a simple control algorithm is used (e.g. see [Bautista-

Quintero and Pont, 2006], [Henriksson, 2006] and [Palopoli, 2002]). However,

where a dynamic control algorithm is employed in a complex multivariable

problem, the implementation can present very significant challenges.

Simplification of the program code or reductions in the size of variables are

crucial issues if it is required to reduce resource requirements [Helton, 1995], but

incorrect implementation decisions can cause the algorithm to fail [Raghunath and

Parhi, 1994]. Additional challenges when implementing dynamic controllers in

resource-constrained systems are related to sample-time selection [Åström and

Wittenmark, 1984]; scheduler / operating system selection and implementation

[Pont, 2001]; memory requirements [Grant, 1990]; impact of jitter [Proctor,

107 | P a g e

2001]; and issues related to the under-sensing12 or under-actuating of the plant

[Bernstein, 2001].

6.4 Selecting a cost-effective position sensor

This chapter is concerned with position-control applications. Many types of

sensors are used for this purpose. For common industrial applications, examples

include: displacement sensors used for pneumatic applications [Reininger, 2006];

low-cost potentiometers for position acquisition [Li and Meijer, 1998]; position

estimation based on velocity measurements using high accuracy tachometers

[Panda, 2003] and simultaneous sensing of position and speed using resolvers

[Hanselman, 1989].

Of the available sensors, the optical encoder is the most widely used in long-life

industrial applications [Ellis, 2004]. For example: this type of sensor is

commonly used in servomotor control applications [Dote, 1990] (including recent

high-accuracy systems [Kojima et al., 2004]).

In mechatronic control systems digital (optical) encoders are now suitable for use

in high-reliability applications [Kojima et al., 2004]. These encoders are available

in two basic forms: incremental [Eun-Chan, 2003] and absolute [Kulkarni, 2001].

In general – in terms of complexity, cost and efficiency – incremental encoders

outperform the absolute type [Hebert, 1993]. For precision-control applications,

the quality of the feedback signal depends fundamentally on the accuracy of the

sensor. The resolution of digital encoders is limited by the slots through which

the encoder light travels [Orlosky, 1996]. Advances in technology have tended to

reduce the size of these slots and increase the bandwidth, in order to improve

precision [DumbraÏ, 2000]. However, the trade-off between accuracy and cost is

12 Under-sensing is the effect produced when a physical signal is quantified and the lack of
precision (due to nonlinearities in the sensor or sensitivity to the environment), limits the
range, resolution, linearity, etc. of the sensor signal.

108 | P a g e

unavoidable. In this context, various algorithms have been developed in order to

increase accuracy while using the same sensor hardware. For instance the

“quadrature” technique is an off-the-shelf technique which is used to increase the

resolution of the sensor (by a factor of 4) in many industrial controllers such as

programmable logic controllers (PLCs) and servo drivers [Orlosky, 1996].

Other methods that increase the resolution of incremental encoders are “clock

pulse counting methods” and “analogue sine encoding” [Ellis, 2004]. One

disadvantage of these techniques is that they require both additional timers and an

analogue-to-digital converter. Alternative approaches have also been proposed

([Emura, 2000], [Tan, 2002]): these are based on interpolation and therefore

require additional memory (for use in look-up tables). This can also add to costs.

Although a quadrature technique is a practical choice for a large range of

mechatronic applications, the resolution enhancement provided by this technique

may not be sufficient. Previous research in this field has considered this problem.

For instance: high-performance control using low-resolution sensors was

investigated by [Chang et al., 2001], however the results of this approach are

useful only for speed control. Similarly, for industrial high-precision machines

(e.g. numerically-controlled lathes), an algorithm based on an high-resolution

interpolator was found to be an effective solution when sensor response was the

main limitation [Emura, 2000]. Another effective technique for speed control of

permanent-magnet motors was based on current and voltage measurements

combined with the use of a low-resolution incremental encoder [Ogawa, 2001].

For position control a similar approach was followed using a low-resolution

sensor plus a combination of an instantaneous speed observer algorithm and a

sensor-less technique [Guidi, 1997].

The author of this thesis is not aware of previous studies that have focused on the

specific design of robust controllers where the encoder resolution is limited.

109 | P a g e

Instead, the use of interpolators and look-up tables techniques (see [Hagiwara,

1992], [Kaul et al., 1997], [Takahashi and Wang, 2000] and more recently [Tan,

2002]) expensive high-resolution sensors have been the common solution for such

implementation problems ([Magana and Holzapfel, 1998], [Kojima et al., 2004]).

6.5 Robust H∞ control

Mathematical descriptions of physical models have played a crucial role in the

history of modern feedback control [Lewis, 1992]; [Doyle et al., 1990]. Modern

feedback control algorithms are evaluated using such models before being

implememented [Gu et al., 2005]. Computer simulation provides strong evidence

about the way in which the real system can be expected to behave in the field

[Ellis, 2004]. However, due to the complexity of some dynamic systems [Doyle

et al., 1990], incomplete or inaccurate models have often been employed. Even

with imperfections, such models can still prove useful when developing feedback

control laws, provided that the underlying control algorithms are “robust”.

Seminal studies conducted by Isaac Horowitz and Patrick Rosenbaum in 1975

[Horowitz, 1975] provided the first formal notion of robustness for linear, time-

invariant systems. George Zames later worked on the minimisation of the

sensitivity function by feedback control schemes with respect to the H∞ norm

[Zames, 1981]. The mathematical representation for multivariable systems in

state-space representation was developed a few years later by Doyle [Doyle,

1984]. After subsequent key contributions in this area [Doyle et al., 1989] and

work on digital control [Åström and Wittenmark, 1984], the first compendium of

this optimal approach was published [Zhou, 1996].

Despite the maturity of H∞ control, this technique has not been used extensively

for industrial applications [Gu et al., 2005]. Indeed, there is an apparent divorce

between H∞ theory and practical implementations. However, recent advances in

software tools for designing H∞ controllers (for instance, MATLAB and

110 | P a g e

Simnon13) and improvements in off-the-shelf hardware now make this algorithm a

possibility for many industrial applications.

6.6 Optimal mixed-sensitivity design of H∞ control
algorithms

The goal in this chapter is to consider ways in which H∞ control algorithms can be

employed in low-cost embedded systems. In this section, a brief review of

optimal mixed-sensitivity design of H∞ algorithms is provided.

When seeking optimisation and increased robustness, an efficient modern

technique is the optimal mixed-sensitivity approach, which in turn is based on the

small-gain theorem.

The small-gain theorem states that if the loop gain is defined in an appropriate

sense, such that is less than one, then the system is stable (See block diagram of

Figure 1-1).

Figure 6-1 Block diagram whose the stability is studied using the small gain theorem

where s is the Laplace variable (s= jw), u the input 1 and n the input 2.

The capacity of K(s) to modify the system behaviour across a range of frequencies

can be seen as the closed-loop shaping design. When the designer is able to

13 http://www.sspa.se/software/simnon.html

G1(s)

G2(s)

u

n

111 | P a g e

modify the closed-loop frequency response, features like robustness can be

defined directly (improving the gain and phase margins).

A general representation of a dynamic system (plant) and uncertainties in the

model (disturbances, external measurement noise) is shown in Figure 6-2. The

aim is that the controller K provides an output (u) such that the closed-loop system

is kept stable in spite of disturbances (d), and external noise (n). The command

signal or “set-point” (r) provides the desired value of the output y.

Figure 6-2 Block diagram of a feedback control system including disturbances

(dynamic not modelled) and external noise (due to sensor imperfections).

The output y depends on three different sources: set-point, disturbances and noise.

Using the superposition theorem, the output with regard to r when n=0 and d=0

is: GKrGKIy 1
1)(−+= Similarly considering d: when r=0 and n=0,

dGGKIy d
1

2)(−+= . Finally, considering n; when r=0 and

d=0; GKnGKIy 1
3)(−+= .

Equation 6-1 shows the addition of the three effects together.

TndSGTry d ++= Equation 6-1

where: KGGKIT 1)(−+= which is the closed-loop transfer function, and
1)(−+= GKIS is the sensitivity function.

d

K(s) G(s) y r

Gd

n

u

112 | P a g e

The Bode plot of function S shows how the system is “sensitive” to disturbances

in the frequency domain [Bernstein, 2000]. In a typical mechatronic system

model, the magnitude of the sensitivity function is small for low frequencies and

large for higher frequencies, contrary to function T. In fact S+T = I; so that in

this perspective T is considered the complementary sensitivity function.

The objective of the mixed-sensitivity approach is to find a controller K such that

the closed-loop gain must be kept small (from the small gain theorem) and several

objectives must be satisfied simultaneously. These multiple objectives define the

shape of S and T in the frequency domain in order to improve the robustness

properties. A mechanism to provide the required shape of these functions is based

on weighting functions. These weighting functions (filters in general) provide the

desirable shape of S; T and KS, see Equation 6-2.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

KSw
Tw
Sw

N

U

T

P

Equation 6-2

Weighting values are selected in conjunction with minimisation of the H∞ norm

of the closed-loop function (for instance in a second order SISO system this norm

is the maximum amplitude of the output signal in the frequency domain, referred

to as the “resonance peek”): see Equation 6-3. By finding the minimal value of

this H∞ norm of this expression, K becomes an optimal controller that keeps the

closed-loop plant stable and robust (according to the specification given in the

weights provided). For further details, see [Francis, 1987] and [Skogestad and

Postlethwaite, 2005] .

∞
)(min KN

K
Equation 6-3

113 | P a g e

In contrast to classical approaches (e.g. PID control), the designer of H∞ has the

ability to specify directly the robustness margins (and indirectly temporal

performance), even for complex multivariable systems.

6.7 Designing the controller

As summarised in Section 6.1 the aim in this Chapter is to present a method that

can be used to simplify the process of implementing a robust controller (based on

an H∞ algorithm) using a resource-constrained embedded processor.

6.8 Effective weight selection for sensor noise rejection

In the synthesis of the mixed-sensitivity approach, selection of appropriate weight

functions provides the required behaviour of the closed-loop functions (such as T,

S and KS). Based on this selection the controller is more or less able to tolerate

uncertainties.

In order to select appropriate weight functions for the noise in the plant output

(sensor signals) a simple taxonomy of this problem is presented. The literature

divides such uncertainties into two types: 1) Structured, when uncertainties

depend on the parameters of the plant (the model is not properly characterised, or

the parameters change with the environment) and 2) Unstructured, when

uncertainties are caused by dynamics which have not been modelled. For further

details, please refer to Chapter 4 in [Doyle et al., 1990].

This chapter describes uncertainties caused by a lack of sensor-resolution which

are categorised as unstructured. This type of uncertainty can be modelled as a

multiplicative uncertainty of the plant output, see Figure 6-3 (please refer to

[Francis, 1987] and [Gu et al., 2005] for further information).

114 | P a g e

Multiplicative uncertainty of the plant output is caused by: 1) Finite sensor

resolution; 2) Phase lagging in the data-acquisition process; 3) Additional high-

frequency dynamics which have not been modelled.

Figure 6-3 Block representation of multiplicative uncertainty of the plant output.
For this application uncertainty ∆ increases in proportion to the frequency of the

encoder signal and in inverse proportion to the encoder resolution.

This kind of multiplicative uncertainty degrades the fidelity of the feedback

signal, resulting in limited performance or even instability. To address this

problem, the closed-loop function T is shaped in such way that a small gain is

maintained at high frequencies in order to compensate for uncertainties in this

range.

There are methods available which assist in the choice of weights in order to meet

the frequency specifications [Papageorgiou, 1997], [Postlethwaite et al., 1990].

However using these methods, the need to meet both frequency and time domain

requirements simultaneously is a trial-and-error process [Selekwa, 2006] As an

alternative, it is proposed a systematic approach is proposed which can be used to

determine the parameters of the weight functions based on the features of the

system (sensor and microcontroller).

In this approach, the parameters of the weight function T are obtained by

considering two fundamental constraints: 1) Sensor resolution and 2)

computational resources. From these limitations, estimation of the frequency

threshold at which uncertainties are large enough to affect the system stability is

still a challenge. The method presented allows the weight wT (see Equation 6-2)

K(s) G(s)

∆

r y

115 | P a g e

to be set in such a manner that the designer can adjust the noise rejection,

bandwidth and accuracy in the position control, in order to meet the requirements.

Simultaneously (using wP and wU) this multi-objective approach allows the

designer to trade-off features of the closed-loop functions: S and KS, related to

performance and actuator boundary protection.

The minimal sensor(s) resolution in which the industrial mechatronic system can

be implemented is defined according to the mechanical configuration of the

attached sensor (see Table 6-1).

Table 6-1 Relation between the mechanical configuration and type of encoder
selected (rotational, linear) in order to find the minimal static resolution (precision)

reached for the end-effector.

Type of

movement

Mechanical

configuration of

the system:

Minimum resolution obtained (Δx) based on the sensor

resolution available (either linear_res or angular_res)

Linear

movements

Measured by linear

sensor
reslinearx _=Δ

Example: if Δx desired 0.1 mm mmreslinear 1.0_ ≤

Linear

movements

Measured by

Rotational sensor
There are three common cases:

 1. Using ball-linear bearing

resangular
bearingmechpitchlinearx

_/2

1 π
=Δ

2. Using pulley and timing-belt

resangularratioGear
diameterpulleyx

__
_

2 ×
×

=Δ
π

3. Using gear and linear gear

resangular
diametergearx
_

_
3

×
=Δ
π

Rotational

movements

Measured by

rotational sensor

Resolution of several joints depend upon the kinematics (geometry of

the movement),

For each single axis is:
ratiogear

resangularl
_

_
×=Δρ

For angular resolution:
ratiogear

resangular
_

_
=Δθ

where l is the length of the link coupled to the shaft of the rotational movement

116 | P a g e

Once the static resolution requirement is defined, a model that represents the

position signal from the perspective of the embedded processor can be proposed:

see Equation 6-4, where ϕ represent the signal obtained with the “ideal model”

(without disturbances). The constant ρ represent the resolution of the system in

pulses per revolution. The symbol ⎣ ⎦ represents a rounding operation towards

the closest integer (it is used to represent the discrete pulses counted from the

digital encoder).

⎣ ⎦ρϕ
ρ

ϕ)(1ˆ 1−= z Equation 6-4

In the worst-case scenario the signal lags one sample period (1−z). Longer than

this period of time the scheduler loses synchronisation of the control algorithm.

The difference between the ideal and real signals increases: 1) in direct proportion

to the frequency and 2) in inverse proportion to the resolution of the sensor.

Parameters of the weight function wT can be obtained using the absolute

difference between ϕ (using the numerical simulation of a pure signal with

appropriate magnitude) and ϕ̂ (using Equation 6-4). The frequency response of

ϕϕ ˆ−=re is numerically estimated (see case study). The frequency at which the

magnitude of er is greater than the precision requirements determines the cut-off

frequency of wT.

6.9 Optimising the controller for limited computational
resources

It has been shown that the H∞ mixed-sensitivity strategy is effective in terms of

robustness even for multivariable systems. However the main disadvantage in

117 | P a g e

terms of implementation is the memory and CPU requirements compared with

other classic control techniques [Henriksson, 2006].

Figure 6-4 illustrates the implementation requirements for this robust approach

and the level of abstraction needed to create and implement such an algorithm.

Note that the highest level of design starts with a model representation of the

system. The “time-triggered co-operative” (TTC) scheduler implementation (on

the right of Figure 6-4) has been shown to demonstrate predictable behaviour in a

range of challenging applications, see for instance: [Pont and Ong, 2002]; [Pont

and Banner, 2002]; [Key et al., 2003]; [Hughes et al., 2005]; [Phatrapornnant and

Pont, 2006].

Figure 6-4 Basic representation of the design-implementation process of the H∞

algorithm using a TTC scheduler. From the segment program A, B, C are the offsets
and T1, T2 and T3 are the number of ticks: for further details, see [Pont, 2001].

Task1
Task2

Task3

Abstraction
Level

// TTC scheduler implementation

void main (void)
{
SCH_Init(); // setup scheduler
Init_system(); // setup hardware

//Add tasks
SCH_Add_task(Read_sensor,A,T1);
SCH_Add_task(H-inf_control,B,T2);
SCH_Add_task(Out_actuator,C,T3);

SCH_start(); // enable ISR

while(1)
 {
 Dispatch_task();
 }

Object_code.hex

Modelling
the plant
and
designing
controller

Codification in
a computer
language

CPU load
Task timing
distribution

KKK

KKKKK

xCu
yBxAx

=
+=&

Read_
sensor (void)

Control_
law (void)

Output_
Actuator(void)

Ready to be
implemented

into the
target

State-space H∞
representation

118 | P a g e

The synthesis of the controller is obtained using numerical tools based on the

weight functions and model provided. The controller has a state-space

representation in order to allow direct implementation in a digital controller.

Dimensions of the matrices and vectors are: 1nx
Kx ℜ∈ ; nxn

KA ℜ∈ ;
nxm

KB ℜ∈ ; 1mx
Ku ℜ∈ ; pxn

KC ℜ∈ ; 1px
KY ℜ∈ ;

where:

n is defined as the number of internal states of the H∞ controller.

)__)(_()_(outputsplantnumberorderweightsorderplantn +=

m is defined as the number of inputs to the H∞ controller. This is equivalent

to the number of plant outputs (sensors)

p is defined as the number of outputs to the H∞ controller. This is equivalent

to the number of plant inputs (actuators).

The control algorithm requires that values are read from the plant sensor(s) in

order to calculate the value of yK. This numerical value is used to adjust the

actuator(s). The core of the control code (not including scheduler, data

acquisition and actuation components) requires Mr memory units (Equation 6-5).

)1)((+++= nnpmMr Equation 6-5

As can be seen from Equation 6-5, Mr depends on the plant order, number of

inputs and outputs of the plant and weights inclusion. The size memory required

depends upon the precision of the numerical values of AK, BK, and CK used in the

synthesis of the H∞ controller.

It is important to notice that mixed-sensitivity synthesis provides a state-space

realisation might require high-precision variables for numerical calculations. The

119 | P a g e

high level of precision is required because of the large dynamic range of the CK

and BK and also numerical condition.

Similar to Theorem 4 discussed in [Laub et al., 1987], an evaluation of the upper

and lower bound of matrix CK and BK is obtained. This is used to estimate the

range of numerical excursion of the matrix CK (the synthesis of H∞ provides large

numerical values) and matrix BK (the synthesis of H∞ provides small numerical

values). The ratio of the absolute maximum value of CK over the absolute

minimum value of BK is calculated and compared with the precision of the

program-variable size used. If the controller representation is poorly balanced (it

is considered balanced if BC ≈), the precision of the variables has to be

increased. This calculation is shown in Equation 6-6, where num_bits is the

number of bits allocated for every single variable employed in the (control)

program code.

bitsnum

K

K

B
C

CBRatio _2
)min(
)max(

_ <= Equation 6-6

When the Ratio_CB exceeds 2 num_bits the precision of the variables should be

increased. Consequently the total memory allocation for the core (Mr) grows in

the same proportion. For embedded systems with limited resources, it is desirable

to balance the numerical representation in order to make optimal use of resources.

The balanced realisation process [Laub et al., 1987] finds an alternative to the

state-space model of the controller such that Ratio_CB is reduced considerably.

This balance process is shown in Equation 6-7, the second state-space model is

such that, TAT-1 is similar in numerical range to TB.

120 | P a g e

DuxCTy
TBuxTATx

DuCxy
buAxx

+=

+=

+=
+=

−

−

1

1&

&

Equation 6-7

Nevertheless there are other realisations used to simplify operations in the

implementation stage. For instance Jordan forms and other canonical realizations

can be implemented to reduce the number of operations performed in the

microcontroller. These representations are studied in [Chen, 1999].

Similarly Delta-operator base representations (deal with balance realizations) can

offer important advantages when the implementation is performed using a fix-

point arithmetic processors.

The case study will show quantitatively the memory reduction that can be

obtained using only the algorithm detail in [Laub et al., 1987].

The following guideline summarises the proposed implementation process:

1. In order to obtain the static precision required for the application, choose a

sensor resolution ρ which is appropriate for the mechanical system

configuration (see example in Table 6-1).

2. Find the maximum frequency (wmax) that meets the dynamic precision

requirements. To do this, obtain discrete numerical values of the “ideal” sensor

signal)sin(max wTA=ϕ considering 3 aspects:

• Appropriate Amax according the span of the real variable.

• Find an appropriate range of frequency, according to the sensor frequency

response (given by the manufacturer).

121 | P a g e

• Select sample time (Ts) according to the plant dynamics. Based on the

previous numerical values the signalϕ̂ is calculated using Equation 6-4.

Plot the absolute error between signal models along a range of frequency

(ϕϕϕ ˆ−=e). A suitable value of wmax will be found in the plot where the

error ϕe is smaller than the precision required.

3. Weight functions WT and WP can be considered as first-order filters; in that case,

there are three values to consider in the design: the bandwidth (wB), the bound

at high frequency (M) and the bound factor at low frequency (A).

4. WT
-1 gives the shape to the closed-loop function T, having:

)/()/(BBT wsAMwsW +⋅+= , so that, wB is proposed with the next criterion:

wB<wmax , having M>1 and A<1.

5. WP
-1 gives the shape of the sensitivity function S. The filter developed can be

)/()/(AswMsW BP ++= , see the trade-off between tracking and disturbance

rejection responses shown in [Skogestad and Postlethwaite, 2005].

6. Based on weights WT , WP and WU and the plant model use the standard

MATLAB function mixsyn (or equivalent) to obtain the controller (MATLAB

function ssdata can also be used to obtain the state-space representation for

implementation). Note that weight Wu restricts the output signal (actuator), so

that, Wu can be a constant in order to meet the actuator restrictions. See

program code examples in [Skogestad and Postlethwaite, 2005].

7. Verify that the controller and plant in closed-loop maintain poles in the left half

plane using the MATLAB function eig (or equivalent), to provide the

eigenvalues of the closed-loop system. If there are right-hand plane poles,

weight filters must be changed either by reducing the bandwidth wB or

increasing A.

122 | P a g e

8. Once the system is stable in simulation, obtain the space-state representation of

the controller and find a balanced realization using the MATLAB function

balreal (or equivalent): see [Laub et al., 1987].

9. Find the equivalent controller in the discrete domain. If the processor cannot

meet the sample-time requirements, return to Step 2 and try a longer sample

interval. Note that there is a trade-off between processor speed and plant timing

requirements.

6.10 The testbed

As noted in the introduction, the aim of the case study presented in this section is

to describe the design and implementation of an optimal H∞ controller. The plant

used is an inverted pendulum and the controller is a low-cost ARM-based

microcontroller. This testbed has a horizontal linear movement and a rotational

movement.

As a benchmark, an equivalent PID-based controller is also developed. To allow

a quantitative comparison of the different implementation strategies, the code size,

memory requirements and execution time is presented for both the PID and H∞

systems.

6.11 Processor hardware and software architecture

As in previous chapters, the microcontroller employed in the studies described in

this section was an NXP LPC2129 device based on a 32-bit ARM7 core. The

code was written in C. The states were represented using 32-bit floating point

variables.

123 | P a g e

6.12 H∞ implementation

In this subsection, an implementation of this technique is introduced for solving

the particular problem of optimising the sensor signal in spite of limited

resolution.

Following Step 1 the minimal linear displacement (cart) sensed is calculated using

the expression of Table 6-1. The mechanical configuration used is: “linear

movements measured by rotational sensor”. The minimal angular resolution is

given directly by the sensor resolution since there is a direct mechanical coupling

between sensor and rod (see expression in Table 6-1, “rotational movement

measured by rotational sensor”, case gear_ratio=1).

Once these static requirements are satisfied, the next part deals with the dynamic

response of such sensors. This procedure selects the weighting function WT

=diag[WTcart ; WTrod] based on the dynamic response of the sensor. The sensor is

simulated using three different sampling times (according to the plant dynamic)

and 3 different sensor resolutions (off-the-shelf sensors). The span amplitudes of

the numerical signals are given from the real test-bed (A1cart, A2rod). Although

selection of both sensors is important, it will be shown that rotational movement

defines stability and performance as it was seen in the previous PID approach (see

Chapter 3).

The maximum absolute error values are plotted along a dynamic range of

frequency (see Figure 6-5).

For this testbed the maximum frequency selected was wmax=8 Hz and Ts=10ms.

The minimum sensor resolution is 1000 ppr. These values were chosen in a trade-

off between resources of the microcontroller, sensors available and dynamic error

allowed for the application.

124 | P a g e

The weighting function WT parameters are obtained based on Step 2, Step 3 and

Step 4 from Section 6.9 and the WP parameters are chosen based on Step 5.

Figure 6-5 Frequency response of the maximum error between the estimated sensor

signal ϕ and the disturbed signal ϕ̂ using three sampling periods (Ts=0.1 s;
Ts=0.01s; Ts=0.001s). A is the plot using a sensor of 256 ppr; B is a sensor of 1000

ppr and C is a sensor of 4000 ppr. wmax is approximately 8 Hz based on the
maximum dynamic error.

Weight parameters can be adjusted manually if the optimal solution cannot meet

all the requirements simultaneously. In this study Wu was left empty (b) in order

that the algorithm executed by mixsyn could find an optimal solution based only

on T and S closed-loop functions.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

+

+
=

08.0

8
9.1;

01.0

1
9.1

s

s

s

s

diagW P Equation 6-8

125 | P a g e

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

+

+
=

8001.0
9.1

8

;
1001.0

9.1
1

s

s

s

s
diagWT

Based on Step 6 a general representation of the controller is obtained, by using the

MATLAB function khinf. This representation can be translated to state-space

representation using the ssdata command. This matrix representation is used to

obtain the Ratio_CB using Equation 6-6 is possible. In order to satisfy this

condition, 64-bit variables are required. However, using the balanced

representation, Ratio_CB requires only 32-bit variables (see Table 6-2). The core

of the control algorithm is not only efficient in terms of memory but also the CPU

load is reduced by (at least) the same proportion.

Following Step 7 the poles of the system should be in LHP.

Table 6-2 Memory requirements for the H∞ controller. Fourth order plant, 2
outputs (cart position and rod position), 1 input (actuation voltage) First order

weighting functions (m=2 p=1 n=8 and Mr=99).

Controller Ratio_CB num_bits (precision
required) Total bytes

Khinf1 1.829016253x1015 64 972
Khinf2
(balanced) 6.448374856x105 32 396

The real-time test of the system is shown in Figure 6-6. The numerical simulation

includes the limitations in the sensor (4000 ppr). However, additional

uncertainties (external disturbances, nonlinearities) can affect the behaviour in the

time domain. When the system uses the 2000 ppr sensor, the system shows some

degradation in the control performance. Nevertheless the stability is still achieved

even when the lowest resolution sensor (1000 ppr) is employed (see Figure 6-7

and Figure 6-8).

126 | P a g e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
sit

io
n

(C
ar

t a
nd

 R
od

)

Time (sec)

 Cart position real
 Rod position real
 Cart position Simulation
 Rod position Simulation

Figure 6-6 System using H∞ with 4000 ppr rod sensor resolution, the set-point for
the cart is 50 centimetres, and 0 radians for the rod angle. Positions in the real

experiments show behaviour similar to the numerical simulation, however small
differences are shown; they are caused by uncertainties in the model and external

disturbances.

Memory requirements for the optimal H∞ approach are considerably larger than

those for the PID controller, however, both algorithms can fit in the same low-cost

embedded processor. Similarly, while the H∞ execution time is about ten times

longer than PID, this still represents only 4% of the available processing time in

this TTC architecture.

127 | P a g e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 Cart position real
 Rod position real
 Cart position Simulation
 Rod position Simulation

Po
sit

io
n

(C
ar

t a
nd

 R
od

)

Time (sec)

Figure 6-7 System using H∞ with a rod sensor resolution of 2000 ppr. By reducing
the rod resolution, the performance of both, the simulation and the real experiment
deteriorates. However, the robustness of the mixed-sensitivity approach maintains a

stable system.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

 Cart position real
 Rod position real
 Cart position Simulation
 Rod position Simulation

Po
sit

io
n

(C
ar

t a
nd

 R
od

)

Time (sec)

Figure 6-8 System using H∞ with 1000 ppr in the rod sensor resolution. In contrast
to the previous experiments, the reduction in the resolution of the rod sensor has an

impact to the performance. However the system remains stable. In contrast, the
PID algorithm was not robust enough to keep the system stable.

128 | P a g e

Memory and execution-time data for the two controllers are shown in Figure 6-9.

Figure 6-9 Comparison of memory and execution time between PID and H∞ control

algorithms.

6.13 Conclusions

For economic reasons, many control systems are implemented using simple

sensors and actuators, along with small (embedded) processors which have

(compared to “desktop” computers) very limited memory and CPU performance.

Appropriate implementation strategies are required for such “resource

constrained” systems.

This chapter has proposed a novel, practically-motivated approach for creating

such system implementations. The method introduced in this chapter has two

stages. The first stage involves the derivation of numerical specifications for

weighting functions using an H∞ mixed-sensitivity approach. The second stage

involves finding an alternative numerical controller representation in order to

implement the system using a microcontroller with limited resources. The

creation of the numerical representation requires only the use of industry-standard

toolsets.

Evaluation of the method was based on experimental tests using three industrial

sensors with a non-trivial control problem (which is both non-linear and unstable

in open loop). It was shown that the PID algorithm was of significantly lower

129 | P a g e

cost in terms of computational resources. It was also shown that both PID and H∞

designs had similar levels of performance when the resolution of the sensor was

relatively high (4000 ppr). However, when the sensor resolution was reduced, the

PID controller was less able to tolerate disturbances, causing instability. By

contrast, the H∞ controller maintained the system stability even at the lowest

levels of sensor resolution. For mass-production mechatronic systems, this

optimisation may represent significant savings.

130 | P a g e

Chapter 7
Discussion

This chapter explains the meaning of the major findings presented in this thesis.

7.1 Introduction

The major finding in this thesis was the impact of what are considered non-

conventional forms of feedback control using low-cost embedded systems in order

to improve performance and robustness. During the course of the research, some

practical techniques were integrated in order to facilitate implementation of

control algorithms in a resource-constrained embedded microcontroller.

As outlined in Chapter 1, there is a clear gap of knowledge between control theory

and practical implementation techniques. Multiple efforts have been made to

bridge the gap between the two. This research investigated some of the reasons

for this gap and consequences in the development of cost-effective products based

on embedded systems.

Chapter 2 showed the evolution of the feedback control implementation in the

context of embedded systems. The current limitations caused for an extraordinary

fast commercial demand of embedded products will be discussed.

According to Chapter 3, the importance of considering the dynamics of actuators

and sensors is first addressed in this thesis, particularly when the system requires a

non-trivial control algorithm to reach stability and good performance. The

principal impediment for a resource-constrained embedded processor was studied

and discussion in this perspective is included.

131 | P a g e

The experimental validation presented in Chapter 4 shows the multiple

impediments that make Fuzzy Logic Control (and related techniques) a

challenging option for non-trivial control applications implemented using today’s

low-cost embedded systems.

In Chapter 5, the experimental results showed comparisons of two similar robust

control techniques in terms of computational load. The two strategies were

presented and the interpretation of the results clarifies the weakness and strength

of each of them.

The exploration of limited resolution in the sensor capacity and the use of a robust

but complex –in terms of computational burden– technique are discussed based on

experiments presented in Chapter 6

7.2 Initial discussion based on the hypothesis proposed

Although the evidence of the gap between control theory and practice has been

noted in multiple publications, the hypothesis presented in this thesis holds that in

state-of-the-art applications this gap is less restrictive to the success in the

implementation of control algorithms than in low-cost applications.

This argument has very important implications, since today’s low-cost technology

of embedded microcontrollers allows implementation of advanced techniques.

The gap can be reduced for low-cost control applications by employing robust

control techniques that are able to compensate for uncertainties in the plant,

actuators and sensors. Nevertheless, some impediments have been observed to

the efficient implementation of such techniques.

One of the principal impediments is the software support; this is due to the

mismatch of the developments on embedded software and hardware. While the

hardware has expanded in multiple families with different functionalities,

132 | P a g e

developers find it complicated to carry out an efficient integration with the

software.

Additionally, for industrial and commercial control applications, the control

algorithms are based on simple designs, that do not always provide optimal

performance. The integration of more advanced forms of control was

fundamentally limited by the conservatism of industry. Similarly, investment in

large periods of research and development is impractical for short life-cycle

products.

7.2.1 Findings of the literature review

The survey presented in the literature review was focused on the investigation of

the historical evolution of ECSs and the methods used to implement control

algorithms. The references were chosen for the tractability and relevance to the

research project. The most relevant references in sporadic cases provided

particular details of the implementation techniques. In contrast to this, more

technical but less tractable references provided more information in the

experimental context.

A trade-off between relevancy and tractability compound the literature review and

as it was expected, researchers and developers have maintained incompatible

scenarios to bridge the gap between the theory and practice. However, in the last

few years, multiple initiatives are taking place to study the formalisation for ECSs

design and implementation.

7.3 Discussion of the benchmark implementation

As it was presented in Chapter 3, the benchmark control (PID implementation)

demonstrated some of the reasons of its success in many applications. The

implication of using PID control in both situations: 1) without a mathematical

133 | P a g e

model and 2) with a simple computational implementation (in terms of resources),

makes PID an excellent choice for low-cost embedded systems. On the contrary,

for non-trivial plants models, there is an important observation to be made from

the testbed implementation. In the model presented in Equation 3-11 the actuator

is not considered. In contrast, Equation 3-13 represents the model of the actuator

and plant in a single dynamic system.

The algorithm implementation for the system presented in Equation 3-26, the

filter proposed in Equation 3-1 and tuning rules can be applied in both systems,

Equation 3-11 (no actuator model included) and Equation 3-13 (actuator model

included). However, the plant-actuator model represents more accurately the real

system; numerical models can be studied off-line (in a computer simulation).

Consequently, the system is optimised for a particular requirement. In contrast,

some industrial applications that employ simple control computers commonly

deal with trade-offs to satisfy multiple requirements simultaneously [Whidborne

and Yang, 2002].

Modelling and characterisation of actuators may not be an easy task, especially

for non-stable plants in open loop. Similarly commercial testbeds (like the one

studied in Chapter 2, Section 2.4), the dynamics of sensors and actuators remains

unknown for the user. In classic control literature, the omission of such dynamics

was encountered (perhaps for didactic purposes), this widens the theory-practice

gap.

7.4 Is FLC a practical choice for ECSs?

Chapter 4 presented two different forms of FLC, in both cases the results given by

the experiments are constrained in several ways. This section summarises these

findings.

134 | P a g e

7.4.1 Implications of the empirical FLC design

When a control algorithm based on Fuzzy Logic is programmed in low

computational resources, multiple trade-offs have to be considered. For instance,

Code 4-1 (fuzzification); Code 4-2 (evaluation and defuzzification) and Code 4-3

(rules) provide the basic framework to implement the FLC. A comparison

between the simulation model and the real-time implementation (Figure 4-2)

shows stability in both cases. However, performance of the real-time experiment

shows how the system is affected by the external disturbances not considered in

the model. This custom FLC is unable to guarantee predictable behaviour since

the rules were chosen empirically (18 rules Code 4-3) and are only a subset of the

complete model (625 rules).

The histogram shown in Figure 4-3 reveals how large the task timing of FLC is in

comparison to the task timing of the PID approach, showed in Figure 3-7. Nearly

5% of the sample time is used to process the FLC algorithm (considering only the

small set of rules). If the 625 rules were considered, the processor chosen

(LPC2129) would not be able to perform the complete execution time in 10 ms.

Similarly, the PID outperforms the FLC with regard to the jitter comparisons, and

in some applications, large jitter may cause unpredictable behaviour.

7.4.2 Requirements for the neuro-FLC

Although the neuro-FLC approach successfully alleviated the tuning problem, the

main drawback is related to the rule explosion problem. In the example presented

in Section 4.6.1 the system adjusts the FLC based on ANFIS technique. In this

example, the rule explosion problem is addressed by distributed controllers. The

results showed important advantages when the interaction dynamic can be

estimated numerically. A comparison of these techniques can be seen in Figure

4-9 (without decoupling) and Figure 4-11 (using the decoupling technique).

135 | P a g e

Similar results were obtained in case study 1 (page 77). Further rule reduction

was not required in this case since the system had only one input and two outputs.

Memory and task timing requirements were relatively close to those needed by the

PID approach. However, there were no apparent advantages in terms of

robustness with respect to the PID.

In the case study presented in Section 4.8 the system distributed the FLC was split

in two subsystems in order to cope with the rule explosion problem. As in the

previous experiments, a PID trained the system and the performance is shown in

Figure 4-18. The trained controller cannot deal with the uncertainties of the input

channel for two fundamental reasons:

1) The training procedure is limited (FLC1 does not consider the dynamic

interaction caused by rod and FLC2 does not consider dynamic interaction caused

by cart)

2) Disturbances caused by external uncertainties cannot be included in the trained

procedure (each experiment presents a unique set of disturbances).

7.5 Discussion of the optimal control

In order to increase performance based on optimal criterion, LQR was explored in

Chapter 5. Discussion of the empirical comparison between LQR and the classic

PID implementation follows.

7.5.1 Comparing results

Implementation of the LQR requires an accurate model of the plant. In addition,

weights Q and r have to be chosen experimentally (as far as the author is aware,

this is still an open problem). In Figure 5-2 the numerical simulation is shown

relatively closer to the experimental data in comparison to the PID graphs

presented earlier in Figure 3-6. It can be also be seen by comparing Table 5-1 and

Table 5-2.

136 | P a g e

The frequency response of the system using the LQR presented higher bandwidth

in comparison to the system under PID control. See amplitudes and phases of

signals in Figure 5-3, to Figure 5-14. Nevertheless, the PID controller is able to

eliminate a sub-harmonic effect existing in the cart position observed in Figure

5-5 and Figure 5-6. This is due to the integral compensator of the PID that even

dynamically is able to reduce the effect caused for the dry friction located in the

mechanical track system.

The robustness was tested experimentally by considering two different scenarios:

reducing the rod to half its length, and adding a mass to the top of the rod

In the first experiment, Figure 5-17 shows how the LQR stabilises the system by

changing the cart set-point position. This is because the controller gains were

originally designed based on a model with a rod length of 0.303 m. The

robustness of the controller allows stability, however performance is seriously

affected. The static controller (LQR) finds the proper output by increasing the

steady state error (about 0.18 m). In contrast, the PID controller compensates (the

length uncertainty) dynamically using the integral action, see Figure 5-18.

For the second experiment, the LQR controller keeps the rod around the

equilibrium point and the cart presents small deviations from the set-point (in

comparison to the previous experiment) see Figure 5-19. As in the previous

experiment, the integral action compensated for the uncertainties that affected the

proper cart positioning, (see Figure 5-20).

7.6 Finding a cost-effective alternative with H∞ control

As outlined in Chapter 3, it is desirable to find a mechanism to design a robust

controller to compensate the uncertainties of the input control signals. For this

problem, Chapter 6 presented a solution based on H∞ control.

137 | P a g e

7.6.1 Meaning of the model uncertainties

For embedded systems with two fundamental constrains, computational resources

(limited memory and CPU capacity) and sensor resolution, a model that includes

both limitations is presented in Equation 6-4. This equation models the signal in

the perspective seen by the real processor. When the resolution decreases, the

error (difference between the “ideal” and the “real” signals) increases in inverse

proportion. Likewise, when the sample period is reduced the error increases in

direct proportion. The general effect is plotted in the frequency domain (see

Figure 6-5) and the error increases exponentially with the frequency.

A trade-off between sensor resolution and embedded system computer capacity is

required to evaluate an optimal solution, see Figure 6-5. There are three sample-

times (for different processor capacities) and three sensor resolutions. A balance

between maximum frequency selection and maximum error allowed for specific

applications can be selected for this plot.

7.6.2 Comparison with previous experiments

The control algorithm is designed based on optimal H∞ resulting in a more

efficient method for compensating uncertainties in the input channel. Figure 6-6

with a rod sensor of 4000 ppr, Figure 6-7 with a rod sensor of 2000 ppr and Figure

6-8 with a rod sensor of 1000 remain stable (particularly with the lowest

resolution) in contrast to the previous approaches (see PID experimental data in

Figure 3-9 and Figure 3-10).

The scope of this approach was limited to analysis of the rod sensor resolution

since the cart sensor in the mechanical configuration selected (see Table 6-1) did

not constrain the stability of the plant under any of the previously approaches

presented.

138 | P a g e

7.6.3 Comparison of computer requirements

Although finding a balanced numerical representation of the system controller

(H∞) is not a novel issue, an important implication for embedded systems can be

seen in Table 6-2 since not only the memory reduction required to implement the

system is achieved but also the CPU load is reduced considerably.

When the system based on H∞ is compared with the classic PID in Figure 6-9,

there are important differences in both, execution time and data used for each

algorithm. PID control is simpler; therefore, the memory and processing time are

smaller than H∞. Nevertheless, the same microcontroller was used for both

algorithms.

7.7 Conclusions

This Chapter has summarised and discussed the results presented in this thesis.

139 | P a g e

Chapter 8
Conclusions

This chapter concludes the thesis. It is divided into three parts. The first part

shows the findings relate to the general aims proposed in the introduction. The

second part deals with the relevance of the principal contributions of the thesis.

The third part presents specific recommendations for further research.

8.1 Introduction

The preliminary conclusion was integrated at the end of each chapter in order to

provide an essential summary of isolated findings. Taken as a whole, this chapter

concludes the thesis by summarising the important links between these findings.

The goals proposed and achievements reached are analysed in order to show any

limitations of the research.

Contributions presented in this thesis suggest the following. First, the empirical

and analytical tools of this work provided a simple framework (based on a Time-

Triggered-Cooperative scheduler and modern control implementation techniques)

to bridge the gap between control theory and resource-constrained embedded

implementations. Second, it opened the discussion to include advance forms of

control in common industrial control software in order to address the optimisation

problem of multiple-objective requirements.

To conclude, further research is suggested in order to confirm the preliminary

results of this research, as well as other forms of control not considered in this

thesis.

140 | P a g e

8.2 Goals and achievements

This thesis suggested that by using “ideal” system components it might be

possible to deal with simple theory. According to the literature review, this

hypothesis is accurate; nevertheless, there were some applications (state-of-the-art

components) where the control problem is still too complex to solve with

traditional techniques.

When using low cost components in contrast, there are multiple hindrances to

overcome in the implementation stage. For instance, Chapter 3 presented an

implementation of the classic PID in a non-trivial control application. The low-

cost actuator limits a straightforward implementation. The model of actuator and

integration with the whole system dynamic were required.

The first part of the Chapter 4 dealt with supporting FLC applications. This

chapter concluded with two important findings. First, when using the approach

based on empirical rules (given by an expert); there is not a straightforward

mechanism to adjust the membership functions. The dynamics of the system

(where the resources are limited) cannot be easily represented using linguistic

rules. The low cost components introduced nonlinear dynamics that is too

complex to represent using a few simple rules. Second, according to the

experiments explored using the combination of techniques (ANFIS and

decoupling,) there is not evidence to simplify implementation of the proposed

Neuro-FLC for resource-constrained embedded systems.

In order to improve the plant performance, LQR presented several advantages in

terms of efficiency and robustness with regard to PID, FLC and Neuro-FLC.

However, neither LQR nor any other previous controllers could cope with sensor

uncertainties. Exploration of a robust technique to address this problem allowed

implementation of a robust design.

141 | P a g e

Design and implementation of H∞ alleviates the problem caused by low sensor

resolution.

In conclusion, the main achievement of this thesis was the practical and

theoretical method to integrate and implement a robust control technique for a

non-trivial control problem using low-cost components.

8.3 Relevance of the contributions

During the course of this research project, some publications where presented in

technical forums and accepted in different journals (see list of publications in page

vii). This thesis is supported by these contributions along with additional

research. The relevance of these publications and thesis is summarised in two

parts.

First, according to the literature review chapter the topic of generating efficient

control software (simple and reliable) for embedded products is gaining

importance for economic reasons.

Second, the optimisation in resources for control applications (sensor, actuators

and controllers) is beneficial for mass production systems (based on ECSs).

8.4 Future research recommendations

The scope of this thesis was focused initially to study techniques used in ECSs.

Due to different circumstances, some advanced control techniques were explored.

The approach based on H∞ illustrated numerically and experimentally advantages

in terms of robustness and performance. In the sensors selected for this approach

(incremental encoders), resolution is a feature that determines precision in the

feedback signal. Low resolution implies delays in the response and deformation

of the ideal signal. Industrial incremental encoders used under normal operating

142 | P a g e

conditions do not undergo additional non-linear effects (such as dead zones and

non-linearity). However, future work will evaluate the proposed techniques using

different sensors which – in addition to low resolution – also include non-linearity

in the signal response.

In addition, there are other forms of control and their implementation techniques

in the context of low-cost embedded systems that worth to be explored. For

instance, MPC has similar complexity in terms of memory and CPU requirements

to FLC. Similarly, SMC appears as a suitable alternative to gain in robustness in

some industrial applications. For low cost ECSs these two approaches can be

considered in future research.

8.5 Conclusions

This Chapter concludes the thesis.

143 | P a g e

Bibliography

Ahson, S.I., Lamba, S.S., Chaube, M.C. and Chandra, N., 1983. A

Microprocessor-Based Multiloop Process Controller. IEEE Transactions
on Industrial Electronics, IE-30(1): 34-39.

Alvarez, G.Z., Kawakami, R., Galvao, H. and Takashi, Y., 1999. Extracting Fuzzy
Control Rules From Experimental Human Operator Data. IEEE
Transactions on Systems, Man and Cybernetics, 29(3): 398-406.

Apneseth, C., 2006. Embedded System Technology in ABB. Embedded System
Technology.

Arteaga, M. and Kelly, R., 2004. Robot Control Without Velocity Measurements:
New Theory and Experimental Results. IEEE Transactions on Robotics
and Automation, 20(2): 297-308.

Åström, K.J., 1985. Process Control-Past, Present and Future. Control Systems
Magazine, IEEE, 5(3): 3-10.

Åström, K.J. and Hägglund, T., 2001. The Future of PID. Control Engineering
Practice, 9(11): 1163-1175.

Åström, K.J. and Wittenmark, B., 1984. Computer-Controlled Systems: Theory
and Design. New Jersey: Prentice-Hall.

Atherton, D.P. and Majhi, S., 1999. Limitations of PID Controllers. In: IEEE
(Editor), American Control Conference, pp. 3843 - 3847.

Audsley, N., Bate, L. and Crook-Dawkins, S., 2003. Automatic Code Generation
For Airborne Systems. In: IEEE (Editor), Proceedings on Aerospace
Conference, pp. 2863-2873.

Auslander, D.M., 1996. What Is Mechatronics? Transactions on Mechatronics,
IEEE/ASME 1(1): 5-9.

Auslander, D.M., Takahashi, Y. and Tomizuka, M., 1978. Direct Digital Process
Control: Practice and Algorithms For Microprocessor Application.
Proceedings of The IEEE, 66(2): 199-208.

Backus, J., 1978. The History of FORTRAN I, II, and III Association of
Computing Machinery 13(8).

Bahram, S. and Hassul, M., 1993. Control System Design Using MATLAB.
Balakrishnan, V., Su, Q. and Koh, C.-K., 2001. Efficient Balance-and-Truncate

Model Reduction For Large Scale Systems, American Control Conference,
pp. 4746 - 4751.

Balzert, H., 2000. Lehrbuch Der Softwaretechnik: Software Development.
Spektrum Akademischer Verlag.

Baumann, G.V., 1967. An Electronic Fuel injection System For Automobiles.
Bosch Technical Journal.

Bautista-Quintero, R. and Pont, M.J., 2006. Is Fuzzy Logic A Practical Choice in
Resource-Constrained Embedded Control Systems Implemented Using
General-Purpose Microcontrollers? in: IEEE (Editor), Proceedings of The

144 | P a g e

9th IEEE international Workshop on Advanced Motion Control, Istambul,
Turkey, pp. 692-697.

Bautista-Quintero, R., Pont, M.J. and Edwards, T., 2005. Comparing The
Performance and Resource Requirements of “PID” and "LQR" Algorithms
When Used in A Practical Embedded Control System: A Pilot Study,
Proceedings of The UK Embedded Forum, Birmingham.

Bekit, D.W., Seneviratne, L.D., Whidborne, J.F. and Althoefer, K., 1998. Fuzzy
PID Tunning For Robot Manipulators.In: IEEE (Editor), Proceedings of
The 24th Annual Conference of The IEEE, pp. 2452-2457.

Bellman, R., 1996. Adaptive Control Processes. Princenton University Press.
Bennett, S., 1993. Development of The PID Controller. Control Systems

Magazine, IEEE, 13(6): 58 - 62, 64-5.
Bergin, T.J.J. and Gibson, R.G.J., 1996. History of Programming Languages II.

Addison-Wesley.
Bernstein, D.S., 1998. Control Experiments and What I Learned From Them: A

Personal Journey. IEEE Control Systems Magazine, 18(2): 81-88.
Bernstein, D.S., 1999. On Bridging The Theory/Practice Gap. IEEE Control

System Magazine, 19: 64-70.
Bernstein, D.S., 2000. The Frequency Domain. IEEE Control Systems Magazine

20(2): 8-14.
Bernstein, D.S., 2001. A Plant Taxonomy For Designing Control Experiments.

IEEE Control Systems Magazine, 21(3): 7-14.
Bernstein, D.S., 2002. What Makes Some Control Problems Hard? Control

Systems Magazine, IEEE, 22(4): 8-19.
Betin, F., Pinchon, D. and Capolino, G.-A., 2000. Fuzzy Logic Applied To Speed

Control of A Stepping Motor Drive. IEEE Transactions on industrial
Electronics, 47(3): 610-622.

Bezine, H., Derbel, N. and Alimi, M.A., 2000. On The Reduction of Large Scale
Fuzzy Controller, Proceedings of The international Conference on
ACIDCA 2000, Monastir, Tunisia,, pp. 135–140.

Bishop, R.H., 2006. Mechatronics An introduction.
Bishop, R.H. and Dorf, R., 2004. Modern Control Systems. Prentice Hall.
Black, H.S., 1984. Stabilized Feed-Back Amplifiers. Proceedings of The IEEE,

72(6): 716 - 722
Bose, B.K., 1988. Technology Trends in Microcomputer Control of Electrical

Machines. IEEE Transactions on industrial Electronics, 35(1): 160-177.
Bronzino, J.D., 1982. Computer Applications For Patient Care. Addison-Wesley

Publishing Co., California.
Bruijn, P.M., Roodink, P.A.M. and Verbruggen, H.B., 1988. A Simple

Implementation of Adaptive Predictive Controllers. In: IEEE (Editor),
international Conference on Control pp. 517-522.

Butazzo, G., 2002. Hard Real-Time Computing Systems.
Butazzo, G., 2005. Rate Monotonic Vs. EDF: Judgment Day. Real-Time Systems,

29(1): 5-26

145 | P a g e

Campbell, M., 1999. Knowledge Discovery in Deep Blue. Communications of
The ACM Vol. 42(No. 11).

Cervin, A., 2003. Integrated Control and Real-Time Scheduling Phd Thesis, Lund
institute of Technology, Lund.

Clark, E., Forbes, J., Baker, E. and Hutcheson, D., 1999. Mission-Critical and
Mission-Support Software: A Preliminary Maintenance Characterization.
Crosstalk 12(6): 17-22.

Coelho, T., Liang, Y. and Valter, F.A., 2004. Decoupling of Dynamic Equations
By Means of Adaptive Balancing of 2-Dof Open-Loop Mechanisms.
Mechanism and Machine Theory 39(8): 871-881.

Colnaric, M., 1999. State of The Art Review Paper: Advances in Embedded Hard
Real-Timesystems Design. In: IEEE (Editor), Proceedings of The IEEE
international Symposium on industrial Electronics, pp. 37-42.

Cuatto, T. Et Al., 1998. A Case Study in Embedded System Design: An Engine
Control Unit. In: IEEE (Editor), Proceedings Design Automation
Conference, pp. 804-807.

Chandrasekharan, P.C., 1996. Robust Control of Linear Dynamical Systems.
Academic Press.

Chang, T., Chung, W. and Cohen, E., 2001. Speed Control of Brushless Motor
Using Low Resolution Sensor, American Control Conference, pp. 293 -
298

Charette, R.N., 2005. Why Software Fails. Spectrum, IEEE, 42(9): 42- 49.
Chen, C.-T., 1999. Linear Systems Theory and Design. Oxford Series in Electrical

and Computer Engineering.
Chen, X., Pu, H., Wang, X., Sun, Y. and Jia, W., 2007. Control System of A

Modular and Reconfigurable Multilegged Robot. In: IEEE (Editor),
international Conference on Mechatronics and Automation, pp. 1926-
1931.

Dahlgren, F., 2001. Future Mobile Phones -Complex Design Challenges From An
Embeddedsystems Perspective. In: IEEE (Editor), Seventh IEEE
international Conference on Engineering of Complex Computer Systems,
pp. 92-94.

Dicheng, L., Qing, W., Jiangfeng, Z. and Zhi, L., 2004. The Study of
Microcomputer Adaptive Control System of Controlled Rectifier Device.
In: IEEE (Editor), The 4th international Power Electronics and Motion
Control Conference, pp. 704-707.

Donaghey, L.F., 1976. Microcomputer Systems For Chemical Process Control.
Proceedings of The IEEE, 64(6): 975-987.

Dongkun, S. Et Al., 2002. Energy-Monitoring Tool For Low-Power Embedded
Programs. Design & Test of Computers, IEEE, 19(4): 7-17.

Dormoy, J.-L., 2005. Artemis Research Priorities. In: ARTEMIS (Editor),
Artemis Conference 2005 and Mirror Group Meeting, Paris.

Dote, Y., 1990. Servo Motor and Motion Control Using DSP. Prentice Hall
Doyle, J.C., 1984. Advances in Multivariable Control, Honeywell Workshop,

Minneapolis, MN.

146 | P a g e

Doyle, J.C., Francis, B. and Tannenbaum, A., 1990. Feedback Control Theory.
Macmillan Publishing Co.

Doyle, J.C., Glover, K., Khargonekar, P.P. and Francis, B.A., 1989. State-Space
Solutions To Standard H2 and H∞ Control Problems. IEEE Transactions on
Automatic Control, 34(8): 831-847.

Dumbraï, N.V., S. Schiaua, 2000. Possibilities To increase The Resolution of
Photoelectric incremental Rotary Encoders. Materials Science in
Semiconductor Processing 3(Issues 5-6): 557-561.

East, T.D., 1984. Microcomputer Data Acquisition and Control. International
Journal of Clinical Monitoring and Computer, 3: 225-238.

Edwards, T.M., Pont, M.J. and Crumpler, S.S., 2004. A Test Bed For Evaluating
and Comparing Designs For Embedded Control Systems, Proceedings of
The UK Embedded Forum, Birmingham.

Eisenberg, B.A., Johnson, G.R., Pryor, D.V. and Mccormick, S.F., 1977. A
Microprocessor-Based Control System For Solar Heated/Cooled
Residential Dwellings, Joint Automatic Control Conference, pp. 1157-
1162.

Eldon, C.H. (Editor), 1996. Journey To The Moon: The History of The Apollo
Guidance Computer. American institute of Aeronautics & Ast

Ellis, G., 2004. Control Systems Design Guide, Using Your Computer To
Understand and Diagnose Feedback Controllers. Elsevier Academic Press.

Embree, P.M., 1995. C Algorithms For Real-Time DSP. Pearson Education.
Emura, T., L. Wang, 2000. A High-Resolution interpolator For incremental

Encoders Based on The Quadrature PLL Method. IEEE Transactions on
industrial Electronics, 47(1): 84-90.

Erickson, K.T., 1996. Programmable Logic Controllers. IEEE Potentials, 15(1):
14-17.

Eun-Chan, P., L. Hyuk, C. Chong-Ho, 2003. Position Control of X-Y Table At
Velocity Reversal Using Presliding Friction Characteristics. IEEE
Transactions on Control Systems Technology, 11(1): 24-31.

Faa-Jeng, L. and Po-Hung, S., 2006. Adaptive Fuzzy-Neural-Network Control For
A DSP-Based Permanent Magnet Linear Synchronous Motor Servo Drive.
IEEE, Transactions on Fuzzy Systems, 14(4): 481 - 495.

Faggin, F., Hoff, M.E., Mazor, S. and Shima, M., 1996. The History of The 4004.
Micro, IEEE, 16(6): 10-20.

Farrar, F. and Eidens, R., 1980. Microprocessor Requirements For Implementing
Modern Control Logic. IEEE Transactions on Automatic Control, 25(3):
461- 468.

Fernandes, S.M.M. and Maciel, P.R.M., 2003. Reliability Evaluation For
Dependable Embedded System Specifications: An Approach Based on
DSPN. In: IEEE (Editor), First ACM and IEEE international Conference
on Formal Methods and Models For Co-Design, Proceedings., pp. 172-
179.

147 | P a g e

Fisher, J.A., Faraboschi, P. and Young, C. (Editors), 2004. Embedded Computing
A VLIW Approach To Architecture, Compilers and Tools Morgan
Kaufmann.

Fobel, C., Grewal, G. and Morton, A., 2007. Using Hardware Acceleration To
Reduce FPGA Placement Times. In: IEEE (Editor), Electrical and
Computer Engineering, CCECE 2007, Canada, pp. 647 - 650.

Forsythe, W. and Goodall, R.M., 1991. Digital Control, Macmillan New
Electronics.

Francis, B.A., 1987. A Course in H∞ Control Theory. Springer-Velag
Franklin, G., Powell, D. and Emami-Naeini, A., 1993. Feedback Control of

Dynamic Systems.
Gaetano, B. and Roy, W., 2000. Embedded Computation Meets The World Wide

Web. Commun. ACM, 43(5): 59-66.
Gaixin, D. Et Al., 2002. The Rotational inverted-Pendulum Based on DSP

Controller. In: IEEE (Editor), 4th World Congress on intelligent Control
and Automation, pp. 3101-3105

Ganssle, J. and Barr, M., 2003. Embedded Systems Dictionary. In: R. Sooby
(Editor). CMP Books.

Gill, A., 1998. The Automation Evolution on The Threshold of A New Era. In:
IEEE (Editor), Cement industry Technical Conference, 1998. 40th
Conference Record. 1998 IEEE/PCA, pp. 403 - 410.

Godfrey, C.O., 2005. Mechatronics Principles and Applications. Elsevier.
Goksel, K., Knowles, K.A., Parrish, E.A. and Moore, J.W., 1975. An intelligent

industrial Arm Using A Microprocessor. IEEE Transactions on industrial
Electronics and Control instrumentation, IECI-22(3): 309-314.

Graaf, B., Lormans, M. and Toetenel, H., 2002. Software Technologies For
Embedded Systems: An industry inventory Proceedings of The 4th
international Conference on Product Focused Software Process
Improvement Springer-Verlag, pp. 453 - 465.

Grant, D.M., P. B., Denver, 1990. Memory, Control and Communications
Synthesis For Scheduled Algorithms. In: IEEE (Editor), Design
Automation Conference, 1990. Proceedings. 27th ACM/IEEE, pp. 162 -
167.

Graupe, D., Magnussen, J. and Beex, A., 1978. A Microprocessor System For
Multifunctional Control of Upper-Limb Prostheses Via Myoelectric Signal
Identification. IEEE Transactions on Automatic Control, 23(4): 538 - 544.

Grottke, M. and Trivedi, S.K., 2007. Fighting Bugs: Remove, Retry, Replicate,
and Rejuvenate. IEEE Computer, 40(2): 107-109.

Gu, D.-W., Petkov, P.H. and Konstantinov, M.M., 2005. Robust Control Design
With MATLAB. Springer.

Guidi, G., H. Kubota, Y. Hori, 1997. Induction Motor Control For Electric
Vehicle Application Using Lowresolution Position Sensor and Sensorless
Vector Control Techique, Power Conversion Conference, pp. 937-942.

148 | P a g e

Gully, S. and Coleman, N., 1981. Microcomputer Control Algorithms For
Weapon Pointing and Stabilization. IEEE Control Systems Magazine,
1(3): 22-28.

Hagiwara, N., Y. Suzuki, H. Murase, 1992. A Method of Improving The
Resolution and Accuracy of Rotary Encoders Using A Code
Compensation Technique. IEEE Transactions on instrumentation and
Measurement 41(1): 98 - 101.

Hammarström, J. and Nilsson, J., 2006. A Comparison of Three Code Generators
For Models Created in Simulink. Msc Thesis, Chalmers University of
Technology, Göteborg, Sweeden.

Hanselman, D.C., R. E. Thibodeau, D. J. Smith 1989. Variable-Reluctance
Resolver Design Guidelines. In: IEEE (Editor), IECON '89., 15th Annual
Conference on industrial Electronics Society, pp. 203-208.

Hebert, B., M. Brule, L. A. Dessaint, 1993. A High Efficiency interface For A
Biphase incremental Encoder With Error Detection [Servomotor Control].
IEEE industrial Electronics, 40(1): 155-156.

Heckenthaler, T. and Engell, S., 1994. Approximately Time-Optimal Fuzzy
Control of A Two-Tank System. IEEE Control Systems

Helton, J.W., M. R. James, 1995. Reduction of Controller Complexity in

Nonlinear H∞ Control. In: IEEE (Editor), Proceedings of The 34th IEEE
Conference on Decision and Control, pp. 2233-2238.

Henkel, J., Hu, X.S. and Bhattacharyya, S.S., 2003. Taking on The Embedded
System Design Challenge. IEEE Computer Society, 36(4): 35 - 37.

Henriksson, D., 2006. Resource−Constrained Embedded Control and Computing
Systems. PhD Thesis, Lund institute of Technology, Lund.

Horowitz, I., P. Rosenbaum, 1975. Non-Linear Design For Cost of Feedback
Reduction in Systems With Large Parameter Uncertainty. International
Journal in Control, 21(6): 997-1001.

Huang, Y. and Yasunobu, S., 2000. A General Practical Design Method For
Fuzzy PID Control From conventional PID Control. In: IEEE (Editor),
The Ninth IEEE international Conference on Fuzzy Systems, San Antonio,
TX, USA, pp. 969-972.

Hughes, Z., Pont, M.J. and Ong, H.L.R., 2005. Design and Evaluation of A
"Time-Triggered" Microcontroller, DATE 2005 (PhD Forum), Munich,
Germany

Istepanian, R.S.H. and Whidborne, J.F., 2001. Digital Controller Implementation
and Fragility.

Jackson, A., 1997. A New Microcontroller With Fuzzy inference instructions
Simplifies Controller Designs. In: IEEE (Editor), Aerospace Conference,
pp. 491-503.

Jang, J., 1993. ANFIS: Adaptive-Network-Based Fuzzy inference System. IEEE
Transactions on Systems, Man and Cybernetics, 23: 665-685.

149 | P a g e

Jinwoo, K., Bernard, P. and Zeigler, J., 1996. Hierarchical Distributed Genetic
Algorithms: A Fuzzy Logic Controller Design Application. Intelligent
Systems, IEEE Computer Society.

Jones, A.H., Ajlouni, N., Lin, Y.-C., Kenway, S.B. and Uzam, M., 1996. Genetic
Design of Robust PID Plus Feedforward Controllers. In: IEEE (Editor),
Emerging Technologies and Factory Automation, pp. 267-271.

Joshi, S.S., 1999. The Need For A Systems Perspective in Control Theory and
Practice. Control Systems Magazine, IEEE, 19(6): 56-63.

Kanagaraj, N., Sivashanmugam, P. and Paramasivam, S., 2008. Fuzzy
Coordinated PI Controller: Application To The Real-Time Pressure
Control Process. Hindawi Journal on Advances in Fuzzy
Systems(691808).

Kaul, S.K., Koul, R., Bhat, C.L., Kaul, I.K. and Tickoo, A.K., 1997. Use of A
‘Look-Up’ Table Improves The Accuracy of A Low Cost Resolver-Based
Absolute Shaft Encoder. Measurement Science & Technology, 8(3): 329-
331.

Kawaji, S. and Kanazawa, K., 1991. Control of Double inverted Pendulum With
Elastic Joint. In: IEEE (Editor), intelligent Robots and Systems, pp. 946 -
951

Kelly, R. and Santibanez, V., 2003. Control De Movimiento De Robots
Manipuladores.

Key, S.A., Pont, M.J. and Edwards, S., 2003 Implementing Low-Cost TTCS
Systems Using Assembly Language, Proc. Eighth European Conf. Pattern
Languages of Programs pp. 667-690.

Kojima, T., Kikuchi, Y., Seki, S. and Wakiwaka, H., 2004. Study on High
Accuracy Optical Encoder With 30 Bits. In: IEEE (Editor), Workshop on
Advanced Motion Control, pp. 493- 498.

Korn, J.E., Carroll, E., Johnson, R. and Kullack, B., 1981. Microcomputer
Implementation of Control Algorithms For Weapon Pointing and
Stabilization, Proceedings of The 1981 Army Numerical Analysis and
Computers.

Kukkala, P., Riihimaki, J., Hannikainen, M., Hamalainen, T.D. and Kronlof, K.,
2005. UML 2.0 Profile For Embedded System Design, Design,
Automation and Test in Europe 2005, pp. 710-716.

Kulkarni, A.S., M. A. El-Sharkawi, 2001. Intelligent Precision Position Control of
Elastic Drive Systems. IEEE Transactions on Energy Conversion, 16(1):
26-31.

Lamb, J.W. and Whelan, H.A., 1976. Microcomputer-Based Electronic Error
Corrector Bar For A Numerically-Controlled Machine Tool, United States,
pp. Pages: 10.

Lange, C.F.J., Chaudron, M.R.V. and Muskens, J., 2006. In Practice: UML
Software Architecture and Design Description. Software, IEEE, 23(2): 40-
46.

Laplante, P.A., 2005. Real-Time System Design and Analysis. In: IEEE (Editor).
Willey-INTERSCIENCE.

150 | P a g e

Laub, A., Heath, M., Paige, C. and Ward, R., 1987. Computation of System
Balancing Transformations and Other Applications of Simultaneous
Diagonalization Algorithms. IEEE Transactions on Automatic Control
32(2): 115 - 122.

Leach, R., 1995. PID Control With 32-Bit RISC Microprocessors. In: IEEE
(Editor), IEEE Technical Applications Conference and Workshops
Northcon95, pp. 178-182.

Leupers, R., 2002. Compiler Design Issues For Embedded Processors. Design &
Test of Computers, IEEE, 19(4): 51 - 58.

Leveson, N. and Turner, C.S., 1993. An investigation of The Therac-25
Accidents. IEEE Computer, 26(7): 18-41.

Lewis, F.L., 1992. Applied Optimal Control and Estimation. Prentice-Hall.
Lewis, F.L., 2005. Neural Networks For Feedback Control of Robots and

Dynamical Systems. In: IEEE (Editor), Neural Networks, 2005. IJCNN
'05. IEEE, pp. 2717.

Li, X.J. and Meijer, G.C., 1998. A Novel Low-Cost Non-Contact Resistive
Potentiometric Sensor For The Measurement of Low Speeds. IEEE,
Transactions on instrumentation and Measurement, 47(3): 776-781.

Liberzon, D., 2003. Output-input Stability and Feedback Stabilization of
Multivariable Nonlinear Control Systems. In: IEEE (Editor), Proceedings
of The 42nd IEEE Conference on Decision and Control, Maui, Hawaii
USA.

Lin, C.T., 2003. Development of U.S. Air Force intercontinental Ballistic Missile
Weapon Systems. Journal of Spacecraft and Rockets, 40(4).

Lin, S.-K., 1989. Simulation Study of PD Robot Cartesian Control. In: IEEE
(Editor), Proceedings 1989 international Conference on Robotics and
Automation, Scottsdale, AZ, USA.

Ling, K., Yue, S. and Maciejowski, J., 2006. An FPGA Implementation of Model
Predictive Control. In: IEEE (Editor), in Proceedings of The Americal
Control Conference.

Lipták, B.G., 2006. Instrument Engineerings' Handbook: Process Control and
Optimization. ISA.

Liu, C.L. and Layland, W.J., 1973. Scheduling Algorithms For
Multiprogramming in A Hard-Real-Time Environment. Association For
Computing Machinery, 20(1): 40-61.

Maciejowski, J.M., 2000. MPC: A Paradigm Shift For Automatic Control.
Systems Science, 26(4): 49-59.

Maclay, D., 1997. Simulation Gets into The Loop. IEE Review, 43(3): 109-112.
Machado, J.A.T. and De Carvalho, J.L.M., 1988. A New Variable Structure

Controller For Robot Manipulators. In: IEEE (Editor), IEEE international
Symposium on intelligent Control, pp. 441 - 446.

Machado, J.A.T. and Galhano, A.M.S.F., 1995. Benchmarking Computer Systems
For Robot Control. IEEE Transactions on Education, 38(3): 205-210.

151 | P a g e

Magana, M.E. and Holzapfel, F., 1998. Fuzzy-Logic Control of An inverted
Pendulum With Vision Feedback. IEEE Transactions on Education, 41(2):
165 - 170.

Maples, D.M., 1975. Floating Point Package For Intel 8008 and 8080
Microprocessors. US Energy Research and Development.

Martin, G., Lavango, L. and Louis-Guering, J., 2001. Embedded UML: A Merger
of Real-Time UML and Co-Design, 9th international Symposium on
Hardware/Software Codesign, Copenhagen, Denmark, pp. 23-28.

Maxwell, J.C., 1868. On Governors. Proceeding of The Royal Society, 16(100):
270–283.

Mersten, G.S., 1979. Microprocessors in Aerospace Applications. In: IEEE
(Editor), Compcon pp. 264- 269.

Minorsky, N., 1922. Directional Stability and Automatically Steered Bodies.
Journal of American Society of Naval Engineers, 34: 280.

Moore, G., 1979. VLSI: Some Fundamental Challenges. IEEE Spectrum 16(30).
Morse, S.P., Raveiel, B.W., Mazor, S. and Pohiman, W.B., 1980. Intel

Microprocessors-8008 To 8086. IEEE Computer, 13(10): 42-60.
Moyer, B., 2001. Low-Power Design For Embedded Processors. Proceedings of

The IEEE, 89(11): 1576-1587.
Mrad, F., El-Hassan, N., Mahmoud, S.E., Alawieh, B. and Adlouni, F., 2000.

Real-Time Control of Free-Standing Cart-Mounted inverted Pendulum
Using Labview RT. In: IEEE (Editor), industry Applications.

Mwelwa, C., 2006. Development and Assessment of A Tool To Support Pattern-
Based Code Generation of Time-Triggered (TT) Embedded System. PhD
Thesis, University of Leicester, Leicester.

Nair, J., Lu, N., Atraya, P. and Reuter, J., 2004. Analysis and Comparison of 3
Code Generations Tools, Proceedings of SAE international Conference,
pp. 129-133.

Nakamura, M., Goto, S. and Kyura, N., 2004. Mechatronic Servo System Control.
Springer.

Napper, S., 1998. Embedded-System Design Plays Catch-Up. IEEE Computer,
31(8): 120 - 118-19.

Nomura, H., Hayashi, I. and Wakami, N., 1996. A Learning Method of Fuzzy
inference Rules By Descendent Method. In: IEEE (Editor), Fuzzy
Systems, IEEE international Conference pp. 203-210.

Nossal, R. and Lang, R., 2002. Model-Based System Development. Micro, IEEE,
22(4): 56-63.

Ogata, K., 2002. Modern Control Engineering. Prentice Hall.
Ogawa, Y., O. Kiyoshi, 2001. Speed Observer Based Speed Control For PM

Motor Having A Low Resolution Encoder. Papers of Technical Meeting
on industrial instrumentation and Control, 2C-01(01-26): 79-84.

Orlosky, S., 1996. Improve Encoder Performance, PT Design Magazine, pp 43-
46.

Palopoli, L., C. Pinillo, A. Sangraban, E. Laurent, A. Sangiovanni, A. Bicchi
2002. Synthesis of Robust Control Systems Under Resource Constraints,

152 | P a g e

Proceedings of Hybrid Systems: Computation and Control 2002, Stanford
pp. 337-350.

Panda, S.P., A. P. Engelmann, 2003. Robust Position Control in Cassette Type
Tape Drives, American Control Conference, 2003, pp. 1356-1361

Papageorgiou, G., K. Glover, 1997. A Systematic Procedure For Designing Non-
Diagonal Weights To Facilitate H-infinity Loop Shaping. In: IEEE
(Editor), Decision and Control, San Diego, pp. 2127-2132.

Parker, R.S., Doyle, F.J.I. and Peppas, N.A., 1999. A Model-Based Algorithm For
Blood Glucose Control in Type I Diabetic Patients. IEEE Transactions on
Biomedical Engineering, 46(2): 148-157.

Passino, K. and Yurkovich, S., 1998. Fuzzy Control. Addison-Wesley
Pavlica, V. and Petrovacki, D., 1998. An Application of PID-Fuzzy Hybrid

Controller. Control Applications, 1998. Proceedings of The 1998 IEEE,
1(1): 629-632.

Phatrapornnant, T. and Pont, J.M., 2006. Reducing Jitter in Embedded Systems
Employing A Time-Triggered Software Architecture and Dynamic
Voltage Scaling. IEEE Transactions on Computer, 55(2): 113-124.

Pinnepalli, S., Jinpyo, H., Ramanujam, J. and Carver, D.L., 2007. Code Size
Optimization For Embedded Processors Using Commutative
Transformations. In: IEEE (Editor), Embedded and Real-Time Computing
Systems and Applications, 2007. RTCSA 2007. 13th IEEE international
Conference on, pp. 409 - 416.

Piotr-Jastrzebski, R., 2007. Design and Implementation of FPGA-Based LQ
Control of Active Magnetic Bearings, Lappeenrania University of
Technology.

Polycarpou, M., 1996. Stable Adaptive Neural Control Scheme For Nonlinear
Systems. Automatic Control, IEEE Transactions.

Pont, M.J., 2001. Patterns For Time-Triggered Embedded Systems, Building
Reliable Applications With 8051 Family of Microcontrollers.

Pont, M.J. and Banner, P.M., 2002. Designing Embedded Systems Using Patterns:
A Case Study Journal of Systems and Software, ELSEVIER, 71(3): 201-
213.

Pont, M.J. and Ong, H.L.R., 2002. Using Watchdog Timers To Improve The
Reliability of TTCS Embedded Systems. In: P.A.S. Hruby, K. E. (Editor),
Proceedings of The First Nordic Conference on Pattern Languages of
Programs, pp. 159-200.

Postlethwaite, I.S., Tsai, M.C. and Gu, D.W., 1990. Weighting Function
Selection. In: IFAC (Editor), 11th IFAC World Congress, Tallin Estonia,
pp. 104-109.

Pozzi, L. and Paulin, P.G., 2007. A Future of Customizable Processors: Are We
There Yet? Design, Automation & Test in Europe Conference: 1-2.

Pratt, W.C. and Brown, F.M., 1975. Automated Design of Microprocessor-Based
Controllers. IEEE Transactions on industrial Electronics and Control
instrumentation, , IECI-22(3): 273-279.

153 | P a g e

Prisaznuk, P.J., 2003. Software Management - ARINC 653 Application Software
interface, ARINC industry Activities.

Proctor, M.F., P. W. Shackleford 2001. Real-Time Operating System Timing
Jitter and Its Impact on Motor Control, Proceedings of The SPIE Sensors
and Controls For intelligent Manufacturing II, pp. 10-16.

Quaranta, G. and Mantegazza, P., 2001. Using MATLAB-Simulink RTW To
Build Real Time Control Applications in User Space With RTAI-LXRT.
In: IEEE (Editor), Realtime Linux Workshop, Milano

Raghunath, K.J. and Parhi, K.K., 1994. Fixed and Floating Point Error Analysis of
QRD-RLS and STAR-RLS Adaptive Filters. In: IEEE (Editor), Acoustics,
Speech, and Signal Processing, 1994. ICASSP-94, pp. 81-84.

Rajulu, R.G. and Rajaraman, V., 1984. Estimation of Execution Times of Process
Control Algorithms on Microcomputers. IEEE Transactions on industrial
Electronics, IE-31(1): 56-60.

Rauta, A., Woudstra, J.B., Deleroi, W. and Van Beijnhem, E., 1996. Industrial
Microcontrollers [For Electric Drives]. In: IEEE (Editor), international
Conference on Power Electronics, Drives and Energy Systems For
industrial Growth, pp. 991-996.

Reininger, T., F. Welker, V. M. Zeppelin 2006. Sensors in Position Control
Applications For industrial Automation. Elsevier Sensors and Actuators,
129(1-2): 270-274.

Reyes, F. and Kelly, R., 2001. Experimental Evaluation of Model-Based
Controllers on A Direct-Drive Robot Arm. Mechatronics, Vol. 11.

Reynaert, P., 2008. Embedded System Research in Europe. In: I.S.A.M. European
Comission (Editor), Cyber-Physical Systems Workshop.

Ridgeway, R.A., 1975. Microprocessor Utilization in Hydraulic Open-Die Forge
Press Control. IEEE Transactions on industrial Electronics and Control
instrumentation, , IECI-22(3): 307-309.

Rovatti, R., Guerrieri, R. and Baccarani, G., 1995. An Enhanced Two-Level
Boolean Synthesis Methodology For Fuzzy Rules Minimization, IEEE
Transactions on Fuzzy Systems.

Ruspini, E., 1969. A New Approach To Clustering. Information and Control,
15(1): 22-32.

Sammet, J.E., 1969. Programming Languages: History and Fundamentals.
Prentice-Hall.

Sangiovanni-Vincentelli, A.L. and Pinto, A., 2005. Embedded System Education:
A New Paradigm For Engineering Schools? in: IEEE (Editor), Workshop
on Embedded Systems Education, pp. 5-14.

Schatz, B. Et Al., 2003. CASE Tools For Embedded Systems. TUM-I0309,
Technical University of Munich.

Schlett, M., 1998. Trends in Embedded-Microprocessor Design. Computing,
31(8): 44-49.

Schulz, S., Rozenblit, J.W., Mrva, M. and Buchenriede, K., 1998. Model-Based
Codesign. Computer, 31(8): 60-67.

154 | P a g e

Seim, T.A., 1975. Automation of A Brazing Process With An Intel 8008
Microprocessor. IEEE Transactions on industrial Electronics and Control
instrumentation, , IECI-22(3): 303-307.

Selekwa, M.F., E. G. Collins Jr., 2006. Design of Multi-objective H∞ Loop-
Shaping SISO Control Systems By Fuzzy Logic. IEEE, Control and
intelligent Systems, , 34(1): 45 - 56

Sevcik, R., 2006. Future FPGA Technologies, in Partnership With Universities,
Proceedings of The 19th international Conference on VLSI Design Held
Jointly With 5th international Conference on Embedded Systems Design.
IEEE Computer Society.

Sheng, Q., Xianyi, Z., Changhong, W., Gao, X.Z. and Zilong, L., 2002. Design
and Implementation of An Adaptive PID Controller Using Single Neuron
Learning Algorithm. In: IEEE (Editor), Proceedings of The 4th World
Congress on intelligent Control and Automation.

Short, M. and Pont, M.J., 2005. Hardware in The Loop Simulation of Embedded
Automotive Control System. Intelligent Transportation Systems, 2005.
Proceedings. 2005 IEEE: 426 - 431.

Shouling, H. and Xuping, X., 2007. Hardware/Software Co-Design of An
ADALINE Based Adaptive Controller For A DC Motor. In: IEEE
(Editor), Thirty-Ninth Southeastern Symposium on System Theory, pp.
164 - 168.

Simunic, T., Benini, L. and De Micheli, G., 2001. Energy-Efficient Design of
Battery-Powered Embedded Systems. IEEE Transactions on Very Large
Scale integration (VLSI) Systems, 9(1): 15-28.

Skogestad, S. and Postlethwaite, I., 2005. Multivariable Feedback Control
Analysis and Design. Wiley.

Slomka, F., Dorfel, M., Munzenberger, R. and Hofmann, R., 2000.
Hardware/Software Codesign and Rapid Prototyping of Embedded
Systems. IEEE on Design & Test of Computers, 17(2): 28-38.

Song, I., Karray, F. and Li, H., 2005. A Real-Time Scheduler Design For Fuzzy
Logic Controller. In: I.I. Conference (Editor), Mechatronics and
Automation, pp. 2037 - 2042

Spong, M., Thorp, J. S., Kleinwaks, J. M., 1987. Robust Microprocessor Control
of Robot Manipulators. Automatica (Journal of IFAC), 23(3): 373-379.

Spong, M. and Vidyasagar, M., 1989. Robot Dynamics and Control. John Wiley
& Sons.

Standards Coordinating Committee of The IEEE Computer Society, U., 1990.
IEEE Standard Glossary of Software Engineering Terminology. IEEE
Computer Society.

Storey, N., 1996. Safety-Critical Computer Systems. Addison-Wesley.
Sun, Y.-L. and Meng, J., 2004. Hybrid Fuzzy Control of Robotics Systems. IEEE

Transactions on Fuzzy Systems, 12(6): 755-765.
Sysml, P., 2005. Sysml Open Source Project. In: http://www.sysml.org (Editor).

155 | P a g e

Takahashi, E.T. and Wang, L., 2000. A High-Resolution interpolator For
incremental Encoders Based on The Quadrature PLL Method. IEEE
Transactions on industrial Electronics, 47(1): 84-90.

Tan, K.K., X. Huixing, H. L. Tong, 2002. New interpolation Method For
Quadrature Encoder Signals. IEEE Transactions on instrumentation and
Measurement, 51(5): 1073- 1079.

Tang, K.S., Man, F.K., Chen, G. and Kwong, S., 2001. An Optimal Fuzzy PID
Controller. IEEE Transactions on industrial Electronics, 48(4): 757-765.

Teng, F.C., 2000. Real-Time Control Using MATLAB Simulink. In: IEEE
(Editor), IEEE international Conference Systems, Man and Cybernetics,
pp. 2697-2702.

Vanderperren, Y. and Dehaene, W., 2005. UML 2 and Sysml: An Approach To
Deal With Complexity in Soc/Noc Design, Design, Automation and Test
in Europe, pp. 716-718.

Venkatachalam, A. and Franz, M., 2005. Power Reduction Techniques For
Microprocessor Systems ACM Computing Surveys 37(3): 195 - 237.

Veysel, G. Et Al., 2001. The RCS Handbook: Tools For Real Time Control
Systems Software Development

Wang, H.-C., 1981. Sampling Period and Stability Analysis For The
Microcomputer-Based Motor Control Systems. IEEE Transactions on
industrial Electronics and Control instrumentation IECI-28(2): 98-102.

Wang, L.-X., 1998. Universal Approximation By Hierarchical Fuzzy Systems.
Fuzzy Sets Syst. Elsevier North-Holland, 93 (2): 223-230.

Wang, R. and Yang, S., 2004. The Design of A Rapid Prototype Platform For
ARM Based Embedded System. Transactions on Consumer Electronics,
50(2).

Whidborne, J.F. and Yang, J.-B., 2002. Multi-objective Design of Low
Complexity Digital Controllers. In: IEEE (Editor), international
Symposium on Computer Aid Control Systems Design pp. 27-32.

Williamson, D., 1991. Digital Control and Implementation Finite Wordlength
Considerations, Prentice Hall.

Wolf, W., Ozer, B. and Lv, T., 2002. Smart Cameras As Embedded Systems.
IEEE Computer, 35(9): 48- 53.

Wootaik, L., Minsuk, S. and Myoungho, S., 2004. Target-Identical Rapid Control
Prototyping Platform For Model-Based Engine Control Proceedings of
The I MECH E Part D Journal of Automobile Engineering(D7): 755-765.

Wörnle, F. and Murillo-Garcia, R., 2002. A MATLAB Toolbox For Real-Time
Control Using C167 Microcontrollers. In: IEEE (Editor), Control and
Applications, Cancun Mexico.

WSTS, 2005. Embedded Systems Statistics. In: http://www.wsts.org/ (Editor).
World Semiconductor Trade Statistics, .

Yamakawa, T., 1992. A Fuzzy Programmable Logic Array (Fuzzy PLA). In:
IEEE (Editor), international Conference on Fuzzy Systems, pp. 459-465.

156 | P a g e

Youbin, P., Vrancic, D. and Hanus, R., 1996. Anti-Windup, Bumpless, and
Conditioned Transfer Techniques For PID Controllers. IEEE Control
Systems Magazine, 16(4): 48-57.

Zadeh, L.A., 1965. Fuzzy Sets. Information and Control, 8.
Zames, G., 1976. Feedback and Complexity, Special Plenary Lecture Addendum.

In: IEEE (Editor), Decision and Control.
Zames, G., 1981. Feedback and Optimal Sensitivity: Model Reference

Transformations, Multiplicative Seminorms, and Approximate inverses.
IEEE Transactions on Automatic Control, 26(2): 301-320.

Zhou, K., J. C. Doyle, K. Glover, 1996. Robust and Optimal Control. Prentice-
Hall.

Zhou, S.-L., Han, P., Dong-Feng, W., Wang, W.-Y. and Zhang, L.J., 2003. Fuzzy-
Neural Net Based Control Strategy For Robot Manipulator Trajectory
Tracking. In: IEEE (Editor), Machine Learning and Cybernetics, pp. 596-
601.

1

APPENDIX A

Programs for the inverted pendulum testbed using
LPC2129 ARM microcontroller

2

main.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* main function */
/* Control for the pendulum using encoder 1000 ppr */
/* SIMO control */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/* */
/***/

#include <LPC21xx.H> // Head file LPC21xx
#include <stdio.h> // Prototype for I/O functions

#define offset_rod 218 // Offset rod position

void init_timer(void); // Initialization of the timer
void task1(void)__irq; // Acquisition and control task

void init_eint1(void); // External interruption for the cart encoder Phase A
void ExtIServ1(void) __irq;
void init_eint0 (void); // Interruption for the rod encoder Phase A and Phase B
void ExtIServ0(void) __irq;
void init_eint3 (void); // Interruption for the rod encoder Phase A and Phase B
void ExtIServ3(void) __irq;
void init_PWM (void); // Initialization of PWM signal (signal for the motor actuation)

void main (void)
{

char end_flag;
sp=0;
end_flag=1;
xp_max= 0;
j=0; // Init rod position in zero
init_eint0(); // Initialization of external interruption 0
init_eint1(); // Initialization of external interruption 1
init_eint3(); // Initialization of external interruption 3
do{

}while(j<offset_rod);
 i=0;

j=0;
init_timer(); // Initialization TIMER 0
init_PWM(); // Initialization PWM2 Module

do{ // Super-loop for the real-time control process
 }while(end_flag);

}

3

External_int1.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* External interruption 1 */
/* Control for the pendulum using encoder 1000 ppr */
/* SIMO control */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/* */
/***/

extern float i; // Counter for car position
extern float j; // Counter for rod position

// External Interrupt 1 Service
void ExtIServ1(void) __irq
{
 if ((IOPIN0 & 0x00000400) != 0) // Check if Phase B is ON
 {
 i=i+1; // Cart is moving forwards (right) increase the counter
 }else i=i-1; // Cart is moving backwards (left) decrease the counter

 EXTINT = 2; // Clear interrupt flag EINT1
 VICVectAddr = 0; // Acknowledge Interrupt
}

// Init External Interrupt Pin

void init_eint1 (void)
{
EXTMODE= 0x02; // Edge sensitive mode on EINT1
EXTPOLAR = 0x02; // Raising edge sensitive
PINSEL0= PINSEL0 | 0x000000C0; // Enable EINT1 on GPIO_0.3
VICVectAddr1= (unsigned long) ExtIServ1; // Set interrupt vector in VIC 0
VICVectCntl1 = 0x2F; // Use VIC 1 for EINT1 Interrupt
VICIntEnable = VICIntEnable | 0x00008000; // Enable EINT1 Interrupt
}

4

Ext_int0.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* External interruption 0 (implementation of quad technique for encoder readings) */
/* Control for the pendulum using encoder 1000 ppr */
/* SIMO control */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/* */
/***/

char t1=1,t2=1; // Toggle variables to detect falling and rising edges

// External Interrupt 0 Service
void ExtIServ0(void) __irq
{
if(t1==1) //Toggle variable

{t1=0;
 if ((IOPIN0 & 0x00000001) != 0) // Read phase A (pin P0.0)

 {
 j++; // Rod rotating in CW increase counter
 }else j--; // Rod rotating in CCW decrease counter

EXTPOLAR=EXTPOLAR & 0xE; // Change pulses edge detection
 }else

{
 t1=1;
 if ((IOPIN0 & 0x00000001) != 0) // Read phase A (pin P0.0)
 {
 j--; // Rod rotating in CW decrease counter
 }else j++; // Rod rotating in CCW decrease counter

 EXTPOLAR=EXTPOLAR | 0X1; // Change pulses edge detection
 }

EXTINT = 1; // Clear interrupt flag EINT0
VICVectAddr = 0; // Acknowledge Interrupt
}

// Init External Interrupt Pin

void init_eint0 (void) {

EXTMODE= 0x01; // Edge sensitive mode on EINT0
EXTPOLAR= 0x01; // Raising edge sensitive
PINSEL0 = PINSEL0 | 0x0000000C; // Enable EINT0 on GPIO_0.1
VICVectAddr2 = (unsigned long) ExtIServ0; // Set interrupt vector in VIC 0
VICVectCntl2 = 0x2E; // Use VIC 0 for EINT0 Interrupt
VICIntEnable = VICIntEnable | 0x00004000; // Enable EINT0 Interrupt
}

5

Ext_int3.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* External interruption 3 (implementation of quad technique for encoder readings) */
/* Control for the pendulum using encoder 1000 ppr */
/* SIMO control */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/* */
/***/

char t1=1,t2=1; // Toggle variables to detect falling and rising edges

// External Interrupt 3 Service
void ExtIServ3(void) __irq
{
 if(t2==0) //Toggle variable

{ t2=1;

 if ((IOPIN0 & 0x00000010) != 0) // Read phase A (P0.4)
 {
 j--; // Rod rotating in CCW decrease counter
 }else j++; // Rod rotating in CW increase counter

 EXTPOLAR=EXTPOLAR & 0X7; // Change pulses edge detection
 }else
 {
 t2=0;
 if ((IOPIN0 & 0x00000010) != 0) // pin P0.4
 {
 j++; // Rod rotating in CW increase counter
 }else j--; // Rod rotating in CCW decrease counter

 EXTPOLAR=EXTPOLAR | 0x08;// Change pulses edge detection
 }
 EXTINT = 8; // Clear interrupt flag EINT3
 VICVectAddr = 0; // Acknowledge Interrupt
}

// Init External Interrupt Pin

void init_eint3 (void) {

EXTMODE = 0x02; // Edge sensitive mode on EINT2
EXTPOLAR= 0x03; // Raising edge sensitive
PINSEL0 = PINSEL0 | 0x000C0000; // Enable EINT3 on GPIO_0.9
VICVectAddr3 = (unsigned long) ExtIServ3; // Set interrupt vector in VIC 0
VICVectCntl3 = 0x21 | 17; // Use VIC 2 for EINT3 Interrupt
VICIntEnable = VICIntEnable | 0x00020000; // Enable EINT3 Interrupt
}

6

PWM_init.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* PWM module Signal to actuate Servomotor */
/* Control for the pendulum using encoder 1000 ppr */
/* SIMO control */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/* */
/***/

void PWM_Init(void)
 {
 PIN_Set_Mode(PWM_OUTPUT_pin, 1, 0); // Set P0.07 as PWM2.

 PWMPR = 0x00000000; // 1:1 ratio of the PWM prescaler.
 PWMPCR = 0x00000404; // Control mode for PWM2 output. Enables PWM2 output.
 PWMMCR = 0x00000002; // PWMTC is reset.
 PWMMR0 = 0x400; // Set PWMMCR0 to 1042, making the PWM period (1/PCLK) x 1024.
 PWMMR2 = 0x00; // Clear the PWMMR2 register.
 PWMLER = 0xF; // Enable shadow latch for PWM Match 0 - 3.
 PWMEMR = 0x00210A8E; // Match 1 and Match 2 outputs set high.
 PWMTCR = 0x00000002; // Reset PWMTC and PWMPR.
}

7

PID_real_time_rutine.c

/***/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/***/
/* PID function PD control for the rod and PID for the cart */
/* Control for the pendulum using encoder 1000 ppr */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/***/

#include<LPC21XX.H>

#define zero 20
#define Ts 0.01 // Sample time 10 ms
#define pulses2mts 6.8327e-5 // Constant to convert pulses to metres (cart sensor)
#define pulses2rad 1.57e-3 // Constant to convert pulses to radians (rod sensor)
#define volts2PWM 1024/19 // Constant to convert volts to bits (actuator signal)

void init_timer(void);

float i; // Counter for pulses (cart encoder)
float j; // Counter for pulses (rod encoder)

int time=0; // Time variable
char end_flag; // Variable to cancel the process

/**************************************/
/* variables for sub-task1 */
/*************************************/
int sub_task1=0;
int time_task1=50;
float pcart_mts=0;
float teta_rad=0;

/*************************************/
/* variables for sub-task2 */
/*************************************/
int sub_task2=0;
int time_task2=100;
float vcart=0;
float vrod=0;
float vcartf=0;
float vrodf=0;
float pcart_mts_old=0;
float teta_rad_old=0;
float sp=0;
float error=0;
float kpc=-4.1813; // position of the cart
float kpr=31.38; // position of the rod
float kdc=-15.28; // velocity of the cart
float kdr=7.5743; // velocity of the rod
float kic=0.5; // integral control
float Iz=0; // Integral accumulator
float Izold=0; // Integral history
float alfa=0.85; // Digital filter coefficient

8

/***************************************/
/* variables for sub task3 */
/***************************************/
int sub_task3=0;
int time_task3=200;

void task1(void)__irq // Real-time task1
{
float u=0;
sub_task1++;

if(sub_task1>=time_task1)
{

 // This segment is executed every 5 ms
 pcart_mts=i*pulses2mts;
 teta_rad=j*pulses2rad;
 sub_task1=0;
 }
sub_task2++;

if(sub_task2>=time_task2)
{

 // This segment is executed every 10 ms
vcart=(pcart_mts-pcart_mts_old)/Ts;

 vcartf=alfa*vcartf+(1-alfa)*vcart;
 vrod=(teta_rad-teta_rad_old)/Ts;
 vrodf=alfa*vrodf+(1-alfa)*vrod;
 pcart_mts_old=pcart_mts;
 teta_rad_old=teta_rad;
 Iz=Izold+kic*Ts*(sp-pcart_mts);
 u=-kpr*teta_rad-kdr*vrodf+kpc*(sp-pcart_mts)-kdc*vcartf-Iz;
 u=u*volts2PWM;
 Izold=Iz;
 if(u < 0) IOSET1=0X010000;else IOCLR1=0X010000;
 if(u<0)u=-u;
 if(u>1020)u=1020; // Saturacion
 PWMMR2 = u+zero; // Salida de control
 PWMLER = 0x4; // Enable Shadow latch
 time++;
 sub_task2=0;
 }
sub_task3++;

if(sub_task3>=time_task3)
{

 // This segment is executed every 20 ms
 if(pcart_mts>0.3){end_flag=0;return;}
 if(pcart_mts<-0.3){end_flag=0;return;}
 if(time>=1200){end_flag=0;return;}

 sub_task3=0;
 }
T0IR=1; VICVectAddr=0;
}

void init_timer(void)
{
T0MR0=2999; //Number of cycles to occur an interruption 3000-1=1 int every 0.1ms
T0MCR=3; //Init interruption
T0TCR=1; //Enable timer 0
VICVectAddr0=(unsigned long)task1;
VICVectCntl0=0x20 | 4;
VICIntEnable = VICIntEnable | 0x00000010; // Enable interruption of timer 0
}

9

LQR_real_time_rutine.c

/**/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/**/
/* LQR function feedback: k1 cart position, k2 rod position, k3 cart velocity, k4 rod velocity */
/* Control for the pendulum using encoder 1000 ppr */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/**/
#include<LPC21XX.H>

#define zero 20
#define Ts 0.01 // Sample time 10 ms
#define pulses2mts 6.8327e-5 // Constant to convert pulses to metres (cart sensor)
#define pulses2rad 1.57e-3 // Constant to convert pulses to radians (rod sensor)
#define volts2PWM 1024/19 // Constant to convert volts to bits (actuator signal)

/**************************************/
/* variables para sub task1 */
/*************************************/
int sub_task1=0;
int time_task1=50;
float pcart_mts=0;
float teta_rad=0;
/**************************************/
/* variables para sub task2 */
/**************************************/
int sub_task2=0;
int time_task2=100;
float vcart=0;
float vrod=0;
float vcartf=0;
float vrodf=0;
float pcart_mts_old=0;
float teta_rad_old=0;
float sp=0;
float error=0;

/**************************************/
/* LQR Gains */
/**************************************/
float k1=-4.18; //position of the cart
float k2=-33.17; //position of the rod
float k3=-18.09; //velocity of the cart
float k4=-7.89; //velocity of the rod

float k0=0.1485; //feedback of the input
float w0=0; // output of control
float alfa=0.95;

/**************************************/
/* variables for sub task3 */
/**************************************/

int sub_task3=0;
int time_task3=200;

10

void task1(void)__irq // Real-time task1
{
float u=0;
sub_task1++;

if(sub_task1>=time_task1)
{

 // This segment is executed every 5 ms
 pcart_mts=i*pulses2mts;
 teta_rad=j*pulses2rad;
 sub_task1=0;
 }
sub_task2++;

if(sub_task2>=time_task2)
{

 // This segment is executed every 10 ms
vcart=(pcart_mts-pcart_mts_old)/Ts;

 vcartf=alfa*vcartf+(1-alfa)*vcart;
 vrod=(teta_rad-teta_rad_old)/Ts;
 vrodf=alfa*vrodf+(1-alfa)*vrod;
 pcart_mts_old=pcart_mts;
 teta_rad_old=teta_rad;
 u=k1*(sp-pcart_mts)-k2*teta_rad-k3*vcartf-k4*vrodf+k0*w0;
 u=u*volts2PWM;
 Izold=Iz;
 if(u < 0) IOSET1=0X010000;else IOCLR1=0X010000;
 if(u<0)u=-u;
 if(u>1020)u=1020; // Saturacion
 PWMMR2 = u+zero; // Salida de control
 PWMLER = 0x4; // Enable Shadow latch
 time++;
 sub_task2=0;
 }
sub_task3++;

if(sub_task3>=time_task3)
{

 // This segment is executed every 20 ms
 if(pcart_mts>0.3){end_flag=0;return;}
 if(pcart_mts<-0.3){end_flag=0;return;}
 if(time>=1200){end_flag=0;return;}

 sub_task3=0;
 }
T0IR=1; VICVectAddr=0;
}

11

FLC_real_time_rutine.c

/**/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/**/
/* FLC_function */
/* Control for the pendulum using encoder 1000 ppr */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/**/
#include<LPC21XX.H>

#define zero 20
#define Ts 0.01 // Sample time 10 ms
#define pulses2mts 6.8327e-5 // Constant to convert pulses to metres (cart sensor)
#define pulses2rad 1.57e-3 // Constant to convert pulses to radians (rod sensor)
#define volts2PWM 1024/19 // Constant to convert volts to bits (actuator signal)

#define num_max_MSF 7 // Maximum number of membership functions
#define num_max_inputs 4 // Maximum number of inputs
#define num_max_rules 50 // Maximum number of rules
#define Coord_Points 4 // Coordinates of MSF

#define num_inputs 4 // Inputs
#define num_outputs 1 // Outputs
#define num_rules1 18 // Rules for rules for set 1
#define num_sets 1 // Number of sets
#define num_conse1 5 // Number of consequents
#define num_ante1 5 // Number of antecedents 1
#define num_ante2 3 // Number of antecedents 2
#define num_ante3 5 // Number of antecedents 3
#define num_ante4 3 // Number of antecedents 4

int num_input_mfs[4] = { num_ante1,num_ante2,num_ante3,num_ante4 };
int num_rules[1]={num_rules1};
int num_conse[1]={num_conse1};

float crisp_in[num_max_inputs];
float fuzzy_in[num_max_inputs][num_max_MSF];
char Membership[num_max_MSF];

void fuzzy(float data_in,int num_var);
float rules_eval(char set_num);

float inmem_points[num_inputs][num_max_MSF][Coord_Points] =
{

 { { -30.000000, -30.000000, -10.000000, -5.000000 },
 { -10.000000, -5.000000, -5.000000, 0.000000 },
 { -5.000000, 0.000000, 0.000000, 5.000000 },
 { 0.000000, 5.000000, 5.000000, 10.000000 },
 { 5.000000, 10.000000, 30.000000, 30.000000 }

 },

12

{
 {-5.000000, -5.000000, -3.000000,0.000000 },
 { -3.000000, 0.000000, 0.000000, 3.000000 },
 { 0.000000, 3.000000, 5.0000000, 5.0000000 }
},
 {
 { -40.000000, -40.000000, -32.000000, -21.000000 },
 { -32.000000, -21.000000, -21.000000, 0.000000 },
 { -21.000000, 0.000000, 0.000000, 21.000000 },
 { 0.000000, 21.000000, 21.000000, 32.000000 },
 { 21.000000, 32.000000, 40.000000, 40.000000 }
 },

{
 {-40.000000, -40.000000, -20.000000,0.000000 },
 { -20.000000, 0.000000, 0.000000, 20.000000 },
 { 0.000000, 20.000000, 40.000000, 40.0000000 }
}

};

float rules[num_sets][num_rules1][5]=
{
 {
 { 2, 1, 2, 1, 2 },// ang zero & vel_ang zero then volta zero
 { 1, 1, 2, 1, 3 },// ang - & vel_ang zero then volta +
 { 0, 1, 2, 1, 4 },// ang -- & vel_ang zero then volta ++
 { 3, 1, 2, 1, 1 },// ang + & vel_ang zero then volta -
 { 4, 1, 2, 1, 0 },// ang ++ & vel_ang zero then volta --
 { 1, 0, 2, 1, 0 },// ang - & vel_ang -- then volta --
 { 3, 2, 2, 1, 4 },// ang + & vel_ang ++ then volta ++
 { 2, 0, 2, 1, 3 },// ang zero & vel_ang - then volta +
 { 2, 2, 2, 1, 1 },// ang zero & vel_ang + then volta -

 { 2, 1, 2, 1, 2 },// car zero & vel_car zero then volta zero
 { 2, 1, 1, 1, 3 },// car - & vel_car zero then volta +
 { 2, 1, 0, 1, 3 },// car -- & vel_car zero then volta +
 { 2, 1, 3, 1, 1 },// car + & vel_car zero then volta -
 { 2, 1, 4, 1, 1 },// car ++ & vel_car zero then volta -

 { 2, 1, 1, 0, 0 },// car - & vel_car - then volta --
 { 2, 1, 3, 2, 4 },// car + & vel_car + then volta ++
 { 2, 1, 2, 0, 1 },// car zero & vel_car - then volta -
 { 2, 1, 2, 2, 3 } // car zero & vel_car + then volta +
 }
};

int num_output_mfs[1] = {num_conse1};

float outmem_points[1][num_conse1] =
{
 {
 { -16.000000 },
 { -12.000000 },
 { 0.000000 },
 { 12.000000 },
 { 16.000000 }
 }
};

13

/**************************************/
/* variables para sub task1 */
/*************************************/
int sub_task1=0;
int time_task1=50;
float pcart_cm=0;
float teta_grad=0;

/**************************************/
/* variables para sub task2 */
/**************************************/
int sub_task2=0;
int time_task2=100;
float vcart=0;
float vrod=0;
float vcartf=0;
float vrodf=0;
float pcart_cm_old=0;
float teta_grad_old=0;
float sp=0;
float error=0;

/**************************************/
/* variables for sub task3 */
/**************************************/

int sub_task3=0;
int time_task3=200;
void task1(void)__irq // Real-time task1
{
float u=0;
sub_task1++;

if(sub_task1>=time_task1)
{

 // This segment is executed every 5 ms
 pcart_cm=i_pulses*pulses2cm;
 teta_grad=j_pulses*pulses2grad;
 sub_task1=0;
 }
sub_task2++;

if(sub_task2>=time_task2)
{

 // This segment is executed every 10 ms
 vcart=(pcart_cm-pcart_cm_old)/Ts;
 vcartf=alfa*vcartf+(1-alfa)*vcart;
 vrod=(teta_grad-teta_grad_old)/Ts;
 vrodf=alfa*vrodf+(1-alfa)*vrod;
 pcart_cm_old=pcart_cm;
 teta_grad_old=teta_grad;

 fuzzy(teta_grad*0.8,0);
 fuzzy(vrodf/22,1);
 fuzzy((sp-pcart_cm)/5,2);
 fuzzy(vcartf/2,3);
 u=rules_eval(0);
 u=u*volts2PWM;
 Izold=Iz;
 if(u < 0) IOSET1=0X010000;else IOCLR1=0X010000;
 if(u<0)u=-u;

14

 if(u>1020)u=1020; // Saturation
 PWMMR2 = u+zero; // control output
 PWMLER = 0x4; // Enable Shadow latch
 time++;
 sub_task2=0;
 }
sub_task3++;

if(sub_task3>=time_task3)
{

 // This segment is executed every 20 ms
 if(pcart_cm>35){end_flag=0;return;}
 if(pcart_cm<-35){end_flag=0;return;}

 sub_task3=0;
 }
T0IR=1; VICVectAddr=0;
}

15

H_inf_real_time_rutine.c

/**/
/* Using Keil uVision/ARM and the Keil CA ARM Compiler board MC2100 */
/* EMBEDDED SYSTEMS LABORATORY */
/* UNIVERSITY OF LEICESTER */
/* ENGINEERING DEPARTMENT */
/**/
/* H-infinity function */
/* Control for the pendulum using encoder 1000 ppr */
/* SERVOMOTOR PITMAM MODEL GM9234C2112-R3 */
/* Author: Ricardo Bautista Quintero */
/**/
#include<LPC21XX.H>

#define zero 20
#define Ts 0.01 // Sample time 10 ms
#define pulses2mts 6.8327e-5 // Constant to convert pulses to metres (cart sensor)
#define pulses2rad 1.57e-3 // Constant to convert pulses to radians (rod sensor)
#define volts2PWM 1024/19 // Constant to convert volts to bits (actuator signal)

void init_timer(void);
void mul_mat(float *p1,float *p2,int row1,int col1,int row2, int col2);

float i_pulses; // Counter for pulses (cart encoder)
float j_pulses; // Counter for pulses (rod encoder)

/**************************************/
/* variables para sub task1 */
/*************************************/
int sub_task1=0;
int time_task1=50;
float pcart_mts=0;
float teta_rad=0;
/**************************************/
/* variables para sub task2 */
/**************************************/
float sp=0;

#define no_max 12 // Maximum number for matrix multiplication

float AplusB[no_max][no_max]; //matrix dummy

/**/
/* Variables of the H-inf control and system */
/**/

#define Hinf_edos 8
#define Hinf_inp 2
#define Hinf_out 1
#define Syst_edos 4
#define Syst_inp 1
#define Syst_out 2

16

float Akd[Hinf_edos][Hinf_edos]=

{
{2.14673749678886420000e-002, -5.43825126594176210000e+000, -
4.73165562480221400000e-002, -2.06802456495317730000e-001, -
4.78774122792793210000e+000, -1.05345850051180130000e+000,
1.30686157860723310000e+000, -1.19096870248667570000e+000, },

{0.00000000000000000000e+000, 8.23216778569025090000e-001, -
1.36676011789418590000e+000, 7.93540961629594640000e-001, -
2.82868950761547940000e-001, -1.77606387897586670000e+000,
4.70915732234266910000e-002, -4.29926850398490360000e-002, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000,
1.95207318648533920000e-007, 1.43151256484721950000e-006, -
5.42732010137304060000e-002, -1.08167503520481570000e+000,
1.72267141688626470000e-002, -1.57262422730563980000e-002, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000, -
4.03982992625176410000e-008, 1.95207318648533920000e-007,
1.78321772087720430000e-001, 4.49546764263535570000e-001, -
1.15560370960405110000e-002, 1.05505149574363560000e-002, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
1.03009518751944660000e+000, 4.02156191254483060000e-002, -
6.68452953304444870000e-003, 6.10481526213307260000e-003, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 9.95828667215284620000e-001, -
1.32910378928795500000e-003, 1.21381125846355910000e-003, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
9.99949998673021030000e-001, 2.40319600683038900000e-009, },

{0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 0.00000000000000000000e+000,
0.00000000000000000000e+000, 9.99000500357187350000e-001, },
};

float Bkd[Hinf_edos][Hinf_inp]=
{

{-8.03512336455226790000e-001, -6.65751029159127940000e+002, },
{-4.74358507077326660000e-002, 1.20016337785044560000e+001, },
{4.46279471723266820000e-003, -7.75435899440934410000e+000, },
{-3.91718585127508180000e-003, 5.19104276617864710000e+000, },
{-2.59589066271419530000e-002, 1.47607542438926200000e+001, },
{-1.13863767178785240000e-002, 6.23380187387581940000e+000, },
{-5.83107235276332130000e-001, 1.13105450988902590000e-005, },
{-1.60349393366812120000e-008, -4.66264252000952070000e+000, },

};

17

float Ck[1][Hinf_edos]={
{-5.35115813526445550000e-002, -5.39255716964162520000e-001, -
8.73047926136073040000e+001, 7.68742290691873110000e+002, -
1.38144210554831830000e+002, -4.36435544629736400000e+002,
9.00197539925055420000e+000, -8.22573252507756970000e+000, },
};

float Uk[Hinf_inp][1]= {
 {0},
 {0},
 };

float Xk[Hinf_edos][1]={
 {0},
 {0},
 {0},
 {0},
 {0},
 {0},
 {0},
 {0},
 };

float U[1][1];

float x[Syst_edos][1]={
 {0}, // Cart position
 {0}, // Rod position
 {0}, // Cart velocity
 {0}, // Rod velocity
 };

/*************************************/
/* Variables for sub task3 */
/*************************************/

int sub_task3=0;
int time_task3=200;

void task1(void)__irq
{
float u=0;
int edo;
float *pa,*pb; // Pointers for matrix A and B

sub_task1++; // Execute this code every 5 ms
if(sub_task1>=time_task1){
 pcart_mts=i_pulses*pulses2mts;
 teta_rad=j_pulses*pulses2rad;

 sub_task1=0;
 }

sub_task2++; // Execute this code every 10ms
if(sub_task2>=time_task2){

18

 // ***
// Implementation of H-inf controller

 // xk=Akd*xk+Bkd*Uk
 // Uk=SP-Y;
 // Yk=Ckd*xk;
 // ***
 pa=&Akd[0][0];
 pb=&Xk[0][0];

mul_mat(pa,pb,Hinf_edos,Hinf_edos,Hinf_edos,1); //calculo de Akd*xk
for(edo=0;edo<Hinf_edos;edo++)
Xk[edo][0]=AplusB[edo][0]; //xk'=Ak*xk
pa=&Bkd[0][0];
pb=&Uk[0][0];
mul_mat(pa,pb,Hinf_edos,Hinf_inp,Hinf_inp,1); // Obtaining Bkd*Uk
for(edo=0;edo<Hinf_edos;edo++)
Xk[edo][0]=Xk[edo][0]+AplusB[edo][0]; //xk'=Ak*xk+Bk*Uk

Uk[0][0]=sp-pcart_mts; // Setpoint – cart position
Uk[1][0]=teta_rad; // Teta_radians

pa=&Ck[0][0];
pb=&Xk[0][0];
mul_mat(pa,pb,Hinf_out,Hinf_edos,Hinf_edos,Hinf_out);
U[0][0]=AplusB[0][0]; // Obtaining Yk Input to the system (control signal u)

u=U[0][0];
if(u < 0) IOSET1=0X010000;
if(u >= 0) IOCLR1=0X010000;

 u=u*volts2PWM; // PWM signal
if(u<0)u=-u;
if(u>1020)u=1020; // Saturation

PWMMR2 = u+zero; // Control output
PWMLER = 0x4; // Enable Shadow latch
time=time+1;

sub_task2=0;

 }

sub_task3++;

if(sub_task3>=time_task3)
{

 // This segment is executed every 20 ms
 if(pcart_cm>35){end_flag=0;return;}
 if(pcart_cm<-35){end_flag=0;return;}

 sub_task3=0;
 }
T0IR=1; VICVectAddr=0;
}

19

void mul_mat(float *p1,float *p2,int row1,int col1,int row2, int col2)
{

int i,j,k;
float M1[no_max][no_max];
float M2[no_max][no_max];
float prod=0;

for(i=0;i<row1;i++)
 {
 for(j=0;j<col1;j++)
 {
 M1[i][j]=*p1;
 p1++;
 }
 }

for(i=0;i<row2;i++)
 {
 for(j=0;j<col2;j++)
 {
 M2[i][j]=*p2;
 p2++;
 }
 }

for(i=0;i<row1;i++)
 {
 for(k=0;k<col2;k++)
 {
 prod=0;
 for(j=0;j<col1;j++)
 {
 prod=prod+M1[i][j]*M2[j][k];
 }AplusB[i][k]=prod;
 }
 }

}

20

APPENDIX B

Paper: Meeting real-time constraints using “Sandwich Delays”

Meeting real-time constraints using “Sandwich Delays”

Michael J. Pont, Susan Kurian and Ricardo Bautista-Quintero
Embedded Systems Laboratory, University of Leicester,
University Road, LEICESTER LE1 7RH, UK.
M.Pont@le.ac.uk; sk183@le.ac.uk; rb169@le.ac.uk

http://www.le.ac.uk/eg/embedded/

Abstract

This short paper is concerned with the use of patterns to support the development of software
for reliable, resource-constrained, embedded systems. The paper introduces one new pattern
(SANDWICH DELAY) and describes one possible implementation of this pattern for use with a
popular family of ARM-based microcontrollers.

Introduction

In this paper, we are concerned with the development of embedded systems for which there
are two (sometimes conflicting) constraints. First, we wish to implement the design using a
low-cost microcontroller, which has – compared to a desktop computer – very limited
memory and CPU performance. Second, we wish to produce a system with extremely
predictable timing behaviour.

To support the development of this type of software, we have previously described a
“language” consisting of more than seventy patterns (e.g. see Pont, 2001). Work began on
these patterns in 1996, and they have since been used it in a range of industrial systems and
numerous university research projects (e.g. see Pont, 2003; Pont and Banner, 2004; Mwelwa
et al., 2006; Kurian and Pont, 2006; Kurian and Pont, 2007a; Kurian and Pont, 2007b;
Ayavoo et al., in press).

This brief paper describes one new pattern (SANDWICH DELAY) and illustrates – using what
we call a “pattern implementation example” (e.g. see Kurian and Pont, 2007b) - one possible
implementation of this pattern for use with a popular family of ARM-based microcontrollers.

Acknowledgements

Many thanks to Bob Hanmer, who provided numerous useful suggestions during the
shepherding process. We also thank the contributors to our workshop session (Joe Bergen,
Frank Buschmann, Neil Harrison, Kevlin Henney, Andy Longshaw, Klaus Marquardt, Didi
Schütz and Markus Völter) for further comments on this paper at the conference itself.

Copyright

Copyright © 2006-2007 by Michael J. Pont, Susan Kurian and Ricardo Bautista.

SANDWICH DELAY
{pattern}

Context
• You are developing an embedded system.

• Available CPU and / or memory resources are – compared with typical desktop designs –
rather limited.

• Your system is based on a time-triggered scheduler rather than a “real-time operating
system”.

• Your system involves running two or more periodic tasks.

• Predictable timing behaviour is a key design requirement.

Problem
You are running two activities, one after the other. How can we ensure that the interval
between the release times of the two activities is known and fixed?

Background
In many embedded applications (such as those involving control or data acquisition)
variations in the start times of tasks or functions can have serious implications. Such timing
variations are known as “release jitter” (or simply “jitter”).

For example, Cottet and David (1999) show that – during data acquisition tasks – jitter rates
of 10% or more can introduce errors which are so significant that any subsequent
interpretation of the sampled signal may be rendered meaningless. Similarly Jerri discusses
the serious impact of jitter on applications such as spectrum analysis and filtering (Jerri,
1997). Also, in control systems, jitter can greatly degrade the performance by varying the
sampling period (Torngren, 1998; Mart et al., 2001).

In many embedded systems, we wish to keep the levels of jitter to a minimum.

Solution
A SANDWICH DELAY can be used to solve this type of problem. More specifically, a
SANDWICH DELAY provides a simple but highly effective means of ensuring that a particular
piece of code always takes the same period of time to execute: this is done using two timer
operations to “sandwich” the activity you need to perform.

To illustrate one possible application of a SANDWICH DELAY, suppose that we have a system
executing two functions periodically, as outlined in Listing 1.

// Interrupt Service Routine (ISR) invoked by timer overflow every 10 ms
void Timer_ISR(void)
 {
 Do_X(); // WCET* approx. 4.0 ms
 Do_Y(); // WCET approx. 4.0 ms
 }

Listing 1: Using a timer ISR to execute two periodic functions.

According to the code in Listing 1, function Do_X() will be executed every 10 ms. Similarly,
function Do_Y() will be executed every 10 ms, after Do_X() completes. For many resource-
constrained applications (for example, control systems) this architecture may be appropriate.
However, in some cases, the risk of jitter in the start times of function Do_Y() may cause
problems. Such jitter will arise if there is any variation in the duration of function Do_X(). In
Figure 1, the jitter will be reflected in differences between the values of ty1 and ty2 (for
example).

Figure 1: The impact of variations in the duration of Do_X() on the release jitter of Do_Y().

We can use a SANDWICH DELAY to solve this problem: please refer to Listing 2.

// ISR invoked by timer overflow every 10 ms
void Timer_ISR(void)
 {
 // Execute Do_X() in a ‘Sandwich Delay’ - BEGIN
 Set_Sandwich_Timer_Overflow(5); // Set timer to overflow after 5 ms
 Do_X(); // Execute Do_X - WCET approx. 4 ms
 Wait_For_Sandwich_Timer_Overflow(); // Wait for timer to overflow
 // Execute Do_X() in a ‘Sandwich Delay’ - END

 Do_Y(); // WCET approx. 4.0 ms
 }

Listing 2: Employing a SANDWICH DELAY to reduce release in function Do_Y().

In Listing 2, we set a timer to overflow after 5 ms (a period slightly longer than the worst-case
execution time of Do_X()). We then start this timer before we run the function and – after the
function is complete – we wait for the timer to reach the 5 ms value. In this way, we ensure
that – as long as Do_X() does not exceed a duration of 5 ms - Do_Y() runs with very little
jitter†.

Figure 2 shows the tick graph from this example, with the SANDWICH DELAY included.

* WCET = Worst-Case Execution Time. If we run the task an infinite number of times and measure how

long it takes to complete, the WCET will be the longest execution time which we measure.
† In general, it is not possible to remove all jitter using this approach: we explain why under the heading

“Reliability and safety implications”.

Figure 2: Reducing the impact of variations in the duration of Do_X() on the release jitter of Do_Y()

through use of a SANDWICH DELAY.

Related patterns and alternative solutions
In some cases, you can avoid the use of a SANDWICH DELAY altogether, by altering the system
tick interval. For example, if we look again at our Do_X() / Do_Y() system, the two tasks
have the same duration. In this case, we would be better to reduce the tick interval to 5 ms
and run the tasks in alternating time slots (Figure 3).

Figure 3: Avoiding the use of SANDWICH DELAYS through changes in the scheduler tick interval.

Please note that this solution will only work (in general) if the tasks in your system have
similar durations. Where the tasks do not have the same duration, a scheduler involving
multiple timer interrupts may be more appropriate: such a solution is beyond the scope of this
paper but is described in detail elsewhere (Nahas and Pont, submitted).

Reliability and safety implications
Use of a SANDWICH DELAY is generally straightforward, but there are three potential issues of
which you should be aware.

First, you need to know the duration (WCET) of the function(s) to be sandwiched. If you
underestimate this value, the timer will already have reached its overflow value when your
function(s) complete, and the level of jitter will not be reduced (indeed, the SANDWICH DELAY
is likely to slightly increase the jitter in this case).

Second, you must check the code carefully, because the “wait” function may never terminate
if the timer is incorrectly set up. In these circumstances a watchdog timer (e.g. see Pont,
2001; Pont and Ong, 2003) or a “task guardian” (see Hughes and Pont, 2004) may help to
rescue your system, but relying on such mechanisms to deal with poor design or inadequate
testing is – of course - never a good idea.

Third, you will rarely manage to remove all jitter using such an approach, because the system
cannot react instantly when the timer reaches its maximum value (at the machine-code level,
the code used to poll the timer flag is more complex than it may appear, and the time taken to
react to the flag change will vary slightly). A useful rule of thumb is that jitter levels of
around 1 µs will still be seen using a SANDWICH DELAY.

Overall strengths and weaknesses
☺ A simple way of ensuring that the WCET of a block of code is highly predictable.

/ Requires (non-exclusive) access to a timer.

/ Will only rarely provide a “jitter free” solution: variations in code duration of around 1
µs are representative.

Example: Application of Dynamic Voltage Scaling
As we note in “Context”, we are concerned in this pattern with the development of software
for embedded systems in which (i) the developer must adhere to severe resource constraints,
and (ii) there is a need for highly predictable system behaviour. With many mobile designs
(for example, mobile medical equipment) we also need to minimise power consumption in
order to maximise battery life.

To meet all three constraints, it is sometimes possible to use a system architecture which
combines time-triggered co-operative (TTC) task scheduling with a power-reduction
technique know as “dynamic voltage scaling” (DVS). To achieve this, use of a SANDWICH

DELAY is a crucial part of the implementation (and is used to ensure that the complex DVS
operations do not introduce task jitter).

The use of SANDWICH DELAYs in this context is described in detail by Phatrapornnant and
Pont (2006).

SANDWICH DELAY (C, LPC2000)
{pattern implementation example}*

Context
• You wish to implement a SANDWICH DELAY [this paper]

• Your chosen implementation language is C†.

• Your chosen implementation platform is the NXP‡ LPC2000 family of (ARM7-based)
microcontrollers.

Problem
How can you implement a SANDWICH DELAY for the NXP LPC2000 family of
microcontrollers?

Background
As with all widely-used microcontrollers, the LPC2000 devices have on-chip timers which
are directly accessible by the programmer. More specifically, all members of this family have
two 32-bit timers, known as Timer 0 and Timer 1. These can each be set to take actions (such
as setting a flag) when a particular time period has elapsed.

In the simplest case, these timers (and other peripheral devices) will be driven by the
“peripheral clock” (plck) which - by default - runs at 25% of the rate of the system oscillator
(Figure 4).

Divider (/4)Crystal
oscillator

Timer
“Fosc” “pclk”

Figure 4: The link between oscillator frequency and timer updates in the LPC2000 devices (default

situation).

By taking into account the link between the oscillator frequency and the timer hardware, the
timers can be configured so that (for example) a flag is set after a period of 10ms has elapsed.
The resulting delay code can be made highly portable.

* As the name might suggest, PIEs are intended to illustrate how a particular pattern can be implemented.

This is important (in the embedded systems field) because there are great differences in system
environments, caused by variations in the hardware platform (e.g. 8-bit, 16-bit, 32-bit, 64-bit), and
programming language (e.g. assembly language, C, C++). The possible implementations are not
sufficiently different to be classified as distinct patterns: however, they do contain useful information. We
say more about PIEs in another paper at EuroPLoP 2006 (Kurian and Pont, in press b).

† The examples in the pattern were created using the GNU C compiler, hosted in a Keil uVision 3 IDE.
‡ Formerly Philips Semiconductors.

Both Timer 0 and Timer 1 are 32-bit timers, which are preceded by a 32-bit pre-scalar. The
pre-scalar is in turn driven by the peripheral clock. This is an extremely flexible combination.
As an example, suppose that we wished to generate the longest possible delay using Timer 0
on an LPC2100 device with a 12 MHz oscillator. The delay would be generated as follows:

• Both the pre-scalar and the timer itself begin with a count of 0.

• The pre-scalar would be set to trigger at its maximum value: this is 232-1 (=4294967295).
With a 12 MHz oscillator (and the default divider of 4), the pre-scalar would take
approximately 1432 seconds to reach this value. It would then be reset, and begin
counting again.

• When the pre-scalar reached 1432 seconds, Timer 0 would be incremented by 1. To reach
its full count (4294967295) would take approximately 200,000 years.

Clearly, this length of delay will not be required in most applications! However, very precise
delays (for example, an hour, a day – even a week) can be created using this flexible
hardware.

As a more detailed example, suppose that we have a 12 MHz oscillator (again with default
divider of 4) and we wish to generate a delay of 1 second. We can omit the prescalar, and
simply set the match register on Timer 1 to count to to the required value (3,000,000 – 1).

We can achieve this using the code shown in Listing 3.

// Prescale is 0 (in effect, prescalar not used)
T1PC = 0;

// Set the “Timer Counter Register” for this timer.
// In this register, Bit 0 is the “Counter Enable” bit.
// When 1, the Timer Counter and Prescale Counter are enabled for counting.
// When 0, the counters are disabled.
T1TCR &= ~0x01; // Stop the timer by clearing Bit 0

// There are three match registetrs (MR0, MR1, MR2) for each timer.
// The match register values are continuously compared to the Timer Counter value.
// When the two values are equal, actions can be triggered automatically
T1MR0 = 2999999; // Set the match register (MR0) to required value

// When the match register detects a match, we can choose to:
// Generate an interrupt (not used here),
// Reset the Timer Counter and / or
// Stop the timer.
// These actions are controlled by the settings in the MCR register.
// Here we set a flag on match (no interrupt), reset the count and stop the timer.
T1MCR = 0x07; // Set flag on match, reset count and stop timer

T1TCR |= 0x01; // Start the timer

// Wait for timer to reach count (at which point the IR flag will be set)
while ((T1IR & 0x0001) == 0)
 {
 ;
 }

// Reset the timer flag (by writing "1")
T1IR |= 0x01;

Listing 3: Configuring Timer1 in the LPC2000 family. See text for details.

Solution
A code example illustrating the implementation of a SANDWICH DELAY for an LPC2000
device is given in Listing 4 and Listing 5.

/*--*-

 Main.C (v1.00)

 --

 Simple "Sandwich Delay" demo for NXP LPC2000 devices.

-*--*/

#include "main.h"

#include "system_init.h"

#include "led_flash.h"
#include "random_loop_delay.h"

#include "sandwich_delay_t1.h"

/*--*-

 int main (void)

-*--*/
int main(void)
 {
 // Set up PLL, VPB divider, MAM and interrupt mapping
 System_Init();

 // Prepare to flash LED
 LED_FLASH_Init();

 // Prepare for "random" delays
 RANDOM_LOOP_DELAY_Init();

 while(1)
 {
 // Set up Timer 1 for 1-second sandwich delay
 SANDWICH_DELAY_T1_Start(1000);

 // Change the LED state (OFF to ON, or vice versa)
 LED_FLASH_Change_State();

 // "Random" delay
 // (Represents function with variable execution time)
 RANDOM_LOOP_DELAY_Wait();

 // Wait for the timer to reach the required value
 SANDWICH_DELAY_T1_Wait();
 }

 return 1;
 }

/*--*-
 ---- END OF FILE ---
-*--*/

Listing 4: Implementing a SANDWICH DELAY for the LPC2000 family (main.c)

/*--*-

 sandwich_delay_t1.c (v1.00)

 --

 "Sandwich delay" for the LPC2000 family using Timer 1.

-*--*/

#include "main.h"

/*--*-

 SANDWICH_DELAY_T1_Start()

 Parameter is - roughly - delay in milliseconds.

 Uses T1 for delay (Timer 0 often used for scheduler)

-*--*/
void SANDWICH_DELAY_T1_Start(const unsigned int DELAY_MS)
 {
 T1PC = 0x00; // Prescale is 0
 T1TCR &= ~0x01; // Stop timer

 // Set the match register (MR0) to required value
 T1MR0 = ((PCLK / 1000U) * DELAY_MS) - 1;

 // Set flag on match, reset count and stop timer
 T1MCR = 0x07;

 T1TCR |= 0x01; // Start timer
 }

/*--*-

 SANDWICH_DELAY_T1_Wait()
 Waits (indefinitely) for Sandwich Delay to complete.

-*--*/

void SANDWICH_DELAY_T1_Wait(void)
 {
 // Wait for timer to reach count
 while ((T1IR & 0x01) == 0)
 {
 ;
 }

 // Reset flag (by writing "1")
 T1IR |= 0x01;
 }

/*--*-
 ---- END OF FILE ---
-*--*/

Listing 5: Implementing a SANDWICH DELAY for the LPC2000 family (example): file
(sandwich_delay_t1.c)

References
Ayavoo, D., Pont, M.J., Short, M. and Parker, S. (in press) “Two novel shared-clock scheduling

algorithms for use with CAN-based distributed systems”, to be published in:
Microprocessors and Microsystems.

Cottet, F. and David, L. (1999), "A solution to the time jitter removal in deadline based
scheduling of real-time applications", 5th IEEE Real-Time Technology and Applications
Symposium - WIP, Vancouver, Canada, pp. 33-38.

Furber, S. (2000) “ARM System-on-Chip Architecture”, Addison-Wesley.
Jerri, A. J. (1997), "The Shannon sampling theorem: its various extensions and applications a

tutorial review", Proc. of the IEEE, Vol. 65, pp. 1565-1596.
Hughes, Z.H. and Pont, M.J. (2004) “Design and test of a task guardian for use in TTCS

embedded systems”. In: Koelmans, A., Bystrov, A. and Pont, M.J. (Eds.) Proceedings of the
UK Embedded Forum 2004 (Birmingham, UK, October 2004), pp.16-25. Published by
University of Newcastle upon Tyne [ISBN: 0-7017-0180-3].

Key, S.A., Pont, M.J. and Edwards, S. (2004) “Implementing low-cost TTCS systems using
assembly language”. Proceedings of the Eighth European conference on Pattern Languages
of Programs (EuroPLoP 2003), Germany, June 2003: pp.667-690. Published by
Universitätsverlag Konstanz. ISBN 3-87940-788-6.

Kurian, S. and Pont, M.J. (2006) “Evaluating and improving pattern-based software designs for
resource-constrained embedded systems”. In: C. Guedes Soares & E. Zio (Eds), “Safety
and Reliability for Managing Risk: Proceedings of the 15th European Safety and Reliabilty
Conference (ESREL 2006), Estoril, Portugal, 18-22 September 2006”, Vol. 2, pp.1417-
1423. Published by Taylor and Francis, London. ISBN: 0-415-41620-5 (for complete 3-
volume set of proceedings). ISBN: 978-0-415-42314-4 (for Volume 2).

Kurian, S. and Pont, M.J. (2007a) “Maintenance and evolution of resource-constrained embedded
systems created using design patterns”, Journal of Systems and Software, 80(1): 32-41.

Kurian, S. and Pont, M.J. (2007b) “Restructuring a pattern language which supports
time-triggered co-operative software architectures in resource-constrained embedded
systems”. In: Proceedings of the Eleventh European conference on Pattern Languages of
Programs (EuroPLoP), held in Germany, July 2006 [This conference].

Mart, P., Fuertes, J. M., Ramamritham, K. and Fohler, G. (2001), "Jitter Compensation for Real-
Time Control Systems", 22nd IEEE Real-Time Systems Symposium (RTSS'01), London,
England, pp. 39-48.

Mwelwa, C., Athaide, K., Mearns, D., Pont, M.J. and Ward, D. (2006) “Rapid software
development for reliable embedded systems using a pattern-based code generation tool”.
Paper presented at the Society of Automotive Engineers (SAE) World Congress, Detroit,
Michigan, USA, April 2006. SAE document number: 2006-01-1457. Appears in: Society
of Automotive Engineers (Ed.) “In-vehicle software and hardware systems”, Published by
Society of Automotive Engineers. [ISBN: 0-7680-1763-7].

Nahas, M. and Pont, M.J. (submitted) “The impact of scheduler implementation on task jitter in
real-time embedded systems”.

Phatrapornnant, T. and Pont, M.J. (2006) “Reducing jitter in embedded systems employing a
time-triggered software architecture and dynamic voltage scaling” IEEE Transactions on
Computers, 55 (2): 113-124.

Philips (2004) “LPC2119 / 2129 / 2194 / 2292 / 2294 User Manual”, Philips Semiconductors, 3
February, 2004.

Pont, M.J. (2001) “Patterns for Time-Triggered Embedded Systems: Building Reliable
Applications with the 8051 Family of Microcontrollers”, Addison-Wesley / ACM Press.
ISBN: 0-201-331381.

Pont, M.J. (2003) “Supporting the development of time-triggered co-operatively scheduled
(TTCS) embedded software using design patterns”, Informatica, 27: 81-88.

Pont, M.J. and Banner, M.P. (2004) “Designing embedded systems using patterns: A case study”,
Journal of Systems and Software, 71(3): 201-213.

Pont, M.J. and Ong, H.L.R. (2003) “Using watchdog timers to improve the reliability of TTCS
embedded systems”, in Hruby, P. and Soressen, K. E. [Eds.] Proceedings of the First
Nordic Conference on Pattern Languages of Programs, September, 2002 (“VikingPloP
2002”), pp.159-200. Published by Microsoft Business Solutions. ISBN: 87-7849-769-8.

Pont, M.J., Norman, A.J., Mwelwa, C. and Edwards, T. (2004) “Prototyping time-triggered
embedded systems using PC hardware”. Proceedings of the Eighth European conference on
Pattern Languages of Programs (EuroPLoP 2003), Germany, June 2003: pp.691-716.
Published by Universitätsverlag Konstanz. ISBN 3-87940-788-6.

Torngren, M. (1998), "Fundamentals of implementing real-time control applications in distributed
computer systems", Real-Time Systems, 14, pp. 219-250.

	RBQ - PhD Thesis 2008-12-18.doc _FINAL_.pdf
	Appedix A.pdf
	MJP - EuroPLoP 2006 v16 - post conference.pdf

