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Abstract We propose an optimization approach to weak approximation of Lévy-
driven stochastic differential equations. We employ a mathematical programming
framework to obtain numerically upper and lower bound estimates of the target
expectation, where the optimization procedure ends up with a polynomial program-
ming problem. An advantage of our approach is that all we need is a closed form of
the Lévy measure, not the exact simulation knowledge of the increments or of a shot
noise representation for the time discretization approximation. We also investigate
methods for approximation at some different intermediate time points simultane-
ously.

Preface

I1 have received my Bachelor, Master and Ph.D. degrees from Kyoto University un-
der the supervision of Yamamoto-Sensei. As far as I know, my Bachelor thesis was
the first trial to apply “H∞ signal reconstruction via sampled-data control theory” to
actualaudio data processing. I was extremely impressed to see the transdisiplinary
aspect of system control theory. This invaluable experience is a source of my desire
to contribute to other fields outside of the control community. Fortunately, I became
acquainted with the second author whose speciality is probability theory and math-
ematical finance. In this article, we present our ongoing joint work that aspires to be
as successful in the mathematical finance community as the YY-filter is in the signal
processing world.

Kenji Kashima
Tokyo Institute of Technology, 2-12-1, Oh-okayama, Meguro-ku, Tokyo 152-8552, Japan, e-mail:
kashima@mei.titech.ac.jp

Reiichiro Kawai
University of Leicester, Leicester LE1 7RH, UK. e-mail: reiichiro.kawai@gmail.com

1 In this section, “I” refers to the first author, Kenji Kashima.

1



2 Kenji Kashima and Reiichiro Kawai

1 Introduction

Stochastic differential equations have long been used to build realistic models in
economics, finance, biology, the social sciences, chemistry, physics and other fields.
In most active fields of application, dynamics with possible sudden shift have be-
come more and more important. To model such shifts, one would like to employ
stochastic differential equations where the underlying randomness contains jumps.
For this purpose, the diffusion process is not sufficient since its sample paths are al-
most surely continuous. On the other hand, Lévy-driven stochastic differential equa-
tions, which contain diffusion as a special case, can formulate stochastic behavior
with jumps. Regardless of its practical importance, however, the theory and the com-
putational techniques of the Lévy processes have not been developed thoroughly as
in the diffusion case. As nice references on the subject, we refer to Applebaum [1].

From a practical point of view, the sample paths approximation of stochastic
differential equations has been a central issue for the purpose of numerical evalua-
tion and simulation on the computer. There are two notions of the approximation;
strong and weak approximations. The strong approximation schemes provide path-
wise approximations which can be employed in scenario analysis, filtering or hedge
simulation. For applications such as derivative pricing, the computation of moments
or expected utilities, the so-called weak approximations are sufficient, that is, we
need to estimate the expected value of a function. Other applications of the weak
approximation include the computation of functional integrals, invariant measures,
and Lyapunov exponents.

The theoretical properties of time discretization schemes are mostly studied for
the diffusion case. See [6] for detailed investigation. In fact, the weak approximation
of the Lévy-driven stochastic differential equations via Monte Carlo type methods
is still very difficult. Moreover, the other existing methods are applicable only to
some of the simplest Ĺevy processes. The main purpose of this paper is to propose
a new approach to weak approximation of Lévy-driven stochastic differential equa-
tions. Unlike Monte Carlo simulation with the time discretization approximation of
sample paths, we employ a mathematical programming framework to obtain numer-
ically upper and lower bounds of the target expectation.

To this end, we follow the methodologies investigated in various fields of ap-
plication by several authors, for example, Bertsimas, Popescu and Sethuraman [2],
Helmes, R̈ohl and Stockbridge [4], Lasserre, Prieto-Rumeau and Zervos [8], to men-
tion just a few.2. Note that these results deal only with the pure diffusion case (i.e.,
without jump component) for which standard Monte Carlo methods are sufficient. In
this sense, it should be emphasized that our result is not a trivial extension. The main
drawback is the complexity of the Ito formula for Lévy-driven stochastic differential
equations. As such, we need to carefully examine whether or not the resulting opti-

2 It is known that there exist two dual formulation of this framework, both of which arrive at a semi-
definite programming in the end. One is the so-called generalized moment problem that makes use
of the semi-definiteness of (localizing) moment matrices. The other is a polynomial optimization
approach for which sum-of-squares relaxation efficiently works. In this paper, our discussion is
based on the latter formulation.
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mization problems are practically solvable. Fortunately, as we show in the following
sections, our approach covers various practically important Lévy-driven stochastic
differential equations.

The rest of this paper is organized as follows. Section 2 gives mathematical def-
inition of Lévy-driven stochastic differential equations. Section 3 introduces and
studies our optimization approach to the weak approximation. Section 4 provides
a numerical example to illustrate that our method is able to efficiently capture the
marginal distributions of Ĺevy-driven stochastic differential equations. Finally, Sec-
tion 5 concludes this paper.

2 Problem formulation

Let us begin this section with general notations which will be used throughout the
text. Fork∈ N, ∂k indicates the partial derivative with respect tok-th argument. We
denote byCk1,k2 the class of continuous functions with continuous differentiability
of k1-time for the first argument and ofk2-time for the second argument.

Let X0 be given inR and letT > 0. Consider a one-dimensional stochastic dif-
ferential equation

dXt = a0 (t,Xt)dt+a1 (t,Xt)dWt +
∫

R0

b(t,Xt−,z)(µ −ν)(dz,dt) , t ∈ [0,T],

where{Wt : t ≥ 0} is a standard Brownian motion and whereµ is a Poisson ran-
dom measure onR0 whose compensator is given by the Lévy measureν satisfying∫
|z|>1 |z|ν(dz) < +∞ and

∫
R0

(|z|2∧1)ν(dz) < +∞. In order for the solution of(1)
to be well defined, we impose the usual Lipschitz conditions and linear growth con-
ditions ona0, a1 andb. We henceforth equip our underlying probability space with
the natural filtration(Ft)t∈[0,T] generated by{Xt : t ∈ [0,T]}. Moreover, throughout
this study, we assume thatb(t,x,z) ̸= 0 andν ̸= 0 to avoid triviality.

Our interest throughout this study is in approximating the expectation

E [V(XT)] . (1)

Here,V is a function mapping from[0,T]×R to R, piecewise polynomial int and
x and such thatE[|V(XT)|] < +∞. Note that the functionV may have discontinu-
ities. For the computation ofE[V(XT)], standard techniques include the Monte Carlo
simulation of sample paths through the time discretization of stochastic differential
equations, or even some exact knowledge of sample paths such as series representa-
tion of the Poisson jump component.
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3 Optimization approach to weak approximation

3.1 Ito formula and supermartingale

We are now in a position to introduce our optimization approach to the weak ap-
proximation. LetX (⊆ R) be a support of{Xt : t ∈ [0,T]} defined in (1). For
f ∈C1,2([0,T]×X ;R), the Ito formula yields

d f(t,Xt) =A f (t,Xt)dt+∂2 f (t,Xt)a1(Xt)dWt

+
∫

R0

Bz f (t,Xt−)(µ −ν)(dz,dt), a.s.,

where

A f (t,x) :=∂1 f (t,x)+∂2 f (t,x)a0(x)+
1
2

∂ 2
2 f (t,x)a1(x)2

+
∫

R0

(Bz f (t,x)−∂2 f (t,x)b(x,z))ν(dz).

and forz∈ R0,
Bz f (t,x) := f (t,x+b(x,z))− f (t,x) .

Here, if

E
[∫ T

0
(∂2 f (t,Xt)a1(t,Xt))2dt

]
< +∞,

and if

E
[∫ T

0

∫
R0

(Bz f (t,Xt)a1(t,Xt))2ν(dz)dt

]
< +∞, (2)

then the stochastic process{
f (t,Xt)− f (0,X0)−

∫ t

0
A f (s,Xs)ds: t ∈ [0,T]

}
is a square-integrable martingale with respect to the filtration. We can then derive
one of important building blocks of our approach, the so-called Dynkin formula:

E [ f (T,XT)]− f (0,X0) = E
[∫ T

0
A f (s,Xs)ds

]
. (3)

Hence, as soon as one finds anf ∈C1,2([0,T]×X ;R) such that{
A f (t,x) ≤ 0, (t,x) ∈ [0,T]×X ,

f (t,x) ≥ V(x), x∈ X ,
(4)

it follows
E [V(XT)] ≤ E [ f (T,XT)] ≤ f (0,X0). (5)
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Clearly, f (0,X0) serves as an upper bound ofE[V(XT)]. To minimize the upper
bound f (0,X0), we now turn to the optimization problem

min f (0,X0)
s.t. f (t,x) ≥V(x), x∈ X ,

A f (t,x) ≤ 0, (t,x) ∈ [0,T]×X ,
f ∈C1,2([0,T]×X ;R).

3.2 Main result

This optimization problem is very difficult to deal with since the class definitions of
the functionsf andV are too broad. To ease the above optimization problem, we
restrict the class of the functionf to be a polynomial both int andx, that is, in the
form

f (t,x) = ∑
{0≤k1≤K1,0≤k2≤K2}

ck1,k2t
k1xk2, (6)

for some natural numbersK1 andK2 and for a sequence{ck1,k2}k1≤K1,k2≤K2 of con-
stants. For convenience in notation, we henceforth denote byCp the class of polyno-
mial functions in the form (6). We also need to setV to be apiecewisepolynomial
both in t andx. Moreover, we assume that botha0 anda1 are polynomials. We are
then instead to solve the following optimization problem

min f (0,X0)
s.t. f (t,x) ≥V(x), x∈ X ,

A f (t,x) ≤ 0, (t,x) ∈ [0,T]×X ,
f ∈Cp.

(7)

For the purpose of comparison, suppose that there is no jump in (1), that is,b≡ 0
as in [11]. This assumption clearly makesA f a polynomial, and consequently (7) is
a polynomial optimization problem. This is the main reason that the pure diffusion
case is easier to deal with in this framework. In general, polynomial optimization
problems are still NP hard. However, if the degrees off are fixed, sums of squares
relaxation enables us to solve the problem efficiently. For details, we refer to Parrilo
[9]. On the other hand, this technique is not directly applicable to the model with
general stochastic jumps. This is becauseA f is not necessarily a polynomial due
to the additional integral term.

To circumvent this difficulty, we decompose the functionb as follows:

Assumption 1 Functions a0 and a1 are polynomials, and b is decomposed as

b(t,x,z) = b1(t,x)b2(z),

where b1 is a polynomial in x and where b2 : R0 7→ R such that
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R0

|b2(z)|k ν(dz) < +∞, k = 2, . . . ,K2.

¤

Theorem 1.Under Assumption 1, for any f∈ Cp, A f is a polynomial in t and x.
Moreover, the coefficients ofA f are affine with respect to those of f .

Proof: A simple algebra yields

A f (t,x) = ∂1 f (t,x)+∂2 f (t,x)a0(t,x)+
1
2

∂ 2
2 f (t,x)a1(t,x)2

+ ∑
{0≤k1≤K1,2≤k2≤K2}

ck1,k2t
k1

k2−2

∑
k=0

k2Ckx
kb1(t,x)k2−kMk2−k

where
Ml :=

∫
R0

b2(z)l ν(dz), l = 2, . . . ,K2.

This completes the proof. ¤
Clearly, the optimization (7) is now a polynomial programming problem. To be

more precise, this problem is numerically tractable for any piecewise polynomial
V. Finally, to obtain a lower bound forE[V(XT)], we are to find ag ∈ Cp via the
polynomial programming

maxg(0,X0)
s.t. g(t,x) ≤V(x), x∈ X ,

A g(t,x) ≥ 0, (t,x) ∈ [0,T]×X ,
g∈Cp.

(8)

Notice that our optimization approach does not require the sample paths simula-
tion at all for the computation of the expectationE[V(XT)]. It is a great advantage
of our approach that all we need is the Lévy measure in closed form, not the ex-
act knowledge of the increments or of a shot noise representation for sample paths
simulation for the weak approximation with the sample paths discretization.

3.3 Simultaneous approximation for homogeneous process

In this section, we show that the optimal solution obtained through our approach
provides some additional information, that are of direct practical use.

Firstly, note that the initial valueX0 does not appear in the constraints (4) in
the previous section. Therefore, iff satisfies (4),f (0, x̃) automatically gives upper
bounds forEx̃ [V(XT)], where the notationEx denotes the expectation taken under
which the initial state of the stochastic differential equation (1) is given determinis-
tically by X0 = x.
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The next theorem indicates that functions satisfying (4) can also serve as bounds
at arbitrary intermediate time points.

Theorem 2.Assume that(1) is time-homogeneous, i.e., a1, a2, and b are indepen-
dent of t. Suppose that f∈C1,2 satisfies (4). Then, for everȳT ∈ [0,T]

E[V(XT̄)] ≤ f (T − T̄,X0). (9)

Proof: Define
f ◦(t,x) := f (t +(T − T̄),x).

Due to the time homogeneity, we have

A f ◦(t,x) = A f (t +(T − T̄),x) ≤ 0, (t,x) ∈ [0, T̄]×X .

We also have
f ◦(T̄,x) = f (T,x) ≤V(x), in X .

By combining these inequalities and Dynkin formula, we obtain

E[V(XT̄)] ≤ E[ f ◦(T̄,XT̄)]

= f ◦(0,X0)+E
[∫ T̄

0
A f ◦(s,Xs)ds

]
≤ f (T − T̄,X0).

This completes the proof. ¤
We here make a brief comment on the choice of the cost function in the op-

timization problem. When we attempt to as tight bounds for (1) as possible, we
should solve (7) and (8). However, we need to approximateV(XT̄) for some differ-
ent time pointsT̄ ∈ [0,T] and also different initial valueX0, it is useful to suitably
change the cost function. Fortunately, for suitable measureφ on [0,T]×R, we can
similarly optimize ∫

f (t,s)φ(dt,ds),
∫

g(t,s)φ(dt,ds),

since these are linear combination of the decision variables (the coefficients off
andg).

4 Numerical Examples

In this section we give some approximation examples. In the numerical examples
presented hereafter, we utilize MATLAB SOSTOOLS combined with SeDuMi [10,
14], using a computer with a Pentium 4 3.2GHz processor and 2 GB memory.
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4.1 Ornstein-Uhlenbeck-type process with gamma stationary
distribution

Let ν be a Ĺevy measure onR+ such that
∫
R+

zν(dz) < +∞. Seta0(t,x) = −λx+∫
R+

zν(dz) for someλ > 0, a1(t,x) = 0, b1(t,x) = 1, b2(z) = z, andX0 is indepen-
dent ofµ. Then, the stochastic differential equation (1) reduces to

dXt = −λXtdt+
∫

R+
zµ(dz,dt),

which is called an Ornstein-Uhlenbeck-type process. (See, for example, Sato [13]
for its details.) Its solution is given by

Xt = e−λ tX0 +
∫ t

0

∫
R+

e−λ (t−s)zµ(dz,ds).

For simplicity, we further fixX0 = 0, λ = 1 andν(dz) = bae−bzdz, wherea> 0 and
b > 0. Then, we can prove that the stationary distribution of{Xt : t ≥ 0} is gamma
with densityp(x) = ba/Γ (a)xa−1e−bx, x∈ R+.

Here, we investigate the distribution transition via the moment estimations of
E[Xt ] = (1−e−t)a/b, E[X2

t ] = (1−e−2t)a/b2+(1−e−t)2a2/b2, and limt↑+∞ E[Xk
t ] =

Γ (a+ k)/(bkΓ (a)), for k ∈ N. Note thatX = R+ and that
∫
R+

zkν(dz) = ak!/bk

for k∈ N. For f ∈Cp([0,T]×R+;R), we have

A f (t,x) = ∑
{1≤k1≤K1,0≤k2≤K2}

ck1,k2k1t
k1−1xk2

+
(
−x+

a
b

)
∑

{0≤k1≤K1,1≤k2≤K2}
ck1,k2t

k1k2xk2−1

+ ∑
{0≤k1≤K1,2≤k2≤K2}

ck1,k2t
k1

k2−2

∑
k=0

k2Ckx
k a(k2−k)!

bk2−k .

The condition (2) holds for eachK1 andK2, since∫ t

0

∫
R+

e−λ (t−s)zµ(dz,ds) ≤
∫ T

0

∫
R+

zµ(dz,ds), a.s.,

where the right hand side is an infinitely divisible random variable, whose Lévy
measure has an exponential decay at infinity.

We present numerical results in Table 1. We setK1 = p for the estimation of the
p-th moment. It is known that the computational burden for solving the polynomial
optimization via sum of squares decomposition significantly increases as the degree
of the polynomial becomes larger. In view of this, we choose largeK2 = 10. Even
in this case, however, computation time is at most 2 seconds. For comparison with
Monte Carlo methods, we also provide 99%-confidence interval with 1000000 iid
samples. As can be observed, even with the extraordinarily large number of samples,
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the 99%-confidence intervals are far from being comparable with our results. Note
that any large sample size can never be in competition with our results since the
upper and lower bounds obtained through our method form nothing but the 100%-
confidence interval.

t = 1 t = 2 t = 3 t ↑ +∞

E [Xt ]
0.042141 – 0.042141 0.057644 – 0.057644 0.063347 – 0.063348

(0.042141) (0.057644) (0.063348) (0.06667)
[0.0417327, 0.0427467][0.0569853, 0.0580576][0.0628788, 0.0639666]

E
[
X2

t

] 0.040205 – 0.040205 0.046952 – 0.046955 0.048331 – 0.048347
(0.040205) (0.046953) (0.048347) (0.04889)

[0.0396179, 0.0414835][0.0457206, 0.0476003][0.0476659, 0.0496044]

E
[
X3

t

] 0.061217 – 0.061268 0.066812 – 0.066886 0.068009 – 0.068051
(n/a) (n/a) (n/a) (0.06844)

[0.0591606, 0.0649658][0.0633623, 0.0688394][0.0660050, 0.0719257]

Table 1 Moment transition withX0 = 0 and(a,b) = (0.1,1.5). The numbers in parentheses indi-
cate theoretical value. The intervals are 99%-confidence interval with 1000000 independent sam-
ples.

Recall that the current model is time-homogeneous. Hence, according to Theo-
rem 2, the obtained bounding functions also give upper and lower bounds for inter-
mediate time points without solving other optimization problem. For example, as a
byproduct of the computation of the bounds forE[X3

3 ], we can provide a parametric
bounds forE[X3

t ] for everyt ∈ [0,3]; see Fig. 1. In this case, the accuracy is close
to the pointwise optimization result in Table 1. Actually, the gap is smaller than the
case of Monte Carlo methods in Table 1.

Fig. 1 Lower and upper
bounds forE[X3

t ] at interme-
diate time pointst ∈ [0,3].
The detailed values are
0.060992 – 0.061467 (t = 1)
and 0.066461 – 0.067219
(t = 2).    t
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5 Conclusion

In this paper, we have developed a new approach to the weak approximation of
Lévy-driven stochastic differential equations via an optimization problem yielding
upper and lower bounds on the target expectation. The advantage of our approach
is that all we need is the Ĺevy measure in closed form. We need neither the exact
knowledge of the increments nor a shot noise representation for sample path simu-
lation for the weak approximation with the sample path discretization. We have also
investigated how we can obtain accurate approximation at transient times.

The most important remaining work is the improvement of the approximation
accuracy. It is a good direction to pursue to use exponentially tempered polynomials
[5]. Other currently ongoing work is

• application to calibration in finance,
• construction of finite-horizon control theory for systems described by Lévy

driven stochastic differential equations.
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