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Abstract We propose an optimization approach to weak approximationéof/L
driven stochastic differential equations. We employ a mathematical programming
framework to obtain numerically upper and lower bound estimates of the target
expectation, where the optimization procedure ends up with a polynomial program-
ming problem. An advantage of our approach is that all we need is a closed form of
the Levy measure, not the exact simulation knowledge of the increments or of a shot
noise representation for the time discretization approximation. We also investigate
methods for approximation at some different intermediate time points simultane-
ously.
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1 Introduction

Stochastic differential equations have long been used to build realistic models in
economics, finance, biology, the social sciences, chemistry, physics and other fields.
In most active fields of application, dynamics with possible sudden shift have be-
come more and more important. To model such shifts, one would like to employ
stochastic differential equations where the underlying randomness contains jumps.
For this purpose, the diffusion process is not sufficient since its sample paths are al-
most surely continuous. On the other hanéyy-driven stochastic differential equa-
tions, which contain diffusion as a special case, can formulate stochastic behavior
with jumps. Regardless of its practical importance, however, the theory and the com-
putational techniques of theelvy processes have not been developed thoroughly as
in the diffusion case. As nice references on the subject, we refer to Applebaum [1].

From a practical point of view, the sample paths approximation of stochastic
differential equations has been a central issue for the purpose of numerical evalua-
tion and simulation on the computer. There are two notions of the approximation;
strong and weak approximations. The strong approximation schemes provide path-
wise approximations which can be employed in scenario analysis, filtering or hedge
simulation. For applications such as derivative pricing, the computation of moments
or expected utilities, the so-called weak approximations are sufficient, that is, we
need to estimate the expected value of a function. Other applications of the weak
approximation include the computation of functional integrals, invariant measures,
and Lyapunov exponents.

The theoretical properties of time discretization schemes are mostly studied for
the diffusion case. See [6] for detailed investigation. In fact, the weak approximation
of the Lévy-driven stochastic differential equations via Monte Carlo type methods
is still very difficult. Moreover, the other existing methods are applicable only to
some of the simplestévy processes. The main purpose of this paper is to propose
a new approach to weak approximation @&y-driven stochastic differential equa-
tions. Unlike Monte Carlo simulation with the time discretization approximation of
sample paths, we employ a mathematical programming framework to obtain numer-
ically upper and lower bounds of the target expectation.

To this end, we follow the methodologies investigated in various fields of ap-
plication by several authors, for example, Bertsimas, Popescu and Sethuraman [2],
Helmes, Bhl and Stockbridge [4], Lasserre, Prieto-Rumeau and Zervos [8], to men-
tion just a few?. Note that these results deal only with the pure diffusion case (i.e.,
without jump component) for which standard Monte Carlo methods are sufficient. In
this sense, it should be emphasized that our result is not a trivial extension. The main
drawback is the complexity of the Ito formula foélzy-driven stochastic differential
equations. As such, we need to carefully examine whether or not the resulting opti-

2 tis known that there exist two dual formulation of this framework, both of which arrive at a semi-
definite programming in the end. One is the so-called generalized moment problem that makes use
of the semi-definiteness of (localizing) moment matrices. The other is a polynomial optimization
approach for which sum-of-squares relaxation efficiently works. In this paper, our discussion is
based on the latter formulation.
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mization problems are practically solvable. Fortunately, as we show in the following
sections, our approach covers various practically importémytdriven stochastic
differential equations.

The rest of this paper is organized as follows. Section 2 gives mathematical def-
inition of Lévy-driven stochastic differential equations. Section 3 introduces and
studies our optimization approach to the weak approximation. Section 4 provides
a numerical example to illustrate that our method is able to efficiently capture the
marginal distributions of evy-driven stochastic differential equations. Finally, Sec-
tion 5 concludes this paper.

2 Problem formulation

Let us begin this section with general notations which will be used throughout the
text. Fork € N, dy indicates the partial derivative with respecktth argument. We
denote byCt*2 the class of continuous functions with continuous differentiability
of ki-time for the first argument and &$-time for the second argument.

Let Xo be given inR and letT > 0. Consider a one-dimensional stochastic dif-
ferential equation

dx=a0<t,><t>dt+a1<t,><t>dw+/R b(t,%_,2) (u—v)(dzdt), te[0,T],

where{W :t > 0} is a standard Brownian motion and wherds a Poisson ran-
dom measure oRRg whose compensator is given by théMy measure satisfying
Jiz>112v(d2) < 4o andeo(\zF/\ 1)v(dz) < 4oo. In order for the solution of1)
to be well defined, we impose the usual Lipschitz conditions and linear growth con-
ditions onag, a; andb. We henceforth equip our underlying probability space with
the natural filtratior(.7t )0, 1) generated by X : t € [0, T]}. Moreover, throughout
this study, we assume thiaft, x, z) # 0 andv # 0 to avoid triviality.

Our interest throughout this study is in approximating the expectation

EV(Xr)]. 1)

Here,V is a function mapping froniD, T] x R to R, piecewise polynomial ih and

x and such thaE[|V (X7)|] < +. Note that the functio may have discontinu-

ities. For the computation @[V (X7)], standard techniques include the Monte Carlo
simulation of sample paths through the time discretization of stochastic differential
equations, or even some exact knowledge of sample paths such as series representa-
tion of the Poisson jump component.
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3 Optimization approach to weak approximation

3.1 Ito formula and supermartingale

We are now in a position to introduce our optimization approach to the weak ap-
proximation. Let.Z2’(C R) be a support off X : t € [0,T]|} defined in (1). For
f € CL2([0,T] x Z";R), the Ito formula yields

df(t, %) =/ f(t,X)dt+ > f (t,%)au (X )dW

+/RO B,f (t, %) (L —v)(dzdt), as,
where
o T (t,%) =01 (t,x) + 2 f (t,X)ag(X) + %dzzf(t,x)al(x)z
+./H%O(Bzf(t,x) — 9,F(t,)b(x,2)) v(d2).

and forz € Ry,
B f(t,x) == f (t,x+b(x,2)) — f (t,X).

Here, if )
E |:/0 (dzf(t’)(t)al(t7)<t))2dt:| < 4o,

and if

E UOT/R (Bzf(taxt)al(t,xt))z\/(dz)dt} < 4o, )
then the stochastic process
{f(t,Xt)—f(o,Xo)_/O‘M(s,xs)ds:te[o,T]}

is a square-integrable martingale with respect to the filtration. We can then derive
one of important building blocks of our approach, the so-called Dynkin formula:

}
BIF(T. 0]~ 10.50) = | [ t(s X)) @)

Hence, as soon as one findsfag C12([0,T] x 27;R) such that

A f(t,x) <0, (t,x) € [0,T] x 2, .
f(t,x) > V(x), x€ 2, (4)

it follows
ENVXr)] <E[f(T,Xr)] < (0, X0). (5)
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Clearly, f(0,Xp) serves as an upper bound B}V (X7)]. To minimize the upper
boundf (0, Xp), we now turn to the optimization problem

min (0, Xp)

st. f(t,x) >V(x), xe Z,
o f(t,x) <0, (t,x) € [0,T] x 2,
f € CH2([0,T] x 27;R).

3.2 Main result

This optimization problem is very difficult to deal with since the class definitions of
the functionsf andV are too broad. To ease the above optimization problem, we
restrict the class of the functiohto be a polynomial both ih andx, that is, in the
form
f(t,x) = Z Ckl.,kztklxkzv (6)
{0<ky <K1,0<kp <Ky}

for some natural numbet§, andK; and for a sequenciey, k, }k, <k k,<k, Of cOn-
stants. For convenience in notation, we henceforth deno tiye class of polyno-
mial functions in the form (6). We also need to ¥eto be apiecewisgpolynomial
both int andx. Moreover, we assume that bath anda; are polynomials. We are
then instead to solve the following optimization problem

min f(0,Xo)

st. f(t,x) >V(x), xe 2, )
A f(t,x) <0, (t,x) € [0,T] x 2,
f eCp.

For the purpose of comparison, suppose that there is no jump in (1), that 3,
as in [11]. This assumption clearly makesf a polynomial, and consequently (7) is
a polynomial optimization problem. This is the main reason that the pure diffusion
case is easier to deal with in this framework. In general, polynomial optimization
problems are still NP hard. However, if the degreed afe fixed, sums of squares
relaxation enables us to solve the problem efficiently. For details, we refer to Parrilo
[9]. On the other hand, this technique is not directly applicable to the model with
general stochastic jumps. This is becaugé is not necessarily a polynomial due
to the additional integral term.

To circumvent this difficulty, we decompose the functtoas follows:

Assumption 1 Functions @ and a are polynomials, and b is decomposed as
b(t7X7 Z) = bl(t,X)bz(Z),

where h is a polynomial in x and where;b Rg — R such that
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/ bo(2)[FV(d2) < 40, k=2,...,Ks.
Ro

O

Theorem 1.Under Assumption 1, for any ¢ C,, o7 f is a polynomial in t and x.
Moreover, the coefficients of f are affine with respect to those of f.

Proof: A simple algebra yields

A f(t,x) =01 f(t,X)+ 0> (t,X)ap(t,x) + %022f(t,x)a1(t,x)2

ko—2

k k ko—k
+ Z Ciy kot ™t % szkX by (t,x) My, —k
{0<k1 <Kjy,2<kp<Kp} k=

where
M, ;:/ b(2)'v(d2), | = 2,... Ko.
Ro

This completes the proof. O

Clearly, the optimization (7) is now a polynomial programming problem. To be
more precise, this problem is numerically tractable for any piecewise polynomial
V. Finally, to obtain a lower bound fdEV (X7)], we are to find & € C,, via the
polynomial programming

maxg(0, Xo)

st. g(t,x) <V(x), xe Z, (8)
9(t,x) >0, (t,x) € [0,T] x 2,
geCy.

Notice that our optimization approach does not require the sample paths simula-
tion at all for the computation of the expectatiBf/ (X7)]. It is a great advantage
of our approach that all we need is théMy measure in closed form, not the ex-
act knowledge of the increments or of a shot noise representation for sample paths
simulation for the weak approximation with the sample paths discretization.

3.3 Simultaneous approximation for homogeneous process

In this section, we show that the optimal solution obtained through our approach
provides some additional information, that are of direct practical use.

Firstly, note that the initial valu&y does not appear in the constraints (4) in
the previous section. Therefore,fifsatisfies (4),f(0,X) automatically gives upper
bounds forEg [V (Xt )], where the notatiofity denotes the expectation taken under
which the initial state of the stochastic differential equation (1) is given determinis-
tically by Xo = x.
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The next theorem indicates that functions satisfying (4) can also serve as bounds
at arbitrary intermediate time points.

Theorem 2. Assume thafl) is time-homogeneous, i.e4,a, and b are indepen-
dent of t. Suppose thatd C'2 satisfies (4). Then, for eveflyc [0, T]

E[V(X7)] < f(T—T,Xo). 9)

Proof: Define

fot,x) = f(t+(T-T),x).

Due to the time homogeneity, we have

A, X) = f(t+(T-T),x) <0, (t,x) €[0,T] x 2.

We also have _
fo(T,x) = f(T,x) <V(x), in Z.

By combining these inequalities and Dynkin formula, we obtain
EV (X)] < E[f*(T, X))

— £°(0,X0) + E [/Ofdf"(s,xs)ds}
<HT =T, %)

This completes the proof. O

We here make a brief comment on the choice of the cost function in the op-
timization problem. When we attempt to as tight bounds for (1) as possible, we
should solve (7) and (8). However, we need to approxirkgdér) for some differ-
ent time pointsT € [0, T] and also different initial valu&g, it is useful to suitably
change the cost function. Fortunately, for suitable meagwe [0, T] x R, we can
similarly optimize

/f(t,s)(p(dt,ds), /g(t,s)(p(dt,ds),

since these are linear combination of the decision variables (the coefficiefits of
andg).

4 Numerical Examples

In this section we give some approximation examples. In the numerical examples
presented hereafter, we utilize MATLAB SOSTOOLS combined with SeDuMi [10,
14], using a computer with a Pentium 4 3.2GHz processor and 2 GB memory.
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4.1 Ornstein-Uhlenbeck-type process with gamma stationary
distribution

Let v be a Levy measure ofR ;. such thatf, zv(dz) < +w. Setag(t,X) = —Ax+
Jr, 2v(d2) for someA > 0, ay(t,x) = 0, by (t,x) = 1, bp(2) = z, andX is indepen-
dent ofu. Then, the stochastic differential equation (1) reduces to

dx — —/\Xtdt+/R Zu(dz dt),

which is called an Ornstein-Uhlenbeck-type process. (See, for example, Sato [13]
for its details.) Its solution is given by

it
X = *“Xo+/ / e MSz(dz ds).
. 0 ° R+

For simplicity, we further fixXo = 0, A = 1 andv(dz) = bae %z wherea > 0 and
b > 0. Then, we can prove that the stationary distributiogXf: t > 0} is gamma
with densityp(x) = b?/I" (a)x@ e ™, x c R,.

Here, we investigate the distribution transition via the moment estimations of
EX]=(1-eYa/bEX? = (1-e?)a/b?+(1—e")2a2/b?, and lim . E[X] =
I (a+k)/(b“r (a)), for k € N. Note that2” = R, and thatf Zv(dz) = aki /b
for ke N. For f € Cy([0, T] x R4 ;R), we have

o f(t,x) = > C, ko Katk1~1x2
{1<ki <K7,0<kp <Kz}
a _
+ (—X+ B) Ol ot Lkpx 2™
{0<ki<Kj,1<kp<Kp}
ko—2 |

k ka(ke —K)!

+ Z Chy kot Z ke CkX Tk -

{0<ky <K1,2<ko<K3} k=0

The condition (2) holds for ead; andK>, since

it p T ,
/ / e "9z(dz d9) g/ / zu(dzds), as,
Jo JR: Jo JRr,

where the right hand side is an infinitely divisible random variable, whdse/ L
measure has an exponential decay at infinity.

We present numerical results in Table 1. Welégt p for the estimation of the
p-th moment. It is known that the computational burden for solving the polynomial
optimization via sum of squares decomposition significantly increases as the degree
of the polynomial becomes larger. In view of this, we choose l&ge- 10. Even
in this case, however, computation time is at most 2 seconds. For comparison with
Monte Carlo methods, we also provide 99%-confidence interval with 1000000 iid
samples. As can be observed, even with the extraordinarily large number of samples,
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the 99%-confidence intervals are far from being comparable with our results. Note
that any large sample size can never be in competition with our results since the
upper and lower bounds obtained through our method form nothing but the 100%-
confidence interval.

I t=1 | t=2 | t=3 | t1+e0
0.042141 —0.042147 0.057644 —0.057644 0.063347 — 0.063344
E[X] (0.042141) (0.057644) (0.063348) (0.06667)

[0.0417327,0.042746{{P.0569853, 0.058057(P.0628788, 0.063966

0.040205 — 0.040205 0.046952 — 0.046955 0.048331 —0.048347
E[x?] (0.040205) (0.046953) (0.048347) (0.04889)
[0.0396179, 0.041483HP.0457206, 0.0476004P.0476659, 0.049604-

0.061217 —0.061268 0.066812 —0.066886 0.068009 — 0.068051
E[XZ] (n/a) (n/a) (n/a) (0.06844)
[0.0591606, 0.064965HP.0633623, 0.0688394P.0660050, 0.071925

Table 1 Moment transition withiXo = 0 and(a,b) = (0.1,1.5). The numbers in parentheses indi-
cate theoretical value. The intervals are 99%-confidence interval with 1000000 independent sam-
ples.

—

—

—

Recall that the current model is time-homogeneous. Hence, according to Theo-
rem 2, the obtained bounding functions also give upper and lower bounds for inter-
mediate time points without solving other optimization problem. For example, as a
byproduct of the computation of the bounds ]Ejb(g], we can provide a parametric
bounds forE[XZ] for everyt € [0,3]; see Fig. 1. In this case, the accuracy is close
to the pointwise optimization result in Table 1. Actually, the gap is smaller than the
case of Monte Carlo methods in Table 1.

Fig. 1 Lower and upper
bounds forE[X®] at interme-
diate time pointg € [0,3].
The detailed values are
0.060992 — 0.06146% € 1) : : : : : ‘
and 0.066461 — 0.067219
t=2).
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5 Conclusion

In this paper, we have developed a new approach to the weak approximation of
Lévy-driven stochastic differential equations via an optimization problem yielding
upper and lower bounds on the target expectation. The advantage of our approach
is that all we need is thedvy measure in closed form. We need neither the exact
knowledge of the increments nor a shot noise representation for sample path simu-
lation for the weak approximation with the sample path discretization. We have also
investigated how we can obtain accurate approximation at transient times.

The most important remaining work is the improvement of the approximation
accuracy. It is a good direction to pursue to use exponentially tempered polynomials
[5]. Other currently ongoing work is

e application to calibration in finance,
e construction of finite-horizon control theory for systems described byyL
driven stochastic differential equations.
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