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Abstract 

As a remarkable advantage, panel unit root testing statistics present Gaussian distribu-

tion in the limit rather than the complicated functionals of Wiener processes compared 

with traditional single time series tests. Therefore, the asymptotic critical values are di-

rectly used and the finite sample performance is not given proper attention. In addition, 

the unit root test literature heavily relies on the normality assumption, when this condi-

tion fails, the asymptotic results are no longer valid. 

This thesis analyzes and finds serious finite sample bias in panel unit root tests and the 

systematic impact of non-normality on the tests. Using Monte Carlo simulations, in par-

ticular, the application of response surface analysis with newly designed functional 

forms of response surface regressions, the thesis demonstrates the trend patterns of fi-

nite sample bias and test bias vary closely in relation to the variation in sample size and 

the degree of non-normality, respectively. Finite sample critical values are then pro-

posed, more importantly, the finite sample critical values are augmented by the Da-

vid-Johnson estimate of percentile standard deviation to account for the randomness in-

curred by stochastic simulations. Non-normality is modeled by the Lévy-Paretian stable 

distribution. Certain degree of non-normality is found which causes so severe test dis-

tortion that the finite sample critical values computed under normality are no longer va-

lid. It provides important indications to the reliability of panel unit root test results when 

empirical data exhibit non-normality.  

Finally, a panel of OECD country inflation rates is examined for stationarity considering 

its feature of structural breaks. Instead of constructing structural breaks in panel unit 

root tests, an alternative and new approach is proposed by treating the breaks as a type 

of non-normality. With the help of earlier results in the thesis, the study supports the 

presence of unit root in inflation rates. 
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Introduction 

 

 

 

Panel data are datasets that involve observations on individual economic agents (in the 

cross section dimension N) over time (in the time dimension T). Compared with time 

series and cross section studies, panel data have been in growing favour among re-

searchers as they gain advantages by obtaining more information and combining the in-

formation from the two dimensions in panel. For example, the changes of cross sections 

over time can be studied with the help of panel data; panel data can control for individ-

ual heterogeneity in the presence of certain individual invariant or time invariant vari-

ables, whereas time series or cross section studies not controlling this may lead to bi-

ased results. 

The early panel data analysis lies in the field of microeconomics with the start of the 

construction of household panel surveys initially launched in the Unite States in the 

1960s. Micro panels usually consist of large N and small T. Since the beginning of the 

1990’s, studies using macroeconomic panels have become increasingly popular, such as 

analyses involving inflation rates, interest rates, exchange rate, etc. Compared with mi-

cro panels, macro panels usually bear the feature of large N and large T. The long time 

series dimension in macro panels raises the concern of non-stationary panel and thus 

propels the development of panel unit root tests. 
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Stationarity has long been one of the main subjects of time series studies. A 

non-stationary series (or a series containing a unit root) suggests once receiving a shock, 

the series will eventually drift away from its mean. This feature poses serious consid-

erations for empirical applications, e.g. the inflation targeting, or can provide a founda-

tion for further analysis, e.g. the cointegration analysis. Testing for unit root in a series 

requires unit root tests. Single time series tests have started to develop since the pioneer 

work of Dickey and Fuller in 1979, the Dickey-Fuller test. Afterwards, there have been 

considerable amount of efforts to either improve the statistical performance of the test 

or develop new tests to account for problems that are relevant in empirical studies, e.g. 

the presence of structural breaks (the abrupt, relatively large and long-lasting changes in 

time series). 

Since attention has been raised to non-stationary panel, the study of testing for unit 

root in panel data has become popular, with Levin and Lin (1992) being the initial 

seminal contribution in the field of panel unit root tests. The main advantage of apply-

ing panel unit root tests over traditional single time series tests is the gain in statistical 

performance due to the increased sample size in relation to the additional cross section 

dimension N. In addition, panel unit root test statistics have the Gaussian distribution in 

the limit rather than the complicated functionals of the Wiener processes in the case of 

time series. 

The early panel unit root tests use pooled regression models that restrict the autore-

gressive parameter to be homogenous across the cross section dimension N, i.e. assume 

the panel individuals to have the same behaviour. These are called the homogenous tests 

in the literature. However, panel data generally introduce a substantial amount of unob-

served heterogeneity, which renders the parameters of the model individually specific 

across the cross section dimension. Subsequently the heterogeneous tests are proposed 
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in the literature to allow the individual autoregressive parameters across panel to differ 

from each other. Nevertheless, these tests share a crucial and restrictive assumption that 

the panel individuals act independently from one another. In many empirical applica-

tions, especially in macroeconomic and finance studies such as research on inflation 

rates, exchange rates, etc., the imposition of cross section independence assumption is 

inappropriate. To overcome this difficulty, a new generation of panel unit root tests have 

been developed to allow for different forms of cross section dependence/correlation (by 

which panel individuals are related with one another) and solve the problem through 

various approaches.  

Among the new generation of panel unit root tests the Chang and Song (2005, 2009) 

test (CS hereafter) is proposed as a most general test which is robust to all the different 

forms of cross section dependence. The test adopts an approach based on instrument 

variable regression, using a nonlinear transformation of the variable of interest as in-

strument. It is a development of the unique approach set up in Chang (2002) test (CH 

hereafter), a test that can only deal with the weak form of dependence and is criticized 

for failure in the presence of the strong form of dependence. The remarkable conclusion 

of the two studies is that after applying the nonlinear instrument variable technique, the 

t-statistic of the autoregressive parameter of each panel individual has standard normal 

limiting distribution under the unit root null hypothesis and is independent from each 

other. The panel unit root testing statistic, the average of the individual t-statistics, ob-

viously has standard normal distribution in the limit. 

Since panel unit root testing statistics generally have the Gaussian limiting distribu-

tion, one of the gaps in the literature is that their finite sample performance is not yet 

given proper attention. Empirical applications simply apply the asymptotical critical 

values of the tests. However, the well known knowledge is that finite sample perform-
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ance can be substantially different from the asymptotics, in particular, when the con-

vergence rate of the test statistic is slow. In addition, in the case of panel data the situa-

tion becomes much more complicated due to the additional cross section dimension N 

(details will be discussed in Chapter 1). Furthermore, regarding the asymptotic proper-

ties of the CH test, Im and Pesaran (2003) criticizes that for its asymptotic properties to 

hold, a much more restrictive condition is required, i.e., 
 

0
ln


T

TN
 as N, T→∞. This 

suggests that to ensure the performance of the test, N needs to be very small relative to 

T, which is particularly restrictive in practice. Considering that the CS test adopts the 

nonlinear instrument variable approach in the same concept, the similar problem is also 

conjectured to the CS test by the thesis. 

In econometrics the highly likely difference between the performance of finite sam-

ple and large sample is hard to evaluate analytically but can be conveniently examined 

through Monte Carlo experiments. Monte Carlo method is a computational approach 

that provides approximate solutions by performing repeated statistical sampling ex-

periments. In this thesis, using the outputs of a series of Monte Carlo experiments, the 

finite sample performance of panel unit root tests (the CH and CS tests) is analyzed 

through the response surface method, which helps observe the pattern of the changes in 

finite sample distributions as sample size varies. MacKinnon (1994, 1996 and 2000) ap-

plied the response surface method to a number of univariate unit root tests and cointe-

gration tests. The method can help provide test critical values for any given sample size; 

compute numerical approximations to finite sample distribution functions and thus the 

p-value for any given percentile can also be computed. In Chapter 2, the thesis firstly 

examines the finite sample bias of the two tests by response surface regressions through 

newly designed regression specification, involving the relevant factors that affect bias as 

explanatory variables, such as sample sizes and the condition claimed to be essential to 
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ensure the asymptotic properties by Im and Pesaran (2003). On observing the bias, the 

chapter then computes the finite sample critical values. Instead of providing the tradi-

tional point critical values, the finite sample critical values are augmented by the 

David-Johnson estimate of percentile standard deviation to account for the randomness 

caused by stochastic simulations. 

Nevertheless, the above unit root test literature heavily relies on the normality as-

sumption that the error terms in the model follow Gaussian process. When this condi-

tion fails the asymptotic results are no longer valid (Hamilton, 1994). However, there is 

abundant evidence showing that many economics variables are non-normally distributed 

with heavy/fat tails and a number of studies suggest use the Lévy-Paretian stable distri-

bution (also called the   stable distribution) to model these economic data. A few 

contributions had been made to the asymptotic property of single time series unit root 

tests under the assumption of   stable distribution in the error terms, whereas in the 

case of panel data almost no attention is given. Following Chapter 2 the next task in this 

thesis is to analyze the magnitude of bias in panel unit root tests caused by 

non-normality which is represented by the   stable distribution of the error terms. 

Chapter 3 uses a fresh design of response surface regression to discover the sensitivity 

of panel unit root tests to non-normality as the degree of non-normality increases. 

Meanwhile it aims to find out the degree of non-normality which causes so severe size 

distortion that the finite sample critical values computed in Chapter 2 under normality 

can no longer be used. The results can provide important implication and caution on the 

reliability of panel unit root test conclusion when empirical data present non-normality 

feature. 

Another considerable benefit could be provided by applying the   stable distribu-

tion is that the   stable random variables can be used to simulate processes with 
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structural breaks/changes (as mentioned earlier, the sudden and large changes in a proc-

ess). Regarding the impact of structural breaks on unit root test, Perron (1989) raised the 

caution that structural breaks in time series tend to bias unit root tests toward not reject-

ing the unit root hypothesis. Research indicates that inflation rates over long time span 

are likely to experience structural breaks due to certain economic shocks or monetary 

policy changes. Various traditional single time series tests cannot reach a consensus if 

there is a unit root in inflation. More recent literature applies panel unit root tests to take 

the advantage of panel data, whereas the results are still mixed. Given the contradictory 

conclusions in the literature, Chapter 4 re-examines the stationarity property of inflation 

rate by the most robust panel unit root test, taking into account the structural break 

character. The chapter adopts a brand new approach to deal with structural changes: in-

stead of modelling and estimating the breaks in the test which usually incurs complica-

tions and limitations, the appearance of breaks is treated as a form of non-normality 

represented by the   stable distribution. 

The rest of the thesis is organized as follows: Chapter 1 reviews panel data and non-

stationary panels. A number of contemporary popular panel unit root tests are then in-

troduced in two categories divided by whether cross section dependence is considered. 

Chapter 2 applies the response surface method based on Monte Carlo simulation results 

and analyzes the finite sample bias of the CH and CS tests. Finite sample critical values 

of the tests are computed and augmented by the David-Johnson estimate of percentile 

standard deviation. Chapter 3 raises the question of the impact of non-normality on 

panel unit root tests. The normality assumption is relaxed for panel unit root tests and 

error terms are assumed to follow the   stable distribution. The bias incurred by 

non-normality is analyzed and illustrated through Monte Carlo simulations. The chapter 

continues to find out the degrees of non-normality which so severely distort the tests 
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that the finite sample critical values computed in Chapter 2 are invalid. Chapter 4 

re-examines the stationarity property of inflation rates using an inflation rate panel of 15 

OECD countries. The problem of structural breaks in a process is dealt with by an al-

ternative approach which uses the representation of non-normality to capture the abrupt 

changes in the process. Finally the thesis finishes with the conclusions and some sug-

gestions for further research in this area. 
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Chapter 1 Panel Data and Panel Unit Root Tests in  

                  Retrospect 
 

 

 

1. Panel Data and Some Examples 

Panel data, or longitudinal data, refer to datasets that contain observations of cross-

section individuals, such as countries, firms, households, etc. over some time periods. 

Let ity  denotes a panel data variable, where i = 1,2,…,N;  t = 1,2,…,T; N is the number 

of individuals in the panel and T is time length. Contemporary economic data are often 

provided in the form of panels so that empirical studies are able to simultaneously ana-

lyze time series data set of states, industries or countries, e.g. Baltagi and Griffin (1983) 

studied gasoline demand in the OECD using 18 OECD countries over 18 years; Munnell 

(1990) investigated productivity growth by applying a panel of 48 contiguous states over 

the period 1970-86; Banerjee et al. (2005) surveyed the empirical literature of purchas-

ing power parity (PPP) and found that PPP holds when tested in panel data, which is in 

contrast to those tested under time series. This may be due to the higher power of panel 

unit root tests compared with time series tests (more discussion is given in Section 5). 

Panel data can be classified into micro panels and macro panels. Micro panels in-

clude individuals such as households, communities, firms and so on; macro panels 

usually contain individuals of countries or industries. Early panel data development is 

more focused on micro panels, e.g. studies of households, whereas in recent years grow-
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ing interest has been shown in macro panels such as inflation rates, exchange rates, etc. 

There is increasing amount of practice in pooling times series from a number of coun-

tries or industries to analyze them simultaneously. Some examples of both micro and 

macro panels are illustrated below. 

 

1.1 Micro Panels 

Household panels are typical examples of micro panels.  Household panel survey has 

become a major resource for understanding the behavior of households in each country. 

The variables usually cover the issues of income, labour market behaviour, social and 

political values, health, education, housing and household organization. The first house-

hold panel survey was launched in the United States in 1968, the Panel Survey of In-

come Dynamics (PIDS). By 2003, the PIDS had collected information on 65,000 indi-

viduals over 36 years (Baltagi, 2008).   

The first European household panel survey started in (West) Germany, the German 

Socio-Economic Panel (GSOEP) in 1984. Then surveys from other countries have fol-

lowed such as in the Netherlands, the Socio-Economic Panel (SEP), in Belgium, the 

Panel Study on Belgian Households (PSBH), in Luxembourg, the Panel Study of Eco-

nomic Life in Luxembourg (PSELL) and in Britain, the British Household Panel Survey 

(BHPS). Each of these surveys was designed independently to meet the data needs per-

ceived in each host country.  

The BHPS (British Household Panel Survey) is carried out by ISER (Institute for So-

cial & Economic Research) at the University of Essex. The main objective of the survey 

is to further understand the social and economic change at individual and household lev-

el in Britain. It intends to identify, model and forecast these changes, causes and conse-

quences in relation to a range of social economic variables including organization, em-

http://www.diw.de/english/sop/
http://center.kub.nl/research/facilities/sep.html
http://www.uia.ac.be/psbh/
http://www.ceps.lu/psell/pselpres.htm
http://www.iser.essex.ac.uk/ulsc/bhps/
http://www.iser.essex.ac.uk/ulsc/bhps/
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ployment, accommodation, tenancy, income and wealth, housing, health, socio-

economic values, residential mobility, marital and relationship history, social support, 

and individual and household demographics. It started in 1991 with 5,500 households 

and keeps the interview each year since. Recently large new samples from Scotland, 

Wales and Northern Ireland were added to the main sample.  

The BHPS provided the UK component of the European Community Household 

Panel (ECHP). The ECHP was launched in 1994 by the Statistical Office of the Euro-

pean Communities (EuroStat) for cross-European comparability. It started survey for 

parallel comparable micro level data with 60,000 samples among the 12 member coun-

tries in the European Union (EU) and follows the same samples (persons and house-

holds) each year since then. It contains data on income, work, housing, health and many 

other indicators indicating living conditions. Three more members were added in when 

they joined the EU, namely, Austria, Finland and Sweden, which brought in 13,000 

more households.  The series continues through from 1994 to 2001 and had ended now.  

 

1.2 Macro Panels 

As we can see one important character of micro panels is that they usually have large N 

and small T, whereas macro panels are usually presented with large N and large T.  

There are many organizations (such as the IMF, World Bank, OECD, etc.) that pro-

vide long time series macro data sets for countries all over the world or countries within 

a certain area. The IMF was established to promote international monetary cooperation 

and assist countries in balance of payment difficulties, and it has more than 180 member 

countries. Some major databanks provided by the IMF are the Direction of Trade Statis-

tics (DOTS), International Financial Statistics (IFS), Government Finance Statistics 

(GFS) and Balance of Payments Statistics (BOPS). For example, the IFS data set covers 
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200 countries worldwide and contains approximately 32,000 time series on economic 

topics including balance of payments, banking and financial systems, labour, exchange 

rates, fund position, government finance, interest rates, international liquidity, national 

accounts, population, prices, production and trade. Most annual data began in 1948; 

quarterly and monthly data generally started in 1957. Large time dimension can be ob-

tained through using monthly data. Numerous PPP studies have taken exchange rate da-

ta from the IFS.  

The World Bank Group was founded in 1944. Its aim is to reduce poverty and im-

prove the living standards of people in the developing world. Two important World 

Bank databases are World Development Indicators and Global Development Finance. 

For example, the World Bank Global Development Finance database provides annual 

data of more than 200 debt and financial flows indicators for 136 countries from 1970 to 

2013 (where available).  

The UN was established in 1945 by countries that committed on preserving peace 

through international cooperation and collective security. The UN produces a very large 

database, the UN common Database (UNCDB), which covers economic, social, finance 

and development issues for 280 countries. Data usually are available from 1970-1980, 

published every half year. 

The OECD is an international alliance of national governments that acts as a forum 

for member countries to develop economic and social policies. It currently has 30 mem-

ber countries. The OECD produces many databases, the OECD Education Statistics, the 

OECD Main Economic Indicators (MEI), the OECD International Development, etc. 

For example, the MEI contains annual, quarterly and monthly data for around 3,800 

economic indicators for the OECD member countries and 6 non-member countries. 

Monthly data are available from January 1960 to the current month. 
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Some other international organizations established regarding specific topics also pro-

vide databases. For example, the International Energy Agency (IEA) was established in 

1974 in response to the oil crisis. It has databases such as the Coal information, Electric-

ity information, World Energy Statistics and Balances and so on. The IEA World Ener-

gy Statistics and Balances data set consists of four separate databases, containing the 

annual energy balance data from 1960 for 30 OECD countries and over 100 non-OECD 

countries. 

 

2. Advantages of Panel Data 

Baltagi (2008) summarizes the various advantages of using panel data. The advantages 

are: 

1. As panel data present information for a number of individuals over time, there is 

bound to be heterogeneity across the individuals. Ignoring heterogeneity time series and 

cross section studies may be exposed to the risk of biased results (c.f. Moulton, 1986), 

while panel data can take into account heterogeneity. This will be discussed in more de-

tail in the next section. 

2. By combining cross section units, panel data can give more informative data, more 

variability, more degrees of freedom and more efficiency. For example, when time se-

ries studies are plagued with multicollinearity among independent variables, it is less 

likely with a panel since the cross section dimension in panel data adds a lot of variabili-

ty and more informative data on the variables. 

3. Compared with cross sectional data that are only observed on one point of time, 

panel data are better suited to study the dynamic adjustment with its time dimension. 

4. Panel data are better in identifying and measuring effects that are simply not detect-

able in pure time series or cross section data. Suppose that a cross-section data set of 
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students with 80% exam passing rate. The fact might be (a) in any year there are 20% of 

the students fail or (b) there are 20% of the students fail all through the years. While 

cross section data cannot distinguish the cases, panel data could solve the problem (c.f. 

Baltagi, 2008). 

5. Panel data models allow us to study more complicated behavioral models. For ex-

ample, technical efficiency is better modeled with panel (c.f. Schmidt and Sickles, 1984; 

Baltagi and Griffin 1988; Koop and Steel, 2001). 

6.  With the additional cross section dimension in panel data, panel unit root tests have 

standard asymptotic distributions rather than the nonstandard distributions of time series 

unit root tests. This will be discussed in greater detail in the following literature of panel 

unit root tests. 

 

3. Static Linear Panel Models 

A typical linear panel regression model takes the following form 

ititit Xy    i = 1,…,N; t = 1,…,Ti                   (1.1) 

where i denotes panel individuals, households, firms, countries, etc. in the cross section 

dimension and  t denotes time series dimension;   is scalar;  is 1k  vector of coeffi-

cients;  kttit xxX ,...,1 is 1k  vector of k explanatory variables and itx  is the it
th

 ob-

servation; it  are error terms and have independent identical distributions with mean 0 

and variance 2

 i , ),0(~ 2

 iit IID . 

When the intercept term   and the coefficients of independent variables   remain 

constant across panel individuals, the model is homogeneous. Pooled OLS (ordinary 

least squares) regression (i.e. pool individuals across the cross section dimension) pro-

vides consistent and efficient estimations of   and  . However, heterogeneity appears 
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when the intercept terms or the coefficients of explainable variables differ across indi-

viduals, then pooling individuals across panel is inappropriate. Heterogeneous panels 

refer to the cases when the parameters estimated from each unit model are different 

across panel individuals. Since early panel data studies mainly apply micro panels which 

contain large amount of individuals and short time span, they are more oriented on cross 

section analysis. Therefore, heterogeneity is often the central topic of panel study.
1
 

 

3.1 Heterogeneity from the Constant Terms 

The fixed effect and random effect panel data models are developed to account for the 

heterogeneity arising from constant term
2
. If heterogeneity is unobserved and correlated 

with independent variables itX , the least squares estimation of   is biased and incon-

sistent. In this case, the fixed effect model can be considered 

ititiit Xy                    (1.2) 

where i  is taken as the group specific constant term for each individual.  

If the unobserved heterogeneity is assumed to be uncorrelated with the independent 

variables, then the random effect model can be formulated as 

itiitit Xcy                 (1.3) 

where c is the constant term for the panel regression model, i  denotes the unobserva-

ble individual specific effect and are drawn from identical independent distributions 

with mean 0 and variance 2

  in each time period, ),0(~ 2

 IIDi . i  and it  are in-

dependent. 

                                                 
1
 C.f. Green (2007). 

2
 Since static linear models are not the main issue of this thesis, they are not elaborated here. For more 

readings, refer to Gujarati (2009), Green (2007) and Baltagi (2008). 
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Therefore, the essential difference between the two models is whether the elements 

that cause the unobserved individual effects (i.e. the heterogeneity) are correlated with 

the independent variables or not. 

 

3.2 Heterogeneity from the Slope Coefficients 

Both fixed effect and random effect models assume that the slope coefficients   are 

homogeneous, whereas this assumption is testable and is quite often rejected (Baltagi, 

2008). Roberson and Symos (1992) studied the properties of some heterogeneous esti-

mators which are assumed to be homogeneous. They found severe biases in dynamic 

estimation for both stationary and nonstationary regressors.  Pesaran and Smith (1995) 

estimated a dynamic heterogeneous model with four procedures, and showed that when 

both N and T are large, cross section regression (i.e. average the estimators of each unit) 

will yield consistent estimate of the mean value of the estimators from each individual. 

However, Maddala et al. (1997) on studying the elasticities of residential demand for 

electricity found that heterogeneous panel estimation is inaccurate and even can yield 

wrong signs for the coefficients, and panel data estimation is invalid when homogeneity 

is rejected. Nevertheless, in the reconsideration using the same data sets by Baltagi et al 

(2002), evidence is added that in out-of-sample forecasts simple homogeneous panel 

data estimation outperforms individual estimates and the shrinkage estimators suggested 

by Maddala et al (1997). 

 

4. Nonstationary Panels 

In recent years with the growing interests in topics such as PPP, interest rate, inflation 

rate, growth convergence and so on, the focus of panel data study has shifted toward 

macro panels. Since macro panels often contain relatively large N and large T, more at-



Chapter 1 Panel Data and Panel Unit Root Tests in Retrospect 

16 

 

tention is therefore devoted to the stationarity property of macro panels on considering 

their long time period.  

A time series ity  is stationary if the means and variances of the process are constant 

over time, and the covariance between two periods depends only on the gap between the 

periods, i.e. 

  ityE ;       2ityVar ;   jjtiit yyCov ,,  

If one or more of the conditions are not fulfilled, the process is nonstationary. Assume 

the time series  iTi yy ,...,0  is generated by an AR(1) process 

 ittiiit yy   1,                 (1.4)  

where ),0(~ 2

 iit IID . When 1N , (1.4) reduces to an AR(1) of single time series 

ttt y y   1                  (1.5) 

It can be easily proved that as 1 , the series is stationary; when 1  the series is 

explosive with increasing variance as time proceeds, so ty  is nonstationary (c.f. Enders 

2004). The nonstationary process is often called a unit root process or a process with a 

unit root.  

When 1N , the single time series is extended to panel data as in (1.4). If 1i  for 

all Ni ,...,1 , the panel is stationary; if 1i  for all Ni ,...,1 , ity  is a nonstationary 

panel. However, due to the possible heterogeneity in i  across the cross section dimen-

sion, so far there is not a clear definition regarding the stationarity of a panel for the sit-

uation when i ’s behave differently. 

As the use of panel data has become popular, numerous studies have been extended 

from single time series to panel data. To examine the stationarity property of panel data, 



Chapter 1 Panel Data and Panel Unit Root Tests in Retrospect 

17 

 

the field of panel unit root test is progressing productively and is applied on various top-

ics (such as those stated at the start of this section). 

 

5. Unit Root Tests 

5.1 Testing for Unit Root in Single Time Series 

Refer to (1.5) the AR(1) process, the null hypothesis of a unit root test is 1  against 

the alternative 1 . The OLS estimator 


 of   is consistent, however, Dickey and 

Fuller (1979) demonstrates that under the null 1 , the t-statistic of 


 presents a dis-

tribution skewed to the right (with a long tail on the right-hand side) rather than the 

standard asymptotic distribution due to the nonstationarity of unit root process 

   

 

  

 

 


1

0

2

2

1

0

2

1

0
ˆ

11
2

1

drrW

W

drrW

rdWrW

t               (1.6) 

where  W  is standard Brownian motion/Wiener process;  1,0r . Consequently, the t-

distribution table or standard normal distribution table can not be used. Dickey and Ful-

ler calculated the critical values of different rejection percentiles for the appropriate dis-

tribution. Their test is referred to as the Dickey-Fuller test and has been widely used to 

testing for unit root of time series ever since. Thereafter, a wave of unit root tests were 

developed, such as Sargan and Bhargava (1983), Phillips (1987), Cochrane (1988), El-

liott et al. (1996), Ng and Perron (2001) and Perron (1997), etc. The later tests are de-

veloped either to improve the statistical performance of some existing tests or to consid-

er some special situations that frequently appear in practice (e.g. structural breaks). 
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5.2 Testing for Unit Root in Panel Data 

Although testing for unit root in single time series had become popular at early stage, 

testing for unit root in panel data is only recent since the seminal work of Levin and Lin 

(1992, 1993). The additional cross section dimension in panel data provides advantage 

and meanwhile poses problems and difficulties compared with time series.  

 

5.2.1 Advantages of Panel Unit Root Test 

Since adding cross section dimension has greatly increased the number of observations, 

one of the main advantages of applying panel unit root test is the gain in statistical pow-

er compare with the poor power performance of univariate series due to their relatively 

limited sample size. For example, a number of studies on PPP using panel data find that 

the real exchange rate is stationary (c.f. Flood and Talor; 1996, Choi, 2001), whereas 

this is normally rejected by the traditional ADF (Augmented Dicky-Fuller) test. This 

may result from the higher power of panel unit root tests than that of time series tests. 

As noted by Baltagi and Kao (2000), nonstationary panel data econometrics aims at 

combining the best of the two worlds: the method of dealing with non-stationary data 

from the time series and the increased data and power from the cross-section.  In addi-

tion, a distinctive feature of panel unit tests is that the test statistics have normal limiting 

distributions rather than the complicated functional forms in the case of time series. Un-

der certain assumption the cross section dimension can act as repeated draws from the 

same distribution, thus the distribution of the test statistics converge to standard normal 

distribution as the number of individuals increases. Panel data can also help avoid the 

problem of spurious regression while produce a consistent estimates of the true values as 

both N and T go to ∞ (Baltagi 2008).  
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5.2.2 Problems in Panel Unit Root Test 

Although panel unit root tests exhibit significant advantages over time series tests, there 

are also more complicated problems. For example, early panel unit root tests impose the 

restrictive assumption of homogeneity. The following wave of the tests is criticized by 

ignoring cross section dependence (which will be introduced below). Due to the critics, 

two generations of tests are divided in the literature by the consideration of cross section 

correlation. In addition, panel unit root tests involve more complicated asymptotic prop-

erties caused by the two dimensions (N and T). 

 

5.2.2.1 Heterogeneity and Cross Section Dependence 

As discussed above, panel data generally introduce significant amount of heterogeneity. 

Ignoring this problem by pooling data across individuals can cause serious inconsistency 

(c.f. Pesaran and Smith, 1995). In addition, to assume the individuals in the cross section 

dimension independent from each other is inappropriate in many empirical applications 

such as exchange rate, inflation rate, etc. If this assumption is violated, it can lead to size 

distortions and low power (c.f. Banerjee et al, 2004). Therefore, the recent wave of pan-

el unit root tests tries to include cross section dependence into the model through various 

approaches. Cross section dependence (or correlation) refers to the situation when panel 

individuals are related with one another. It suggests that while certain individuals re-

ceive shocks in the panel, others will be affected as well. The dependence can be 

represented by the variance covariance matrix of the error terms or common factor(s) 

that drive the common trend(s) among individuals (this will be presented in detail in sec-

tion 6.2). In the literature the tests considering cross section dependence are categorized 

as the second generation panel unit root tests. Thus the first generation tests refer to 

those that assume cross section independence. In the application to the stationarity prop-
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erty of real interest rate, in contrast to the earlier results from the first generation tests, 

the second generation tests tend to reject unit root (c.f. Pesaran, 2007).  

 

5.2.2.2 Asymptotic Properties 

Regarding the asymptotic properties, there are more serious complications in panel 

models due to the additional cross section dimension N. Conventional limit theory can-

not be directly applied because it has only one index tending to infinity. Phillips and 

Moon (2000) overview three asymptotic approaches used on panel limit theory accord-

ing to the way that N and T pass to infinity. (a) Sequential Limits, which fixes one index 

(say N) and allows the other passes to infinity (say T) to obtain an intermediate limit. 

Then let N go to infinity subsequently to obtain a sequential limit theory. This approach 

is used by, for example, Im, Pesaran and Shin (1997) test which is reviewed in the next 

section. (b) Diagonal Path Limits, which allow both N and T to pass to infinity along a 

specific diagonal path in the two dimension array. This path can be determined by a mo-

notonically increasing functional relation of the type  NTT   which applies as the in-

dex N→∞. Levin and Lin (1992, 1993) test uses this approach in finding the limits of 

panel unit root test statistics. (c) Joint Limits, which allow both N and T to pass to infini-

ty simultaneously without specific diagonal path restrictions on the divergence, although 

some control over the relative rate of expansion of the two indexes may be necessary to 

obtain definitive results. The joint limits approach suggests NT   as N→∞, so it is a 

special case of the diagonal path limits approach.  

Although asymptotic properties guarantee the convergence of testing statistics, they 

are based on sample size tending to infinity. This poses a serious problem for empirical 

applications, since infinity is not achieved in reality and very often even the available 

sample observations can be very limited. Consequently critical values given by asymp-
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totic distributions may distort empirical results and therefore finite sample performance 

of the tests is demanded. 

 

6. Review of Panel Unit Root Tests  

As was discussed above, cross section dependence acts as a dividing line to separate the 

first and second generation panel unit root tests. Meanwhile among the first generation 

tests, the problem of heterogeneity in panels was concerned as the literature develops. 

Therefore, after the pioneer seminal work of Levin and Lin (1992, 1993), a homogene-

ous test that is based on pooled estimator of the autoregressive parameter, a number of  

tests considering heterogeneous models were developed, such as Im, Pesaran and Shin 

(1997, 2003), Maddala and Wu (1999), Choi (2001) and Hadri (2000). The second gen-

eration tests include Harvey and Bates (2003), Jönsson (2005a), Breitung and Das 

(2005), Chang (2002), Bai and Ng (2004), Moon and Perron (2004), Phillips and Sul 

(2003), Pesaran (2007), Chang and Song (2005, 2009), etc. So far the first generation 

tests have been programmed in commercial packages, e.g. Eviews, which can be conve-

niently used for empirical applications. The second generation tests are not yet available 

in the commercial packages. Nevertheless, Gauss or Matlab programmes for most of the 

tests are available from the authors. 

 

6.1 First Generation Panel Unit Root Tests 

6.1.1 Levin and Lin (1992) (LL) and Levin, Lin and Chu (2002) (LLC) Tests  

The basic models of the LL tests are 

ittiit yy   1,             (1.7) 

ittiiit yy   1,            (1.8) 
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ititiiit tyy   1,            (1.9) 

where ),0(~ 2 IIDit  for all i = 1,2,…,N and all t = 1,2,…,T. These models can be 

presented equivalently as those in LLC test 

ittiit yy   1,                      (1.10) 

ittiiit yy   1,                      (1.11) 

ititiiit tyy   1,                   (1.12) 

where ),0(~ 2 IIDit . The models therefore allow for fixed effects (in i ) and indi-

vidual-specific time trend (in i ) to capture some heterogeneity; while   or  , the 

coefficient of 1, tiy , is restricted to be homogeneous. 

The null hypothesis is 1:0 H  against the alternative 1:0 H  in (1.7)-(1.9), or 

0:0 H  against 0:0 H  in (1.10)-(1.12). The asymptotic properties were investi-

gated under the assumptions whether the model has fixed effects and individual-specific 

time trend. In the simplest case of the LL test (1.7), under the null hypothesis 1 , as 

N→∞ and T→∞, the asymptotic distribution of the t-statistic of pooled OLS estimator 

̂  is given by 

 1,0ˆ Nt   

Levin and Lin found that in the cases of individual-specific fixed effects as (1.8) and 

serial correlation in the disturbances, the t-statistic of ̂  diverges. However, with a 

transformation of the t-statistic, it does converge to N(0,1). As N→∞, T→∞ and 

0
T

N
,  the asymptotic distributions of ̂t  is given by 

 1,0875.125.1 ˆ NNt   
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Model (1.9) allows for different time trend across units. Under the null hypothesis 1  

and 0i  as N→∞, T→∞ and 0
T

N
, ̂t  has the asymptotic distributions as 

   1,075.3
277

448
ˆ NNt   

The scaling such as 25.1  and 
277

448
 is derived from the moments of the terms involv-

ing Brownian Motions; the expressions such as N875.1  and N75.3  are centering 

corrections needed in order for the statistics to have mean zero asymptotically. In the 

case with serial correlation, Levin and Lin derived the asymptotics through estimating 

the average variance of the dependent variable and of the error terms as in Philips 

(1987).  

The significance of LL test is, as Banerjee (1999) noted, that it is the first formal 

demonstration of asymptotic normality of panel unit root testing statistics subject to 

suitable scaling and corrections; and that it is the first piece of work that focuses on the 

rates at which T and N tend to infinity and develops a joint limit theory of panel unit 

tests. Later the LL test was extended to the LLC test to consider more general serial cor-

relation and heteroscedasticity in the error terms. Levin et al. (2002) proposed a three-

step estimation procedure; under the null hypothesis 0  in (1.10), 
̂

t has standard 

normal limiting distribution as N→∞ and T→∞. Since the presence of specific-

individual fixed effects, expressed through i  as in (1.11) and (1.12), causes 
̂

t  to di-

verges to negative infinity, an adjusted t-statistic 
*

̂
t  was suggested. It is shown that 

*

̂
t  

also converges to  1,0N  as N→∞ and T→∞. Detailed estimation procedures and results 

are not introduced in the thesis. They can be found in Levin et al. (2002). 
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The LL test assumes the autoregressive parameter to be homogenous across panel in-

dividuals. This means that either all the individuals collectively have a unit root or they 

do not. It is very restrictive for the empirical analysis, e.g. in growth convergence study, 

it does not make sense to assume that all countries will converge at the same rate if they 

do converge (Maddala and Wu, 1999). Later work that relaxes this point includes Im et 

al. (1997, 2003), Maddala and Wu (1999) and Choi (2001). 

 

6.1.2 Im, Pesaran and Shin (1997, 2003) (IPS) Test 

In a similar form to (1.11) in LLC test, the basic model of the IPS test is 

ittiiiit yy   1,                       (1.13) 

where  2,0~ iit N   for i = 1,…,N; t = 1,…,T; so heterogeneity is further presented in 

i across panel individuals. The null hypothesis is 0:0 iH   for all i against the alter-

native 0:0 iH   for i = 1,2,…N1 and 0i  for  i = N1+1, N1+2,…,N,  0<N1<N. The 

alternative hypothesis therefore allows for heterogeneous i . The test is based on the 

average of individual Dickey-Fuller (DF) test statistics. Let iTt  be the standard DF sta-

tistic for the i
th

 individual, so iTt  converges to DF distribution (1.6). The average statis-

tic which is referred to as t-bar statistic is  





N

i

iTNT t
N

bart
1

1
 

Due to the cross section independence assumption, the individual DF t-statistics, iTt , 

i =1,…,N, are identically and independently distributed with mean  TtE  and finite va-

riance  TtVar . Under the null hypothesis 0i  when T is fixed (T>5) and as N→∞, 

the limiting distribution of the standardized t-bar statistic 
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  
 T

TNT

tbar
tVar

tEbartN
Z


  

is standard normal, i.e. 

 1,0NZ
N

tbar   

However, with fixed N and T, the sample distribution of t-bar statistic under the null is 

nonstandard. So Im et al. computed the sample critical value through simulation experi-

ments.  

In the case with serial correlated errors, the model is generalized as the Augmented 

Dickey Fuller (ADF) regression with lag orders of iq  




 
iq

j

ittiijtiiiit yyy
1

1,1,                         (1.14) 

The t-bar statistic, NTbart
~

, is calculated as the average of individual ADF t-statistics 

 iiiT qt ,  

 



N

i

iiiTNT qt
N

bart
1

,
1~

  

When T is fixed, NTbart  will depend on the nuisance parameters i . This will invalid 

the standardization of using   iiiT qtE ,  and   iiiT qtVar , . Since when T and N are 

sufficiently large the t-bar type test is free from the nuisance parameters, a sequential 

limit theory is developed as T→∞ followed by N→∞.  

As T→∞ the individual ADF statistics converge to the DF distribution, say i , de-

note 

 
   

 i

iiiiT

iiT
Var

Eqt
qx



 


,

iβ,  
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for fixed N. Let the t-bar statistic, NTbart
~

, distribute with mean  E  and variance 

 Var . In Im et al. (2003, p.64) it shows that the standardized t-bar statistic 

 
  

 
 







N

i

iiT

NT

bart
qx

NVar

EbartN
Z

1

i~ β,
1

~

β,q



 

converges to a certain distribution 

  



N

i

i

TN

i

iiT x
N

qx
N 11

i

1
β,

1
 

where 
 
 i

ii

i
Var

E
x



 
 , the limiting distribution of iTx . Since  1,0~ IIDxi , then let 

N→∞, the standard normal distribution is obtained 

 



N

i

N

i Nx
N 1

1,0
1

 

Therefore the sequential normal limiting distribution of the standardized t-bar statistic as 

T→∞ followed by N→∞ can be denoted as 

   1,0βq,
,

~ NZ
NT

bart
  

Im et al. (2003) also suggested an alternative sequential limit theory which calculates 

the standardized t-bar statistic using the means and variances of  0,iiT pt  evaluated un-

der 0i , namely   00, iiiT qtE   and   00, iiiT qtVar  . The values of 

  00, iiiT qtE   and   00, iiiT qtVar   for different q and T are computed via 

Monte Carlo simulations. A diagonal path convergence result is conjectured by the au-

thors as N and T→∞ simultaneously while k
T

N
 , k being a finite non-negative con-

stant. Monte Carlo results indicate that the small sample performance of t-bar test is 

generally better than that of LL test. 
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6.1.3 Maddala and Wu (1999) (MW) and Choi (2001) Fisher Type Tests 

Maddala and Wu reviewed the LL and IPS tests and pointed out some limitations of the 

two tests.
3
 They then proposed a Fisher type test, combining the p-values (or significant 

levels) of the unit root test statistics from each panel individual. Due to Fisher (1932), 

the MW panel unit root test statistic is given by 

 



N

i

ipP
1

ln2  

where pi is the p-value of unit root test statistic from the i
th

 panel individual; N is the 

number of individuals. P is then distributed as 2  with 2N degrees of freedom with the 

assumption of cross section independence. The test is a non-parametric and exact test. 

Since the alternative hypothesis of MW test is the same as that of IPS test, i.e. more 

general than LL test, they are directly comparable. Considering that IPS test is restricted 

in only using ADF statistics as a base, Banerjee (1999) notes that the simplicity of MW 

test and its robustness to individual unit root test statistic choice, different lag length and 

sample size of each individual makes it extremely attractive. Through their Monte Carlo 

simulations, Maddala and Wu showed that in the case that the panel is a mixture of sta-

tionary and non-stationary series as an alternative hypothesis, MW test has the highest 

power in distinguishing the null and the alternative compared with the IPS and LL tests.  

Choi (2001) suggested a similar combining p-value Fisher type test. In addition to 

MW test with finite N as T→∞, he also derived the sequential limit results of the mod-

ified test statistic in the case of infinite N, i.e. N→∞. Under the null hypothesis as T→∞ 

followed by N→∞, the modified statistic has standard normal distribution. 

                                                 
3
 See Maddala and Wu (1999) for the limitations. 
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      
 


N

i

N

i
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P
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1
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1 4
 

 1,0NPm   

Although the Fisher type tests are simple and robust, there is a disadvantage that the 

p-values have to be derived by Monte Carlo simulations (Baltagi and Kao, 1999). In ad-

dition, they still impose the restrictive assumption of cross section independence which 

is often violated in practice.  

 

6.1.4 Residual Based Stationarity Test: Hadri (2000) Test 

All the tests introduced above have unit root as their null hypothesis. Hadri (2000) notes 

that unless there is strong evidence of stationarity, classical unit root tests have low 

power. Hadri reckons that it would be useful to perform a stationarity test, i.e. set the 

null hypothesis to stationarity. By extending the work of Kwiatkowski et al. (1992), he 

proposed a residual based Lagrange multiplier (LM) test for panel data. He claims that 

in contrast to the previous single time series stationarity tests whose either critical values 

or asymptotic distribution moments are calculated by simulations, the moments of the 

asymptotic distribution in this paper are calculated exactly. 

The basic model is  

itiitit try                           (1.15) 

and itr  is a random walk 

ittiit urr  1,                           (1.16) 

                                                 

4
 Let  ii pP ln2 , then   2iPE  and   4iPVar . 
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where  2,0~  IIDNit  and  2,0~ uit IIDNu   for i = 1,…,N; t = 1,…,T. After back 

substitution, (1.15) can be written as 

itii

N

i

ititiiit

etr

utry



 






0

1

0
                      (1.17) 

where 



N

i

ititit ue
1

 . If 02 u , then itr  reduces to a constant, and ite  is identical to 

it  and is therefore stationary. On the other hand, if 02 u , then itr  is a random walk, 

and ite  is nonstationary. So the null hypothesis is simply 02 u . More specifically, 

0:0 H  against the alternative 0:0 H , where 
2

2




 u . The LM statistic is then 

given by 

2

1 1

2

2

ˆ

11



 
 

N

i

T

t

itS
TN

LM  

where itS  is the partial sum of the residuals, and 2ˆ
  is a consistent estimator of 2

  un-

der the null hypothesis  





t

j

ijitS
1

̂    and   
 


N

i

T

t

it
NT 1 1

22 ˆ
1

ˆ    

Under the null hypothesis as T→∞ followed by N→∞, the standardized LM test statistic 

has standard normal limiting distribution. 

Hadri then generalized the model by allowing for serial correlation and heteroscedas-

ticity in the error term across panel individuals. However, the cross section indepen-

dence assumption still applies.  
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6.2 Second Generation Panel Unit Root Tests 

As the contemporaneous correlation among panel individuals is often found present in 

empirical analysis
5
, the second generation panel unit root tests aim to relax the indepen-

dence assumption and model the cross section dependence through various approaches.  

A though panel unit root tests review is provided by Breitung and Pesaran (2008). 

Breitung and Pesaran distinguish two cases of cross section dependence, the weak and 

strong forms of dependence. The general form of dependence can be presented as  

 

ittiiiit uyy  1,                        (1.18) 

or equivalently as 

ittiiiit uyy  1,                         (1.19) 

itiitu  tFγ                   (1.20) 

or 

ttt ξΓFu                    (1.21) 

where tF  is an 1m  vector of serially uncorrelated unobserved common factors with 

covariance matrix mI ; Γ  is an mN   matrix of factor loadings defined as 

  NγγΓ ,...,1 ;   Ntt  ,...,1tξ  is an 1N vector of serially uncorrelated errors with 

zero mean and positive definite covariance matrix ξΩ . tF  and it  are assumed to be in-

dependently distributed
6
. The covariance matrix of tu  is given by ξΩΓΓΩ  . 

 Breitung and Pesaran (2008) specify the two cases of cross section dependence: (i) 

Weak dependence. Under this assumption the unobserved common factors are excluded. 

The dependence is only generated by the covariance matrix of tξ , ξΩ . (ii) Strong de-

                                                 
5
 C.f. O’Connell (1998) for PPP and Phillips and Sul (2003) for output convergence. 

6
 If γ1= γ2=…=γN and Ωξ is diagonal (no correlation in ξit), then θt = γ'ft (a time effect) can be removed by 

demeaning across panel units, and thus eliminate dependence such as in IPS test. However, if the assump-

tions are violated, size distortion still remains (c.f. Strauss and Yigit, 2003). 
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pendence. In this case the unobserved common factors exist. The dependence could 

arise from both tF  and tξ  and is represented by ξΩΓΓΩ  . However, when ξΩ  is a 

diagonal matrix, the dependence only arises from the unobserved factor(s). 

 

6.2.1 Tests with Weak Dependence 

Refer to (1.18)-(1.21), in the weak form of cross section dependence, dependence is on-

ly generated from tξ  represented by its non-diagonal variance covariance matrix 






 

 ttξ uuΩ E  

As (1.18) or (1.19) can also be seen as a seemingly unrelated regression (SUR) system, 

the GLS and OLS estimation is applicable (O’Connell, 1998). 

 

6.2.1.1 Harvey and Bates (2003) GLS Based Test 

Harvey and Bates (2003) consider the homogeneous multivariate model in vector 

form 

t1tt uΦyy   ,  t = 1, …,T                      (1.22) 

where ty  is 1N  vector and 0y  is fixed but unknown; NIΦ  is an NN  matrix of 

autoregressive parameters and   a is scalar, so the model is homogeneous and the test 

statistic is invariant to pre-multiplication of ty  by a nonsingular NN   matrix; tu  is a 

Gaussian 1N  disturbance vector with positive definite covariance matrix uΩ . The in-

tention is to generalize ADF test, based on the t-statistic of the feasible GLS estimator of 

1 . Thus the test hypothesis is 0:0 H  (or equivalently 1 ), against the al-

ternative 0:0 H . 
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The feasible GLS estimator ̂  obtained through maximum likelihood (ML) estima-

tion is 


















T

t 2

T

2t

ˆ

ˆ

ˆ

1-t

1

u1-t

t

1

u1-t

yΩy

ΔyΩy

  

where   




 


T

t

ππT
2

1 ˆˆˆ
1tt1ttu yΔyyΔyΩ . The t-statistic (referred to as multiva-

riate homogeneous Dickey-Fuller statistic, MHDF) is then given as 

 


















T

2t

T

2t

ˆ

ˆ

1-tu1-t

tu1-t

yΩy

ΔyΩy

1

1

Ntgls  

If ty  is pre-multiplied by 1/2

uΩ̂  in the first place, then OLS estimation can also be ap-

plied to the pooled observations.  

Harvey and Bates derived the sequential limit of  Ntgls . Under the null hypothesis 

for fixed N as T→ ∞,  Ntgls  converges to an intermediate limit associated with Wiener 

process; as N→ ∞, it converges to standard normal distribution. 

However, Chang (2004) demonstrates that the limiting distributions of the test statis-

tics obtained from either GLS or OLS estimation are non-standard and heavily depend 

on nuisance parameters in the error covariance matrix that defines cross section depen-

dence and heterogeneous serial correlation (Chang, 2004, p.273). She then applied boot-

strap methodology and computed the critical values by simulations.  
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6.2.1.2 Breitung and Das (2005) and Jönsson (2005) OLS Based Tests 

Breitung and Das (2005) point out that the GLS estimator can only be used when TN  , 

since otherwise uΩ̂  is singular. In addition, the performance of GLS is very poor unless 

T is substantially larger than N.
7
 Jönsson (2005a) also shows through Monte Carlo simu-

lations that as the degree of cross section correlation increases, the size distortion in 

MHDF test becomes larger within finite sample size. So tests based on panel corrected 

standard errors (PCSE) were developed by the authors to handle different degrees of 

cross section correlation and different sizes of N and T (i.e. to enable the test to be appli-

cable when N>T). 

Consider the equivalent homogeneous model to (1.22) 

t1tt uδyΔy                           (1.23) 

where all terms are 1N vectors and tu  has positive definite covariance matrix uΩ . 

The test statistic is based on pooled OLS regression. The estimator for the variance of 

the OLS estimator is given as 
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where   


 




T

tT 1

ˆˆ1ˆ
1tt1ttu yδΔyyδΔyΩ , δ̂  is the OLS estimator of δ  in (1.23). 

The corresponding testing statistic is  
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7
 See the empirical sizes in Breitung and Das (2005). 
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Breitung and Das proved that as T→ ∞ followed by N→ ∞ under the null hypothesis 

0δ  the test statistic tols has standard normal limiting distribution. 

 

6.2.1.3 Chang (2002) Nonlinear IV Test 

As an alternative approach, Chang (2002) proposed a panel unit root test based on non-

linear instrument variable (IV) estimation of the ADF regression of each individual. It 

uses the nonlinear transformations of the lagged levels of the series as instruments. In 

contrast to the non-standard DF distribution, Chang showed that the nonlinear IV t-

statistic for each cross section individual has standard normal limiting distribution under 

the unit root hypothesis, even if cross section correlation exists. Therefore the test is free 

from the need of modeling dependence. 

Consider the model 

it

q

k

ktikitiiit

i

yyy  


 
1

,,1, , i = 1,…,N; t = 1,…,Ti            (1.24) 

the number of observations for each individual, Ti, may differ across panel. The order of 

serial correlation is iq . Cross section dependence is represented through it . it ’s are 

assumed to be identical independent across time period, but cross sectionally dependent. 

The null hypothesis is 1:0 iH   for all i against the alternative 1:1 iH   for some i. 

The IV estimation is performed on (1.24). The cross section dependence is handled 

through using the instrument generated by a nonlinear integrable instrument generating 

function (IGF) F(yi,t-1). The t-statistic of the IV estimator i̂  for the i
th

 individual is 

 i

i
i

s
Z





ˆ

1ˆ 
  

where  is ̂  is the standard error of i̂ . Chang (2002, p.270) Theorem 3.3 shows that 

under the null hypothesis as Ti→∞, the limiting distribution of iZ is standard normal if a 



Chapter 1 Panel Data and Panel Unit Root Tests in Retrospect 

35 

 

regularly integrable function is used as an IGF. The IV t-ratios iZ ’s are asymptotically 

independent across the dependent panel individuals. The independence of iZ ’s follows 

from the asymptotic orthogonality for the nonlinear transformations of integrated 

process by an integrable function, which is established in Chang et al. (2001).  The panel 

unit root testing statistic is given as the average of Zi 





N

i

iN Z
N

S
1

1
 

Since Ti’s are allowed to differ across panel, Chang proved that under the null as 

minT  and 0
log

4/3

min

max

4/1

max 
T

TT
 

 1,0NS N   

It deserves to note that due to the independent standard normal distribution of Zi, only 

the T-asymptotics is used in deriving the limit theory of panel unit root test statistic and 

N may take any value, whereas usual panel unit root tests apply sequential limit theory
8
. 

Meanwhile, the problems of cross section dependence and unbalanced panel are also 

properly handled. 

However, applying the nonlinear IV estimation is not without critics. Regarding the 

nonlinear IV panel unit root test statistic Im and Pesaran (2003) proved that the test 

needs a much more restrictive condition for its asymptotic property to hold, i.e. 

0
ln


T

TN
, as N, T→∞ 

So for the best performance of the test, N needs to be very small relative to T. Im and 

Pesaran further criticized the low degree of cross section dependence designed in 

                                                 
8
 Refer to the review of limit theories in section 5.2.2.2. 
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Chang’s simulation experiments and showed severe size distortion of the test if strong 

dependence is structured. 

Moreover, Breitung and Das (2005) point out that the integrability of the IGF can 

causes a tradeoff between the size and power of the test, so the power of the test may 

suffer from the nonlinear transformations if the choice of IGF is to produce good size. 

Furthermore, the optimal choice of transformation is unclear.  

 

6.2.2 Tests with Strong Dependence 

As discussed in section 6.2, in the case of strong dependence, the unobserved common 

factor (s) exist. Tests that can only handle the weak form of dependence experience size 

distortion in the presence of strong dependence. So some recent tests aim to include the 

common factor structure and solve the problem it causes. 

 

6.2.2.1 Bai and Ng (2004) (BN) Test 

Bai and Ng (2004) suggest test for unit root separately in the common factors and the 

error terms of a panel, since when a series is the sum of two components with different 

dynamic properties, e.g. a weak nonstationary and a strong stationary components, test-

ing results will be affected. They define that a series with a factor structure is nonstatio-

nary if one or more of the common factors are nonstationary, or the error terms are non-

stationary, or both. They consider the following factor model 

ittiiiit eFtcy 


                     (1.26) 

mttmmmt FF   1,                     (1.27) 

ittiiit ee   1,                      (1.28) 
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where i = 1,…, N, t = 1,…, T, m = 1,…, r; tF  is an 1r  vector of common factors; i  is 

a vector of factor loadings; ite , mt  and it  are idiosyncratic error terms. Serial correla-

tion is allowed in both (1.27) and (1.28).  The strong dependence is represented by tF , 

while ite is assumed to be weakly correlated across individuals with non-diagonal va-

riance covariance matrix. There are 0r  stationary factor(s) and 1r  common trend(s) (i.e. 

nonstationary factors), 10 rrr  . ity  is nonstationary if tF contain unit root(s), or 

ite contain a unit root, or both. 

Due to the problem that tF and eit are both unobserved, a robust procedure is devel-

oped to consistently estimate the factors tF  through the method of principle component. 

The consistency holds even without imposing stationarity on the errors.  

In the intercept only case, the model is given as 

ittiiit eFcy 


                        (1.29) 

first difference (1.29) generating 

ittiiit eFcy 


                          (1.30) 

The estimated factors tF̂  and factor loadings i̂  are obtained by the method of prin-

ciple component.
9
 The estimated residuals are tiitit Fye ˆˆˆ 


  .  

Regarding testing for the dynamic properties of the factors tF , Bai and Ng (2004) 

consider two cases: 

(1) When 1r , i.e. there is only one common factor. The ADF regression is con-

ducted on the following model with an intercept 

                                                 
9
 Refer to Bai and Ng (2004) for detailed estimation procedure. 
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


 
q

j

jtjtt errorFFcF
1

10
ˆˆˆ                      (1.31) 

where q is the lag order of the series. Let 
c

F
ADF ˆ  be the t-statistic of for testing 00  . 

As T→ ∞, the c

F
ADF ˆ  has the same limiting distribution as the DF test for the constant 

only case. 

(2) When 1r , i.e. there are more than one factors, two statistics are considered. 

The two statistics c

cMQ  and 
c

fMQ  computed from demeaned tF̂  are modified versions 

of Stock and Watson (1988)’s c

cQ  and 
c

fQ  statistics. The tests start with rm  . If 

rmH :0  is rejected, set 1 mm  and redo the test, until it fails to reject 1rm   and 

stop. Thus the number of stochastic trends in tF  is 1̂r . Bai and Ng provided the critical 

values of c

cMQ  and c

FMQ  by simulations.  

Regarding testing for stationarity of eit, firstly the ADF regression is conducted on the 

following model without deterministic terms 




 
q

j

jtiijtiiit erroredede
1

,1,0
ˆˆˆ                     (1.32) 

where q is the lag order in the series. Let  iADF c

ê  be the t-statistic for testing 00 id . 

T→ ∞, the  iADF c

ê  coincides with the limiting distribution of the DF test with no con-

stant. The pooled test for the panel adopts the Fisher type combining p-value test. The 

null ohypothesis is 1:0 iH   for all i (in (1.28)), against the alternative 1:1 iH   for 

some i. Let  ipc

ê  be the p-values corresponding to  iADF c

ê . Under the null hypothesis 

as T→∞ followed by N→∞, the Fisher type test statistic converges to standard normal 

distribution, i.e. 
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 6.2.2.2 Moon and Perron (2004) (MP) and Phillips and Sul (2003) (PS) Tests 

Moon and Perron (2004) and Phillips and Sul (2003) propose similar tests that are based 

on de-factored data. Instead of separating the common factors and error terms as in the 

Bai and Ng (2004) test, they use orthogonalization procedure to de-factor the data and 

obtain the panel that is cross sectinally independent. Usual independent panel unit root 

test can then be applied on the de-factored series after orthogonalization transformation. 

Phillips and Sul considered only one factor structure, whereas Moon and Perron (2004) 

construct it more generally by including K factors, so here the Moon and Perron (2004) 

test is introduced.  

The model with fixed effects is given as 

0

itiit yy                       (1.33) 

ittiiit uyy  

0

1,

0                        (1.34) 

ittiit eFu 


                        (1.35) 

where tF  is a 1K  vector of unobservable random factors representing cross section 

dependence, and i  is factor loadings determining the extent of correlation. ite are idio-

syncratic shocks. The number of factors K is unknown. The null hypothesis is 

1:0 iH   for all i, against the alternative 1:1 iH   for some i. 

Moon and Perron (2004) also intend to study the test performance under local altera-

tive hypothesis, so they combine the hypotheses by the near unit root model 

TN

i

i


 1  
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where random variable θi is nonnegative and is iid with mean μθ. Therefore the hypo-

theses are equivalent to 0:0 H  or 0i  for all i against the local alternative 

0:1 H  for some i. 

Write (1.33), (1.34) and (1.35) in matrix form 

0

T YαlY                        (1.36) 

eβFYY 0

1

0 


                       (1.37) 

where Y , 0Y , 1-Y , F  and e  denote the corresponding matrix for ity ,  0

ity , 1, tiy , tF  

and eit, respectively; TI  is a 1T  vector of ones; β  is KN  matrix of factor loadings. 

Denote the long-run variance of ite as 
2

,ie . As N→∞, let 



N

i

iene
N 1

2

,

2 1
lim  and 





N

i

iene
N 1

4

,

4 1
lim  . 

The pooled estimator of ρ is  

 
 11

1

YY

YY










tr

tr
pool̂

10
 

Moon and Perron (2004) show that the limit distribution of  1ˆ poolT   depends on the 

common factor(s), and therefore they suggest multiply (1.37) by the projection matrix 

Q
11

 to eliminate the factor. Thus under the null hypothesis, (1.37) becomes 

 QQQ eYY  

0
1

0
                          (1.38) 

The modified pooled OLS estimator of ρ is given as  

 
 11

1
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NTQtr n

e

pool
ˆ  

                                                 
10

 tr denotes trace. 
11

 
 PIQ  , where   


1

P  
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where the modification 



N

i

ie

n

e
N 1

.

1
  is to deal with serial correlation in Qe  and ie,  

is the one-sided long-run variance of ite . It is proved that as N, T→∞ with N/T→0,   

  
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The distribution shows that under both the null and the local alternative hypotheses, 



pool̂  is TN -consistent and asymptotically normal, and  1ˆ 

poolTN   is unbiased 

under the null.  

Two feasible panel unit root test statistics are then proposed. The number of factors is 

estimated by the criterion function in Bai and Ng (2002); the factor loadings β  are esti-

mated using principle component method; consistent kernel estimators are applied to the 

long-run variances ie,  and 
2

,ie . The two statistics are, 
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In the later Monte Carlo simulations, it is shown that when there is no incidental trend, 

the tests have substantial power. However, when incidental trends are added to the mod-

el, the tests have no power. 

Phillip and Sul (2003) propose a panel unit root test with cross section dependence in 

the same spirit, whereas they only consider the case of a single factor, or the time effect. 

Instead of using principal component method, they adopt a moment based procedure to 

estimate the factor loading(s) and variance of the idiosyncratic shocks. Similarly, the 

original panel is multiplied by the estimated projection matrix and thus cross section de-

pendence is removed. Since the de-factored panel is cross sectionlly independent, they 

use the Fisher type combining p-values test or the IPS test to compute panel unit root 

test statistics. 

 

6.2.2.3 Pesaran (2007) Test 

On considering the single factor model, instead of de-factoring the data through ortho-

gonalization method, Pesaran (2007) proposes a simple procedure that augments the 

ADF regressions. The factor term in the model is replaced by the averages of individu-

als’ lagged levels and first differences as a proxy. The individual cross section aug-

mented ADF (CADF) statistics are shown to be independent of the factor loadings, so a 

modified IPS panel unit root test is then developed using the CADF statistics. 

The heterogeneous model with single factor is given as 

ittiiiit uyy  1,                          (1.39) 

ittiit Fu                              (1.40) 



Chapter 1 Panel Data and Panel Unit Root Tests in Retrospect 

43 

 

where tF  is the unobserved common factor; it  are independently distributed across 

both dimensions of the panel with mean zero and variance i . (1.39) and (1.40) can be 

written as 

ittitiiiit Fyy   1,                          (1.41) 

where  ii   1  and 1,  tiitit yyy . The unit root null hypothesis based on (1.41) is 

0:0 iH   for all i against the alternative 0:1 iH   for i = 1,…,N1; it is assumed that 

the fraction NN /1 is non-zero and tends to the fixed value θ such that 10   as 

N→∞.  

To handle the common factor, Pesaran uses the cross sectional mean of ity , 





N

i

itit yNy
1

1  and its lagged values as proxy to substitute tF , so (1.41) becomes  

ittititiiiit eydycybay   11,

12
                       (1.42) 

The t-statistic of the augmented DF regression (CADF) (1.42) is  
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where iy , 1i,y  and iΔy are vector forms of ity , 1, tiy  and ity ; also let 1y  , Δy  denote 

the matrix form of 1, tiy  and ity , 

  WWWWIM Tw


1
 ,  1yyΔκW  ,, ,   1,...,1κ , 
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




T
i

iwi,i ΔyMyΔ
  
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iiiwi, GGGGIM T



,  1i,i ,  yWG  

                                                 
12

 In the serially uncorrelated case ty  and 1ty  (or equivalently 1ty  and ty ) are asymptotically suffi-

cient for remove the effects of unobserved common factor. 
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It is proved that as N,T→∞  TNti ,  has both sequential and joint limit distributions, 

CADFi. The joint limit requires kTN /  (0<k<∞). CADFi are free from nuisance pa-

rameters, but are correlated due to the presence of common factor. The distribution of 

CADFi is more skewed to the left than DF distribution, presenting substantially negative 

mean and less than unity variance. However, the standardized version of CADFi is re-

markably close to standard normal distribution, although statistically rejected. 

Since the CADFi statistics are asymptotically independent of nuisance parameters, a 

cross sectionally augmented version of the IPS t-bar test is adopted for panel unit root 

test 

   



N

i

i TNtNbartTNCIPS
1

1 ,_,  

Considering the mean deviations, 

    


 
N

i

ii CADFTNtNbartTND
1

1 ,_,  

where CADFi is the stochastic limit of  TNti ,  as N,T→∞ such that kTN / . Due to 

the technical difficulty of establishing the moment conditions of  TND , , Pesaran bases 

the t-bar test on a truncated version of the CADFi statistics,  TNti ,* , as the standardized 

CADFi statistics  TNti ,  are very close to standard normal distribution.  TNti ,*  is de-

cided as  

   TNtTNt ii ,,*  ,  if      21 , KTNtK i   

  1

* , KTNti  ,   if     1, KTNt i   

  2

* , KTNti  ,   if      2, KTNti   

where K1 and K2 are positive constants sufficiently large to let   21 ,Pr KTNtK i  , 

so that it exceeds 0.9999. The values of K1 and K2 are provided for different cases, i.e. 



Chapter 1 Panel Data and Panel Unit Root Tests in Retrospect 

45 

 

models with or without constant and linear trend. The truncated panel unit root test sta-

tistic is then given as, 

   



N

i

i TNtNTNCIPS
1

*1* ,,  

The distributions of both CIPS and CIPS
*
 are non-standard due to the dependence of 

CADFi, so critical values are computed through simulation experiments. In addition, the 

finite sample distributions of CIPS and CIPS
*
 are found very similar and indistinguisha-

ble for T>20. The Monte Carlo simulations indicate that the tests have satisfactory size 

and power even for relatively small N and T. 

 

6.2.2.4. Chang and Song (2005, 2009) (CS) Nonlinear IV Test 

6.2.2.4.1 The Problem of Cross Unit Cointegration 

Banerjee et al. (2004, 2005) raise the caution of ignoring cross unit cointegration in 

constructing both panel unit root tests and panel cointegration tests. Cross unit cointe-

gration refers to the case that two or more panel individuals share at least one common 

stochastic trend and therefore the individual series in the panel cointegrate. It is also 

called the long-run dependence (a special case of the strong form of dependence) and is 

usually represented by common factors in panel models. Economic theory and certain 

empirical data (e.g. exchange rates) tend to strongly suggest the presence of cross unit 

cointegration. Therefore, if panel individuals are nonstationary only due to nonstationary 

common factor(s), they share common stochastic trend(s) and are cointegrated. This sit-

uation invalids some of the second generation panel unit root tests. For example, the 

Moon and Perron (2004) and Phillips and Sul (2003) tests propose to remove the com-

mon stochastic trends and conduct testing on the de-factored data. However, if nonsta-

tionarity is caused by the common factors, the tests are unable to detect unit root. Pesa-
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ran (2007) may also lead to misleading results if the panel presents cross unit cointegra-

tion (c.f. Breitung and Pesaran, 2008). Bai and Ng (2004) can properly deal with the sit-

uation since it separately tests for unit root in the common factor(s) and the error terms.  

Using simulations Banerjee et al. found sever size distortion of some first generation 

tests when the assumption is relaxed. The unit root hypothesis is even rejected when the 

true process is nonstationary. Their empirical section of purchasing power parity (PPP) 

study shows opposite results when unit root is tested with and without cross unit cointe-

gration restriction. 

 

6.2.2.4.2 Chang and Song (2005, 2009) (CS) Test 

As an alternative approach that enables the test to cope with both short-run and long-run 

dependence, Chang and Song (2005, 2009) propose an improved version of the Chang 

(2002) nonlinear IV panel unit root test
13

. The Chang (2002) test which is based on only 

one instrument generating function (IGF) for all panel individuals is invalid in the pres-

ence of strong dependence. Therefore, Chang and Song (2009) suggest use a set of or-

thogonal functions as IGFs to handle all forms of dependence. The t-statistics of the IV 

estimators for panel individuals are shown to be asymptotically independent of one 

another and normally distributed.  

The basic model is, 

ittiiit uyy  1,                          (1.43) 

where itu  are specified later. Three sets of hypotheses are proposed, 

(A) 1:0 iH   for all i      against 1:1 iH   for all i ; 

(B) 1:0 iH   for all i      against 1:1 iH   for some i ; 

                                                 
13

 The Chang (2002) test is reviewed in section 6.2.1.3. 
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(C) 1:0 iH   for some i   against 1:1 iH   for all i . 

Hypotheses (A) is as constructed as in the homogeneous tests and (B) is as in the hete-

rogeneous test. Hypotheses (C) is new. Rejection of the null indicates that all panel indi-

viduals are stationary.  

It is assumed that under the null hypothesis there are (N-M) cointegrating relation-

ships in the unit root process ity , represented by cointegrating vectors cj, j=1,…, N-M. 

The short-run dynamics of yit can be presented by error correction representation, let 

  Nttt yy ,...,1y  

 
 





 
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it

MN

j

tjijktjijit

i

cbyay
1 1 1

1, y                        (1.44) 

where it  are white noise. Under the null hypothesis of unit root itit yu  , combining 

(1.43) and (1.44) obtains 

 
 

 
i iP

k

Q

k

itktikiktikitiiit yyy
1 1

,,,,1,                        (1.45) 

where it  are explained as covariates added to the ADF regression for the i
th

  individual. 

(1.43) and (1.44) are rewritten as (1.45) with several lagged differences of other cross 

section individuals and linear combinations of the lagged levels of all cross sections as 

covariate. Chang and Song (2005, 2009) notes that both Hasen (1995) and Chang et al. 

(2001) show using covariates offers a great potential in power gain for a unit root test. 

The following testing statistics will be based on (1.45). 

The choice of instrument generating functions (IGF) is a set of orthogonal Hermite 

functions  xGk  of odd orders 12  ik , Ni ,...,1 . The Hermite function  xGk  of 

order k ( ... 2, 1, 0,k ) is defined as  

      22
1 2

!2
x

k

k

k exHkxG


   
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where  kH  is the Hermite polynomial of order k given by 

   
22

1 x

k

k
xk

k e
dx

d
exH   

Let Fi be the IGF for the i
th 

individual. Then the IGF’s ( iF ’s) are defined as 

12  ii GF  

for Ni ,...,1 . So the instrument is    1,121,   tiitii yGyF . The IV t-statistic computed 

from (1.45) for testing unit root in (1.43) or (1.45) is, 

 i

i
i

s 




ˆ

1ˆ 
  

where i̂  is the nonlinear IV estimator of i ;  is ̂  is the standard error of IV estimator 

i̂ . Chang and Song (2009, p.917) Lemma 1 shows that under the null hypothesis as 

Ti→∞, i ’s have standard normal limiting distribution and are asymptotically indepen-

dent of one another across the cross section dimension. They note that the asymptotic 

independence of the individual IV t-ratio i ’s follows from the orthogonality of the 

IGF’s even in the presence of cross unit cointegration. The normality and independence 

properties of i ’s are discussed in detail in Section 2.3 of Chang and Song (2009). 

The panel unit root test statistics for hypotheses (A) – (C) are respectively, 





N

i

i
N

S
1

1
 ; i

Ni
S 




1
min min ;  i

Ni
S 




1
max max .             

Chang and Song (2009, p.917) Theorem 1 implies that the test using statistics S and Smin 

with critical values  c  and  minc , respectively, have the exact size   asymptotically 

under the null hypotheses in Hypotheses (A) and (B). However, the rejection probabili-

ties of the test relying on Smax with critical values  c  may not be exactly   even 

asymptotically under the null hypothesis in Hypothesis (C).  
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The later section of Monte Carlo simulations confirmed the fact that tests such as 

Moon and Perron (2004) have severe size distortion and poor power in the presence of 

cross unit cointegration. The Chang and Song test can cope with the situation with rea-

sonable size and power. However, the performance is generally not sufficiently satisfac-

tory for application. The empirical sizes tend to distort downward as N becomes large, 

and so the nominal critical values from standard normal distribution are not appropriate 

to apply. In Chapter 3 the finite sample bias is analyzed and empirical critical values for 

various sample sizes are computed through numerical method. 

 

6.3 Summary 

Section 6 has surveyed the popular contemporary panel unit root tests. The tests are di-

vided into two generations by the consideration of cross section dependence/correlation. 

The first generation tests that ignore cross section dependence started to develop from 

homogeneous tests to heterogeneous tests, due to the fact that panel data generally intro-

duce substantial amount of heterogeneity. Since some recent studies found that the as-

sumption of cross section independence is inappropriate in many fields, a second gener-

ation panel unit root tests are developed to solve the dependence. Earlier second genera-

tion tests focus on the weak form of dependence generated by the covariance matrix of 

error terms. Nevertheless, in the presence of the strong form of dependence (i.e. when 

common factor(s) exist(s) across panel individuals), tests that can only handle weak de-

pendence experience size distortions. Therefore, the later second generation tests are 

constructed to cope with the strong form of dependence. To sum up, Table 1.1 in the 

next page provides an overlook of the tests surveyed in this chapter. 
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Table 1.1 Panel unit root tests surveyed in section 6 

  Test(s) Contribution Weakness 

 

First 

Generation 

Tests 

 

 

 

 

Levin and Lin (1992) (LL) 

 

Levin, Lin and Chu (2002) 

(LLC) 

 

 LL test -- the first formal demonstration of 

asymptotic normality of panel unit root test-

ing statistics; 

 LLC test – extension to the LL test to con-

sider more general serial correlation and he-

teroscedasticity in the error terms. 

 

 Homogeneous tests; 

 Ignore cross section dependence 

     

  Im, Pesaran and Shin 

 (1997, 2003) 
 Early heterogeneous test  Ignore cross section dependence 

     

  Maddala and Wu (1999) 

 

Choi (2001) 

 Non-parametric and exact test; 

 Heterogeneous test 

 The p-values required in the tests have 

to be derived by Monte Carlo simula-

tions; 

 Ignore cross section dependence. 

     

  Hadri (2000)  Stationarity test ; 

 Heterogeneous test 

 Ignore cross section dependence 

 

Second 

Generation 

Tests 

    

 

 

 

Harvey and Bates (2003) 

 
 GLS based test to solve weak dependence  Homogeneous test; 

 Unable to handle strong dependence 

  

Breitung and Das (2005) 

 

Jönsson (2005) 

 

 OLS based test to solve weak dependence 

 

 Homogeneous test; 

 Unable to handle strong dependence 
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Table 1.1 Panel unit root tests surveyed in section 6 (Cont’d) 

  Test(s) Contribution Weakness 

 

Second 

Generation 

Tests 

 

Chang (2002) 

 

 Solve weak dependence; 

 Non-linear IV technique applied, free from 

modeling dependence. 

 

 Unable to handle strong dependence; 

 More condition required for the test 

asymptotic properties to hold. 

 

Bai and Ng (2004) 

 

 Solve strong dependence; 

 Separately test for unit root in the common 

factor(s) and the error terms. 

 Able to cope with cross unit cointegration 

 

 Need to estimate common factor(s) 

    

 Moon and Perron (2004) 

 

Phillips and Sul (2003) 

 

 Solve strong dependence   Through de-factoring the data to elimi-

nate common factor(s); if unit root ex-

ists in the common factor(s), the test 

fails to detect the unit root. 

 Only one common factor is considered 

in Phillips and Sul (2003).  

    

 Pesaran (2007)  Solve strong dependence; 

 Able to cope with cross unit cointegration. 

 Only one common factor is considered. 

    

 Chang and Song (2005, 

 2009) 
 Solve strong dependence; 

 Developed non-linear IV technique applied, 

free from modeling dependence; 

 Able to cope with cross unit cointegration. 

 Poor finite sample performance; 

 Conjectured by the thesis that more 

condition is required for the asymptotic 

properties to hold, similar to the Chang 

(2002) test. 
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Chapter 2 Finite Sample Distributions of Nonlinear 

IV Panel Unit Root Tests in the Presence 

of Cross Section Dependence 
 

 

 

1. Introduction 

As reviewed in Chapter 1 the first generation panel unit root tests ignore cross section 

dependence. The dependence frequently exists in empirical data and can lead to size 

distortions and low power of the tests. The second generation tests propose a number of 

approaches to either model or eliminate the effect of dependence. Among these, the 

Chang and Song (2005, 2009) (CS hereafter) test is one of the most general tests that are 

able to handle all forms of dependence. In particular, it can cope with the problem of 

cross unit cointegration within the panel, a special case of strong dependence when 

panel units share common stochastic trend(s), which leads to cointegration of the panel 

individuals and forms the long run dependence. Based on the early version Chang (2002) 

(CH hereafter) test, CS test uses the developed nonlinear IV technique and obtains the 

cross sectionally independent individual t-statistics of the IV estimators which also have 

asymptotic standard normal distribution. The panel unit root statistic, the standardized 

sum of the individual t-statistics, is thus asymptotically normally distributed.
14

 This ap-

proach overcomes the weakness of some other methods that solve dependence by 

                                                 
14

 The CS test proposes three hypotheses and thus there are three testing statistics. However, for simplic-

ity and comparison with CH test, only the average statistic, i.e. the standardized sum of individual IV 

t-statistics, is considered. 
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de-factoring the model and thus may eliminate unit root if unit root exists in the com-

mon factors (see the review in Chapter 1). The CS test also gains improvement over the 

CH test which can only deal with the weak form of dependence. 

As panel unit root test statistics usually exhibit standard normal distribution asymp-

totically, issues of finite sample distribution or finite sample critical values are not given 

much attention in the literature. Empirical research generally directly applies the no-

minal critical values of panel unit root tests. However, it is well known that finite sam-

ple performance can substantially differ from the corresponding asymptotic properties, 

in particular, when the rate of convergence is slow. Moreover, the finite sample distri-

bution of panel unit root testing statistic can vary across the two dimensions, the cross 

section and time dimensions. An effective approach to observe the variation in small 

sample distributions is the response surface method, using points simulated by a number 

of Monte Carlo experiments under a variety of sample sizes. The response surface me-

thod explores the relationships between several explanatory variables and one or more 

response variables. The early development and applications of response surface method 

are by MacKinnon (1991, 1994) where the percentiles of the statistic distributions in 

several tests under a range of finite sample sizes are examined as well as the finite sam-

ple (or numerical) distribution functions of the statistics. The method later gained favour 

in investigating the finite sample performance of statistical tests and more applications 

include Cheung and Lai (1995a,b), Sephton (1995), Carrion et al. (1999), MacKinnon et 

al. (1999), Ericsson and MacKinnon (2002), Presno and López (2003), etc. 

In the field of panel unit root test, Jönsson (2005a) tabulated the critical values for a 

panel corrected standard error (PCSE) based Levin and Lin (1992) (LL) homogeneous 

test by the response surface method. The PCSE correction is introduced to deal with the 

cross section dependence in the weak form. Jönsson (2005b) continues to augment the 

http://en.wikipedia.org/wiki/Explanatory_variable
http://en.wikipedia.org/wiki/Response_variable
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test with serial correlation and estimates response surfaces for critical values. However, 

the LL test assumes homogeneity which hardly holds in practice and the weak form of 

cross section dependence is often not sufficient to represent the magnitude of depen-

dence in empirical data. 

 

Figure 2.1 5% finite sample test sizes of the CH and CS tests 

 

Source: Chang and Song (2005) 

Note: N and T denote cross section and time dimension, respectively; CH and CS denote the Chang (2002) 

and Chang and Song (2005, 2009) test, respectively. 

 

Due to the robustness to heterogeneity and all forms of cross section dependence, the 

CS and CH tests are favourable for applications. However, the finite sample perfor-

mance of the two tests does not present satisfactory results. Figure 2.1 plots the 5% fi-

nite sample sizes of the tests based on the Monte Carlo simulation results in Chang and 

Song (2005). The CS test has reasonable sizes in the presence of long run dependence, 

but in other cases the sizes deteriorate, in particular, as sample size increases. This 
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seems to contradict the theory that as sample size grows large, the test performance is 

expected to behave close to the asymptotics. In addition, since the CS test is a devel-

oped version based on the CH test using the same non-linear IV technique with only 

different IGFs, it is conjectured that the same condition to sustain the asymptotic prop-

erties of CH test, as pointed out by Im and Pesaran (2003), is also needed for CS test
15

. 

The conjecture will be dealt with by numerical method in this chapter. Figure 2.1 also 

confirms the argument that CH test is not able to cope with strong dependence, whereas 

when only weak dependence exists CH significantly outperforms CS. Therefore, CH is 

also analyzed and is recommended for empirical work where dependence among panel 

individuals is weak. 

Given the poor finite sample performance this chapter applies response surface me-

thod to analyze the finite sample bias of the two tests and provide finite sample critical 

values. A series of Monte Carlo experiments are conducted on the CH and CS tests un-

der a variety of sample sizes. The relationship between finite sample bias (as the re-

sponse variable) and several functional forms of sample size (as the explanatory va-

riables) is investigated through a new design of regression specification. Instead of cal-

culating the traditional point critical values, the chapter provides the indecisive range 

around point critical values caused by the uncertainty that companies Monte Carlo si-

mulations. Formulas to compute the upper and lower limits of a critical value inverval 

are provided using the David-Johnson estimate of percentile standard deviation. The 

numerical distribution functions of the testing statistics are presented to calculate the 

p-value of any given percentile. Finally, graphs of the numerical distributions under 

various sample sizes are given to highlight finite sample properties of the statistics. 

                                                 
15

 Refer to the literature review in Chapter 1, section 6.2.1.3. 
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The rest of this chapter is organized as follows. Section 2 specifies the different 

forms of cross section dependence. Section 3 briefly reviews the CH and CS tests. Sec-

tion 4 presents the design of Monte Carlo experiments. Response surface estimation is 

provided in section 5 and section 6 discusses the results. Section 7 concludes. 

 

2. Specification of Cross Section Dependence 

Without considering residual serial correlation a general form of cross section depen-

dence can be given as 

ittiiit uyy  1,   i = 1,…,N; t = 1,…,Ti           (2.1) 

ittiit Fu  


                 (2.2) 

where   mt2t1t f ,...,f ,ftF  is an 1m  vector of serially uncorrelated unobserved 

common factor(s);   imiii  ,...,, 21  is an 1m  vector of factor loadings; it  is 

serially uncorrelated process with mean zero and positive definite covariance matrix V . 

For generality set the covariance matrix of tF  as identity matrix mI . It is assumed that 

tF  and it  are independently distributed. 

Initially two cases of cross section dependence can be distinguished. (ⅰ) Weak de-

pendence. This assumption rules out the presence of unobserved common factor(s) tF  

( 0i ). Dependence only arises from spatial correlation among cross section individu-

als which is represented by the covariance matrix of it , V . (ⅱ) Strong dependence. 

In this case unobserved common factor(s) exist and dependence is generated from two 

sources, tF  and it . The covariance matrix of error itu  is thus given by 

 VV ii 


 .  
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Given the model (2.1), under the null hypothesis of a unit root, i.e. 1i  for all i = 

1,…, N, in the case of strong dependence ity  contains nonstationary cumulated com-

mon factor(s) tF  and nonstationary cumulated errors it . If the process built upon it  

is stationary, e.g. substitute it  by it and write itu  in (2.2) as 

ittiit Fu  


                   (2.3) 

then the nonstationarity of ity  is only driven by the nonstationary cumulated common 

factor(s) tF  and therefore tF  serve as common stochastic trend(s). This leads to the 

cointegration relationship between any pair of ity  and jty , with  mN   linearly 

independent cointegrating relations among N cross section individuals. The case is the 

cross unit cointegration and it drives long run dependence. 

 

3. Brief Review of the CH and CS tests 

Details of the two tests have been reviewed in Chapter 1, so they are only briefly intro-

duced in this section. Using nonlinear IV technique the CH and CS tests are developed 

to deal with cross section dependence. The basic model considering autocorrelation is 

it

p

k

ktikitiiit

i

yyy  


 
1

,,1, ,  i = 1,…,N; t = 1,…,Ti        (2.4) 

where it  are white noise. The instrument is generated by a nonlinear integrable in-

strument generating function (IGF) F(yi,t-1) in CH test or a set of orthogonal IGFs in CS 

test. For each i = 1,…, N under the unit root hypothesis 1:0 iH  , the t-statistic of the 

nonlinear IV estimator i̂  is constructed as  

 i

i

i
se 




ˆ

1ˆ 
  
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where  ise ̂  is the standard error of i̂ . It is shown that i ’s have standard normal 

limiting distribution and are cross sectionally independent of one another. Therefore the 

test is free from the need of modeling dependence. The panel unit root test statistic is 

the average of the individual t-statistics i ’s 





N

i

i
N

S
1

1
  

As iT , the statistic S  has standard normal limiting distribution. 

Given the poor finite sample performance of the two tests illustrated in the introduc-

tion in Figure 2.1 and the critique by Im and Pesaran (2003), the finite sample bias is 

analyzed in the following sections through numerical methods. 

 

4 The Simulation Experiments 

4.1. The DGPs 

For simulation experiments the DGPs in Chang and Song (2005, 2009) are used to for-

mulate non-stationary panels with cross section weak dependence, strong dependence 

and cross unit cointegration, respectively. They are referred to DGP1, DGP2 and DGP3 

hereafter. The basic model considered is 

ittiiit uyy  1,  i = 1,…, N; t = 1,…,T  

Balanced panels are used in the simulation experiments, so each panel cross section unit 

has the same time length T. Under the null hypothesis of a unit root itit uy  . The in-

novations itu  are given as following to generate different forms of dependence 
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DGP1:  ittiiit uu   1,              (2.5) 

DGP2:  ittitiiit uu   1,             (2.6) 

DGP3:  ittitiiit uu   1,            (2.7) 

where i  is the AR coefficient; t  is common factor and i  are factor loadings ; it  

are innovations with symmetric and nonsingular covariance matrix V which is specified 

soon after.  

Note that in DGP1 only weak dependence exists, given by the covariance matrix of 

it . Besides it , DGP2 has stronger level of dependence generated by a common sto-

chastic trend built upon t . Under the unit root hypothesis ity  contains both nonsta-

tionary cumulated t  and nonstationary cumulated it , i.e.  t  and  it , so the 

cross section individuals in the panel are not cointgrated. However, in DGP3 cross unit 

cointegration is present. Since  it  is stationary, the nonstationarity of ity  arises 

only from the nonstationary cumulated common stochastic trend,  t . Hence, there is 

cointegrating relationship between any pair of the N panel individuals with  1N  li-

nearly independent cointegrating relations.  

Recall the performance of CH and CS tests under different forms of dependence as 

shown in Figure 3.1. The CH test outperforms CS test on weak dependence but is una-

ble to cope with strong dependence, not mention the long run dependence; while the CS 

test has reasonable sizes under the strong form and long run dependence. Therefore, the 

CH test is applied on DGP1 and CS test is applied on DGP2 and 3. Since in the Monte 

Carlo simulations the DGPs are known in advance and the appropriate tests are directly 

applied on the corresponding simulated data. In practice when the characteristic of em-

pirical data is unknown, some examination measures can be applied on the data (e.g. 
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compute the covariance matrix of panel individuals) to detect of the degree of depen-

dence across panel, which can provide an indicator for the choice of test.  

The parameters in the DGPs are generated as follows. The AR coefficient of itu , i , 

is randomly drawn from uniform distribution [0.2, 0.4]. The factor loadings, i , are 

randomly drawn from uniform [0.5, 3]. The processes t  and it  are independent and 

drawn from iid N(0,1) and iid N(0,V), respectively. The NN   covariance matrix V of 

the innovations it  is symmetric positive definite. To ensure this property, V is gener-

ated according to the steps in Chang (2002): 

(1) Generate an NN   matrix   from uniform distribution [0,1]; 

(2) Construct from   an orthogonal matrix   2/1
 ;

16
 

(3) Generate a set of N eigenvalues, N ,...,1 . Let 01  r , 1N  and draw 

12 ,..., N  from uniform distribution [r,1]; 

(4) Form a diagonal matrix   with  N ,...,1  on the diagonal; 

(5) Construct the covariance matrix V using the spectral representation 

HHV  . 

 

4.2. The Monte Carlo Experiments 

Simulations are conducted under various combinations of N and T on the CH and CS 

tests. Certain percentiles of the empirical distributions of the statistics are calculated for 

further response surface analysis. The choice of sample sizes is to facilitate running re-

sponse surface regressions. The sample sizes are  

                                                 
16

   2/1
  is obtained by Cholesky decomposition of the inverse of   . 
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 500 475, 450, 425, 400, 375, 350, 325, 300, 275, 250, 225, 200, 175, 150, 125, 100, 75, 50,T

 and  100 90, 80, 70, 60, 50, 40, 30, 20, 10,N  

So there are altogether 1901019   experiments for each DGP. Each experiment 

consists of 10000np  replications. For each experiment the 0.01, 0.05 and 0.10 per-

centiles are recorded. The Monte Carlo simulations are programmed in Gauss 7.0. 

 

5. Response Surface Estimation  

The general procedure of response surface method is firstly to identify the factors that 

affect the response variable; once the important factors have been identified, the next 

step is to determine the settings or functional forms in which these factors result in the 

optimum value of the response variable by the outputs of regressions. On the studies of 

exploring the finite sample performance of statistical tests, MacKinnon (1996, 2000) 

point out that response surface regression coefficients can help researchers estimate the 

percentile for any given sample size and furthermore derive the numerical (or empirical 

or finite sample) distribution functions, so the empirical p-value for any given percentile 

can also be calculated. 

 

5.1. Representation of Response Surface Regression 

In this study, the dependent variable (or response variable) is the finite sample bias, 

calculated as the difference between a percentile in the numerical distribution (obtained 

by Monte Carlo experiments) and its corresponding percentile in the asymptotic distri-

bution (standard normal distribution). The response surface regression takes the form 

    ii
T

TN

NNT
q 

ln111
42321          (2.8) 

 qqq ii  ~                   (2.9) 
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where  i  are error terms; 
iq~  denotes the   percentile of the numerical distribu-

tion under sample size N and T which is obtained from the i
th

 experiment, so i is the note 

for sample size; q  is the   percentile of standard normal distribution, so the de-

pendent variable 
iq  represents finite sample bias.  

Generally there is no specific rule on the design of the regression representation, ra-

ther it is a empirical and trial procedure. The functional form is basically determined by 

the goodness-of-fit of the regression and the significance of the coefficients of indepen-

dent variables after a number of trials. Ericsson (1986) notes that the functional form of 

response surface regression can be justified on the grounds of the significant coeffi-

cients obtained and the generally high R
2
 values. A general form to start with can be:  

    ii e
T

TN

NTNNTT
q 

ln11111
65243221

    (2.10) 

For generalization a uniform specification for the 1%, 5% and 10% significant levels is 

opted for all the three DGPs rather than optimize the functional form for each one. The 

variable 
 

T

TN ln
 is chosen according to Im and Pesaran (2003) criticism. They argue 

that the nonlinear IV panel unit root test statistic of the CH test needs a much more re-

strictive condition for its asymptotic property to hold, i.e. it requires 0
ln


T

TN
, as N, 

T→∞. Since the only technical difference between CS and CH tests is the choice of IGF, 

i.e. a single IGF vs. a set of orthogonal IGFs, a similar problem is also conjectured to 

the CS test. Therefore this term is included in the regression to observe its influence on 

finite sample bias. Since it is panel data concerned, 
NT

1
 is introduced as an interaction 

term according to Jönsson (2005), whereas the coefficient of this variable is insignifi-
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cant for DGP2, 3 for all the 3 percentiles (1%, 5% and 10%), and the coefficient of 
2

1

T
 

is insignificant for DGP1 for all the 3 percentiles. With the presence of 
NT

1
 and/or 

2

1

T
, the values of R

2
 are not essentially improved. So the two terms are excluded from 

the regression. Later it is shown that the chosen functional form has reasonably R
2
 and 

good performance in terms of significance of the coefficients for all response surface 

regressions. 

 

5.2. Estimation of Response Surface Regression 

The response surface regression (2.8) is estimated by OLS. However, the errors in (2.8) 

are heteroskedastic due to the deterministic increasing values of N and T. Therefore the 

variance of the errors depends systematically on the sample sizes (N and T) and hete-

roskedasticity exists in the regression. To account for the heteroskedasticity, the cova-

riance estimator developed by MacKinnon and White (1985) is applied.                                               

Let ̂  denote the vector of estimators and X be the matrix of regressors in (2.8). 

The covariance estimator of ̂  is given as 

        1111 ˆˆˆ1ˆˆ   XXXuuXnXXXXnnV         (2.11) 

where n is the number of observations in (2.8), i.e. 1901019  ; ̂  is an  nn  

diagonal matrix with diagonal elements 
2ˆ
ju ;  

jjjj eku ˆ1ˆ
1

  with jjk  as the j’th di-

agonal element of   XXXX 
1

; je  are the residuals of (2.8) and û  is the vector of 

jû . 
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Since the computation of percentiles (from simulation experiments) involves the two 

dimensions (N and T) of panel data, one may consider using panel data regression. The 

suitable panel data estimation for (2.8) is the fixed effect. Nevertheless, if the fixed ef-

fect is used, the variables 
N

1
 and 

2

1

N
 will be dropped during estimation process, 

which causes loss of information and results in inefficiency. This also can be evidenced 

by the goodness-of-fit of the regression, the value of R
2
 from OLS estimation being 

higher than that from the fixed effect panel data estimation. 

 

5.3. Augmentation on the Point Critical Values 

After estimate the response surface regression (2.8), the finite sample bias is smoothed 

as 

 

T

TN

NNT
qi

lnˆˆˆˆˆ   42321

111
          (2.12) 

where 
iq̂  is the fitted finite sample bias under any given sample size N and T. Ac-

cording to (2.9) the corresponding finite sample critical value is calculated as: 


ii qqq ˆˆ                 (2.13) 

However, there exist two types of uncertainty caused by Monte Carlo simulations and 

response surface regression. Firstly, sample percentiles exhibit certain distribution in the 

same spirit as the distribution of sample mean. To capture this randomness resulting 

from Monte Carlo experiments, the 95% confidence intervals are provided for the 1%, 

5% and 10% percentiles using David-Johnson (1954) estimate of percentile standard 

deviation. David and Johnson (1954) derived the formula to calculate the standard devi-

ation of percentile distribution on the basis of its sample size. The sample size in the 

study here is the number of replications in a simulation experiment. Secondly, since the 
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bias is smoothed by response surface regressions, the residuals unavoidably become an-

other source of uncertainty. This uncertainty can be represented by the standard error of 

regression residuals. 

The 95% confidence interval of a sample percentile is given as 

      seseqqul ii  961.ˆˆ            (2.14) 

where 
iq̂  is the critical value of   percentile calculated from (2.12) and (2.13) with 

sample size N and T;  se  is David-Johnson (1954) estimate of the standard deviation 

of   percentile distribution;  se  is the standard error of the response surface re-

gression residuals in (2.8). Thus, the upper and lower limits of a critical value interval 

are respectively given by 

      seseqqu ii  961.ˆˆ    

and        seseqql ii  961.ˆˆ  

This means if an empirical testing statistic falls between 
ilq  and 

iuq , it is indecisive 

if the null hypothesis is to be rejected or not. 

 

5.4. P-values of the Numerical Distributions of CH and CS Testing Statistics 

The response surface coefficients computed from (2.8) can also be used to help estimate 

p-values of finite sample distributions. The approximation procedure is according to 

MacKinnon (1996, 2000). MacKinnon (1996, 2000) approximate a finite sample distri-

bution under sample size N and T by 221 fitted values of percentiles 
iq̂  from (2.13). 

The chosen 221  ’s are 0.0001, 0.0002, 0.0005, 0.001, 0.002, …, 0.01, 0.015, …, 0.99, 

0.991, …, 0.999, 0.9995, 0.9998, 0.9999. However, the result of augmented critical 

values indicates that due to the relatively large standard error of the response surface 
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regression residuals, the percentiles smoothed by response surface regressions are not 

appropriate to use. This is shown is section 6. So the 221 point estimates are taken di-

rectly from Monte Carlo experiment results. For sample sizes that are not considered in 

the experiments, the nearest in their neighborhood can be used as approximation. 

To interpolate between the 221 points in order to calculate p-value for any given test 

statistic, the procedure involves an estimation 

         3

3

2

210

1

iii qqq ~~~          (2.15) 

where  1  is the inverse of cumulative standard normal distribution at  , since 

the asymptotic distributions of CH and CS tests are standard normal; 
iq~  is the point 

percentile estimate from Monte Carlo experiment under sample size N and T.  

The idea of regressing (2.15) is to use a small number of points in the neighborhood 

of the test statistic to estimate the relationship between the empirical distribution and 

standard normal distribution. For example, suppose a numerical distribution based on 

DGP3 under sample size 100 ,10  TN  is the interest, and the empirical testing sta-

tistic is -2.7112ˆ NTq . Among the estimated 221 percentiles from the corresponding 

distribution computed by Monte Carlo experiment, the closest one to this statistic is 

  -2.73216.~  0060NTq . If 9 points are used, (2.15) is to be estimated with the per-

centiles 
iq~  for  

 0.010 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 3,0.002,0.00 17
. 

Using the estimators in (2.15), the p-value of an empirical test statistic, NTq̂ , can be 

computed from 

    3

3

2

210 NTNTNT qqqp ˆˆˆˆˆˆˆ               (2.16) 

                                                 
17

 MacKinnon (2001) suggests that shown by experiments, 9, 11 and 13 points are reasonable numbers to 

use and 9 points is a good choice. Hence, 9 points is used here. 
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MacKinnon (1996) confirms the reliable accuracy of the approximation of p-values with 

experiments. 

Since     3

3

2

210 NTNTNT qqq ˆˆˆˆˆˆˆ    approximates the cumulative distribu-

tion function of statistic NTq̂ , the approximate density function can also derived by 

taking the first derivative of (2.16), 

         2

321

3

3

2

210 NTNTNTNTNT qqqqqf ˆˆˆˆˆˆˆˆˆˆˆˆˆ         (2.17) 

where  .  denotes the standard normal probability density function. 

 

6. Results 

Following section 4.1, for simplicity, in the result section ‘DGP1’ refers to the CH test 

applied on DGP1; ‘DGP2’ and ‘DGP3’ refer to the CS test applied on DGP2 and 3, re-

spectively. 

6.1. Estimation Results of Response Surface Regressions 

The results of response surface estimations are presented in Table 2.1. The table con-

tains the coefficients of variables in the regression and the value of R
2
 for each estima-

tion. Only the standard errors of  4
ˆ  (the coefficient of 

 

T

TN ln
) is provided, since 

 

T

TN ln
 is the condition pointed out by Im and Pesaran (2003) for the asymptotic 

properties of CH test to hold and the similar situation is also conjectured to CS test as 

discussed in the introduction. 

Almost all the coefficients in each regression are highly significant, in particular,  4
ˆ , 

with practically zero p-values (so they are not printed in the table). The standard errors 

of  4
ˆ  in all the three DGPs (both CH and CS tests) are substantially small. This sug-
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gests the estimation accuracy of  4
ˆ  and implies the important role of 

 

T

TN ln
 in the 

performance of both tests. In addition, in the trials, if constant term is added to (2.8) and 

exclude 
 

T

TN ln
, the constant term is significant. This obviously contradicts the 

asymptotic theory, since by the asymptotic properties as TN  , , the magnitude of 

bias computed through (2.8) should pass to zero. However, if 
 

T

TN ln
 is included in 

(2.8), the constant term becomes insignificant. This suggests that 
 

0
ln


T

TN
 is re-

quired for the bias to diminish as TN  , , which is consistent with Im and Pesaran 

(2003)’s critique. 

 

Table 2.1 Response surface regression estimates 

   1
ˆ   2

ˆ    3
ˆ   4

ˆ       4
ˆse  R

2
 

DGP1 0.01 -5.8576 -4.4796 32.4385 0.0031    (0.0003) 0.6410 

 0.05 -6.2600 -1.8075 10.4013 0.0046    (0.0002) 0.7979 

 0.10 -6.8405 -0.2919 -0.9532 0.0057    (0.0002) 0.8363 

       

DGP2 0.01 27.2984 -13.2460 42.8065 0.0118    (0.0085) 0.8455 

 0.05 20.2953 -7.8281 24.0752 0.0082    (0.0006) 0.8347 

 0.10 17.2754 -5.8285 20.4715 0.0066    (0.00047) 0.8213 

       

DGP3 0.01 152.5797 -112.8447 772.0970 -0.0302    (0.0022) 0.8309 

 0.05 72.3938 -46.0001 266.5182 -0.0137    (0.0012) 0.8419 

 0.10 44.3161 -23.1107 117.0348 -0.0081   (0.00084) 0.8040 

Note:  4
ˆse  denotes the standard error of  4

ˆ   
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The goodness-of-fit of response surface regressions is reasonably high. Regressions 

for the CS test have better performance than that of the CH test in terms of R
2
. The val-

ues of R
2
 of regressions for all the significant levels for DGP2 and DGP3 are higher 

than 0.8. 

 

6.2 Finite Sample Bias 

Figure 2.2 (a)-(i) plot the trends of bias of the 1%, 5% and 10% percentiles for the three 

DGPs as sample size N and T increase (for illustration the estimates of 5% percentile, 

(b), (e) and (h), are presented in the text; the rest are attached in the Appendix B). The 

values used to plot Figure 2.2, 
iq̂ , are computed through response surface regression 

estimates in (2.12) using N = {5,15,25,…,105} and T = {25,50,75,…,500}. 

 

Figure 2.2 Estimates of finite sample bias of the 5% percentiles for the three DGPs as 

sample sizes N and T vary (different scales for N and T) 

 

(b) DGP1-5%         (e) DGP2-5% 
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(h) DGP3-5% 

A few properties can be observed from the figures. For all the DGPs as T increases it 

tends to drag down the magnitude of bias, whereas as N increases the magnitude of bias 

tends to rise. The effect caused by T is similar to all DGPs. When the size of T is small, 

an increase in T causes large downward movement of the value of bias; as T becomes 

large, the effect mitigates. When N increases, the response of bias value shows the same 

constant growing pattern in DGP1 and 2; whereas its growing rate in DGP3 slows down 

after certain N. Moreover, all graphs illustrate significant magnitude of bias with small 

T and large N, which suggest that as both N and T go large, the bias tend to be eliminat-

ed. 

However, Figure 2.2 is plotted on different scales of N and T with T growing faster 

than N due to the choice of sample size in Monte Carlo simulations. Figure 2.3 unifies 

the scales of N and T and shows some different feature regarding the trend of bias. An 

additional view for DGP3 from a different angle is provided to give better visibility. As 

N and T both increase at the same rate, the size of bias keeps growing constantly. The 

bias in DGP3 goes in the opposite direction against that in DGP1 and 2 as shown in 
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Figure 2.3. The position where bias tends to disappear is where T is large and N is small, 

which is consistent with the point of Im and Pesaran (2003).  

 

Figure 2.3 Estimates of finite sample bias of the 5% percentile for the three DGPs as 

sample sizes N and T vary (same scale for N and T) 

 

(a) DGP1-5%         (b) DGP2-5% 

Figure 2.3 Estimates of finite sample bias of the 5% percentile for the three DGPs as 

sample sizes N and T vary (same scale for N and T) (Cont’d) 

   

  (c) DGP3-5%       (d) DGP3-5%  (different angle) 
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6.3 The Augmented Critical Values 

According to the discussion in section 5.3, to account for the uncertainties resulting 

from Monte Carlo simulations and regression estimation, confidence intervals for per-

centiles are computed. To see the magnitude of the uncertainties, Table 2.2 presents the 

gap between the upper limit and lower limit of the percentile confidence intervals, i.e. 

  lquq  .  

 

Table 2.2 Gap between the upper limit and lower limit of percentile confidence interval 

  lquq   

  DGP1 DGP2 DGP3 

0.01  0.3437  0.7865  1.5630  

0.05  0.2182  0.5196  0.8259  

0.10  0.1865  0.4170  0.6130  

 

As expected, the gap increases with decreasing percentiles, since empirical percen-

tiles tend to be more volatile in the extremes. However, it is found that due to the rela-

tively large standard error of response surface regression residuals, the gap is so wide in 

some intervals that they overlap with their neighborhood percentile interval. For exam-

ple, the upper limit of a 1% percentile interval is higher than the lower limit of that of 

5%. This makes it difficult to distinguish between 1% and 5% significant level. The 

problem is particularly serious for DGP3. Therefore, the response surface estimates are 

not applicable in computing finite sample critical value intervals. As a result the point 

estimates from Monte Carlo simulations are directly used, then only the randomness 

from simulation experiments needs to be considered, i.e. 

  seqq iul  961.~~  
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where 
iq~  denotes the   percentile obtained from the i

th
 Monte Carlo experiment 

with sample size N and T;  se  is David-Johnson (1954) estimate of the standard 

deviation of   percentile distribution. The finite sample critical value intervals are 

provided in Table 2.3 in Appendix B. 

 

6.4 The Numerical Distributions 

Figure 2.4-2.6 are the plots of finite sample cumulative density functions (CDF) and 

probability density functions (PDF) for the three DGPs along with the plot of those of 

standard normal distribution for comparison (for illustration Figure 2.5 for DGP2 is 

presented in the text; Figure 2.4 and 2.6 for DGP 1 and 3 are attached in Appendix B). 

All figures are plotted with 221 points. The calculation of empirical p-values for the 

CDFs is discussed in section 5.4. For simplicity, the values for the PDFs are taken from 

the Monte Carlo simulation estimates. Plots with N = {10,50,100} and T = 

{50,100,200,300,500} are chosen for illustration as shown in Figure 2.4-2.6. To clearly 

observe the trend as T increases, plots with N = {50} and T = {50,100,200,300,500} are 

extracted and provided in Figure 2.7-2.9 (for the same reason, Figure 2.8 for DGP2 is 

presented in the text; Figure 2.7 and 2.9 for DGP 1 and 3 are attached in Appendix B). 

The finite sample distributions of all the three DGPs suggest substantial difference 

from standard normal distribution and each DGP has its own feature. Keep T constant 

and let N increase, the numerical CDF and PDF for DGP1 move to the right (Figure 2.4); 

the CDF for DGP2 tends to move anticlockwise and the PDF grows taller and thinner 

(Figure 2.5); the left tail of the CDF for DGP3 in Figure 2.6 is particularly heavy and 

move toward that of standard normal distribution. 
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Let T grow given constant N, the numerical CDF and PDF for DGP1 both shift to the 

right slowly first and then back toward the left as shown in the enlarged views in Figure 

2.7. The numerical CDF for DGP2 tends to move to the left and the PDF is pressed 

flatter, just in the opposite direction to that as N increases (Figure 2.8). The similar pat-

terns of the numerical distributions to DGP2 are also found in DGP3 (Figure 2.9). 

In general, increase in either N or T drives the finite sample distributions away from 

that of standard normal distribution; whereas growth in the other dimension tends to 

offset the previous effect and brings the numerical distributions back to normal distribu-

tion. However, it appears that the speed of convergence is seriously slow. The graphs in 

this section provide additional evidence that simply applying critical values from stan-

dard normal distribution for the CH and CS tests is highly unreliable. 
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Figure 2.5 Plots of the numerical cumulative density functions (CDF) and probabili-

ty density functions (PDF) for DGP2 

 

 

(a) DGP2-CDF 

 

 

 

(b) DGP2-PDF 
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Figure 2.8 Plots of the numerical cumulative density functions (CDF) and probability 

density functions (PDF) for DGP2, 50N  
 

 

 (a) DGP2-CDF 

 

 

 

   (b) DGP2-PDF 
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7. Conclusion 

This chapter has assessed the finite sample performance of the recently developed CH 

and CS panel unit root tests using numerical methods. Although compared with tradi-

tional time series unit root tests, panel unit root testing statistics exhibit standard normal 

distribution asymptotically, it is found in this chapter that the finite sample performance 

of panel unit root tests substantially differ from their asymptotic properties. Simply ap-

plying the critical values given by asymptotic distribution can seriously mislead the re-

sults. 

A number of Monte Carlo experiments are conducted on the CH and CS tests and 

provide a base for carrying out the response surface analysis. The response surface re-

gression examines the finite sample bias of the two tests in relation to sample size and 

the condition concerning the asymptotic properties of the tests. The finite sample bias 

and the numerical distributions under selected sample sizes are plotted and reveal that 

the finite sample performance of the tests systematically depends on sample size. These 

results clearly highlight the substantial differences between finite sample and large 

sample properties and raise caution for empirical studies that ignore the problem. 

The 95% confidence intervals of critical values are provided by augmenting the 

Monte Carlo point estimates with David-Johnson estimate of percentile standard devia-

tion to take into account the randomness incurred by simulation experiments. In addi-

tion, the formula to compute finite sample p-value of test statistic is also presented. Due 

to the slow convergence rate of the test statistics (as shown in the numerical distribu-

tions), the chapter recommends that even with larger number of observations ( 100N  

and/or 500T ), the critical values computed under the largest finite sample size 

( 100N  and/or 500T ) are preferred for applications. 
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The results are consistent with the Im and Pesaran (2003) critique and the conjecture 

in this chapter that 
 

0
ln


T

TN
 is an important condition for the asymptotic proper-

ties of the CH and CS tests to hold, since the coefficients of 
 

T

TN ln
 in the response 

surface regressions are highly significant and precisely estimated; the presence of the 

variable also provides support to the high value of 2R . Nevertheless, by applying the 

finite sample critical values provided in this chapter, this problem should not pose a 

danger to applications. 

However, the study experiences some limitations due to the goodness-of-fit of re-

sponse surface regressions. Although the goodness-of-fit of the regressions have 

reached reasonably high values (over 0.8) after experimenting with a number of poten-

tial independent variables (factors that affect the response variable), they are still not 

sufficiently high for smoothing finite sample critical values. During augmenting the 

smoothed critical values (by response surface regressions), the gaps between the upper 

and lower limits of some critical value intervals are excessively enlarged due to the 

relatively large residual standard errors in response surface regressions, so some 

neighbour intervals overlap. Therefore the point estimates from Monte Carlo simula-

tions are used instead. This problem suggests that unless the response surface regression 

has near perfect goodness-of-fit, smoothing critical values by the regression adds exces-

sive uncertainty and it is not recommended. The problem also reflexes the complexity 

of the finite sample performance of panel unit root tests. In order to increase to good-

ness-of-fit of response surface regressions to the desired level so that the finite sample 

critical value of panel unit root tests can be conveniently smoothed, more work is 

needed in future research on the model selection issue. 
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A general notable limitation for unit root tests is that the idiosyncratic terms in the 

model are assumed to be normally distributed, whereas this assumption is very often 

hard to maintain in empirical data. If normality is relaxed, the corresponding asymptotic 

distribution does not hold. An extended analysis of relaxing the normality assumption in 

panel unit root tests is the interest in the next study. 
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Chapter 3 Panel Unit Root Tests with Infinite Va-

riance Errors 
 

 

 

 

1. Introduction 

In the literature of panel unit root tests as well as most time series tests, the crucial assump-

tion of Gaussian error terms is imposed. The limiting distribution of single time series test 

statistic is expressed in terms of Brownian motion/Wiener process (see Chapter 1 section 

5.1). The Gaussian law plays a crucial role in developing the asymptotic properties that are 

associated with Wiener process -- on each time step the value change in the process is as-

sumed to be normally distributed (c.f. Hamilton, 1994, Chap 17). Recall in Chapter1 in the 

procedures of developing the asymptotics of panel unit root tests, normality plays important 

role. For example, the heterogeneous tests usually adopt the sequential approach which al-

lows T to pass to infinity first to obtain an intermediate limit for each individual time series 

in the panel, a similar procedure to that for time series test. So if the Gaussian assumption 

cannot be fulfilled, the asymptotic properties will be affected. The difficulty is that in prac-

tice, normality is hardly found in most empirical data and the common phenomenon of non-

normality has to be taken into account.  

One popular candidate used to model non-normality is the Lévy-Paretian stable distribu-

tion, also called the   stable distribution. It is well known that financial variables are 
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usually distributed with heavy tails. Mandelbrot (1963, 1967) postulate infinite variance 

and suggest considering stable laws for certain commodity prices. Fama (1965) notes that 

the empirical distribution of stock price changes are leptokurtic and are governed by stable 

laws. More recently McCulloch (1997) provide some empirical support for stable modeling 

on financial data. Other studies in favor of the stable process for certain economic variables 

include Mandelbrot (1961), DuMouchel (1983), Cambanis and Fotopoulos (1995), Foto-

poulos (1998), etc. 

Due to the importance of examining the stationarity property of time series in economics, 

single time series unit root test has been analysed in a few studies on the basis of non-

normality. Chan and Tran (1989) develop the asymptotic theory for time series regression 

with a unit root under the assumption that the distribution of errors belong to the domain of 

attraction of a stable law. Phillips (1990) extends the results of Chan and Tran (1989) to 

weak dependence and heterogeneity in the errors. The limiting distribution formulas in the 

two studies are presented in terms of functionals of a stable process instead of Brownian 

motion without any other modification compared with the finite variance case. Callegari et 

al. (2003) study the case of random walk with drift under non-normality. Ahn et al. (2001) 

analyze a few unit root tests associated with infinite variance and assess the small sample 

performance of the test statistics. However, in the field of panel unit root test, no attention 

has yet been given to the problem caused by non-normality. 

The aim of this chapter is to study how sensitive panel unit root tests are in response to 

non-normality. The   stable distribution is adopted to capture the non-normality. More 

specifically, the error terms in panel unit root test models are drawn from    stable distri-

bution. Using Monte Carlo simulations and regarding the parameter that controls the lepto-
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kurtosis of   stable distribution as an indicator of the degree of non-normality, the chapter 

intends to find the certain degree which causes so severe size distortion to the test that the 

critical value intervals computed in the previous chapter under normality can no longer be 

used.  

For application purpose the framework panel unit root tests used are the Chang (2002) 

(CH hereafter) and Chang and Song (2005, 2009) (CS hereafter) tests due to their advan-

tage in robustness to all the different forms of cross section dependence (i.e. the weak form, 

strong form and long run dependence). Reviews of the tests and the problem of cross sec-

tion dependence are provided in Chapter 1. Monte Carlo experiments are conducted with a 

selection of sample sizes and degrees of non-normality. The results suggest that the tests in 

different situations in terms of dependence respond to non-normality very differently and 

each has its own benchmark tolerance to non-normality. In addition, the results are serious-

ly influenced by the randomness caused by different sets of random numbers. Each test un-

der different circumstance also has its distinctive response to this impact. This problem will 

be discussed in great detail in the results section. To illustrate the trend of test bias incurred 

by non-normality as the degree of non-normality varies, response surface regression with a 

special functional form design is applied using the simulation results. Due to the fact that 

the computations of Monte Carlo experiments are remarkably time consuming, the response 

surface analysis of bias is only performed on the CS test for strong dependence as an exam-

ple. 

The remainder of the chapter is organized as follows. Section 2 introduces the Lévy-

Paretian stable distribution. Section 3 presents the Monte Carlo experiments. Section 4 and 
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5 set out the estimation of response surface regression and the decision rule to find the 

benchmark  , respectively. Results are analyzed in section 6. Section 7 concludes. 

 

2. Lévy-Paretian Stable Distribution 

2.1 Definitions of Stable Distribution 

There are a few equivalent definitions of a stable distribution based on either its stability 

property or characteristic function. Details can be found in several textbooks and mono-

graphs such as Samorodnitsky and Taqqu (1994), Sato (1999), Feller (1971), Zolotarev 

(1986). Here two definitions are introduced on the stability property and characteristic 

function, respectively. 

Definition 1.1 A random variable X is stable or stable in the broad sense if for any pos-

itive numbers a and b, there is a positive number c and a real number d such that 

dcXbXaX
d

 21                                                                                                 (3.1) 

where 1X and 2X are independent copies of X ; „
d

 ‟ denotes equality in distribution, which 

suggests the expressions on both sides have the same probability law. The random variable 

is strictly stable or stable in the narrow sense if (3.1) holds with 0d . A random variable 

is symmetric stable if it is stable and symmetrically distributed around 0, e.g. X and X  

have the same distribution. A symmetric stable random variable is obviously strictly stable. 

It is familiar to us that (3.1) is an important property of normal or Gaussian random va-

riables which is supported by the Central Limit Theorem (CLT).  Later it is shown that 

normal distribution is a special case of stable distribution and stable distribution generalizes 
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the CLT. The word „stable‟ used is due to the important property that the shape of X is pre-

served or unchanged (up to scale and shift) under addition as it is shown in (3.1). 

 

The probability density of stable distribution is not available explicitly except for three 

special cases
18

. Stable distributions are usually described by their characteristic function.  

Definition 1.2 A random variable X is stable if there are parameters 20  , 0 , 

11    and   real such that its characteristic function   has the following form 
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where 12 i  and  sign  represents the sign function such that 
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0
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There are four parameters in the characteristic function. The characteristic exponent or the 

index of stability   is the measure of leptokurtosis of the distribution; the skewness para-

meter   determines the skewness of the distribution; the scale or dispersion parameter   

measures the width of the distribution; and the location parameter   controls the shift of 

the distribution. When the distribution is standardized, the scale 1  and the location 

0 ; by definition if the distribution is symmetric, the skewness 0  and the location 

                                                 
18

 The three cases are the Gaussian distribution ( 2 ), the Cauchy distribution ( 1 ) and the Lévy distri-

bution ( 2/1 ) 
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0 . Since (3.2) is characterized by the four parameters, we denote a stable distribution 

by   ,,S  and write  

  ,,~ SX  

to indicate that X has stable distribution   ,,S . When X is symmetric  -stable, i.e. 

when 0  , it is written as SSX ~  and obviously  0,0,~ SX . A random varia-

ble X is standard SS  if 1 . It is observed from (3.2) that if X is SS , then its characte-

ristic function takes a particularly simple form 

        expexp XiEt                                                                          (3.3) 

In this study the standard symmetric stable distribution is considered, SSX ~  or 

 0,0,1~ SX . This directs the focus on the most important and interesting parameter  . 

The index of stability   measures the tail thickness and peakedness at the origin. As  be-

comes smaller, the shape of the distribution becomes higher, more peaked and shows fatter 

tails. For 2 , the stable distribution reduces to normal (Gaussian) distribution. When 

2  leptokurtosis appears, and the tails become so heavy that the variance is infinite; for 

1  even the first moment does not exist. (Rachev et al, 2007) notes that in empirical 

finance   usually takes the values in the interval  2 ,1 , which suggests some financial data 

modeled with stable laws exhibit finite means but infinite variance. 

More recently some studies find the tails of  stable distribution too heavy for empirical 

study, while the tempered stable distribution can be opted as a compromise between normal 

distribution and  stable distribution (c.f. Kim et al, 2008). The tempered stable distribu-

tion (or truncated Lévy distribution) has tails heavier than normal distribution and thinner 
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than  stable distribution; moreover, it has finite moments for all orders, compared with 

 stable distribution which has infinite second moment and infinite first moment when 

1  due to the excessive heaviness in its tails. Mantegna and Stanley (1997) showed that 

the probability density function (PDF) of the Standard & Poor‟s 500 index can be described 

by a tempered stable distribution. Some recommended readings on this subject can be 

found in Koponen (1995), Boyarchenko and Levendorskii (2000) and Carr et al. (2002). 

 

2.2 Advantages of Applying Stable Distribution 

The infinite variance of stable distribution suggests that the tails of the distributions may be 

too heavy for empirical data, whereas Rachev and Mittnik (2000) account for comprehen-

sive applications of stable distribution in finance. One significant advantage of the stable 

laws is that the sums of  stable random variables are still   stable (as in definition 1.1). 

In financial modeling this property implies that the cumulative IID (identically independent 

distributed) daily returns over a period have the same distributional shape as the individual 

daily returns. Furthermore, according to the Central Limit Theorem (CLT), the normalized 

sum of IID random variables with finite variance converges to normal distribution. The Ge-

neralized Central Limit Theorem (GCLT) relaxes the finite variance assumption and states 

that the only possible resulting limit distribution is stable, i.e. the sums of IID random va-

riables with infinite variance converge only to stable distribution. In addition and more im-

portantly, the stable random variables are useful in simulating structural breaks. Figure 3.1 

presents several plots of stable processes with different values of  . It shows that as   

becomes smaller (i.e. the distribution of the variable becomes more leptokurtotic), the 

number of breaks increases and the magnitude of the breaks appear to be enlarged. 
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Figure 3.1 Plots of stable processes with different values of index of stability   
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3. Monte Carlo Analysis on the Impact of Non-normality on Panel Unit Root Tests 

As most of the distributions of empirical data do not exhibit normal distribution, e.g. the 

distributions of inflation rate, exchange rate, asset prices, etc., non-normality must be con-

sidered while conducting econometric testing. In the field of unit root test, the derivation of 

asymptotic properties usually experiences complicated procedures and yet is still not able to 

provide analytical solutions. In particular, when non-normality is involved the analysis be-

comes even more complex. In terms of panel unit root tests, even though under normality  

the testing statistics have normal distribution in the limit, the additional cross section di-

mension N adds extra complications to the finite sample performance (as found in Chapter 

2) as well as the analytics (refer to the reviews in Chapter 1), not mention it under non-

normality. Given that empirical work almost always experiences the constraint of limited 
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number of data observations and Monte Carlo experiments are convenient to apply, in par-

ticular with the advantage of modern advanced digital computers, the Monte Carlo method 

is obviously a good choice to provide approximate solutions to empirical problems. 

This section uses Monte Carlo simulation analysis to detect the influence of non-

normality on the CH and CS panel unit root tests. The error terms in the unit root models 

are assumed to follow symmetric  stable distribution instead of normal distribution. The 

aim is to investigate the response of the tests as the value of the index of stability   de-

creases, i.e. as the distribution differs further and further from normal distribution and non-

normality appears to be more severe. 

 

3.1 The DGPs 

3.1.1 The CH and CS Tests under Non-normality 

The basic model of panel unit root test is  

ittiiit uyy  1,        i = 1,…,N; t = 1,…,Ti                                                          (3.4) 

Following the CH and CS tests, under the null hypothesis of a unit root (then itit uy  ), 

the innovations itu  are generated by the three DGPs below to incorporate the weak form, 

strong form and long run cross section dependence (in the same spirit as the DGPs in Chap-

ter 2 under normality): 

DGP1:  ittiiit uu   1,                                                                                        (3.5) 

DGP2:  ittitiiit uu   1,                                                                              (3.6) 

DGP3:  ittitiiit uu   1,                                                                           (3.7) 
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where i  is the AR coefficient; t  is common factor and i  are factor loadings; it  are in-

novations following symmetric  stable distribution with symmetric and nonsingular cova-

riance matrix, say V. DGP1 embodies weak dependence given by the covariance matrix of 

it . DGP2 presents a mixture of the strong and weak forms of dependence through time 

effect t  and innovations it . DGP3 exhibits the long run dependence. More explanations 

of the dependence in the DGPs and the choice of parameters as well as the generation of V 

are in Chapter 2, section 4.1. For the same reason as stated in Chapter 2, the CH test is ap-

plied on DGP1 and CS test is applied on DGP2 and 3. Under the assumption that it  follow 

Gaussian process, the CH and CS tests both conclude with the standard normal asymptotic 

distributions of the testing statistics. Nevertheless, the it  in this chapter are generated from 

the symmetric stable distribution. 

 

3.1.2 Generation of  Stable Random Variables 

It is assumed that SSit  ~  or  0,0,1~  Sit . Since the stable distributions do not have 

densities in closed form, sampling from stable distributions is not a straightforward affair. 

A common procedure of generating stable random variables is based on the following re-

presentation: if Z is uniformly distributed over 









2
,

2


  and W is exponentially distributed 

with mean 1, assume Z and W are independent, then  

 
  

     




/1

/1

1cos

cos

sin









 


W

Z

Z

Z
X                                                                   (3.8) 
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is  0,0,1S . See p.42 of Samorodnitsky and Taqqu (1994) for a proof. In the Cauchy case 

when 1 , (3.8) reduces to  ZX tan ; in the Gaussian case when 2 , (3.8 )reduces 

to 
 
 

 ZW
Z

Z
WX sin2

cos

2sin 2/12/1  , which is the Box-Muller method of generating a 

 2,0  N  random variable (Box and Muller, 1958). In this study the standard symmetric sta-

ble random variables are considered, so the random variables are sampled using formula 

(3.8).  

A   ,,S  random variable with arbitrary shift and scale parameters can be obtained 

from a variable  0,,1~ SX  through the following propertys 

   ,,~ SX  ,     if 1  

   


  ,,~ln
2

SX  ,     if 1  

Chambers, Mallows and Stuck (1976) describe a method of generating  stable random 

variables for any 20   and 11    based on the formulas of type (3.8) and provide 

a Fortran programme. The program applied in this chapter is encoded in GAUSS by 

McCulloch (1996)
19

. 

 

3.2 Monte Carlo Experiments 

Since the computations conducted in the previous chapter are enormously time consuming 

and the aim of this chapter is to find out the   which starts seriously affecting the results 

computed in previous chapter under normality, only certain representative sample sizes are 

                                                 
19

 Stable Random Number Generators are encoded in GAUSS by J. H. McCulloch (1996), Ohio State Univer-

sity, Economics department, based on the method of Chambers, Mallows and Stuck (1976).   
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considered rather than the broad and small-stepped selection as those for calculating critical 

values. The sample sizes are  

 100 70, 50, 30, 10,N   and   500 400, 300, 200, 100, 50,T . 

Hence, there are altogether 2555   experiments for each   on each DGP. Each experi-

ment consists of 10000n  replications. For each experiment the 0.01, 0.05 and 0.10 per-

centiles are recorded.  

The choices of  ‟s, however, are different for each DGP. This is because the DGPs re-

spond to the change of   very differently according to some preliminary trial experiments. 

For example, when 7.1 , it has almost no effect on DGP1, whereas this is disastrous for 

DGP 2 and 3. Due to the enormous amount of computation time, DGP2 is chosen as an ex-

ample for the response surface regression analysis on test bias with respect to  . Therefore, 

DGP2 is computed with a wider range of  ‟s. The  ‟s for each DGP are 

DGP1:  1 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 20
 

DGP2:  0.5 0.7, 1, 1.2, 1.5, 1.7, 1.85,1.8, 1.9, 1.95, 2,  

DGP3:  1.8 1.85, 1.9, 1.95, 2,   

The Monte Carlo simulations were programmed in Gauss 7.0. 

 

4. Response Surface Estimation 

To illustrate the relationship between the magnitude of test bias caused by non-normality 

and   (which controls the degree of non-normality), response surface regressions are esti-

                                                 
20

 The reason for keeping 2 , i.e. the distribution is normal, is to observe the difference of normal random 

number generators between Gauss and McCulloch (1996) (when 2 ). This will be discussed in great de-

tail in the following section. 
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mated. It helps observe the trend of test bias as the distribution of error terms in the model 

deviates further and further away from normal distribution.  

The response surface regression takes a novel form as following 

   
     

 
 

 
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i
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
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






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ln
2
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2
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52

2

43

2

21

                   (3.9) 

iii qqq ~~                                                                                                         (3.10) 

where 
iq~  denotes the percentile obtained from the i

th
 experiment with sample size N, T (so 

i is the note for sample size) and the index of stability  ; iq~  is the corresponding percentile 

of the numerical distribution under normality (computed in Chapter 2); so the dependent 

variable or response variable 
iq  represents the test bias incurred by non-normality. The 

expression  2  represents the degree of non-normality, by how much the distribution is 

away from Gaussian distribution. When 2 , the distribution is normal and test bias does 

not exist. As the value of   decreases from 2, the degree of non-normality starts growing 

and is embodied in the increasing value of  2 . The expression  
 

T

TN ln
 involved in 

certain variable is according to the Im and Pesaran (2003) critique on the asymptotic distri-

bution of the CH and CS tests. Detailed discussion of this issue is provided in Chapter 1. 

Moreover, the results from numerical examination in Chapter 2 are also consistent with the 

critique. 

The functional form is determined by the goodness-of-fit of the regression and the signi-

ficance of variable coefficients after a number of experimentations. Ericsson (1986) notes 

that the functional form of response surface regression can be justified on the grounds of 
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the significant coefficients and the generally high R
2
 value. A general form to start with can 

be 

     
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(3.11) 

For generalization a uniform specification is opted for the 1%, 5% and 10% significant le-

vels rather than optimize the functional form for each one. The trial estimations show that 

the coefficients of  
 

T

TN ln
2

2
  ,  33 2    and variables involving 

NT

1
 are generally 

insignificant and do not contribute to value of R
2
, so they are excluded from the regression. 

The response surface regression (3.9) is estimated by ordinary OLS. However, due to the 

deterministic nature of the values of N, T and  , the errors in (3.9) are heteroskedastic. 

Therefore the variance of the errors depends systematically on sample size (N and T) and 

 . To deal with the heteroskedasticity, the covariance estimator of the coefficients‟ estima-

tors in a regression developed by MacKinnon and White (1985) is applied. The procedure 

is described in Chapter 2, section 5.2. 

 

5. The Decision Rule of Locating the Benchmark   and the Associated Problems 

Recall the critical value intervals computed in Chapter 2. The 95% confidence interval of a 

critical value is given as 

  seqq iul  96.1~~                                                                                          (3.12) 
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where 
iq~  is the point critical value of   percentile computed from the i

th
 Monte Carlo si-

mulation with sample size N and T (so i is the note for sample size);  se  is David-

Johnson (1954) estimate of the standard deviation of the   percentile distribution. The 1%, 

5% and 10% percentiles computed from the Monte Carlo simulations in this chapter are 

checked with the corresponding critical value intervals. As  becomes smaller, the aim is 

to find the   which starts making the percentile fall outside of the corresponding critical 

value interval computed under normality, i.e. the percentile is either smaller than the lower 

limit lq  or larger than the upper limit uq  of the interval. So the critical value interval can 

no longer tolerate the percentile due to the non-normality influence on the tests.  

However, some preliminary results suggest there is a serious problem associated with 

sampling distribution. It shows that even when   is set as large as 2 (i.e. the errors terms in 

the DGPs drawn from McCulloch (1996) are Gaussian), there are still a remarkable amount 

of percentiles falling out of the critical value intervals. This reveals that the impression in-

curred by sampling distribution has not been sufficiently accounted for by David-Johnson 

percentile standard deviation estimates. For the statistics analyzed in this study, even differ-

ent sets of random numbers generated by the same random number generator can still cause 

serious difference.  

To illustrate this, some trials are conducted on DGP1, 2 and 3 for sample size 10N , 

200T  using the Gauss normal random number generator.10,000 replications are used in 

each Monte Carlo experiment and 100 experiments are conducted on each DGP. The 1%, 

5% and 10% percentiles are computed, so there are overall 3003100   percentiles for 

each DGP. The percentiles are checked with the critical values intervals whose mid-point 

estimates were computed under the same assumptions and procedures (by the Monte Carlo 
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simulations in Chapter 2). Results show that the violation of critical value intervals is so 

severe that all the percentiles from the experiments based on DGP2 and 3 fall out; those for 

DGP1 experience about 200 violations. This also indicates that the David-Johnson estimate 

of percentile standard deviation has not captured enough randomness/precision caused by 

Monte Carlo simulations. Meanwhile, the problem is also case sensitive. 

Therefore the critical value intervals are required to take into account more randomness. 

A proxy of the extra randomness is considered, the empirical difference in the standard 

deviations of percentile distributions (denoted as  dse ). Since it is suggested by the trail 

experiments that the problem is also case sensitive, proxies are computed for each DGP. 

100 experiments are carried out on each DGP with error terms generated by Gauss normal 

random number generator and another 100 experiments with the random numbers generat-

ed by McCulloch (1996) stable random number generator setting 2 . Again due to the 

lengthy computation time and the fact that it is the relative difference that is of interest, the 

sample size is fixed at 10N , 200T . The three percentiles of 1%, 5% and 10% are tak-

en, so there are 100 observations for each percentile. Standard deviations are calculated for 

each set of the 100 observations. Denote the standard deviations obtained based on Gauss 

random number generator as  Gse  and those based on McCulloch (1996) as  Mse , the 

proxy  dse  is thus calculated as 

      MseGsedse                                                                                     (3.13) 

So the modified critical value interval is given as  

    
  dseseqqMul ii  96.1~~                                                                    (3.14) 
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Again the Monte Carlo simulation outputs from sections 3.2 (the 1%, 5% and 10% per-

centiles) are checked with the modified critical value interval 
iqMul~ .  

 

6. Results 

Following section 3.1.1, for simplicity, in the result section „DGP1‟ refers to the CH test 

applied on DGP1; „DGP2‟ and „DGP3‟ refer to the CS test applied on DGP2 and 3, respec-

tively. 

6.1 Estimation Results of Response Surface Regressions (DGP2 chosen as example) 

Since the pattern of response surface estimation results of the three DGPs are similar, only 

the results from DGP2 are reported. Table 3.1 shows the regression outcomes from DGP2. 

The table contains the coefficients of variables in the regression and the value of R
2
 for 

each estimation. Due to the important role of the condition 
 

T

TN ln
 in the asymptotic prop-

erties of the test, only the standard errors of 7̂  (coefficient of  
 

T

TN ln
2  ) is provided.  

Although the values of R
2 

for all the three percentiles are not relatively very high, around 

0.5 (which indicates that about half of the variation in the test bias can be explained by the 

variables involving  ), the majority of the coefficients are significant at 1% significance 

level. So as   decreases, it does systematically cause test bias. The standard errors of 7̂  

for all the three percentiles are remarkably small, which suggests the estimation accuracy of 

7̂  and again implies the importance of  
 

T

TN ln
 in the test performance in addition to the 

findings in Chapter 2. 
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Table 3.1 Results of response surface regression estimation of DGP2 

Percentile 
1̂  2̂  3̂  4̂  

R2 

0.01 3.598** 2.819** 2.819** 67.820** 0.474 

0.05 2.107** 1.633** 1.633** 41.531** 0.503 

0.10 1.434** 1.090** 1.090** 24.572* 0.491 

 5̂  6̂  7̂  

 

 7̂se  
 

0.01 
-

12.283** 119.523** -0.075**     (0.0150)  

0.05 
-

6.578** 65.636** -0.043**     (0.0086)  

0.10 -4.573* 45.193** -0.026**     (0.0067)  

Note: 1. „**‟ denotes significance at 1% level; „*‟ denotes significance at 5% level; 

          2.  7̂se  denotes the standard error of 7̂  

 

6.2 Test Bias Incurred by Non-normality (DGP2 chosen as example) 

Since the pattern of test bias for the three percentiles, 1%, 5% and 10% are similar, Figure 

3.2 (a)-(i) only plot the estimates of bias for 5% percentile as an example. The bias is 

smoothed by response surface regressions and plotted with axes of  and T at different val-

ues of N. Figure 3.3 (a)-(d) are the smoothed estimates of bias for 5% percentile with axes 

of  and N at different values of T. The values used to plot Figure 3.2 and 3.3, 
iq̂ , are 

computed through response surface regression estimates obtained from (3.9) and (3.10).  

Figure 3.2 clearly shows that when N is small, the decrease in   leads to different pat-

terns of bias at each N. Generally, when  7,6,5N , the bias increases straight away from 

zero as   reduces, while starting form  8N , the bias seems to reach a maximum where 

 5.1,1  and  then drops. The magnitude of bias later grows again at very small   with 
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negative sign. It is also observed that in the areas where T is small, as sample size T rises, 

bias is noticeably brought down. 

Figure 3.3 presents a similar pattern of bias to those in Figure 3.2 as   varies, i.e. a 

maximum magnitude of bias is reached where  5.1,1 , whereas the growth in N does 

not essentially make any influence. The increase in T reduces the bias on the positive side 

but extends it on the negative side as shown in plots (a)-(d).  

 

Figure 3.2 Estimated test bias for 5% percentile with   and T at different N, DGP2 

 
(a) N = 5             (b) N = 6 

 
(c) N = 7                (d) N = 8 

 



Chapter 3 Panel Unit Root Tests with Infinite Variance Errors 

 100 

 

Figure 3.2 Estimated test bias for 5% percentile with   and T at different N, DGP2 

(Cont’d) 

 
   (e)  N = 9               (f) N = 10 

 

 

 
      (g) N = 15       (h) N = 30 
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Figure 3.2 Estimated test bias for 5% percentile with   and T at different N, DGP2 

(Cont’d) 

       
    (i) N = 100 

 

Figure 3.3 Estimated test bias for 5% percentile with   and N at different T, DGP2 

 
     (a) T = 50                 (b) T = 100    
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Figure 3.3 Estimated test bias for 5% percentile with   and N at different T, DGP2 
(Cont’d) 

 
       (c) T = 300          (d) T = 500 

 

6.3 The Benchmark   

Recall the Monte Carlo experiments in section 3.2 and refer to the results in Table 3.2, 3.3 

and 3.4. The results reveal distinctive features for each DGP. There were 25 experiment for 

each DGP under a particular  , so there are 25 observations for each percentile and 3 per-

centile are considered in each experiments. Then under each  , 75325   observations 

or points appear in the tables (based on one DGP). When one observation falls outside of 

the corresponding critical value interval computed under normality, it is called an outlier 

and will appear in the table as “1”; otherwise, it is an insider and is shown as “0”. Clearly 

the randomness/imprecision caused by sampling distribution is still not completely re-

moved. This can be observed from the columns under 2 , where the three DGPs still 

have certain numbers of outliers. DGP1 performs the best among the three with only a few 

statistics land outside of critical value intervals when 2 ; whereas DGP2 has a similar 

performance only for panels with larger number of individuals ( 50N ); in the case of 
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DGP3 the numbers of outliers and insiders compete with each other under all N . However, 

with regards to T, not a particular characteristic is captured from the tables under 2 . 

The problem of randomness unavoidably affects the observation on the trend in the re-

sults as  decreases. One straightforward approximate solution can be: calculate the num-

ber of outliers in the column under 2 ; subtract this number from the number of outliers 

in other columns under 2 . The results are printed in the last row of the tables. This 

gives a clear view of the increase in the number of outliers as  becomes smaller. DGP1, 

which represents the CH test under weak dependence, seems to be most tolerable with sta-

ble error terms. It almost does not affect DGP1 even when  is as small as 1.7. More points 

of violations start appearing as   decreases below 1.7, while they grow in a very moderate 

rate. DGP2, which denotes the CS test under strong dependence, is far less generous to sta-

ble innovations than DGP1. The results remain unaffected only when 95.1 , and then 

are followed by sharp growth of outliers. DGP3, which represents the CS test under long 

run dependence, is seriously influenced by randomness and is not tolerable to non-

normality at all. Even when 95.1 , there are still 10 outliers. Whereas comparing the 

growth rate in the violation points, DGP3 seems to be milder than DGP2.  

The ultimate aim of this study is to locate the   which invalidates the results computed 

under normality assumption, i.e. the appearance of outliers in the above discussion. In the 

strict sense, 7.1 , 95.1  are the benchmarks for DGP 1 and 2, respectively, since 

outliers start emerging afterwards. Whereas for DGP3 the previous results would be invalid 

once  is below 2. Nevertheless, if some flexibility is allowed, a few outliers can be per-

mitted. For example, if 10 outliers are permitted, then 4.1 , 9.1  and 95.1 are 
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the benchmarks for DGP 1, 2 and 3, respectively. However, according to the tables, permit-

ted violations with more than 10 points are not recommended. 

(Table 3.2-3.4 are printed from the next page) 
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Table 3.2 Results of percentiles computed under stable disturbances checked with the corresponding critical value intervals computed 

under normality, DGP1 

Note: „1‟ denotes the percentile computed under stable disturbances falling out of the corresponding critical value interval computed 

under normality; „0‟ denotes the opposite. 

 

N T alpha=2   alpha-1.9   alpah=1.8   alpha=1.7   alpha=1.6   
    1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

10 50 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
  100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  200 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 50 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 
  100 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

  200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

50 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
  100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  200 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

70 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  100 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 

  200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  100 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

  200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                        
no. of outliers   5   2     4     5     9 

no. of outliers after deduct 

the no. of outliers under alpha=2 

                  

    -3     -1     0     4 
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Table 3.2 Results of percentiles computed under stable disturbances checked with the corresponding critical value intervals computed 

under normality, DGP1 (Cont’d) 

Note: „1‟ denotes the percentile computed under stable disturbances falling out of the corresponding critical value interval computed 

under normality; „0‟ denotes the opposite. 

 

N T alpah=1.5   alpha=1.4   alpha=1.3   alpha=1.2   alpha=1   
    1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

10 50 0 1 1 0 1 1 0 1 1 0 1 0 0 0 0 
  100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

  300 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 50 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  100 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

  200 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

  300 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 

  500 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 

50 50 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  100 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

  200 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 

  300 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

70 50 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 
  100 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 

  200 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

  300 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

  500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

100 50 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 
  100 1 0 0 1 1 0 1 1 0 1 1 1 1 1 1 

  200 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 

  300 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 

  500 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 

                
no. of outliers   13   16   22   25   31 

no. of outliers after deduct the 

no. of outliers under alpha=2 

                    

4   8   11   17   20 
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Table 3.3 Results of percentiles computed under stable disturbances checked with the corresponding critical value intervals computed 

under normality, DGP2 

Note: „1‟ denotes the percentile computed under stable disturbances falling out of the corresponding critical value interval computed 

under normality; „0‟ denotes the opposite. 

 

N T alpha=2   alpha=1.95   alpha=1.9   alpha=1.85   alpha=1.8   
    1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

10 50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
  100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  200 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 

  300 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 

  500 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 

30 50 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 
  100 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 

  200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  300 1 0 0 0 0 0 0 0 0 1 0 0 1 1 1 

  500 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

50 50 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 
  100 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 

  200 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 

  300 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

  500 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

70 50 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 
  100 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

  200 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 

  300 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 

  500 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 

100 50 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 
  100 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 

  200 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 

  300 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

  500 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

                        
no. of outliers   24   19   34   49   60 

no. of outliers after deduct 

the no. of outlier under alpha=2 

                        

    -5     10     25     36 
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Table 3.4 Results of percentiles computed under stable disturbances checked with the corresponding critical value intervals computed 

under normality, DGP3 

Note: „1‟ denotes the percentile computed under stable disturbances falling out of the corresponding critical value interval computed 

under normality; „0‟ denotes the opposite. 

 

N T alpha=2   alpha=1.95   alpha=1.9   alpha=1.85   alpha=1.8   
    1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 

10 50 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 
  100 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

  200 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 

  300 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

  500 1 1 1 1 1 1 0 0 1 1 0 1 1 1 0 

30 50 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 
  100 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 

  200 1 1 1 1 1 1 0 1 1 0 0 1 1 0 0 

  300 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 

  500 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 

50 50 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 
  100 0 0 0 0 1 0 1 1 0 1 1 1 1 1 1 

  200 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 

  300 1 1 0 1 0 0 1 0 0 1 1 1 1 1 1 

  500 1 0 1 0 0 1 1 1 0 1 1 0 1 1 1 

70 50 0 0 0 0 1 1 0 1 1 0 1 0 0 1 0 
  100 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 

  200 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 

  300 1 0 0 0 0 1 0 1 1 1 1 1 1 1 1 

  500 1 1 1 0 1 1 0 1 1 1 0 1 1 0 0 

100 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
  100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

  200 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 

  300 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 

  500 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 

                        
no. of outliers   34   44   51   56   58 

no. of outliers after deduct 

the no. of outliers when alpha=2 

                        
    10     17     22     24 
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7. Conclusion 

This chapter analyzed the impact of non-normality to panel unit tests through Monte Car-

lo simulation analysis. Empirical data frequently bear the non-normal distribution charac-

teristic, whereas unit root tests are usually developed on the normality assumption. In the 

field of panel unit tests this problem has not yet been considered. Empirical test results 

can be seriously misleading if non-normality is simply ignored. 

The chapter uses the Lévy-Paretian Stable distribution to model leptokurtosis or heavy 

tails that are often found in empirical data. The aim is to examine the sensitivity of panel 

unit root tests to non-normality modeled by stable distribution. The errors in the two pan-

el unit tests, the CH and CS tests, are assumed to follow the    stable distribution. Using 

the outputs of a series of Monte Carlo experiments, response surface regressions with a 

novel design of functional form are estimated and help reveal the relationship between 

test bias and the degree of non-normality. Results suggest that non-normality indeed 

causes serious test bias and attacks the tests differently in different situations. As the in-

dex of stability   decreases and drives the distribution further and further away from 

Gaussian distribution, the magnitude of test bias becomes more and more severe; whereas 

as sample size N and T increases respectively, the trend of bias shows varying patterns. 

Let DGP1, DGP2 and DGP3 denote the CH test applied on panel data with weak de-

pendence, the CS test applied on data with strong and long run dependence, respectively. 

In terms of the decision as to which   starts to severely influence the test and invalids 

the critical value interval computed under normality, results reveal that each DGP has 

different reaction. If one chooses to be restrictive, the benchmarks are determined as 

7.1 , 95.1 for DGP 1 and 2, respectively; whereas DGP3 does not tolerate with 
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any   less than 2. A more generous choice can be set as 4.1 , 9.1  and 95.1  

for the three DGPs, respectively, which allows for 10 outliers out of 75 points (i.e. for 

each DGP, among the 75 percentile point estimates computed under certain degree of 

non-normality, 10 points fall out of the corresponding critical value interval computed 

under normality). However, permission of allowing for more than 10 outliers is not rec-

ommended.  

The results provide important indications for applications that employ non-normally 

distributed data. When the degree of non-normality in data is higher than the benchmarks, 

the reliability of testing results are questioned. A limitation in this study is that due to the 

remarkably lengthy computation time, the chapter is unable to provide critical values for 

the tests under non-normality with a comprehensive range of   ‟s  and sample sizes. 

Although much has been done in section 5 to eliminate the problem of random-

ness/imprecision resulting from sampling distribution, it still partially remains in the re-

sults, which indicates that the David-Johnson estimate of percentile standard deviation 

has not captured sufficient amount of randomness. The problem is also case sensitive in 

this study. DGP1 is affected at the least level; DGP2 copes with it well only with larger N; 

and DGP3 is seriously influenced with all sample sizes. Further analysis on this issue can 

be carried out in a general setting and search for more solutions. 
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1. Introduction 

In the area of macroeconomic research, the dynamic properties of macroeconomic series 

have been one of the central issues for decades. Being regarded as a key macroeco-

nomic variable, inflation is one of the most analysed subjects. Since the seminar work 

of Nelson and Plosser (1982) the stationarity characteristic of inflation has received 

substantial amount of attention. The intuitive explanation of a stationary series (denoted 

as I(0)) is that it shows temporary memory and the impact of a shock will eventually 

disappear. On the other hand, a non-stationary series (containing a unit root, denoted as 

I(1)
21

) has permanent memory, so a shock has permanent effect on it and drives the se-

ries away from its mean.  

Whether inflation is stationary or not leads to important implications in terms of 

economic theory and policy. For example, according to Fisher (1930) inflation and 

nominal interest rate are linked through real interest rate, and real interest rate plays a 

central role in saving and investment decisions in the economy. Given the fact that 

nominal interest rate is usually treated as non-stationary, inflation rate also needs to be 

non-stationary and thus cointegrates with nominal interest rate in order for real interest 

                                                        
21

 For simplification it is assumed that nonstationary series are integrated of order 1, i.e. they can be 

transformed stationary by differencing it once (or first differencing), so here uses I(0) to denote stationary 

series and I(1) to denote non-stationary series. 
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to be stationary. In addition, from the view of acceleration hypothesis, low unemploy-

ment rate below its natural rate would be at the high cost of an ever-increasing level of 

inflation (i.e. inflation contains a unit root) in the long run. Regarding monetary policies, 

some researchers advocate that unless inflation and real income growth are cointegrated, 

if inflation is non-stationary, so is the nominal income growth. Therefore, monetary 

policy should target either the level or growth rate of nominal income (c.f. Hall, 1984; 

Taylor, 1985). More recently, inflation targeting has grown popular in monetary policies. 

The dynamic nature of inflation is then the essential prime knowledge since serious po-

tential danger will be posed if the target is set on an explosive inflation process. 

A great amount of work has been done to examine the stationarity of country infla-

tion series whereas results are very mixed. Earlier research applying traditional single 

time series tests on inflation rates cannot reach a consensus but with preference for unit 

root. Baillie (1989), Ball and Cecchetti (1990), Johansen (1992), Nelson and Schwert 

(1997), etc. fail to reject the unit root hypothesis, whereas Rose (1988), Baillie et al. 

(1996), Choi (1994), etc. find inflation stationary. Following the insights of Perron 

(1989), the caution has been raised that the presence of breaks in the trend function of 

time series (often called structural change or structural break, e.g. a shift in the mean of 

a process) tend to cause unit root tests to bias towards not rejecting the unit root null 

hypothesis. This means that unit root test may well suggest a process is I(1), whereas in 

fact it is I(0) subject to structural changes. In addition, research indicates that inflation 

rates over long time span are prone to structural breaks due to monetary policy changes 

and other macroeconomic shocks like the oil crises (c.f. Garcia and Perron (1996); Ra-

pach and Wohar (2005); Romero-Ávila and Usabiaga, 2008). Figure 4.1 below plots the 

monthly inflation rate series of Italy, Portugal and UK from 1998 to 2007. It illustrates 

the processes experience sharp increases in mid 70s and fluctuate at high level until mid 
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80s and then slump. Culver and Papell (1997) apply the sequential break unit root test 

of Perron and Vogelsang (1992) to monthly inflation series of 13 OECD countries and 

provide evidence of stationarity in inflation for only 4 countries.  

 

Figure 4.1 Plot of inflation rates series of Italy, Portugal and UK 
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Due to the criticism of low power of single time series unit root test, the recent lit-

erature sees the application of panel data. Panel unit root tests can gain more statistical 

power essentially by increasing sample size through pooling time series in the cross 

section dimension. Many studies pool certain number of country inflation series as 

panel data and apply panel unit root tests. However, these still cannot conclude with the 

same results. Culver and Papell (1997) also apply the homogenous panel unit root test 

by Levin and Lin (1992) and reject unit root in inflation. While the rather strong as-

sumptions of homogeneity and cross section independence of the test are questioned
22

, 

Lee and Wu (2001) and Otero (2008) apply heterogeneous tests considering cross sec-

tion dependence and also find inflation stationary. However, Ho (2008) using the Chang 

(2002) test discovers that there appears to be a unit root in inflation. Given the evidence 

                                                        
22

 Refer to Chapter 1 for the review of cross section dependence/correlation in panel data. 
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of structural breaks in inflation rates provided by some studies, Costantini and Lupi 

(2007), Lee and Chang (2007) and Romero-Ávila and Usabiaga (2008) apply panel unit 

root tests considering structural breaks and conclude that inflation is I(0). 

In the literature, to what extent a jump (the abrupt and substantial change) in a proc-

ess is considered as a break is not clearly defined. Therefore the estimation of breaks 

seems rather arbitrary. In addition, modelling and estimating the breaks often involves 

intricate and tedious procedures, and the number of breaks a test can deal with is usually 

very limited. Rather than estimate the breaks, in this chapter the breaks are captured by 

an alternative and new approach of implementing the Lévy-Paretian Stable distribu-

tion
23

 (also called the   stable distribution) in the panel unit root test models. Refer to 

Figure 3.1 in Chapter 3 section 2.2, when the index of stability   (the parameter that 

measures the tail fatness and peakness of the distribution) becomes smaller, the   sta-

ble process (i.e. the process built on cumulated   stable random variables) shows 

more and sharper jumps. This feature can be well adopted to simulate structural breaks. 

Charemza et al. (2005) concern the non-normal empirical distribution of inflation rates 

and study their dynamic behaviour by the augmented Dickey-Fuller (ADF) test under 

stable innovations. The results are in favour of non-stationarity. Since the inflation rates 

of most OECD countries exhibit very similar patterns (which will be illustrated in sec-

tion 4), it is appealing to pool the inflation series into a panel to take the advantages of 

panel data and re-examine the issue. 

This chapter assumes the error terms in panel unit root test models to follow   sta-

ble distribution rather than the restrictive normal distribution. On estimating the value of 

  from the data, refer to the results in Chapter 3 and conduct some further Monte 

Carlo simulations for critical values when necessary, the decision can be conveniently 

                                                        
23

 The introduction of   stable distribution can be found in Chapter 3. 



Chapter 4 Is Inflation Stationary? Evidence from Panel Unit Root Tests with 

Structural Breaks 

 115 

made on the dynamic property of the series. The procedure will be elaborated in the 

following sections. 

The framework tests used in this study are the Chang (2002) test (CH hereafter) and 

the Chang and Song (2005, 2009) test (CS hereafter) due to their robustness to all dif-

ferent forms of cross section dependence in panel data. For comparison, some other 

popular panel unit root tests are also applied as well as a number of single time series 

tests used on each individual in the panel. With still very mixed results, the conclusion 

gives preference to the presence of a unit root which is supported by the most general 

panel unit root tests and the majority of single time series tests. 

The remainder of this chapter is organized as follows. Section 2 introduces the CH 

and CS tests incorporating structural breaks. Section 3 presents the estimation process 

of the index of stability   in order to detect the influence level of structural breaks on 

the tests. Section 4 illustrate the features of inflation rates among OECD countries and 

explains the poolability of the series. Section 5 presents the empirical results and section 

6 concludes. 

 

2. The CH and CS Tests under Non-normality to Account for Structural Breaks 

2.1 The CH and CS Tests 

Detailed reviews of the two tests are provided in Chapter 1. So here only the framework 

for application is presented. The CS test is a developed version of CH test with regard to 

the robustness to cross section dependence. To detect unit root in inflation, the follow-

ing equation is estimated in CH and CS tests 

it

p

k

ktikitiiit IflIflIfl  


 
1

,,1,   i = 1,…,N; t = 1,…,Ti         (4.1) 

where itIfl  denotes inflation panel data variable; i and t denote the countries in the 
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panel and time period, respectively; the time length for each individual iT  are the same 

in this study, i.e. the panel is balanced; it  are white noise;   is difference operator. 

The nonlinear IV estimation is applied on (4.1). In CH test the instrument is generated 

by a single nonlinear integrable instrument generating function (IGF)  1, tiIflF  and in 

CS test it is a set of orthogonal IGFs  1, tii IflF . The panel unit root testing statistic is 





N

i

i
N

S
1

1
 24

 

where i  is the nonlinear IV t-statistic of i̂  for each individual in (4.1). S shows 

standard normal distribution asymptotically under the null hypothesis that all panel in-

dividuals have a unit root. Due to the choice of orthogonal IGFs, the CS test claims to 

be able to handle all the different forms of cross section dependence. Nevertheless, as 

shown in the introduction of Chapter 2, in terms of weak dependence, the CH test has 

better performance; however, it is unable to deal with strong dependence. 

 

2.2. Models with   Stable Innovations to Incorporate Structural Breaks 

On estimating (4.1) and if unit root in inflation is not rejected, the distribution of the 

first difference of inflation needs to be checked for   through the following models as 

an indicator for the presence of potential structural breaks. The chapter is not in favour 

of testing for structural breaks, as explained in the introduction of this chapter that so far 

there is not a clear definition of structural break and the estimation of breaks seems 

rather arbitrary. So the chapter incorporates the potential breaks as part of a process (the 

  stable process). 

 In the similar forms to the DGPs of Monte Carlo simulations on the CH and CS tests in 

                                                        
24

 As noted in Chapter 2, for simplification only the average S statistic is considered for CS test. 
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Chapter 2 and 3, the representations are 

CH : 


 
ip

k

itktikiit IflIfl
1

.,               (4.2) 

1CS : 


 
ip

k

ittiktikiit IflIfl
1

.,             (4.3) 

2CS : 


 
ip

k

ittiktikiit IflIfl
1

.,            (4.4) 

where ki,  are the AR coefficients; t  is the scalar common stochastic trend or 

common factor and i  are factor loadings; it  are   stable innovations with sym-

metric and nonsingular covariance matrix. CH shows weak dependence generated from 

the covariance matrix of it ; CS1 presents the strong and weak forms of dependence 

through time effect t  and innovations it ; CS2 exhibits long run dependence or cross 

unit cointegration, driven by the common stochastic trend  t . If the CH test is ap-

plied,   is estimated through (4.2) with weak dependence assumption; when the CS 

test is applied, (4.2) and (4.3) are used to estimate  , assuming strong dependence and 

long run dependence, respectively. 

Under the assumption of   stable distribution, it  belong to the domain of attrac-

tion of symmetric stable distribution with index of stability  2 ,1 . When 2  

it  are in the domain of attraction of normal distribution and the equations reduce to 

those analyzed in the original CH and CS tests. However, as   becomes smaller than 

2, according to the findings in Chapter 3 the distribution of testing statistics can be ef-

fectively affected by a certain small  , so that the critical values computed under nor-

mality assumption cannot be used.  
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3. Estimation of   

  is estimated on it  or it  in (4.2)-(4.4). According to the stability property of 

stable distribution introduced in Chapter 3, the   in it  and it  are the same,. So 

the   estimated from (4.3) is for both CS1 and CS2. Estimate i  from it  (for 

Ni  ..., 2, 1, ) and the average of i ‟s is taken as the   estimator for the panel
25

. i  

is estimated by the procedure developed in McCulloch (1996). it  are obtained 

through OLS estimation of (4.2) and (4.3) for CH and CS tests, respectively.  

In linear regression model the effect of infinite variance in regressors and error terms 

can be substantial. In the autoregression  

tktkttt yyyy    ...1211   

the least square estimates are shown to be consistent as long as ty  is stationary (c.f. 

Burridge and Hristova, 2008; Knight, 1989). In the regression 

iinniii xxxy   ,,22,11 ...   

as long as 1 , the OLS estimate is still consistent yet the convergence rate is slower 

than the case of error terms with finite variance (c.f. McCulloch, 1998). Knight (1993) 

notes that theoretical and empirical evidence suggests the robust M-estimates to linear 

regression with infinite variance error terms are more efficient than the OLS estimates 

(c.f. Knight (1993) for the M-estimate approach). Nevertheless, the below Monte Carlo 

experiments results suggest that with increasing sample size, the efficiency of OLS es-

timates is effectively improved. Given the relatively large sample size of the data used 

in this chapter (which will be introduced in section 4), the OLS estimates are used. 

                                                        
25

 In Chapter 3 where the influence of   on panel unit root tests is studied, homogeneous   is ap-

plied to all panel individuals. However, this is very restrictive in the real world. In addition the model is 

heterogeneous, so here the average of individual  ‟s is computed rather than estimate   on the data 

pooled across panel. 
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The finite sample performance of OLS estimates with infinite variance error terms is 

examined by the following Monte Carlo experiments. Data are generated by 

tttt yy   1    t = 1,2,…,T               (4.5) 

where the coefficients   and   are set as 0.8 and 1.5, respectively; t  are drawn 

from iid N(0,1) and t  are random draws from   stable distribution. The sample 

sizes and values of   considered are  

 500,300,200,100,50T  and  1 1.2, 1.4, 1.5, 1.7, 1.9,1.8, 2, . 

The number of replications is 5000. OLS estimation is applied. The results are displayed 

in Table 4.1. It shows that lager sample size can help increase the efficiency of estima-

tors. The AR coefficient ̂  is not obviously affected by the infinite variance in error 

terms; whereas the performance of ̂  deteriorates with growing standard errors as   

decreases; in particular, when 2.1  the estimators ̂  start to drift away from  , 

and at 1  the estimators are so biased that they cannot be used to serve application. 

The experiment results are consistent with the above theories. Some preliminary trial 

estimations indicate that the   estimated from inflation data is around 1.5, so the least 

square estimation should produce reasonable results. 
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Table 4.1 Simulation results of OLS regression with stable error terms 

T     ̂   se  ̂   se    ̂   se   ̂   se 

  2        1.9         
50   0.79 0.052 1.502 0.146   0.789 0.056 1.502 0.17 
100   0.795 0.035 1.499 0.101   0.795 0.038 1.498 0.12 
200   0.798 0.024 1.5 0.071   0.797 0.026 1.499 0.085 
300   0.799 0.02 1.499 0.058   0.798 0.022 1.501 0.07 
500   0.799 0.015 1.5 0.045   0.799 0.017 1.501 0.055 

                   
  1.8        1.7       

50   0.788 0.06 1.503 0.203   0.788 0.065 1.504 0.25 
100   0.794 0.041 1.498 0.146   0.794 0.044 1.497 0.183 
200   0.797 0.029 1.499 0.105   0.796 0.031 1.497 0.133 
300   0.798 0.024 1.502 0.087   0.798 0.026 1.503 0.112 
500   0.799 0.018 1.501 0.069   0.798 0.02 1.502 0.09 

                   
  1.5        1.4       

50   0.789 0.077 1.51 0.432   0.792 0.087 1.518 0.627 
100   0.793 0.05 1.493 0.329   0.793 0.053 1.488 0.486 
200   0.795 0.036 1.492 0.247   0.795 0.039 1.486 0.368 
300   0.797 0.03 1.511 0.213   0.797 0.032 1.52 0.321 
500   0.798 0.023 1.507 0.176   0.798 0.025 1.515 0.273 

                   
  1.2        1       

50   0.821 0.139 1.594 1.846   0.832 0.525 2.914 12.248 
100   0.793 0.059 1.448 1.433   0.794 0.062 1.314 8.488 
200   0.795 0.042 1.446 1.105   0.795 0.044 1.262 6.59 
300   0.797 0.034 1.592 0.97   0.798 0.035 2.224 5.453 
500   0.798 0.026 1.61 0.894   0.798 0.027 3.204 6.126 

Note: „se‟ denotes standard error 

 

Refer to (4.3) and (4.4), the representations indicate that an appropriate proxy for the 

scalar common stochastic trend t  is required for CS test on estimating  . Let ity  

denote a panel data variable. Pesaran (2007) panel unit root test suggests capture the 

strong dependence that arises from common factor by lagged cross sectional mean ( 1ty ) 

and its first difference ( ty ).
26

 In the case of serial correlation, the regression must be 

augmented by 



p

k

ktiki y
1

,,  as usual and also by 



p

j

jtj y
1

 , where p is the lag order. 

The procedure is applied here to construct a proxy to substitute t  in (4.3) and (4.4). 

                                                        
26

 The Pesaran (2007) panel unit root test is reviewed in Chapter 1. 
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Since only (4.3) is used for estimation, it is rewritten with the proxy of t  as 

it

p

j

jtjt

p

k

ktikiit elfIlfIdIflIfl  








0

10

1

,,            (4.6) 

Then   can be estimated from the residuals ite . 

 

4. Data 

4.1 Data 

The original collection of data is monthly Consumer Price Index (CPI) of 15 OECD 

countries from the International Monetary Fund‟s International Financial Statistics Da-

tabase (IFS). Data range covers period from 1957m1 to 2007m12. The countries include 

Austria, Belgium, Canada, Finland, France, Italy, Japan, Luxembourg, Norway, Portugal, 

Spain, Sweden, Switzerland, UK and US.  

The inflation in this study is annual inflations adjusted monthly, also called Y/Y. It is 

calculated as  12 tt lplp , where lp is the logarithm of CPI. Therefore, in each sample 

group the first 12 observations are dropped. The AR order is selected by both AIC and 

BIC criterion with a maximum of 18 lags. Although the CH and CS tests allow for dif-

ferent lag orders among panel individuals, due to the construction of the proxy for 

common factor in (4.6), the same lag order has to be applied across panel. The lag 

lengths of panel individuals selected by both criteria are particularly long, from 12 to 18. 

This is because there is overlapping of observations,  12 tt lplp , which generates ex-

cessive autocorrelation. Since the same lag length is required across the panel, to ensure 

the performance of the estimation, the longest lag order is chosen from the individual 

estimates and is applied on the panel. 
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4.2 The Similar Patterns of Inflation Rates across OECD Countries 

The inflation rates of OECD countries have shown great similarities. A graphic over-

view of the country inflation series is provided in Figure 4.2. Figure 4.3 split the series 

into 5 groups to provide a clearer vision. It illustrates that the fluctuations of inflation 

rates have been strikingly similar across OECD countries. They have risen progressively 

in the 1960s and early 1970s and then experienced sharp increases. During part of the 

1970s and part of the 1980s inflations were high and volatile and then declined during 

the 1990s and remained low and stable thereafter. More importantly, in terms of the ap-

pearance of breaks in inflation, Corvoisier and Mojon (2005) suggest that since 1960 

inflation of every OECD country has two or three breaks in its mean. The remarkable 

feature is that the breaks largely coincide throughout the OECD countries around 1970, 

1982 and, to a lesser extent, around 1992. 

 

4.3 Some Interpretations of the Similarities of Inflation Rates of OECD Countries 

The similarities are analysied in several recent empirical studies which have found that 

inflation, at least in industrialized countries, is largely a global phenomenon. Ciccarelli 

and Mojon (2005) show that inflations of 22 OECD countries have moved together over 

the last several decades and have a common factor that alone accounts for nearly 70% 

of the variability of country specific inflation; national inflation rates tend to be pulled 

back to Global Inflation by a robust “error correction mechanism”. The co-movement of 

inflation is particularly obvious during the last two decades, as can be clearly observed 

in Figure 4.2, series clustering together. This is largely due to the effects of international 

inflation transmission, globalization and similar monetary policy changes across coun-

tries.  
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Figure 4.2 Plot of original selection of inflation series 
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Figure 4.3 Plot of original selection of inflation series, split view 
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Although country specific inflation dynamics and persistence are basically deter-

mined by country specific price rigidities, these are also affected by the inflation dy-

namics and persistence in other countries as a result of international inflation transmis-

sion. The early literature of international inflation transmission focused on how the 

United States inflation was transmitted abroad under the Bretten Woods system of fixed 

exchange rates. Evidence had been found in Brunner and Meltzer (1977), Cassese and 

Lothian (1982) and Darby (1983). After the collapse of Bretten Woods system, however, 

the degree of exchange rates flexibility have been challenged (c.f. Reinhart and Rogoff, 

2003; Calvo and Reinhart, 1998). Nevertheless, Boschen and Weise (2003) found em-

pirical evidence that U.S. inflation policy continued to influence OECD inflations in the 

flexible exchange rate period. 

During the last two decades, the world has experienced a remarkable process of dis-

inflation, which is most observable in the industrialized countries. Globalization, the 

tremendous increase in economic integration, is argued to have made effective contribu-

tions since 1980s. Globalization can affect national inflation through various channels 

such as international trade, labour, capital market and exchange rate fluctuations. Infla-

tion rate has become much less prone to domestic parameters, especially the domestic 

output gap; whereas global factors such as the output gap of main trading partners be-

came more important in determining national inflation rate (Pehnelt, 2007). For exam-

ple, some studies suggest that the Phillips curve in major developed countries has flat-

tened in the last couple of decades due to the fact that the short-term relationship be-

tween domestic economics factors such as unemployment rate and domestic output gap 

has weakened (c.f. Debelle & Wilkinson 2002; Benati 2005), whereas the importance of 

foreign output gaps has increased (Borio & Filardo, 2006). 

Apart from international inflation transmission and globalization, similar monetary 
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policy is another driver that enables inflation rates to move together. Recall in Figure 

4.2 the high and volatile inflation experienced by most countries during the 1970s and 

part of the 1980s is known as the „Great Inflation‟. This phenomenon was criticized by 

some studies as a result of over-emphasis of Keynesian theories in the 1960s and 1970s 

(e.g. Rogoff, 2003). Policy makers were driven by Phillips curve and stressed the 

trade-off between inflation and unemployment (c.f. Taylor, 1992 and Sargent, 1999). 

Facing the pressure of Great Depression, politicians of the U.S. in the 1960s and early 

1970s placed high value on keeping unemployment very low, whereas no tightening 

monetary policy was applied to tackle the high inflation afterwards (De Long, 1997). 

The effect was also transmitted abroad as discussed above. 

Since the mid 1980s the world has been experiencing the disinflation process along with 

increased emphasis of monetary policy objective on maintaining low and stable rate of 

inflation. This is more obvious in the countries that adopted the policy of inflation tar-

geting. Woodford (2003) argues that it is because instability of the general level of 

prices causes substantial real distortions-- leading to inefficient variation both in aggre-

gate employment and output and in the sectoral composition of economic activity -- that 

price stability is important. As central bank independence has been strengthened in 

many countries, they have become more committed to the primary goal of price stability 

and concerned with inflation risks. Besley (2008) illustrates the similar stance of policy 

across nine OECD countries which played a role in the moderation of inflation. The 

high and volatile inflation was negatively associated with real interest rate, the policy 

rate adjusted for inflation, which can be interpreted as a relaxed monetary policy; in 

contrast, the most recent period of low and stable inflation is characterised by positive 

and higher real rates of interest. 
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Table 4.2 Correlation coefficient matrix of inflation rates of 15 OECD countries 

 

 

 Austria Belgium Canada Finland France Italy Japan Luxembourg Norway Portugal Spain Sweden Switzerland UK US 

Austria                
Belgium 0.844                
Canada 0.677  0.801               
Finland 0.773  0.868  0.838              
France 0.677  0.796  0.882  0.783             
Italy 0.731  0.830  0.856  0.841  0.894            
Japan 0.769  0.741  0.597  0.710  0.516  0.632           
Luxembourg 0.808  0.935  0.762  0.829  0.780  0.815  0.660          
Norway 0.638  0.713  0.797  0.759  0.758  0.779  0.526  0.683         
Portugal 0.615  0.760  0.795  0.767  0.821  0.841  0.506  0.710  0.682        
Spain 0.624  0.740  0.789  0.785  0.802  0.863  0.517  0.710  0.730  0.805       
Sweden 0.675  0.719  0.804  0.767  0.756  0.828  0.560  0.722  0.767  0.792  0.770      
Switzerland 0.719  0.656  0.581  0.602  0.487  0.521  0.691  0.636  0.511  0.452  0.381  0.601     
UK 0.741  0.796  0.808  0.843  0.774  0.804  0.707  0.761  0.703  0.694  0.747  0.766  0.542    
US 0.644  0.696  0.872  0.721  0.848  0.787  0.616  0.653  0.662  0.691  0.677  0.730  0.542  0.825   
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5. Empirical Results 

5.1 Tests Applied 

Although the variance covariance matrix does not exist in the   stable world, yet to 

give a clue of the degree of dependence among the panel individuals, the covariance 

matrix is computed through the data. Table 4.2 reports the covariance matrix of infla-

tions rates in the 15 OECD countries and its grand average is 0.722 with standard devia-

tion 0.108. So there is clear evidence of relatively strong dependence among the coun-

tries. In addition, the possibility of long run dependence (cross unit cointegration) can-

not be simply excluded due to the similar behaviour of the series over time as discussed 

in section 4. Given the strong level of dependence, in addition to CH and CS tests, some 

other popular second generation tests, the Bai & Ng test (BN), Moon & Perron test (MP) 

and Pesaran test, are applied for comparison. Moreover, the results of some popular first 

generation tests, the Levin, Lin & Chu test (LLC), Im, Pesaran & Shin test (IPS), ADF 

Fisher test, PP Fisher test and Hardri stationarity test, are also presented. Besides, a 

number of single time series unit root tests are applied on each individual series in the 

panel. These tests include the augmented Dickey-Fuller test (ADF), Phillips-Perron test 

(PP), modified Phillip-Perron test (MPP), modified Sargan-Bhargava test (MSB), modi-

fied Elliott, Rothemberg and Stock feasible point optimal test (MERS), KPSS stationar-

ity test, augmented Perron Additive Outlier (Crash) test (PAO) and augmented Perron 

Innovative Outlier test (PIO). The latter two tests consider structural breaks in the 

process. 

 

5.2 Results under Normality Assumption 

Panel unit root tests results are given in Table 4.3. As for CH and CS tests, the finite 

sample critical value intervals computed in Chapter 2 are applied. The CS test is confi-
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dently in favour of a unit root at 5% significant level with lag orders chosen either by 

AIC or BIC criteria. The CH test rejects unit root when the lag orders are chosen by AIC 

criteria and is in favour of unit root when BIC criteria is used to select lag orders. 

Among other second generation tests, the BN test separates the common factor(s) and 

error terms in the model and tests for unit root in the two processes respectively. It fails 

to reject unit root in either processes. The MP and Pesaran tests support stationarity in 

inflation. Nevertheless, recall that the technique used in MP test to deal with cross sec-

tion dependence is to de-factor the panel. If unit root is only caused by common factor, 

i.e. the case of long run dependence or cross unit cointegration, the results of MP test 

can be misleading (refer to the review in Chapter 1, section 6.2.2.2). 

Among first generation tests, the LLC and Hadri tests strongly advocate the unit root 

hypothesis; whereas there are more tests clearly in favour of stationarity. However, 

given the relatively high degree of dependence among the individual inflation series in 

the panel and the fact that the first generation tests are unable to cope with strong de-

pendence, these outcomes might be unconvincing.  

Finally refer to Table 4.4, the results of single time series unit root tests applied on 

each individual in the panel. There is sheer agreement on the presence of a unit root in 

the majority of the series. For each country, either structural breaks are considered or 

not, the conclusion remains the same. Austria, Belgium, Canada, Finland, France, Italy, 

Norway, Portugal, Spain, Sweden and the UK all give strong evidence of a unit root. 

Stationary inflation is suggested for Luxembourg, Switzerland and the US by more than 

half of the tests applied. However, take an overall point of view on the strong agreement 
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Table 4.3 Results of panel unit root tests 

First Generation Tests     

  t-stat    

 Levin, Lin and Chu (LLC) 2.1746    

 Im, Pesaran and Shin (IPS) -1.9608**    

ADF Fisher ADF - Fisher Chi-square 35.9667    

ADF Fisher ADF - Choi Z-stat -1.7391**    

PP Fisher PP - Fisher Chi-square 61.1417**    

PP Fisher PP - Choi Z-stat -4.0946**    

Hardri Hadri Z-stat 16.8795    

Hardri Heteroscedastic Consistent Z-stat 17.0575    

 

Second Generation Tests     

  t-stat (BIC) ̂  t-stat (AIC) ̂  

 Chang (CH) -1.307 1.531 -2.647** 1.550 

 Chang and Song (CS) -0.455 1.546 -0.401 1.558 

      

 Pesaran CADF (max lag 12) CADF (max lag 18)  

  -3.460** -3.735**   

      

  t-stat (pool) factor t-stat (factor)  

 Bai and Ng (BN) 85.902 1 -2.31  

      

  t-stat a  t-stat b  

 Moon and Perron (MP) -28.5558**  -8.1323**  

Note: „**‟ denotes significant at 5% significance level. 
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Table 4.4 Results of single time series tests 

 Austria Belgium Canada Finland France Italy Japan Luxembourg Norway Portugal Spain 

adf -1.307 -1.8026 -1.3272 -1.3658 -0.0996 -0.9349 -1.911 -2.069** -1.5593 -0.9738 -0.9576 

pp -3.3159 -6.2761 -3.6662 -3.7542 0.1227 -1.6001 -7.8393 -8.5425** -4.4871 -1.9592 -2.4043 

mpp -3.1703 -6.252 -3.6505 -3.7361 0.1266 -1.5965 -7.7992 -8.4873** -4.4457 -1.9448 -2.3923 

msb 0.3795 0.2826 0.3699 0.3414 0.9384 0.5596 0.2531 0.2426 0.3353 0.506 0.4077 

mers 7.6639 3.9221 6.7117 6.6133 51.6979 15.344 3.1435** 2.8915** 5.5113 12.5748 9.5749 

kpss 14.2177 10.993 11.4556 18.3333 19.2016 11.4754 23.3773 8.3612 15.2105 11.826 15.6277 

pao -4.2844 -4.3256 -3.024 -4.4116 -3.4835 -3.8689 -5.7108** -4.587 -3.432 -3.8897 -3.6277 

pio -3.1788 -2.6701 -1.6861 -1.9263 -1.6579 -1.8296 -1.9478 -2.6055 -1.8498 -2.0727 -1.4363 

 Sweden Switzerland UK US        

adf -1.854 -2.1444** -1.4407 -2.194**        

pp -6.8193 -9.3734** -4.2014 -9.4346**        

mpp -6.7463 -9.3305** -4.1896 -9.4203**        

msb 0.272 0.2315** 0.3453 0.2302**        

mers 3.6386 2.6258** 5.8488 2.608**        

kpss 15.3996 12.3485 10.4342 8.3244        

pao -3.6802 -4.9824** -3.9272 -3.9723        

pio -2.6849 -3.3529 -2.3997 -2.7929        

 

Notes: 1. adf- Augmented Dickey-Fuller test; pp- Phillips-Perron test; mpp- modified Phillip-Perron test; msb- modified Sargan-Bhargava test; 

mers- modified Elliott, Rothemberg and Stock feasible point optimal test; kpss- Kwiatkowski-Phillips-Schmidt-Shin test; pao- Augmented Per-

ron Additive Outlier test by Vogelsang and Perron (1998) criteria; pio- Augmented Perron Innovative Outlier test by Vogelsang and Perron (1998) 

criteria.   2. „**‟ denotes significant at 5% significance level. 
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on unit root among the series, the stationary cases can be regarded as country specific 

characteristic.  

 

5.3 Results under Non-normality Assumption to Incorporate Structural Breaks 

In general, the CH and CS tests fail to reject unit root, the index of stability   are es-

timated through models (4.2) and (4.6). Residuals it  are computed and  ‟s are esti-

mated. The estimators are 585.1ˆ CH  and 583.1ˆ CS , which indicates that there 

are considerable structural breaks contained in the process. This provides additional 

support to the finding in some studies that structural breaks exist in inflation series as 

discussed in section 4. Refer to the results in Chapter 3, the  ‟s are small enough to 

affect CH test and severely impact CS test
30

. However, the earlier panel unit root test 

conclusion may not be overturned since the test statistics are relatively far away from 

the critical values computed under normality. 

To confirm this point, Monte Carlo experiments are conducted again to compute the 

critical value intervals of the tests under 5.1  and 6.1 . The procedure and pro-

grams follow from Chapter 3. Sample size is 15N  and 500T , since there are 15 

countries and 600 observations in the time dimension; the number of replications is 

10,000, the same as the computation for critical values. The 5% critical value intervals 

augmented by David-Johnson estimate of percentile standard deviation are presented in 

Table 4.5. As predicted, both tests still hold on to the same conclusion as that under 

normality.  

Although the conclusion is not overturned, to give an idea about how likely structural 

breaks or non-normality can overturn the previous test results which are concluded in 

                                                        
30

 Recall in Chapter 3 that the conservative benchmarks of the  ‟s are 7.1CH , 95.11 CS  and 

22 CS ; a generous choices are 4.1CH , 9.11 CS  and 95.12 CS . 
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the absence of the problems, a measure can be proposed as following. For convenience 

the midpoints of the critical value intervals are used and are printed below the corre-

sponding intervals in Table 4.5. Let norq  and stq  denote the midpoints of the critical 

value intervals computed under normality and non-normality assumptions, respectively; 

statt  denotes a testing statistic. Then a relative measure for test distortion can be formu-

lated as 

norstat

norst

qt

qq
dm






31
,  norstat qt                (4.7) 

The measure (4.7) indicates the relative likelihood that how likely the test distortion 

caused by structural breaks or non-normality can overturn the previous results con-

cluded under normality, given a testing statistic. The larger the distance between norq  

and stq  is, i.e. larger value of norst qq  , the more severe the test distortion is; since 

for CH and CS tests norst qq  , when norstat qt   (or 0 norstat qt ), non-normality 

obviously cannot impact the previous conclusion; if norstat qt  , the closer statt  is to 

norq , i.e. a smaller value of  norstat qt  , the more likely the previous result could be 

overturned. So overall, a negative value of dm means there is no danger that 

non-normality would affect the testing conclusion; a relatively high value of dm indi-

cates that given a testing statistic statt , the result concluded under normality is more 

likely to be overturned by the impact of non-normality. 

                                                        
31

 Note that for CH and CS tests the critical value computed under non-normality is larger than the cor-

responding one computed under normality, i.e.
norst qq  , so in (4.7) the denominator is norstat qt  ; 

otherwise, the denominator is 
statnor tq  . 
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Table 4.5 Finite sample ( 15N , 500T ) 5% critical value intervals and interval midpoints of CH and CS tests 

Under normality assumption      

CH (under weak dependence) CS (under strong dependence) CS (under long run dependence) 

cv interval -1.725  -1.631  cv interval -2.190  -2.096  cv interval -3.412  -3.318  

midpoint -1.678    midpoint -2.143    midpoint -3.365    
 

Under non-normality assumption       

  CH (under weak dependence) CS (under strong dependence) CS (under long run dependence) 

6.1ˆ   cv interval -1.515  -1.433  cv interval -0.903  -0.821  cv interval -1.362  -1.280  

  midpoint -1.474    midpoint -0.862    midpoint -1.321    

    BIC AIC   BIC AIC   BIC AIC 

  dm 0.550  -0.206  dm 0.759  0.735  dm 0.702  0.690  

5.1ˆ   cv interval -1.496  -1.414  cv interval -0.895  -0.813  cv interval -1.366  -1.284  

  midpoint -1.455    midpoint  -0.854    midpoint -1.325    

    BIC AIC   BIC AIC   BIC AIC 

  dm 0.601  -0.223  dm 0.764  0.740  dm 0.701  0.688  

Note: BIC and AIC denote that calculation of the values below use the statistics computed with lag orders selected by the BIC and AIC criteria. 
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The measures dm calculated for the CH and CS tests and are provided in Table 4.5. It 

shows that the earlier testing conclusion of CH test with lag order selected by AIC crite-

ria is not affected by structural breaks or non-normality at all, since the dm values are 

negative; on the other hand, the CS test results tend to be relatively highly likely influ-

enced, although the conclusions still remain the same under non-normality assumption. 

The CH test fails to reject unit root under one of the lag order selection criteria (BIC), 

however, considering the fact that the CH test is unable to handle strong dependence 

and the CS test is most robust to even the long run dependence, in addition, another 

general test, the BN test, also supports the unit root hypothesis, the chapter concludes 

that the inflation rates among OECD countries are non-stationary. 

 

6. Conclusion 

The dynamic properties of inflation rate play an important role in macroeconomics 

analysis. This chapter re-examines the stationarity of inflation rates by the recently de-

veloped panel unit root tests using a panel of 15 OECD countries. The presence of 

structural breaks is found in inflation and its impact on unit root tests are stressed by 

many studies. Instead of modelling structural breaks, an alternative and new approach is 

suggested, treating the presence of breaks in a process as a type of non-normality. The 

  stable distribution, which has been shown to be useful in simulating structural 

breaks, is implemented in the panel unit root test models. The new method is easy and 

convenient to apply and avoids the complications of estimating breaks.  

The chapter uses the largest possible span of monthly inflation data during the period 

1958-2007. Either considering structural breaks or not, the CS panel unit root test, 

which is most general to cross section dependence, supports the unit root hypothesis.  

Under the two different lag order selection criteria, the AIC and BIC criteria, the CH 
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test results in opposite decisions; whereas either the presence of structural breaks is as-

sumed or not, the decision also remains the same as by the CS test. Given the un-

changed conclusion with and without structural breaks, a measure is constructed to 

show the relative likelihood that how likely the test bias caused by structural breaks or 

non-normality overturns the results obtained under normality. It suggests that the CS 

test is relatively more likely to be affected. 

Applications of some other popular second generation and first generation tests pro-

duce very mixed outcomes. Among these, the BN test, which is another most robust test 

due to its unique treatment of cross section dependence (see the review in Chapter 1), is 

also in favour of unit root. The single time series tests applied on the individual series 

provide strong evidence on the presence of unit root even when structural breaks are 

considered. Overall, with preference on the most general panel unit root tests together 

with the substantial support from single time series tests, the chapter concludes that the 

inflation rates among OECD countries are non-stationary.  

The testing results also seem to suggest that with sufficient number of observations, 

single time series test could outperform panel unit root test, since panel unit root tests 

experience extra difficulties such as cross section dependence and heterogeneity. Panel 

tests may also unnecessarily generalize the situation, since usually the null hypothesis in 

panel unit root tests is that all individuals have a unit root. So when only a small propor-

tion of the individuals in the panel behave differently from other members, either a 

panel unit root test is able to reject the null or not (subject to its power), there is still 

open question left. For example, in this chapter 3 out of the 15 inflation series are found 

stationary by more than half of the single time series tests. If this is the true situation, 

panel tests can only conclude that either there is unit root in all individuals (generaliza-

tion), or reject the unanimous presence of unit root with unknown numbers of stationary 
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series in the panel. Under this circumtance, single time series tests might be a better 

choice, or at least can provide some assistance examination for the panel on each panel 

individual. 
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Conclusions 

 

 

 

This thesis has used numerical methods to solve the previously ignored problems of 

finite sample bias and the non-applicable assumption of normality in panel unit root 

tests. Carrying the findings it continues to re-examine the long disputed stationarity 

property of inflation time series. Given the fact that structural breaks have been 

observed and analyzed in inflation rates, the thesis takes an alternative and brand new 

approach which regards the presence of breaks as a type of non-normality, instead of 

modeling breaks in unit root tests. 

Using the outputs of Monte Carlo simulations, the response surface regressions take 

on newly designed representation forms to examine the impact of finite sample size and 

non-normality on panel unit root tests. Results find serious magnitude of bias incurred 

by the problems as well as illustrate the trends of bias. In particular, the finding is 

consistent with the criticism of Im and Pesaran (2003) and the conjecture in the thesis 

that more condition is required for the asymptotic properties of the CH and CS tests to 

hold. This clearly suggests that the asymptotic critical values of the tests are 

inappropriate for empirical applications. 

The finite sample critical values are then computed for the CH and CS test. Rather 

than provide the conventional point estimates of critical values, the thesis improves the 

calculation by augmenting the point critical values with David-Johnson estimate of 
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percentile standard deviation to account for the randomness incurred by simulation 

experiments, so that it effectively improves on testing precision. Due to the apparently 

slow convergence rate of the testing statistics, it is recommended that even when 

empirical data have larger number of observations ( 100N  and/or 500T ), the 

critical value computed under the largest finite sample size ( 100N  and/or 500T ) 

is used as approximation. 

During the augmentation of the smoothed critical values (by response surface 

regressions), two sources of uncertainty have been included in the augmentation, the 

Monte Carlo simulation and the response surface regression. However, a problem of 

overlapping between neighbor critical value intervals occurs, which makes the two 

intervals indistinguishable from each other. This is due to the relatively large degree of 

uncertainty from regression, despite the values of 2R ’s are reasonably high. This 

suggests that, unless the response surface regressions have near perfect goodness-of-fit, 

smoothing critical values by response surface regression is inappropriate and point 

estimates from Monte Carlo simulations are preferred. Moreover, compared with single 

time series, it also reflects the complexity associated with the additional cross section 

dimension in panel data. 

Non-normality is modeled by applying the   stable distribution. Following the 

detection by response surface regression that the magnitude of test distortion advances 

with increasing degree of non-normality, the thesis further finds the benchmark degrees 

of non-normality which distort the tests so severely that the critical value intervals 

computed under normality can no longer be applied. Empirically when unit root is 

suggested in a process by the CH and/or CS tests, the degree of non-normality in the 

error terms of the unit root test models needs to be evaluated and taken to check for the 

reliability of testing results (as the procedure applied on inflation rates in Chapter 4). If 
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the degree of non-normality appears to be higher than the benchmark, more 

computations of the critical value under the corresponding degree of non-normality are 

needed. 

Another fresh point made on the purposes which fat tailed non-normal distribution 

can serve is that the non-normal random variables are eligible to be used on simulating 

structural breaks in a process. Due to the caution that structural breaks in time series 

tend to bias unit root tests toward not rejecting the unit root hypothesis, traditionally 

structural breaks are modeled and estimated. This usually involves intricate procedures 

and the number of breaks it can reach is limited. As an alternative and brand new 

approach, the thesis treats the appearance of structural breaks in a process as a type of 

non-normality and implements it into the panel unit root test models. Instead of 

estimating the breaks, the degree of non-normality is estimated. The testing conclusion 

can be conveniently drawn upon the findings in Chapter 2 and 3 of this thesis. 

The thesis finally turns to the ongoing debate of the stationarity property of inflation 

rate. Neither single time series tests nor panel unit root tests have been able to reach a 

consensus on the dynamic property of inflation rate. With the concern of structural 

changes in focus, a panel of 15 OECD countries is tested for unit root by the robust 

panel unit root tests, the CH and CS tests. The presence of structural breaks is treated as 

non-normality and represented by the   stable distribution as proposed in the 

methodology. The estimated relatively high degree of non-normality indicatively 

confirms the existence of breaks and more importantly, the critical values computed 

under normality are not appropriate to use. Further computations of critical values under 

the corresponding degree of non-normality provide support for the unit root hypothesis. 

For comparison, a number of contemporary popular panel unit root tests and single 

time series tests are also applied. The panel tests produce very mixed results whereas 
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the single times series tests provide sheer agreement on the presence a unit root. 

Considering that support for unit root hypothesis is advocated by the most robust panel 

unit root tests and by single time series tests on the majority of the countries, it 

concludes that the inflation rates of OECD countries are non-stationary.  

To this end, a point might be raised regarding the choice between panel unit root tests 

and single time series tests for applications. Although panel unit root tests present 

statistical advantages over single time series tests (essentially due to the enlarged 

sample size in relation to the cross section dimension), they also experience more 

difficulties due to the additional dimension (as reviewed in Chapter1) as well as more 

complicated finite sample performance (as analyzed in Chapter 2), which in turn might 

produce misleading results. Moreover, usually the null hypothesis in panel unit root 

tests is that all individuals have a unit root; whereas when a very small proportion of the 

individuals are stationary, the power of the tests to reject the null poses another question. 

Even in such a situation a test with high power is able to reject the null, the number of 

stationary or non-stationary individuals in the panel is unknown. Therefore, when the 

number of observations in empirical data is reasonably large, single time series tests are 

still a good choice. 

The non-stationary inflation rates conclusion also sheds some light on certain policy 

concerns. For example, on inflation targeting, if inflation rate is stationary, the Taylor 

rule or Svensson rule can be comfortably implemented. However, if inflation rate is 

found non-stationary, a moving target has to be constructed to form a stationary 

platform together with inflation rate (e.g. an error correction system derived from 

cointegration analysis); or the first difference of inflation process can be used instead.  

Nevertheless, there are still some limitations in this thesis. The   stable 

distribution has been the traditional approach to model non-normality. However, more 
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recent research finds that the tails of   stable distribution are often too heavy for 

empirical study, i.e. the distributions of certain economic variables have heavier tails 

relative to the normal distribution but thinner tails than the   stable distribution. In 

addition, it is assumed in the thesis that the distribution of inflation rates is symmetric, 

whereas more empirical studies suggest it tends to be skewed. So further research in this 

area might search for improved modeling frame to better resemble empirical data as 

well as relax the symmetric assumption. For example, the tempered stable distribution 

(or truncated Lévy distribution) is recently proposed in the forefront as a compromise 

between the normal distribution and the   stable distribution, whose tails are heavier 

than the normal distribution but thinner than the   stable distribution. 

In addition, the imprecision caused by sampling distribution in Monte Carlo 

experiments is found particularly influential in the analysis in Chapter 3. It seems the 

David-John estimate of percentile standard deviation has not captured sufficient amount 

of randomness incurred by stochastic simulation. It is also case sensitive in terms of the 

study in the chapter. Although some remedial measures were taken to resolve the 

problem, the impact is still not completely removed. Some thorough examination on 

this issue may be carried out in a more general setting and search for more solutions. 

Furthermore, due to the immense amount of computation time required, the thesis is 

not able to provide a comprehensive range of critical values for the tests under 

non-normality with different degrees of non-normality and various sample sizes. It is 

hoped that in the near future with the accessibility to super-power computers, this 

restraint can be easily resolved. 
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Appendix A An Introduction to Monte Carlo Me-

thod in Econometrics 

 

 

 

Monte Carlo methods (or Monte Carlo experiments, Monte Carlo simulations) provide 

approximate solutions to a variety of mathematical problems by performing statistical 

sampling experiments on a computer. Through conducting Monte Carlo experiments the 

analytically intractable deterministic mathematical problems can be tackled by substi-

tuting an equivalent stochastic problem and solving the later. Essentially, Monte Carlo 

experiments sample randomly from a universe of possible outcomes and take the frac-

tion of random draws that fall in a given set as an estimate of the set’s volume. The law 

of large numbers ensures that this estimate converges to the correct value as the number 

of draws (say n) increases. 

The method was initially employed by physicists who worked on nuclear weapon 

projects in the 1940s. As the problems of neutron diffusion could not be solved by ana-

lytical solutions, John von Neumann and Stanislaw Ulam suggested that these be solved 

by performing sampling experiments using random walk models on digital computer.  

Being secret, the work was given the code name “Monte Carlo”. Using this proposal, 

instead of deriving the cumbersome analytical solutions, one conducts sampling expe-

riments to obtain solutions to the integro-differential equations (c.f. Metropolis and 

Ulam, 1949; Hurd, 1985; Metropolis, 1987; Hoffman 1998). 
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The concept of employing sampling experiments on a computer later came to prevail 

in many other scientific disciplines such as mathematics, engineering, chemistry, eco-

nometrics, operational research, etc. More recently the method has also gained favour in 

the field of financial mathematics due to the convenient and easy calculations involved 

to produce solutions. Since the purpose of this thesis is to investigate certain problems 

in the field of econometrics and Monte Carlo method is a substantially broad subject, 

this introduction is devoted to the aspects of Monte Carlo approach that are relevant to 

the studies in the thesis. Extensive exploration of Monte Carlo simulations can be found 

in Fishman (1996), Rubinstein and Kroese (2007), Robert and Casella (2004), 

MacKeown (1997), Glasserman (2004), Hammersley and Handscomb (1975), 

Niederreiter (2004), etc. 

Econometric studies in favour of Monte Carlo method are mainly due to two reasons. 

One is as mentioned above, when the analytical solution of a problem is hard to obtain 

and derivation of the theoretical analysis is too expensive (e.g. complicated estimation 

or testing procedures), results based on computer experiments are inexpensive and easy 

to produce (c.f. Mariano and Brown, 1993; Keane, 1993; Gouriéroux et al., 1993; Gou-

riéroux and Monfort, 1996, Gallant and Tauchen, 1996, etc.). In particular, at the stage 

of the rapid and advanced development of computers, computations have become even 

faster and more efficient. The other important role that Monte Carlo method plays in 

econometrics is to analyze the finite sample performance of statistical tests and compute 

finite sample critical values for empirical applications (e.g. the calculation of the critical 

values of Dickey-Fuller test). Even some tests have well developed asymptotic theories 

(e.g. panel unit root tests), the rate of convergence can be slow and thus their finite 

sample distributions experience apparent different behavior from large sample proper-

ties. While this usually poses difficulties to analytics, Monte Carlo experiments can ef-
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fectively provide complementary numerical analysis to fill in the gap in the literature 

(c.f. Hylleberg et al., 1990; Beaulieu and Miron, 1993; Franses and Hobijn, 1997; Ba-

nerjee et al., 1998; Harbo et al., 1998; Nabeya and Tanaka, 1998; Pesaran et al., 2000; 

MacKinnon, 1996, 2002, etc.). This role is one of the subjects in this thesis. It is partic-

ularly practical for empirical study as very often the availability of empirical data is li-

mited.  

 

The Data Generation Process (DGP)  

To conduct a Monte Carlo experiment, the data generation process (DGP) must be 

formulated using some predetermined parameter values and random numbers in the first 

place. The DGP is the random process decided by the setting of the problem and pro-

vides a framework for analysis. It is important to note that the DGP is fully known to 

researchers, both its functional form and parameters. This information can assist re-

searchers in improving the efficiency of Monte Carlo experiments. 

As mentioned above, the DGP embodies two sources of information, the particular 

functional form under econometric assumption and the parameters. The functional form 

is chosen for the desired analytical results and represents the setting of the problem in 

study. For example, to investigate non-stationary problems such as unit root tests and 

cointegration tests, the DGP in the simulation certainly needs to be set as a random walk 

process; for the study of nonlinear topics, the DGP must be a nonlinear form to set up 

the framework of the investigation.  

The parameters of DGP have different natures. They are either the numerical values 

to be examined by simulation or randomly generated actual values to approximate a 

certain distribution. For example, in the study of estimation and hypotheses testing of 

OLS regression, the coefficients of independent variables are preassigned to act as the 
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true parameters in order to observe the properties of the corresponding estimators in si-

mulation; the error terms are assumed to be normally distributed in OLS regression, and 

so in the DGP the error terms are randomly drawn from normal distribution. 

As a simple example, consider the problem of the consistency property of OLS esti-

mators in classical linear case. Let there be two independent variables. To set up the 

framework for the analysis a DGP can be formulated as following 

uxxy  21 22    2,0~ uNIIDu              (A.1) 

where NIID denotes identical independent normal distribution; y, 1x , 2x  and u are 

1T  vectors; the values of 1x , 2x  and 2

u  are priorly known. So u are randomly 

drawn from normal distribution as required by the assumptions of the OLS estimation. 

Next consider a perfectly specified linear regression model in accordance with the 

DGP 

uxxy  2211     2,0~ uNIIDu              (A.2) 

Let ),( 21 xxX   and   21, . The research interest is in the OLS estimator ̂ . 

It is calculated as  

  yXXX 
1

̂                  (A.3) 

For illustration purpose, suppose that the consistency property of ̂  is analytically 

unachievable, so that the analysis resorts to Monte Carlo experiment. The objective is to 

calculate  ̂E  and analyze the finite sample bias of ̂ . 

 

Pseudorandom Numbers 

One fundamental element of a Monte Carlo simulation is a sequence of apparently ran-

dom numbers used to drive the simulation, as the u in the above example, which are 
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randomly drawn from normal distribution. As noted in the previous section, in the DGP 

the random numbers are generated to form random process in order to obtain the desired 

distribution of the estimators. 

Random numbers are numbers that are realizations of a given random variable and 

create an unpredictable sequence, whereas in practice genuine random numbers are un-

achievable. Modern pseudorandom number generators are sufficiently good at mimick-

ing genuine randomness to aid effective simulation experiments. Nevertheless, it is im-

portant to note that the apparently random numbers at the core of a simulation are in 

fact produced by completely deterministic algorithms. Practically pseudorandom num-

bers cannot be distinguished from real random numbers. In Monte Carlo simulations, 

where it mentions random numbers, it essentially refers to pseudorandom numbers.  

Since pseudorandom numbers are generated by deterministic function with specified 

seeds (the initial input value in the function), they are exactly reproducible under the 

same algorithm and seeds. There is a vast literature on the topic of random number gen-

eration. Extensive discussions and references can be found in Bratley et al. (1987), De-

vroye (1986), Gentle (1998) etc. Generally, the basic random numbers are uniformly 

distributed between 0 and 1 (denote as iU ) . Essentially samples from any other distri-

bution can be transformed from uniform random variables on the unit interval. A very 

important property of random numbers is that any pair of values generated should be 

uncorrelated and the value of iU  should not be predictable from 1U ,…, 1iU .  

There are some potential problems in random number generators in terms of the 

quality of the generated random numbers, such as how well the randomness property of 

random numbers is maintained; whether the generators can produce sufficiently enough 

random numbers for large experiments. A poorly designed generator can cause failure 
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of simulation experiments and produce misleading results. In addition, the producing 

speed of a generator is also a concern. 

Glasserman (2004) highlights several considerations in the construction of a random 

number generator. (ⅰ) Period length. Generally pseudorandom number will eventually 

repeat itself. Other things being equal, generators with longer length are preferred, i.e. 

generators that produce more distinct values before repeating. (ⅱ) Reproducibility. A 

drawback of genuine random process is that it is hard to reproduce. However, research 

often needs to rerun simulations using exactly the same random variables as before, or 

the same random variables are used in two or more simulation experiments for compar-

ison purpose or else. This is easily accomplished with pseudorandom number generator 

by using the same seed. (ⅲ) Speed. Since a random number generator may be called 

thousands or millions of times in a simulation (depends on the number of replications), 

it must be fast. (ⅳ) Portability. A random number generating algorithm should produce 

the same sequence of values on all computing platforms. (ⅴ) Randomness. This is the 

most important consideration and is the hardest one to define or ensure. Random num-

bers generated with good theoretical properties can be tested by statistical tests for scru-

tiny. So far this field is sufficiently well developed and many generators in the literature 

that have survived rigorous tests can be comfortably used. 

 

A Simple Example of Monte Carlo Simulation Experiment 

Properties of Consistent Estimator 

Consider the typical econometric problem of consistency as shown in Figure A.1. Let 

the true parameter be  ; the estimator  t̂  has a plim of   (i.e.  ˆ plim ) and 

expectation   tE ̂ , where t is sample size. It implies that  
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    
t

tE ˆ  and     0ˆ 
t

tVar     

Therefore,     tE ˆ  is small sample bias, i.e. in repeated sampling, the estimator 

on average may not equal to the true parameter; and     is large sample bias, i.e. 

the estimator may not converge to the true parameter even when sample size grows in-

finitely large. For a consistent estimator, however,   ; as the sample size goes to 

infinity (t→∞),     tE ˆ  and so     tE ˆ . 

 

Figure A.1 Illustration of the problem associated with consistency 

 

Thus if the estimator  t̂  in the example is consistent, its Bias (BIAS) and Root Mean 

Square Error (RMSE)
1
 have the following property 

      0ˆˆ 



t

tt EBIAS   

and           0ˆˆˆ
2





t

ttt EVarRMSE   

                                                 
1
 BIAS indicates that by how much, on average, the estimator under- or overestimates the true value of 

the parameter; RMSE indicates that by how much, on average, the estimator deviates from the true value 

of parameter. 
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Following the simulation example the BIAS and RMSE of  t̂  observed on a si-

mulation basis is 

          


n

i

t

i

tt

n
EBIAS

1

ˆ1ˆˆ  

         
  

  













n

i

t

i

n

i

t

i

ttt

BIAS
n

n

EVarRMSE

1

2
2

1

2

2

ˆ1
                  

ˆ1
                  

ˆˆˆ







 

Ignoring t , recall also that the variance of OLS estimator ̂  is given by  

    12 'ˆ 
 XXVar u  

This suggests that the BIAS and RMSE of OLS estimators are related to sample size 

and the variance of error terms. 

 

The Simulation Experiment 

As specified in the DGP section, the true coefficients of the independent variables are 

  2,2 . Set the number of replications as 5000n  and conduct Monte Carlo expe-

riments. Table A.1 and A.2 present the simulation results of the BIAS and RMSE for 

1̂  as example. Figure A.2 plots the BIAS and RMSE in Table A.1 and A.2 to provide 

a clearer view. These depict the apparent empirical trends of the BIAS and RMSE of 

1̂  as sample size and residual variance vary. In particular, RMSE systematically de-

creases as sample size T increases and grows with the increase in u . These suggest 

that there exists potential systematic relationship between BIAS, RMSE and T, 2

u . 
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Table A.1 BIAS and RMSE of 
1̂  with fixed u  ( 1u ) 

Sample size BIAS RMSE 

25 -0.0006  0.7918  

50 0.0054  0.5243  

100 -0.0042  0.3596  

500 -0.0004  0.1555  

1000 -0.0004  0.1130  

Table A.2 BIAS and RMSE of 
1̂  with fixed sample size (T=200) 

u  
BIAS RMSE 

0.25 -0.0006  0.1250  

0.5 -0.0015  0.1830  

0.75 -0.0016  0.2101  

1 0.0030  0.2368  

1.25 0.0132  0.2965  

1.5 0.0013  0.2994  

 

Figure A.2 Plot of BIAS and RMSE of 1̂  as T and u  vary 
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Limitations of Monte Carlo Experiments and a Remedy 

There is criticism to simulation experiments due to the fact that setting of the problem is 

stochastically reformulated and the estimators have sampling distributions. This incurs 

two unavoidable difficulties as noted by Hendry (1984), imprecision and specificity. 

Imprecision is incurred by sampling distributions. There is a well developed literature 

that provides various methods to increase efficiency. Since the techniques to improve 

efficiency are not a focus for the study in this thesis, they are not discussed here. Elabo-

rate discussions can be found in Glynn and Iglehart (1988), Fishman (1996), Fournié et 

al. (1997); Asmussen and Binswanger (1997), Avramidis and Wilson (1998), Schmeiser 

et al. (2001), Glasserman (2004), etc. 

The other problem, specificity, refers to the fact that Monte Carlo estimation with 

only certain choice of parameters can do little more than provide some unknown gene-

rality. For instance in the above example, since the estimation of BIAS and RMSE of 

 t̂  is closely related to sample size T (for clarification, sample is denoted by T he-

reafter) and error term variance 2

u , it must be re-estimated and re-examined as T and 

u vary. This is particularly problematic in investigating finite sample distributions of 

testing statistics, e.g. interpolating percentiles for distributions under any sample size T. 

Unfortunately this can hardly be solved by analytics either. On the specificity pitfall in 

simulation experiments, the response surface methodology can act as an effective re-

medy to extend the Monte Carlo experiment results beyond those obtained under the 

parameters specified in the DGP through approximation. In the analysis where econo-

metric tests experience complicated asymptotics or the speed of convergence of testing 

statistic is slow and causes finite sample properties to behave substantially different 



Appendix A  An Introduction to Monte Carlo Method in Econometrics 

 153 

from asymptotics, the response surface method can provide contributive value to the 

theories. 

 

Response Surface Analysis 

The Concept of Response Surface Analysis 

The response surface methodology is a statistical method which explores the relation-

ships between several explanatory variables and one or more response variables. It was 

introduced by Box and Wilson (1951). They acknowledge that although this method 

only provides an approximation, it is useful due to the easy estimation and application 

even when little information is known about the problem. The general procedure of the 

method is firstly to identify the factors that affect the response variable; once the im-

portant factors have been identified, the next step is to determine the settings or func-

tional forms in which these factors result in the optimum value of the response variable.  

The technique has gained favour in several subjects such as physics, engineering, 

chemistry, biology, etc. Hendry (1984) firstly introduced response surface method into 

the field of econometrics to remedy the limitation of specificity in Monte Carlo experi-

ments. In the application procedure, after identifying the factors that affect the response 

variable, regressions are used to examine the relationship between the response and the 

factors, with the response being dependent variable and the factors being explanatory 

variables. The functional form of the regression is usually determined by the signific-

ance of the coefficients of independent variables and a reasonably high value of 2R  

which shows the high explanatory power of the factors to the response variable. The 

early econometric applications of response surface method are by MacKinnon (1991, 

1994) where the percentiles of the statistic distributions in several tests under a range of 

finite sample sizes are examined as well as the finite sample (or numerical) distribution 

http://en.wikipedia.org/wiki/Explanatory_variable
http://en.wikipedia.org/wiki/Response_variable
http://en.wikipedia.org/wiki/George_EP_Box
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functions of the statistics. The method was well welcomed and later has been applied in 

a number of studies (c.f. Cheung and Lai, 1995a,b; Sephton, 1995; Carrion et al, 1999; 

MacKinnon et al., 1999; Cook, 2001; Ericsson and MacKinnon, 2002; Presno and 

López, 2003, etc.). 

Following the simulation example, this section continues to illustrate the response 

surface method as a remedy to the problem of specificity in the Monte Carlo experiment. 

As is indicated by the Monte Carlo simulation example that there is potential systematic 

relationship between BIAS, RMSE and some factors that influence them, i.e. T, and 2

u . 

The relationship is particularly obvious for RMSE which can be clearly observed from 

Figure A.2. Regressing the series of BIAS or RMSE as response variables on the cor-

responding series of factors can provide important insight to the analysis, i.e. whether 

BIAS and RMSE will eventually disappear as sample size T passes to infinity and thus 

suggests if the estimator is consistent. Moreover, using the regression estimation results, 

the analysis can also assist in calculating the magnitude of BIAS or RMSE under any 

specific parameter values, T, and 2

u . The next section will demonstrate the method us-

ing RMSE as an example. 

 

The Response Surface Regression 

To run response surface regression, a series of RMSE need to be generated by Monte 

Carlo experiments with different sets of T and u . For example, they can be set as 

 50.1 1.25, ,0.1 ,75.0 ,5.0 ,25.0u  

 1000 500, 250, 100, 75, 50, ,25T  
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So there are overall 4276   Monte Carlo experiments with different combinations 

of u  and T. Each experiment consists of n = 5,000 replications. Take the RMSE of 

1̂  as example. For each experiment the RMSE of 
1̂  is recorded. 

The next step is to specify the functional form of response surface regression. Gener-

ally there is no specific rule on the design of the regression representation, rather it is a 

more empirical and trial procedure. Basically a functional form is chosen on the signi-

ficance of estimator coefficients and reasonably high 2R  to show the explanatory 

power of regressors. Due to the preliminary analysis that the RMSE of an OLS estima-

tor is affected by T and 2

u , some potential candidates of the explanatory variables for 

the response surface regression can be 
T

1
, 

T

1
, 

3

1

T
, 

T

u
, 

3T

u , 
3T

u
. After 

some trials and take the considerations stated above, the model is specified as 

    e
TTT

TfRMSE uu
u 







1
,ˆ 2

1    2,0~ eNIIDe   

  (A.4) 

Apply the OLS estimation and obtain 

 
TTT

RMSE uu 
 8595.89427.1

1
6698.1011.0ˆ

1          (A.5) 

 standard error   (0.0136) (0.1426)   (0.1484)    (4.3364)  

 p-value         (0.422)  (0.000)    (0.000)    (0.048) 

0.9752 R ,      (Prob > F)  =  0.0000 

where the null hypothesis of F-test is 0  . 

The extremely high value of R
2
 indicates that nearly all the variations in RMSE can 

be explained by the regressors. The constant term is insignificant as expected, which 

indicates that as T increases and passes to infinity, the RMSE of 1̂  reduces to zero. 



Appendix A  An Introduction to Monte Carlo Method in Econometrics 

 156 

Keeping T fixed, the increasing u  will dramatically add value to RMSE; whereas as 

T grows large, the excessive RMSE caused by u  will eventually disappear. Overall, 

the findings of response surface regression suggest that as sample size goes infinitely 

large, the RMSE of 
1̂  will pass to zero despite the influence of u , and thus the con-

sistency of OLS estimator is supported. 

Although the properties of OLS estimators have been analytically well established, 

they are employed here for the illustration of the methodology. In the main body of this 

thesis, the same spirit is adopted to investigate the finite sample bias and numerical dis-

tributions of the recently developed popular panel unit root tests, since the tests expe-

rience poor finite sample performance and also bear certain criticism regarding their 

asymptotic properties. On the performance of the tests under non-normality assumption, 

the response surface technique is again employed, due to the complexity of the analyti-

cal analysis. The trend of test distortion caused by the increasing degree of 

non-normality is observed with the assistance of response surface regressions and pro-

vides important indications for empirical studies. 
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Figure 2.2 Estimates of finite sample bias of the 1% and 10% percentiles for the three 

DGPs as sample sizes N and T vary (different scales for N and T) 

 

                     (a) DGP1-1%        (c) DGP1-10% 
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Figure 2.2 Estimates of finite sample bias of the 1% and 10% percentiles for the three 

DGPs as sample sizes N and T vary (different scales for N and T) (Cont’d) 

    

                 (d) DGP2-1%        (f) DGP2-10% 

 

        (g) DGP3-1%       (i) DGP3-10% 
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Figure 2.4 Plots of the numerical cumulative density functions (CDF) and probability 

density functions (PDF) for DGP1 

 

            (a) DGP1-CDF 

 

 

 

 (b) DGP1-PDF 
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Figure 2.6 Plots of the numerical cumulative density functions (CDF) and probability 

density functions (PDF) for DGP3 

 

            (a) DGP3-CDF 

 

 

(b) DGP3-PDF 
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Figure 2.7 Plots of the numerical cumulative density functions (CDF) and probability 

density functions (PDF) for DGP1, 50N  

(b) and (d) are enlarged view of (a) and (c), respectively 

 

  (a) DGP1-CDF 
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(b) DGP1-CDF-enlarged view of (a) 
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Figure 2.7 Plots of the numerical cumulative density functions (CDF) and probability 

density functions (PDF) for DGP1, 50N  (Cont’d) 

(b) and (d) are enlarged view of (a) and (c), respectively 

 

  (c) DGP1-PDF 
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         (d) DGP1-PDF-enlarged view of (c) 
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Figure 2.9 Plots of the numerical cumulative density functions (CDF) and probability density 

functions (PDF) for DGP3, 50N  

 

             (a) DGP3-CDF 

 

 

 

   (b) DGP3-PDF 
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N T

10 50 -2.543 -2.397 -1.754 -1.672 -1.353 -1.285

75 -2.614 -2.468 -1.811 -1.729 -1.415 -1.347

100 -2.550 -2.404 -1.768 -1.686 -1.364 -1.296

125 -2.544 -2.398 -1.760 -1.678 -1.361 -1.293

150 -2.600 -2.454 -1.739 -1.657 -1.325 -1.257

175 -2.523 -2.377 -1.809 -1.727 -1.392 -1.324

200 -2.463 -2.317 -1.745 -1.663 -1.338 -1.270

225 -2.619 -2.473 -1.849 -1.767 -1.418 -1.350

250 -2.536 -2.390 -1.768 -1.686 -1.361 -1.293

275 -2.518 -2.372 -1.684 -1.602 -1.299 -1.231

300 -2.566 -2.420 -1.788 -1.706 -1.400 -1.332

325 -2.487 -2.341 -1.798 -1.716 -1.396 -1.328

350 -2.517 -2.371 -1.755 -1.673 -1.363 -1.295

375 -2.630 -2.484 -1.815 -1.733 -1.392 -1.324

400 -2.515 -2.369 -1.779 -1.697 -1.361 -1.293

425 -2.593 -2.447 -1.784 -1.702 -1.377 -1.309

450 -2.604 -2.458 -1.783 -1.701 -1.349 -1.281

475 -2.554 -2.408 -1.810 -1.728 -1.392 -1.324

500 -2.495 -2.349 -1.781 -1.699 -1.371 -1.303

20 50 -2.621 -2.475 -1.802 -1.720 -1.344 -1.276

75 -2.464 -2.318 -1.757 -1.675 -1.368 -1.300

100 -2.499 -2.353 -1.702 -1.620 -1.318 -1.250

125 -2.580 -2.434 -1.757 -1.675 -1.342 -1.274

150 -2.542 -2.396 -1.717 -1.635 -1.299 -1.231

175 -2.625 -2.479 -1.764 -1.682 -1.356 -1.288

200 -2.514 -2.368 -1.704 -1.622 -1.320 -1.252

225 -2.545 -2.399 -1.752 -1.670 -1.345 -1.277

250 -2.516 -2.370 -1.738 -1.656 -1.345 -1.277

275 -2.570 -2.424 -1.721 -1.639 -1.315 -1.247

300 -2.533 -2.387 -1.746 -1.664 -1.318 -1.250

325 -2.518 -2.372 -1.724 -1.642 -1.318 -1.250

350 -2.532 -2.386 -1.690 -1.608 -1.300 -1.232

375 -2.536 -2.390 -1.732 -1.650 -1.306 -1.238

400 -2.504 -2.358 -1.726 -1.644 -1.330 -1.262

425 -2.487 -2.341 -1.663 -1.581 -1.302 -1.234

450 -2.538 -2.392 -1.756 -1.674 -1.321 -1.253

475 -2.500 -2.354 -1.728 -1.646 -1.336 -1.268

500 -2.540 -2.394 -1.719 -1.637 -1.305 -1.237

30 50 -2.642 -2.496 -1.746 -1.664 -1.312 -1.244

75 -2.470 -2.324 -1.700 -1.618 -1.274 -1.206

100 -2.573 -2.427 -1.726 -1.644 -1.303 -1.235

125 -2.453 -2.307 -1.664 -1.582 -1.282 -1.214

150 -2.526 -2.380 -1.684 -1.602 -1.291 -1.223

175 -2.510 -2.364 -1.700 -1.618 -1.287 -1.219

200 -2.479 -2.333 -1.697 -1.615 -1.261 -1.193

225 -2.463 -2.317 -1.696 -1.614 -1.313 -1.245

250 -2.483 -2.337 -1.714 -1.632 -1.313 -1.245

275 -2.531 -2.385 -1.709 -1.627 -1.308 -1.240

300 -2.464 -2.318 -1.661 -1.579 -1.274 -1.206

325 -2.498 -2.352 -1.693 -1.611 -1.288 -1.220

350 -2.490 -2.344 -1.695 -1.613 -1.289 -1.221

375 -2.464 -2.318 -1.718 -1.636 -1.308 -1.240

Table 2.3 Finite sample critical values intervals of Chang (2002) test and 

Chang and Song (2005, 2009) test

Chang (2002) test under weak dependence (DGP1)

1% 5% 10%
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N T

30 400 -2.407 -2.261 -1.664 -1.582 -1.247 -1.179

425 -2.474 -2.328 -1.709 -1.627 -1.312 -1.244

450 -2.523 -2.377 -1.686 -1.604 -1.276 -1.208

475 -2.515 -2.369 -1.705 -1.623 -1.282 -1.214

500 -2.423 -2.277 -1.676 -1.594 -1.233 -1.165

40 50 -2.584 -2.438 -1.797 -1.715 -1.344 -1.276

75 -2.521 -2.375 -1.704 -1.622 -1.315 -1.247

100 -2.466 -2.320 -1.702 -1.620 -1.324 -1.256

125 -2.538 -2.392 -1.712 -1.630 -1.279 -1.211

150 -2.498 -2.352 -1.706 -1.624 -1.288 -1.220

175 -2.535 -2.389 -1.734 -1.652 -1.297 -1.229

200 -2.518 -2.372 -1.721 -1.639 -1.324 -1.256

225 -2.581 -2.435 -1.743 -1.661 -1.331 -1.263

250 -2.593 -2.447 -1.744 -1.662 -1.325 -1.257

275 -2.428 -2.282 -1.696 -1.614 -1.289 -1.221

300 -2.516 -2.370 -1.739 -1.657 -1.315 -1.247

325 -2.576 -2.430 -1.759 -1.677 -1.307 -1.239

350 -2.499 -2.353 -1.699 -1.617 -1.293 -1.225

375 -2.522 -2.376 -1.731 -1.649 -1.323 -1.255

400 -2.518 -2.372 -1.727 -1.645 -1.311 -1.243

425 -2.519 -2.373 -1.707 -1.625 -1.297 -1.229

450 -2.506 -2.360 -1.718 -1.636 -1.273 -1.205

475 -2.496 -2.350 -1.706 -1.624 -1.287 -1.219

500 -2.517 -2.371 -1.704 -1.622 -1.285 -1.217

50 50 -2.492 -2.346 -1.685 -1.603 -1.270 -1.202

75 -2.498 -2.352 -1.678 -1.596 -1.271 -1.203

100 -2.492 -2.346 -1.713 -1.631 -1.289 -1.221

125 -2.421 -2.275 -1.648 -1.566 -1.229 -1.161

150 -2.519 -2.373 -1.735 -1.653 -1.275 -1.207

175 -2.506 -2.360 -1.720 -1.638 -1.287 -1.219

200 -2.458 -2.312 -1.660 -1.578 -1.202 -1.134

225 -2.495 -2.349 -1.689 -1.607 -1.261 -1.193

250 -2.513 -2.367 -1.668 -1.586 -1.267 -1.199

275 -2.510 -2.364 -1.698 -1.616 -1.267 -1.199

300 -2.487 -2.341 -1.683 -1.601 -1.247 -1.179

325 -2.506 -2.360 -1.631 -1.549 -1.214 -1.146

350 -2.459 -2.313 -1.679 -1.597 -1.247 -1.179

375 -2.436 -2.290 -1.631 -1.549 -1.233 -1.165

400 -2.422 -2.276 -1.634 -1.552 -1.241 -1.173

425 -2.434 -2.288 -1.643 -1.561 -1.260 -1.192

450 -2.506 -2.360 -1.646 -1.564 -1.240 -1.172

475 -2.460 -2.314 -1.677 -1.595 -1.276 -1.208

500 -2.442 -2.296 -1.651 -1.569 -1.255 -1.187

60 50 -2.466 -2.320 -1.706 -1.624 -1.267 -1.199

75 -2.404 -2.258 -1.650 -1.568 -1.230 -1.162

100 -2.536 -2.390 -1.694 -1.612 -1.273 -1.205

125 -2.440 -2.294 -1.660 -1.578 -1.268 -1.200

150 -2.514 -2.368 -1.737 -1.655 -1.297 -1.229

175 -2.457 -2.311 -1.682 -1.600 -1.255 -1.187

200 -2.460 -2.314 -1.673 -1.591 -1.271 -1.203

225 -2.383 -2.237 -1.649 -1.567 -1.222 -1.154

250 -2.410 -2.264 -1.695 -1.613 -1.261 -1.193

275 -2.517 -2.371 -1.661 -1.579 -1.251 -1.183

300 -2.465 -2.319 -1.666 -1.584 -1.241 -1.173

325 -2.498 -2.352 -1.692 -1.610 -1.239 -1.171

1% 5% 10%

Chang (2002) test under weak dependence (DGP1), Cont'd
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N T

60 350 -2.400 -2.254 -1.679 -1.597 -1.270 -1.202

375 -2.398 -2.252 -1.662 -1.580 -1.223 -1.155

400 -2.544 -2.398 -1.690 -1.608 -1.244 -1.176

425 -2.487 -2.341 -1.665 -1.583 -1.249 -1.181

450 -2.470 -2.324 -1.665 -1.583 -1.215 -1.147

475 -2.434 -2.288 -1.646 -1.564 -1.221 -1.153

500 -2.517 -2.371 -1.637 -1.555 -1.241 -1.173

70 50 -2.486 -2.340 -1.641 -1.559 -1.245 -1.177

75 -2.462 -2.316 -1.626 -1.544 -1.214 -1.146

100 -2.354 -2.208 -1.569 -1.487 -1.177 -1.109

125 -2.373 -2.227 -1.635 -1.553 -1.211 -1.143

150 -2.484 -2.338 -1.620 -1.538 -1.188 -1.120

175 -2.383 -2.237 -1.609 -1.527 -1.185 -1.117

200 -2.429 -2.283 -1.610 -1.528 -1.185 -1.117

225 -2.299 -2.153 -1.582 -1.500 -1.212 -1.144

250 -2.410 -2.264 -1.592 -1.510 -1.199 -1.131

275 -2.356 -2.210 -1.570 -1.488 -1.169 -1.101

300 -2.415 -2.269 -1.610 -1.528 -1.205 -1.137

325 -2.359 -2.213 -1.600 -1.518 -1.190 -1.122

350 -2.334 -2.188 -1.596 -1.514 -1.188 -1.120

375 -2.405 -2.259 -1.608 -1.526 -1.188 -1.120

400 -2.341 -2.195 -1.571 -1.489 -1.155 -1.087

425 -2.391 -2.245 -1.593 -1.511 -1.169 -1.101

450 -2.286 -2.140 -1.568 -1.486 -1.174 -1.106

475 -2.476 -2.330 -1.656 -1.574 -1.241 -1.173

500 -2.378 -2.232 -1.597 -1.515 -1.201 -1.133

80 50 -2.397 -2.251 -1.637 -1.555 -1.226 -1.158

75 -2.405 -2.259 -1.648 -1.566 -1.236 -1.168

100 -2.405 -2.259 -1.590 -1.508 -1.207 -1.139

125 -2.342 -2.196 -1.587 -1.505 -1.160 -1.092

150 -2.370 -2.224 -1.546 -1.464 -1.152 -1.084

175 -2.412 -2.266 -1.608 -1.526 -1.192 -1.124

200 -2.381 -2.235 -1.572 -1.490 -1.171 -1.103

225 -2.475 -2.329 -1.604 -1.522 -1.213 -1.145

250 -2.390 -2.244 -1.587 -1.505 -1.176 -1.108

275 -2.296 -2.150 -1.506 -1.424 -1.145 -1.077

300 -2.392 -2.246 -1.587 -1.505 -1.180 -1.112

325 -2.379 -2.233 -1.592 -1.510 -1.194 -1.126

350 -2.411 -2.265 -1.605 -1.523 -1.177 -1.109

375 -2.382 -2.236 -1.599 -1.517 -1.163 -1.095

400 -2.401 -2.255 -1.584 -1.502 -1.174 -1.106

425 -2.402 -2.256 -1.600 -1.518 -1.190 -1.122

450 -2.360 -2.214 -1.562 -1.480 -1.154 -1.086

475 -2.329 -2.183 -1.556 -1.474 -1.149 -1.081

500 -2.333 -2.187 -1.576 -1.494 -1.196 -1.128

90 50 -2.440 -2.294 -1.587 -1.505 -1.202 -1.134

75 -2.399 -2.253 -1.597 -1.515 -1.168 -1.100

100 -2.335 -2.189 -1.593 -1.511 -1.164 -1.096

125 -2.274 -2.128 -1.537 -1.455 -1.139 -1.071

150 -2.384 -2.238 -1.554 -1.472 -1.132 -1.064

175 -2.380 -2.234 -1.553 -1.471 -1.127 -1.059

200 -2.440 -2.294 -1.610 -1.528 -1.217 -1.149

225 -2.319 -2.173 -1.527 -1.445 -1.121 -1.053

250 -2.312 -2.166 -1.560 -1.478 -1.155 -1.087

275 -2.327 -2.181 -1.536 -1.454 -1.114 -1.046

Chang (2002) test under weak dependence (DGP1), Cont'd

5% 10%1%
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90 300 -2.326 -2.180 -1.561 -1.479 -1.163 -1.095

325 -2.282 -2.136 -1.536 -1.454 -1.120 -1.052

350 -2.293 -2.147 -1.584 -1.502 -1.138 -1.070

375 -2.356 -2.210 -1.581 -1.499 -1.192 -1.124

400 -2.312 -2.166 -1.508 -1.426 -1.128 -1.060

425 -2.402 -2.256 -1.596 -1.514 -1.173 -1.105

450 -2.315 -2.169 -1.560 -1.478 -1.168 -1.100

475 -2.349 -2.203 -1.581 -1.499 -1.171 -1.103

500 -2.306 -2.160 -1.548 -1.466 -1.158 -1.090

100 50 -2.435 -2.289 -1.599 -1.517 -1.185 -1.117

75 -2.395 -2.249 -1.592 -1.510 -1.201 -1.133

100 -2.327 -2.181 -1.576 -1.494 -1.175 -1.107

125 -2.330 -2.184 -1.533 -1.451 -1.134 -1.066

150 -2.449 -2.303 -1.581 -1.499 -1.164 -1.096

175 -2.400 -2.254 -1.585 -1.503 -1.167 -1.099

200 -2.336 -2.190 -1.575 -1.493 -1.151 -1.083

225 -2.339 -2.193 -1.543 -1.461 -1.133 -1.065

250 -2.320 -2.174 -1.552 -1.470 -1.137 -1.069

275 -2.376 -2.230 -1.536 -1.454 -1.136 -1.068

300 -2.359 -2.213 -1.563 -1.481 -1.148 -1.080

325 -2.391 -2.245 -1.548 -1.466 -1.144 -1.076

350 -2.448 -2.302 -1.586 -1.504 -1.154 -1.086

375 -2.404 -2.258 -1.551 -1.469 -1.130 -1.062

400 -2.367 -2.221 -1.587 -1.505 -1.161 -1.093

425 -2.379 -2.233 -1.587 -1.505 -1.160 -1.092

450 -2.399 -2.253 -1.547 -1.465 -1.108 -1.040

475 -2.439 -2.293 -1.601 -1.519 -1.178 -1.110

500 -2.298 -2.152 -1.539 -1.457 -1.119 -1.051

N T

10 50 -2.671 -2.525 -1.745 -1.663 -1.298 -1.230

75 -2.887 -2.741 -1.895 -1.813 -1.410 -1.342

100 -2.988 -2.842 -1.952 -1.870 -1.491 -1.423

125 -2.954 -2.808 -1.906 -1.824 -1.436 -1.368

150 -2.969 -2.823 -1.992 -1.910 -1.500 -1.432

175 -2.763 -2.617 -1.863 -1.781 -1.420 -1.352

200 -3.339 -3.193 -2.187 -2.105 -1.630 -1.562

225 -3.004 -2.858 -2.052 -1.970 -1.563 -1.495

250 -3.300 -3.154 -2.265 -2.183 -1.716 -1.648

275 -3.341 -3.195 -2.190 -2.108 -1.654 -1.586

300 -2.797 -2.651 -1.953 -1.871 -1.523 -1.455

325 -3.095 -2.949 -2.075 -1.993 -1.542 -1.474

350 -3.280 -3.134 -2.228 -2.146 -1.689 -1.621

375 -3.141 -2.995 -2.127 -2.045 -1.610 -1.542

400 -3.233 -3.087 -2.210 -2.128 -1.668 -1.600

425 -3.328 -3.182 -2.248 -2.166 -1.709 -1.641

450 -3.222 -3.076 -2.100 -2.018 -1.600 -1.532

475 -3.470 -3.324 -2.312 -2.230 -1.743 -1.675

500 -3.130 -2.984 -2.162 -2.080 -1.622 -1.554

20 50 -2.321 -2.175 -1.535 -1.453 -1.148 -1.080

75 -2.320 -2.174 -1.589 -1.507 -1.193 -1.125

100 -2.238 -2.092 -1.548 -1.466 -1.188 -1.120

1% 5% 10%

10%5%

Chang and Song (2005, 2009) test under strong dependence (DGP2)

1%

Chang (2002) test under weak dependence (DGP1), Cont'd
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125 -2.469 -2.323 -1.656 -1.574 -1.256 -1.188

150 -2.645 -2.499 -1.775 -1.693 -1.354 -1.286

175 -2.545 -2.399 -1.693 -1.611 -1.282 -1.214

200 -2.659 -2.513 -1.811 -1.729 -1.391 -1.323

225 -2.758 -2.612 -1.892 -1.810 -1.439 -1.371

250 -2.950 -2.804 -1.967 -1.885 -1.504 -1.436

275 -2.833 -2.687 -1.860 -1.778 -1.453 -1.385

300 -2.802 -2.656 -1.884 -1.802 -1.468 -1.400

325 -2.750 -2.604 -1.940 -1.858 -1.487 -1.419

350 -3.272 -3.126 -2.166 -2.084 -1.619 -1.551

375 -2.719 -2.573 -1.860 -1.778 -1.456 -1.388

400 -2.979 -2.833 -2.021 -1.939 -1.581 -1.513

425 -2.785 -2.639 -1.889 -1.807 -1.471 -1.403

450 -2.825 -2.679 -1.949 -1.867 -1.518 -1.450

475 -3.200 -3.054 -2.201 -2.119 -1.703 -1.635

500 -3.183 -3.037 -2.184 -2.102 -1.661 -1.593

30 50 -1.843 -1.697 -1.208 -1.126 -0.902 -0.834

75 -2.060 -1.914 -1.402 -1.320 -1.076 -1.008

100 -2.019 -1.873 -1.380 -1.298 -1.044 -0.976

125 -2.275 -2.129 -1.531 -1.449 -1.156 -1.088

150 -2.177 -2.031 -1.484 -1.402 -1.122 -1.054

175 -2.404 -2.258 -1.638 -1.556 -1.243 -1.175

200 -2.495 -2.349 -1.664 -1.582 -1.265 -1.197

225 -2.674 -2.528 -1.864 -1.782 -1.403 -1.335

250 -2.542 -2.396 -1.732 -1.650 -1.340 -1.272

275 -2.656 -2.510 -1.792 -1.710 -1.382 -1.314

300 -2.596 -2.450 -1.771 -1.689 -1.382 -1.314

325 -2.691 -2.545 -1.854 -1.772 -1.428 -1.360

350 -2.926 -2.780 -1.968 -1.886 -1.487 -1.419

375 -2.779 -2.633 -1.872 -1.790 -1.462 -1.394

400 -2.718 -2.572 -1.854 -1.772 -1.458 -1.390

425 -2.819 -2.673 -1.914 -1.832 -1.490 -1.422

450 -2.924 -2.778 -2.008 -1.926 -1.524 -1.456

475 -2.955 -2.809 -2.007 -1.925 -1.577 -1.509

500 -2.856 -2.710 -1.981 -1.899 -1.517 -1.449

40 50 -1.890 -1.744 -1.236 -1.154 -0.930 -0.862

75 -1.999 -1.853 -1.329 -1.247 -0.999 -0.931

100 -2.117 -1.971 -1.394 -1.312 -1.043 -0.975

125 -1.988 -1.842 -1.374 -1.292 -1.042 -0.974

150 -2.267 -2.121 -1.501 -1.419 -1.135 -1.067

175 -2.366 -2.220 -1.591 -1.509 -1.210 -1.142

200 -2.403 -2.257 -1.632 -1.550 -1.255 -1.187

225 -2.298 -2.152 -1.588 -1.506 -1.228 -1.160

250 -2.299 -2.153 -1.600 -1.518 -1.223 -1.155

275 -2.724 -2.578 -1.842 -1.760 -1.403 -1.335

300 -2.293 -2.147 -1.573 -1.491 -1.235 -1.167

325 -2.562 -2.416 -1.758 -1.676 -1.362 -1.294

350 -2.737 -2.591 -1.855 -1.773 -1.423 -1.355

375 -2.620 -2.474 -1.796 -1.714 -1.391 -1.323

400 -2.368 -2.222 -1.639 -1.557 -1.255 -1.187

425 -2.631 -2.485 -1.849 -1.767 -1.435 -1.367

450 -2.612 -2.466 -1.822 -1.740 -1.404 -1.336

475 -2.842 -2.696 -1.898 -1.816 -1.481 -1.413

500 -2.759 -2.613 -1.856 -1.774 -1.435 -1.367

50 50 -1.740 -1.594 -1.218 -1.136 -0.925 -0.857

Chang and Song (2005, 2009) test under strong dependence (DGP2), Cont'd
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50 75 -1.879 -1.733 -1.263 -1.181 -0.968 -0.900

100 -1.928 -1.782 -1.313 -1.231 -0.981 -0.913

125 -2.001 -1.855 -1.345 -1.263 -0.997 -0.929

150 -1.977 -1.831 -1.362 -1.280 -1.030 -0.962

175 -2.155 -2.009 -1.424 -1.342 -1.100 -1.032

200 -2.206 -2.060 -1.484 -1.402 -1.115 -1.047

225 -2.282 -2.136 -1.560 -1.478 -1.204 -1.136

250 -2.069 -1.923 -1.419 -1.337 -1.122 -1.054

275 -2.344 -2.198 -1.623 -1.541 -1.255 -1.187

300 -2.242 -2.096 -1.548 -1.466 -1.211 -1.143

325 -2.320 -2.174 -1.627 -1.545 -1.276 -1.208

350 -2.382 -2.236 -1.615 -1.533 -1.229 -1.161

375 -2.283 -2.137 -1.585 -1.503 -1.282 -1.214

400 -2.442 -2.296 -1.688 -1.606 -1.307 -1.239

425 -2.415 -2.269 -1.700 -1.618 -1.337 -1.269

450 -2.455 -2.309 -1.696 -1.614 -1.338 -1.270

475 -2.478 -2.332 -1.732 -1.650 -1.352 -1.284

500 -2.598 -2.452 -1.722 -1.640 -1.356 -1.288

60 50 -1.891 -1.745 -1.262 -1.180 -0.954 -0.886

75 -1.812 -1.666 -1.241 -1.159 -0.942 -0.874

100 -1.802 -1.656 -1.258 -1.176 -0.956 -0.888

125 -2.035 -1.889 -1.365 -1.283 -1.009 -0.941

150 -2.025 -1.879 -1.387 -1.305 -1.062 -0.994

175 -2.112 -1.966 -1.436 -1.354 -1.079 -1.011

200 -2.225 -2.079 -1.499 -1.417 -1.133 -1.065

225 -2.174 -2.028 -1.490 -1.408 -1.146 -1.078

250 -2.344 -2.198 -1.578 -1.496 -1.217 -1.149

275 -2.303 -2.157 -1.590 -1.508 -1.193 -1.125

300 -2.259 -2.113 -1.559 -1.477 -1.217 -1.149

325 -2.391 -2.245 -1.618 -1.536 -1.266 -1.198

350 -2.322 -2.176 -1.622 -1.540 -1.249 -1.181

375 -2.231 -2.085 -1.537 -1.455 -1.217 -1.149

400 -2.265 -2.119 -1.567 -1.485 -1.234 -1.166

425 -2.387 -2.241 -1.729 -1.647 -1.366 -1.298

450 -2.447 -2.301 -1.694 -1.612 -1.335 -1.267

475 -2.472 -2.326 -1.680 -1.598 -1.333 -1.265

500 -2.598 -2.452 -1.825 -1.743 -1.395 -1.327

70 50 -1.757 -1.611 -1.259 -1.177 -0.952 -0.884

75 -1.895 -1.749 -1.248 -1.166 -0.948 -0.880

100 -1.822 -1.676 -1.234 -1.152 -0.933 -0.865

125 -2.007 -1.861 -1.335 -1.253 -0.993 -0.925

150 -1.776 -1.630 -1.236 -1.154 -0.940 -0.872

175 -1.981 -1.835 -1.347 -1.265 -1.003 -0.935

200 -1.960 -1.814 -1.342 -1.260 -1.018 -0.950

225 -2.102 -1.956 -1.448 -1.366 -1.090 -1.022

250 -1.852 -1.706 -1.292 -1.210 -1.000 -0.932

275 -1.939 -1.793 -1.349 -1.267 -1.058 -0.990

300 -2.227 -2.081 -1.479 -1.397 -1.127 -1.059

325 -2.168 -2.022 -1.521 -1.439 -1.189 -1.121

350 -2.222 -2.076 -1.501 -1.419 -1.146 -1.078

375 -2.450 -2.304 -1.638 -1.556 -1.253 -1.185

400 -2.153 -2.007 -1.499 -1.417 -1.176 -1.108

425 -2.311 -2.165 -1.613 -1.531 -1.259 -1.191

450 -2.271 -2.125 -1.605 -1.523 -1.264 -1.196

475 -2.298 -2.152 -1.610 -1.528 -1.269 -1.201

Chang and Song (2005, 2009) test under strong dependence (DGP2), Cont'd
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70 500 -2.148 -2.002 -1.484 -1.402 -1.196 -1.128

80 50 -1.841 -1.695 -1.241 -1.159 -0.964 -0.896

75 -1.816 -1.670 -1.265 -1.183 -0.956 -0.888

100 -1.883 -1.737 -1.283 -1.201 -0.989 -0.921

125 -1.811 -1.665 -1.265 -1.183 -0.970 -0.902

150 -1.908 -1.762 -1.254 -1.172 -0.952 -0.884

175 -1.791 -1.645 -1.243 -1.161 -0.935 -0.867

200 -2.058 -1.912 -1.379 -1.297 -1.044 -0.976

225 -1.797 -1.651 -1.246 -1.164 -0.963 -0.895

250 -2.010 -1.864 -1.380 -1.298 -1.059 -0.991

275 -1.992 -1.846 -1.380 -1.298 -1.058 -0.990

300 -2.053 -1.907 -1.410 -1.328 -1.096 -1.028

325 -2.195 -2.049 -1.498 -1.416 -1.170 -1.102

350 -2.176 -2.030 -1.531 -1.449 -1.172 -1.104

375 -2.124 -1.978 -1.469 -1.387 -1.143 -1.075

400 -1.995 -1.849 -1.410 -1.328 -1.136 -1.068

425 -2.355 -2.209 -1.623 -1.541 -1.257 -1.189

450 -2.098 -1.952 -1.457 -1.375 -1.144 -1.076

475 -2.176 -2.030 -1.542 -1.460 -1.216 -1.148

500 -2.112 -1.966 -1.541 -1.459 -1.224 -1.156

90 50 -1.914 -1.768 -1.310 -1.228 -1.006 -0.938

75 -1.905 -1.759 -1.325 -1.243 -0.998 -0.930

100 -1.901 -1.755 -1.314 -1.232 -0.983 -0.915

125 -1.817 -1.671 -1.253 -1.171 -0.926 -0.858

150 -1.994 -1.848 -1.338 -1.256 -1.008 -0.940

175 -1.963 -1.817 -1.358 -1.276 -1.022 -0.954

200 -1.956 -1.810 -1.349 -1.267 -1.008 -0.940

225 -1.794 -1.648 -1.244 -1.162 -0.969 -0.901

250 -1.894 -1.748 -1.301 -1.219 -1.016 -0.948

275 -2.037 -1.891 -1.401 -1.319 -1.058 -0.990

300 -2.067 -1.921 -1.451 -1.369 -1.107 -1.039

325 -2.157 -2.011 -1.470 -1.388 -1.132 -1.064

350 -2.135 -1.989 -1.457 -1.375 -1.121 -1.053

375 -2.262 -2.116 -1.589 -1.507 -1.206 -1.138

400 -2.166 -2.020 -1.470 -1.388 -1.145 -1.077

425 -2.232 -2.086 -1.556 -1.474 -1.211 -1.143

450 -2.210 -2.064 -1.532 -1.450 -1.199 -1.131

475 -2.234 -2.088 -1.573 -1.491 -1.240 -1.172

500 -2.368 -2.222 -1.644 -1.562 -1.286 -1.218

100 50 -1.934 -1.788 -1.350 -1.268 -1.050 -0.982

75 -1.915 -1.769 -1.332 -1.250 -1.011 -0.943

100 -1.858 -1.712 -1.269 -1.187 -0.958 -0.890

125 -1.877 -1.731 -1.291 -1.209 -0.990 -0.922

150 -1.720 -1.574 -1.193 -1.111 -0.918 -0.850

175 -1.858 -1.712 -1.271 -1.189 -0.942 -0.874

200 -1.863 -1.717 -1.274 -1.192 -0.979 -0.911

225 -1.965 -1.819 -1.313 -1.231 -0.986 -0.918

250 -1.945 -1.799 -1.349 -1.267 -1.037 -0.969

275 -2.022 -1.876 -1.381 -1.299 -1.033 -0.965

300 -2.138 -1.992 -1.414 -1.332 -1.107 -1.039

325 -2.134 -1.988 -1.381 -1.299 -1.050 -0.982

350 -2.113 -1.967 -1.460 -1.378 -1.082 -1.014

375 -2.106 -1.960 -1.441 -1.359 -1.128 -1.060

400 -2.131 -1.985 -1.498 -1.416 -1.176 -1.108

425 -1.991 -1.845 -1.409 -1.327 -1.105 -1.037

1% 5% 10%

Chang and Song (2005, 2009) test under strong dependence (DGP2), Cont'd
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100 450 -2.108 -1.962 -1.460 -1.378 -1.139 -1.071

475 -2.162 -2.016 -1.504 -1.422 -1.183 -1.115

500 -2.181 -2.035 -1.504 -1.422 -1.202 -1.134

N T

10 50 -3.551 -3.405 -2.205 -2.123 -1.572 -1.504

75 -4.193 -4.047 -2.507 -2.425 -1.712 -1.644

100 -4.636 -4.490 -2.735 -2.653 -1.838 -1.770

125 -4.768 -4.622 -2.813 -2.731 -1.907 -1.839

150 -4.912 -4.766 -3.046 -2.964 -2.036 -1.968

175 -5.353 -5.207 -3.263 -3.181 -2.188 -2.120

200 -5.218 -5.072 -3.162 -3.080 -2.138 -2.070

225 -5.581 -5.435 -3.483 -3.401 -2.466 -2.398

250 -5.295 -5.149 -3.249 -3.167 -2.243 -2.175

275 -5.481 -5.335 -3.388 -3.306 -2.319 -2.251

300 -5.545 -5.399 -3.417 -3.335 -2.355 -2.287

325 -5.483 -5.337 -3.540 -3.458 -2.496 -2.428

350 -5.548 -5.402 -3.539 -3.457 -2.352 -2.284

375 -5.619 -5.473 -3.479 -3.397 -2.387 -2.319

400 -5.825 -5.679 -3.740 -3.658 -2.568 -2.500

425 -5.833 -5.687 -3.723 -3.641 -2.608 -2.540

450 -5.552 -5.406 -3.517 -3.435 -2.421 -2.353

475 -6.276 -6.130 -3.995 -3.913 -2.768 -2.700

500 -5.772 -5.626 -3.615 -3.533 -2.474 -2.406

20 50 -3.118 -2.972 -1.873 -1.791 -1.322 -1.254

75 -3.547 -3.401 -2.145 -2.063 -1.441 -1.373

100 -3.991 -3.845 -2.296 -2.214 -1.527 -1.459

125 -4.195 -4.049 -2.410 -2.328 -1.642 -1.574

150 -4.544 -4.398 -2.522 -2.440 -1.677 -1.609

175 -5.078 -4.932 -2.848 -2.766 -1.841 -1.773

200 -5.099 -4.953 -2.757 -2.675 -1.742 -1.674

225 -5.440 -5.294 -3.028 -2.946 -1.984 -1.916

250 -5.385 -5.239 -2.932 -2.850 -1.884 -1.816

275 -5.460 -5.314 -3.101 -3.019 -1.978 -1.910

300 -5.586 -5.440 -3.091 -3.009 -2.038 -1.970

325 -5.520 -5.374 -3.158 -3.076 -2.132 -2.064

350 -5.783 -5.637 -3.325 -3.243 -2.135 -2.067

375 -5.768 -5.622 -3.270 -3.188 -2.166 -2.098

400 -6.293 -6.147 -3.519 -3.437 -2.337 -2.269

425 -6.238 -6.092 -3.456 -3.374 -2.229 -2.161

450 -5.880 -5.734 -3.168 -3.086 -2.073 -2.005

475 -6.444 -6.298 -3.546 -3.464 -2.211 -2.143

500 -6.294 -6.148 -3.406 -3.324 -2.148 -2.080

30 50 -2.842 -2.696 -1.829 -1.747 -1.337 -1.269

75 -3.321 -3.175 -1.937 -1.855 -1.354 -1.286

100 -3.761 -3.615 -2.099 -2.017 -1.449 -1.381

125 -3.746 -3.600 -2.151 -2.069 -1.469 -1.401

150 -4.121 -3.975 -2.332 -2.250 -1.514 -1.446

175 -4.518 -4.372 -2.529 -2.447 -1.729 -1.661

200 -4.443 -4.297 -2.457 -2.375 -1.621 -1.553

225 -4.856 -4.710 -2.660 -2.578 -1.797 -1.729

250 -4.917 -4.771 -2.700 -2.618 -1.846 -1.778

5% 10%

Chang and Song (2005, 2009) test under long run dependence (DGP3)

1% 5% 10%
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30 275 -5.215 -5.069 -2.808 -2.726 -1.839 -1.771

300 -5.042 -4.896 -2.694 -2.612 -1.789 -1.721

325 -5.064 -4.918 -2.807 -2.725 -1.909 -1.841

350 -5.227 -5.081 -2.881 -2.799 -1.903 -1.835

375 -5.480 -5.334 -2.949 -2.867 -2.005 -1.937

400 -5.488 -5.342 -2.983 -2.901 -2.017 -1.949

425 -5.732 -5.586 -3.084 -3.002 -2.026 -1.958

450 -5.652 -5.506 -2.965 -2.883 -2.008 -1.940

475 -5.978 -5.832 -3.079 -2.997 -2.001 -1.933

500 -5.874 -5.728 -3.100 -3.018 -2.088 -2.020

40 50 -2.898 -2.752 -1.824 -1.742 -1.329 -1.261

75 -3.084 -2.938 -1.897 -1.815 -1.350 -1.282

100 -3.453 -3.307 -2.076 -1.994 -1.436 -1.368

125 -3.681 -3.535 -2.096 -2.014 -1.467 -1.399

150 -3.829 -3.683 -2.212 -2.130 -1.522 -1.454

175 -4.257 -4.111 -2.536 -2.454 -1.765 -1.697

200 -4.324 -4.178 -2.458 -2.376 -1.701 -1.633

225 -4.590 -4.444 -2.653 -2.571 -1.821 -1.753

250 -4.363 -4.217 -2.476 -2.394 -1.698 -1.630

275 -4.862 -4.716 -2.698 -2.616 -1.875 -1.807

300 -4.745 -4.599 -2.655 -2.573 -1.851 -1.783

325 -4.652 -4.506 -2.640 -2.558 -1.837 -1.769

350 -4.774 -4.628 -2.679 -2.597 -1.861 -1.793

375 -4.913 -4.767 -2.752 -2.670 -1.927 -1.859

400 -5.312 -5.166 -2.968 -2.886 -2.063 -1.995

425 -5.331 -5.185 -2.835 -2.753 -1.934 -1.866

450 -5.337 -5.191 -2.895 -2.813 -1.941 -1.873

475 -5.438 -5.292 -2.926 -2.844 -1.961 -1.893

500 -5.581 -5.435 -2.922 -2.840 -2.002 -1.934

50 50 -2.755 -2.609 -1.835 -1.753 -1.333 -1.265

75 -2.978 -2.832 -1.815 -1.733 -1.302 -1.234

100 -3.168 -3.022 -1.966 -1.884 -1.354 -1.286

125 -3.406 -3.260 -2.008 -1.926 -1.421 -1.353

150 -3.688 -3.542 -2.148 -2.066 -1.534 -1.466

175 -4.135 -3.989 -2.460 -2.378 -1.762 -1.694

200 -3.859 -3.713 -2.215 -2.133 -1.478 -1.410

225 -4.249 -4.103 -2.460 -2.378 -1.731 -1.663

250 -4.270 -4.124 -2.435 -2.353 -1.728 -1.660

275 -4.607 -4.461 -2.529 -2.447 -1.771 -1.703

300 -4.452 -4.306 -2.428 -2.346 -1.715 -1.647

325 -4.504 -4.358 -2.607 -2.525 -1.849 -1.781

350 -4.483 -4.337 -2.475 -2.393 -1.711 -1.643

375 -4.555 -4.409 -2.603 -2.521 -1.842 -1.774

400 -4.834 -4.688 -2.699 -2.617 -1.862 -1.794

425 -4.991 -4.845 -2.799 -2.717 -1.949 -1.881

450 -4.903 -4.757 -2.746 -2.664 -1.882 -1.814

475 -5.258 -5.112 -2.869 -2.787 -2.017 -1.949

500 -5.129 -4.983 -2.830 -2.748 -1.912 -1.844

60 50 -2.846 -2.700 -1.821 -1.739 -1.339 -1.271

75 -2.929 -2.783 -1.849 -1.767 -1.340 -1.272

100 -3.129 -2.983 -1.934 -1.852 -1.386 -1.318

125 -3.323 -3.177 -1.989 -1.907 -1.385 -1.317

150 -3.462 -3.316 -2.107 -2.025 -1.494 -1.426

175 -3.659 -3.513 -2.196 -2.114 -1.493 -1.425

200 -3.712 -3.566 -2.169 -2.087 -1.508 -1.440

Chang and Song (2005, 2009) test under long run dependence (DGP3), Cont'd
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60 225 -4.000 -3.854 -2.237 -2.155 -1.576 -1.508

250 -3.965 -3.819 -2.265 -2.183 -1.601 -1.533

275 -4.223 -4.077 -2.426 -2.344 -1.683 -1.615

300 -4.016 -3.870 -2.259 -2.177 -1.588 -1.520

325 -4.164 -4.018 -2.420 -2.338 -1.701 -1.633

350 -4.265 -4.119 -2.452 -2.370 -1.729 -1.661

375 -4.398 -4.252 -2.479 -2.397 -1.783 -1.715

400 -4.486 -4.340 -2.613 -2.531 -1.817 -1.749

425 -4.670 -4.524 -2.657 -2.575 -1.873 -1.805

450 -4.733 -4.587 -2.640 -2.558 -1.858 -1.790

475 -4.723 -4.577 -2.709 -2.627 -1.885 -1.817

500 -4.656 -4.510 -2.700 -2.618 -1.871 -1.803

70 50 -2.780 -2.634 -1.848 -1.766 -1.386 -1.318

75 -2.947 -2.801 -1.869 -1.787 -1.380 -1.312

100 -3.086 -2.940 -1.920 -1.838 -1.348 -1.280

125 -3.192 -3.046 -1.947 -1.865 -1.373 -1.305

150 -3.380 -3.234 -2.052 -1.970 -1.447 -1.379

175 -3.702 -3.556 -2.204 -2.122 -1.543 -1.475

200 -3.609 -3.463 -2.057 -1.975 -1.414 -1.346

225 -3.635 -3.489 -2.138 -2.056 -1.505 -1.437

250 -3.942 -3.796 -2.237 -2.155 -1.544 -1.476

275 -3.899 -3.753 -2.358 -2.276 -1.646 -1.578

300 -4.011 -3.865 -2.318 -2.236 -1.656 -1.588

325 -4.354 -4.208 -2.447 -2.365 -1.760 -1.692

350 -4.283 -4.137 -2.411 -2.329 -1.745 -1.677

375 -4.129 -3.983 -2.360 -2.278 -1.693 -1.625

400 -4.253 -4.107 -2.491 -2.409 -1.774 -1.706

425 -4.402 -4.256 -2.577 -2.495 -1.848 -1.780

450 -4.350 -4.204 -2.638 -2.556 -1.858 -1.790

475 -4.666 -4.520 -2.579 -2.497 -1.807 -1.739

500 -4.591 -4.445 -2.592 -2.510 -1.790 -1.722

80 50 -2.855 -2.709 -1.881 -1.799 -1.394 -1.326

75 -2.962 -2.816 -1.854 -1.772 -1.341 -1.273

100 -3.001 -2.855 -1.891 -1.809 -1.352 -1.284

125 -3.219 -3.073 -1.945 -1.863 -1.401 -1.333

150 -3.271 -3.125 -1.980 -1.898 -1.397 -1.329

175 -3.546 -3.400 -2.172 -2.090 -1.516 -1.448

200 -3.513 -3.367 -2.030 -1.948 -1.439 -1.371

225 -3.741 -3.595 -2.271 -2.189 -1.592 -1.524

250 -3.641 -3.495 -2.164 -2.082 -1.516 -1.448

275 -3.980 -3.834 -2.282 -2.200 -1.593 -1.525

300 -3.902 -3.756 -2.308 -2.226 -1.639 -1.571

325 -4.002 -3.856 -2.377 -2.295 -1.681 -1.613

350 -3.999 -3.853 -2.383 -2.301 -1.707 -1.639

375 -4.245 -4.099 -2.416 -2.334 -1.692 -1.624

400 -4.134 -3.988 -2.382 -2.300 -1.693 -1.625

425 -4.412 -4.266 -2.552 -2.470 -1.817 -1.749

450 -4.467 -4.321 -2.535 -2.453 -1.818 -1.750

475 -4.452 -4.306 -2.591 -2.509 -1.853 -1.785

500 -4.594 -4.448 -2.642 -2.560 -1.880 -1.812

90 50 -2.878 -2.732 -1.868 -1.786 -1.412 -1.344

75 -2.875 -2.729 -1.846 -1.764 -1.352 -1.284

100 -3.115 -2.969 -1.853 -1.771 -1.331 -1.263

125 -3.057 -2.911 -1.834 -1.752 -1.315 -1.247

150 -3.311 -3.165 -1.962 -1.880 -1.379 -1.311

Chang and Song (2005, 2009) test under long run dependence (DGP3), Cont'd
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175 -3.442 -3.296 -2.089 -2.007 -1.457 -1.389

200 -3.397 -3.251 -1.981 -1.899 -1.383 -1.315

225 -3.393 -3.247 -2.062 -1.980 -1.444 -1.376

250 -3.651 -3.505 -2.068 -1.986 -1.448 -1.380

275 -3.580 -3.434 -2.183 -2.101 -1.565 -1.497

300 -3.700 -3.554 -2.216 -2.134 -1.573 -1.505

325 -4.008 -3.862 -2.266 -2.184 -1.614 -1.546

350 -3.941 -3.795 -2.296 -2.214 -1.617 -1.549

375 -4.042 -3.896 -2.348 -2.266 -1.687 -1.619

400 -4.162 -4.016 -2.384 -2.302 -1.638 -1.570

425 -4.108 -3.962 -2.460 -2.378 -1.751 -1.683

450 -4.259 -4.113 -2.446 -2.364 -1.733 -1.665

475 -4.246 -4.100 -2.437 -2.355 -1.757 -1.689

500 -4.310 -4.164 -2.493 -2.411 -1.791 -1.723

100 50 -2.912 -2.766 -1.940 -1.858 -1.461 -1.393

75 -2.883 -2.737 -1.875 -1.793 -1.374 -1.306

100 -3.088 -2.942 -1.918 -1.836 -1.400 -1.332

125 -2.955 -2.809 -1.822 -1.740 -1.299 -1.231

150 -3.264 -3.118 -1.985 -1.903 -1.414 -1.346

175 -3.420 -3.274 -2.067 -1.985 -1.461 -1.393

200 -3.228 -3.082 -1.941 -1.859 -1.375 -1.307

225 -3.299 -3.153 -2.069 -1.987 -1.449 -1.381

250 -3.538 -3.392 -2.117 -2.035 -1.526 -1.458

275 -3.827 -3.681 -2.206 -2.124 -1.559 -1.491

300 -3.716 -3.570 -2.165 -2.083 -1.557 -1.489

325 -3.865 -3.719 -2.263 -2.181 -1.577 -1.509

350 -3.968 -3.822 -2.264 -2.182 -1.594 -1.526

375 -3.987 -3.841 -2.395 -2.313 -1.725 -1.657

400 -4.012 -3.866 -2.378 -2.296 -1.665 -1.597

425 -4.008 -3.862 -2.480 -2.398 -1.778 -1.710

450 -4.236 -4.090 -2.458 -2.376 -1.750 -1.682

475 -4.119 -3.973 -2.447 -2.365 -1.724 -1.656

500 -4.263 -4.117 -2.499 -2.417 -1.747 -1.679

Chang and Song (2005, 2009) test under long run dependence (DGP3), Cont'd

1% 5% 10%
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