
Fairness for Non-Interleaving
Concurrency

by

Marta Z. Kwiatkowska

A thesis submitted for the degree of Doctor of Philosophy,
Faculty of Science, University of Leicester,

1989.

Moim Rodzicom

Z chaosu tad sie tworzy. Lad, koniecznosc,

Jedynosc chwili gdy bezmiar tworzywa

Sam sie ukrada w swoja ostatecznosc

I wora jak sie nazywa.

Julian Tuwim

Rzecz Czarnoleska

Abstract

Fairness in a non-interleaving semantic model for concurrency has been investigated. In

contrast to the interleaving approach, which reduces non-sequential behaviours to a non­

deterministic choice between possible interleavings of activities of concurrent processes,

concurrency and causality were assumed as primitive notions. Mazurkiewicz's trace

languages were chosen as behavioural representations of systems and Shields'

asynchronous transition systems as their acceptors. The notion central to these two

formalisms is one of causal independency, which determines trace equivalence

(congruence) in the monoid of strings. Equivalence classes of strings are called traces.

The quotient monoid of traces forms a poset with trace prefix ordering.

First, trace languages have been enhanced to allow for infmite traces; this was achieved by

introducing trace preorder relation on possibly infinite strings. It has been shown that the

extension gives rise to the domain of traces and an infinitary monoid, which specializes to

the domain and the infinitary monoid of strings of Nivat's, Asynchronous transition

systems have been equipped with a notion of a process structure; a variety of process

structures ordered by refinement relation are possible for a given system. Each process

structure determines projective preorder and equivalence relations in the monoid of strings,

which are shown to coincide with the trace preorder and trace equivalence.

In this setting, a topological characterization of behavioural properties which includes

safety, progress and fairness properties has been provided. Fairness properties form a

subclass of infinitary progress properties that is closed under arbitrary union.

Unconditional process fairness properties that are determined by process structures have

been distinguished; they form a lattice with inclusion ordering. Finally, strength predicates

were incorporated to allow for a variety of specific fairness properties such as weak and

strong process fairness as well as equifairness and state fairness.

(i)

Acknowledgements

I would like to express my gratitude to Derek Andrews for all the support received while

working on this thesis. I am especially grateful to Mike Shields for his help and guidance

through non-interleaving semantic models for concurrency; I found numerous discussions

with Mike very stimulating and thought-provoking. I would also like to thank Colin

Stirling for finding time to discuss my research and suggest several improvements, in

particular, the use of topological characterization. The comments of Amir Pnueli, Fred

Schneider, Rick Thomas and Nick Measor are gratefully acknowledged. In addition, I am

grateful to Professor Mazurkiewicz for stimulating my interest in trace languages while I

attended his course on Concurrency given in Warsaw; no matter how many approaches I

tried, I always found myself going back to his elegant abstraction of concurrency achieved

through causal independency. My thanks also go to the administration of the University of

Leicester and the Department of Computing Studies, especially Professor Ponter and Derek

Andrews, for much needed financial support to enable me to visit other universities and

attend conferences. Being professionally isolated as I have been, I appreciated every

minute of the discussions that such visits afforded me. Finally, I would like to thank the

staff at the Department of Computing Studies for putting up with the last few months of my

writing up the thesis, and the Jagiellonian University in Krakow for granting me a

sabbatical leave to complete this research.

My warmest thanks go to Paul Warren and my family in Poland for their support and

encouragement. In addition to cooking and shopping, Paul also drew the diagrams and

provided the technical assistance needed to print this document.

I started this research in October 1984 as a Research Scholar at the Department of

Computing Studies, University of Leicester, while on a sabbatical leave from the

Department of Computer Science, Jagiellonian University. Since February 1986 I have

been a Lecturer at the University of Leicester.

(ii)

Contents

Contents ill

1. Introduction 1

Modelling Concurrency 2

The Issue of Fairness 4

Main Objectives of the Thesis 5

Organization of the Thesis 6

2. A Survey of Fairness Notions 7

2.1. Introduction 9

2.2. Defining Fairness 11

Intu.itive Definition 11

Concurrency Fairness versus Fairness of Choice 13

Fairness and Granularity Level 14

Process versus Event Fairness 15

Transition versus State Fairness 16

Fairness & Liveness 17

Negative versus Positive Approach 18

2.3. A Taxonomy of Fairness Notions 19

Unconditional Fairness 19

Weak Fairness 21

Strong Fairness 22

Generalizations of Fairness 24

Equifairness 24

Probabilistic fairness 25

Other notions 26

Related Notions 26

Finite Delay 26

Livelocks 27

(iii)

Contents

Unbounded Non-determinism 28

2.4. Existing Formalisms and Fairness 29

Temporal Logic 29

Automata and ro-regular languages 31

Process Algebras 32

Net Theory 34

Transition Systems 35

Denotational Semantics 36

2.5. Proving Properties under Fairness 37

Well-founded Sets 37

Transformational Approach 39

Positive Approach 40

Automatic Verification 40

2.6. Applications 41

Concurrent Algorithms 41

Protocol Veri.fication 41

Programming Languages 42

2.7. Conclusion 42

3. The Model to to to •••••• to •••••• to to •••• to ••• to ••••••••••••• to. to •••• to ••••••••••••••••••• 45

3.1. Prelirninari.es to to to •• to to ••• to ••••••••••••••••••••••••••••••• to ••••••••• to to to to • to to to •• 47

Sets, Relations and Domains 47

Infinitary Languages to •••••••••••••• to • to ••• to to ••• to •••••••••••• to •• to to •• 49

Transition Systems to ••••••••••••••• to •••••••••••••••••••••••••••••••• to •• 51

Topology to ••••• to ••• to •••••••••••••••••••••••••• to •••••••••••••••••• 52

3.2. Trace Languages 54

Independency and Trace Equivalence 54

Traces to ••••••••••••••••••••• to •• to ••• to to ••••••••••••• to • to ••• to to ••••••••• to ••• to to to to • 56

Trace Prefix Ordering 57

Left Cancellation for Finite Traces 58

Decomposition of Finite Traces 58

Finitary Trace Languages 59

Decomposition of Finitary Trace Languages 60

Infinite Traces 60

Trace Prefixes for Infinite Traces 63

Decomposition of Infinite Traces 66

Infinitary Trace Languages 66

(iv)

Contents

Decomposition of Infinitary Trace Languages 69

3.3. Asynchronous Transition Systems 70

Basic Definitions 70

Fundamental Situations in ATS 73

Hierarchy of Asynchronous Transition Systems 74

Alphabet Structures 76

Process Structure over ATS 77

Order on Process Structures 79

3.4. Computations in ATS 80

Derivations 80

Trace Semantics 83

Admissible Computations 85

Process Projections 86

Vector Semantics 88

3.5.

3.6.

4. Defining

4.1.

Trace Semantics and Vector Representation 89

Projective Equivalence and Preorder 91

Properties of Computation Space 96

Order-Theoretic Properties 96

Infinitary Trace Monoid 99

Left Cancellation for Infinite Traces 104

Maximal Computations and Processes 107

Maximal Computations and Finite Delay 109

Relationship of ATS and Trace Languages 112

Fairness for Non-Interleaving Concurrency 119

How Not To Define Fairness 121

Fairness in the Sequential Sense 121

Relationship to Trace Semantics 124

Relationship to Confusion 125

Summ.ary <II •• 127

4.2. Event Fairness 127

Preliminary Definitions 127

Hierarchy of Event Fairness 128

Applicability of Event Fairness 130

Summ.ary 132

4.3. Process Fairness 133

Preliminary Definitions 133

(v)

Contents

Strength Hierarchy of Process Fairness 134

Refinement Hierarchy of Process Fairness 136

Relationship to Maximality and Event Fairness 137

4 .. 4. Summary 139

5. Mathematical Space of Behavioural Properties 141

5.1. Defining Properties 143

Motivation and Background 144

Notation 145

Properties and Satisfaction 145

Safety Properties 148

Progress Properties 150

Infinitary Progress and Computability 151

Relationship of Safety and Progress 153

5.2. Fairness and Progress Properties 155

Fairness Properties 155

Relationship of Fairness and Progress 156

Fairness and Processes 157

Algebra of Unconditional Process Fairness 158

Unconditional Event Fairness 160

5.3. Fairness and Asynchronous Transition Systems 161

Relativizing Properties 162

Fairness and Strength Predicates 162

Process Fairness and Strength Predicates 163

Other Fairness Properties 165

Equifairness 165

State Fairness 165

6. Applications of Theory to Condition/Event Nets 167

6.1. Condition/Event Nets 169

6.2. Asynchronous Semantics for Condition/Event Nets 172

ATS Semantics 172

Interleaving Semantics 175

Trace Semantics 176

Process Structures 177

Vector Semantics 178

6.3. Safety, Progress and Fairness for Condition/Event Nets 178

Safety Properties 178

(vi)

Contents

Progress Properties 180

Fairness Properties 181

Summary 182

7. Conclusion 183

7.1. Summary of Results 184

General Observations 184

Advantages of the Presented Approach 185

Related Work 186

7.2. Further Developments 187

Trace Languages 187

Metrics and Closures of Trace Languages 187

Positive Approach 188

Tem.poral Logic 189

Process Algebra and Bisimulations 189

CCS and Asynchronous Transition Systems 189

Quantitative Methods for Fairness 190

Final Remarks 191

Appendix 192

CCS Summary 192

Bibliography 193

(vii)

1
Introduction

------- ~ .. ~-ry-----==

- 1 -

Introduction

Modelling Concurrency

Sequences of system states are increasingly often used to model the behaviour of discrete

systems. For sequential systems, such a sequence forms an admissible execution if it starts

with an initial state, and each following state is obtained from its predecessor through an

occurrence of some action. Labelled transition systems are commonly used as abstract

representations of discrete systems. In the notation of labelled transition systems the

occurrence of an action gives rise to a state transition denoted by q ~a q', where q, q' are

states and a is an action label. A sequence of states models a complete execution of a

sequential system if it is infinite, or if it is finite but no action could be applied in its last

state. We call such sequences non-extendable; for a finite sequence, extending it with

another action is undefined, while extending an infinite sequence with any action should

have no effect.

When the behaviour of concurrent systems is modelled using state sequences, the situation

becomes more complex. Such a system is a collection of concurrent agents (processes),

possibly running on different physical processors in a distributed environment. One

implication of the spatial distribution is that there could be no global clock; hence no

centralised scheduler may be introduced. Every agent is asynchronous with other agents,

and proceeds in steps by engaging in local actions as well as communication actions that

require synchronisation possibly with a number of other agents. We assume all actions are

atomic. It is desirable that an agent always proceeds as soon as it is ready to engage in a

local action. The case of communication actions is slightly different, as the agent may be

delayed until its synchronising partners are ready to communicate, but nevertheless the

delay should always befinite. One is thus easily persuaded that, for a state sequence to be

a complete execution of a concurrent system, it is necessary to exclude not only the

sequences that are extendable in the sense explained above, but also those sequences that

indefinitely delay some concurrent agent within a system. When considering concurrent

systems, it is, therefore, necessary to add an additional constraint, called fairness, that

execution sequences must satisfy. Fairness essentially imposes finite, but unbounded,

delay on some component of the system, usually a concurrent process.

Although sequences of system states are commonly used to represent a single execution of

a system (also called a run), different approaches are possible when grouping these

executions into behavioural structures. The interleaving approach to defining semantics of

- 2 -

Introduction

concurrent systems is based on the assumption that concurrency is not observable [Mil88];

hence it is justified to represent non-sequential behaviour by a choice between the possible

interleavings of activities of concurrent agents. The behavioural structure used in the

interleaving models is simply a set of execution sequences. One consequence of such an

approach is that concurrency is not primitive, but it is expressible in terms of non­

deterministic choice. Interleaving abstraction gives rise to very elegant algebraic models,

e.g. CCS [Mil80] with standard transition system semantics and TCSP [BHR84] with

failure semantics. The characteristic feature of algebraic models is that they distinguish two

levels. The top level is a language, which provides a notation for defining processes

(agents), typically allowing process variables and operators on processes such as non­

deterministic choice and parallel composition. The lower level is behavioural, usually a

labelled transition system. The main attraction of the interleaving models is that they are

highly abstract and compositional; this is due to the presence of the language level, which

means that the underlying transition system could be syntax-directed. The disadvantage of

the interleaving approach is that fairness must be introduced as an assumption external to

the behavioural level. Also, interleaving abstraction is not acceptable when modelling

asynchronous behaviour, for example real-time systems and distributed systems.

An alternative semantic approach to modelling the behaviour of concurrent systems

originates from net theory introduced by Petri, who distinguished concurrency and

causality as two distinct behavioural phenomena. The term non-interleaving loosely refers

to the class of all models based on assumptions similar to those of net theory. In the non­

interleaving approach it is considered unimportant whether concurrency is observable or

not; the important issue is that concurrency and causality are undoubtedly present in the

behaviour of "truly" concurrent systems such as hardware components and distributed

systems, and thus should be primitive in the model. The most widely known models in

this class are variations of Petri nets [RoT86], but a number of models based on related

principles have also been introduced, e.g. trace languages [Maz77], COSY [LSB79], event

structures [Win86], asynchronous transition systems [Shi85a] [Bed87] [Shi88c],

behavioural presentations [Shi88a]. The common feature of these models is that the

language level is somewhat limited (for nets the "language" is graphical, rather than

algebraic) and rarely compositional. The behavioural structure used in this approach is

usually a partially ordered set of states. Such a behavioural structure has been criticised for

being more complex, thus more difficult to use, than its interleaving counter-part. On the

other hand, certain fairness assumptions are often expressible within the behavioural level,

rather than as an external assumption.

- 3 -

I ntroduction

The Issue of Fairness

The intuitive defmition of fairness is the following:

In afair computation, no component of the system should be delayed indefinitely.

The notion of a component depends on the level of granularity and may differ from one

formalism to another; it could mean, for example, a process, an event, a transition, or a

state. Fairness notions also vary depending on their strength, that is a predicate which

refers to some measure of the frequency with which the component must become possible

before it could be guaranteed it eventually proceeds. A typical example is weak fairness

[Par81] [LPS81] [Pl082], in which a component that is possible continuously from some

point on must eventually proceed, and strong fairness [Par81] [LPS81] [Pl082], where a

component that is possible infinitely often must proceed infinitely often.

The issue of fairness has caused much confusion recently. One reason for this state of

affairs is that it is not always clear what granularity level and strength are appropriate in a

particular case. As a result, a profusion of differing and frequently independent fairness

notions have been formulated [Fra86]. These notions are often informal and model-specific

due to a large number of models for concurrency, the inter-relationships of which have not

been established yet. In addition, different concerns seem to guide the research: fairness

may either be viewed as an issue to do with concurrent processes [CoS87] or non­

deterministic choice [Fra86], thus giving rise to notions of fairness that are independent.

Fairness seems an intrinsically difficult issue. This is a consequence of the fact that

unfairness, or lack of progress, is exhibited only by infinite behaviours (all finite

behaviours are fair as a result of abstracting from relative speeds of processes). Obviously,

those models that allow finite behaviours only do not adequately express fairness. It has

been shown that powerful formalisms such as transfinite induction [LPS81] may be needed

to verify systems under fairness assumptions. Some anomalies caused by fairness have

also been pointed out, for example, in denotational semantics, to-continuity of the

concurrency operator is destroyed [Par81].

In the light of the above, it is not surprising that fairness has attracted some criticism

[Dij88] [ChM88]. Also, there is tendency to leave fairness as the implementor's

responsibility, rather than a property that should be established at the specification and

verification stage. This is clearly unsatisfactory, as certain desirable properties of reactive

systems [Pnu86], such as operating systems and airline reservation systems, can only be

- 4 -

Introduction

established under given fairness assumptions. These properties are commonly referred to

as liveness properties [Lam77] [AIS85] [Pnu86] and include program termination and

guaranteed response to the request. It is thus important to understand the nature of fairness

assumptions and their relationship with liveness properties.

Main Objectives of the Thesis

The object of the thesis is to formalize fairness properties in a universal setting provided by

a non-interleaving semantic model for concurrency. Rather than define specific fairness

properties for a chosen granularity level and strength, we would like to formulate an

abstract notion of a fairness property. In other words, we shall attempt to characterize a

mathematical space of behavioural properties and show that fairness properties constitute a

subclass of this space. We shall also investigate the relationship of fairness and other

properties. Finally, we would like to contrast the interleaving and non-interleaving

approaches to concurrency as far as fairness properties are concerned.

We have chosen trace languages [Maz77] [Maz84a] [Maz84b] [Maz88] as a behavioural

representation. Trace languages are an abstraction of concurrent behaviours determined by

the relation of causal independency. The independency relation gives rise to trace

equivalence (congruence) and trace preorder in the monoid of strings. Equivalence classes

of strings are called traces. Trace preorder determines trace prefix ordering relation in the

quotient monoid, which could be viewed as a partial order on system states visited during

system execution.

As abstract representation of systems, we use asynchronous transition systems [Shi85a]

[Bed87] [Shi88c], that is labelled transition systems enhanced with the notion of causal

independency. Asynchronous transition systems have been shown to accept trace

languages. Unlike other non-interleaving models, e.g. event structures [Win86], they offer

a relatively high level of abstraction due to the notion of causal independency being

syntactical. In future, this could be used to introduce a language level over asynchronous

transition systems, thus giving rise to an asynchronous process algebra. The choice of

asynchronous transition systems contributes to the universality of our approach as most

models for discrete or concurrent systems have an underlying transition system structure.

- 5 -

Introduction

Organization of the Thesis

Chapter 2 contains an extensive survey of existing trends in the research concerning

fairness. It is independent of the rest of the thesis and could also be found in [Kwi88c]

[Kwi89].

Chapter 3 introduces the model. We proceed systematically by introducing the basic

definitions of traces and trace languages, followed by an extension of the theory with

infinite traces. We then define asynchronous transition systems together with process

structures. A variety of process structures ordered by the refinement relation are possible

over a given system. We develop the projective preorder and equivalence relations

determined by process structures and show that they coincide with trace preorder and

equivalence, thus giving rise to a vector representation of traces. Finally, we discuss the

properties of the set of all traces (the computation space) and the relationship of trace

languages and asynchronous transition systems.

Chapter 4 derives weak, strong and unconditional process and event fairness suitable for

asynchronous transition systems. We first show that a straightforward translation of

fairness notions introduced in the interleaving models creates some anomalies. We then

define the above-mentioned fairness notions and show they form hierarchies related by the

strength of fairness and the process refinement relation. Lastly, we observe that we cannot

express every fairness property by means of the notions defined so far.

In Chapter 5, as an attempt to define a more abstract notion of a fairness property, we

present a topological characterization. We formally define behavioural properties of

systems by introducing the topological spaces of safety, progress and fairness properties.

We show that process fairness properties form an algebra closed under arbitrary union and

intersection. Finally, we incorporate strength predicates which give rise to a variety of

fairness notions including the previously inexpressible equifairness and state fairness.

Chapter 6 shows that Condition/Event nets determine asynchronous transition systems,

thus providing them with trace semantics. Examples of safety, progress and fairness

properties for Condition/Event nets are given.

- 6 -

2
A Survey of Fairness Notions

- 7 -

A Survey of Fairness Notions

Fairness has been examined from different view-points and in varied

semantic models, for example CCS, guarded commands, Petri nets, and

automata. A classification of fairness notions has been proposed in many

formalisms, which often required a suitable extension. Surprisingly, there

still seems to be no general agreement on what fairness means and how it

should be dealt with. One possible reason for this state of affairs is the

multiplicity of semantic models used and the dependence of fairness on the

intrinsic characteristics of these models, which makes it difficult to establish

inter-relationships between fairness notions. It is not uncommon to

encounter criticism of fairness, and the need for the powerful methods that

reasoning with fairness constraints has called for, for example transfinite

induction, is also questioned. This situation is clearly undesirable, and

ways to provide better understanding of fairness, and perhaps a unified

approach, should be sought.

This chapter reviews major issues in the area, the purpose being to present a

taxonomy of notions of fairness, and to discuss the main directions taken

and the implications of choosing a particular approach. The object of this

review is to identify common features of fairness definitions and to examine

the adequacy, or, in some cases, the failure, of the standard methods when

applied to deal with fairness.

- 8 -

2.1. Introduction

A Survey ofFairness Notions

A system is said to be correct if it satisfies a given specification, where the specification is a

list of properties. In order to show that the system has a given property, we typically use

an abstract model together with a set of proof rules; ideally, the list of properties should be

sufficient to pronounce the system correct. The case of deterministic systems is considered

relatively simple. However, it has long been recognised that this is not the case with

concurrent (or non-deterministic) systems. Since such systems include airline reservation

systems, operating systems etc. it is crucial that the list of properties prohibits all cases of

undesirable behaviour.

Let us consider an example of an airline reservation system. The system consists of a

waiting list of requests and a passenger list, each list being manipulated by a manager

process capable of dealing with one customer at a time. Customers making booking

requests are first registered on the waiting list, from which they enter the booking process,

in some order, one by one. The booking process notifies the passenger list manager if a

booking can be taken, which initiates the transfer of customer details from the waiting list to

the passenger list. The system exploits concurrency both at the hardware and software

level, that is all three processes mentioned here are, in fact, communicating sequential

processes implemented on separate physical processors.

A desirable property of such a system would be to show that, if a customer A requests a

service, then this service will eventually be provided. One might think that this would be

guaranteed by the truly concurrent implementation since the processes do not have to wait

for their time-slice in order to proceed. However, the reality is different. Imagine

customers A, B and C are trying to book a flight. Their names are first registered on the

waiting list, from which the booking process chooses A to be served and finds that the

booking can be taken. As customer A is being transferred to the passenger list, he tries to

book another flight but is temporarily stopped in the waiting list so that the two requests are

not confused. While A is waiting for an entry to the booking process, the system has

served customers Band C, who have successfully been transferred to the passenger list,

and try to book another flight too. They get as far as the waiting list, after which B gains

access to the booking process. In the meantime, A's transfer to the passenger list has

- 9 -

A Survey ofFairness Notions

finally finished (there was some communications delay), but his second request cannot

proceed because now the booking process is busy dealing with B. Having served B, the

booking process chooses C's request. In the meantime, B decides to book a yet another

flight. For some reason, B's request, rather than A's, is chosen when C has exited the

booking process. However, C decides to book a yet another flight too, and gains access to

the booking process just as B was leaving ... If this is allowed repeatedly ad infinitum,

customer A's request will never be serviced because the booking process is busy servicing

requests of B and C!

Esoteric though it may be, this is an example of an unfair behaviour of the system - unfair

on customer A. Note that this is not deadlock - the system has not stopped, nor has any of

its processes, when considered independently, behaved incorrectly. (In fact, we could

have proved the system works properly using an invariance argument.) The only concern

is that customer A has not made satisfactory progress although he was ready to do so all the

time. We cannot show that A's request is eventually serviced unless we make explicit

assumptions about the way booking requests are selected (so called fairness constraints).

When considering an abstract model and the proof system necessary to show correctness

with respect to such properties under fairness constraints, we find transfinite induction may

be needed. It might be argued that it would be easier simply to suggest a plausible

implementation - a FIFO queue or a priority system should be adequate here. But should

fairness be the implementor's responsibility? Note that a cheaper implementation (that is

busy waiting, or a round-robin algorithm in the multi-programming case) would admit the

behaviour described in the example, so there is no guarantee that an implementor can

recommend a correct solution unless, at least, a possibility of an unfair situation is exposed.

Of course, what we should really be concerned with are ways which help eliminate the

above, and similar, undesirable behaviours.

This is the object of the study of fairness. Its aims are to find adequate formalisms for

imposing fairness constraints on computations in abstract models for concurrent (or, for

that matter, non-deterministic) systems. The work in this area concentrates on building

proof systems for proving properties under fairness constraints (like the "guaranteed

service" mentioned here) and the development of proof techniques. Another major issue is

examining the adequacy of existing formalisms when expressing fairness and investigating

possible extensions. In addition, there is some research concerned with the classification

(for example as a hierarchy) of fairness properties.

- 10-

A Survey ofFairness Notions

So far, there have been no attempts to provide a formal definition stating what a fairness

property is, and, what is more, what it is not, although a variety of (often informally stated)

model-specific notions have been introduced. Out of necessity, we shall discuss fairness

notions through examples, rather than attempt a formal comparative study. We believe that

an informal survey like this should precede any discussion on formal grounds, and hope

that this would provide the necessary background and encouragement.

2.2. Defining Fairness

Before we present a taxonomy of specific fairness properties, we would like to summarize

the main concerns that guided the research in the past when defining fairness.

We shall informally discuss fairness properties in concurrent and non-deterministic

systems. By a system we shall mean a discrete system, which progresses from one state to

another through actions (or transitions). For readability, the examples used here are in a

variant of guarded commands [Hoa78]. A sequence of states with associated actions is

called, for the purpose of this chapter, a computation (often referred to in literature as a

run). Although runs are represented similarly in almost all semantic models, there is

disagreement on how the runs should be grouped into a structure (e.g. a set, a computation

tree, a partially ordered set) to represent the behaviour of a system, and hence to be

considered a viable semantics. The presentation here will abstract from those differences,

as the detailed discussion is out of scope for this chapter. Note that when considering

fairness, it is necessary to include infinite computations as well as the finite ones.

Intuitive Definition

The motivation behind any notion of fairness seems to be to disallow infinite computations

in which a system component is, for some reason, prevented from proceeding. All finite

computations are fair; when infinite computations are considered, it may be necessary to

distinguish computations that are fair from the unfair ones. Intuitively, fairness is a

property of computations that can be expressed as follows:

- 11 -

A Survey of Fairness Notions

No component of the system which becomes possible sufficiently often

should be delayed indefinitely.

This is a very general statement, which, we believe, brings together many fairness

properties known from the literature. In order to obtain a specific fairness property we

would need to say explicitly what we mean by a system component, a system component

becoming possible, and sufficiently often. The first determines what it is that must be

allowed to proceed, or, in other words, the granularity level of fairness, and the latter

defines the conditions under which the component will proceed, that is the strength of

fairness. The notion of a system component becoming possible usually depends on the

kind of component, but it may be given different meaning depending on the actual model

used. Examples of kinds of components, and what it means for a component to become

possible, are as follows:

Component

(concurrent) process

event

synchronisation event

channel communication

guard

transition

state

becomes possible if

some action of the process is enabled

event can occur

processes can synchronise

processes can communicate on channel

some guard in a non-deterministic program evaluates to true

transition becomes enabled

state is immediately reachable

Since most models have an underlying transition-system structure, we shall often identify

the notion of a component becoming possible with it being enabled (e.g. a transition) or

immediately reachable (e.g. a state). The notion of a component becoming possible may

vary depending on the semantics chosen, that is on the choice of the actual behavioural

structure. Also, some semantic approaches may automatically exclude some runs as

inadmissible, for example on the grounds that they do not correspond to acceptable

sequentializations of a concurrent behaviour.

The following are the most common variations on the strength of fairness:

- 12 -

sufficiently often

no restrictions

infinitely often

almost always

corresponding strength

unconditional fairness

strong fairness

weak fairness

A Survey ofFairness Notions

Almost always [CoS87] means always after some point in time and can also be described as

continuously from some point on [Pnu86] (the actual interpretation may depend on the

model) or permanently [Pnu86].

The above defmition can also be rewritten in the following, perhaps more familiar, form:

If a system component becomes possible sufficiently often then it proceeds

infinitely often.

Note that the definition of fairness as introduced here considers each component in

isolation, that is irrespective of the remaining components of the system, and does not put

any specific bounds on the number of steps executed before each component makes

progress. It is possible to strengthen fairness by defining it relative to a group of

components that are jointly enabled, in the sense that each member of the group proceeds

equally often [GFK86]. Another interesting class of fairness properties are probabilistic

fairness properties [PnZ86].

Concurrency Fairness versus Fairness of Choice

It is possible to view fairness either as an issue fundamentally to do with concurrency or

non-determinism. This leads to a distinction between concurrency fairness and fairness of

choice. Let us consider the following two programs P and Q:

A = do true ~ printt'a') od

B = do true ~ print('b') od

P= AIIB

Q = do true ~ print('a')

[] true ~ printr'b')

od

- 13 -

A Survey of Fairness Notions

Program P is a parallel composition of two sequential processes A and B, whereas program

Q is non-deterministic. Both P and Q never terminate and print infinite sequences of a's

and b's. If we define fairness as a property that states that no concurrent process should be

delayed indefinitely (concurrency fairness), then a computation allowing an infinite

sequence of a's (denoted am) is unfair with respect to this notion because it ignores process

B (and so is any execution allowing only a finite number of b's), When considering

program Q, however, we find we must consider am fair (and, indeed, any computation

allowing only a finite number of b's); program Q does not contain any concurrent

processes, hence no concurrent process in Q has been indefinitely delayed!

Nothing prevents us, however, from defining fairness with respect to the choice of non­

deterministic guards (fairness ofchoice). We thus say that an execution is fair with respect

to choice if no non-deterministic guard is ignored forever. We quickly notice that, for

program Q, this means disallowing computations leading to either a or b being printed only

a finite number of times. In program P, on the other hand, all computations are fair

because there is no non-deterministic choice in P, hence no guard has been discriminated

against!

Concurrency fairness and fairness of choice (also calledfairness in selection [Pnu86] or

conflict resolution fairness [MOP88]) are independent notions, although they are sometimes

identified. This confusion is caused by the fact that concurrency is often reduced to non­

deterministic interleaving, in which case concurrency fairness corresponds to fairness of

choice for a particular scheduler. Note that in order to distinguish these two notions of

fairness we have to consider a formalism that allows for the distinction between

concurrency and non-determinism.

Fairness of choice is discussed in [QuS83] [Fra86], whereas the main concern of [Par80]

[LPS81] [CoS87] is to define fairness as an issue to do with concurrency.

Fairness and Granularity Level

Fairness properties are severely affected by the choice of granularity level. For a given

system, they typically result in fairness notion that do not coincide.

- 14 -

A Survey of Fairness Notions

Process versus Event Fairness

It is usually possible to view systems at two semantic levels: the level of events and the

level of processes. This leads to two different notions of fairness, event fairness, in the

sense that no event should be delayed indefinitely, and process fairness , in the sense that no

process should be delayed indefinitely. These definitions depend on what constitutes an

event and a process. Also, it is not always clear how to decompose the system into

processes; a variety of decompositions that determine different fairness notions are

possible.

Process fairness and event fairness do not, in general, coincide. The following is a simple

example:

A = do true ~ print('a')

[] true ~ print('b')

od

C = do true ~ print('c') od

P=AIIC

Process A repeatedly chooses between printing a and b, while process C engages in forever

printing c. Assuming each print command is an event, then the only event fair

computations of P are the ones that lead to an infinite number of each of a, band c being

printed. Given A and C as the identifiable processes, we note that computations that

generate only a finite number of a's (or a finite number of b's) are process fair. Thus, the

computations containing a finite number of a's are process fair, but not event fair. (Note

that a different decomposition into processes is possible here by representing process A as a
non-deterministic composition of processes Aa and Ab; event fairness then coincides with

process fairness).

The above example suggests that it might be plausible to re-define the notion of an event so

that event fairness coincides with process fairness (after all, it has been noted in [Pl082]

that event fairness depends on what constitutes an event). One might, however, take a

more orthodox view that assumes that no information about processes is available at the

level of events, and thus consider process fairness and event fairness as two different (but

perhaps not unrelated) notions.

- 15 -

A Survey ofFairness Notions

Event fairness has been defined in [Pl082] for a concurrent while language. Process

fairness for a (shared-memory) concurrent programming language is discussed in [LPS81]

[Pnu86], and for CCS in [CoS84] [CoS87].

In the context of distributed models allowing inter-process communication, for example

over channels, one can further refine the granularity of fairness [KdR83] by defining

channelfairness and process communication fairness (not necessarily on the same channel).

It can be shown that, together with process fairness, these notions form a strict hierarchy.

Transition versus State Fairness

Fairness is also discussed in the context of transition systems, often used as an abstract

model that views a discrete system as progressing through transitions from one state to

another. Here one can distinguish transition fairness[QuS83], in the sense that no

transition that is infmitely often enabled should be ignored indefinitely, andfair reachability

from states [QuS83], in the sense that no state that is immediately reachable infinitely often

should be delayed indefinitely.

Let us consider the following example (adapted from [Fra86]). The states are identified

with the value of x, the transitions are the assignment statements, and the guards determine

if the transitions are enabled:

p= (x:=l;

do x = 1 ~ x:= 2

[] x > 0 ~ x := x-I

od)

There is an infmite computation of this program (alternating the first and the second guard),

which takes both transitions infinitely often, thus no transition has been ignored

indefinitely. The contents of the variable x alternates between 1 and 2 in this computation.

However, from the state x=1, which is visited infinitely often, it is possible to reach x=O;

hence this computation would be disallowed under fair reachability from states. Now, as

soon as x becomes 0, the program terminates, thus Q terminates under fair reachability

from states but it does not under transition fairness constraints.

- 16 -

A Survey of Fairness Notions

Fair reachability from states and transition fairness are independent notions. We have

introduced here their strong versions only, although other strengths may also be considered

[Fra86].

Fairness & Liveness

It has long been recognised [Lam??] that fairness affects liveness properties of programs.

In [Lam??] liveness has been defined as a class of properties that state that something good

will happen during program execution. This is in contrast with safety, which is pronounced

as nothing bad will happen. Examples of liveness are: program termination (the "good

thing" is that the program terminates) and guaranteed response (the "good thing" is that the

request is handled). Fairness has a major effect on liveness properties in correctness proofs

of non-deterministic or concurrent programs: we cannot prove certain programs correct

with respect to a given liveness property unless we make explicit assumptions about

fairness. This can be shown in the following example:

A = do true ~ print(O)

[] B!1 ~ stop

od

B = do A?x ~ (print(x); stop) od

P=AIIB

Process A repeatedly chooses between printing zero and sending the value 1 to process B.

Process B is always ready to receive from A, but it must wait to synchronise. Process P

terminates only if A and B eventually synchronise. Note that P does not terminate if no

scheduling is present; however, if we assume a "reasonable" scheduling, P will terminate.

Termination of P cannot be formally proved unless we incorporate in the proof the

assumption that process A will eventually choose the communication (fairness of choice) or

that process B eventually proceeds (process fairness).

The term "liveness" has also been given a different meaning, for example in [Ap084]:

unless a process has terminated, it will proceed infinitely often. We believe that this

formulation is a fairness notion called process liveness, whereas the first meaning refers to

a more general class of properties.

- 17 -

A Survey of Fairness Notions

A topological characterization of liveness has been presented in [AIS85]. A number of

proof techniques for liveness have been introduced, namely the proof lattice method

[OwL82] and the well-founded sets method [GPS80] [Pnu86], where the intuitive

defmition of liveness is slightly different.

Negative versus Positive Approach

We have so far avoided the question of how to discriminate between fair and unfair

computations. Note that this cannot be achieved (in a finite number of steps) by examining

every finite prefix of them. Also, most existing models do not make any provisions for

fairness; it is generally accepted that this way the model is more abstract, and therefore

simpler to use.

Existing approaches for dealing with fairness can be split into two classes. The first

approach, called negative, is to consider two semantic levels [LPS81]. The lower level

admits all possible computations, whether fair or unfair. Then, at the higher level, some

methods are invoked for excluding the computations that are unfair. An example of such a

method is to introduce proof rules, one for each fairness notion, which are used to prove

termination under the given constraints. Thus, unfair computations are considered

irrelevant. Another approach is to extend the transition system semantics with explicit

fairness restrictions [Pnu86] [CIG87]. The motivation for this approach is to produce

correctness proofs with respect to a given scheduling policy, which could then be enforced

at the implementation stage.

It is an interesting question if one can generate only fair computations of a given system,

rather than exclude the unfair ones. This is the essence of the positive approach, in which

we are dealing with one semantic level. Such an approach has been developed in [CoS84]

[CoS87] for CCS through extending the CCS calculus into labelled calculus and modifying

the proof rules. Other positive approaches, based on random assignment, include [Pl082]

[Par81]. The positive approach could be viewed as producing a set of guidelines for an

acceptable scheduler from the point of view of the semantics.

- 18 -

2.3.

A Survey ofFairness Notions

A Taxonomy of Fairness Notions

We shall now present some of the most widely known fairness notions.

Unconditional Fairness

Unconditional fairness (also called impartiality) has originally been defined for processes

[LPS81]. It can be summarized as follows:

Every process proceeds infinitely often,

that is every unconditionally fair computation must admit an infmite number of occurrences

of actions of each process. We have already considered an example of unconditional

fairness in Section 2.2 (the set of concurrency fair computations of process P is exactly that

of unconditionally process fair computations).

Unconditional fairness may be too restrictive when distributed process termination is

allowed, for example see the program below:

A = do true ~ prinu'a') od

B = printt'b'); stop

P= AIIB

Process B, unlike process A, terminates having executed its only action. It is, therefore,

unreasonable to expect process B to proceed infinitely often. The set of intuitively

admissible computations should include only those computations that generate an infinite

number of a's interleaved with one b (or, in other words, a*baCO) . However, this

computation is not unconditionally fair because b does not occur in it infinitely often!

Thus, unconditional fairness should only be used in the context of non-terminating

processes. Likewise, processes that have not yet terminated but have become disabled, for

example by waiting to synchronise with another process, will not be correctly handled by

unconditional fairness.

- 19 -

A Survey ofFairness Notions

Unconditional fairness may also be defined with respect to non-deterministic choice [Fra86]

and transitions [LPS8I].

Process liveness [Ap084] is a modification of unconditional fairness to allow for the fact

that processes may terminate. It can be expressed as follows:

Unless a process has terminated, it will proceed infinitely often.

Now, in the program P, process liveness will admit only the intuitively acceptable

computations a*baOl•

However, excluding distributed termination does not reduce the expressive power of some

models, for example CSP [ApF84], so considering unconditional fairness will often be

sufficient.

Process liveness should not be confused with liveness as "something good will happen"

[Lam77], which is a class of more general properties.

However, process liveness is still a very crude property. Note that we can re-phrase the

above definition to state that if in a computation a process has proceededfinitely often then

it must have terminated. If there are other reasons for which a process proceeds only

finitely often, then process liveness is not applicable. Unfortunately, this is the case with

systems that allow synchronisation; it is possible for a process to become (temporarily or

permanently) disabled because it is waiting to synchronise with another process that refuses

to do so.

Unconditional fairness is known in fonnallanguages asfairmerge, which was introduced

in [Par80] [Par8I] for co-regular languages, that is extensions of regular languages by

means of an ro-iteration operator, onto languages of finite or infinite sequences over a given

alphabet. Fairmerge of two such languages A, B is a language A II B that contains those

sequences only, which are interleavings of pairs of possibly infinite sequences from A and

B in such a way that all of any infinite sequence is absorbed.

Fairmerge is a fairness notion that was introduced as an abstraction of concurrency

fairness. It applies to non-communicating, non-synchronising, concurrency, that is

systems that consist of concurrent processes whose actions are totally independent. Some

aspects of fairmerge have been considered for process algebras in [Hen87]. Fairmerge is

not adequate to express synchronisation fairness, but it can be suitably extended.

- 20-

A Survey of Fairness Notions

Weak Fairness

Weak process fairness (also called justice) [LPS81] [CoS8?] is a property that takes into

account the fact that processes may become disabled (or blocked). As usual, we say a

process becomes possible (or enabled) if some of its actions is enabled, and disabled

otherwise. Weak process fairness can now be summarized as follows:

If a process is enabled continuously from some point then it eventually

proceeds.

Alternative ways of re-phrasing "continuously from some point on" [Pnu86] are: almost

always [CoS8?] (that is always after a finite number of steps) and permanently [Pnu86].

This definition excludes all, and only those, computations in which a process is enabled

continuously and never proceeds after some point in time. Note that it follows that if some

process is actually enabled continuously from some point on then it proceeds infinitely

often.

Since termination is a reason for a process not to become continuously enabled, weak

process fairness implies process liveness (that is, if a computation is weakly process fair, it

satisfies process liveness). If a process may become disabled only when it terminates,

weak process fairness coincides with process liveness. If processes are continuously

enabled and never terminate, weak process fairness, process liveness and unconditional

fairness coincide.

Let us consider the following example:

A= B!O ~ stop

B= (x := 1;

do A?x

[] x> 0

od)

~ (print(x); stop)

~ print(x)

P=AIIB

Process A is continuously enabled to synchronise, whereas process B can repeatedly

choose between synchronisation with A and the internal action. P terminates only if A and

B synchronise (the second guard then becomes false). If we assume weak process

fairness, then process A eventually proceeds, hence P terminates under weak process

- 21 -

A Survey ofFairness Notions

fairness. Every weakly process fair computation leads to a finite number of l's followed by

a single 0 (that is a sequence of the form 1*0).

Considering weak (process) fairness as a separate notion is sometimes motivated by the

costs of a possible implementation [Pnu86]: it is automatically guaranteed on a truly

concurrent system, whereas for multi-programming concurrency, a simple round-robin

scheduler will enforce it. A "busy waiting" implementation of a semaphore is weakly fair.

Stronger fairness notions require queueing mechanisms.

Several other weak fairness properties have also been introduced. One example is weak

fairness of choice of non-deterministic guards, which may be phrased as any guard that

evaluates to true from some point on will eventually be chosen. Let us consider the

following program:

Q= (x:= 1;

do x > 0 ~ x:= 0

[] x > 0 ~ x := x+ 1

od)

The above program terminates only if the first guard, which is continuously enabled, is

ever chosen (both guards then evaluate to false). Thus Q terminates under weak fairness of

choice of guards. Weak fairness of choice of guards is independent of weak process

fairness.

Weak process fairness for CCS is considered in [CoS87]. A discussion of weak process,

channel communication and process communication fairness for CSP can be found in

[KdR83]. For an overview of weak fairness of choice consult [Fra86]. Weak fairness can

also be defined at the level of events [Pl082], transitions [QuS83], and states [QuS83].

Strong Fairness

It may not always be desirable to satisfy the assumption of weak fairness, which requires

that once a process has become enabled, it may not become disabled, even temporarily, if it

is to proceed. We therefore relax the assumption of a process becoming enabled

continuously from some point on to becoming enabled infinitely often. We thus arrive at a

notion of strong process fairness (also called fairness [LPS81]), which can be paraphrased

as follows:

A Survey of Fairness Notions

If a process is enabled infinitely often then it proceeds infinitely often.

This definition disallows all, and only those, computations in which a process is enabled

infinitely often but proceeds only a finite number of times. Note that strong process

fairness implies weak process fairness (that is, if a computation is strongly process fair then

it is weakly process fair).

Obviously, if a process never becomes enabled once it has become disabled, strong process

fairness coincides with weak process fairness.

Let us consider the following example:

A= B!O~ stop

B = (x := 1;

do (x mod 2 = 1) and A?x

[] x> 0

od)

P=AIIB

~ (print(x); stop)

~ (printtx); x := x+ 1)

Process A is continuously ready to synchronise with B, but B can accept the

synchronisation only at alternate steps (in fact, every time x contains an odd number).

Thus process A is not enabled continuously, but it is enabled infinitely often. P terminates

only if A and B synchronise. An infinite computation allowing only process B to proceed

is weakly process fair. On the other hand, this computation is not admissible under strong

process fairness, hence P terminates under strong process fairness.

Strong fairness is usually strictly stronger than the corresponding weak fairness notion.

Although weak fairness is not sufficient in most cases, the distinction is again motivated by

implementation considerations. In order to implement strong fairness, queues of pending

requests or priority systems are needed. An example of a strongly fair semaphore is an

implementation with FIFO scheduling policy.

It is also possible to define strong fairness of choice of non-deterministic guards, which

may be described as any guard that evaluates to true infinitely often will be chosen infinitely

often. As an example, let us consider:

- 23 -

A Survey of Fairness Notions

Q= (x:=1;

do X mod 2 = 1 --7 X := 0

[] x > 0 --7 x := x+1

od)

Note that Q tenninates under strong fairness of choice of guards, but not under weak

fairness of choice of guards (the first guard is not continuously enabled, but it is enabled

infinitely often). Strong fairness of choice of guards is independent of strong process

fairness.

Strong process fairness for CCS is considered in [CoS87]. For strong process, channel

communication and process communication fairness for CSP consult [KdR83]. An

overview of strong fairness of choice can be found in [Fra86]. Strong fairness may also be

defined at the level of events [Pl082], transitions [QuS83], and states [QuS83].

Generalizations of Fairness

Equifairness

The notions of fairness introduced so far were concerned with the independent progress of

system components. It is possible to strengthen weak, strong and unconditional fairness

by taking into account the relative number of times the components proceed. Thus, one

may arrive at a notion of equifairness [GFK86] [Fra86], the motivation for which is to give

each guard in a group of jointly enabled guards an equal chance to proceed. Strong

equifaimess can be summarized as follows:

If a group of guards is enabled infinitely often, then there exist infinitely

many time instants where all members of the group have been chosen the

same number of times.

Weak and unconditional equifairness are correspondingly defined. Let us consider the

following example (adapted from IFra86)):

- 24 -

Q= (x, y := 0; z := 1;

do z>O

[] z>O

[] z>Ol\x=y

od)

~ x:= X + 1

~ y:= y + 1

~ z:= z - 1

A Survey of Fairness Notions

This program does not terminate under the assumption of strong fairness of choice of non­

deterministic guards: the computation taking the first guard and then alternating the first and

the second guard is infinite (the third guard is only enabled in the initial state). However, it

does terminate under strong equifairness because then x eventually becomes equal to y, and

Q terminates since the guards no longer evaluate to true.

Strong equifairness is strictly stronger than strong fairness of choice of non-deterministic

guards. (The same holds for weak and unconditional equifairness). Equifairness is usually

applied to non-deterministic guards, although it seems feasible to apply it in other situations

as well, for example process synchronisation.

Probabilistic fairness

Fairness has also been defined as a probabilistic property [Pnu83] [PnZ86]. We assume a

computational model based on a state-transition system with probabilities attached to

transitions. A determinate transition (i.e. non-probabilistic) is a simple edge that connects

two states; it has the probability 1. A probabilistic transition 't is a split edge: it is an edge

split into k edges with probability ai attached, where each 't1 is called a mode of the

transition 'to It is required that a 1 + ai + ... + ak = 1. A state predicate is a predicate

whose truth values are solely determined by the state, and a state formula is built from those

by means of a first-order predicate calculus. A <I>-state is a state that satisfies formula <1>.

Then extremefairness can be defined as follows:

For any stateformula <1>, and a probabilistic transition 't such that 't is taken

infinitely many timesfrom <I>-states, each mode 't1 oi« is also taken infinitely

many times from <I>-states.

It has been shown in [Pnu831 that in order to prove that a temporal property 'If holds with

probability 1 on all computations, it is sufficient to prove that it holds on all extremely fair

computations. This formalism has been used in [PnZ86] to verify multi-process protocols.

- 25 -

A Survey of Fairness Notions

Other notions

Many more extensions or generalizations of fairness have been introduced. Generalized

fairness [Fra86] is an attempt to abstract notions like equifairness and fairness of choice

into a class of fairness notions determined by sets of pairs of state predicates. Fair

reachability ofpredicates introduced in [QuS83] as a replacement for state and transition

fairness is a similar notion; a computation is considered unfair if there is a predicate over

states which is reachable infinitely often but states satisfying this predicate are taken only

finitely often. Relativized fairness [QuS83] is a further refinement of fair reachability of

predicates. Conspiracy is where a number of processes monopolize a resource, effectively

preventing some process from proceeding at all [Bes84a] [Bes84b]. Hyper-fairness

[AFG88] is a conspiracy-resistant notion adequate for multi-party operations (the reason for

this distinction is that some fairness notions allow only pairwise communication; multi­

party communication can be found in some models, e.g. TCSP [BHR84], and

programming languages like Ada).

Related Notions

Several notions have been introduced in the past, which can be in some way related to

fairness; in fact, in many cases, we believe they are fairness properties.

Finite Delay

Finite delay property was originally formulated in [KaM69], where a formalism of state­

transition systems as models for parallel computations was introduced. In this formalism,

computations, represented by sequences of primitive steps (transitions), correspond to

admissible sequentializations of a concurrent behaviour. A sequence of transitions is a

computation if it is either finite, in which case no more transitions remain enabled, or it is

infinite, in which case it is required to satisfy finite delay property. Finite delay property

can informally be described as (we shall omit the formal definition):

If some transition is permanently enabled from some point on then it is

eventually taken.

- 26 -

A Survey of Fairness Notions

We believe the intention of this definition was to impose finite delay for independent, that is

concurrent, actions, rather than non-deterministic choices. In fact, in [KaM69] a subclass

of systems (determinate systems) that are concurrent but disallow non-determinism has

been characterized; for such systems, finite delay corresponds to concurrency fairness.

When adapting this property to the more general class of non-determinate systems, it seems

necessary to distinguish whether a transition remains enabled in the context of concurrency

or non-determinism; otherwise, the resulting property would be too strong, as it would

impose concurrency fairness together with fairness of choice.

Finite delay property is a fairness property reflecting the minimum constraint on sequences

of transitions/states to be admissible as sequentializations of a concurrent behaviour, and it

is too weak to model synchronisation fairness. Finite delay only excludes certain infinite

computations, hence, as such, it affects properties like termination and equivalence, but it

bears no relation on partial correctness. It is present, as maximality of computations, in

many non-interleaving models for concurrency based on causality, e.g. [LSB79] [Shi85a]

[Shi88c] [MOP88] [Kwi88a]. The interleaving models, like CCS [Mil80] or TCSP

[BHR84], have often been criticised for not having finite delay. Afinite delay operator has

been proposed in [Hen83], but it is not clear how this approach relates to that of [KaM69].

Livelocks

The term livelock is due to [Ash75], where the Floyd assertion method has been extended

onto parallel programs. Ashcroft observed that, although, using induction, he can prove

systems partially correct, his method could not be claimed to guarantee correctness with

respect to properties like "guaranteed response", and that finite delay property does not

provide a satisfactory solution. Using an example of a situation in an airline reservation

system, somewhat similar to the example used in the introduction, he shows that certain

events in the system can be permanently blocked by a "continually changing pattern of

constraints". This is named livelock, as opposed to deadlock, because the system is not

stopped.

Livelocks should be considered a fairness property, and also a liveness property in the

sense of [Lam77] (the "good thing" would be the customer making progress). Livelocks

have been examined in a Petri net setting in [Kw079j.

- 27 -

A Survey of Fairness Notions

Unbounded Non-determinism

Fairness is often discussed in the context of unbounded non-determinism, which was first

introduced in [Dij76]. This phenomenon arises in the context of guarded commands, see

the program below:

P = x:= 0;

do

[]

od

x>O

x>O

~ x:= x + 1

~ (print(x); stop)

Under the assumption of fairness, P would always terminate, and yet produce any, that is

unbounded, natural number. This seemed in contradiction with the intuition about

programming, in the sense that no feasible implementation of the above could exist.

Unbounded non-determinism has been re-considered in [Par80], where it has been

observed that the above contradiction could be explained on the grounds of the existence of

two interpretations of non-determinism: loose non-determinism and tight non-determinism.

In tight non-determinism, non-determinism in the language describes more than one result,

but a possible implementation does not have to produce all the results, only must guarantee

that the results produced are described by the semantics. In loose non-determinism, a

possible implementation mayor may not produce more than one result; the only constraint

is that every result produced is one of those prescribed by the semantics. The usual

interpretation of the non-determinism of a scheduler of concurrent operations is a loose one.

Unbounded non-determinism arises in the context of infinitely branching transition

systems; in [Ros88], infinitely branching systems are considered as a model for TCSP

[BHR84].

- 28 -

2.4.

A Survey ofFairness Notions

Existing Formalisms and Fairness

Temporal Logic

Fairness properties are expressed most elegantly in temporal logic. There is a variety of

temporal logics used to analyse program properties, which depend on the representation of

the behaviour of the program in terms of its runs (i.e, sequences of states). The two main

approaches here are: linear, which groups runs into a set, and branching, represented as a

computation tree.

As an example, let us consider linear temporal logic [MaP81] [GPS80] [Pnu86], which is

interpreted over (finite or infinite) sequences of program states. The exposition here is

based on [Pnu86]. A state formula is any well-formed first order formula; its truth value at
instant i in a sequence s is found by evaluating it on si. A temporal formula is constructed

from state formulae, to which the following (basic) operators are applied, and interpreted in

state si of some sequence s as follows:

X strong next instant operator (Xp is true at i if si+1 exists and p is true at i+1),

U until operator (pUq is true at i if there exists j > i s.t. q is true at j and for all k,

i<k<j, P is true at k),

P strong previous instant operator (Pp is true at i if i>O and p is true at i-1),

S strong since operator (pSq is true at i if for some j, O<j<i, q is true at j and for all k,

j<k<i, P is true at k),

Some of the derived operators are:

F sometime in the future (Fp = trueUp), often denoted as diamond,

G always in the future (Gp = -,F -,p), often denoted as box.

Examples of temporal formulae are:

- 29 -

p~Fq

G(p ~ Fq)

F(Gp)

GFp

GXFp

A Survey ofFairness Notions

if p now then eventually q

every p is followed by a q

eventually permanently p

infinitely often p (for infinite sequences only)

infmitely often p (for finite and infinite sequences)

A formula p is said to be satisfiable if there exists a sequence s and a position j such that p

holds at j (denoted Sj 1= p). A formula p is valid if for all sequences and positions j <

len(s), Sj 1= p.

A formula p is valid over program R if for every sequence (computation of R) sand j <
len(s), Sj 1= p.

Temporal logic distinguishes between safety and liveness properties. A safety property is

characterized (up to initial equivalence) as:

Gp

where p is some past-formula, that is p holds over all finite prefixes. Any formula

constructed out of past formulae, the logical operators 1\, v, and the future temporal

operators G, U is a safety property.

A (basic) liveness property complements a safety property by requiring that certain finite

prefix properties hold at least once, infinitely many times, or continuously from some point

on, that is correspondingly:

Fp, GFp, FGp

for some past-formula p.

The following are examples of fairness properties in temporal logic, assuming p stands for

"process enabled" and q stands for "process taken":

Gp ~ Fq, i.e. F(-.p v q)

GFp ~ Fq, i.e. F(G(-.p) v q)

weak fairness

strong fairness.

Formally, we have introduced a language L(X,U,P,S), also called TL (linear temporal

logic). Its subclasses TLF and TLP correspond to future and past temporal logics L(X,U)

and L(P,S), which have equivalent expressive power with TL. It is known that L(U) has

- 30-

A Survey of Fairness Notions

the same expressive power as L(F,X,U), but L(X,F) is not expressively complete [GPS80]

- for example, fairness properties shown above could not be expressed without Until.

Another point is that linear temporal logic, being a non-counting formalism, does not have

the same expressive power as regular expressions.

Linear temporal logic provides temporal operators that describe events along a single

computation path. In branching-time logic, the temporal operators quantify over the paths

that are possible from a given state. It is an interesting question to compare the expressive

power of linear and branching time temporal logic. A temporal logic language CTL*,

which combines both linear-time and branching-time operators, is introduced in [EmH86],

thus making it possible to obtain the results of such comparison. It is shown that CTL*
strictly subsumes B(L(F,X,U». Branching time logic B(L(F» has different expressive

power than its linear counterpart L(F).

Automata and to-regular languages

In order for fairness properties to be included in the analysis of system behaviours, it is

necessary to allow both finite and infinite sequences. This implies extending formal

languages to infinitary languages, which, in turn, requires re-considering finite state

automata as acceptors of languages.

Infinitary languages have been investigated by a number of authors, e.g. [BoN79] [Par8!].

co-regular languages are a natural extension of regular languages with an ro-iteration

operator, that is iteration an infinite number of times. ca-automata [Par8!] are formed from

standard finite automata by the addition of structure for accepting infinite sequences. Two

(equivalent in the non-deterministic case) varieties are: B-automata, due to Buchi, with an

additional set of green states which must be visited infinitely often, and M-automata, first

introduced by Muller, where a set of accepting states with a similar requirement is

specified. The class of co-regular languages is recognised by B-automata.

The relationship between co-regular languages and a concurrency operator (fairmerge) is

dealt with in [Par8l]. Fairmerge of infinitary languages is a function that interleaves pairs

of sequences in such a way that the whole of an infinite sequence is taken. The class of ffi-

regular languages is shown to be closed under fairmerge. Fairrnerge corresponds to

concurrency fairness for non-communicating concurrency, but it may be extended onto a

communication merge fPar85j [BeK86j.

- 31 -

A Survey ofFairness Notions

Fairness in (labelled) finite state automata is discussed in [PRW87]. Only the case of

strong fairness is considered there. The notions of edge- and letter-fairness (that is

transition fairness and fairness with respect to transition labels) are distinguished. These

notions are generalized onto (finite) paths (i.e. sequences of edges) and words (i.e.

sequences of letters), and the hierarchy of languages fair with respect to a given notion is

discussed. The relationship with Buchi and Muller automata is also considered.

Process Algebras

Process algebras are algebraic languages for the specification of concurrent processes and

the formulation of properties of such processes. They are usually introduced together with

the rules of algebraic calculus.

CCS [Mil80] is a calculus whose closed expressions correspond to processes. The

behaviour of processes is determined by the (transition) rules of the calculus. The language

allows: prefixing a process E with an action (aE), non-determinism (+), concurrency (I),

recursion (fix), and restriction (\). Synchronisation is enforced only under restriction;

otherwise processes may choose to proceed autonomously or synchronise. The rules of

CCS (with minor changes) have been included in the Appendix. The following is an

example of a CCS process:

(E 1F)\b

where E = fix X.(aX + bNIL), F = bNIL. This process terminates only if E and F

eventually synchronise.

Fairness in (pure) CCS without restriction has been examined in [CoS84], where it is

defined as an issue to do with concurrent processes. No distinction between weak and

strong fairness was needed there because processes never become locally disabled while

waiting to synchronise with other processes. Pure CCS with restriction has been

investigated in [CoS87], where weak process fairness is defined in the sense that no

process that is almost always enabled can be delayed indefinitely, and strong fairness is

defined correspondingly.

The main concern of [CoS87] is to provide a positive treatment of fairness, i.e. generate

only the derivations that are fair. The calculus of CCS has been extended to a labelled

calculus by adding labels identifying the path to a component of an expression. These

- 32 -

A Survey of Fairness Notions

labels have then been used to uniquely identify autonomous actions and processes in a

given expression. A subclass of live processes, that is processes that became active and

have not made a move yet, is distinguished.

In this setting, the set of rules for Weak Fair CCS and Strong Fair CCS have been

developed. Both sets of rules are finite and do not involve random assignment. Weak Fair

CCS is based on a local characterization of admissibility. On the other hand, Strong Fair

CCS can not be similarly characterized and involves predictive choice [MiI80], that is one

needs to base the definition on an infinite tail of a derivation in question.

A metric characterization of weak and strong fairness in CCS was presented in [Cos84].

The conclusion there is that fair infinite derivations of a given expression can be

characterized as limits of infinite chains of finite derivations. Although a generalization of

the results onto the class of all expressions is proposed, it does not seem abstract enough as

it is based on pairs consisting of an expression and its derivation. Fairmerge was discussed

in a CCS setting in [Hen8?].

CSP [BHR84] [Hoa84] (also known as TCSP) is a process algebra, which distinguishes

between internal and external choice and allows hiding (abstraction). Inter-process

communication is based on (n-communicating) joint actions, rather than binary

synchronisation in the sense of CCS. The usual semantic model for CSP is the failures

model, which is a transition system extended with additional failure and ready sets to model

the interaction of processes with their environment. Fairness is not expressible within CSP

[Hoa84]. In [Ros88], extending the failures semantics is proposed so that unbounded non­

determinism is allowed. It is not known if fairness issues have been considered in this

setting.

ACP [BeK86], the Algebra of Communicating Processes, is not tied to a particular model.

It is based on bisimulation semantics [Par8!]. The primitives include, apart from the usual

ones, a left merge operator, in terms of which a parallel composition is defined.

Communications are generalized to multisets of actions that can happen simultaneously.

ACP is extended with abstraction and encapsulation operator in [vGI86]. A process is fair

if for any improbable path (that is containing infinitely many exits) the probability that it

will be executed is zero. Fair abstraction rule, that states that any invisible infinite path may

be discarded, is shown to be satisfied in this algebra. It is not clear how this approach

relates to the rest of the research.

- :n -

A Survey ofFairness Notions

Infinitary algebra is discussed in [Par85]. It is influenced by CC5, restricted to regular

behaviours (that is corresponding to finite-state machines). Fairness properties are

introduced as operators, which define restrictions that affect only infinite behaviours. This

is achieved by introducing an infinitary agent A«L», where A is an agent in the sense of

CC5 and L is an m-regular language containing no finite sequences. A<<L» behaves as

the agent L, except that its infinite behaviours must be members of L. Equivalences then

can be proved under such constraints. This process algebra is applied to protocol

verification.

Net Theory

A number of papers have been published on fairness in Petri nets. Net theory is founded

upon the idea of a Petri net, which is commonly recognised as one of the first models for

concurrency based on causality, rather than interleaving. A Petri net [RoT86] is a triple N

= (5, T, F), where 5 is the set of places, T is the set of transitions, and F c 5 x T u T x S

is the flow relation. A marking is a function M: 5 ~ N that defmes the number of tokens

in a given place. A transition is enabled (may fire) if all its input places contain at least one

token. As a result of a transition firing, one token is added to each output place. The

behaviour of a net is often represented as an alternating sequence of markings and

transitions: Motl M2t2,.. Petri nets can be viewed as transition systems, with markings

forming the states.

Transition fairness has been investigated in [Bes84a] [Bes84b], where an infmite hierarchy

of notions of fairness, motivated by the need to exclude conspiracy, has been introduced.

This hierarchy collapses to a single notion for a simpler class of nets (confusion-free).

Another approach is that of rCaV84], where notions of fairness for three granularity levels

are defined in terms of subclasses of infinitary languages: markings, (bounded) places, and

transitions. Transition fairness corresponds to fairness of choice of transitions, and

marking fairness to fair reachability of states. The hierarchies of classes of fair languages

are investigated in [CaV84], and SOOle decidability questions are answered in [Car87].

It is not clear how processes should be defined for Petri nets; a variety of decompositions

are possible. In [Mer86], a notion of a process based on occurrence nets has been

introduced. Transition fairness and marking fairness, proved to be independent notions,

have also been discussed there. The hierarchy of marking fairness is shown to collapse.

- 34 -

A Survey ofFairness Notions

In [Kw079], livelocks have been investigated in parallel programs modelled by a Petri net,

and a technique for verifying the absence of livelocks has been introduced.

Transition Systems

Transition systems, with a countable set of states, seem to be the underlying structure of all

models for discrete systems. A number of fairness notions related directly to transition

systems as models for non-deterministic or concurrent programs have been introduced.

Most commonly, they correspond to fairness at the granularity level of transitions or states,

although some generalizations have also been proposed. Transition fairness is too general

as a fairness notion, because it depends on what constitutes a state and what a transition

represents.

In [QuS83], labelled transition systems are used as models for non-deterministic programs.

A state is a vector of program variables, while transitions correspond to guarded commands

and are enabled in a given state if the corresponding guard evaluates to true. In this

formalism, fairness with respect to transitions, fair choice of states, and fair reachability of

predicates over states (all in their strong form only) are criticised for a number of

anomalies, including not being preserved under syntactical transformations. Relativized

fairness is introduced instead and a branching time temporal logic is formalized to prove

properties under fairness assumptions.

Obviously, transition fairness as defined in [QuS83] corresponds to fairness of choice.

However, when concurrency is represented as non-deterministic interleaving, transition

systems may be used to model parallel composition of processes [MaP8!]. According to

this approach, states correspond to vectors of variables together with control information

about each process (that is, the location of control of each process at a particular instant in

time). Here, (weak, strong or unconditional) transition fairness corresponds to (weak,

strong or unconditional) process fairness. In [Pnu86], transition systems are extended to

fair transition systems by adding restrictions on justice and fairness (i.e. weak and strong

fairness).

Fairness for a concurrent while language modelled as a transition system is also examined

in [Pl082].

- 35 -

A Survey ofFairness Notions

Denotational Semantics

The issue of fairness raises a few important questions in denotational semantics [St077],

especially in relation to continuity and the Scott hypothesis. Denotational semantics defines

program constructs in terms of functions over domains, usually complete partial orders. It

is commonly accepted that all computable functions can be expressed in terms of

continuous functions over domains. It is also recognised that the powerdomain construction

[Pl082] is needed to provide denotations of non-deterministic or concurrent programs.

In [Par80], the notion of continuity, in the sense of preserving least upper bounds of

infinite chains, is extended to uncountable chains. A relational approach to denotational

semantics of non-deterministic programs is proposed. The problem of (concurrency)

fairness and unbounded non-determinism is re-considered. It is shown that the intuitively

acceptable fixpoint solution to the fairmerge of languages Oco and 1co is neither the minimal,

nor the maximal fixpoint. This suggests that generalized fixpoints may be needed to deal

with fairness.

In [Pl082], a powerdomain semantics for a concurrent while language (without internal

non-determinism) is discussed. Weak and strong event fairness is distinguished, and fair

parallel operators lin and lin , which put an explicit bound n on the number of moves the

process on the corresponding side can make, are defined.

The question of the relationship of the operational semantics and denotational semantics (in

terms of infinite streams) of a process algebra is addressed in [BM087]. The issue of

fairness is not dealt with there, but an observation is made that fairness properties

correspond to behaviours that are not closed in the topological sense. The topology

considered is one with respect to the metric space determined by the usual distance over

streams defined as 2-(n+1), where n is the length of the longest common prefix. A suitable

example would be the language {a*b} representing computations that are fair with respect

to communication b. This language is not closed, but {a*b} u {aco}, containing an unfair

computation aco, is.

- 36 -

2.5.

A Survey ofFairness Notions

Proving Properties under Fairness
Constraints

Properties of programs can be split into two classes: safety (invariance) and liveness

properties. This is motivated by different proof techniques required in each case: for

safety, structural induction based on invariants suffices, while liveness requires the method

of well-founded sets. A number of axiomatic systems originating from Floyd assertion

method have been introduced to reason about the correctness of concurrent programs, e.g.

[Ash75] [OwG76] [MaP81] [Pnu86]. Each axiom corresponds to a syntactical construct in

the language.

Partial correctness and mutual exclusion are examples of safety properties. Termination

and guaranteed response are liveness properties. Safety properties, as opposed to liveness,

are not usually affected by fairness properties.

Well-founded Sets

The main proof technique used to show termination (and, for that matter, liveness

properties) of programs is based on well-founded sets. A well-founded set (A, <) is a

partially ordered set in which there does not exist an infinite strictly decreasing sequence.

Elements of such a set may be used to define a ranking function p: S ~ A [LPS81], where

S denotes the set of states of a given program. The ranking function should be defined so

that, as the computation proceeds through state transitions, the value of the ranking function

for the visited states decreases. Since no infinite ranking sequence is possible, the program

must terminate. The program terminates if, and only if, such a ranking function exists.

For deterministic programs, it is sufficient to require that the ranking function decreases at

every step. However, when concurrent, or non-deterministic, programs are considered,

this requirement may be too strong. Often the ranking function could be defined only for

the fair sequences. Let us see the following example:

A = (b := false)

B =do true ~ skip od

P = (b := true; A II B)

- 37 -

A Survey ofFairness Notions

As long as only process B is taken, nothing changes in the state, so no ranking sequence

exists. However, assuming (weak process) fairness, the program terminates.

The solution suggested in [LPS811 is to define ranking sequences, which only decrease

eventually. Thus, we distinguish between a helpful direction, that is one that decreases the

ranking function (b := false), and an indifferent one, that does not increase it. Now, using

a proof rule which incorporates the required fairness constraint, we can show that, as the

computation proceeds, the ranking function does not increase and, by the fairness

constraint, the helpful direction is eventually chosen. Thus for program P, assuming weak

process fairness, the well-founded set would be (0, I), with p(true) = 1, p(false) = 0, as

the states could be identified with the value of b.

A complication of this method, when used to verify concurrent or non-deterministic

programs, is that arbitrary (not just countable) well-founded sets are required. A ranking

sequence would typically include transfinite ordinals, rather than just natural numbers,

hence transfinite induction may also be required. Ordinal numbers are an extension of the

concept of natural numbers beyond (0, and are defined as follows: °= 0, n + 1 = n U (n).

From now we proceed by taking (0 = (0, 1, ...), (0 + 1 = (0 U {(O), and so on [Hal60].

Ordinals are strictly ordered by set membership and form a well-founded class.

Let us consider the following example:

A = x := 0; comm:= true;

do
[]

od

comm

comm

~ x:= x + I

~ (B!x; comm := false)

B = (A?y; Cly; stop)

C = (B?z; do z >°--t Z := z - 1 od)

P =(A II B II C)

Clearly, C is terminating so, as long as A II B terminates, P will terminate. Note that A II B

always terminates under the assumption of weak process fairness. Process A produces an

unbounded natural number, which is then sent to C, who decrements it until it reaches zero.

The well-founded set in this case is (0, the second guard in A is helpful and the first one

indifferent. The ranking function is defined p(true) = (0, p(false) = x, where the truth

values in this definition correspond to the value of the variable comm, which we have

included to indicate that communication between A and B has occurred. (Note that taking a

- 38 -

A Survey of Fairness Notions

bounded value here was impossible because indifferent directions must not increase the

ranking function.)

The well-founded sets method also applies to liveness properties [pnu86], rather than just

termination. In this approach, fairness is incorporated as a constraint into proof rules, that

is a variety of proof rules are formulated depending on the actual notion of fairness.

A compositional approach is also possible, which allows for modules to be specified and

verified independently of their environment. This is achieved by the introduction of a

notion of an interface. Compositional approach to temporal logic is discussed in [BKP84].

It is not clear how fairness constraints are dealt with there.

Well-founded sets are also used to prove termination of non-deterministic programs

[Fra86]. Two inter-reducible methods seem to be used in this case: the state-directed choice

(essentially the ranking function with helpful directions as described above), and the

ordinal-directed choice (based on the existence of a parametrized invariant). A variety of

proof rules, one for each fairness notion, are considered in [Fra86] together with their

soundness and semantic completeness. Termination proofs are considered sufficient since

other liveness properties can be reduced to termination [GFM81].

Transformational Approach

An alternative method for tackling termination of non-deterministic programs is the method

of the explicit scheduler [Fra86]. It is based on the transformation of the original program

into a derived program that uses random assignment. This way, it is possible to find a

ranking sequence in the derived program which decreases at every computation step. Thus,

a simpler rule could be used to reason about the termination of the original program.

Random assignment is a statement of the form x := ?, where? stands for any natural

number.

The method of explicit scheduler IS analysed In [Fra86], where soundness and

completeness are also considered.

- 39 -

A Survey of Fairness Notions

Positive Approach

The methods we have discussed so far were essentially negative approaches based on two­

level semantics. At the lower level, all computations, whether fair or unfair, were allowed.

The proof rules incorporated a variety of fairness constraints, thus making it possible for

the proof to reason only about computations that are fair. Computations that are not

admissible under a given scheduling policy were considered irrelevant

The positive approach is concerned with generating the fair computations only. A positive

approach to fairness in CCS has been considered in [CoS87]. This was achieved by

introducing two sets of rules, namely Weak Fair CCS and Strong Fair CCS, which are

mathematically more complex than the standard rules for CCS. Any property verified by

means of those rules automatically holds for all, and only, fair computations. Such an

approach may be criticised for being inflexible, as any other notion of fairness would

require a new set of rules.

Automatic Verification

The obvious disadvantages of manual verification of program properties may be overcome

by a mechanization of the verification process. In temporal logic, so called model checking

[CI087] provides such facilities. This method relies on the representation of finite-state

programs as labelled state-transition graphs (called Kripke structures). The algorithm
developed for CTL [CI087] which determines if a formula fO is true in the state s has

complexity O(len(fo)*(ISI+IRI», where S denotes the set of states and R is the reachability

relation.

Incorporating fairness constraints involves extending the state-transition graph with a set of

fairness predicates, each of which is required to hold infinitely often along a computation

path. The temporal operators now quantify over fair computation paths. The complexity of

the model checking in this case increases by the factor IFI, where F denotes the set of

fairness predicates. A potential problem of this method is the exponential state explosion.

Other model checking systems that allow for fairness include [CaR87] [EmL87].

- 40-

2.6. Applications

A Survey ofFairness Notions

The techniques developed for program verification under fairness constraints have been

used, in isolated cases, in some practical applications. The work understandably

concentrates on mutual exclusion algorithms and protocol verification, as fairness

properties become important when modelling synchronisation or data transfer over a faulty

medium.

Concurrent Algorithms

When designing and implementing mutual exclusion algorithms, some reasoning about

fairness is needed to ensure that a process req uesting access to the critical section will

eventually be allowed to enter. Mutual exclusion algorithms are often verified in the

literature to exemplify the proof technique considered. Peterson's algorithm is shown

correct in [MaP81] [Pnu86] (the proof is based on linear temporal logic). Other examples

are [OwL82] proved using the "proof lattice" technique. The same algorithm is

automatically verified in [CIG87] by the model checking algorithm for the CTL temporal

logic. In [PnZ86], a version of n-process mutual exclusion is verified using the notion of

extreme fairness (that is probabilistic fairness). The algorithm is based on symmetric

protocols that do not share a writeable storage, but other processes are allowed to read the

value of the private variable of a given processes. Algorithms with the same constraint,

deemed necessary in distributed systems, are analysed in [Lam86]. Apart from fairness,

some failure-tolerance properties are also considered there.

Fairness of synchronisation primitives has been characterized in [Mar81]. Unbounded

communication primitives and two versions of semaphore operations are axiomatized. In

[KaL76], monitors that guarantee fairness are implemented as an extension of Pascal with

concurrency.

Protocol Verification

The verification of network communication protocols is of increasing importance. The

alternating bit protocol is verified under fairness constraints using many techniques, e.g. a

- 41 -

A Survey of Fairness Notions

manual proof in terms of an infinitary process algebra [Par85], and an automatic

verification in CTL [Cla86]. The CSMA/CD protocol is verified in [Par85] also using an

infmitary process algebra.

Verification of multi-process probabilistic protocols is discussed in [PnZ86], where the

notion of extreme fairness is employed. The protocol used there is based on n-process

mutual-exclusion algorithm assuming no writeable storage for communication.

Automatic verification using a model checking system written in PROLOG has also been

discussed in [CaR87]. For more detailed information on the subject of protocol verification

consult [Par85].

Programming Languages

It is an interesting question whether fairness constraints formulated for existing

programming languages, at the stage of the language design or implementation, are

adequate. In [AFK87], criteria for appraisal of fairness notions have been introduced.

These are: feasibility, that is whether some computation of a program remains having

excluded all computations that are unfair with respect to the given notion, equivalence

robustness, that is if fairness respects the equivalence induced by the model, and liveness

enhancement, that requires that additional liveness properties hold for some program.

When fairness notions for CSP [Hoa78] have been analysed, only strong process fairness

is shown to satisfy all three criteria. A number of fairness notions for communication in

Ada has also been considered.

Other work concerning programming languages revolves around synchronisation

primitives, for example semaphores [Mar8!] or monitors [KaL76].

2.7. Conclusion

Fairness and fairness-related notions stern from the observation that a certain undesirable

phenomenon, often present in infinite computations admissible under a given semantics,

and almost always relating to the lack of progress of some component of a system, must be

- 42 -

A Survey ofFairness Notions

disallowed. When first introduced, for example in [KaM69] [Ash75] [LPS81] [Par81],

fairness was defined as an issue to do with concurrency. The motivation for the

introduction of fairness was to make the admissible behaviour realistic from the point of

view of a concurrent implementation on a multi-processor system. The definitions of

fairness were often elusive, informal, and heavily dependent on the particular model used.

This situation has led to the emergence of the multiplicity of model-specific fairness

notions, guided by concerns other than concurrency, for example fairness of choice; as a

result, the originally intended intuition of fairness has been obscured

It should be recognised that fairness is not a monolithic notion; rather, in its present form, it

is a collection of (mostly independent) properties, which are relative to the choice of the

granularity level and the strength required. Nevertheless, fairness properties exhibit certain

features that distinguish them from other properties. All fairness notions known to the

author exclude some infinite behaviours while all finite behaviours are considered fair.

Also, fairness usually requires that some system component makes progress infinitely

often, without putting an explicit bound on the delay (the only constraint is that this delay is

finite). Notions like infinitely often, component becomes possible, progress has been made

need to be formalized in order to express fairness.

It has been maintained that fairness has no effect on partial correctness and, in general,

safety properties. It does, however, affect liveness properties, for example program

termination. This observation relies on the fact that, when some infinite computations have

been excluded, it is often the case that no infinite computations are admissible, hence the

program will be terminating. Fairness is introduced in most formalisms as a constraint

[Pnu86], that is an assumption incorporated at the verification stage, for example as a

premise of a proof rule, which is used to prove properties other than fairness. On the other

hand, fairness may be treated as a property of programs, that is it may be added to the list

of properties that form a specification for that program. Given notations expressive

enough, statements about fairness of a given program can be made and verified, although

this may have some effect on the complexity of the proof [CIG87].

It became apparent that some existing formalisms could not adequately incorporate fairness

as a property expressible within the formalism, Many models had to be extended with

infinite computations. In temporal logic, it has been observed that some properties could

not be expressed without certain powerful temporal operators [GPS80] [EmH87]. In

verification techniques, incorporating fairness has called for transfinite induction [LPS81]

[Fra86]. In denotational semantics, continuity had to be re-considered [Par81].

- 43 -

A Survey of Fairness Notions

Further difficulty arises when different behavioural structures are used as models, for

example, when non-deterministic interleaving is used to represent concurrency. At this

high level of abstraction, no restrictions are usually imposed on admissible

sequentializations of concurrent computations (for example, as a finite delay property

[KaM69]). For such approaches, fairness with respect to concurrent processes may be

reduced to fairness of choice for a particular scheduler. When transferring fairness onto

other behavioural structures, for example those based on causality, certain anomalies could

come to view [Kwi88b].

Due to a number of different guises fairness takes in different models, it is not clear at this

stage how best to approach fairness. Doubts have often been expressed if powerful

formalisms like transfinite induction are really needed to represent a property so easily, on

the face of it, implementable in practice. Also, some quantitative methods, rather than

qualitative that have been applied until now, would be beneficial to model bounded delays

necessary in real-time systems.

Recently, some criticism was raised [Dij88] as to whether fairness is a "workable notion"

since no finite experiment can be set up to prove or disprove it. We would argue against

this statement and tend towards [ChM88] thinking that fairness is a useful abstraction,

especially when related to concurrency, and, as such, although undetectable by finite

experiments, it nevertheless is a property that can be formally established. However,

further research is needed in order to provide an adequate characterization of fairness

properties independent of the intricacies of the models used. This seems a worthwhile

goal, considering the pleasing fact that the research in concurrency has begun to converge.

- 44 -

3
The Model

- 45 -

The Model

Finitary trace languages were introduced in [Maz77] as an attempt to

generalize formal languages in order to represent concurrent behaviour. The

notion central to trace theory is one of independency relation over action

symbols, which describes the potential for concurrency. Independency

gives rise to trace equivalence over sequences of action symbols, which is a

congruence in the monoid of strings. Asynchronous transition systems

[Shi85a] [Bed87] [Shi88c] are an extension of sequential labelled transition

systems with an independency relation.

In this chapter, we introduce the framework within which we shall

investigate the relationship of fairness and non-interleaving concurrency.

First, we enhance trace theory by extending trace equivalence onto infinite

strings. Then we discuss asynchronous transition systems, which we

extend with a notion of process structure to determine the contribution of

individual concurrent agents to the overall behaviour of the system.

Asynchronous transition systems are given interleaving and non-interleaving

semantics in terms of derivations and traces respectively. An alternative

representation of traces based on projective equivalence and preorder in the

monoid of strings derived from [Shi88c] is also developed; its product is

vector semantics, which relates behaviours to concurrent agents. It turns

out that projective equivalence coincides with trace equivalence.

Finally, we investigate properties of infinite traces and show that the set of

all traces forms an infinitary monoid and a domain. The relationship of

asynchronous transition systems and infinitary trace languages as their

behaviours is formally established.

We use examples based on a variant of CCS [MiI80], the syntax and

semantics of which can be found in the Appendix, and Condition/Event

nets, which have been defined in Chapter 6.

- 46 -

3.1. Preliminaries

The Model

This section gives a summary of basic notions referred to in the thesis.

Sets, Relations and Domains

The definitions in this section are based on [ScG87] [GHK80] [Shi88c].

Let P denote a set, R c P x P denote a relation over P. R is a preorder iff it is reflexive

and transitive. R is a partial order iff it is reflexive, anti-symmetric and transitive. R is an

equivalence iff it is reflexive, symmetric and transitive. R is a congruence wrt a (binary)

operation (f) in P iff aRb ~ aEBc R bEBc and cEBa R cEBb for all c.

Let S denote a set and EB a binary operation over S. (S, EB, E) is a monoid iff E is an identity

for EB and Ee is associative.

Let (P, <) be a partially ordered set (poset). For any subset X of P we define the prefix

closure of X, denoted J,X, as {y E P I :3 x E X: y ~ x] (also called the lower set). The

suffix closure of X, denoted tx, is defined by {y E P I :3 x E X: x < y} (also called the

upper set). J,{x} and t{x} are abbreviated to J..x and Tx.

Let (P, <) be a poset. We say a is a lower bound of a set X c P, and b is an upper bound,

provided that a < x for all x E X, and x < b for all x E X, respectively. If the set of upper

bounds of X has a unique smallest element, we call this least upper bound (denoted lub).

Similarly the greatest lower bound is denoted by glb. P is a lattice iff every pair of elements

x, yEP has a least upper bound and a greatest lower bound. P is a complete lattice iff

every X c P has a least upper bound and a greatest lower bound.

Let (P, <) be a poset. x, yEP are compatible iff the set {x, y} possesses a least upper

bound. X ~ P is pairwise compatible iff every x, y E X are compatible. We say that (P,

<) is coherent iff every pairwise compatible subset X c P has a least upper bound in P.

- 47 -

The Model

Let (P, <) be a poset. X c P is totally ordered, or a chain, iff for every x, y E X, either x

< y or y < x. X c P is a directed set iff it is non-empty and 'V x, y E X 3 Z E X such

that x < Z and y < z. Otherwise it is branching. Equivalently, X c P is a directed set iff its

every finite subset has an upper bound in X.

Let (P, <) be a poset. An element x E P is a complete prime iff, for every X c P, if x ~

lub(X) then there exists y E X such that x <y. Let Pr(P) denote the set of complete

primes of (P, <). (P, <) is prime algebraic iff for every element x E P, the least upper

bound of the set (y E Pr(P) I y < x} exists and equals x.

Let (P, <) be a poset. P is a complete partial order (cpo) iff

(i) P has a least element, and

(ii) if X c P and X is directed, then X has a least upper bound in P.

Note that since every pairwise compatible set is directed, every coherent poset is a cpo (e.g.

see [Shi88c]).

Let (D, <) be a cpo. XED is s finite element if, whenever M c D is directed and x <

lub(M), then there exists y E M such that x ~ y. The set of all finite elements of D is

denoted BD. D is algebraic iff, for every xED, the set M = {y E BD I Y~ x} is directed

and lub(M) =x. D is a domain iff D is algebraic and BD is countable.

Given complete partial orders D, E, a function f: D ~ E is monotone iff f(x) ~ f(y)

whenever x <y. If f is monotone and f(lub(M)) = lub(f(M)) for every directed M, then f is

said to be continuous.

The following are standard results in domain theory [ScG87]. If D, E are complete partial

orders, then DxE is a cpo with coordinatewise ordering <x.y> < <x' ,y'> iff x < x' and y ~

y'. If D, E are domains, then DxE is a domain with BDxE = BD x BE. Given a cpo F and

continuous functions f: F ~ D, g: F ~ E, there is a continuous function fxg: F ~ DxE

given by (f(x), g(x)).

Let (D, <) be a domain. For any subset X of we define the prefix closure of X, denoted

J,X, as {y E D I 3 x E X: y < x] (the lower set). We shall also distinguish closure with

respect to finite prefixes, denoted j.,finx, which is defined as X u {y E BD I 3 x E X: y ~

x}. The suffix closure of X, denoted tx, is defined by {y E D I 3 x E X: x < y} (the

upper set). J,{x}, i{x} and .,Lfin{x}, for xED, are abbreviated to .,Lx, ix and .,Lfin x

respectively.

- 48 -

The Model

Infinitary Languages

Let A denote a finite alphabet; E denotes the empty sequence, A* represents the set of all

finite sequences (also called strings or words) over the alphabet A, Aco represents the set of

all infinite sequences over A, and A00 is the union of A* and Aco. The length of a sequence

x E Aoo is denoted I x I (co for infinite sequences). For i E N+, X E Aoo, xti) denotes the ith

symbol of the sequence x if it exists, and E otherwise, where N+ denotes the set of natural

numbers excluding zero.

We follow [BoN79] in the way we define prefix ordering and concatenation over A00. The

prefix order over A 00 will be denoted by < and is defined below:

\:j x, yEA 00: x <y ¢::> \:j i E N+: (i ~ I x I ::::) xti) = y(i))

It should be noted that only finite proper prefixes are distinguished (i.e. for all x, yEAco: x

< y ~ x = y).

We define x[i] as the sequence x(1)...x(min (i, I x ID. The set of finite prefixes of x,

Preffin(x), is {x[i] liE N+}, whereas the set of all prefixes of x, Pref(x), is

Pretfin(x)u [x] .

Concatenation is extended onto A 00 by taking as the concatenation of sequences x, y:

\:j X E A*, yEAco: the infinite sequence xy

\:j x E Aco, yEA 00: the infinite sequence x.

Concatenation will be denoted as juxtaposition. A00, together with the above

concatenation, forms a monoid (proof of associativity is clear).

We define a binary left cancellation operator, denoted /: A* x A *~ A*, as follows:

\:j X E A *, yEA 00: y/x = z ¢::> (x < Y1\ XZ =y).

Example. Concatenation: acob = aco, acobco = aco, anaco = aco.

Left cancellation: aab/a = ab, an/an =E; an/b is undefined.

A00, together with the above prefix ordering <, forms an algebraic cpo, and, since the set

A* of finite elements of A00 is countable, it follows that (A00, <) is a domain.

Proposition 3.1.1. (Aoo,~) is a domain. The set of finite elements is equal to A*.

- 49-

The Model

Proof.

(i) Obviously, E is the least element. It follows from the definition of the prefix

ordering < that every directed subset of A00 is totally ordered. Suppose X c A00 is

directed. IfX is finite, then the largest element of X is the lub. If X is infinite, its

elements form an infinite chain:

xl < x2 < ... < xi < ...

and its least upper bound d E Aro can be constructed as follows:

rxl (i)

di - ~

l xli) I Xj I < i < I Xj+1 I

Thus we have shown that (A 00, <) is a cpo.

(ii) We now show that A* are the finite elements. Suppose x E A* and M c AOO is

directed. Thus M must be totally ordered and lub(M) exists as shown in part (i) of this

proof. We need to show the existence of y E M such that x <y whenever x ~ lub(M).

Assume x < lub(M) and M is finite, then lub(M) E M, and we can take y = lub(M). If

x <lub(M) and M infinite, then either lub(M) E M, in which case we take y = lub(M),

or lub(M) e M. In the latter case, lub(M) must be an infinite word while x is finite, and

x < lub(M). In case x E M, we take y = x. Otherwise, M contains words of

unbounded length which are prefixes of lub(M). x is also a prefix of lub(M) and it is

bounded, hence it must be possible to choose y E M such that x <y.

Clearly, elements of Aco are not finite. As a counter-example consider any x = Aco and

any infinite directed set M such that lub(M) = x but x e M.

(iii) We now show that (AOO, <) is algebraic. Let x E Aoo and define M = {y E A* I y

< x}. M is clearly a total order, hence it is directed. It is easy to see that x = lub(M).

Since A* is countable, it follows (A00, <) is a domain.

o

(A 00, <) is also a prime algebraic and coherent poset (proof can be found in [Shi88c]). The

set of complete primes is equal to A*-(E}.

A subset L of A00 is called an infinitary language. We extend the set of finite prefixes onto

languages by Pretfin (L) = [x E Pretfin (y) lYE L). An adherence of a language L c

- 50-

The Model

Aoo, Adh(L), is defined by [x E AW I Pretfin (x) c Pretfin (L)}. A language L c AOO is

closed! iff Adh(L) c L. A language L c A00 is prefix closed iff Pref(L) =L.

Lfin denotes the finite part of L, that is Lfin =L (") A*. Linf denotes the infinite part of L,

that is Linf =L (") Aw. A language is an ideal if Lfin = Pretf'in (L). Every prefix closed

language in A00 is an ideal and vice-versa-.

Example. Let us consider A = {a, b}, Lj = {an I n > O}, L2 = {an In > O} u {aw},

L3 = {(ab)n In > O}. Then Adhfl..j) = {aw}, Adh(L2) = {aw}, Adh(L3) = {(ab)W}.

Lj and L3 are not closed, while L2 is. Ll and L2 are ideals and prefix closed.

Transition Systems

Transition systems [KeI76], both labelled and unlabelled, have been widely adopted as

means of providing semantics for computations. We shall consider labelled transition

systems only, which we shall simply call transition systems.

Definition. (Transition system)

A transition system is a a triple (Q, A, ~) where

(i)

(ii)

Q

A

is a (countable) set of states (or configurations),

is a (finite 3) set of action labels,

(iii) ~ c QxAxQ is a transition relation; q ~a q' means that transition a is

possible in the state q and the resulting state is q'.

Both Q and A are assumed to be non-empty. Clearly, every discrete system can be

represented, at some level of abstraction, as a transition system. Transitions represent

1 This definition of closure satisfies the axioms of topological closure. Alternatively,

adherence could be defined by means of the ultrametric [BoN79] d(x,y) =2-n, where n is

the longest common prefix of x and y.

2 We shall require this distinction when generalizing string languages to obtain trace

languages.

3 Finite presentation of programs is assumed.

- 51 -

The Model

atomic 4, indivisible, instantaneous actions. It is assumed that an action represents a single

event, and if there is any possibility of simultaneous events occurring, such an occurrence

can be represented as a sequence of occurrences of events in some arbitrary order. For a E

A, q E Q, q ~a is used to denote a is applicable (i.e. enabled) in the state q. When, for

some actions a and b, q ~a and q ~b, we say that actions a and b are simultaneously

enabled, that is potentially concurrent or non-deterministic.

Note:

• The following need not hold:

\;f q E Q 3 a E A: q ~a.

A state q is a terminal state iff for all a E A such that q ...;.:,a.

• Two differently labelled transitions applied in the same state may have the same

direct successor, i.e. the following is allowed:

q ~a q' 1\ q ~b q' 1\ a ~ b.

• We assume ~a is a (partial) function QxA~Q, i.e. no two identically labelled

transitions, when applied in the same state, may result in two different successors

(this is called unambiguity):

(q ~a q' 1\ q ~a q") => q' = q".

• A transition system is called finitely branching iff

Bq = {(a,q') E AxQ I q ~a q'} is finite

for all q E Q. We shall only consider finitely branching systems, which is

guaranteed by the assumptions of unambiguity and the fmiteness of A.

Topology

This section is based on [Kur66] rSmy83].

4 All models known to the author, apart from [Lam86], assume atomicity.

- 52 -

The Model

A topology on a set S is a collection of subsets of S that contains 0 and S, and is closed

under finite intersection and arbitrary union. A set together with a topology T on S is called

a topological space; the elements of T are the open sets of the space. A base of the topology

is a subset ~ c T such that every open set is the union of elements of B. A set X is closed
iff its complement S-X is open. A set is dense iff its closure CI(X) is S. A G8 -set is a

countable (fmite or infinite) intersection of a family of open sets.

The closure operation CI for any X c S satisfies the following axioms:

1) CI(XuY) = CI(X)uCI(Y)

2) X c CI(X)

3) 0 =CI(0)

4) CI(CI(X» = CI(X).

In addition, if:

5) CI({p})={p},forpeS

then the space is T 1.

A space is Hausdorff (or a T2-space) iff for each pair of points p :;:. q there exist two open

sets G, H such that peG, q e Hand G n H = 0.

Let (P, <) be a poset. The Alexandroff topology over P is the collection of suffix closed

sets, that is sets X c P such that X = tx. (A topological space with the Alexandroff

topology is non-Hausdorff).

Let (P, <) be a cpo. The Scott topology is defined as follows. A set X is Scott-open iff it

is suffix-closed and, for every directed set Y c P, if lub(Y) e X then some element of Y is

in X. (A topological space with the Scott topology is non-Hausdorff).

Example. Let us consider the domain A00 with prefix ordering <. For A = {a, b},

examples of Alexandroff-open sets are Xj = {an I n ~ O} u faro}, X2 = [ab'' I n >

O} u {bro, abro}, and X3 = faro}. X 1 is also Scott-open, but X2 and X3 are not. The

base of the Alexandroff topology is rrx I x e AOO). The base of the Scott topology is

rtx I x e A*}. In order to show that Alexandroff topology is non-Hausdorff, let us

take p = {a} and q = {aa}. The same pair of points serves as a counter-example for

Scott topology being Hausdorff.

- 53 -

3.2. Trace Languages

The Model

Trace languages [Maz77] are an attempt to introduce additional structure into formal

languages in order to provide a mathematical description of non-sequential behaviours. It is

assumed in trace theory that observations are sequential in nature, but, for systems that

exhibit concurrency, different external observers may disagree on the ordering of

concurrent events. These differences are subjective, as they depend on the position of an

observer, or the actual timing of the execution, and thus should be considered irrelevant.

On the other hand, the ordering of causally related events is objective, that is independent of

the observer, and should, therefore, be distinguished.

Trace languages are derived from sequential languages. The additional structure is given in

terms of an independency relation, which describes causal relationship of actions within a

system. Finitary trace languages are due to Mazurkiewicz [Maz77]. (Finitary) trace

languages were considered in [Bed87]. In [Maz84b], a modular decomposition of trace

languages, forming a basis of a process algebra, was formally derived. The questions of

the relationship of the various classes of trace languages were addressed in [AaR88].

Dependence graphs [AaR88] are a related notion.

Independency and Trace Equivalence

Let A denote a (finite) alphabet. By a concurrent alphabet we shall mean an ordered pair:

C = (A, t)

where A is called the alphabet of C and t c A x A is a symmetric and irreflexive relation

(the independency).

Intuitively, the independency relation describes possible concurrency within a system;

irreflexivity prohibits an action to be concurrent with itself (i.e. a t b :=) a ;¢:. b), and

symmetry requires that concurrency is always mutual. Note that independency is not, in

general, transitive.

- 54 -

The Model

Obviously, 0 and A x A are independencies (called empty andfull independency

correspondingly). An empty independency corresponds to a sequential (but possibly non­

deterministic) system.

From now on we assume A is fixed. We define trace equivalence [Maz77], denoted =t*,

as the least congruence in the monoid of strings S = (A*, ., e) such that:

a 1 b :::::) ab =t* ba.

It follows then for all WI, wIt E A*:

WI =1* wIt ¢::> 3 wo' wI, ...wn n > 0: wO = WI, wn = wIt and

\;j k, I < k < n, 3 u, v E A*, a, b E A:

at band Wk-I =uabv, Wk = ubav.

By definition, trace equivalence is a congruence with respect to concatenation. This
congruence seems quite strong: note that WI =t* wIt => 1WI I = I wIt I.

Intuitively, trace equivalence allows to permute any two consecutive actions, providing they

are independent. This is why trace equivalence is sometimes referred to as the permutation

equivalence [BoC88]. Note that when independency is empty, no two actions may be

permuted, which corresponds to our understanding of sequential systems.

The main objective of trace equivalence is to equate all, and those strings only, which differ

in the order of concurrent actions, that is, their ordering can be viewed as irrelevant. The

independency relation, as opposed to the compatibility relation in event structures [Win86],

is a syntactical notion, and it can usually be determined from the syntactical structure of

processes in a concurrent language.

Example. Let us consider A = {a, b, c}, with t = {(a,b), (b,a)}. Then abc =t* bac,

but it is not the case that abc =t* acb. Using a process algebra notation, strings abc

and bac intuitively correspond to the behaviour of a process (aNIL II bNIL);cNIL (note

that acb is not admissible here). Also, aab =t* aba t* baa, which, similarly, is a

representation of the behaviour of (aaNIL II bNIL). On the other hand, if t = 0, then all

actions are causally related and cannot be permuted. This corresponds to processes like

abcNIL + bacNIL, in which case strings abc and bac would not be equivalent.

- 55 -

The Model

Traces

Equivalence classes over C are called traces. A trace generated by a string w will be
denoted [wh or [w] if t understood.

For each (finitary) language L c A*define:

[Lh = Ilwl, I WE L}.

The set

8 * *"t = [A h

is the set of all (finite) traces over the concurrent alphabet C = (A, t). The quotient algebra

T* = (A*, ., E)/= is called the algebra of traces over (A, i), T* is a monoid [Maz84a]

(sometimes called a free partially commutative monoid). When t = (0 the algebra of traces

is isomorphic to the algebra of strings over A.

The following equalities [Maz88] hold for u, w E A*, 1, 1b 12, 13, a', a" E 8 t *:

[u] [w] = [uw]

1 [E] =[E] 1 =1

11('t2 't3) = ('t1't2)'t3

a' r j o" = a' 't2a" => 'tl = 't2.

The first of the above laws states that, in order to concatenate two traces, it is sufficient to

concatenate any pair of the representants and then take the corresponding equivalence class.

Example. Let us consider A = (a, b, c), with t = ((a,b), (b,a)}. Then [abc] = (bac,

abc), [aab] ={aab, aba, baa}. Intuitively, trace equivalence groups together all

possible sequentializations of the given behaviour, for example the trace [abc]

represents (aNIL II bNIL);cNIL. On the other hand, abcNIL + bacNIL would give rise

to two distinct traces, [abc] and [bac1.

Example. For L = (ab, abab, baba) with a t b we have [L] = ([ab, ba], [abab, abba,

aabb, bbaa, baba, baab]).

- 56 -

The Model

Trace Prefix Ordering

A trace (J is a prefix of trace 't over C = (A, i) rMaz88] if there is y such that 't =cry (that is,

(J can be extended to r). Trace prefix ordering will be denoted ~ (or < if t understood).

The set of all prefixes of a trace 't will be denoted by Pref(t). The set f* of all traces over

C = (A, t) is ordered by ~ defined as:

«~*, <) is a poset. The set of prefixes of a given trace is directed, but not a total order like

in the algebra of strings. Relation < will be referred to as the dominating relation in f\ *. If

't1 <'t2 we say that 't1 is dominated by 't2. If there is a trace that dominates both 't1 and

't2 we say that 't1 and 't2 are consistent; otherwise they are inconsistent. If tj < 't2 or't2 <

't1 we say that 't1 and 't2 are comparable; otherwise they are incomparable. Unlike in the

algebra of strings, two incomparable traces may be consistent.

Example. Let us consider traces over C = (A, t), where A = {a, b, c, d} and t =

{(a,b), (b,a), (a,c), (c,a)}. Then [e] is dominated by [a]; [a] is dominated by [ab] and

[ad]; [b] is dominated by [ab], but not [ad]. Also, [a] and [b] are consistent but

incomparable, whereas [ab] and [ad] are inconsistent.

Let w = ahead. Fig. 3.2.1 represents Pref([w]), that is the poset of all prefixes of [w].

[e]

/ \

[be]

/

[b]

\\ /

[ab]

/ \
[aba] [abc]

\ /

[a]

[abae]

I
[abaed]

Fig. 3.2.1. The poset of all prefixes of Iabcad] with a t b, a t c.

- 57 -

The Model

Trace prefix ordering can be viewed as ordering on partial executions, where each trace

corresponds to a (global) state. [E] is the initial state, incomparable prefixes of the same

trace represent states arising during concurrent execution, and 'tl < 't2 means that 't 1 is a

partial execution leading to 't2. Inconsistent states are the effect of non-determinism

(conflict resolution).

Left Cancellation for Finite Traces

The following binary left cancellation operator, denoted /: 8 t *x8t *~ 8 t *, may now be

defmed:

a/y = 't <=) (y ~t a 1\ yc = a).

a/y is pronounced a after y; it denotes the continuation of a after its prefix y has been

completed. Observe that a/y is well defined and equal [x/Yh for some x E a and y E 'Y

such that y < x (the existence of such x, y is a consequence of Observation 3.2.9).

We shall be concerned with extending left cancellation onto 8t00 in later sections.

Decomposition of Finite Traces

We can extend the independency relation onto finite traces. For a trace a E 8 t * define the

set of actions of a, denoted Act(a), as follows:

Actrc) = {a E A I xay E a for some x, yEA*}.

Two traces 'tl, 't2 E 8 t * are independent if, and only if, Actrr j) x Act('t2) c t and

dependent otherwise. A trace 't E E>t* is called connected if any two non-empty traces 't1,

't2 E 8 t * with 't = 't1't2 are dependent.

Definition [Maz88]. A decomposition of a trace 't E 8 t *, denoted ~('t), is a set {'t1,

't2, ... , 'tn} such that:

(i) 't = 't 1't2··· 'tn
(ii) 'ti is non-empty and connected for each i, 1 < i < n

(iii) 'ti, 'tj are independent for each i, j distinct, 1 ~ i < n, 1 <j < n.

- 58 -

The Model

Elements of ~('t) are called independent components of trace r.

Example. Let b t c. Then:

~([abb]) = {[abb]}

~([cbbcc]) = ([bb], [ccc])

~([abc]) = ([abc]).

Clearly, ift =0 then ~(t) ={t}.

Finitary Trace Languages

Let C = (A, t) be a concurrent alphabet. Each subset of 8 t * of all traces over C is called a

(finitary) trace language [Maz77] [Maz88]. Concatenation of finitary trace languages is
defined as follows. Let T1, T2 be finitary trace languages. Then:

Trace iteration is defined in the usual way, that is:

T* =U {TO I n E N}

where:

TO = {[E]}

Tn+l = TnT.

For each trace language T define:

Pref(T) = [Prefer) I t E T}.

A trace language T is prefix closed if T =Pref(T). A trace language T is directed if (T, <) is

a directed set, that is it is non-empty and:

tl E T, t2 E T => 3 t E T: tl < t 1\ t2 < r.

Properties of finitary trace languages have been investigated in a number of papers. It turns

out that most properties known for string languages generalize onto trace languages. For

example, although the definition of trace iteration included does not allow for the

generalization of Kleene theorem for strings, it is possible to define iteration in such a way

- 59 -

The Model

that regular trace languages can becharacterized as the least class of languages closed under

union, concatenation and iteration [Maz88] (generalization of Kleene theorem for strings).

A trace language T is regular iff the family of sets:

{T/'t I 't E St*}

is finite, where T/'t denotes the set {O' E 8 t * I 'to' E T}.

The iteration of a trace language T is defined by (~(T» * [Maz88]. The relationship of

regular, context-free and context-sensitive trace languages and graph grammars is

established in [AaR88].

Decomposition of Finitary Trace Languages

Decomposition can also be extended onto finitary trace languages. Let T c 8 t *. Then the

decomposition of T, denoted by ~(T), is defined:

~(T) =U {~('t) I 't E T}.

Proposition 3.2.1. [Maz88]. The following are properties of decomposition of

trace languages.

(i) T* c ~(T)*,

(ii) T =~(T) if t =0,

(iii) ~(~(T» = ~(T).

The language T is connected if, and only if, T = ~(T).

Infinite Traces

We can extend trace equivalence =t* in the monoid of finite strings S = (A*, ., e) onto A00

using a definition similar to the permutation equivalence introduced in [BoC88]. We

achieve this by weakening string prefix ordering ~, denoted for the purpose of this section

by <s, to a trace preorder relation on A00, which abstracts from irrelevant interleavings of

consecutive independent symbols. Finite or infinite number of permutations is allowed.

- 60 -

The Model

The required relation is arrived at in two steps. First, we introduce trace preorder ~* on

A*, which is then shown to determine =t*. Later, we extend trace preorder onto A00

(denoted ~). Finally, infinite traces are defined as equivalence classes with respect to the

equivalence =too determined by the preorder ~.

Definition. (Trace preorder on A"), Let x, yEA*, then :
* ~ * *x < y <=> (::J Z E A : x ~s Z /\ Z =t y).

Observation 3.2.2. x <s Y ==> x <* y.

Proposition 3.2.3. <* is a preorder.

Proof.
1) Reflexivity. x <* x follows trivially from reflexivity of <s and x = y ==> x =t* y.

2) Transitivity. Suppose x <* y /\ Y <* z. Then from definition of <* we have:

*(2a) :3 u: x <s u /\ U =t y, and

*(2b) :3 w: y <s w /\ W =t z.

We need to show the existence of v such that x <s v /\ V =t* z. We construct vas

follows:

v = xu'w'

where u' denotes u/x (must exist because x <s u), and w' denotes w/y (again, this

exists because y <s w). We now have:

[v] = [xu'w'] =+ [xu'] [w'] = [u] [w'] = [y] lw'l =+ [yw'] = [w].

(where steps marked with + follow from [x] [y] = [xy]). We have thus shown that v
* * *=t w =t z, and hence we have constructed v such that x <s v /\ V =t z. We can

*conclude that x < z.

o

* * * *Example. For A = {a, b} and a t b, we have that € < a, a < ab, a < ba, ab < ba,

and ba <* abo However, when t = 0, it is not the case that ab <* ba.

Observation 3.2.4. Note that for finite strings over A we have x =t* y iff x <* y

/\ Y<* x (proof follows directly from definition of <*).

We now extend the above preorder to a preorder <00 on A00. We require that for every

finite prefix x of u there must exist a finite prefix y of v such that x <* y.

- 61 -

The Model

Definition. (Trace preorder on AOO). Let u, V E Aoo, then:

u <.00 v <=> (\;f X E Pretfin(u) :3 y E Pretfin(v): x <* y).

Proposition 3.2.5. <00 is a preorder.

Proof.

1) Reflexivity. u <00 u obvious (follows from reflexivity of <s and <*).

2) Transitivity. Suppose u <00 v A v <00 w. Then from u <.00 v and the definition of

<00 we have: \;f x E Pretfin(u) :3 y E Pretfin(v): x <* y. Since v <00 w, we deduce

from the definition of <00 that 3 Z E Pretfin(w): y <* z. The final conclusion, x ~* z,

follows from transitivity of <*.

o

Example. Let us again consider A = {a, b} with a t b. It is easy to notice that a~

aOl, aOl <.00 (ab)Ol, and aOl <00 (ba)Ol.

The preorder <00 determines an equivalence relation =t00 which coincides with trace
. I * A*equrva ence L on .

Proposition 3.2.6. <00 and <* coincide on A*.

Proof.
* * ~1) Suppose x < y for some x, yEA . We need to show that \;f m E Prepln(x) :3 n E

Pretfin(y): m <* n. Suppose m <s x, then, obviously, m <* x, and from the

transitivity of <*, we deduce m =s;* y. We have thus shown, for any prefix m of x, the

existence of n = y such that m <* n, which concludes the proof.

* *2) Suppose x <00 y for some x, YEA. We need to show x < y. Take m = x, then,

from definition of <00, 3 n E Pretfin(y): x s" n. Since n <s Y=> n <* y, it follows

from transitivity of <* that x <* y.

o

Unlike the definition of trace equivalence for finite strings, the definition of -tOO allows for

an infinite number of permutations of two consecutive independent symbols. For example,

(ab)ol =too (ba)Ol if a t b. The infinite trace [(ab)W] is thus a representation of the behaviour

of the process (fix X.aX) II (fix X.bX). This process must execute both a and b infinitely

often. It is easy to see that [(ab)W] subsumes all, and only those sequences over {a, b} that

contain an infinite number of both a's and b's (a fairmerge of aW and bW [Par8! D. On the

- 62 -

The Model

other hand, the behaviour of the process fix X.(aX + bX), where a and b are dependent,

would be represented by a set of equivalence classes that are singleton sets [(a*b*)O)].

Note that, in this case, a finite number of occurrences of either a or b is allowed.

We have thus extended trace equivalence onto A00. We shall denote trace equivalence in

A00 by =t (the subscript will be omitted if t understood). A trace generated by a string w

will be denoted lwh or [w].

For each infmitary language L c A00 define:

[Lh = {[wh I WE L}.

The set

f\OO=[AOOh

is the set of all (finite or infinite) traces over the concurrent alphabet C = (A, t), The set of

infinite traces, denoted 8 t O), is defined as [AO) h.

Trace Prefixes for Infinite Traces

Trace prefix ordering on infinite traces, denoted <t, is determined by the preorder <00. A

(finite or infinite) trace o is «prefix of a (finite or infinite) trace 't over C = (A, t) iff:

\;j X E o 3 y E 't: x <00 y.

Let us denote the above relation over 8 t00 by <tOO, and trace prefix ordering over 8 t* by

<t*. We now prove that <tOO coincides with <t* over 8 t*. We shall need the following

lemma.

*Lemma 3.2.7. \;j x, y, u, W E A :
* * *(x <s y, u <s w, x =1 U, Y-1 w) => (y/x =1 w/u).

Proof.
y =1* W => x(y/x) =t* u(w/u) (from definition of I) => [x(y/x)] = [u(w/u)] =>

[x][y/x] = [u][w/u] (by definition of concatenation) => [x][y/x] = [x][w/u] (because x

=t* u) => [y/x] = [w/u] (by left cancellation) => y/x =t* w/u.

o

- 63 -

The Model

Proposition 3.2.8. <100 coincides with <1* over 8 1*,

Proof.

1) Suppose (J, 't E 8 1* such that (J ~* 'to Then, from the definition of ~*, there

exists y such that cry = 'to Since <00 and <* coincide on A*, it is sufficient to show that

for every representant x of (J there exists a representant y of t such that x <* y. We

have [x] [y] =[z] =[xy], for any representants x E (J, YE yand ZE 'to Since x <s xy

* d * *~ x < xy an xy L Z, we conclude x < z. We have thus shown x~ z.

2) Suppose (J, 't E 8 1* such that (J ~00 'to We need to show the existence of y E 8 1*

such that cry = 'to By definition of ~00 we have \;f x E (J 3 y E r: x~ y, and, since

~ agrees with <* on A* by Proposition 3.2.6, it follows that \;f x E (J 3 y E 't: x <*

y. From definition of <* we have \;f x E (J 3 y E t: (3 z: x <s Z /\ Z =1* y). Thus,

\;fxE (J 3ZE 't: x<szandlxl<lzl. Then for any xjv xg e (J 3Z1,Z2E tt x] <s

Zl and x2 <s z2· Define y= [zl/xll. By Lemma 3.2.7, y= [z2Ix2]; hence the

construction of y does not depend on the choice of representants. Now, cry =
[xl][zl/xll = [xl(zl/xt}] = [zj] = [yl ='t, which concludes the proof.

o

We have thus extended trace prefix ordering onto 8 1
00. From now on we shall denote trace

prefix ordering on 8 1
00 by <1 (or < if 1 understood).

Infinite traces can be viewed as limits of chains of finite traces (or least upper bounds of

directed and prefix closed finitary trace languages). Finite prefixes of infinite traces

correspond to finite approximations. Note that, in contrast to prefix ordering for strings, it

is possible to show two distinct infinite traces, of which one dominates the other one. For

example, the following holds for a 1 b:

[(a)CO] < [b(a)CO] < ... < [(ab)CO].

Observation 3.2.9. Note that a direct consequence of the definition of <* is that,
whenever (J ~ 't, for (J, 't E 8 1*, then for all x E (J there exists y E 't such that x <s y.

This does not extend onto 8 1
00, for example [aCO] ~ [baCO] when a 1 b, but for no y E

[baCO] = a*baco do we have aco <s y.

The set of all prefixes of a trace 't will be denoted by Pref(r); the set of finite and infinite

prefixes will be denoted PrerfinCr) and Prepnf('t) respectively. Obviously:

- 64 -

The Model

The definitions of traces that are consistent, inconsistent, comparable, incomparable, and a

trace dominated by another trace are defined analogously.

Example. Let A = {a, b, c}, t = {(a,b), (b,a)}, and t = [(ab)2cOl]. The set of all

prefixes of t is shown in Fig. 3.2.2.

[e]

/ \
[a] [b]

/ \ / \
[aa] [ab] [bb]

\ / \ /
[aba] [abb]

\ /
[(ab) 2c]

I
[(ab) 2c c]

I
. . .
I

[(ab) 2cn]

I
. . .
I

[(ab) 2 cw]

Fig. 3.2.2. The poset of all prefixes of [(ab)2cOl], a t b.

A trace 't is maximal in E>t00 if it is maximal with respect to the dominating relation ~, that

is there does not exist a trace o "# 't such that 't ~t cr. The set of all traces that are maximal

in 8 t 00 is denoted Max(8t00). Maximal infinite traces correspond to the global, objective

view of the system behaviour, while the non-maximal ones represent the local, therefore

subjective, view of an agent. No finite trace is maximal in 8 t 00.

- 65 -

The Model

Decomposition of Infinite Traces

We now define decomposition of infinite traces. Infinite traces may be viewed as least

upper bounds of directed sets of finite traces. In order to decompose an infinite trace, we

need to decompose the set of its finite prefixes, and take least upper bounds of all maximal

connected directed sets M contained in this decomposition. Formally, for 0 E 8 tco, we

define ~(o) as follows:

~(cr) = {lub(M) I M maximal directed subset of ~(Pretfin(o))s.t. ~(M) =M}.

This definition relies on the existence of least upper bounds of directed trace languages

(Theorem 3.5.3). Note that ~(cr) is non-empty. Also, ift =0 then ~('t) ={'t}.

Example. Let b t c. Then:

~([abCO]) = {lub{[E],[ab"n }= {[abro]}

~([cbCO]) = {lub{[E],[C]}, lub([b*]}} = {[c], [bCO]}

~([abcro]) = {Iubl lel.lal.labl.lacl.labcc'Tl} = {[ahero]}.

Infinitary Trace Languages

Let C =(A, t) be a concurrent alphabet. Each subset of 8 t00 of all traces over C is called

an irfinitary trace language.

For each trace language T define:

Pref(T) = (Prefrr) I 't E T}.

Pretfin(T) and Prerinf(T) are defined as Pref(T)n8t * and Pref(T)n8t co respectively. A

trace language T is prefix closed if T = Pref(T). A trace language T is directed if (T, ~) is

a directed set. An adherence of a trace language T c 8 t 00, Adh(T), is defined by ('t E

8
t
co I Pretfin ('t) C Pretfin (T)}. A trace language T c 8 t 00 is closed 5 iff Adh(T) c T.

Note that 8
t

OO is a closed language, but 8 t * u Max(8t
OO

) is not, in general, closed. Also,

Adh(8
t
00) = 8

t
ro, but it is not the case that Max(8 t 00) = 8 t roo This is in contrast to the

5 This notion of closure satisfies axioms 1-4 of topological closure.

- 66-

The Model

string algebra A00, where Aco is exactly the set of all maximal sequences with respect to

string Prefix ordering and adherence of A00.

Tfin denotes the finite part of T, that is Tfin = T (l E*. -pnf denotes the infinite part of T,

that is -pinf = T (l Elt co. A trace language is an ideal if Tfin = Pretfm (T).

Note that Elt 00 is an ideal, and so is Elt* U Max(8t(0). This is because Prerfffi(Max(8t00»

=Elt *, which is a direct result of the proposition below.

Proposition 3.2.10. V 0', 't E 8 t00: 0' ~t 't <=> Prerfin(a) c Pretfin('t).

Proof.
~) Follows from transitivity of <to

{=)6 Follows from algebraicity of 8 t
OO (Theorem 3.5.3).

o

Proposition 3.2.11. Pre tfin(Max(8 t co» = 8 t *.

Proof. Obviously, Pretfin(8tCO) = 8 t*, Max(8t CO) c 8 t co. Take any a e

Max(EltCO), then there exists 't E Max(8t
CO) such that a <'t. From Proposition 3.2.10,

Pretfin(O') c Pretfin('t), hence Pretfin(8
t

CO - (a}) = Pretfin(8tCO).

o

Every prefix closed trace language is an ideal, but the converse does not hold. Every trace

language T closed with respect to finite prefixes, that is T =Pretfin (T), is an ideal.

A trace 't is maximal in T if there does not exist a trace a E T such that 't ~ a and 't * a.

The set of all traces that are maximal in T is denoted Max(T).

Example. Let us consider trace languages over (a,b) for a t b. Let:

*T1 = {[a]},

T2 = {[a*b*]} u {[(a*b*)CO]},

T3 = {[a*b*]} u {[(ab)CO]}, and

T4 = ([(ab)n]).

6 This observation is due to M.W. Shields.

- 67 -

The Model

Then Adhf'I'j) = ([aCO]), Adh(T2) = {[(a*b*)CO]) =Adh(T3) =Adh(T4). Tj, T3' and

T4 are not closed, but T2 is closed. Tb T2' T3 and T4 are directed. Tb T2 and T3 are

ideals. Tl and T2 are prefix closed, but T3 and T4 are not (there are infinite prefixes of

[(ab)0>] , for example [aCO], which are not contained in T3). [(ab)CO] is maximal in T2

and T3.

Fig. 3.2.3 shows the set of all prefixes of the language T = {[(abc)*abd] }. We assume A

= (a, b, c, d), t = {(a,b), (b,a)}. An example of a process that gives rise to this trace

language is: p =fix X.«aNIL II bNIL);p'), where p' =cX + dNIL.

[E]

/ \

[a] [b]

\ /
[ab]

/ \

[abd] [abc]

/ \

[abca] [abcb]

\ /
[abcab]

/ \
[abcabd] [(abc) 2]

/ \
[(abc) 2a] [(abc) 2b]

\ /
[(abc) 2ab]

*Fig. 3.2.3. The poset of all prefixes of the trace language {[(abc) abd]}.

- 68 -

The Model

Decomposition of Infinitary Trace Languages

Let T c 8,,00. Then decomposition of T, denoted L\(T), is given by:

L\(T) = U {L\(1:) I 1: E T}.

Proposition 3.2.12. The following properties of decomposition of trace languages

extend onto infinitary languages.

(i) T =L\(T) if" = 0

(ii) L\(L\(T)) = L\(T).

The language T is connected if, and only if, T =L\(T).

- 69 -

3.3. Asynchronous Transition Systems

The Model

Labelled transition systems are often used to provide a natural framework for defining

operational semantics. Although they were originally introduced as models for parallel

computations [Kel76], we shall dispute this case. We use transition systems extended with

the notion of concurrency, which is given in the form of an independency relation over

actions within the system. Such an extension is particularly useful when representing

asynchronous behaviours, hence the origin of the term asynchronous transition systems.

Asynchronous transition systems were developed in [Shi85a] [Shi88c] [Bed87] [Kwi88a].

We shall restrict ourselves to the use of labelled transition systems without ambiguity. This

does not greatly restrict the expressive power of the model, as it is usually possible to

disambiguate by deriving a suitable labelling of actions. A different approach to ambiguity

was presented in [Kwi88a].

Basic Definitions

Asynchronous transition systems (ATS) constitute abstract representations of (discrete)

systems. They view a system as consisting of indivisible agents that can engage in actions

(possibly shared between agents), the occurrences of which can be monitored by an

external observer. Actions that are not shared are independent and can happen

concurrently; on the other hand, those actions that belong to the same agent are causally

dependent and must be ordered in time, i.e. sequential, although, at each step, the agent

may offer a number of actions as non-deterministic choices.

Definition. (Asynchronous Transition System)

An asynchronous transition system (ATS) is a quadruple (Q, A, ~,t) such that:

(Q, A, ~) is an unambiguous transition system;

t c AxA is a causal independency of actions (i.e. irreflexive and symmetric relation);

- 70-

The Model

(i) 'V q, q', q" E Q, 'V a, b E A:

q'

y~
q q" and a t b =::)

An asynchronous transition system is called forward stable [Bed8?] iff, in addition, the

following holds:

(ii) 'V q, q', q" E Q, 'V a, b E A:

q'

y
q

~"q

and a t b =::)

Note that we do not restrict the set of states Q to a finite set; however, the set of actions A

will be finite.

Conditions (i), (ii) are independent and are also known as the 'diamond property' [Bed8?]

[Shi88c] [BoC88] [MOP88]. Condition (i) states that any two consecutive independent

actions may be permuted and this would have no effect on the result (i.e. the resulting

state). Condition (ii) is a conditional Church-Rosser property - it enforces confluence in the

context of two independent actions being simultaneously enabled (uniqueness of the

resulting state follows from unambiguity).

From now on the concurrent alphabet (A, t) will remain fixed unless otherwise stated.

Let S = (Q, A, ~, i) be an ATS. A rooted asynchronous transition system is an ordered

pair L = (S, qO), where qO E Q.

Example. Let us consider a process p = abNIL II cNIL. Obviously, a t c and b t c.

Fig. 3.3.1 includes the (rooted) asynchronous transition system that represents it.

- 71 -

The Model

r>.• •
/''\.;/

• •

'\./'
•

Fig. 3.3.1. ATS determined by p = abNIL II cNIL.

It is easy to verify that the above is a forward stable ATS. On the other hand, the

process p' =abcNIL + cabNIL + acbNIL, although characterized by the same

sequentializations, gives rise to a different ATS (see Fig. 3.3.2). Here, t = 0.

Fig. 3.3.2. ATS determined by p = abcNIL+acbNIL+cabNIL.

Note that there is no confluence in this case. A yet another example would be p" = (fIX

X.aX) II bNIL, where a t b. Fig. 3.3.3 shows the corresponding ATS.

p

Fig. 3.3.3. ATS determined by p = (fix X.aX) II bNIL.

- 72 -

The Model

Fundamental Situations in ATS

We shall now formally define sequence, non-determinism and concurrency In

asynchronous transition systems.

Definition. (Sequence, non-determinism, concurrency)

Let S = (Q, A, ~, i) be an ATS. Let a, b E A, q, q', q", s" E Q.

(i) We say that actions a, b E A are in sequence at q iff

(3 q', q" E Q: q ~a q' 1\ q' ~b q") 1\ (-, 3 qlll: q ~b qlll).

(ii) We say a, b E A, a '# b, are non-deterministic (in conflict) at q iff

q ~a 1\ q ~b 1\ -, a t b.

(iii) We say a, b E A are concurrent at q iff

(3 q', q" E Q: q ~a q' 1\ q' ~b q") 1\ a t b.

The presence of concurrency and non-determinism may give rise to a yet another situation

called confusion, a phenomenon discovered in net theory [RoT86] (and not formulatable in

process algebras).

Definition. (Confusion)

Let S = (Q, A, ~, i) be an ATS.

(i) Let a E A. The conflict set of a (at q)

cfl (a, q)

is the set
[b e A I (b s a) 1\ (q~b) 1\ -,(atb)}.

(ii) Let a, b E A, such that q ~a q' and q ~b q" with a t b.

The ordered triple (q, a, b) is a confusion (at q) iff

cfl (a, q) '# cfl (a, q").

(iii) Let a = (q, a, b) be a confusion at q. We say a is a symmetric confusion iff

(q, b, a) is also a confusion at q;

otherwise a is asymmetric.

- 7:' -

The Model

Confusion occurs in a system between two independent and simultaneously enabled

transitions when conflict sets of one transition are changed through the occurrence of the

other one. In other words, conflicts are either resolved or new ones are intrcxiuced. Such a

situation creates difficulty because sequentializations of the same behaviour can differ

radically in terms of non-deterministic choices available at each step.

Confusion is not inherent to the presence of both concurrency and non-determinism in a

concurrent system, but, unfortunately, it is not always avoidable.

Example. Let us consider a simple example of confusion. The process p =

«aNIL+bNIL) II (cNIL+bNIL))\b can either make independent moves a and c, or

choose to synchronise on b, which would result in a silent move 't (denoted tg).

Obviously, a t c, but a is dependent on 'tb and 'tb is dependent on c. Fig. 3.3.4 shows

the ATS determined by p. Note that state 1 corresponds to p, 2 corresponds to (NIL II

(cNIL+bNIL))\b etc. We have:

efl(l, a) = {'tb}

efl(3, a) =0

efl(l, c) = {'tb}

eff(2, c) = 0

thus a =(1, a, c) is a symmetric confusion.

4

Fig. 3.3.4. ATS that exhibits symmetric confusion (1, a, c), where a t c.

Hierarchy of Asynchronous Transition Systems

Let S = (Q, A, ~, t) be an ATS. The following are subclasses of asynchronous transition

systems:

- 74 -

The Model

Definition. An asynchronous transition system is called determinate iff

(q ~a q' 1\ q ~b q" 1\ q' *- q") ~ a t b.

for all q, q', q" E Q, a, b E A: Otherwise it is non-determinate.

Determinate systems, also called conflict-free, allow concurrency but disallow non­

determinism.

Definition. An asynchronous transition system is called non-sequential iff

(q ~a q' ~b q") 1\ (a t b)

for some q, q', q" E Q, a, b E A. Otherwise it is sequential.

Note that transition systems are sequential.

Definition. An asynchronous transition system is called confusion-free iff

a =(q, a, b) is not a confusion at q

for all q E Q, a, b E A.

Confusion-free systems form a proper subclass of asynchronous transition systems.

No restrictions

Confusion-free

/'"Sequential Dererminare

"'/Sequential and
Determinate

Fig. 3.3.5. Hierarchy of (unambiguous) asynchronous transition systems.

- 75 -

The Model

Alphabet Structures

We have so far avoided the question of how to distinguish agents within the system. Let C

=(A, t) be a concurrent alphabet. P c A is an alphabet of an agent (process) if, and only
if, P is non-empty and:

'V a, b E A: a t b => (a, b} a: p.

An alphabet structure over C is a subset a of the powerset of the set of action labels go (A)

that satisfies the following conditions:

(i) 'V a, b e A: -,(a t b) => (3 ai E a: (a, b} c ai)

(ii) 'V <Xi E a: ai is an alphabet

(iii) 'V P c A, 'V ai E a: (P alphabet /\ ai c P) => (P E a).

Let a be an alphabet structure over C. Each ai E a corresponds to the alphabet of the

agent i. Note that since t is irreflexive, condition (i) implies that a is a cover of A, that is

every action must belong to some agent. Condition (ii) guarantees that no agent in the

system can engage in two independent actions, which is a different way of expressing the

constraint that all agents are sequential, but asynchronous. If some action a belongs to the

alphabets of more than one agent, then all agents must jointly synchronise whenever this

action is enabled in the system. Condition (iii) guarantees that all alphabet structures are in

their canonical form only which specifies the same conflicts. For example when A =

(a,b,c} and t = (0 then ((a,b}, (b,c}, [a,c] } is not an alphabet structure, but its canonical

form ((a.b,c}, {a,b}, {b,c}, (a,c}} is.

In general, a given concurrent alphabet C = (A, i) determines a variety of alphabet

structures. If a, a l are alphabet structures, so is au a l and a (') o'. Also, a, a ' are non-

empty.

We can classify alphabet structures depending on the degree of coupling between agents.
An alphabet structure a = {a1, a2, ..., ak} is non-communicating iff ai (') aj = 0 for all

1 < i, j < k distinct. a is n-way communicating iff max {cardtji) I P ~ a such that n{ Pi

I Pi E P} * (O} = n. A 2-way communicating alphabet structure is also called pairwise

communicating.

- 76 -

The Model

a E Ui is a communication action of ai iff 3 aj =1= Ui: a E ai () aj' a E Ui is a local action

of ai iff V aj =1= Ui: a e <Xi () aj .

Example. LetA = {a,b}. Fort = {(a,b), (b,a)} then {{a}, {b}} is the only

alphabet structure over (A, i). For t' =0 there are four distinct alphabet structures

over (A, t'), the first of which is non-communicating, while the remaining three are

pairwise communicating:

{{a,b} }

{{a,b}, {a}}

{{a,b}, {b}}

{{a,b}, {a}, {b}}.

Alphabet structures describe the variety of possible decompositions of a given system into

asynchronous communicating agents.

Process Structure over ATS

Let S = (Q, A, ~,t) be an ATS. A process structure over S is any ordered pair IT = (a,

n) such that:

(i) a is an alphabet structure over (A, i)

(ii) 1t is a labelling function (1t: Q~ iJ (a)) defined by:

1t(q) = {ai E a I 3 a E ai: q ~a }.

Let L = (S, qO), qO E Q, be a rooted ATS. IT = (a, n) is a process structure over L if it is

a process structure over S.

Example. Let us consider process q = (fix X.(aX+bNIL) "bNIL)\b. The ATS

determined by process q is shown in Fig. 3.3.6.

For the alphabet structure a = {{a, 'tb} }, we have:

1t(q) = {{a, 'tb} }

while for a' = {{ a, 'tb}, {'tb}}:

1t(q') = 0

1t(q') = 0.

- 77 -

q
~.

q'

The Model

Fig. 3.3.6. ATS determined by q = (fix X.(aX+bNIL) II bNIL)\b.

A process structure II = (a, 1t) is non-communicating (pairwise communicating, n-way

communicating) iff a is non-communicating (pairwise communicating, n-way

communicating).

We have simplified the process structure by not distinguishing between two distinct

processes with the same alphabet. This means that only static process structures are

allowed. Dynamic process structures can be achieved by mapping states into process

names". For example, in the infinite ATS shown in Fig. 3.3.7, where at b, {a} is the

alphabet of processes 1, 11, etc., and {b} is the alphabet of proceses 2, 22, etc. Having

executed its transition, each process disappears, and another process with the same alphabet

takes over.

{1,2}
•

(1l,2) ;/~ (l,22)

(1l1,2) ;/~/~ (1,222)
• • {II ,22} •

• • •

Fig. 3.3.7. An ATS with dynamic processes.

1 We would require an indexed cover [ShiH8c] in the more general case.

- 7H -

The Model

Order on Process Structures

For a given ATS, any process structure over it is determined by some alphabet structure.

We can thus introduce an order on process structures simply by ordering alphabet

structures.

Let C = (A, i) be a concurrent alphabet, a and at be alphabet structures over C. We say

that at is a refinement of a (denoted a <at) if, and only if, a c a'. The refinement

relation < is a partial order. For a given concurrent alphabet C = (A, i) there exist unique

minimal and maximal alphabet structures (denoted a mIn, a max respectively) with respect

to this ordering. The maximal alphabet structure can be constructed as follows:

a max = {~ c P (A) I V a, b E ~: (a, b) e t}.

Note that the maximal alphabet structure must contain singleton sets {a}, for a E A. The

minimal alphabet structure is the alphabet structure a min that satisfies the following

condition:

The set of alphabet structures over a given concurrent alphabet forms a lattice with inclusion

ordering. The following is a summary of results concerning alphabet structures.

Proposition 3.3.1.
(i) a < at implies V ai' Eat: ::3 ak E a: ai' c ak·

(ii) The class of all alphabet structures over a given concurrent alphabet forms

a complete lattice with inclusion ordering.

Proof.
(i) Follows directly from condition (iii) of the definition of alphabet structure.

(ii) The set of all alphabet structures over a finite alphabet is finite; also note that a u

a' is the lub of a and a', a (1 a' is the glb of a and at.

o

Example. In Fig. 3.3.8, {[a,b}, {a,c} } is the minimal alphabet structure, while

{{a,b}, {a,c}, {a}, [b}, {c}} is the maximal.

- 79 -

The Model

((a,b }{a,c }(a} {b}(c} }

({a,b}{a,c}{a}(b} }

{{a,b} {a.c }{a}}

((a,b} (a.c }(a}{c }}

((a,b} [a,c] (b} }

((a,b }{a.c }{b}(c }}

{(a,b}(a,c }(c }}

({a,b}(a,c) }

Fig. 3.3.8. The lattice of alphabet structures over A = (a,b,c} with b t c.

Let S = (Q, A, ~,t) be an ATS, let L = (S, qO), for qO E Q, be a rooted ATS, and let TI

= (a, n), IT = (a', n') be process structures over Sand L. Process structure TI' is a

refinement ofprocess structure TI (denoted TI < TI') iff a <a'. TI is the minimal (maximal)

process structure over S, L iff a = amIn (amax respectively).

3.4. Computations in ATS

We now present behavioural representations of asynchronous transition systems. For an

asynchronous transition system S = (Q, A, ~, t), we proceed by defining interleaving

semantics as a set of derivations, that is sequences in A00, and trace semantics as a set of

traces over the concurrent alphabet (A, i). We then develop vector representation of traces,

which relates process structures over a given ATS with trace semantics.

Derivations

Let S =(Q, A, ~,t) be an ATS. We now extend the transition relation ~ to strings. We

say that u E A00 is applicable in the state q E Q, denoted q ~u, iff u = E or there exists a

sequence of states qj, i E {O, 1,.. I u I} such that qO = q and:

- so -

The Model

q ~u(l) q1 ~u(2) q2 ~u(3) q3 ...

The above is called a derivation of S from q. Note that an infinite sequence u E Aco is

applicable in q iff there exists an infinite sequence of states qi, i E N, such that the above

can be formed, A simple consequence of this definition is that, if every finite prefix of an

infinite sequence u E Aco is applicable in q, then u is also applicable in q.

Note that if S is an unambiguous asynchronous transition system, derivations are uniquely

determined by a start state q E Q and a sequence of action labels u E Aoo. We thus choose

to consider derivations as elements of A00.

The set of all (fmite or infinite) derivations of S, Doo(S), is defined by:

{u E A00 I 3 q E Q: q ~U}.

We also define finite derivations of S as O*(S) = A* n Ooo(S), and infinite ones as OCO(S)

= A(J) n Doo(S). Similarly, the set of all derivations of S from q, denoted Ooo(S, q), is

given by:

{u E A00 I q ~U}.

Also, D*(S, q) =A* n Doo(S, q), and OCO(S, q) = Aco n Ooo(S, q).

Let S = (Q, A, ~,t) be an ATS, let}: = (S, qO), for qO E Q, be a rooted ATS. The set of

derivations of L, denoted Doo(}:), is defined by Ooo(S, qO). O*(}:) and OCO(}:) are defined

correspondingly.

Obviously, Doo(S, q) c Doo(S) c Aoo for any q E Q; in particular, we have Ooo(}:) c

Ooo(S) c A00.

Clearly, Doo(S), Doo(S, q) and Ooo(}:) are prefix closed infinitary string languages (with

respect to string prefix ordering) and ideals in A00. Ooo(S, q) and Ooo(}:) are closed, but

Ooo(S) is not. We shall state the following proposition for rooted ATS only.

Proposition 3.4.1. Let S = (Q, A, ~,t) be an ATS, let}: = (S, qO), for qO E Q, be

a rooted ATS. Doo(L) is: prefix closed, ideal, and a closed infinitary string language.

Proof.
1) We show Ooo(}:) is prefix closed, that is Pref(Ooo(}:» =Ooo(}:). Obviously,

- 81 -

The Model

DOO(L) c Pref(DOO(L)) by definition of prefix closure. The converse inclusion follows

from the fact that if v is a prefix of some derivation u, that is qO ~u and v < u, then

qO ~v, and thus v is also a derivation of L.

2) Since every prefix closed language is an ideal, it follows by part (1) of this proof

that DOO(L) is an ideal.

2) We show DOO(L) is a closed language, that is Adh(DOO(L)) c DOO(L). Note that

Adh(L) = {yEA(J) I Pretfin(y) c Pretfin(L) }. Suppose x E Adh(DOO(L)); then, by

defmition of adherence, x E A(J) and Pretfin(x) c D*(L). Thus, from unambiguity,

there exists an infinite number of states:
qO ~x(l) ql ~x(2) q2 ~x(3) q3 ...

and we conclude x E DCO(L).

o

Observation 3.4.2. DOO(L) is a partial monoid (concatenation of u and w is defined

only if u is infmite or else it ends at the state q and w is applicable in q).

Derivations correspond to sequential observations of the system made by local observers

capable of noting a single occurrence of an action at a time. The particular ordering of

symbols within a string is a result of either concurrency or non-determinism. These two

phenomena cannot be distinguished at the level of strings, hence we need to provide richer

semantics using additional information given in the form of the independency relation.

Note that, in the interleaving approach, sets of derivations would form a basis of the

behavioural model (with added state structure).

Example. The ATS Ll included in Fig. 3.4.1 (a t b) determines the set of derivations

DOO(Ll) = {E, a, b, ab, ba, abc, bac}. The ATS L2 shown in Fig. 3.4.2 (t =0)

determines the same set of derivations.

- X2 -

The Model

Fig.3.4.1. An asynchronous system I:1 determined by qO = (aNILllbNIL);cNIL.

Fig.3.4.2. An asynchronous system I:2 determined by qO = abcNIL+bacNIL.

Trace Semantics

Let S = (Q, A, ~,t) be an ATS, and let I: = (S, qO), for qO E Q, be a rooted ATS. The

set roeS) of computations of S is defined by:

that is the set of equivalence classes of derivations with respect to the trace equivalence =1

determined by independency 1 (a trace language). Similarly, [Doo(s, q) h and [Doo(I:) h
define the set roes, q) of computations of S from q, and the set ro(I:) of computations of

L respectively.

- H3 -

The Model

Obviously, ~(S, q) c '[OO(S) c 8 t
OO and TOO(1:) c '[OO(S) c 8 t

OO where ~\OO denotes

the set of all traces over the concurrent alphabet (A, t).

We define T* (S) = TOO(S) (J 8 t *, T* (S, q) = ~(S, q) (J 8 t *, and T* (1:) = roo(1:) n

8 t *. Also, Tffi(S) = TOO(S) (J 8 t ffi, Tffi(S, q) = '[OO(S, q) (J 8 t ffi, and Tffi(1:) = '[00(1:) n

8 t
ffi .

The advantage of using traces, rather than derivations, to represent computations is that we

can use trace prefix ordering to obtain a partial order relation on computations which

abstracts from irrelevant interleavings of concurrent actions.

Example. The ATS 1:1 (Fig. 3.4.1) is determined by the process (aNIL II

bNIL);cNIL, where at b. 1:1 determines the following set of traces:

TOO(1:1) = {[E], [a], [b], [ab], [abc]).

Here, the computation [ab] is an extension of both [a] and [b]. On the other hand, the

system q is determined by the process abcNIL + bacNIL, where t = 0 (see Fig.

3.4.2). 1:2 gives rise to the set of traces shown below:

TOO(1:2) = { [E], [a], [b], [ab], [ba], [abc], [bac]}

and [ab] is an extension of [a], but not [b]. Note that DOO(1:1) =DOO(1:2) and string

prefix ordering does not view the sequence ab in the system 1:1 as an extension of the

sequence b.

Fig.3.4.3. An asynchronous system 1:3 determined by:

qO = (fix X.(aX+bNIL) II bNIL)\b.

Example. Let us consider the ATS 1:3 determined by the process (fix X.(aX+bNIL) II

bNIL)\b, where t = 0 (see Fig. 3.4.3). The corresponding set of traces is:

- 84 -

The Model

Admissible Computations

Let S = (Q, A, ~, t) be an ATS, let L = (S, qO), for qO E Q, be a rooted ATS. A

computation 't E Too(L) is maximal in L if it is maximal in ~(L) with respect to trace

prefix ordering, that is, there does not exist a computation (J E ~(L) such that 't ~ (J and

't :;:. (J. The set of all maximal computations of L is defined as Max(~(L)). Maximality of

computations in S is defined analogously.

A computation 't E ~(L) is admissible in L iff 't E T*(L) or t is maximal in ~(L). A

computation t E Too(S) is admissible in S iff t E T*(S) or t is maximal in ~(S). The set

of all computations admissible in Land S is denoted Adm(L) and Adm(S) respectively.

In general, it is not the case that computations maximal in L are maximal in 8 t 00. Also,

note that equivalence classes determined by maximal derivations (with respect to string

prefix ordering) are not necessarily maximal in L (i.e. with respect to trace prefix ordering).

Maximal computations correspond to complete, that is non-extendable, computations of the

system. Non-maximal computations correspond to partial, i.e. extendable, computations.

In this formalism, infinite, but nevertheless extendable, computations are allowed.

Example. Let us again consider the ATS (denoted L) shown in Fig. 3.3.3, where a t

b. Then the following are the sets of derivations and computations determined by L:

Doo(L) = {a"] u {a*ba*} u {a*baW} u {aW}

Too(L) = {[a*]} u ([ba*n u {[baW]} u ([aW]).

Note that anbam =ban+m, anbaw =baw, [aW] ~ [baW]. Thus, [aW] is not maximal in

~(L), although aWis maximal in Ooo(L). The set of admissible computations of L is

therefore ~(L)-{[aW]}. The set of maximal computations is {[baW]}. Intuitively, this

corresponds to the process bNIL being only finitely delayed with respect to the

concurrent process fix X.aX. Thus, in a maximal computation, the progress of action b

is guaranteed as long as b is independent of all simultaneously enabled actions that

remain in this computation.

Example. Let us consider the ATS L3 included in Fig. 3.4.3. The set of admissible

computations of L3 is equal to 'F(L3) = (I a"n u ([a*'tbl) u ([aW]). The set of

The Model

maximal computations is {[a*'tb]} u {[aW] }. Note that in this case, although a and 'tb

are simultaneously enabled, the progress of 'tb is not guaranteed because a and 'tb are

dependent.

A derivation x E Doo(L) is admissible in L iff x E D*(L) or [x] is maximal in 'fOO(L).

Admissibility in S is defined analogously.

Example. In the ATS L shown in Fig. 3.3.3, where a t b, the set of derivations

admissible in L is Doo(L)-{aW}.

The set of all computations admissible in L, Adm(L) = T*(L) u Max ('fOO(L)), is not prefix

closed, but it is an ideal, that is, it is closed with respect to finite prefixes: T* (L) =

Pretfin(Adm(L». Note that the set of computations maximal in L completely characterizes

every possible finite partial computation of L because T*(L) =Pretfin(Max('fOO(L»).

Process Projections

Let C =(A, t) be a concurrent alphabet, B c A, B non-empty. For u E A00, the projection

of u onto B is the sequence u', denoted u/B, in which all symbols that do not belong to B

have been deleted.

We now formally define the projection mapping /B: A00 ~ BOO, for B c A, B non-empty.

First, for any a E A, we define the projection of a onto B by:

rEa E B

alB = ~

l a a e B.

By induction, we can extend the above onto finite strings A*

fiB = E,

*(au)/B = (aIB)(u/B), for u E A ,a E A.

. / A* B* .Lemma 3.4.3. The projection mappmg B: ~ IS monotone.

Proof Standard.
o

- 86 -

The Model

The projection mapping can be extended further onto A00 by the following definition:

v W E Aoo: w/B = lub (x/B I x E Pret'fin(w)}.

(Note that this coincides with the inductive definition over A*). We now show that the

projection mapping is well defined and that it is continuous in the domain A00 with string

prefix ordering.

Proposition 3.4.4. Let B cA.

(i) V w E A0): w/B exists.

(ii) The projection mapping /B : A00 ~ Boo is continuous.

Proof.

(i) Prerfin (w) is a total order, hence it is directed. (x/B I x E Pretfin(w)} is also

totally ordered because the image of a totally ordered set through a monotone mapping

is totally ordered. Finally, the least upper bound of this set exists because (BOO, <) is a

cpo.

(ii) /B is monotone on A* by Lemma 3.4.3. Monotonicity extends easily onto Aoo. We

need to show that for every directed set M ~ A00 and B c A, (lub(M»/B = lub(M/B),

where M/B denotes {x/B I x EM}. Suppose M c Aoo is directed; then M must be

totally ordered by string prefix ordering and lub(M) exists because AOO is a cpo

(Proposition 3.1.1). Let us denote lub(M) by w. Since (AOO, <) is algebraic and A*
are the finite elements, w = lub{x E A* I x <w }, or, in other words, w is the least

upper bound of the set Pretfin(w). Let P denote the set Prerfin(w). Thus, w/B =

(lub(P»/B. If w is finite, then w E P and the equality of w/B and lub(P/B) follows

trivially. On the other hand, if w is infinite, we have w/B = lub(P/B) by definition of

projection mapping. This concludes the proof since M c P.

o

Let C = (A, i) be a concurrent alphabet, a c &,o(A) be an alphabet structure over C. Let a

= {a1, ..., an}. The process projection of a string u E A00 onto a process ai, also

denoted Pia(u), is defined by u/ai. Roughly speaking, process projection of a derivation is

the sequence of actions that constitute the contribution of the individual agent to the system

behaviour. We shall use the projection mapping to localize the semantics of concurrent

systems with respect to concurrent agents.

- 87 -

The Model

Example. Let A = {a,b,c}, b t C, a = {{a,b}, {a,c}} where al = {a,b}, a2 = {a,c}.

Then:

(b)/al =b,

(abcaj/cq =aba,

(b)/a2 =E

(abc)/a2 =aca.

Vector Semantics

We now introduce a representation of computations of asynchronous transition systems that

takes into account process structures. For a given process structure, this is achieved by

projecting derivations onto alphabets of processes and taking the corresponding vector of

process projections.

Let C =(A, t) be a concurrent alphabet, a c peA) be an alphabet structure over C. Let a

= lab ... , an}' The mapping pa: Aoo -) (al)OOx(al)OOx ... x(an)OO, called the

vectorizing mapping, is defined by:

For u E A00, pa(u) is called a vector representation of u. Each coordinate of such vector

corresponds to one agent and represents a local view of system's behaviour. The

superscript a will be omitted if the alphabet structure is understood.

The mapping pa can be extended onto infinitary languages L c A00 by:

pa(L) = {pa(u) I u E L}.

Let C = (A, t) be a concurrent alphabet, a be an alphabet structure over C. Then VOO(a)

denotes the set pa(A00) of all vectors over a given concurrent alphabet and alphabet

structure. Similarly, V*(a) = pa(A*) and yCO(a) = pa(ACO). Any subset of VOO(a) is

called a vector language 2 [Shi88c].

Let S = (Q, A, ~,t) be an ATS, let L = (S, gO), for gO E Q, be a rooted ATS, and a be

an alphabet structure over (A, t), We adopt the following notation: VOO(S, a) =

pa(OOO(S), V*(S, a) = pa(O*(S», and yCO(S, a) = pa(Oco(S». Also, VOO(L, a) =

pa(OOO(L), V*(L, a) =pa(O*(L»), and yCO(L, a) = pa(OCO(L».

2 Shields considers an indexed cover as an alphabet structure.

- RR -

The Model

Example. Let us again consider the ATS Ll shown in Fig. 3.4.1. a = { {a,c},

{b,c} } is a sample alphabet structure over Ll. The set of all vectors with respect to a

that Ll gives rise to is:

yoo(LI, a) = {<E,E>, -ca.e», <e.b>, <a,b>, <ac.bc»}.

Example. The ATS L3 shown in Fig. 3.4.3 allows four distinct alphabet structures,

for example a = {{a,'tb}}, at = ({a,'tb}, {'tb}}. We can show the following:

y oo(L3, a) = Doo(L3)

y oo(L3, at) = {<a*,E>} U «a*'tb,'tb» u «aO),E».

Clearly, we have:

yoo(a) c (al)oox(a2)oox ... x(an)oo

yoo(L, a) c Voo(S, a) c Voo(a).

It should be noted that not every element of (a1)oox(a2)oox ... x(an)oo is a valid vector

representation of some string in A00. For example, if a = {{ a,b}, {b}}, where a is

dependent on b, there is no string x in A00 such that pa(x) = <a, b> (since b is contained in

both alphabets, the same number of b's is required in each coordinate). Each coordinate

represents some "local history"; for a vector of such local histories to form a consistent

global history, all coordinates must agree on the order of shared events.

V*(a) forms a submonoid of (aO*x(a2)*x ... x (an)* with coordinatewise concatenation

[Maz84a].

Trace Semantics and Vector Representation

We need to show that vector representation of traces is consistent with trace semantics. We

first prove that, for u, v E A00, u =t v implies that u and v have the same vector

representations, and that this is independent of the alphabet structure a over a given

concurrent alphabet (A, t). We shall make use of the following lemma.

Lemma 3.4.5. Let a be an alphabet structure over (A, i), ai E a. Then for all a, b

E A:

- 89 -

The Model

Proof.

Standard (by case analysis). Note that, from definition of alphabet structure.whenever
at b we have \;t Ui E a: {a,b} a: Ui.

o

Proposition 3.4.6.

\;t u, v E Aoo, a alphabet structure over (A, t): u L v ~ pa(u) = pa(v).

Proof.
I) We first prove the finite case. Suppose u =t v, for some u, v E A*, then, from

definition of trace equivalence, we have:

3 wo' w}, "'Wn n > 0: wO = u, Wn =v and

\;t k, I~<n, 3 WI, W"E A*, a.b E A: a t band Wk-I = w'abw", Wk =
w'baw" .

Take any Wk-I, Wk , and any alphabet structure a, ai E a. Then from Lemma 3.4.5

Pia(Wk_l) = pia(w'abw") = Pia(W')pia(ab)pia(W") = Pia(W')pia(ba)pia(w") =

Pia(wk). We have thus shown that \;t ai : Pia(U) = Pia(v).

2) We now prove the infinite case. We first show that, for any u, v E Aoo, u ~oo v

implies \;t Cli E a: Pia(U) < Pia(v). Suppose u <00 v for some u, v E A00. From

definition of <00 we have: \;t x E Pretfin(u) 3 y E Pretfin(v): x <* y, from which, by

definition of <*, we deduce \;t x E Pretfin(u) 3 y E Pretfin(v): 3 ZE A*: x < Z/\ Z==

y. From monotonicity of Pia we have:

2a) Pia(x) < Pia(Z) for all ai E a,

and from part (I) of this proof:

2b) Pia(z) =Pia(y) for all ai E a.

The set of finite prefixes x of u forms an increasing chain, hence, by monotonicity of

Pia, the set Xi = {Pia(x) I x E Pretfin(u)} is increasing. Moreover, by (2a) and (2b),

every element in this chain is bounded by some element in the increasing chain Yi =

{Pia(y) lyE Pretfin(v)}. Thus, for all ai E a, lub Xi < lub Yi and both least upper

bounds exist because (ai)oo is a cpo. From continuity of Pia, lub Xi =

PiaOub(Pretfin(u») = Pia(u), and lub Yi =PiaOub(Pretfin(v») = Pia(v). We have

thus shown Pi(X(u) < Pia(v) for all ai E a.

Suppose u =t v for some lJ, v E A00; then it follows that u <00 v. Thus Pia(u) ~ Pia(V)

- 90 -

The Model

for all eli E (l as shown above. By symmetry, we have Pi(l(V) < Pi(l(U). This

concludes the proof since we have proved Pi(l(u) =Pia(V) for all ai E a, hence pa(u)

=pa(v).

o

Summarizing, we have shown that if two strings are equivalent with respect to trace

equivalence, then, for any alphabet structure, their vector representations are the same. We

shall be concerned with the converse of this proposition in the next section.

Projective Equivalence and Preorder

We now introduce the notion of projective equivalence in Aoo. Let C = (A, t) be a

concurrent alphabet, a c SO (A) be an alphabet structure over C. Let a = {a1, ..., an}.

Two strings are said to be projectively equivalent if, and only if, their vector representations

are the same.

Projective equivalence is determined by an alphabet structure, while trace equivalence is

determined by independency. We show that projective equivalence coincides with trace

equivalence, that is, the choice of alphabet structure does not affect traces as computations

of asynchronous transition systems.

Definition. [Shi88c] (Projective equivalence)

'tI u , V E A00: u::::::a V ¢:> pa(u) = pa(v).

We shall need the following lemma.

*Lemma 3.4.7. Let u, w E A , then:

pa(u) =pa(v) ~ 'tI a E A: lula = Ivla'

where luia denotes the number of occurrences of the symbol a in u.

Proof. We prove the result by contraposition. Suppose lula #- Ivla for some a E A.

Take any alphabet structure a over (A, t); since a is a cover, there exists ak E a such

that a E ak. By definition of Pia, IPka(u)la = lula #- Ivla = IPka(u)la, hence pa(u) #­

pa(v). This concludes the proof.
o

- 91 -

The Model

Lemma 3.4.8.

Let a c p (A) be an alphabet structure over (A, i), u, w E A* s.t, pCX(u) = pCX(v) and:

u = waw'
- b b "v - w 1... naw

where a i; bi for all i. Then a t bi for all i.

Proof. (BYcontradiction.)

Suppose:

(i) pa(u) =pCX(v)

(ii) u = waw'

v = wb1 ...bnaw" where a i; bi for all i

(iii) 3 br I(a t bj)'

From (iii) we have by definition of alphabet structure that there exists cxk E cx such that

{a.bj} C cxk. From (i) it follows by Lemma 3.4.7 that u is a permutation of v, thus w'

may be represented as s'bjs" where s' is the shortest such string. Now:

Pk(u) = Pk(waw') = Pk(was'bjs") = Pk(w)apk(s')bjPk(s")

Pk(v) = Pk(wb1···bnaw") = Pk(W)Pk(bl· ..bj-1)bjPk(bj+1..·bn)aPk(w").

Clearly, since b1...bj-1 does not contain a by (ii), it follows that Pk(u) "# Pk(v). Thus,

pa(u) "#pa(v) and we have reached a contradiction with (i).

o

Lemma 3.4.9. Let v E A00, a be an alphabet structure over (A, t), Then:

pia(Pref(v» = Pref(pia(V»

where Pia(X) denotes (Pia(x) I x EX} for X c A00.

Proof. Clear.

o

Proposition 3.4.10.
Projective equivalence ~a coincides with trace equivalence =t·

Proof.
1) u =t v ~ pa(u) = pa(v), for any alphabet structure a, has been observed in

Proposition 3.4.8.

2) We show u ~a v ~ u =1 v.

2a) We first prove the finite case. Let a be an alphabet structure over (A, i), Suppose

u, v E A* such that u :::::a v. Then pU(u) = pU(v) by definition of projective

- 92-

The Model

equivalence. By Lemma 3.4.7, it may be concluded 'Va E A: lula = Ivla, that is v must

be a permutation of u. Thus, u and v may be represented by:

u = waw'

v = wbl ... bnaw"

where a '# bi for all i. By Lemma 3.4.8 we have a 1. bi for all i. We construct:

vI = wabj ...bnw".

Observe that v I is a permutation of v obtained through a finite number of permutations

ab; ~ bja of two consecutive independent symbols. Thus, VI 1. v by definition of

trace equivalence. Also, since such permutations preserve ~o. by Lemma 3.4.5, we

have po.(u) =po.(v) =Po.(Vl). We have thus constructed VI such that the length of the

common prefix of u and v 1 is increased with respect to the length of the common prefix

of u and v. By induction on I u I - I w I, where w is the maximal common prefix of u

and vk, with Yk obtained from vat the kth step as described above, we can conclude

that u =t v.

2b) We now extend the above result onto A00 (proof by contradiction). Suppose it is

not the case that u =1. v; then -, (u ~oo v) or -, (v <00 u). We would like to show -, (u

<00 v) implies ---, (Vi: Pio.(u) < Pio.(v)). Suppose -, (u <00 v); hence by definition of

<00, we have:

3 x E Prerfin(u) 'V y E Pretfin(v): -, (x <" y), which implies, from definition of <*:

3 x E Prerfin(u) 'V y E Pretfin(v): -, (3 Z E A*: x < Z 1\ Z =y), hence:

3 x E Pretfin(u) 'V y E Pretfin(v): 'V Z E A*: -, (x < z) v ---, (z =y), which implies:

3 x E Pretfin(u) 'V y E Pretfin(v): 'V Z E A*, x < z: -, (z =y). From part (1) of this

proof we have:

3 x E Pretfin(u) 'V y E Pretfin(v): 'V Z E A*: x < z: -, (vi: Pio.(z) = Pio.(y)), hence

(**) 3 x E Pretfin(u) 'V y E Pretfin(v): 'V z E A*: x < z: 3 i: Pio.(z) '# Pio.(y)·

Suppose 'V o.i: Pio.(u) < Pio.(v). This means that each Pio.(u) is a finite prefix of Pio.(v)

or both Pio.(u) and Pio.(v) are infinite, and hence equal. Since Pio. are continuous

(Proposition 3.4.4), we have:

a) Pio.(u) = Pio.(lub(z E A* I z < u}) = lub(Pio.(z) I Z E Pretfin(u)}

b) Pio.(v) = Pio.(lub(y E A* I Y< v}) = lub(Pio.(y) lyE Pre[fin(v)}.

From monotonicity of Pio.:

Pio.(x) < Pio.(z) < Pio.(u)

Pio.(y) < Pio.(v).

- 9~ -

The Model

(a) and (b) and Pia(U) < Pia(v) imply lub{Pia(Z) I z E Pretfin(u)} ~ lub{Pia(y) lYE

Pretfin(v)}; thus each Pia(z) must be a finite prefix of Pia(v). Also, every Pia(Z) must

be bounded by some Pia(y). It follows by Lemma 3.4.9 that for all finite prefixes z of

u there exists a finite prefix y of v such that Pia(z) =Pia(y).

On the other hand, from (**) we have that for each pair z, y such that x ~ z, there exists

some k such that Pka(y) ;#:. Pka(Z); hence there exists some k such that Pka(Z) is not a

prefix of Pka(v). We have thus reached a contradiction, by which we have shown:

--, (Vi: Pia(U) < Pia(v».

By symmetry, we consider the case of -, (v <.00 u), which terminates the proof.

o

The above proposition allows us to conclude that projective equivalence does not depend on

the choice of an alphabet structure. Although a variety of alphabet structures over a given

concurrent alphabet are possible, and hence vector representations of strings over this

alphabet, equivalence classes constitute unique representations of vectors with respect to a

given independency.

We can thus extend the vectorizing mapping onto 8 t00. The process projection mapping

Pia : 8 t00~ (ai)OO is defined for a E 8 t 00 as Pia(x) for some x E a. Likewise, the

vectorizing mapping pa: 8 t
OO ~ VOO(a) is defined for a E 8 t

OO as pa(x) for some x E a.

Since pa must be bijective by Proposition 3.4.10, we shall denote the converse mapping

by tt: yOO(a) ~ 8 t
oo

•

Obviously, projective equivalence is determined by projective preorder. The definition now

follows.

Definition. (Projective preorder)

V u , V E Aoo
, alphabet structure a over (A, t):

u <a v <=> V ai E a: Pia(u) < Pia(v).

Observation 3.4.11. V u , V E A00: u <s v =::) u ~a v.

Proof. Clear.
o

- 94 -

The Model

Proposition 3.4.12.

Projective preorder~ coincides with trace preorder <00.

Proof.

1) u <a v ::::) u <.00 v has been proved in Proposition 3.4.10, where we stated:

Vi: Pia(U) < Pi(X(v) implies u <00 v.

2) The implication u <00 v ::::) u <a v has been shown in Proposition 3.4.6.

o

Projective preorder induces a partial order relation on vectors in Aoox...x A00 defined as

follows:

I

W < WI iff V i: wi < wi.

Since A00 is a domain, then AOOx...X A00 is a product domain with finite elements A"x...x

A* (a standard result in domain theory [ScG87]). It should, however, be stressed that the

set of all vectors Voo(a) is not in general equal to AOOx...x A00.

- 95 -

3.5. Properties of Computation Space

The Model

Let C = (A, t) be a concurrent alphabet. 8 t 00 is called the computation space. It contains

the computations of the class of all asynchronous transition systems over the concurrent

alphabet (A, i), Similarly, Aoo may be viewed as the computation space of all sequential

transition systems over the alphabet A. Thus, 8 t 00 is a generalization of A00 with a notion

of concurrency given by the independency relation. One would expect that certain

properties of A00 also generalize onto 8 t 00, in particular the fact that A00 is a monoid and a

domain. We provide a positive answer to this question and also show that 8 t 00 specializes

to A00 if the independency is empty.

Order-Theoretic Properties

We now show that (8t
OO

, <t) is a domain. Note that when t =0, (8t
OO

, ~) is isomorphic

with the domain (A00, <) with prefix ordering.

The following lemmas are required.

Lemma 3.5.1. Let 0, 'Y E s,". PE s,00.

If 0, y~ p then there exists 8 E 8 t * such that 8 =lub{ 0, y}, and hence:

Act(8) = Act(0) U Act(y).

Proof.
Let 0, 'Y E 8 t *, PE 8 t

OO such that 0, y <t p.
1) We show there exists W E 8 t * such that 0, y ~t W. Let x E 0, YE y, Z E p; then x

<e>o z and y <e>o z. Since x and y are finite, we have by definition of <00 that there exist

finite prefixes z1, z2 of z such that x ~* z1 and y <* Z2· Let P' = [max{z1, z2} li- It

*is clear that 0, y <t Wand W E 8 t .

2) We can now assume 0, y, PE 8 l * and 0, y ~ p. It needs to be shown that 8 =

lub{ 0, y} exists (proof by induction). If 0= [e) then take 8 = y. It is clear that 8 =

- 96-

The Model

lub{ a, y}. Suppose a ~ [e] and [a] ~ a for some a E A. Since a ~ ~ we have by

transitivity of~ that [a] ~ ~.

There are two cases:

2a) [a] ~ yand thus 'Y = [a]('Y/[al) ~ P = ra](P/[a]), which implies, by left cancellation

law, that 'Y/[a] < p/[a]. By symmetry, a/[a] < P/[a]. By induction on the length of a it

may be concluded that 0' = lub(aIra], 'Y/[a]} exists. Then the following is the required

least upper bound:

o= lub{ a, 'Y} = [a]O'.

2b) ~([a] ~ 'Y), which implies that'd i such that a E 01: ~(a < Pi('Y». On the other

hand, we have:

\;f i such that a E <Xi: Pi(a) ~ Pi(P) = Pi([a](p/[a]) = api(p/[a]), and

\;f j such that a ~ Of Pj(a) ~ Pj<P) =Pj([a](~/[a]) =Pj(~/[a]).

Thus, since Pi('Y) < Pi(~), we have 'd i: Pi('Y) ~ Pi(~/[a]), from which it follows 'Y~

~/[a]. By induction on the length of a it may be concluded that 0' = lub(a/[a], 'Y}

exists. Finally, the following is the required least upper bound:

o= lub(a, y} = [a]O'

The conclusion that Act(O) = Act(a) u Act('Y) follows from construction.

o

Lemma 3.5.2. Let (P, <) be a poset.

(i) X c P is directed ¢::) J..X is directed.

(ii) Let X c P be directed. Then:

lub(X) exists ¢::) lub(J..X) exists

and if these conditions are satisfied then:

lub(X) = lub(J..X).

(iii) Let X c P be a finite directed set. Then lub(X) exists and belongs to X.

Proof.
(i), (ii) Standard results IGHK80].

(iii) Proof by induction, omitted.
o

Theorem 3.5.3. (8t
OO

, <t) is a domain. The finite elements are 8 t *.

Proof.
1) Clearly, [e] is the least element. We prove that every directed subset X of e"00 has a

least upper bound. By Lemma .:t5.2 it is sufficient to show the existence of least upper

- 97 -

The Model

bounds of infinite directed sets X c 8 t00 such that X = Pref(X). Let X c 8
t
00 be such

a set.

We construct lub(X) as a limit of monotonically increasing sequence in X (18t*.

Since X (1 8 t * is countable, we can order its elements into a sequence {ak IkE N}.

We define a monotonically increasing family of directed subsets of X (18t* by:

Mo=0

rMk-l u {ak}

Mk= ~

lMk-l u {ak, ~}

if Mk-l u {ak} is directed

if Mk-l u {ak} is not directed and

~ is a bound for Mk-l u {ak}.

Note that f3 always exists by the assumption of directedness of X. Also, X (1 8 t* = u
{Mk IkE N}. Since each Mk is finite and directed, its least upper bound exists and

belongs to Mk by Lemma 3.5.2(iii). Let us denote lub(Mk) by'Yk, with Yk E Mk. By

construction of the family Mk' we have:

'Yk ~ 'Yk+1 for all kEN.

Let xk E 'Yk, xk+ 1 E 'Yk+1; then xk <00 xk+ 1. Since each Yk E 8 t* we have by

Proposition 3.2.6:

*xk < xk+ 1 for all k,

and by definition of <*:

3zk+l:xk<zk+l 1\ xk+l=tZk+l,

and thus zk+l E 'Yk+l. We have thus shown:

't/ k 't/ zk E 'Yk 3 zk+l: Zk < Zk+l

and hence it is possible to construct inductively a monotonic sequence {zk IkE N}

starting from 11.

Define x = lub{zk IkE N} (exists because AOO is a cpo by Proposition 3.1.1), and

finally take 'Y = [xh·

We need to show 1 is a bound for X. Let a be an arbitrary member of X, and let y E

a. We show y <00 x. Let z' E Pretfin(y), then rz'] E X (1 8 t * by the assumption that

X = Pref(X). Thus, by construction of x, 3 Z": z' =t Z" 1\ Z" ~ x; hence, by

definition of <* we have shown for an arbitrary finite prefix z' of y:

3 zIt < x: z' <* r",

By definition of <00 it may be concluded y ~OO x, and thus a ~ 1 by definition of~.

It is easy to see that 1 is the least upper bound of X.

- 98 -

The Model

2) We now show that 8 t * are the finite elements. Suppose a E 8t* and M c 8
t
00 is

directed. Thus lub(M) exists as shown in part (1) of this proof. We need to show the

existence of t E M such that a ~ t if a <t lub(M).

Assume a ~ lub(M) and lub(M) E M, then we can take t = lub(M). Otherwise, if a ~

lub(M) and lub(M) e M, then M must be infinite by Lemma 3.5.1. b(iii); hence, lub(M)

must be an infinite trace while a is its finite prefix, and thus a ~ lub(M). Let 'Y be an

arbitrary member of M, then a, 'Y~ lub(M). It follows that M u {a, lub(M)} is

directed. Since a ¢.lub(M), we conclude M u {a} is directed. Thus, there must exist

't E M such that a, 'Y~ t.

In order to show that elements of 8 t co are not the finite elements, let us take any a E

8 t co and directed set M = Pre tfin(a). Then a = lub(M) ~ M and for no 't E M do we

have a ~ 'to

3) We now show that (8t
oo

, <t) is algebraic. Let a E 81,00 and define Ma = {'t E 8 t *
I 't ~ a}. Clearly, M is non-empty, because it contains [E]. Let 'Yb 'Y2 E Ma, then 'Yl

~ a, 'Y2 ~ a by definition of Ma . Hence, by Lemma 3.5.1, there exists a finite prefix

oof a such that 'Yl ~ 0, 12~ o. Since 0 E Ma by definition of Ma , it follows that

Ma is directed. It is easy to see that a =lub(Ma).

Since 8t* is countable, it may be concluded (8t 00, ~) is a domain.

o

It can also be shown that (8t 00, ~) is a prime algebraic and coherent poset (proof can be

found in [Shi88cD. The set of complete primes is a proper subset of the set of finite

elements.

Infinitary Trace Monoid

We now introduce the definition of concatenation in 8 t
oo

• We would like this definition to

be a suitable generalization of concatenation in A00, where the concatenation of x and y has

been defined as the infinite string x if x is infinite, and the infinite string xy in case x is

finite but y infinite. This corresponds to our intuitive understanding of sequential

- 99-

The Model

composition of two (sequential) behaviours: if the behaviour represented by x does not

terminate, then the behaviour represented by y should never proceed. However, the

situation becomes more complex when defining sequential composition of two non­

sequential behaviours. In particular, we must take causal independency into account when

defining concatenation over 8 t 00. For example, when a t b, it would be incorrect to define

[aOl][b] as [aW] because the occurrence of a can in no way affect b; thus, the occurrence of a

should not prevent b from proceeding. In trace semantics, this is expressed by the traces

[aOl] and [b] being consistent, that is having a common dominating trace, e.g. [baOl]. On

the other hand, if a and b are dependent, [aOl][b] should be [aOl]. Note that in this case the

traces [aOl] and [b] are inconsistent.

Unfortunately, in contrast to the definition for finite traces, we cannot define concatenation

of infinite traces as the equivalence class of the concatenation of any pair of representants.

Intuitively, when a t b, the concatenation of [aW] and [bOll should allow for both a and b to

proceed infinitely often because a and b are not causally related. In other words, the

equivalence class [(ab)Ol], which contains a fairmerge of aOl and bOl, should be the required

result. However, if we attempt to apply the law [xl[y] = [xy], which holds over 8 t*, then

the result of concatenating strings aOl and bOl is aOl. Note that [aOl] is not the same as

[(ab)Ol].

Surprisingly, coordinatewise concatenation of vector representations of traces is not helpful

either (it is not closed in VOO(a)). Let us consider A = {a,b,c} with b t c. The minimal

process structure over (A, t) is {{ a,b}, {a,c}}. Vector representation of [abO)] is <abw,

a>, [cal is <a, ca>. The coordinatewise concatenation of <abO), a> and <a, ca> is <abO),

aca>, which is not a valid vector representation because for no string u do we have pa(u) =
<abO), aca> (since a is in both alphabets, the same number of a's in each coordinate is

required). Choosing maximal alphabet structure does not solve the problem.

One might also think that the decomposition of traces would provide a satisfactory solution.

However, pairwise concatenation of independent components of two possibly infinite

traces does not yield the desired result. For example, if b t c then ~([abW]) = {[abW]},

~([ca]) = {[cal}. The result of concatenating {[abOlll with [leal} is {[abOl]}, but the

intuition would suggest [acbOlI here because the fact that b is repeated indefinitely should

not delay c.

- 1(X) -

The Model

However, it is possible to define concatenation in 8 t00 and show that 8 t00 is a monoid.

The approach here differs from [Shi88c], where the concatenation has been defined so that

the class of all vectors forms a partial monoid1.

First, we introduce the notion of compatibility of traces which is a weakened version of the

independency relation over traces. A trace 't E 8 t00 is tail-independent with the trace 0' E

8 t00 if, and only if:

3 0" E Prerfin(O'), '\j 0''' E 8 t": 0"0''' ~ 0' ~ 0''', 't are independent.

We shall also require the following notion. We say the trace 't E 8 t
oo is tail-independent

with the trace 0' E 8 t00 after a' if, and only if:

0" E Prerfin(0') 1\ '\j 0''' E 8 t*: 0"0''' <t 0' ~ 0''', 't are independent.

The following are easy observations.

Observation 3.5.4.
(i) For every 0' E 8 t

oo
, 0' is tail-independent with [fl.

(ii) For all 0', 't E 8 t00, if 0', 't independent then 0', 't tail-independent.

(iii) For all o, 't E 8 t*:

if 0', 't tail-independent after 0" then 0', c'r consistent and ot = O"'t(O'/a').

Proof. Clear.
o

Let us define an auxiliary operator A(O','t) for 0', 't E 8 t
oo as follows. Let ~ denote

Pretfin(O'), T denote Pretfin('t). Then:

A(o.r) = {o't' E 8 t* I a' E ~ 1\ 't' E T 1\ r' tail-independent with 0' after a'}.

Clearly, ~ c A(O','t). Intuitively, we break the "past history" of the behaviour 0' into finite

segments 0" <t 0'. Similarly, the "potential future" behaviour 't is broken into finite

segments 't' <t't. We then concatenate the finite past a' with the finite future r', and

choose only those segments c'r' which represent a viable continuation of the past history

given by (J, in the sense that o'r' is consistent with a. Thus, A((J, t) represents all finite

1 Shields uses an indexed cover as an alphabet structure.

- 101 -

The Model

pieces of the new history. It is clear that for finite traces a and t the whole of the trace at

becomes the new history; however, when traces a and t are infinite, part of the future t

may be delayed indefmitely.

We can now define concatenation in 8 1
00

•

Definition. (Concatenation in 8 1
00

)

We shall defme concatenation over 8 1
00 by:

a, t E 8 1
00

: at =lub(A(a,t».

Proposition 3.5.5.

(i) For all a, t E 8 1
00

, at is well defined.

(ii) If a, t E 8 1*, then A(o.t) = Prerfin([xy]), for some x E a, y e rt,

Proof.

(i) We need to show A(a,t) is a directed set. Let L denote Pre[fin(a), T denote

Prerfin(t). Note that A(a,t) is non-empty because L c A(a,t) and L contains [e].

Let (J1tb (J2t2 E A«J,t), then by definition

(a) (J1 E L /\ t1 E T /\ tl tail-independent with a after al

(b) (J2 E L /\ t2 E T /\ t2 tail-independent with a after a2

By Lemma 3.5.1 we have there exists a' E L such that aI, a2 ~ (J' and Act(a') =

Act«J1) u Act«J2). Thus, by definition, tl must be tail-independent with a after a'

and t2 tail-independent with (J after a'. We now construct r' E T such that r' =

Iubl-t], t2) as in Lemma 3.5.1. Then, Acur') = Act(t1) u Act(t2). Let a" E 8 1*
such that (J'(J" ~(J. It is easy to see Act(a")x Acnr') c 1, hence a", t' are

independent. It follows t' is tail-independent with a after a'. Let aia(= a' for i = 1,

2. Then, since ti, (J(are independent:

< " " '<' ,(Jiti -1 aitiai = aiai ti = (J ti -1 at.

We have thus constructed o'r' E A(a,t) such that (J1 tI, a2t2 ~ o't'.

Since 8 1
00 is a cpo, every directed set has a least upper bound. Thus we have shown

that concatenation is well defined because A(o.t) is directed, hence its least upper

bound exists.

(ii) Clear.
o

- 102 -

The Model

It can be easily observed that if a is maximal in E>t00 then the concatenation of a with any

trace t is equal to a.

Proposition 3.5.6. If t = 0 then for any a, y E 8 t00 we have:

cry = [xy]

where x E a, y E 'to

Proof. When t = 0, (8t
OO,

~) is isomorphic to (AOO, <) with string prefix ordering.

It is easy to see that lub(A(o.t) is [xy] for x E a, y E 'to Note that all infinite

sequences in A00 are maximal, and hence lub(A(a,'t» ={x] if x E AO).

o

Theorem 3.5.7.

8 t 00 is a monoid.

Proof.
1) [£] is the identity.

Let a E 8 t
OO, I, = Prerfin(a). Then each a' E I, is independent of [£], hence [£]a =

lub(I,) = a.
Similarly, a[£] = cr.

2) Associativity.

Let a, r, y E 8 t 00. Let I" T, r denote Pretfin(a), Pretfin('t) and Pretfin(y)

respectively, and let a' E I" r' E T, "(E r. We need to show (at)y = a('ty). We

have the following from definition of concatenation:

(2a) (a't)Y =lubA(a't,y)

= lub(a''t',,(1 o't' E Prerfin(cr) /\ "(E r
/\ y tail-independent with at after a''t')

= lub(a''t'y' I o'r' E Prerfin(at) /\ a' E I, /\ t' E T/\ Y E r
/\ y tail-independent with at after o'r'

/\ 't' tail-independent with a after a'}

(2b) cr('ty) = lubA(a,ty)

= lub(a''t'y' I a' E I, /\ 't'y' E Prerfin('tY)

/\ 't'Y tail-independent with a after a'}

= lub(a''t'y' I t'''(E Prerfin('tY) /\ a' E I, /\ r' E T /\ y' E r
/\ 't'Y tail-independent with a after a'

/\ "(tail-independent with 't after 't'}

- 103 -

The Model

From (2a) we have (y tail-independent with ot after o't') 1\ ('t' tail-independent with a

after a') ~ (y tail-independent with a after a') 1\ ("(tail-independent with 't after t') 1\

('t' tail-independent with a after a').

From (2b) we have ('t'y tail-independent with a after a') 1\ ("(tail-independent with 't

after r') ~ ('t' tail-independent with a after a') 1\ ("(tail-independent with a after a') 1\

("(tail-independent with 't after t').

This concludes the proof.

o

Example. The following are examples of concatenation in 8 t 00. Let a t b, then:

[a][bCO] = lub([b*]u[ab*]) =[abCO]

[abCO][a] =lub([E]u[ab*]u[aab*D = [aab-"].

[aCO][bCO] = lub([a*b*D = lub{ [(a*b*)CO]}) = [(ab)CO]

On the other hand, let t = 0. Then:

[a][bCO] = [abCO]

[aCO][b] =lub([a*]) = [aCO]

[aCO][bCO] =lub([a*]) = [aco].

Example. The result of concatenating an infinite trace o with a trace 't is the trace o

extended with a maximal prefix r' of t such that o't', for some finite prefix a' of o, is

consistent with cr. For example, let b t c. Then:

[abCO][ca] = lub([E]u[ab*]u[ab*cD =lub{ [abCO] , [acbCO]} = [acbCO].

[abCO][ac] = lub([E]u[ab*D =[abcol.

Left Cancellation for Infinite Traces

We now show that the usual definition of concatenation may be recovered. Left

cancellation operator in 8 t * will be required.

Lemma 3.5.8. (Shields)

Suppose x, y E 8 t *, then for Z E 8 t00:

(xy)/(Z()(xy)) >t x/(Z()x)

where U()V, for any u, v E 8 t
oo

, denotes the maximal common prefix of u and v

(glb{u,v}).

- 104 -

The Model

Proof. (By induction on length of y).

If Y= [e], then the inequality holds. Suppose y = y'[a], for some a E A. Then we

have by induction:

(xy')/(zn(xy'» > x/(znx)

and so we need to show that

(xy'[a])/(zn(xy'[a]) > (xy')/(zn(xy').

Let x' = xy'. We have to show:

(x'[a])/(zn(x'[a]) > x'/(znx').

Now, there are two cases:

(a) zn(x'[a]) = (znx')[a]. Observe that x/(znx') t [a], and hence:

x'[a] = (znx')[a](x'/(znx'».

Thus (x'[a])/(zn(x'[a]) =x'[a]/«znx')[a]) =x'/(znx').

(b) zn(x'[a]) = znx'. Thus:

(x'[a])/(zn(x'[a]) = x'[a]/(znx') = (x'/(znx'»[a] > x'/(znx').

This concludes the proof.

o

Proposition 3.5.9.

Let 0', y E 8 t 00. Then

0' <t Y ¢:> 3 13 E 8 t00: 0'13 = y.

Also, if 0' ~ Ythen there exists the least 13 such that 0'13 = y.

Proof.

1) We show that if 0'~ Ythen there exists (the least) 13 E 8 t 00: 0'13 = Y

Let 0', y E 8 t00 such that 0' <t Y, then, by Proposition 3.2.10 we have:

Prerfin(0') c Prerfin(y).

Let us denote Prerfin(O') by L, Pretfin(y) by r. Let t E r -L and defme:

M t = {O" ELI 0" <t r}.

(la) We show Mt is directed and contains least upper bounds of every pair of its

elements. Observe that Mt is non-empty because it contains [fl. Let 0'1, 0'2 E Mt ,

then:
O'}, 0'2 ~ 0' because O'b 0'2 E L

0'I, 0'2 ~ t by definition of Mt ·

By Lemma 3.5.1 we have that lub(at, a2} exists and is bounded by both 0' and t:

hence:

- 105 -

The Model

lub{ab a2l E L n Pretfin('t) c M't

and we have shown that M't is directed and contains least upper bounds of every pair of

its elements.

Define:

M = ('t/a' I 't E r -L, a' = lub(M't)}.

Observe that M is well defined because 't and a' are finite (hence 't/d is defined) and 0"

always exists by (la). Also note that M = 0 if a is maximal.

(lb)2 We now show that M is directed. Let W, WE M; then W= cks', p" = 'til/a",

where t', 'til E r -L, a' = lub(M't'), and a" = lub(M't"). We need to show there

exists P'" E M such that p', p' < p"'.

For any a, y E 8 t
oo

, let us denote their least upper bound by crvy (if it exists), and

their greatest lower bound by any. Observe that 't'u't" exists because r bounded by y

(Lemma 3.5.1). Also, by their definition, a' = an't' and a" =an't". We show:

('t'u't")/(an('t'u't")) >t 't'/(orve').

Let y = ('t'u't")/a. By Lemma 3.5.8:

('t'u't")/(an('t'u't")) = ('t'y)/(orvt'y) >t 't'/(an't').

By symmetry, ('t'u't")/(an('t'u't")) ~t 't"/(orve"). Note that ('t'u't")/(an('t'u't"))

E M because 't'u't" E r -L and an('t'u't") = lub(M't'u't").

(lc) Since M is directed and 8 t
oo is a cpo by Theorem 3.5.3, its least upper bound

exists. Define P=lub(M). It follows from construction that lub(M) is the least element

Psuch that ap =y. It remains to show that ap = y. Let L denote Pretfin(a), y denote

Prerfin(y).

We show A(a,p) cr. Suppose a'W E A(a, P); then, by definition of A and p, 0" E

L, WE M, and Wtail-independent with 0' after a'. From definition of M we have P' =

't/a" for some 't E r -L, where a" = lub(M't). Let us denote lub{a', a"} by 0 (0 E L

exists by Lemma 3.5.1). Since Wtail-independent with a after a', it follows P' tail­

independent with a after O. Define l(= op' and observe that l(is the least upper bound

of 0, 'to Finally, note that l(E r because 0, 't < Y(Lemma 3.5.1).

We show r c A(a,p). Note that since L c F, it is sufficient to show that r -L c

2 M.W. Shields has helped with the technicalities of this part of the proof.

-1<X>-

The Model

A(a,~). Let t E r -r,. Define W= 't/a' where a' = lub(M't). By definition of M, W
E M, hence ~' E Pretfin(~). We need to show Wis tail-independent with a after 0'.

Let a" be such that o'o" < a. Then both 't and c'o" are bounded by y, hence their

least upper bound 0 E r exists by Lemma 3.5.1. Now:

a'a"W =a'a"('t/a') =0 =a'W(o/'t) = a'('t/a')(o/'t).

Since ('t/a') commutes with (o/'t) =a", we have that W= (t/o') t (o/'t) =a", which

concludes the proof as 't = a'W E A(a,~).

2) We show that if 3 ~ E 8 t
oo

: a~ =ythen a ~ y. Suppose 3 ~ E 8 t
oo: a~ =y,

then, by definition of concatenation, Prerfin(a) c Pretfin(a~) = Pretfin(y). Thus, by

Proposition 3.2.10, a ~ a~ =y.

o

The following left cancellation operator in 8 t 00 may now be introduced. It allows to extract

the continuation of a trace a after its prefix y has been completed. This operator is well

defined by Proposition 3.5.9.

Definition. (Left cancellation in 8 t 00)

Let C = (A, t) be a concurrent alphabet. Let a, y, ~ E 8 t 00. We say that ~ is a after y

(denoted a/y), where y <t a, if, and only if, ~ is the least trace such that~ =a.

It is easy to notice that this definition agrees with the definition of left cancellation over

*E>t .

Example. If a t b, then [aOl]/[aOl] = [E], [baOl]/[aOl] = [b], [baOl]/[b] = [aOl]; [aOl]/[bOl]

is undefined. If a is dependent on b, then [aOl]/[aOl] = [E], [baOl]/[b] = [aOl]; [baOl]/[aOl]

and [aOl]/[bOl] are undefined.

Maximal Computations and Processes

Let C = (A, t) be a concurrent alphabet, let S = (Q, A, ~, t) be an ATS, and let r, = (S,

qO), for qO E Q, be a rooted ATS. Let Il = (a, n) be a process structure over S. We now

summarize the relationship of maximal computations of a given (rooted) ATS r, and

process structures over L. Maximal computations and their finite prefixes characterize all

admissible computations of a given system. The following theorem states that a non-

- 107 -

The Model

maximal computation, whether finite or infinite, is a computation which is not yet complete,

that is, there exists an action which can extend it non-trivially. In other words, there must

exist a process which has proceeded only a finite number of times and which is ready to

engage in an action that can (non-trivially) extend the given computation.

It follows that, in a maximal computation, each process proceeds an infinite number of

times unless it is prevented from proceeding or the computation is already non-extendable.

We say maximal computations are therefore non-extendable. It is important to notice that

there exist infinite computations which, unlike infinite strings, could be extended in the

sense that there exists an infinite computation dominating it.

Theorem 3.5.10. The following statements are equivalent.

(i) a E "fC>O(~) is not maximal in 1:

(ii) :3 'Y E TOO(1:): a <t 'Y 1\ a:#; 'Y.

(iii) :3 a E A: ala] E TOO(1:)
1\ a[a]:#; a.

(iv) V a, :3 ai E a,:3 a E ai :

Pia(a) E (ai)* 1\ ala] E TOO(1:) 1\ a[a]:#; a.

Proof
(i) ~ (ii) Follows directly from the definition of a maximal computation.

(ii) ~ (iii) Suppose

:3 'Y E TOO(1:): a <t 'Y 1\ a:#; 'Y

Let B = {b E A I a[b]E rx'(1:)}. We first show B is non-empty. It follows from (ii)

by Proposition 3.5.9, that :3 ~, ~ :#; [£1: a~ ='Y. Take any prefix [b] of ~ of length 1;

then [b] <t ~, and thus arb] ~t a~ = 'Y. Since 'Y E "fC>O(1:) we have by Proposition 3.6.2

that arb] E ~(1:). Thus, B is non-empty.

We now show that there exists a E B such that ara] :#; a. Suppose for all b e B we

have ala] =a. Thus, for all 'Y E r(1:): -,(a ~t 'Y) v a = 'Y, and we have reached a

contradiction with (ii).

(iii) ~ (iv) Suppose:

- lOH -

The Model

3 a E A : a[a] E 'fOO(1:) 1\ a[a];I= a.

Let a. be an arbitrary alphabet structure. Since <X is a cover, 3 <li E <X such that a E <li.

Suppose PiCa) is infinite for all <li E <X such that a E <li (we prove this part by

contradiction). Then, since a ~ ola] by Proposition 3.5.9, pi(a[a]) is also infinite by

monotonicity of Pi. Hence:

PiCa) =pi(a[a]) for all <li E <X such that a E <li.

Also, Pj(a) =Pj(a[a]) for all <Xj E <X such that a ~ <Xj by definition ofpj- Hence, p<X(a)

= p<X(a[a]), and, by Proposition 3.4.10, a = a[a], which contradicts (iii). We have

thus shown that there exists <Xi E <X such that PiCa) E (<li)*.

(iv) ~ (i) Suppose a. is an alphabet structure and 3 <li E <X,3 a E <Xi: Pi<X(a) E (<li)* A

a[a] E 'fOO(:E) 1\ a[a];I= a. Thus 3 y E TOO(1:), Y= ola], such that a ~ y A a"# y.

Clearly, a is not maximal in 1:.

o

Example. Let us consider the ATS shown in Fig. 3.3.3, where a t b. The only

process structure over this ATS is {{a},{b} }. Examples of non-maximal computations

are [a*], which can be extended with a or b, and [aW], which can be extended with b

yielding [baW]. Note that P2([aW]) is finite. The only maximal computation is [baW].

Example. Let us consider the ATS shown in Fig. 3.4.3, where a is dependent on b.

There are four process structures over this ATS, for example {{a,b}} and

{{a,b},{b}}. Non-maximal computations are [a*], which can be extended with a or b.

Maximal computations are [a*b], which cannot be extended, and [aW], which, when

extended with a or b yields [aW].

Maximal Computations and Finite Delay

Maximal computations exhibit a conditional finite delay property [KaM69], which states

that a transition cannot be permanently enabled in a computation and be independent ofall

the remaining transitions in this computation; either this transition or some transition

dependent on it will be taken.

It should be noted that when dealing with determinate systems, which seemed the intention

of [KaM69], dependency of transitions may never refer to the transitions being at conflict,

- 109 -

The Model

but only in sequence. In other words, no two dependent transitions may be simultaneously

enabled in a determinate system. Thus, for such systems, finite delay property reduces to

the statement originally introduced in [KaM69], that is, that no transition can be

permanently enabled and never taken. When considering non-determinate systems,

however, it is possible for a transition to be indefinitely delayed if some action dependent

on it is taken instead

Example. The (determinate) ATS shown in Fig. 3.3.3 has one maximal computation

[baCO], in which no action has been indefinitely delayed. The computation [aro] is not

maximal because b is permanently enabled and never taken. On the other hand, the

computation [aro] of a (non-determinate) system shown in Fig. 3.3.6 is maximal,

although action 'tb appears to be indefinitely delayed. Note that conditional finite delay

property still applies in this case since transition a, which is dependent on 'tb, is taken.

The following is a characterization of computations that are maximal in "[OO(L). We use [a]

1 a/y to denote that traces [a] and a/yare independent. In other words, a is independent of

all elements in Act(eJ/Y). a/Y, for y <1 a, denotes a after y, that is the computation

remaining in a after y has been completed.

Theorem 3.5.11.

a E "[OO(L) is not maximal in 1: if, and only if, the following holds:

3 y E Prerfin(a), 3 a E A:

y[a] E T*(L) A ([a] t a/y).

Proof (can also be found in [Shi88c]).

1) Suppose a E TOO(I:) is not maximal in L. Then by Theorem 3.5.10(iv) we have for

any alphabet structure, say <xmtn:

3 <Xi E <XmIn, 3 a E <Xi:

Pi(a) E (<Xi)* A ola] E ~(I:) 1\ a[a] # a.

We need to construct y E Pretfin(a) such that for some a E A:

y[a] E T*(I:) A ([al 1 a/y).

Let x E a; then x E DOO(I:) by Proposition 3.6.1 and Pi(x) = Pi(a) E (<Xi)* by

Proposition 3.4.10. Thus, there exists kEN such that:

qO ~x(l) ql ~x(2) ... qk-l ~x(k) qk ...

and:

(*) V j > k: xtj) # a, and

V j >k: xtj) ~ <Xi·

- 110 -

The Model

Let YE a[a] E "[00(1:); then y E DOO(1:) by Proposition 3.6.1. Since a[a] -:1= a, we have

that there exists mEN such that:

qO ~y(l) q'l ~y(2) ... ~y(m) q'm ~a q'm+l ...

and:

y(m) =a, V j > m: y(j) i= a.

Since a ~ a[a] by Proposition 3.5.9, we have Pretfin(a) c Pretfin(a[a]). Observe

that (a[a])/a =[a]. Let y' be the prefix of y of length m and define y = [y']. Since [y']

< [y'a], we have y is a prefix of a.

Clearly, y E T*(1:) because y' E D*(1:). Also, y[a] E T*(1:) because y'a E D*(1:) and

y[a] = [y'][a].

Observe that Act(a/y) =Act(x/x') where x' =t y' (x' exists by Proposition 3.6.1 and x'

E y), and Ix'i > k. It follows from (*) that for all b E Act(a/y) =Act(x/x'), b e (Xi.

Since (Xnnn is the minimal alphabet structure, we have a E <Xi and b e <Xi implies a t b.

This concludes the proof.

2) Suppose 3 y E Pretfin(a), 3 a E A: y[a] E T*(L) A ([a] t air). Let (Xmin denote

the minimal alphabet structure over (A, i), Since (XmIn is a cover, there exists (Xi E

(Xnnn such that a E (Xi. Since "«a/y) =a and yfinite, it follows Pi(X(a) = Pi(X(y(a/y» =

Pi(X(y)Pi(X(a/y) = Pi(X(y), because for all be Act(a/y) we have a t b, and thus b ~ (Xi.

Note that Pi(X(a) is finite. We can now show that for every finite prefix "I of a such

that y~ "I, if "I can be extended with a and "I can be extended with b and a t b, then

y'[b] can be extended with a. Since y[a] E T*(1:) and y[b] E T*(1:) for some b E

Act(a/y) and a t b, we have y[a][b] E T*(L) by condition (ii) of the defmition of an

asynchronous transition system. By condition (i) of the same definition, y[bHa] E

T*(L), or, in other words, y[b] must be extendable with a. This allows us to construct

a computation a[a] such that a <a[al and ola] E ~(1:). Clearly, pi(X(a[a]) = Pi(X(r)a,

hence ola] i= a because y finite. Thus, we have shown ::3 (Xi E (XmIn,3 a E (Xi: Pi(X(a)

E «(Xi)* A ola] E ~(1:) 1\ a[al -:1= a. We therefore conclude a E ~(L) is non-maximal

in 1:.

o

Example. Let at b; then [aW), [baWl are not maximal in 8 t
OO because there exist finite

prefixes [E] and [b] respectively such that [b] remains independent of all [aW]I[E] = [aCO]

- I II -

The Model

and [bam]/[b] = [am]. On the other hand, when a is dependent on b, both [am] and

[bam] are maximal.

The following is a consequence of the above theorem. Note that it does not hold for an

arbitrary alphabet structure.

Proposition 3.5.12.

a E "J."'OO(L) is not maximal in L if, and only if, the following holds:

:3 Uj E (lmin,:3 a E Uj :

Pi(l(a) E «(li)* 1\ a[a] E "J."'OO(L).

Proof.

This is a direct consequence of the above theorem.

o

3.6. Relationship of ATS and Trace Languages

Let S =(Q, A, ~, t) be an ATS, let L =(S, qO), for qO E Q, be a rooted ATS. We now

address a few questions concerning the relationship of asynchronous transition systems as

acceptors of trace languages, and trace languages as computations of asynchronous

transition systems.

It is clear from definition of trace semantics that each derivation of L is contained in some

computation belonging to TOO(L). In order to show that trace semantics is an adequate

representation of the behaviour of an asynchronous transition system, we need to prove that

each representant of a computation in TOO(L) is a derivation of L, and all equivalent finite

derivations lead to the same state.

Proposition 3.6.1.
Let S = (Q, A, ~, t) be an ATS, let L =(S, qO), for qO E Q, be a rooted ATS.

(i) 'V a E ro(L): a c DOO(L)

(ii) 'V x, y E D*(L): x =t y => « qO ~x q' /\ qO ~y q") => (q' = q"))

- 112 -

The Model

Proof.

(i) Suppose o E TOO(L); then there exists x E c such that x E DOO(L), and thus qO ~x.

Hence, there exists a sequence of states qO, q 1, ... qi ... such that:

qO ~x(l) ql ~x(2) ... qi-l ~x(i)....

We need to show for any y E o that there exists a sequence of states qO, q'}, ... q'i ...

such that:

qO ~y(l) q'l ~y(2) ... q'i-l ~y(i)....

First, consider finite computations. Suppose x = a for some a E A such that [x] E

T*(L). Thus [x] = {a} and there exist states qO, ql such that qO ~a ql. Let o be of

length n > 1 such that o E T* (L), then there exists x E o such that qO ~x and x is of

length n. Let y E cr. Since x =y, there exists a sequence of strings W} 1 < j < N, such

that

Wj = uabv

Wj+l =ubav

with Wj =x, wN =y, a t b and each Wj E cr. Since qO ~x, there exists a sequence of

states qO ~x(l) ql~x(2) ... qn' We show that if Wj E D*(L) then Wj+1 E D*(L), for

any j, 1 < j < N. Suppose Wj E DOO(L), then there exists a sequence of states

qO ~u(l) ql ... qi ~a qi +l~b qi+2 ~v(l) ...~

Since at b, it follows from condition (i) of the definition of an asynchronous transition

system that there exists a state q' such that qi ~b q'~a QJ+2. Clearly, Wj+1 E D*(L).

We did not require forward stability in the above proof.

Now consider infinite computations. Suppose c E TCO(L), then there exists u E o such

that u E DCO(L), and thus qO ~u. Hence, there exists an infinite sequence of states qO,

q}, ... qj ... such that qO ~u(1) ql ~u(2) ... qi-l ~u(i).... Let v E o: then v <00 u

and, by definition of <00, for every prefix x ofv there exists a prefix y of u such that x

<* y. Let x be any finite prefix of v: then there exists z ~ x such that z L y. Since y E

D*(L) and z =t y, we have z E D*(L). Thus we conclude that v E DCO(L) since each

finite prefix x ofv can be extended to a finite prefix z ofv such that Z E D*(L).

(ii) Suppose x, y E D*(L) such that x == y. We need to show that (qO ~x q' 1\ qO ~y

*q") implies q' =q". Suppose x = a for some a E A such that XED (L). Thus [x] =
{a} and there exist states qO, q 1 such that qO ~a q 1 (uniqueness of q 1 follows from

non-ambiguity). Let x, y E D*(L) be of length n > 1 such that qO ~x q' 1\ qO ~y q".

Since x = y, there exists a sequence of strings Wj' 1 ~ j < N, such that

- 113 -

The Model

Wj =uabv

Wj+l =ubav

with Wj =x, wN =y, alb and each Wj E a. By part (i) of this proof we have qO

~Wj. We show that if qO ~Wj q' and qO ~Wj+l q", for 1 <j < N, then q' = q".

Suppose qO ~Wj q' and qO ~Wj+l q", then:

qO ~u(l) ql qi ~a qi +1~b qi+2 ~v(l) q'

qO ~u(l) ql qi ~b q'i +1~a qi+2 ~v(l) q"

Clearly, it follows from non-ambiguity that q' = q", which concludes the proof.

o

As a consequence of the above proposition we may now extend the notation to allow for a

trace a E f\00 to be applicable in a given state q, denoted q ~a, iff there exists x E Doo(I.)

such that q ~x. Note that if x', x" are finite prefixes of some x and q ~x, then x' and x''

are comparable with respect to string prefix ordering. On the other hand, if a', a" are

finite prefixes of some a and q ~a, then a' and a" need not be comparable with respect to

trace prefix ordering

The following proposition summarizes properties of the set of computations of a rooted

asynchronous transition system. The set of admissible computations of a given system,

Max(TOO(I.» u T*(I.), has been adequately defined to characterize its every possible fmite

computation.

Proposition 3.6.2.
Let S = (Q, A, ~,1) be an ATS, let I. = (S, qO), for qO E Q, be a rooted ATS.

(i) 'fOO(I.) is: prefix closed infinitary trace language, closed infinitary trace language

and an ideal in 8 1
00

•

(ii) Max('fOO(I.» u T*(I.) is an ideal in 8 1
00

•

Proof.
(i) We show TOO(I.) is prefix closed. Suppose a E 'fOO(I.) and let 'Y~ a. Choose u E

'Y, then there exists v E a such that u~ v. Let x E Pretf'in(u). By definition of <00:

3 y E Pretfin(v): (3 z: x <z 1\ z =1 y) =>

3 y E Pretfin(v): (3 z: x <z 1\ Z =t Y 1\ qO ~Y) because Doo(I.) is prefix closed by

Proposition 3.4.1(i). =>
3 YE Pretf'in(v): (3 z: x ~ z 1\ Z =t Y 1\ qO ~Z) by Proposition 3.6.1(i) =>

qO ~x because Doo(I.) is prefix closed by Proposition 3.4.1.

- 114 -

The Model

Thus, we have shown qO ~x for any finite prefix x of u; since DOO(L) is closed by

Proposition 3.4.1 we conclude qO ~u.

Finally, [u] ="(E "fOO(L), and thus TOO(L) is prefix closed.

Since every prefix closed trace language is an ideal, it follows that "fOO(L) is an ideal.

We show "fOO(L) is closed. Suppose a E Adh(r(L», then:

Pretfin(a) c (~*nTOO(L) = T* (L).

Let u E a, x be an arbitrary finite prefix of u. Then [x] ~ [u] = a. Hence, qO ~x by

definition of T* (1:). It follows that qO ~u because DOO(L) is closed (Proposition

3.4.1) and [u] = a E TOO(L).

(ii) Let a E "fOO(1:) such that a e Max("fOO(L»; then there exists t E Max(fOO(1:» such

that a ~ 'to Thus, Pretfin(a) C Pretfin(t) C T*(1:), and Pretfin(Max(TOO(1:»-{ o l) =

Pretfin(Max(TOO(1:»). It is easy to see Pretfin(Max(TOO(1:») = T*(1:).

o

We can also characterize the set of computations of certain subclasses of asynchronous

transition systems. Note that determinate systems allow concurrency, but disallow non­

determinism in the sense of two dependent actions being enabled in the same state. On the

other hand, sequential systems do not allow concurrency, but admit non-determinism.

Proposition 3.6.3.
Let S = (Q, A, ~,t) be an ATS, let 1: = (S, qO), for qO E Q, be a rooted ATS.

(i) If 1: is a determinate forward stable system, then TOO(1:) is a complete lattice.

(ii) If 1: is a sequential system, then any two consistent computations in "fOO(1:) are

comparable.

Proof.
(i) Let a, '"(E T* (L) and let 0 E T* (1:) denote maximal common prefix of a, r·
Observe that a/o, '"(/0 E T*(S). We show that (a/O) t (riO). If a/O =[£] or riO =[£]

then it is clear that (o/S) t (riO). Suppose a/O # [£] and riO # [£], then there exist [a] ~

a/O, [b] < "(10 such that:

(a) q ~[a] q', q ~I b] q" and q' # q" (because 0 is a maximal common prefix)

where qO~O q. Since L is determinate, (a) implies b t a. By condition (ii) of the

- 115 -

The Model

definition of ATS (forward stability), there exists q'" such that:
q ~[a] q' ~[b] q"', q ~[b] q" ~[a] q"'.

By induction on length of alo we have b t a for all a E Act(aIO). Since O[b](a/o) E

T*(L), the above may be repeated for y/(O[b]). By induction on the length ofy/O, it

may be concluded that Act(a/o) x Act(y/O) c t, and hence (o/S) t (y/O).

It is easy to see that the least upper bound of a and y, for a, y E T*(L) is o(a/o)(y/8) E

T* (L), where 0 E T* (L) is the maximal common prefix of a and y. Thus, T*(L)

contains least upper bounds of every pair of its elements, and is therefore directed.

Hence, the least upper bound of every subset of T*(L) exists and belongs to "fOO(L)

(because TOO(L) closed by Proposition 3.6.2). Now, greatest lower bounds exist

because glb(X) =lub{a E ~(L) I a < X},

(ii) Follows from properties of string prefix ordering.

o

Example. The ATS shown in Fig. 3.3.3 is determinate. Fig. 3.6.1 shows the

complete lattice of computations of this system.

[e]

/ \

[a] [b]

/ \ /

[aa] [ab]

/ \ /

F· 3 6 1 The complete lattice of computations of the ATS shown in Fig. 3.3.3.Ig. ...

- 116 -

The Model

Example. The ATS shown in Fig. 3.3.6 is sequential. Fig. 3.6.2 shows the set of

computations of this system.

[E]

/ \
[a] [b]

/ \
[aa] [ab]

/ \

[aab]

. . .
/

[a(J)]

Fig. 3.6.2. The set of computations of the ATS shown in Fig. 3.3.6.

The following statement formally characterizes infinitary trace languages which are accepted

by asynchronous transition systems. For any prefix-closed and closed infinitary trace

language T there exists an asynchronous transition system that accepts it. However, in

order to guarantee forward stability of the accepting ATS, we must, in addition, assume

that that T contains least upper bounds of all its finite subsets that have a least upper bound.

Note that when independency is empty, the proposition below specializes to the statement

that for any prefix-closed and closed string language there exists a transition system

accepting it.

Proposi tion 3.6.4.

Let T c 8 t
oo be a prefix-closed and closed infinitary trace language over a concurrent

alphabet (A, t). Then there exists an unambiguous rooted asynchronous transition

system L = (S, qO) such that T = ~(L). If T contains least upper bounds of all finite

subsets of T that have a least upper bound, then L is forward-stable.

Proof. The rooted ATS L = (S, qO), where S = (Q, A, ~, i) can be constructed as

follows:

Q=Tfin
qO = [E]

r' ~a 'til ~ :3 a E A: 't'l a] = til.

- 117 -

The Model

1) We show that 1: is an ATS. Obviously, Q is countable.

(la) Let r, r', t" e Q, a, b e A. Suppose 't ~a 't' ~b t" and a t b. Then 't[a] = t'

and 't'[b] = t". Define 'till = 't[b]. Clearly, t'' = 't'[b] ='t[a][b] ='t[ab] = rjba] =
't[b][a] = 't"'[a], and hence 't ~b t" -4a 'til. 't"'e Q because 'till < 'til and T is

prefix-closed.

(lb) Let t, 't', t" e Q, a, b e A. Suppose t -4a r' and 't -4b 't" and a t b. Then 't[a] =
't' and 't[b] = r". Define t" = 't[a][b]. Clearly, 'till = 't'[b] = 't"[a], and hence 't '~b

'till and 'til -4 a 'till. Note that t" e Q only if lub{ 't','t"} = 'til' e T, thus L is

forward-stable only if this condition holds.

2) Clearly, 1: is unambiguous.

3) It is easy to see that Tfin = T*(L) and T = '[00(1:) because T closed.

o

A prefix-closed and closed infinitary trace language may contain infinite behaviours that are

not maximal. Since systems (programs) evolve in finite steps, such behaviours are not

reachable. Thus, the behaviour of such a system would correspond to a trace language that

is an ideal, rather than prefix-closed and closed. It is an easy consequence of the above

proposition that given an ideal T we can construct a rooted asynchronous transition system

1: such that:

Tfin =T*(1:), TuAdh(T) =TOO(L), TfinuMax(Tinf) c Adm(1:).

Unfortunately, we cannot show the existence of an ATS L such that T = ~(1:). Consider

T = [(a*b*)*]u[(a*bb*)O>], which is an ideal but it is not closed. Then Adh(T) =

[(a*b*)O>] = TO>(1:), but TOO(1:) a: T.

- llR -

4
Defining Fairness for

Non-Interleaving Concurrency

- 119 -

Defining Faimess

Afairness notion is introduced in the semantic models as a constraint, the

purpose of which is to exclude those behaviours that do not impose the

progress of certain components of the system, or as a liveness property that

can be added to the list of properties that constitute the specification of the

system. Fairness notions are relative to the granularity level and the strength

required.

The purpose of this chapter is to investigate ways in which existing fairness

notions could be translated into asynchronous transition systems and what

benefits could be gained when employing trace semantics as opposed to the

interleaving semantics. Our main concern is to define fairness with respect

to concurrency, rather than non-determinism. In other words, we shall be

concerned mainly with imposing fairness of conflicts that arise due to

synchronisation and, as such, may result in some process being delayed

while waiting to synchronise. Since asynchronous transition systems have

been equipped with process structure, we have chosen to distinguish the

granularity level of events and the level of processes. The strength

predicates considered will be weak, strong and unconditional fairness.

This chapter will focus on pragmatic definitions of event and process

fairness. An attempt to mathematically formalize fairness will be included in

the following chapter.

- 120-

4.1. How Not To Define Fairness

Defining Faimess

It might seem reasonable to directly translate existing fairness notions (see Chapter 2 for

review) into asynchronous transition systems. These definitions have been formulated for

interleaving semantics and, as a result, are based on single execution sequences rather than

equivalence classes of execution sequences that were developed in Chapter 3. Execution

sequences constitute sequential observations rather than computations and, as such, they

correspond to derivations in our model.

Most commonly known definitions of event fairness were originally introduced in the

context of interleaving semantics [LPS81] [Par81] and can be summarized as follows:

(i) unconditional fairness: every event is taken infinitely often;

(ii) strong fairness: every event that becomes possible infinitely often is taken infinitely

often;

(iii) weak fairness: every event that becomes possible from some point on is eventually

taken.

In order to obtain process fairness, the word event should be substituted with the word

process in the above.

Fairness in the Sequential Sense

Although the above definitions do not state precisely what it means for an event to become

possible, existing literature suggests the following straightforward approach. Let 1'. = (5,

qO) be a rooted ATS, where S = (Q, A, ~, i) and gO E Q. We assume transition labels a

E A determine events within the system. Let a E A, x E 0
00

(1'.) such that:

- 121 -

Defining F'airness

An event a E A becoming possible is defined as a transition labelled with a being enabled in

a given state q (q -ta). An event a E A being taken in a derivation x is defined as an

occurrence of the symbol a in x; in other words, an event a is taken iff 3 i: qi -ta qj+1.

Formally, the above definitions may now be given as follows (ia denotes some natural

number depending on a).

Definition. Let S = (Q, A, -t, i) be an ATS, r, = (S, qO) be a rooted ATS, and x E

DW(r,) such that:

qO -tx (1) q1 -jx(2) q2 ... qi -tx(i) qj., 1 ...

where qi E Q for all i.

A derivation x is unconditionally event fair in the sequential sense (SQ-UEF) iff
't/ a E A 't/ k 3 ia ~ k: qi -ta qi +1.a a

A derivation x is strongly eventfair in the sequential sense (SQ-SEF) iff

't/ a E A 't/ k:

('t/ m > k 3 j > k: qJ' -ta) => (3 ia > k: qj -ja qi +1).a a

A derivation x is weakly event fair in the sequential sense (SQ-WEF) iff

't/ a E A 't/ k:

('t/ m > k: qm -ja) => (3 ia ~ k: qi -ja qi +1)a a

Any finite derivation (x E D*(r,» is falr in the sequential sense. Note that unconditional

fairness should only be used when transitions may not become disabled in the course of

computation. Strong event fairness requires that a transition be taken infinitely often if a

state which enables this transition is reached infinitely often in a given derivation. Weak

event fairness disallows a derivation if some transition is enabled in every state visited from

some point on and never taken.

Example. Let us consider the ATS shown in Fig. 3.3.3. The derivation baw is SQ­

WEF and SQ-SEF but not SQ-UEF. The derivation aW is unfair according to each of

the above definitions. Similarly, the derivation aW of the ATS pictured in Fig. 3.3.6 is

unfair with respect to each of the definitions presented here.

It can be shown that the above definitions form a hierarchy. Let us define:

- 122 -

Defining Fairness

SQ-UEFair(L) = (X E DOO(L) I x is SQ-UEF}

SQ-SEFair(L) = (X E DOO(L) I X is SQ-SEF}

SQ-WEFair(L) = (X E DOO(L) I x is SQ-WEF}

Proposition 4.1.1. (Hierarchy of Fairness in the Sequential Sense)

SQ-UEFair(L) c SQ-SEFair(L) c SQ-WEFair(L), and the inclusion is strict.

Proof. SQ-UEF => SQ-SEF => SQ-WEF is clear.

The following serves as a counter-example to SQ-WEF => SQ-SEF. Let us consider

the ATS shown in Fig. 4.1.1 where 1 = 0. The infinite derivation:

q' aq" c q' a q" c~ ~ ~ ~ ...
is not SQ-SEF with respect to b (because b is enabled infinitely often and never taken),

but it is SQ-WEF (because b is not enabled continuously).

A counter-example to SQ-SEF => SQ-UEF is shown in Fig. 4.1.2, where 1 =0. The

infinite derivation q" ~a q' ~c q' ~c q' ~c ... is not SQ-UEF with respect to b

(because b is not taken infinitely often), but it is SQ-SEF (because b is not enabled

infinitely often). This concludes the proof.

o

b-_..~ q'"

c

Fig. 4.1.1. A counter-example to SQ-WEF => SQ-SEF (1 = 0).

b
--~- q'"

a

F · 4 1 2 A counter-example to SQ-SEF => SQ-UEF (1 = 0).Ig. ...

Defining Fairness

Relationship to Trace Semantics

However, the seemingly straightforward adaptation of the above definitions causes serious

problems: we observe that SQ-WEF is not closed under trace equivalence (not equivalence

robust using the terminology of rAFK87]). In other words, it is possible to show two

equivalent derivations (with respect to the trace equivalence =t), one of which will be fair

and the other one unfair. Let us consider the following counter-example for SQ-SEF (a

similar one can be found for SQ-WEF) shown in Fig. 4.1.3, where a t d, c t d, ate, c t e.

Fig. 4.1.3. An ATS that demonstrates that SQ-SEF is not closed under trace equivalence.

Then (acde)CO =t (adce)CO, and (adce)CO is not strongly event fair in the sequential sense

(SQ-SEF) because b is infinitely often enabled, but never taken. On the other hand,

(adce)CO is strongly event fair (SQ-SEF) because b is never enabled. It should be noted that

the trace [(acde)CO], which incorporates (adcej'", is an admissible computation of the system

pictured above, that is, it is maximal in TOO(S); so are each of the finite computations

[(acde)*adb]. However, the sequence of states determined by the derivation (acdej'"

differs from the sequence of states determined by (adcej-", and, as a consequence,

statements made about the enabledness of a transition in a state visited in one derivation do

not necessarily apply to equivalent derivations. When considering trace semantics, it can be

easily verified that an infinite number of finite prefixes of the trace [(adce)co], namely

[(adce)*ad], can be extended with b to form the trace [(adce)*adb] which is incomparable

with [(adce)CO]. (When attempting to extend [(adce)CO] with b the resulting trace is

[(adce)CO]) .

- 124 -

Defining Fairness

Relationship to Confusion

The above problem seems impossible to reconcile when behaviours of systems are

represented as sets of sequences of transitions (Le. interleaving semantics), so one might be

tempted to restrict the model so that situations like the above could be disallowed.

Unfortunately, this would greatly affect the generality of the model as the difficulty is

caused by a phenomenon called confusion (see Chapter 3). Confusion arises in net theory

as well as in asynchronous transition systems. In the world of hardware, it presents itself

as the "glitch" problem [RoT86]. In fact, the system above has been derived from a Petri

net that exhibits confusion. The original net (Condition/Event net) is shown in Fig. 4.1.4.

It can be shown that (unlabelled) Condition/Event nets determine (unambiguous)

asynchronous transition systems (see Chapter 6), where the set of all the states Q is defined

as the set of all the cases, the set of action labels A is taken as the set of events of the net,

the transition relation ~ is the firing relation, and the independency t, determined by the

structure of the net, defines the events that could occur autonomously. Thus, the firing

sequences of a net exactly correspond to the derivations of asynchronous transition

systems.

/GJ
sO sl

0 .Q ~O-, s4

S3/[i]
• 0

s2

0 ~~ • 0",
GJ

F
o 4 1 4 A Condition/Event net that determines the ATS shown in Fig. 4.1.3.Ig. 0.·

- 125 -

Defining Fairness

The following are asymmetric confusions that the ATS shown in Fig. 4.1.3 exhibits:

0.1 = (2, c, d)

0.2 = (3, e, a)

because the conflict sets are as follows:

cfl(2, c) = 0

cfl(4, c) = {b}

cfl(2, d) =0

cfl(l, d) = 0

cfl(3, e) = 0

cfl(4, e) = {b}

cfl(3, a) = 0

cfl(1, a) =0

Confusion is a situation, in which conflict sets of a given transition (i.e, the set of

transitions with which the given transition is at conflict) are changed through an occurrence

of some transition concurrent to the one under consideration. Thus, different

sequentializations of essentially the same behaviour may differ radically in terms of non­

deterministic choices available at each step. It is not sufficient, in such situations, to base a

definition on just one sequentialization, but it is necessary to consider all the possible

sequentializations of a given behaviour; otherwise, a reasonable scheduler could not be

built.

Although sequential systems, amongst which we can include CCS with standard transition

system semantics [MiI80], are free from confusion, it is nevertheless possible to give CCS

an interpretation in terms of asynchronous transition systems. For example, a CCS

expression that determines the ATS shown in Fig. 4.1.3 may be (p II q)\b, where p = fix

X.(a(cX+bNIL», q = fix X.(d(eX+b». Thus asynchronous CCS also exhibits confusion.

It should be mentioned here that confusion, although it has been known in net theory for

some time, can nevertheless cause many headaches. In [Bes84a] [Bes84b] an attempt has

been made to adapt fairness definitions as introduced in [LPS81] to the Petri net

environment - needless to say, enabledness of a transition was based on the existence of

states enabling it in a derivation. The result was an infinite number of classes of fairness

that collapsed to a single notion when a simpler class of nets was assumed. As it has been

observed by Shields [Shi88b], this hierarchy of fairness is artificial because it is related to

the existence of confusion.

- 126 -

Defining Fairness

Summary

It has been shown that the notion of a transition being infinitely often enabled in a

derivation that is based on the existence of an infinite number of states enabling a is not

adequate in the context of non-interleaving concurrency. The solution which makes it

possible for fairness to be closed under trace equivalence requires an alternative notion of

transitions being enabled: they should be based on a computation, that is an equivalence

class of all the possible sequentializations of a behaviour, rather than on a single derivation.

4.2. Event Fairness

We shall now present the definitions of event fairness suitable for asynchronous transition

systems. We take the view that no possible event should be delayed indefinitely. Again,

we shall assume that events are represented by transitions.

Preliminary Definitions

Let L = (5, qO) be a rooted ATS, where S = (Q, A, ~, t) and qO E Q. Let o E ro(S) , a

E A. Note that by Proposition 3.6.1 a computation o E T*(S), when applied in a state q,

uniquely determines a state q' such that q ~cr qt. We define an event a E A becoming

possible as a transition being enabled by a given computation o E T*(S) in the sense that

cr[a] is also a computation of S (that is, computation o can be extended with action a). An

event a E A being taken is defined as an occurrence of the symbol a in a computation.

We now formalize the notion of an event being taken, enabled continuously and infinitely

often. Although the definitions presented here refer to asynchronous transition system S =

(Q, A, ~, t), they also apply to the rooted ATS because ro(I,) c roeS).

Defin ition.
Let S = (Q, A, ~, t) be an ATS, o E Till(S, q), a E A.

(i) We say that a is taken in o iff

- 127 -

DefiningFairness

3 'Y E Pretfin(O'): y[al ~ 0'.

(ii) We say that a is continuously enabled in 0' iff

~ 'Y E Pretfin(O'): y[a] E T*(S).

(iii) We say that a is infinitely often enabled in 0' iff

card (y E Pretfin(O') I y[al E T*(S)} = 0).

In other words, event a is taken in a computation if, and only if, some finite prefix of this

computation can be found so that, when extended with a, the resulting computation is a

finite prefix of the original computation. We say that a is continuously enabled in a

computation if, and only if, every finite prefix of this computation can be extended with a.

We say that a is infinitely often enabled in an infinite computation if, and only if, an infinite

number of finite prefixes of that computation can be extended with a.

Hierarchy of Event Fairness

Let 0' E TO)(S), 't E T*(S) such that 't <1 0'. Thus there exist qb q2 E Q such that ql ~O'

and ql ~'t q2. It now follows that ql ~'t q2 ~(O'/'t); hence, ot« E TO)(S, q2) c TO)(S).

We can therefore apply the definitions introduced in the previous section with respect to

ot«.

Definition.
Let S = (Q, A, ~, t) be an ATS, L = (S, qO) be a rooted ATS, 0' E TO)(L), a E A.

(i) 0' is unconditionally event fair (UEF) iff

~ a E A ~ 't E Pretfin(O'):

a is taken in or:

(ii) 0' is strongly event fair (SEF) iff

~ a E A ~ 't E Pretfin(O'):

a infinitely often enabled in 0'/'t => a taken in on.

- 12X -

Defining Faimess

(iii) a is weakly event fair (WEF) iff

'\j a E A '\j 't E Pretfin(a):

a continuously enabled in a/'t => a taken in en.

As usual, any finite computation (a E T* (L)) is fair with respect to any of the above

definitions.

Note that the definition of weak event fairness disallows a situation, in which every prefix

of a computation is extendable with action a, but a is never taken. Strong event fairness, on

the other hand, does not admit a computation which has an infinite number of prefixes

extendable with a, but a is not taken after some finite prefix. Unconditional event fairness

imposes a fainnerge of an infinite number of instances of each event, and it should be used

only when events may not become disabled.

Example. The computation [(adce)ro] of the ATS shown in Fig. 4.1.1 is not SEF

because an infinite number of its prefixes, namely each of [(adce)*ad] , can be extended

with b (nor is it UEF). However, [(adce)ro] is WEF because it not permanently

extendable with b. The computation faro] of the ATS shown in Fig. 3.3.3 is not WEF,

nor is it SEF nor UEF, because its every finite prefix [a*] can be extended with b. A

similar observation can be made with respect to the computation [aro] of the ATS in

Fig.3.3.6 concerning extendability of [a*1 with 'tb.

It can be shown that the above definitions form a hierarchy. Let us define:

UEFair(L) = (a E TOO(L) I a is UEF}

SEFair(L) = {a E ~(L) I a is SEF}

WEFair(L) = (a E TOO(L) I a is WEF}

Proposition 4.2.1. (Hierarchy of Event Fairness)

UEFair(L) c SEFair(L) c WEFair(L), and the inclusion is strict.

Proof. UEF => SEF => WEF is clear.
The counter-example to SEF => WEF is shown in Fig. 4.1.1 (t = 0). The computation

[(ac)ro] is not SEF with respect to b (because its prefixes [(ac)*a] can be extended with

b), but it is WEF (because its prefixes la(ca)*] are not extendable with b).

The counter-example to UEF ~ SEF is shown in Fig. 4.1.2 (t = 0). The computation

- 12() -

Defining F.airness

[acCO] is not UEF with respect to b (because b is not taken infinitely often), but it is SEF

(because no prefix of this computation can be extended with b).

This concludes the proof. Counter-examples with non-empty independency can also be

found.

o

Applicability of Event Fairness

However, the above definitions may be considered too restrictive, as they enforce fairness

of choice of transitions whenever a group of transitions becomes sufficiently often enabled

in the course of computation. In other words, in case some transition becomes infinitely

often enabled simultaneously with another one, both transitions would have to be taken

infinitely often in order to guarantee fairness with respect to SEF. (Note that the precise

context under which transitions become enabled simultaneously, that is whether they are

independent or dependent, is ignored by the definition of SEF). In practice, we may wish

to treat conflicts that arise due to process synchronisation differently from conflicts that

correspond to internal non-determinism.

Let us discuss the following example based on a Condition/Event net shown in Fig. 4.2.1

that implements mutual exclusion. Consider trace semantics of the net shown in Fig.

4.2.1. It is easy to see that all admissible computations of this net can be given by the

expression [«abc)*(def)*)CO] and all their finite prefixes. It follows that computations

[(abc)CO] and [(def)CO] are also admissible. The latter would be highly undesirable if the net

is meant to represent a solution to the mutual exclusion of two processes with alphabets

(a,b,c} and {d,e,f}, where a, d are events representing that entry to the critical section has

been granted, b,e are critical sections, and c, f represent local sections of code of each

process respectively. Thus, in the computation [(abc)ffi], the process identified by the

alphabet {d,e,f} is never allowed entry. It should be pointed out that the two processes,

although concurrent, are not independent, and this is why their progress is not guaranteed

by the admissibility (i.e. maximality with respect to trace prefix ordering) of computations.

- 130-

Defining F.aimess

Fig. 4.2.1. A Condition/Event net that implements mutual exclusion,

where a t f, b t f, c t f, c t d, c t e.

It is an interesting question to determine whether confusion-free systems are free from the

above difficulty. The net does, indeed, exhibit asymmetric confusions:

(X 1 = «(1,2,7), a, f)

(X2 = «(1,5,4), d, c)

because a is at conflict with dafter f has occurred, but not before (the same holds for d and

c). However, confusion is not a major contributor to the difficulty under consideration.

This fact could be demonstrated by removing transitions c and f; the resulting net is

sequential and confusion-free, but the computations [(abc)W] and [(def)W] are still

admissible. (Note that such problern does not arise in determinate systems.)

The above example shows that notions of fairness stronger than just the admissibility

(maximality) of computations will be needed in practice. This could be used in favour of

the definitions of event fairness we have introduced in this section. Note that the

computation [(abc)w], although admissible and WEF, is not SEF because an infinite

number of its finite prefixes I(abc)*I can be extended with d. In fact, the only

computations of this net that are SEF must contain an infinite number of actions from each

process.

- 131 -

Defining Faimess

Nevertheless, the above definitions of event fairness are still at fault: they may be

considered too discriminating to be used generally. Let us consider the modification of the

net from Fig. 4.2.1 which is shown in Fig. 4.2.2 (example due to A. Pnueli). In the

modified net, there are two concurrent processes that compete for access to the critical

section, but the process on the right may internally choose whether to request to enter it or

execute its local section g. Since the choice is internal and non-deterministic, it is possible

for the process on the right never to request entry to the critical section. Thus, the

computation [(abc(abc) *gf(gf) *)00] is intuitively acceptable here. However, this

computation, although admissible, is not SEF because an infinite number of its prefixes

[(abc(abc)*gf(gt)*)*] can be extended with d.

1

8

Fig. 4.2.2. A modified net that implements mutual exclusion,

where a t f, b t f, c t f, c t d, c t e, a t g, b t g, C t g.

Summary

. f th difficulty with the above notions of fairness is the fact that we attachThe main reason 0 e I (

the same weight to the conflicts arising due to the synchronisation, or comm~nication,of

well as internal choice. (The dependency relation does not
concurrent processes as , ,

- LQ -

Defining Faimess

distinguish between the two.) What would seem to provide a satisfactory solution is a way

of making fairness notions relative to the conflicts that do require fair resolution; the

remaining conflicts would not be affected by fairness at all. One way of doing this for

asynchronous transition systems could be by introducing a more flexible notion of an event

- after all, as stated in [Pl082], fairness depends entirely on what constitutes an event. It is

possible to define a generalized notion of event fairness [Kwi88b] relative to progress

requirements. The purpose of progress requirements is to explicitly describe those, and

only those, conflicts that need to be fairly resolved. We have decided not to include this

definition here as progress requirements roughly correspond to alphabet structures over a

given concurrent alphabet.

4.3. Process Fairness

We shall now formalize definitions of process fairness suitable for asynchronous transition

systems. We take the view that no process that becomes possible sufficiently often should

be delayed indefinitely.

Preliminary Definitions

Let ~ = (S, qO) be a rooted ATS, where S = (Q, A, ~, i) and qO E Q. Let Il =(n, a) be a

process structure over S. Let a = {a1, a2, ... an}· Let a E TOO(S) , and ai E a. We

say a process ui becomes possible after a computation a E T*(S) if there exists a E ai

such that ctal is also a computation of S (that is, computation a can be extended with action

a belonging to the process). A process ai is taken if some action from its alphabet is taken.

We now formalize the notion of a process being taken, enabled continuously and infinitely

often. These definitions also apply to rooted ATS.

Definition.
Let S = (Q, A, ~, t) be an ATS and let n = (1t, a), with a ={a1, a2, ... an}, be a

process structure over S. Let a E TW(S, q) and ai E a.

(i) We say that process ai is taken in a iff

- D1 -

Defining Fairness

:3 a E <X.i, :3 YE Pretfin(a): y[a] ~ a.

(ii) We say that process CX1 is continuously enabled in a iff

V YE Prerfin(a), :3 a E ar y[a] E T*(S).

(iii) We say that process CX1 is infinitely often enabled in a iff

card (y E Pretfin(a) I :3 a E ai: y[a] E T*(S)} = co.

In other words, process ai is taken in a computation if, and only if, some some action a E

ai is taken. Alternatively, we could use process projections to define the notion of the

process <X.i being taken in a, for example as:

We say that process CX1 is continuously enabled in a computation if, and only if, every finite

prefix of this computation can be extended with some a E ai. We say that process ai is

infinitely often enabled in a computation if, and only if, an infinite number of finite prefixes
of that computation can be extended with some a E ai.

It should be noted that since there is a variety of differing alphabet structures available, and

process structures are determined by alphabet structures, the above notions are relative to

the process structure chosen. For example, the ATS shown in Fig. 3.3.3, with a t b,

allows only one process structure determined by the alphabet structure {{a},{b}}. Thus,

process {b} is continuously enabled in laCO] but never taken. On the other hand, the ATS
pictured in Fig. 3.3.6, where a is dependent on 'tb, allows four process structures, for

example {{a,'tb}} and {{a,'tb},{'tb}}. Observe that both processes {a,'tb} and {'tb} are

continuously enabled in a computation [aco], but only process {'tb} is never taken.

Also note that if ai c aj for some alphabets over (A, i), then ai enabled (taken) in a given

computation implies aj enabled (taken).

Strength Hierarchy of Process Fairness

Definition.
Let S = (Q, A, ~, i) be an ATS, L = (S, qO) be a rooted ATS, and let Il = (1t, a), with

a = {(X b (X2, ... an}, be a process structure over S. Let a E ~(L) and ai E a.

- 1.'4-

Defining Fairness

(i) a is unconditionally process fair wrt TI, denoted UPF(TI), iff

'\j eli E el '\j 't E Pretfin(0"):

eli taken in O"/'t.

(ii) a is strongly process fair wrt TI, denoted SPF(IT), iff

'\j eli E el '\j 't E Pretfin(a):

eli infinitely often enabled in O"/'t => eli taken in on.

(iii) a is weakly process fair wrt TI, denoted WPF(IT), iff

'\j eli E el '\j 't E Pretfin(0"):

eli continuously enabled in O"/'t => eli taken in on.

As usual, any finite computation (0" E T* (L» is fair with respect to any of the above

definitions.

The above definitions are similar to the definitions of event fairness. Weak process fairness

disallows a computation in which some process is continuously enabled but never taken.

Strong process fairness relaxes the premise to some process being enabled infinitely often.

Unconditional process fairness imposes a fairmerge of actions of all processes.

It can be shown that for a given process structure the above definitions form a hierarchy.

Let us define:

UPFair(L,II) = {O" E TOO(L) I 0" is UPF wrt TI}

SPFair(L,IT) = {O" E TOO(L) I 0" is SPF wrt TI}

WPFair(L,IT) = {O" E TOO(L) I 0" is WPF wrt TI}

Proposition 4.3.1. (Strength Hierarchy of Process Fairness)

UPFair(L,II) c SPFair(L,TI) c WPFair(L,TI), and the inclusion is strict.

Proof. UPF(II) => SPF(TI) => WPF(TI) is clear.

The counter-example to SPF(TI) => WPF(TI) is shown in Fig. 4.1.1 (t = 0). Let el =
{{a,b,c}, [b,c}, [a.b}, {b}}. The computation (ac)CO] is not SPF(TI) with respect to

process {b} (because its prefixes I(ac)*al can be extended with b), but it is WPF(TI)

(because its prefixes [atca)"] are not extendable with b).

- us-

Defining Fairness

The counter-example to UPF(TI) =:) SPF(TI) is shown in Fig. 4.1.2 (t = 0). Let (l =

{{a,b,c}, {b,c}, {a,b}, {b)}. The computation [aero] is not UPF(m with respect to

{b} (because b is not taken infinitely often), but it is SPF(TI) (because no prefix of this

computation can be extended with b).

This concludes the proof. Counter-examples with non-empty independency can also be

found.

o

Example. Let us consider trace semantics of the Condition/Event net shown in Fig.

4.2.1. The minimal alphabet structure here is:

a min ={{a,b,d,e} ,(a,b,c), (d,e,f) }

Let fIlllin = (n, a min). The (admissible) computation [(abc)CO] is not SPF(IIffiin) with

respect to process {d,e,f} because each prefix [(abc)*] can be extended with d, but it is

WPF(J1111ln) as the process [d.e.f] is not enabled continuously. Likewise, all

computations of the form [«abc)*(def)*)ro] where either (a, b,c) or (d,e,f) is taken. .
finitely often are WPF(J1111ln), but not SPF(TImln). Computations

* * . .[(abc(abc) def(def))ro] are SPF(TImm) and WPF(TIffiln). In fact, they also are

UPF(IlmIn).

Note that since all finite computations are fair, the computations [(abc)*] and [(def)*]. . .
are UPF(IlmIn), SPF(Ilmm) and WPF(TImm).

Refinement Hierarchy of Process Fairness

The above hierarchy of process fairness of different strength has been formulated for

notions of fairness determined by the same process (or alphabet) structure. The hierarchy

of process fairness can be extended onto fairness notions determined by process structures

which are related through the refinement relation. Let S = (Q, A, ~, i) be an ATS, L = (S,

qO) be a rooted ATS, and let TI = (n, a), TI' = (n', a') be process structures over S. Let

a = {(lb a2, ... an), a' = (a 1', ai, ... ak')' The following can then be shown.

Proposition 4.3.2. (Refinement Hierarchy of Process Fairness)

If Il' is a refinement of TI (i.e. n < Il') then the following holds:

(i) UPF(Il') => UPF(n), i.e. UPFair(L,n') ~ UPFair(L,fl)

- 136-

Defining Fairness

(ii) SPF(Il') => SPF(Il), i.e. SPFair(L,TI') c SPFair(L,Il)

(iii) WPF(Il') => WPF(TI), i.e. WPFair(L,TI') c WPFair(L,Il).

Proof.

Let a = {ab a2, ... an}, a' = {a1', ai, ... ak'} such that a <a'. By Proposition

3.3.1 we have for any ai' E a' there exists aj E a: ai' c aj- Thus, for any 0' E

TOO(L) we have <Xi' enabled implies aj enabled, and <Xi' taken implies aj taken. Hence,

<Xi' enabled infinitely often implies aj enabled infinitely often. Thus, if 0' is SPF(TI')

then, by weakening the premise, we have SPF(TI).

The remaining implications can be proved similarly.

o

Thus, a chain of refinements of a given alphabet structure gives rise to a decreasing chain of

classes of computations of a given ATS that are fair with respect to the given fairness

notion.

Relationship to Maximaiity and Event Fairness

It is easy to see that weak process fairness with respect to minimal process structure IJIllin

=(n, a mIn) is the weakest possible process fairness notion. This notion is also called

concurrency fairness because it guarantees the progress of concurrent and independent

components without imposing any restrictions on the conflicts present in the system,

whether these conflicts are due to synchronisation or internal choice. Concurrency fairness

corresponds to justice [LPS81].

It should be stressed here that when using interleaving semantics, for example, as a labelled

transition system, assumptions like justice have to be added to exclude those behaviours

that, although allowed by the underlying model, do not respect concurrency in the sense

that would be automatically guaranteed by a truly concurrent implementation. However,

when using trace semantics, the additional information in the form of independency that is

available in the underlying model allows a straightforward selection of the class of

admissible computations. It turns out that the class WPFair(L,TIffiln) is exactly equal to the

set of all admissible computations Adm(L) of the given system L, namely (Max("fOO(L») U

T* (L). This is one of the benefits we can reap when using non-interleaving semantics to

model concurrency.

- 1.'7 -

Defining Fairness

Unconditional process fairness with respect to maximal process structure n max = (x,

u max) is the strongest possible process fairness notion. Not surprisingly, it coincides with

event fairness as defined in previous section.

We summarize the results in the following theorem.

Proposition 4.3.3.

Let S = (Q, A, ~, i) be an ATS, L = (S, qO) be a rooted ATS, and let nmin = (n,

u mln), rrmax =(n, u max) be the minimal and maximal process structures over L

respectively. Then:

(i) WPFair(L,rrmin) = Adm(L) = Max(TOO(L)) u T*(L)

(li) WPFair(L,rrmax) =WEFair(L)

(iii) WEFair(L) c WPFair(L,n), for any process structure rr over L.

Proof.
(i) Obviously, the equality holds for finite computations. We first show Adm(L) c

WPFair(L,rrm1n) (proof by contradiction). Let 0' E TCO(L) such that 0' is not

WPF(L,rrmin). Then, from definition of WPF, ::3 Uk E u min,::3 't E Pretfin(a) such

that Uk continuously enabled in a/'t and Uk not taken in en. Thus, by defmition of Uk

continuously enabled in ot« we have B Uk E u min,::3 't E Pretfin(a) such that ('V 'YE

Prerfin(a/'t)::3 a E Uk: 'ty[a] E T*(L)) 1\ (Pk(a/'t) =e). Since Uk is not taken in on; it

may be concluded that b e Uk for all b E Act(af't). Thus, because Uk E umm and a E

Uk it follows that a is independent of all Act(a/'t). We have thus shown that ::3 't E

Prerfin(a) such that ('V 'Y E Prerfin(a/'t)::3 a E Uk: 'ty[a] E T*(L)) 1\ (a t Act(af't)).

Thus, by Theorem 3.5.11, 0' is not admissible. This concludes the proof.

We show WPFair(L,rrmin) c Adm(L) (proof by contradiction). Let 0' E TCO(L) such

that 0' is not in Adm(L); hence 0' e Max(~(L)). Then, by Theorem 3.5.11,::3 'Y E

Pre[fin(a), 3 a E A: y[a] E T*(L) 1\ (a t Act(a/'t)). From condition (i) of the definition

of ATS it follows that for every i E Prerfin(a) such that 'Y < i we have y[a] E

T*(L). We have thus shown that 0' is not in WPFair(L,nm1n), which concludes the

proof.

(ii) The result follows directly from the fact that u max must, by definition, include all

singleton sets {a} for all a EA.

(iii) This is a consequence of (i), together with the fact that the maximal process

- 138 -

Defining Fairness

structure is a refinement of any other process structure over the same concurrent

alphabet.

o

Example. Let us consider trace semantics of the Condition/Event net shown in Fig.

4.2.2. A variety of alphabet structures are possible here, for example:
al ={{a,b,d,e),{a,b,c},(d,e,f,g}}

a2 = { {a,b,d,e), {a,b,c}, {d,e,f,g}, ... , {d}, {g} }.

al is the minimal alphabet structure. Let II 1 = (n, (1), II2 = (n, (2). The

(admissible) computations [(abc(abc)*gf(gf)*)CO] are UPF(Ill), SPF(IIl) and

WPF(IIl) because all three processes are taken infinitely often. The computation

[(abc)CO] is not admissible because it is not maximal, i.e. its every prefix can be

extended with g. Note that [(abc)CO] is not WPF(II1) either because the action g of the

process {d,e,f,g} remains enabled continuously. The (admissible) computations

[(abc(abc)*def(def)*gf(gf)*)CO] are clearly UPF(II1), SPF(II1), and WPF(IIt}.

On the other hand, the computations [(abc(abc)*gf(gf)*)CO] are not UPF(II2), SPF(Il2)

because the process {d}, although infinitely often enabled, is never taken. They are,
however, WPF(II2) because {d} is not continuously enabled. The computation

[(abc)CO] is not admissible, nor is it WPF(II2). The (admissible) computations

[(abc(abc)*def(def)*gf(gf)*)coJ are SPF(II2) and WPF(II2) because all five processes

are taken infinitely often.

4.4. Summary

We have introduced definitions of weak, strong and unconditional event and process

fairness which, we believe, are suitable for non-interleaving concurrency. The presented

formalism, however, does not express every possible notion of fairness; for example

equifairness (see Chapter 2 for definition and overview), that is a fairness notion which

takes into account relative frequency of conflict resolutions in favour of each transition in a

group of simulraneously enabled transitions, is neither weak, strong, nor unconditional

event fairness.

- LN-

Defining Fairness

As an example, let us consider the asynchronous system S = (Q, A, ~, i) shown in Fig.

4.4.1, where 1 = 0.

Fig. 4.4.1. An example of an ATS (1 =0).

and a rooted ATS L = (S, q). Actions a and b are simultaneously (and permanently)

enabled in L. Equifairness would, apart from finite computations, include all such

computations a E 8 1
00 for which there exists an infinite number of finite prefixes 'Y

containing an equal number of occurrences of a's and b's. The following might be a

definition of equifaimess using projections. Let EQF(L) denote the set of all computations

of L which are equifair. Then:

EQF(L) =T* (L) U (aE TOO(L) Ieqf(a) }

where eqf(a) is a predicate which holds iff:

card ly e Prerfin(a) I Ix/{a}I=lx/{b)1 for some x E 'Y) = 00.

EQF(L) will, for example, contain [(ab)ffiJ, but not [a(ab)ffi]. Note that this does not

coincide with weak, strong and unconditional event fairness since:

WEF(L) = SEF(L) = UEF(L) = T*(L) U (a E Tffi(L) I (lx/{a}1 = 00) 1\ (1x/{b}1 =ffi)}

which would contain both [(ab)ffi] and [arab)!"].

Summarizing, what we have presented in this chapter is a subclass of fairness properties

that are determined by alphabet structures over a given concurrent alphabet, allowing only a

restricted set of strength predicates. Rather than look for more predicates and build fairness

notions corresponding to them, we now attempt to provide a definition of an abstract

fairness notion, not necessarily relative to alphabet structures and the class of strength

predicates introduced so far.

- 140 -

5
Mathematical Space of

Behavioural Properties

- 141 -

Behavioural Properties

A concurrent alphabet (A, 1) determines the set of all traces (E\oo, <t),

which forms a domain with trace prefix ordering. The domain (8t 00, ~)

constitutes an abstraction of the class of all computations of asynchronous

transition systems over the given alphabet, and is thus referred to as the

computation space. Asynchronous transition systems are abstract

representations of concurrent and non-deterministic programs, or systems,

while infinitary trace languages correspond to their behaviours. Since the

emphasis of our work is on the behavioural aspects of systems, rather than

their input-output relationship, we can view infinitary trace languages as

specifications. A specification of a program is a (finite or countable) list of

properties the program is to satisfy. The program is then said to satisfy the

specification if it satisfies each property.

The purpose of this chapter is to provide a mathematical space of system

properties over the computation space (8 t 00, <t) determined by the

concurrent alphabet (A, t). As suggested in [Smy83], a mathematical space

of system properties over a cpo structure can be conveniently introduced

through a topological characterization. We distinguish two commonly

recognised classes of properties, namely safety and progress properties,

which we formally define. We then define fairness properties as a subclass

of infinitary progress properties closed under union. Within the class of

fairness properties, we distinguish process and event fairness properties.

We show that a variety of process fairness properties could be built given a

concurrent alphabet and strength predicates. Process fairness properties

form a lattice with inclusion ordering. The relationship of fairness and

progress properties is also investigated.

- 142 -

5.1 . Defining Properties

Behavioural Properties

Properties are usually split into two classes [Lam77] [Pnu86] [AIS85], namely safety, also

called invariance properties, and liveness properties. The nomenclature is motivated by

different proof techniques used in each case. While the verification of safety properties is

based on the invariance argument, liveness requires the use of well-founded sets.

Informally, a safety property states that nothing bad will happen in the course of

computation. Examples of safety properties are ahsence ofdeadlock, where the "bad thing"

is the program reaching deadlock, and mutual exclusion, where it refers to two concurrent

processes simultaneously executing their critical sections. A safety property does not

guarantee that some state will eventually be reached during program execution, only that it

will always be the case that none of the "unsafe" states will be visited.

This is why it is necessary to distinguish liveness, that is a property which informally states

that something good will happen in the course of computation. Examples of liveness are

program terminations, where the "good thing" is the program reaching the final state, and

guaranteed response, where the "good thing" is the request for service being granted.

Unlike safety, liveness properties are useful when showing that some "good" thing will

eventually happen.

Fairness is usually viewed as a liveness property IPnu86], but it is also possible to consider

fairness as a constraint [Par85], i.e. a set that specifies those infinite computations that need

to be excluded. The distinguishing feature of an unfair computation is the lack of progress

of some component of the system, which is exhibited only by infinite computations (all

finite computations are considered fair). This gives fairness a distinct infinitary flavour.

We shall now attempt to define each of the above-mentioned classes of properties in the

non-interleaving framework represented by the domain (8t00, <t). Note that, although

traces contained in 8 t 00 are equivalence classes of sequences of action labels, they can also

1 Sometimes livcncss includes a safely component, for example total correctness would be

an example of a livcncxs properly in this approach.

- I·n-

Behavioural Properties

be used to uniquely identify (global) system states. This is because two equivalent

derivations determine the same state in an unambiguous rooted asynchronous transition

system (Proposition 3.6.1). Trace prefix ordering may now be viewed as a partial order

relation on the states visited during system execution. Incomparable prefixes of the same

trace correspond to states arising due to concurrent execution, while inconsistent traces are

a result of conflict resolution (non-determinism).

Motivation and Background

It has been noted in [Smy83] that a topological space X should be viewed as a "data type",

with the open sets as the (computable) properties defined on that type. Given a space X, let

us define a predicate on the space X to be a continuous map from X into the Boolean cpo B

= (..L < ff, ..L < ttl. Taking the Scott topology over B, we have 0, {ff), {ttl and {..L, ff,

tt] as the open sets. Since (tt) is open, then p-l (u) will be open (by topological definition

of a continuous map). Conversely, suppose S is open. Define a function p by:

ftt
p(x) = ~

l..L

XES

xeS.

Note that pJttt) =S, p-l(ft) =0 =p-l(0), p-l({..L, ff, tt)) = {..L, ff, ttl. Since all sets are

open, we have p is continuous. Hence, a subset S of X is open if, and only if, S is p-l(tt)

for some predicate p.

The above justifies why properties may be identified with the open sets. Introducing a

topology over a domain is therefore a convenient way of providing an algebra of properties

that is closed under union and intersection. Since the set of all traces (Elt 00, ~) forms a

domain containing the behaviours of all asynchronous transition systems over the same

concurrent alphabet, one might pose a question if it is possible to utilize topological ideas in

order to provide a mathematical space of behavioural properties of such systems.

At this point, several questions spring to mind. Apart from the obvious pragmatic problem

of how one chooses the subsets of Elloo so that they represent useful properties, it would

seem sensible to allow those properties only that are computable in some sense. A

reasonable notion of computability. as suggested in rSmy83], would be that in which

property P is considered computable if, and only if, the set of codes of (computable)

- I -

Behavioural Properties

elements satisfying P can be effectively enumerated. Intuitively, the idea of a computable

property is that there exists a uniform procedure for a property P that for any (finite)

element x tells us in finite time that P(x) holds, whenever this is true (semi-decidability).

Another important point made in [Smy831 is that computability concepts are relative to the

open bases chosen, i.e. properties should be represented as open basic sets and their

unions. In our setting, this would imply that a computable base should be determined by

finite elements of the domain (8t 00, ~).

A specification of a program is a countable list of properties that the program is to satisfy.

Since properties are identified with open sets, this means that what is specified is always a

countable intersection of a family of open sets. A topological notion that exactly
corresponds to the above is a G8-set, that is a countable (finite or infinite) intersection of a

family of open sets.

Notation

All definitions and notation conventions used in this chapter have been introduced in

Section 3.1. The following is a short summary of the notation adopted for the purpose of

this chapter. Let (D, <) be a domain. For any subset X of we define the prefix closure of

X, denoted !X, as {y E D I 3 x E X: y < x} (the lower set). We shall also distinguish

closure with respect to finite prefixes, denoted J,JinX, which is defined as X u (y E BO I

3 x E X: y < x}. The suffix closure of X, denoted tx, is defined by (y E D I 3 x E X:

x <y) (the upper set). !(x), i(x} and JJin(x}, for xED, are abbreviated to !x, Tx and

!finx respectively.

Properties and Satisfaction

A property is defined as a subset \.}J of the computation space 8 t 00 over the concurrent

alphabet (A, t), A property qj c 8 t 00 is an infinitary property if, and only if, qJ c 8 t ro,

and finitary otherwise.

It should be noted here that our definition differs from the usual definition introduced in the

interleaving models, where often a property is defined as a set of sequences of system

states [AIS85 J, which, clearly, is cq uivalen t to defi ning it as a subset of A00 for

- 145 -

Behavioural Properties

unambiguous rooted systems. For a subset \{J of A00 to correspond to a property in our

sense we would require \}I to be closed under trace equivalence. This is without loss of

generality as by Proposition 3.6.1 any two equivalent derivations of a rooted unambiguous

ATS determine the same state.

Let S = (Q, A, ~, t) be an ATS, L = (S, qO) be a rooted ATS over S, qO E Q. A trace o E

8 t
OO

has the property \}I if o is contained in \{J. L is said to satisfy property \}I if, and only

if, the set of all admissible computations of L is contained in J,fin\{J, that is:

Adm(L) c J,fin\}l,

where the usual definition of admissibility applies, namely:

Adm(L) =T*(L) u Max(TOO(L».

Note that it is possible for a system to terminate before reaching a trace in 'P. Of course, a

trivial ATS whose sole computation is rE] satisfies any non-empty property.

We require that all finite computations T*(L) of L are contained in J,fin'P, but of infinite

computations only those computations that are maximal in L must be contained in 'P. This

is sufficient because all finite computations of L are approximations of the set Max~(L».

We impose this constraint in order to guarantee that only global, objective computations of

the system behaviour are considered.

Example. Fig. 5.1.1 shows the computation space 01 determined by the concurrent

alphabet (A, t) with A = (a,b) and a t b. Examples of properties over 01 are \{J1 =

[a*b*] u [(a*b*)CO], which is a finitary property, and \{J2 = ([(ab)CO]), which is

infinitary. The rooted asynchronous system L shown in Fig.5.1.3 satisfies 'P1 and

'P2. Examples of properties that are not satisfied by L are 'P3 = ([ab]) and \{J4 =[a*]

U ([aCO]) .

Let us also consider the computation space 02, where t = 0, shown in Fig. 5.1.2.

* * * * * (0 HI *b*)*]Examples of properties over 02 are \1.15 = I(a b) I u [(a b)], T 6 = [(a u

([(aa *bb*)(0]). When considering Lover 02 we have L satisfies \{J5, but does not

satisfy \}I6.

- 146-

Behavioural Properties

[f]

/ \
[a] [b]

/ \ / \
[aa] [ab] [bb]

/ \ / \ / \

\

Fig. 5.1.1. The domain D1 of traces determined by A = {a,b} with a t b.

[f]

/ \

[a] [b]

/ \ / \

[aa] [ab] [ba] [bb]

/ \ / \ / \ / \

Fig. 5.1.2. The domain D2 of traces determined by A = {a,b} with t =0.

- 147 -

Behavioural Properties

Fig. 5.1.3. A rooted ATS L = (S, q).

Example. Our definition of a property differs from the usual definition used in
interleaving models. Let us again consider the domains D1 and D2 shown in Fig. 5.1.1

and Fig. 5.1.2. Note that S = {ab} is not a property in D1 (because it is not closed

under trace equivalence - it would need to contain the string ba as well), but it is a
property in D2 (because the string ba is not equivalent to ab).

Safety Properties

A property 'I' is a safety property if, and only if, 'I' is prefix-closed, that is, 'I' = .1'1'.
This definition states that if a computation, possibly infinite, has a given property then

every approximation of this computation has this property. Also, if some computation is

not in the property, then none of the extensions of this computation can be in the propenyl.

Every computation in a safety property represents the invariant "so far nothing bad has

happened". The role of the system is to restrict the computation space by evolving only

through the "safe" moves, in which case we can conclude that absence of the "bad thing" is

always the case.

The class of safety properties forms a topology T S (of Alexandroff-open sets for the

converse of the trace prefix ordering relation). The open base of this topology is :BS = {.1a

I a E 8 1
00

} where a is not necessarily a fini te element. The closure operation for a E

8 t
OO is defined as tao The closure of a subset Y of 8 t

OO is thus tv. The closed sets in

this topology, namely the Alexandroff topology for the converse of trace prefix ordering,

are suffix closed sets ('I' = I\f'), or, in other words, Alexandroff-open sets with respect to

trace prefix ordering.

2 This corresponds to the usual characterization of safety as "once lost, they can never be

regained" [Pnu86].

- 14H -

Behavioural Properties

Safety properties are not necessarily closed infinitary trace languages.

Proposition 5.1.1.

Suffix closure satisfies axioms 1-4 of topological closure.

Proof.

1) Let X, Y c 8 t
oo

• Proof that i(XuY) = tx u tv is standard.

2) X c tx follows from reflexivity of <to

3) rc =0 follows from definition of suffix closure.

4) i(iX) =tx is obvious.

Axiom 5 is not satisfied, hence TS is not T 1.

o

Proposition 5.1.2.

(i) 0, uen. 8 t ". 8 t 00 are safety properties.

(ii) If 'Pi is a countable family of safety properties then U\}Ii is a safety property.

(iii) If 'Pi is a countable family of safety properties then n\}li is a safety property.

n'Pi is non-empty iff for all i, \Pi is non-empty.

Proof.

(i) Obvious.

(ii) Suppose \}Ii is a countable family of safety properties, then from definition we have

for each i, \}Ii = .!.'Pi. Clearly, U\}Ii = .!.(U\}Ji).

(iii) Suppose 'Pi is a countable family of safety properties. Clearly, n\}li =.!.(n\}li).

The second part follows from the fact that every non-empty safety property contains

[fl.

o

Example. Examples of safety properties over the computation space D 1 shown in

Fig.5.1.1 are:

'P1 = {[f] }u[ab*]u{[abWn "always a at most once"

'¥2 = [a*] u {[aW]}. "always a"

Sample safety properties over 02 shown in Fig. 5.1.2 are:

'P3 = {[f]} u [a(a*b*)*j u [a(a*b*)Wj, "always a precedes btl

'¥4 =[a*]u{ [aW]} u/ b* /u{l bW/}, "always a or always b"

\}IS = [a*b*] u [(a*b*)(t)j. "always a or btl

Note that \}I6 =[Iabl] and \}J7 = {/ (ab)(t)/} are not safety properties.

- 149 -

Behavioural Properties

The ATS shown in Fig. 3.3.3 satisfies \{J1 but it does not satisfy \{J2. The ATS shown

in Fig. 3.3.6 over the computation space included in Fig. 5.1.2 satisfies '1'5 and \{J3,

but it does not satisfy '¥4 (assume b stands for 'tb).

Progress Properties

A property '¥ is a progress property if, and only if, it is suffix-closed (\{J = i'P), i.e. it is

Alexandroff-open. This definition of the progress property states that, as soon as the

required progress has been made, it is irrevocable, which is expressed by the fact that all

extensions of computations in the given property must be included as well''. In contrast to

safety properties, it is feasible that some, possibly infinite, computation is contained in a

progress property, but none of its proper finite prefixes are included. A progress property

cannot be avoided, but it is possible for the system to terminate before a computation with

this property has been reached.

Progress properties correspond to liveness [Lam77] [AIS85] [Pnu86]. They form a
topology over a cpo, Alexandroff topology, which we shall denote T p. The base of this

topology is :B p = {to' I 0' E Elt OO}, where 0' is not necessarily a finite element. The

closure operation for 0' E Elt 00 can be defined as .10' (prefix closure). The closure of Y c

8 t 00 is thus J,Y. The closed sets in this topology are prefix-closed sets (J,Y = Y).

Note that progress properties are not, in general, closed nor prefix-closed infinitary trace

languages.

Proposition 5.1.3.
Prefix closure satisfies axioms 1-4 of topological closure.

Proof.
1) Let X, Y C 8 t

oo• Proof that J,(XuY) = Ix u .1Y is standard.

2) X c Ix follows from reflexivity of~.

3) J,0 =0 follows from definition of prefix closure.

4) J,(J,X) =Jx is obvious.

Axiom 5 is not satisfied, hence T p is not T 1·
o

3 This corresponds to a statement "once gained. a progress property may never be lost".

- 150-

Behavioural Properties

Progress properties are closed under arbitrary union and arbitrary intersection.

Proposition 5.1.4.

(i) 0, 8 t
oo

, 8 t
ffi, Max(8t

oo
) are progress properties.

(ii) If 'Pi is a countable family of progress properties then U'Pi is a progress

property.

(iii) If 'Pi is a countable family of progress properties then n'Pi is a progress

property.

Proof.

(i) Obvious.

(ii) Suppose 'Pi is a countable family of progress properties, then from definition we

have for each i, 'Pi = i'Pi. Clearly, U\{Ii = i(U\{Ii).

(iii) Suppose 'Pi is a countable family of progress properties. Clearly, n\{li = i(n\{li).

o

Example. Examples of progress properties over the domain 01 shown in Fig. 5.1.1

are:
'P1 = {[affi],[baffi], [bbaffi], ... [(ab)ffi]), "eventually inf.often a"

'¥2= {[bb]}u[a*bbb*lu{[bbaffi], ... [(ab)ffi]), "eventuallybb"

'P3 = [(ab)ffi]. "eventually inf.often a and b"

The system shown in Fig. 5.1.3 considered over 01 satisfies \{I b \{I2 and '1'3.

Examples of progress properties over 02 included in Fig. 5.1.2 are:

'P4 = {[(aa*b*)ffi]}, "eventually inf.often a"

'P5 = [(a*bbb*)*] u [(a*bbb*)ffi], "eventually bb"

'P6 = [(bb*aa*)ffi] , "eventually inf.often a and b"

Properties which are not progress properties in 02 are '1'7 = {[a]} and \{Ig = [(ab)*] U

{[(ab)ffi]} as they are not suffix-closed. The system in Fig.5.1.3 over 02 does not

satisfy '1'4, '1'5 and qJ6·

Infinitary Progress and Computability

We have deliberately relaxed the definition of properties to allow for infinitary properties

although, in the sense of [SmyR31, infinirary properties are not computable. We can,

- 151 -

Behavioural Properties

however, show that every infinitary progress property is an intersection of a countable

family of finitary progress properties (the latter class are computable).

Let us consider infinitary progress properties, that is progress properties E such that ::: c

8 t O) ·

Proposition 5.1.5.

Every infinitary progress property is an intersection of a countable family of finitary

progress properties.

Proof.

Suppose S c 8 10) is an infinitary progress property, and define a countable family

jqJi, for i E N, by taking:

qJi =J,fins n {O" E 8 1lie I I 0' I = i }.

Note that for each i, jqJi is a finitary progress property. It is clear that E =n(Wi)'

o

It is easy to see that finitary progress properties are exactly Scott-open sets. A set qJ c

8 t
OO is Scott-open if, and only if, it is suffix-closed (\}l = jtp) and for every directed set M

c 8 1
00

, if lub(M) is in '¥ then some element of M must be in '¥. It is a standard result

[GHK80] that Scott-open sets form a topology over a cpo, which we shall denote Tpfin

(the topology of finitary progress properties). The base of this topology is Bpfin = {j0' I
0" E 8 t lie}, that is, 0" is a finite element. Every basic finitary progress property is thus

computable. Finitary progress properties are closed under arbitrary union and finite

intersection.

Clearly, in finitary progress properties are G8-sets with respect to the topology Tpfin of

finitary progress properties.

Let Y c 8 t 00. The closure operation in the topology T pfin is CI(Y) =! Y u Adh(!Y).

Proposition 5.1.6.
Closure operation satisfies axioms 1-4 of topological closure.

Proof.
1) Let X, Y C 8

t
oo. Proof that !(XuY) = !X u ! Y is standard. Adh(J.,(XuY» =

Adh(J,X) u Adht-l-Y) is clear.

Axioms 2, 3, 4 are obvious.

- 152 -

Behavioural Properties

Axiom 5 is not satisfied, hence Tpfin is not T 1.

o

Relationship of Safety and Progress

Safety properties are always finitary; although safety properties may contain some infinite

traces, this is only the case if all finite prefixes of this trace are contained in the property.

Thus, in order to verify a safety property it is sufficient to show that it holds initially and

that it is preserved by every transition of the program (this is the essence of the invariance

argument).

On the other hand, purely infinitary progress properties are possible. This complicates the

verification process as no argument based on the analysis of locally reachable computations

(states) can show in finite time that a given infinitary progress property holds.

A further difference between the two kinds of properties is the following. A system

satisfies a safety property if, and only if, all its admissible computations are contained in the

property. For a system to satisfy a progress property, all its admissible finite computations

must be finite approximations of some, possibly infinite, computation contained in the

property. In other words, a safety property specifies all "safe" computations the system

must take, while a progress property specifies the "goal" without imposing any restrictions

on how the system chooses the computations in order to meet the required goal; the only

restriction is that the system evolves through computations that consist of finite steps.

It is clear that progress properties are the closed sets with respect to the topology T S of

safety properties. Safety properties are the closed sets in the topology T p of progress

properties. Thus, the complement of a safety property is always a progress property and,

vice-versa, the complement of a progress property is always a safety property.

Proposition 5.1.7.
Progress properties are exactly the closed sets in the topology of safety properties TS·

Safety properties are exactly the closed sets in the topology of progress Tp.

Proof.
The closure operation with respect to TS is suffix closure; since progress properties are,

by definition, suffix-closed, they are exactly the closed sets with respect to TS·

Similarly, the closure operation with respect to T p is prefix closure; hence, safety

- 153 -

Behavioural Properties

properties are the closed sets in Tp.

o

It is an interesting question if the topology T pfin of finitary progress properties has a

counter-part in terms of safety properties. The answer to this turns out to be positive. A

subset of safety properties in TS' namely those safety properties \{I that are closed infinitary

trace languages (i.e. Adht'P) c \{I), are exactly the closed sets with respect to the topology
Tpfin.

Many properties are neither safety nor progress, but every property is contained in the

intersection of some safety and some progress property. Unfortunately, unlike in [AIS85],

it is not always the case that the given property is exactly the intersection of the two

properties.

Proposition 5.1.8.

Let'P be a property in E\00, then there exists the least safety property S and the least

progress property P such that:

'P c S (1 P.

Proof.

Let Y be a property in 8 t 00. For every a E \Illet us define:

Sa = Lo
Pa = tao

Clearly, S =urSa I a E \Il} is a safety property and P = U{Pa I a E \{I} is a progress

property. It follows from construction that \Il c S (1 P and S, P are the least safety and

progress properties containing \Il.

o

Example. Properties which are neither safety nor progress in the computation space

Dj shown in Fig.5.1.1 are \{II = [ab] and \1l2 = [a*b*]u[(ab)CO]. Note that \{II =

.!.[ab] (1 Tjab], but \{I2 c .!. \{l2 (1 i\ll2·

- 154 -

5.2.

Behavioural Properties

Fairness and Progress Properties

Fairness Properties

Let C = (A, i) be a concurrent alphabet. Fairness properties are a subclass of infinitary

progress properties. A property <I> c 8 t ro is e fairness property if, and only if, <I> is a

progress property (i.e. <1> = i<l» such that 8 t * c J,fin<l> if <I> is non-empty.

This is the weakest possible definition of a fairness property over a given concurrent

alphabet. It states that every finite computation may be extended to an infinite fair

computation, but some infinite computations may be excluded from it. Also, every

extension of an infinite fair computation must be fair as well. This is consistent with the

intuition about existing fairness notions.

There are infinitary progress properties which are not fairness properties; for such

properties, there may well be finite computations which could not be extended to an infinite

computation contained in the property. Fairness properties constitute a subset of the
topology 1"p closed under arbitrary union. In relation to the topology 1"S of safety, fairness

properties form a subset of the closed sets.

Fairness properties are not closed under intersection. The following is a counter-example

(due to M.W. Shields). Let A = (a, b) with...., (a t b) and define:

<1>1 = (a*b*)*aro u (bro)

<1>2 = (a*b*)*bro.

Then <1>1 (l <1>2 = (bro), which is not a fairness property.

Proposition 5.2.1.
(i) 0, 8 t co are fairness properties.

(ii) Max(8t
OO

) is a fairness property.

(iii) If <1>i is a countable fami Iy of fairness properties then lJ<I>i is a fairness

property.

Proof.

(i) Obvious.

- 155 -

"inf.often a"

"inf.often btl

"inf.often a and btl

Behavioural Properties

(ii) Follows from the fact that J,Max(8t
oo) = 8 t

oo; thus 8
t
* c J,fmMax(8too).

(iii) lJ<l>i = i (U<1>i) follows from the fact that fairness properties are progress

properties. It is clear that 8 t* c JJin(U<I>i) whenever u<I>i non-empty.

o

Example. Examples of fairness properties over D1 shown in Fig. 5.1.1 are:

<1>1 = [(b*a)Ol], "inf.often a"

<1>2 =[(a*b)Ol], "inf.often btl

<1>3 = {[(ab)Ol]). "inf.often a and b"

Sample fairness properties over D2 shown in Fig. 5.1.2 are:

<1>4 =[(b*aa*)Ol],

<1>5 = [(a*bb*)Ol],

<1>6 = [(aa*bb*a)Ol],

The system ~ shown in Fig. 5.1.3, when considered over Dj , satisfies fairness

property <1>1, <1>2 and <1>3· However, fairness properties <1>4, <1>5 and <1>6 are not

satisfied by ~ when considered over D2.

An infinitary progress property in D2 which is not a fairness property is {[aOl]}.

Relationship of Fairness and Progress

Fairness properties form a proper subclass of infinitary progress properties. All fairness

properties, by definition, must allow for any finite computation to be extended to a fair

computation. There are infinitary progress properties which are not fairness properties.

Fairness properties bear an interesting relationship with finitary progress properties. It
turns out that fairness properties are the dense sets with respect to the topology T pfin of

finitary progress properties. We summarize this observation in the proposition below.

Note that a similar statement cannot be shown for an arbitrary infinitary progress property.

Proposition 5.2.2.
Let C = (A, i) be a concurrent alphabet, <I> a non-empty fairness property in 8 t

oo
. Then

<1> is dense in 'Tpfin.

- 156 -

Behavioural Properties

Proof.

We need to show that CI(<I» = t<I> u Adh(t<I» = 8 t 00. From definition of fairness we

have 8 t* c .l.fin<I>, thus 8 t* c t<I>. Hence, Adh(t<I» = 8 t0) and finally CI(<I» = 8
t
*

u 8 t O) =8 t
oo,

o

Fairness and Processes

Process fairness properties form a subclass of fairness properties that are determined by

alphabet structures. First, we show how unconditional process fairness may be defined in

our formalism. For the time being we ignore strength predicates; we shall show in later

sections how this restriction could be removed.

Let us consider the class of asynchronous transition systems with non-terminating

processes. It may thus be concluded that, if a process has proceeded finitely often in an

infinite admissible computation, then it must have been unfairly delayed while waiting to

synchronise. An infinite computation is unconditionally process fair if, and only if, every

process proceeds infinitely often.

Let C = (A, t) be a concurrent alphabet, a !:: tJ (A) be an alphabet structure over C. We

define Euproc(a) c 8 t O) by:

A property <l>uproc(a) is the unconditional process fairness property with respect to a if,

and only if, it is the smallest fairness property containing i2uprOC(a) =2 uprOC(a).

This definition admits all finite computations together with all infinite computations which

contain an infinite number of occurrences of actions from each of the alphabets of the

agents. It is clear that u{a E <I>u proc(a)} is afairmerge [Par80] of string languages

(ai)oo, ai E a.

Proposition 5.2.4. Let C == (A, t) be a concurrent alphabet, a c peA) be an

alphabet structure over C. Then <I>uprOC(a) is well-defined.

- 157 -

Behavioural Properties

Proof.

We show that f* c j,fin<I>uproc(a). Suppose a E 8 t *. We need to show that a E

j,fin<I>uproc(a), that is, there exists 't E <I>uproc(a) such that a ~ 'to Since a is finite,

we have V <Xi E a: PiCa) is a finite string. Take any y such that V ai E a: Ipi(a)1 = co;

then a ~ cry and V <Xi E a: IPi(cry)1 = roo Thus, we have constructed 't = cry E

<1>uproc(a) such that a is a finite prefix of t.

o

It should be noted that the above fairness notions are not adequate when allowing for

dynamic processes, that is recursion over concurrency.

Algebra of Unconditional Process Fairness

Unconditional process fairness properties form an algebra that is closed under arbitrary

union and intersection. Since alphabet structures form a lattice with inclusion ordering and

process fairness properties are determined by alphabet structures, it is not surprising that

process fairness properties form a lattice with inclusion ordering. The ordering of

unconditional process fairness properties corresponds to the refinement ordering of

alphabet structures. A chain of refinements of a given alphabet structure gives rise to a

chain of fairness notions of increasing strength. Intersecting alphabet structures

corresponds to the weakening of process fairness properties, while taking the union of

alphabet structures gives rise to a stronger fairness notion.

The following is a summary of results concerning unconditional process fairness.

Theorem 5.2.5. (Refinement Hierarchy of Unconditional Process Fairness),
Let C = (A, t) be a concurrent alphabet, a, a c AO(A) be alphabet structures over C.

t

(i) If a' is a refinement of a then <I>uprOC(a) c <I>uproc(a).

(ii) <I>uproc(a)n<I>uproc(a') = <I>uproc(aua').

(iii) <1>uproc(a)u<I>uproc(a') = <I>uproc(ana').

Proof.
I ,

(i) Suppose a' is a refinement of a, then by definition a ca. Suppose <I>uproc(a),

<1>uproc(a) are the smallest fairness properties containing iSuproc(a) and i3uprOC(a')

respectively, where SuprOC(a) = {a E et
ro I V ai E a: Ipi(a)1 = co}. Suppose a E

t

iSuproC(a'); then V ai' E a': Ipi(a)1 = (I). By Proposition 3.3.1 we have for each ai

- 15X -

Behavioural Properties

, ,
E a there exists ak E a such that ai C O.k. Since Ipi(a)1 = 00, it follows that Ipk(a)1
= 00 and thus a E i2uprOc(a).

(ii) <I>uproc(aua') c <I>uproc(a)n<l>uproc(a') follows from (i) and the observation

that aua' is a refinement of a (similarly, a'uat is a refinement of a).

We show <I>uproc(a)n<I>uprOC(a') c <l>uproc(aua'). Suppose a E

i2uprOC(a)ni2uproc(a'), then V ai E a: Ipi(a)1 = 00 and V ak' Eat: Ipk(a)1 = 00.

It is clear that V am E aua': IPm(a)1 = 00, which concludes the proof.

(iii) Proof similar to (ii).

o

It is not difficult to see that the weakest unconditional process fairness property over a. .
given concurrent alphabet is <1>uprOC(amln) where a mIll is the minimal alphabet structure.

It is the union of all unconditional process fairness properties over the given alphabet. On

the other hand, <I>uprOC(amax), where a max is the maximal alphabet structure, is the

strongest possible unconditional process fairness property given a concurrent alphabet.

<1>uproc(a max) is the intersection of all process fairness properties with respect to the given

concurrent alphabet.

Theorem 5.2.6. (Lattice of Unconditional Process Fairness)

(i) Unconditional process fairness properties form a lattice with inclusion.
(ii) <I>uproc(a) c <I>uprOC(amm) for any alphabet structure a.

(iii) <I>uprOC(amax) c <l>uprOC(a) for any alphabet structure a.

Proof.
This is a consequence of the above proposition and the fact that for any alphabet

structure a, a min c a and a c a max.

o

Example. The only unconditional process fairness property in the computation space

Dj shown in Fig. 5.1.1 (there is only one alphabet structure a = { {a},{b}} allowed

here) is <I>uproc(a) = {[(ab)OOI}, which is equal to Max(8t
OO

) . Note that <I> = {[aOO]} is

not a process fairness notion because it is not suffix-closed, <1> = i {[aOO]} is not a

process fairness notion because it is not the smallest progress property containing

{[(ab)OO]}. . ' .
There are four distinct alphabet structures in the computation space D2 shown III FIg.

- 159-

Behavioural Properties

5.1.2:
al = {{a,b}}

a2 = {{a.b}, {a}}

a 3 = {{ a,b}, {b}}

a4 = {{a,b}, {a}, {b}}

The minimal alphabet structure here is at and the maximal one is a4. <l>uproc(al)

includes all infinite computations. <Duproc(u 2) includes all infinite computations that

contain an infinite number of occurrences of a's, while <l>uproc(u3) includes all infinite

computations that contain an infinite number of occurrences of b's. <l>uproc(a4)

contains only those infinite computations in which both a and b appear infinitely often.

The lattice of process fairness properties over the given alphabet is shown in Fig.

5.2.1.

Fig. 5.2.1. Lattice of unconditional process fairness properties (A={a,b}, t = 0).

Unconditional Event Fairness

Let us again consider a class of asynchronous transition systems with non-terminating

processes. We assume that action labels in A correspond to possible events in the system.

For such systems, it may be concluded that if an event has been taken finitely often in an

infinite admissible computation, then it must have been unfairly delayed. Unconditional

event fairness may thus be defined as follows.

Let C = (A, t) be a concurrent alphabet, u ~ AO(A) be an alphabet structure over C. We

define Suev c 8 t O) by:

- 160-

Behavioural Properties

where I 0' la denotes the number of occurrences of the symbol a in o which can be formally

defined by Ix/{ a}1 for some x E 0". A property <l>uev is the unconditional event fairness

property if, and only if, it is the smallest fairness property containing i3uev.

The above states that unconditional event fairness property admits all finite computations

together with all infinite computations which contain an infinite number of occurrences of

actions from the set of actions A. Note that U{ 0" E <l>uev} is s fairmerge [Par80] of

languages {a}00, for a E A.

Unconditional event fairness exactly coincides with unconditional process fairness
<I>uproc(a,max) with respect to the maximal alphabet structure. The following statement is a

simple conclusion of the results concerning unconditional process fairness.

Proposition 5.2.7.
(i) <I>uev =<I>uproc(a,max)

(ii) <I>uev c <I>uproc(a,) for any alphabet structure a.

Proof.
(i) Follows from the fact that a n1ax contains all singleton sets {a} for a E A.

(ii) Follows from the fact that a max is a refinement of any other alphabet structure a.

o

5.3. Fairness and Asynchronous
Transition Systems

The unconditional fairness properties that have been defined so far were uniform fairness

properties, that is independent of the asynchronous transition system over the given

concurrent alphabet. We now rclativize fairness properties with respect to an ATS, thus

making it possible to distinguish between a process that does not proceed because it has

terminated and a process that is waiting to synchronise.

- 161 -

Behavioural Properties

Relativizing Properties

We relativize properties with respect to a given prefix-closed trace language T c E>t,oo.

\}I is a property in T if, and only if, \{J cT. A property \}I c T is a safety property in T if,

and only if, \}I = J,\}I. A property \}I c T is a progress property in T if, and only if, 'P =

i'P. A progress property 'P c Tinf is a fairness property if, and only if, Tfin c J.,fin'P

whenever 'P is non-empty.

Let S =(Q, A, ~, t) be an asynchronous transition system, L =(S,q) be a rooted ATS.

Since the set of all computations TOO(L) of a rooted asynchronous transition system is

prefix-closed (Proposition 3.6.2), we can relativize properties with respect to L.

Fairness and Strength Predicates

We now show how to incorporate strength predicates into our formalism.

Let C = (A, t) be a concurrent alphabet, a C f.J (A) be an alphabet structure over C. Let S

= (Q, A, ~, t) be an asynchronous transition system, L = (S,q) be a rooted ATS. A

strength predicate p is a Boolean function p: T(t)(I.) ~ B such that:

where X = (a E T(t)(I.) I p(a) } .

The class of fairness properties over a given concurrent alphabet with respect to a given

strength predicate p is now defined as follows. Let 3 p(L) c T(t)(L) be given by:

Ep(~) = {a E T{O(~) I p(a) }.

A property <Dp(~) is e fairness property with respect to strength predicate p if, and only if,

it is the smallest fairness property containing i3p(I.).

Note that strength predicates are not necessarily determined by alphabet structures.

The following observation follows directly from the definition of a fairness property with

respect to a strength predicate.

- 162 -

Behavioural Properties

Observation 5.3.1. (Strength Hierarchy of Fairness Properties)

Let C = (A, i) be a concurrent alphabet, S = (Q, A, ~, t) be an asynchronous transition

system, L =(S,q) be a rooted ATS. Let p, 1t: T(O(L) ~ B be strength predicates. Then

the following holds:

If p ~ 1t then <1>p(L) c <l>1t(L).

Process Fairness and Strength Predicates

Let C = (A, t) be a concurrent alphabet, a C AO(A) be an alphabet structure over C. Let S

= (Q, A, ~, t) be an asynchronous transition system, L = (S,q) be a rooted ATS. It is

easy to observe that unconditional process fairness properties are determined by the

following class of strength predicates u(a) relative to alphabet structures:

u(a)(a) = {a E ~\(O I V ai E a: Ipi(a)1 = (O}.

We define classes of strength predicates that determine weak and strong process fairness:

w(a): T(O(L) ~ B

sea): T(O(L) ~ B

as follows:

(weak process fairness wrt a)

(strong process fairness wrt a)

w(a)(a) =(V ai E a, V t E Pretfin(a):

ai continuously enabled in aft ~ ai taken in aft)

s(a)(a) = (V ai E a, V t E Pretfin(a):

Cli infinitely often enabled in aft =::) Cli taken in aft)

The precise meaning of the process ai being continuously enabled, infinitely often enabled

and taken can be found in Chapter 4. Weak process fairness property with respect to a is

now defined as the fairness property $w(a)(L) with respect to the strength predicate w(a).

Likewise, strong process fairness property with respect to a is defined as the fairness

property <1>s(a)(L) with respect to strength predicate sea).

It is not difficult to convince oneself of the following.

- 161 -

Behavioural Properties

Proposition 5.3.2.

Let C = (A, i) be a concurrent alphabet, S = (Q, A, ~, i) be an asynchronous transition

system, I, =(S,q) be a rooted ATS. Let pea): Tffi(L) ~ B be a class of strength

predicates such that for all alphabet structures a, at, if a' is a refinement of a then

peat) ~ pea). Then the following holds:

If at is a refinement of a then <Dp(a')(L) C <Dp(a)(L).

Proof. Clear.

o

The following is a consequence of the above.

Proposition 5.3.3.

Let C = (A, t) be a concurrent alphabet, S = (Q, A, ~, i) be an asynchronous transition

system, I, =(S,q) be a rooted ATS. Let a be an alphabet structure over C.

(i) <Dw(a)(I,) forms a lattice with inclusion ordering.

(ii) <Ds(a)(I,) forms a lattice with inclusion ordering.

Proof.

Follows from Proposition 5.3.2 and the fact that for every alphabet structure a:

sea) => w(a).

o

Example. The hierarchy of process fairness properties for alphabet structures a, at

such that at is a refinement of a is shown in Fig. 5.3.1. Note that strength predicates

other than w(a) and sea) may also be included.

<D w(a')(L)

I
<Ds(a')(L)

I
<D u(a')(L)

<Dw(a)(L)

I
<Ds(a)(L)

I
<Du(a)(L)

Fig. 5.3.1. The hierarchy of process fairness properties for alphabet structures a ~ a'.

- 164 -

Behavioural Properties

Other Fairness Properties

A variety of fairness properties different from the above process fairness are expressible

within our framework.

Equif'airness

As an example, we can show that equifaimess (see Chapter 2 for definition and overview)

is expressible. Let C = (A, i) be a concurrent alphabet, S = (Q, A, ~, t) be an

asynchronous transition system, L =(S,q) be a rooted ATS. We define the strength

predicate eqf: TCO(L) ~ B as follows:

eqf(0) = (\:I D c A, \:I 't E Prerfin(0):

D jointly enabled inf. often in ot« => 0 taken equally often in of't).

where D c A is jointly enabled in! often in y E TOO(L) holds iff:

cardl t E Prerfin(y) I \:I a E 0: tla] E rx'(L)} =co

and D is taken equally often in y E rx'(L) is given by:

card{'t E Prerfin(y) I \:I a.b E D: Ix/{ a} I = Ix/{ b} I for some x E 't} = co.

A property <I>eqf.L) is an equifairness property if, and only if, it is the fairness property

with respect to the strength predicate ecf as defined above.

State Fairness

We also show how fair reachabilitv nf states in its strong form (see Chapter 2 for

definition) could be expressed. Let C = (A, t) be a concurrent alphabet, S = (Q, A, ~, t)

be an asynchronous transition system, L = (5,<,]0) be a rooted ATS. We define the strength

predicate st: TCO(L) ~ B as follows:

st(a) = (\:I q E Q, V 't E Prctf in(a):

q reachable inf. oftell ill ott ::=) q taken irf. often in o/r)

Behavioural Properties

where q E Q reachable info often in y E ~(L.) is equivalent to:

cardl t e Pretfin(y) 13 a E A: QO-t't[a]Q} =ro

and q taken inf. often in y is equivalent to:

card{'t E Pretfm(y) I3 a E A: QO -t't q} = roo

A property <I>st(L.) is a strong state fairness property if, and only if, it is the fairness

property with respect to the strength predicate st as defined above.

- 166-

6
Applications of Theory

to Condition/Event Nets

- 167 -

Applications of Theory

Asynchronous transition systems are a natural extension of sequential

labelled transition systems with the notion of independency relation. Since

many models for concurrency can be viewed as a state-transition system,

they obviously can be given semantics in terms of a labelled transition

system, which corresponds to a sequential asynchronous transition system.

Models included in this class are process algebras like CCS [Mil80] with

standard transition system semantics and TCSP [BHR84].

A more relevant question is whether existing models for concurrency

determine non-sequential asynchronous transition systems. The answer to

this is, in many cases, positive, as it turns out that the independency relation

is a syntactical notion, rather than a behavioural notion of concurrency

relation distinguished in event structures [Win86]. Thus, it is possible to

determine independency from the terms of the process algebra; likewise, it is

possible to determine independency from the structure of a net

In this chapter, we show, as an example of applications of the theory

developed in the thesis, that Condition/Event nets [RoT86] determine

asynchronous transition systems. We also provide Condition/Event nets

with trace semantics. Finally, we discuss the classes of properties of

ConditionlEvent nets in this setting. The results concerning trace semantics

are not new; we have included them for completeness' sake mainly to

demonstrate the applications of the mathematical space of behavioural

properties in the computation space of traces.

- 16X -

6.1. Condition/Event Nets

Applications of Theory

The theory of Petri nets originated from Petri in the early 1960's as an attempt to

mathematically formalize phenomena present in information systems such as information

flow, conflict, concurrency and synchronisation. The notion central to net theory is that of

causality, and the major attraction is a syntactical distinction between concurrency and non­

determinism. The latter feature puts net theory in a class of non-interleaving models for

concurrency. Net theory has been greatly enhanced in the past. It incorporates a variety of

classes of nets, one of which is the class of Condition/Event nets.

We first introduce basic definitions relating to Petri nets. These are due to [Rei85]

[RoT86]. Below is a definition of an abstract Petri net, which describes the structure of the

system, rather than its behaviour.

Definition.
A (finite) Petri net is a triple N = (S, T; F), where S is a finite set of places, T is a finite

set of transitions, and F is a set of arcs (or flow relation), such that S n T =0, and F

c (S x T) u (T x S). We write

.x =F-1(x), x. =F(x) (the preset and postset correspondingly)

for XES U T.

The net N is called pure iff it does not contain any self-loops, that is pairs

(s, n E SxT such that (s, t) E F and (t, s) E F.

In order to describe the behaviour of the system given as a Petri net, one needs to add firing

rules. It is assumed that each place can hold a number of tokens. A transition fITes if it has

at least one token in its input places, which results in tokens to be added to the output places

of the transition.

Condition/Event nets are a subclass of Petri nets which are pure and are restricted to having

at most one token in each place. This simplifies the firing rule. In a Condition/Event net,

we refer to the set of places as the set B of conditions, the set of transitions as the set E of

events.

- 169 -

Applications of Theory

Definition.

Let N =(B, E; F) be a net.

(i) A subset c of B is called a case.

(ii) Let e E E and c c B. e is c-enabled iff ee c C 1\ ee (l c = 0.

(iii) Let e E E, let c c B and let e be c-enabled. c' = (c \ ee) U ee results from

the occurrence ofe in the case c and we write: c [e > ct.

The relation _ [_ > _ is called the firing relation.

(iv) Let cin c B. The pair (N, Cin) is called a Condition/Event system. cin is the

initial case.

Examples of Condition/Event nets are shown in Fig.6.1.1 and Fig.6.1.2.

Fig. 6.1.1. An example of a Condition/Event net.

- 170-

Applications of Theory

Fig. 6.1.2. An example of a Condition/Event net.

Example. Formally, the net shown in Fig. 6.1.1 is a triple N = (B, E; F) given by:

B = {I ,2,3,4,5}

E = {a,b,c,d}

F = {(1,a), (2,a), (a,3), (a,4), (3,b), (b,1), (4,c), (c,2), (4,d), (d,5)}

The initial case of N is {1,2}. a is (1,2) -enabled, but d is not. Also, -a = {1,2}, a- =

{3,4}, -I = {b}, 1- = (a). The Condition/Event system here is (N, (1,2}), where

{1,2} is the initial case.

- 171 -

6.2. Asynchronous Semantics for
Condition/Event Nets

Applications of Theory

ATS Semantics

We shall now define an asynchronous transition system that arises from a given

ConditionlEvent net. The set of states will be defined as the set f.J (B) of all the cases, the

set of action labels as the set E of events of the net, the transition relation will be the firing

relation _ [_ > _, and, finally, two actions will be independent if, and only if, they are

potentially concurrent, that is the immediate neighbourhoods (the union of the preset and

the postset) of the corresponding transitions are disjoint.

Definition. Given a Condition/Event net N = (B, E; F), let us define SN = (Q, A,

~, t) by:

(i) Q = f.J(B)

(ii) A =E

(iii) ~ =QxAxQ n _ [_ > _

Proposition 6.2.1. SN is an unambiguous asynchronous transition system.

Proof. Clearly, (Q, A, -) is a transition system, t is irreflexive and symmetric.

We shall now prove condition (i) of definition of an asynchronous transition system.

Let us assume that e 1 t e2, for some e 1, e2 E E, and there exists a firing sequence:

c [el > c' [e2 > c",

for c, c', e" E f.J(B). We shall show that there exists c
lll

E f.J(B) such that

c [e2 > c'" [e 1 > c".

Note that el t e2 is equivalent to the conjunction of the following conditions:

(a) .eln.e2=0

(b) el· ne2· = 0

- 172 -

Applications of Theory

(c) -e1 n e2- = 0

(d) e1- n -e2 = 0

We shall first prove that e2 is e-enabled.

=>
=>

=>
=>
=>
=>
=>

-e2 c e'

-e2 c (e \ -e 1) u e1-

-e2 ce

e2- n e' =0

e2- n « e \ -e1) u e1-) =0

(e2- n (c v-ejj) u (e2- n el-) = 0

e2- n (e \ -e 1) = 0
(e2- n c) \ (e2- n eel) = 0

e2- n e = 0

because e2 is e'-enabled

from def. e' = (e \ eel) U el­

from (c) and (d)

because e2 is e'-enabled

from (b)

from [xn(y\z) = [(xny)\(xnz)]

from (c)

Let e'" = (e \ -e2) u e2-. We shall now show that el is e"'-enabled.

=>

-el ce

-er c e\-e2

because e1 is e-enabled

from (a), [xcy, xnz=0 => xQ'\z]

=> -el c e'"

e1- rv c'"

e1- n «e\-e2) u e2-)

(e1- n (e \ -e2») u (e1- n e2-)

(el- n (e \ -e2»

e

Finally, we show that e"' (e
1

> c''.

(e"' \ eel) U el-

[«e \ -e2) u e2-) \ -e 11 u e 1-

[((e \ -e2) \ -e 1) u (c2· \ -e I)I u e I­

«e\-e2)\-el) u e2- u eI-

- 17.1 -

distributivity of n

from definition of c'"

from (b)

because el- n e = 0

from [(xuy)\z = (x\z)u(y\z)]

because (c) => (e2- \ eel =e2-)

«c \ eel) \ ee2) u e2e u ele

(Ic \ eel) \ ee2) u (ele\-e2) u e2­

[«c \ eel) U ele) \ -e2] u e2-

(c' \ ee2) U ez-
c" ,

Applications of Theory

from [(x\y)\z = (x\z)\y]

from (d)

from [(x\z)u(z\y) = (xuz)\y]

A similar argument can be used to show condition (ii) of the definition of ATS.
Conditions (c), (d) are not required for this case. Hence, SN is forward stable.

Finally, it should be observed that if e E E, c c B, e is c-enabled and c [e > c', then c'

is uniquely determined, and thus ~e is a (partial) function. Therefore, SN is

unambiguous. It is also finite, as the net is assumed to be finite, and hence there are no

more than card(2B) cases.

o

Let N = (B, E; F) be a Condition/Event net, cin c B be the initial case of the net, and SN =
(Q, A, ~, t) be the asynchronous transition system determined by the net. Then L =(SN,

cin) is a rooted asynchronous transition system determined by the Condition/Event system

(N, cin)'

Example. Fig. 6.2.1 and Fig.6.2.2 show the asynchronous transition systems

determined by the Condition/Event nets included in Fig. 6.1.1 and 6.1.2 respectively.

(All cases that are not reachable from the initial case have been omitted.) The ATS

shown in Fig. 6.2.1 is non-sequential, non-determinate and confusion-free (b t c, b t

d). The ATS shown in Fig. 6.2.2 is non-sequential, non-determinate and exhibits both

symmetric and asymmetric confusion (b t c, b t e, d t C, d t e).

c d
{ 1,2} ~ (1,4) --tI"~ (1,5)

tb~ tb d tb
{3,2} (3,4) --I"~ (3,5)

Fig. 6.2.1. The ATS determined by the net shown in Fig. 6.1.1.

- 174 -

Applications of Theory

~(1'2~

{3,2} a {1,4}

~{3,4~
Fig. 6.2.2. The ATS determined by the net shown in Fig. 6.1.2.

Interleaving Semantics

Let N = (B, E; F) be a Condition/Event net, Cin c B be the initial case of the net, LN

=(SN, cin) with SN = (Q, A, ~, i) be a rooted asynchronous transition system determined

by the system (N, Cin). We define the interleaving semantics of the net N as the set of

derivations of the asynchronous transition system SN:

The set of derivations of the Condition/Event system (N, cin) is defined as:

The set of derivations of the net corresponds exactly to firing sequences. It follows from

Proposition 3.4.1 that DOO(LN) is a prefix-closed and closed infinitary string language

ordered by prefix ordering. The prefix ordering ignores causality, and thus does not

distinguish the ordering of events obtained due to concurrency from the ordering arising

due to conflict resolution. Also, some infinite derivations may only represent local,

therefore subjective, view of the system behaviour.

Example. The set of derivations determined by the Condition/Event system shown in

Fig. 6.1.1 is given by the prefix closure of:

* ** * * * ** * **«abc) (acb)) u «abc) (acb))0) u ((abc) (acb)) bdu «abc) (acb)) db.

The set of derivations determined by the system in Fig. 6.1.2 is the prefix closure of:

- 17'5 -

Applications of Theory

«bd)*(ade)*(ce)*)* u «bd)*(ade)*(ce)*)<O.

Note that the latter admits (bd)<O, although c is permanently enabled.

Trace Semantics

Causality can be incorporated into the behaviour of nets by means of the independency

relation, which gives rise to the additional structure over the set of all derivations.

Let N = (B, E; F) be a Condition/Event net, cin c B be the initial case of the net, LN

=(SN, cin) with SN = (Q, A, ~, i) be a rooted asynchronous transition system determined

by the system (N, cin)' We define the trace semantics of the net N as the set of traces of the

asynchronous transition system SN:

The set of traces determined by the system (N, cin) is defined as:

The admissible trace behaviour of the net is Adm(LN) = T*(LN)uMax(TOO(LN)). The

admissible sequential behaviour (i.e. interleaving semantics) is defined as U [o E

Adm(LN)}'

It follows from Proposition 3.6.4 that r(LN) is a prefix-closed and closed infinitary trace

language ordered by trace prefix ordering. We also have (Proposition 3.6.1) that every

derivation contained in a trace is a firing sequence of the net, and that every trace uniquely

determines a case.

Example. The admissible trace behaviour of the Condition/Event system shown in

Fig. 6.1.1 is given by the trace prefix closure of:

[(abc)*] u [(abc)<O] u I(abc)**bdl.

The admissible trace behaviour of the system in Fig. 6.1.2 is the finitary trace prefix

closure of:
[(bd(lxi)*(ade)*cetce)")" I u I(bd(bd)*(ade)*ce(ce)*)<O].

Note that this excludes (bd)<O.

- 176 -

Applications of Theory

Process Structures

A variety of alphabet structures are possible over a given Condition/Event net. Let N = (B,

E; F) be a Condition/Event net, cin c B be the initial case of the net, LN =(SN, cin) with

SN = (Q, A, ~, t) be a rooted asynchronous transition system determined by the system

(N, cin)' Let a be an alphabet structure over (A, 1). Then for each ai E a we have:

a, b e ai ¢::) (sa U a-) n (eb U be):#; 0

or, in other words, two events belong to the same alphabet if, and only if, they share a

condition. Thus, we have decomposed the net into sequential connected subnets. Let us

define for each Ui E a the subnet Ni = (B], E]; Fi) as follows:

B] = {-a u ae I a E ail
Ei = Ui
Fi = Fn«Bi x Ei)u(Ei x Bj)

Clearly, if ai c aj then Bi c B} Ei c Ej and Bi c Bj, and thus Ni c Nj- A consequence

of this is that, whenever a is a refinement of a', we have, for any ai' E a', there exists aj

E a such that Ni' c Nj. Thus, the minimal alphabet structure a m1n determines a

decomposition of the given net into maximal connected sequential subnets. The maximal

alphabet structure a m ax , on the other hand, contains a decomposition into subnets

consisting of exactly one event together with all surrounding conditions.

We define a process structure nN = (c.n) over a Condition/Event net N as the process

structure over the ATS SN determined by the net (LN respectively). A process ai E a is

enabled in the case c c B iff there exists a E ai such that -a c c.

It follows from Proposition 3.3.1 that decompositions of a given net with respect to

alphabet structures form a lattice with inclusion ordering. Refining alphabet structures

corresponds to the increase in the granularity of decompositions.

Example. Examples of alphabet structures over the net shown in Fig. 6.1.1 are:

a m in = {{a,b},(a,c,d}}

a m ax = ((a,b},(a,c,d},(a,c},(a,d},{c,d},(a},(b},(c},(d}}.

The following are examples of alphabet structures over the net shown in Fig. 6.1.2:

a min = ((a.b.d}, [u.c.e) }

a = ((a,b,d},(a,c,e},(a,b},(a,d}).

- 177 -

Applications of Theory

Vector Semantics

Let N = (B, E; F) be a Condition/Event net, cin c B be the initial case of the net, LN

=(SN, cin) with SN = (Q, A, ~, t) be a rooted asynchronous transition system determined

by the system (N, cin)' Let a be an alphabet structure over (A, i). We define vector

semantics of the net N as the set of vectors determined by the asynchronous transition
system SN:

The set of vectors determined by the system (N, cin) is defined as:

Vector semantics allows us to localize the behaviour of the net with respect to a given

process structure. Let fIN = (u.n) be a process structure, then for each ai E a, for each w

E VOO(SN) we have Wi represents the (sequential) behaviour of the subnet N].

6.3. Safety, Progress and Fairness
for Condition/Event Nets

Let N = (B, E; F) be a Condition/Event net, Cin c B be the initial case of the net, LN

=(SN, Cin) with SN = (Q, A, ~, t) be a rooted asynchronous transition system determined

by the system (N, cin)' Let us consider the class of properties qJ in the computation space

8
t

00 over the concurrent alphabet (A, i), The net N is said to satisfy property qJ if, and

only if, LN satisfies 'P, that is, Adm(LN) c .tfillqJ.

Safety Properties

Let (A, t) be a concurrent alphabet. Mutual exclusion, a property stating that no two

processes simultaneously possess a resource, is an example of a safety property. Suppose

a is an alphabet structure over (A, i), and let ai. aj E a be processes. Let Xi E ai, Xj E

- 17H -

Applications of Theory

<lj represent the events of the resource being granted to the respective processes, Yi E ai, Yj

E Uj correspond to the resource being released (note that xi, Xj, Yi, Yj must be pairwise

dependent because they refer to the same resource). Then mutual exclusion of processes
Uj, Uj is the property 'Pi,jmex defined as follows:

'Pi,jmex = [o E 8 t
oo I mutex(cr,i,j) /\ mutex(cr,j,i)}

where mutex(cr,k,m) is a predicate that ensures that xk and Yk are excluded in o between

two consecutive occurrences of xm and Ym (note that events other than xk and Yk should

not be excluded). Formally, mutex(cr,k,nl) holds if, and only if:

(o = cr'[xm]cr''[Ym]cr'" /\ Pm(cr")= E) ~ «occ(cr",xk)= 0) /\ (occ(cr",Yk)= 0»

where occ(y,a) denotes the number of occurrences of the symbol a in the trace y.

It is easy to see that 'Pi,jmex is prefix-closed and closed, but it is not suffix-closed (there

are extensions of o which are not in the property).

Example. Let us consider the Condition/Event net shown in Fig. 4.2.1 that

implements mutual exclusion. Assuming the minimal process structure a mm with al

= [a.b,c}, u2 = {d,e,f}, u3 = [a.b.d,e}, we have a and d correspond to the requests

being granted while band e represent the release. It is easy to see that the net satisfies

'PI 2mex as the admissible trace behaviour is J.,fin[«abc)*(det)*)CO].,

Another example of an abstract safety property would be one that states that any resource

released must have been previously granted. Let us again consider an alphabet structure a

over (A, t), and let ui E U be a process such that Xi E ai is the event of the resource being

granted, and Yi E ui represents release. We can now define the above property as the

property 'Pirel of the process ui as follows:

where rel(cr,i) is a predicate that is true if, and only if:

(o = cr'[Yilcr") ~ «cr'=y'[Xi 1y") /\ (occ(y" ,xi)=O) /\ (occ(y" ,xi)= occ(y" ,Yi»)·

It is clear that \.}Iirel is prefix-closed and closed, but not suffix-closed.

- 179 -

Applications ofTheory

Ex~mple. Let us again consider the ConditionlEvent net shown in Fig. 4.2.1 with

a
m1n

where a 1 = [a.b,c}, a2 = {d,e,f}, a3 = [a.b.d,e}. Clearly, the net satisfies
'P1rel and 'P2rel.

Progress Properties

Let (A, t) be a concurrent alphabet. An example of a finitary progress property is that of

guaranteed response, which is usually defined as every resource that has been requested

will eventually be granted. We sitnplify the definition of this property to the statement that

any resource will eventually be granted. Suppose a is an alphabet structure over (A, t), let

ai E a be a process, and let Xi E ai represent the event of the resource being granted.

Then guaranteed response for the process ai, is the property 'Pires defined as follows:

Note that 'Pires is not prefix-closed, but it is suffix-closed.

Example. Let us again consider the Condition/Event net shown in Fig. 4.2.1 that

implements mutual exclusion between processes a1 = [a.b,c] and a2 = {d,e,f}, while

a3 = [a.b.d,e] is the scheduler (assuming the minimal process structure a tnln). Since

a and d correspond to the requests for the resource being granted, we may wish to

determine if the net satisfies guaranteed response. Unfortunately, the answer is

negative, as admissible trace behaviour of this net, namely j.fin[«abc)*(def)*)CO], is not

contained in j.fin'Plres as it allows [(def)O)I. The same problem arises with any other

alphabet structure. The only solution to the problem seems to be to restrict the set of

admissible trace behaviour by incorporating fairness assumptions.

The above-mentioned property of guaranteed response was finitary, as an infinite number

of finite traces have this property. We now consider an example of an infinitary progress

property which is a stronger version of guaranteed response; it states that any resource will

be granted infinitely often. Suppose a is an alphabet structure over (A, i), and let ai E a

be a process, and let Xi E ai represent the event of the resource being granted. Then

infinitary guaranteed response for the process ai, is the property 'Pirores defined as

follows:

- IHO -

Applications of Theory

It is easy to see that 'Pirores c 8 t eo Also, \!lirores is not prefix-closed, but it is suffix­

closed.

Example. Obviously, the Condition/Event net shown in Fig. 4.2.1 does not satisfy
'P1cores nor 'P2rores.

Fairness Properties

Fairness properties are a subclass of infinitary progress properties. The feature that

distinguishes fairness from infinitary progress properties is that every finite trace can be

extended to a fair trace. In fact, \IJirores is a fairness property because 8 t * c j.finqJirores.

Let us consider the algebra of process fairness properties and their relationship with

Condition/Event nets. Let a be an alphabet structure over (A, i), then, as we observed

earlier, a determines a decomposition of the net into sequential connected subnets N]. The

unconditional process fairness property <I>uprOC(a) contains those, and only those, infinite

traces in which each ai E a is taken infinitely often. This corresponds to some event in

each subnet being taken infinitely often; if the subnet contains a conflict, either of the events

at conflict may occur. Two extreme cases are a mIn and a max; the first corresponds to the

decomposition into maximal sequential subnets, while the latter decomposes the net into

single transitions, thus imposing fair resolution of every conflict encountered in the net.

Let N = (B, E; F) be a Condition/Event net, Cin c B be the initial case of the net, LN

=(SN, cin) with SN = (Q, A, ~, t) be a rooted asynchronous transition system determined

by the system (N, cin)' Let a be an alphabet structure over (A, t). For a given alphabet

structure, i.e. a decomposition of the net, the unconditional, strong and weak process
fairness properties <I>uproc(a), <l>sproc(a) and <I>wproc(a) form a hierarchy. The class of

all unconditional (weak, strong respectively) process properties over a given concurrent

alphabet forms a lattice.

Example. Let us consider the net shown in Fig. 6.1.2. The computation [(bdce)W] is

process fair wrt a min = ([a.b.d}, [a.c.e) }, but it is not process fair wrt:

a = ({a,b,d),(a,c,e},{a,b),(a,d},(a,c),(a,e),(a)}.

All distinct process fairness properties for this net are:

[(bd(bd)*(ade)*ce(cc)*)(01

[(bd(bd)*adetade)" (cc)*)(1)1

- IRI -

Applications of Theory

[((bd)*ade(ade)*ce(ce) *)CO]

[((bd)*ade(ade)*(ce) *)CO]

[(bd(bd)*(ade)*ce(ce)*)COj

[(bd(bd)*ade(ade) *ce(ce)*)CO).

It should be noted that process fairness properties enforce fairness with respect to groups of

events that become enabled. It is also possible to introduce state fairness into

Condition/Event nets; this notion enforces fairness with respect to reachability of cases.

Example. Let us consider the net shown in Fig. 6.1.1. The computation [(abc)CO] of

this net is process fair with respect to u min = ((a,b),(a,c,d}). However, it is not fair

with respect to the case (5) which is reachable infinitely often (each computation

[(abc)*a], [(abc)*ab] enables (5)), but never taken (because for no finite prefix 0 of

[(abc)CO] do we have (1,2) -10 (5}).

Note that the class of fairness properties for Condition/Event nets is not restricted to the

properties mentioned so far; fairness properties like probabilistic fairness, where each

transition is assigned a probability weighting, could easily beexpressed.

Summary

We have briefly shown how the theory developed in the previous chapters may be applied

to Condition/Event nets. We have strong reasons to believe that some safety and progress

properties investigated in formalisms like temporal logic [Pnu86] can be naturally expressed

in our formalism.

A number of fairness properties, including process, event and state fairness, could be

defined in our formalism. Given a variety of alphabet structures over a concurrent

alphabet, it is not clear which process fairness property is adequate for a given

Condition/Event net. This seems to suggest that (uninterpreted) Condition/Event nets are a

low-level model, where entities that represent concurrent synchronising agents are not

clearly defined. In order to guarantee un iqueness of the decomposition, additional

information would have to be provided.

- I X2 -

7
Conclusion

- I ~n -

7.1. Summary of Results

Conclusion

General Observations

Although, on the whole, we are pleased with the outcome of the thesis, we wish more of

the tasks set out at the beginning could be completed. It came as an unpleasant surprise that

the subject of fairness was in a state of confusion; the difficulty was compounded by the

sheer number of publications in the area, often guided by different objectives and implicit

assumptions. It seemed important at the time to understand the motivation and the inter­

relationships of most existing fairness notions; unfortunately, this proved a formidable

task. It also seemed unfair on the subject not to include an overview of prevailing

approaches, no matter how irrelevant from the point of view of the object of the thesis. As

a result, perhaps too much time has been spent on trying to find out more about fairness

notions, in most cases informally defined, and no time was left to carry out a formal

comparative study of existing fairness properties using the model as a reference.

We have nevertheless succeeded in presenting a unified approach to defining behavioural

properties of concurrent systems which includes safety, progress and fairness properties.

Using a non-interleaving semantic model based on the notion of causal independency, it has

been shown that it is possible to construct a comprehensive mathematical space of

properties, within which fairness notions are a subclass of infinitary progress properties.

An algebra of unconditional process fairness properties, shown to form a lattice with

inclusion ordering, has also been identified. Every process fairness property in this algebra

is determined by an alphabet structure that arises from the concurrent alphabet, namely a set

of actions together with the independency relation. Both concurrency fairness, including

synchronisation fairness, and fairness of choice are expressible. There exist unique

strongest and weakest process fairness properties, which are exactly the intersection and the

union of all process fairness properties. The strongest process fairness corresponds to

stating that every action must happen, while the weakest process fairness is, in general.

stronger than the statement every action may happen. This is because we distinguish

between causally dependent and independent actions; thus, the weakest process fairness

- I S-1 -

Conclusion

would enforce that an action must happen as long as it is permanently possible and

independent of the remaining actions in a computation.

The topological characterization of behavioural properties presented here is based on the

Scott topology of finitary progress properties. In this topology, safety properties are the
closed sets, infinitary progress properties are the G8-sets, and fairness properties are the

dense sets. The formalism is not limited to unconditional process fairness only; by means

of strength predicates fairness properties may be relativized with respect to a given rooted

asynchronous transition system. A formalization of weak and strong process fairness

properties has been outlined; fairness properties such as state fairness and equifairness are

expressible as well.

We hope that our work together with the bibliography would be of help to anyone

interested in fairness.

Advantages of the Presented Approach

The approach presented here relies on the assumption that concurrency and causality are

primitive; both are derivable from a notion of causal independency. Thus, although the

observations in the model are essentially sequences of system states, the semantics is richer

in the sense that non-deterministic choice is distinguished from concurrency. This means

that fairness of choice due to internal non-determinism and fairness of synchronisation

conflicts are not confused as it may be the case of the interleaving approach.

It should be noted that, although we have not fully analysed the relationship of the

interleaving and trace semantics, one conclusion is quite clear: we can replace the justice

assumption [Pnu86] with the notion of maximality of computations in the domain of traces.

We believe that the model presented here is a more adequate reflection of reality as far as the

behavioural aspects of asynchronous systems are concerned. No assumption of the

existence of a global clock has been made, nor has the behaviour been reduced to a

synchronous one (we have, however, assumed atomicity of actions).

It should also be stressed that causal independency is a syntactical notion; as such, it

describes the potential for concurrency, rather than the fact that concurrent actions have

been observed. It turns out that independency is determined by the syntax of the language;

for Condition/Event nets it is the structure of the net, for CCS it is the syntax of a closed

- I R5 -

Conclusion

term. Although we have only showed that Condition/Event systems determine

asynchronous transition systems, it seems plausible that a similar result can also be derived

for many existing models for concurrency, e.g. fair transition systems [Pnu86] and CCS

[MiI80], thus providing these models with asynchronous semantics. This means that the

results concerning fairness and progress are not model-specific, but could be transferred to

other settings without major problems.

The main contribution of the thesis, however, is a uniform approach to progress and

fairness properties. This proves that, despite wide-spread disagreement and confusion on

the subject of fairness, it is possible to formulate a comprehensive theoretical basis for the

study of fairness. Indeed, when viewing fairness as an issue to do with concurrency in the

sense that no concurrent process that becomes possible sufficiently often should be

indefinitely delayed, the corresponding fairness properties turn out to form an algebra

which is closed under union and intersection.

Related Work

Trace languages have been developed in [Maz77] [Maz84a] [Maz84b] [Bed87] [AaR88],

where only fmite traces and finitary trace languages have been considered. A notion related

to that of a trace is a dependency graph [AaR881 [Maz88], which could be infinite.

Asynchronous transition systems were introduced in [Shi85a] [Bed87] [Shi88c] [Kwi88a].

We use a simplified notion of a process structure, which does not distinguish between two

processes with the same alphabet. The notion of the projective preorder and equivalence is

due to Shields [Shi88c], who also shows that infinitary vector languages form a partial

monoid. Vector semantics has also been defined in [Fau87]; infinite behaviours are

included, but the approach is model-specific.

Infinitary sequential languages were introduced in [BoN79] [Par80] [Par8!], and their

relationship with fairness was considered in IPar801 [ParSl]. A number of notions of

fairness for finite state automata were formulated in IPRW87]. The approach presented

here is different as we allow a possibly countable set of states.

A topological characterization of safety and liveness can be found in [AlS85], where

liveness is not closed under intersection (fairness is not dealt with). A further difference is

that an interleaving semantic model, which gives rise to a different space of behaviours, is

- 1X6 -

Conclusion

used in [AIS85]. Safety properties and inevitability properties, corresponding to liveness,

in a model based on partial order are defined in rMOp88]. Inevitability properties are not

closed under intersection.

7.2. Further Developments

Many further developments of the theory are possible. We give a systematic overview of

the issues that arise from our research.

Trace Languages

Trace languages constitute a very elegant representation of concurrent behaviours that are a

generalization of sequential behaviours. They have received a lot of attention recently

[AaR88] [Maz88]; as a result, a number of theoretical problems have been solved. It

seems, however, that infinitary trace languages have not yet been fully investigated. The

following require investigation: closure properties of infinitary trace languages; existence of

automata that recognise infinitary trace languages; ro-regular infinitary trace languages;

morphism of infinitary trace languages.

Metrics and Closures of Trace Languages

We have not been able to define a metric over 8 t
oo that corresponds to the closure in terms

of adherence. This is unsatisfactory as in the monoid of strings there is a natural metric

(ultra-metric) [BoN79] defined by :

d(x, y) = 2-n

where n is the length of the longest common prefix of strings x and y, which exactly

corresponds to the closure of string languages by means of adherence. Unfortunately, a

naive attempt to transfer this defin ition to 8 t 00 using:

- I H7 -

Conclusion

d'(0, y) = 2-n

where n is the longest common prefix (with respect to trace prefix ordering) fails. The
following is a counter-example:

A = [a.b.c.d}, a t b, b t c. Then abc =t bac =t acb, ab =t ba

hence

d([abc], [ab]) = 1/4

d([ab], [cd]) = 1

d([abc], [cd]) = 1/2

It is easy to see that the triangular inequation does not hold. It has recently come to our

knowledge that in [LuG87] a metric was defined for event structures. Future work will

show if such an approach could also be applied to the domain of traces. It should,

however, be emphasized that, since the Scott topology is non-Hausdorff, a quasi-metric

would have to be used in order to achieve convergence that corresponds to the Scott

closure.

Positive Approach

The approach presented here has been negative, rather than positive; in other words, the

work has concentrated on ways of excluding those behaviours that are not fair, rather than

generating those behaviours only that are fair in some sense.

It is an interesting question whether, given a fairness property, it is possible to determine a

set of rules that generate those behaviours only which satisfy the given fairness property.

When such rules are applied to verify properties of systems, fairness constraints would

automatically be incorporated. We have discovered the following limitation: although

asynchronous transition systems accept infinitary trace languages, they only accept

languages that are closed and prefix-closed. It has become clear to us that fairness

properties correspond to languages that are ideals, but are not, in general, closed in the

sense of containing adherence. The notion of maximality has proved helpful in excluding

undesirable behaviours. Unfortunately, restricting infinite behaviours to maximal ones is

not sufficient when imposing synchronisation fairness as, in this case, it is necessary also

to exclude those which are maximal.

- IXX -

Conclusion

Temporal Logic

The topological characterization of behavioural properties has enabled us to formally state

and characterize, but not necessarily establish, certain properties of asynchronous systems.

Temporal logic can be used to bridge this gap, and, as such, provide a formalism for

reasoning about fairness and liveness.

Process Algebra and Bisimulations

An issue we have not elaborated on in the thesis is what kind of process algebra the model

gives rise to. We have strong reasons to believe that such an algebra could be defined. In

fact, a basic framework for such a finitary process algebra has been formulated in

[Maz84b], where the operations of sequential composition and synchronisation were

defined. These issues have not been considered here as our main concern were infinitary

aspects of trace theory.

A further difficulty is that the definition of fairness properties does not allow for dynamic

processes, that is recursion over concurrency as found in most process algebras, for

example CCS. This is a result of an earlier restriction of the set of action labels A to a finite

set. A possible solution to this problem would involve enhancing the model to allow for a

countable set of action labels, which, in consequence, would enable a countable number of

processes.

A notion which does not seem to have a counter-part in trace theory is that of bisimulation.

Bisimulation was introduced in IPar81 I as an equivalence notion which could be used in

situations in which equivalence of systems in terms of languages they recognise is not

appropriate. It is not clear how weak bisimulations could be defined for asynchronous

transition systems (strong bisimulutions were formulated in [Shi88c]). The difficulty

seems to lie in the way the local view could be put in the context of a global view.

CCS and Asynchronous Transition Systems

It has already been mentioned that CCS determines an asynchronous transition system. As

a result, it is possible to provide CCS with asynchronous semantics. We shall briefly

- I X9 -

Conclusion

sketch how this could be achieved. The main problem with CCS is that it is ambiguous; for

example p = ap' + ap", where pi i:- p", is an example of an ambiguous expression. Thus.

some systematic technique has to be used in order to disambiguate transitions. It has been

shown in [BoC88] that a labelling with proofs could be used for this purpose (a similar

labelling was developed in [CoS8? D. A proof of a transition p ~a p' is an indication of

how the action a is obtained from the term p. Roughly speaking, a proof is a path which

leads to an outermost subterm (for communication the proof is a path leading to a pair of

complementary subterms). The above labelling determines the independency relation

between proof terms. We assume 8 denotes such proof, "fa denotes the guard a, 1tI(8) and

1t2(e) denote the left and right operand of a parallel composition respectively, 0(e,8')

denotes communication, al (B) and a2(8) - left and right component of a sum, and finally

PaCe) denotes restriction with a.

The independency relation t is the least symmetric one which satisfies the following.

(AI) i*j => 1tice) t 1tjC8')

CA2) 8 t e' => 1t I (8) t 8C8',8")

8 t 8' => 1t2(8) t oC8",8')

(A3) 8 t 8' => 1ti(8) t 1q(8')

S t S' => aiCe) t aiC8')

8 t S' => PaCe) t PaC8')

(A4) 81 t 81' /\ 82 t ei => 0(81,82) t 8C8 I' ,8i)·

It is easy to see that tis irreflexive. We then proceed to define an asynchronous transition

system by taking the set of all closed CCS terms as the set Q of states, the set of proofs as

the set A of action labels, and the relation t as the the independency. Finally, CCS

transition rules need to be suitably modified to determine the transition relation ~ of the

asynchronous transition system in question.

Quantitative Methods for Fairness

Only qualitative methods for dealing with fairness have been directly disc~ssed. we. have

not, for example, outlined ways by which the relative frequency of choice of particular

transitions could be controlled (probabilistic fairness). Also, unbounded delay has been

-190-

Conclusion

assumed. Probabilistic fairness and bounded delay fairness seem to be expressible in terms

of the strength predicates and would, therefore, be a worthwhile subject for investigation.

The immediate applicability of such results to real-time and fault-tolerant systems should be

apparent.

Final Remarks

We would like to stress that, in contradiction to the statement made in [Dij88], our research

has shown that fairness properties can be formally characterized and stated. Although

undetectable by finite experiments, fairness nevertheless provides a useful abstraction.

- 19\ -

Appendix

CCS Summary

Let A =/).u/). such that /).(l/). =0 be a set of actions. We require /)., /). are in bijection, that
- -

is a E /). stands for the co-action of a E 11. Let M = Au('t a Ia E 11} be the set of moves.

We assume a.b,c range over A, m,n range over M, and X,Y are process variables. The

syntax of CCS expressions extended with process composition is:

p ::= X I NIL I mp I p+p I fix X.p I p\a I pllp I p;p.

Semantics is as follows:

(i) mp -.7m p

(ii) P -.7m p' implies (p+q) -7m p', (q+p) -7
m p'

(iii) p[fix X.p\X] -7m p' implies fix X.p -7m p' where [.\ .] denotes substitution.

(iv) p -.7m p', m e {a, a1 implies p\a -7
111 p' \a

(v) p -.7m p' implies (pllq) -7m (p'llq), (qllp) -7
m (qllp')

(vi) p -.7a p', q -7aq' implies (pllq) -7 'ta (p'llq')

(vii) p -.7m p', p' -7n p" implies p;q -7
111 p'iq

P -.7m p', V n E M: p' ~n p" implies p.q -7
m q.

- 11)2 -

Bibliography

[AaR88]

[AFG88]

[AFK87]

[AlS85]

[ApF84]

[Ap084]

[Ash75]

[Bed87]

Aalbersberg 1.1., Rozenberg G., Theory of Traces, Theoretical Computer

Science 60 (1988) 1-82.

Attie P., Francez N., Grumberg 0., Fairness and Hyperfairness in Multi­

party Interactions", submitted to Distributed Computing.

Apt K.R, Francez N., Katz S., Appraising Fairness in Languages for

Distributed Programming, in: Proceedings of the 14th ACM Symposium on

Principles of Programming Languages (1987). To appear in Distributed

Computing.

Alpern B., Schneider F.S., Defining Liveness, Information Processing

Letters 21 (1985) 181-185.

Apt K.R., Francez N., Modelling the distributed termination convention in

esp, ACM Transactions on Programming Language and Systems 6, 3

(1984) 370-379.

Apt K.R., Olderog E-R., Transformations Realizing Fairness Assumptions

for Parallel Programs, in: Proceedings of Symposium on Theoretical

Aspects of Computer Science (1984), Lecture Notes in Computer Science

166 (Springer, 1984).

Ashcroft E.A., Proving Assertions about Parallel Programs, Journal of

Computer And System Sciences to (1975) 110-135 .

Bednarczyk M., Models for Parallelism. PhD thesis, University of Sussex

(1987).

- 19~ -

[BeK86]

[Bes84a]

[Bes84b]

[BoC88]

[BoN79]

[BHR84]

[BKP84]

[BM087]

[Car87]

[CaH87]

[CaV84]

Bibliography

Bergstra J.A., Klop J.W., Algebra of communicating processes, in:

Proceedings of the CWI Symp, Math. & Compo Sci., de Bakker J.W.,

Hazenwinkel M., Lenstra J.K., eds., Amsterdam (1986).

Best E., Fairness and Conspiracies, Information Processing Letters 18

(1984) 215-220.

Best E., erratum, Information Processing Letters 19 (1984) 162.

Boudol G., Castellani I., Permutation of transitions: an event structure

semantics for CCS and SCCS, in: REX School/Workshop on Linear Time,

Branching time and Partial Order in Logics and Models for Concurrency

(Nordwijkerhout, 1988). To be published in Lecture Notes in Computer

Science.

Boasson L., Nivat M., Adherences of Languages, Journal ofComputer and

System Sciences 20 (1980) 285-309.

Brookes S.D., Hoare C.A.R., Roscoe W., A Theory of Communicating

Sequential Processes, Journal of the ACM 31,3 (1984) 560-599.

Barringer H., Kuiper R., Pnueli A., Now You May Compose Temporal

Logic Specifications, in: Proceedings, 16th Symposium on Theory of

Computing (1984) 51-63.

de Bakker J.W., Meyer J.-1. C., Olderog E.-R., Infinite Streams and Finite

Observations in the Semantics of Uniform Concurrency, Theoretical

Computer Science 49 (1987) 87-112.

Carstensen H., in: Proceedings, STACS 87, Brandenburg FJ., Vidal­

Naquet G., Wirsing M., Lecture Notes in Computer Science 247

(Springer, 1987).

Cavalli A.R., Horn F., Proof of specification properties by using finite state

machines and temporal logic, in: Proceedings of the IFfP WG 6.1 7th

International Conjercncc (1987).

Carstensen H., Valk R., Infinite Behaviour and Fairness in Petri Nets, in:

Advances in Petri Nets 8../, G.Rozenberg, ed., Lecture Notes in Computer

Science 188 (Springer. 198-n.

- 19-1 -

[ChM88]

[CIG87]

[CoS84]

[CoS87]

[Dij76]

[Dij88]

[EmH86]

[Fau87]

[Fra86]

[GPS80]

[GFK86]

[GHK80]

lHa160]

[Hen87]

Bibliography

Chandy K.M., Misra L, Another View of 'Fairness', Software Engineering

Notes 13, 3 (July 1988) 20.

Clarke E.M., Grumberg 0., Research on Automatic Verification of Finite­

State Concurrent Systems, Ann. Rev. Comput. Sci. 2 (1987) 269-290.

Costa G., Stirling C., A Fair Calculus of Communicating Systems, Acta

Informatica 21 (1984) 417-441.

Costa G., Stirling C., Weak and Strong Fairness in CCS, Information and

Computation 73 (1987) 207-244.

Dijkstra E.W., A Discipline ofprogramming, Prentice-Hall (1976).

Dijkstra E.W., Position Paper on Fairness, Software Engineering Notes

13, 3 (April 1988) 18-20.

Emerson E.A., Halpern J.Y., 'Sometimes' and 'Not Never' Revisited: On

Branching versus Linear Time Temporal Logic, Journal of the ACM 33, 1

(1986) 151-178.

Fauconnier, Semantique Asynchrone et Comportements Infini en CSP,

Theoretical Computer Science 4 (1987) 277-298.

Francez N., Fairness, Springer-Verlag (New York, 1986).

Gabbay D., Pnueli A., Shelah S., Stavi J., On the Temporal Analysis of

Fairness, in: Proceedings of the Ztli ACM Symposium on Principles of

Programming Languages (1980).

Grumberg 0., Francez N., Katz S., A Complete Rule for Equifair

Termination, .Iournal of Computer and System Sciences 33 (1986) 313-

332.

Gierz G., Hofmann K.I-I., Keirncl K., Lawson J.D., Mislove M., Scott D.,

A Compendium (~f Continuous Lattices, Springer (1980).

Halolos l.R., Naive Set Theory, Van Nostrand (1960).

Hennessy M., An Algebraic Theory of Fair Asynchronous Communicating

Processes, Theorl'tical Computer Science 49 (1987) 121-143.

- I ()5 -

[Hen83]

[Hoa78]

[Hoa84]

[KaM69]

[KaL76]

[KdR83]

[Ke176]

[Kur66]

[Kwi88a]

[Kwi88b]

[Kwi88c]

[Kwi89]

Bibliography

Hennessy M., Modelling Finite Delay Operators, Technical Report CSR­

153-83, University of Edinburgh (1983).

Hoare C.A.R., Communicating Sequential Processes, Communications of

the ACM 21,9 (1978) 666-677.

Hoare C.A.R., Communicating Sequential Processes, Prentice-Hall (1984).

Karp R.M., Miller R.E., Parallel Program Schemata, Journal of Computer

and System Sciences 3 (1969) 147-195.

Karp R.A., Luckham D.C., Verification of fairness in an implementation of

monitors, in: 2nd International Conf, on Software Engineering (IEEE,

1976)

Kuiper R., de Roever W.P., Fairness assumptions for CSP in a temporal

logic framework, in: D. Bjorncr, ed., Proceedings of TC.2 Working

Conference on the Description of Programming Concepts (North-Holland

1983).

Keller R.M., Formal Verification of Parallel Programs, Communications of

the ACM 19 no.7, pp 371-384 (1976).

Kuratowski K., Topology, Academic Press (1966).

Kwiatkowska M.Z., Modelling Concurrency Using Ambiguous

Asynchronous Transition Systems, Technical Report No.9, University of

Leicester, Department of Computing Studies (1988).

Kwiatkowska M.Z., Event Fairness in Asynchronous Transition Systems,

Technical Report No. 10, University of Leicester, Department of

Computing Studies (1988).

Kwiatkowska M.Z., A Survey of Fairness Notions, Technical Report No.

14, University of Leicester, Department of Computing Studies (1988).

Kwiatkowska M.Z.. A Survey of Fairness Notions, to appear III

Information awl Software Technology,

- 196-

[Kwo79]

[Lam77]

[Lam86]

[LPS81]

[LSB79]

[LuG87]

[MaP81]

[Mar81]

[Maz77]

[Maz84a]

Bibliography

Kwong Y.S., On the Absence of Livelocks in Parallel Programs, in:

Semantics of Concurrent Computation, Proceedings (1979), G.Kahn, ed.,

Lecture Notes in Computer Science 70 (Springer, 1979).

Lamport L., Proving the Correctness of Multiprocess Programs, IEEE

Transactions on Software Eng. SE·3, 2 (1977) 125-143.

Lamport L., The mutual exclusion problem. II. Statement and solutions,

Journal of the ACM 33 (86) 327-348.

Lehman D., Pnueli A., Stavi J., Impartiality, Justice and Fairness: The

Ethics of Concurrent Termination, in: Proceedings, Automata, Languages

and Programming (1981), S.Even, O.Kariv, eds., Lecture Notes in

Computer Science 115 (Springer, 1981).

Lauer P.E., Shields M.W., Best E., Design and Analysis of Highly Parallel

and Distributed Systems, in: Abstract Software Specifications, Proceedings,

D. Bjorner, ed., Lecture Notes in Computer Science 86 (Springer, 1980).

Lugen, R., Goltz U., Non-Interleaving Semantic Model for Non­

Deterministic Concurrent Processes, Technical Report 87/15, RWTH

Aachen, Fachgruppe Inforrnatik (1987).

Manna Z., PnueIi A., Temporal verification of concurrent programs, in:

Boyer R.S., J. Strother Moore, eds., The Correctness Problem in

Computer Science (Academic Press, 1981) 215-173.

Martin A.J., An axiomatic definition of synchronisation primitives, Acta

Informatica 16, 2 (1981) 219-235.

Mazurkiewicz A .. Concurrent Program Schemes and Their Interpretations,

DAIMI Report PB - 78, Aarhus University (1977).

Mazurkiewicz A., Traces, Ilistories, Graphs: Instances of a Process

Monoid, in: Proceedings, Mathematical Foundations of Computer Science

(1984), Chytil M.P., Koubek V., eds., Lecture Notes in Computer Science

176 (Springer, 19X4)..

_ Il)7 -

[Maz84b]

[Maz88]

[Mer86]

[Mil80]

[Mil88]

[MOP88]

[OwG76]

[OwL82]

[Par81]

[Par80]

[Par85]

Bibliography

Mazurkiewicz A., Semantics of Concurrent Systems: A Modular Fixed­

Point Trace Approach, in: Sth European Workshop on Applications and

Theory ofPetri Nets (1984).

Mazurkiewicz A., Basic Notions of Trace Theory, in: REX

School/Workshop on Linear Time, Branching time and Partial Order in

Logics and Models for Concurrency (Nordwijkerhout, 1988). To be

published in Lecture Notes in Computer Science.

Merceron A., Fair Processes, in: Proceedings, 7th European Workshop on

Applications and Theory o] Petri Nets (Oxford, 1986).

Milner R., A calculus for communicating systems, Lecture Notes in

Computer Science 92 (Springer, 1980).

Milner R., Operational and Algebraic Semantics of Concurrent Processes,

Technical Report No. ECS-LFCS-88-46, University of Edinburgh,

Department of Computer Science (1988).

Mazurkiewicz A., Ochmanski E., Penczek W., Concurrent Systems and

Inevitability, to appear in Theoretical Computer Science.

Owicki S., Gries D., An Axiomatic Proof Technique for Parallel Programs,

Acta Informatica 6 (1976) 319-340.

Owicki S., Lamport L., Proving Liveness Properties of Concurrent

Programs, ACM Transactions on Programming Languages and Systems 4,

3 (1982) 455-495.

Park D., Concurrency and Automata on Infinite Sequences, in: Proceedings

of the 5th GI Conference on Theoretical Computer Science, P. Deussen,

ed., Lecture Notes in Computer Science 104 (Springer, 1981).

Park D., On the Semantics of Fair Parallelism, in: Abstract Software

Specifications, Proceedings (1979), D. Bjorner, ed., Lecture Notes in

Computer Science 86 (Springer, 1(80).

Parrow J., Fairness Properties in Process Algebra with Applications in

Communication Protocol Verification. PhD Thesis. Department of

Computer Systems. Uppsala University (1985).

- 19H -

[Pl082]

[Pnu83]

[Pnu86]

[PnZ86]

[PRW87]

[QuS83]

[Rei85]

[Ros88]

[RoT86]

[ScG87]

[Shi85a]

Bibliography

Plotkin G., A Powerdomain for Countable Non-determinism, in: Automata,

Languages and Programming, 9th Coll, Lecture Notes in Computer Science

140 (Springer, 1982).

Pnueli A., On the extremely fair treatment of probabilistic algorithms, in:

Proceedings of the 15th ACM Symposium on Theory of Computing (1983)

278-290.

Pnueli A., Applications of temporal logic to the specification and verification

of reactive systems: a survey of current trends, in: Current Trends in

Concurrency, de Bakker, de Roever, Rozenberg, eds., Lecture Notes in

Computer Science 224 (Springer, 1986).

Pnueli A., Zuck L., Verification of multiprocess probabilistic protocols,

Distributed Computing 1 (1986) 53-72.

Priese L., Rehrmann R., Willecke-Klemme D., An Introduction to the

Regular Theory of Fairness, Theoretical Computer Science 54 (1987) 139­

163.

Queille J.P., Sifakis J., Fairness and Related Properties in Transition

Systems - A Temporal Logic to Deal with Fairness, Acta Informatica 19

(1983) 195-220.

Reisig W., Petri Nets, An Introduction, Springer (1985).

Roscoe A.W., Analysing infinitely branching transition systems, preprint

(1988).

Rozenberg G., Thiagarajan P.S., Petri nets: basic notions, structure,

behaviour, in: Current Trends in Concurrency, de Bakker, de Roever,

Rozenberg, eds., Lecture Notes in Computer Science 224 (Springer,

1986).

Scott D., Gunter C.A., Semantic Domains, to appear in Handbook of

Theoretical Computer Science, North-Holland.

Shields M.W., Deterministic Asynchronous Automata. in: Formal Methods

in Programming (North-Holland, I ()85).

[Shi85b]

[Shi88a]

[Shi88b]

[Shi88c]

[St077]

[Smy83]

[vGI86]

[Win86]

Bibliography

Shields M.W., Concurrent Machines, The Computer Journal 28,5 (1985)

449-466.

Shields M.W., Behavioural Presentation, in: REX Schooltworkshop on

Linear Time, Branching time and Partial Order in Logics and Models for

Concurrency (Nordwijkerhout, 1988). To be published in Lecture Notes in

Computer Science.

Shields M.W., private communication.

Shields M.W., Elements ofa Theory of Parallelism, to be published.

Stoy J. E., Denotational Semantics: The Scott-Strachey Approach to

Programming Language Theory, The MIT Press (1977).

Smyth M.B., Power Domains and Predicate Transformers, a topological

view, in: Automata, Languages and Programming, Proceedings, Lecture

Notes in Computer Science 154 (Springer, 1983).

van Glaabbek RJ., Bounded non-determinism and induction principle in

process algebra, Technical Report CS-R8634, Centrum foor Wiskunde en

Informatica, Amsterdam (1986).

Winskel G., Event Structures, Technical Report No.95, Computer

Laboratory, Cambridge University (1986).

- 200 -

	521489_0000
	521489_0001
	521489_0002
	521489_0003
	521489_0004
	521489_0005
	521489_0006
	521489_0007
	521489_0008
	521489_0009
	521489_0010
	521489_0011
	521489_0012
	521489_0013
	521489_0014
	521489_0015
	521489_0016
	521489_0017
	521489_0018
	521489_0019
	521489_0020
	521489_0021
	521489_0022
	521489_0023
	521489_0024
	521489_0025
	521489_0026
	521489_0027
	521489_0028
	521489_0029
	521489_0030
	521489_0031
	521489_0032
	521489_0033
	521489_0034
	521489_0035
	521489_0036
	521489_0037
	521489_0038
	521489_0039
	521489_0040
	521489_0041
	521489_0042
	521489_0043
	521489_0044
	521489_0045
	521489_0046
	521489_0047
	521489_0048
	521489_0049
	521489_0050
	521489_0051
	521489_0052
	521489_0053
	521489_0054
	521489_0055
	521489_0056
	521489_0057
	521489_0058
	521489_0059
	521489_0060
	521489_0061
	521489_0062
	521489_0063
	521489_0064
	521489_0065
	521489_0066
	521489_0067
	521489_0068
	521489_0069
	521489_0070
	521489_0071
	521489_0072
	521489_0073
	521489_0074
	521489_0075
	521489_0076
	521489_0077
	521489_0078
	521489_0079
	521489_0080
	521489_0081
	521489_0082
	521489_0083
	521489_0084
	521489_0085
	521489_0086
	521489_0087
	521489_0088
	521489_0089
	521489_0090
	521489_0091
	521489_0092
	521489_0093
	521489_0094
	521489_0095
	521489_0096
	521489_0097
	521489_0098
	521489_0099
	521489_0100
	521489_0101
	521489_0102
	521489_0103
	521489_0104
	521489_0105
	521489_0106
	521489_0107
	521489_0108
	521489_0109
	521489_0110
	521489_0111
	521489_0112
	521489_0113
	521489_0114
	521489_0115
	521489_0116
	521489_0117
	521489_0118
	521489_0119
	521489_0120
	521489_0121
	521489_0122
	521489_0123
	521489_0124
	521489_0125
	521489_0126
	521489_0127
	521489_0128
	521489_0129
	521489_0130
	521489_0131
	521489_0132
	521489_0133
	521489_0134
	521489_0135
	521489_0136
	521489_0137
	521489_0138
	521489_0139
	521489_0140
	521489_0141
	521489_0142
	521489_0143
	521489_0144
	521489_0145
	521489_0146
	521489_0147
	521489_0148
	521489_0149
	521489_0150
	521489_0151
	521489_0152
	521489_0153
	521489_0154
	521489_0155
	521489_0156
	521489_0157
	521489_0158
	521489_0159
	521489_0160
	521489_0161
	521489_0162
	521489_0163
	521489_0164
	521489_0165
	521489_0166
	521489_0167
	521489_0168
	521489_0169
	521489_0170
	521489_0171
	521489_0172
	521489_0173
	521489_0174
	521489_0175
	521489_0176
	521489_0177
	521489_0178
	521489_0179
	521489_0180
	521489_0181
	521489_0182
	521489_0183
	521489_0184
	521489_0185
	521489_0186
	521489_0187
	521489_0188
	521489_0189
	521489_0190
	521489_0191
	521489_0192
	521489_0193
	521489_0194
	521489_0195
	521489_0196
	521489_0197
	521489_0198
	521489_0199
	521489_0200
	521489_0201
	521489_0202
	521489_0203
	521489_0204
	521489_0205
	521489_0206
	521489_0207
	521489_0208
	521489_0209

