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Abstract— We propose simple sequential calibration for an asset
price model driven by piecewise Lévy processes, for which simu-
lation methods and Greeks formulas are available. The proposed
methods are easy to implement and consist of fitting a sequence
of Lévy processes to a return series such that they allow parame-
ters to change at discrete points in time, so that the fitted process
can be made consistent with option prices with a range of matu-
rity dates. Given a sequence of implied characteristic functions
obtained from quants calibration routine, three calibration cri-
teria are discussed; calibration to implied probability densities,
to implied option premiums, and directly to the market quotes.
Numerical results on equity index volatilities indicates that with-
out calibrating to market quotes through the Fourier inversion,
our method achieves a sufficient calibration accuracy with signif-
icantly lighter computation load.

Keywords: characteristic function, implied volatility, option pre-
mium, Parseval theorem, piecewise Lévy processes.

1 Introduction

The two main features missing from the Black-Scholes model
are non-Gaussianity and time-varying volatility of the log re-
turns. To realize the non-Gaussianity, various asset price mod-
els have been proposed. Among such well-known models are
the Heston model [10] and the SABR model [9], both of which
are of stochastic volatility type. With those models, the plain
vanilla premium or the implied volatility are given in nearly
closed form. Those explicit formulas prove quite useful in
calibration to market quotes. Other successful candidates are
models involving jumps, in particular Lévy processes, such
as the variance gamma model of Madan and Seneta [18], the
NIG model of Barndorff-Nielsen [2], the Meixner model of
Schoutens and Teugels [20], and the CGMY model of Carr et
al. [5]. All those models have attracted much attention among
market practitioners for the main purpose to interpolate or pre-
dict prices of contracts of the same type as the calibration in-
struments.

The time-varying volatility feature is however still missing
from those models. Namely, their validity is in doubt as soon
as several discrete points in time have to be considered for
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calibration altogether, while this is obviously an essential sit-
uation when the purpose of calibration lies in applications,
such as pricing exotics and structured products, hedging or
risk management. To address this issue, further advanced
stochastic volatility models have been proposed by, for ex-
ample, Barndorff-Nielsen and Shephard [3], Benhamou et al.
[4] and Carr et al. [6]. Those models indicate excellent fit
to option premiums over a wide range of strikes and maturi-
ties, while they entail a large amount of computational effort
for sample paths simulation. This is a serious drawback, as
most recent structured products are so complex that they can
no longer be evaluated without Monte Carlo simulation. In
addition, computation of Greeks is in general difficult in such
advanced models.

The aim of the present paper is to propose simple sequential
calibration methods on a relatively simple asset price model
driven by piecewise Lévy processes, with a view towards both
pricing and hedging of exotics. In short, a piecewise Lévy
process is a stochastic process with independent increments,
which is a homogeneous Lévy process over each predeter-
mined interval. The advantages of employing pure-jump pro-
cesses in financial modeling are justified in [5], for example.
As far as discrete observations are concerned, sample paths
of piecewise Lévy processes can be simulated by using vari-
ous existing simulation methods for genuine Lévy processes.
Equally important is that Greeks formulas available for Lévy
process models (for example, [13, 14, 15]) are directly ap-
plicable to our piecewise Lévy process model as well thanks
to the independence of increments. Calibration with piece-
wise Lévy processes are considered in Eberlein and Kluge [8]
in the context of interest rate term structure without describ-
ing calibration techniques. Our model setting and associated
calibration methods are designed primarily to meet practical
needs with significantly lighter computation load, rather than
to develop sophisticated theoretical results.

The rest of this paper is organized as follows. Section 2 re-
calls some general notations and describes our problem set-
ting. In Section 3, we describe sequential calibration and pro-
pose three criteria for calibration; calibration to implied prob-
ability densities, to implied option premiums, and as usual, to
market quotes. The validity and applicability of those meth-
ods are investigated. Section 4 presents numerical results on
equity volatility to support the effectiveness of the proposed
methods. Finally, Section 5 gives some remarks and indicates



the direction of future research.

2 Preliminaries

Let us begin with some general notations and definitions
which will be used throughout the paper. We denote by
R the one-dimensional Euclidean space with the norm | · |,
R0 := R \ {0}, and by B(R0) the Borel σ -field of R0. A
stochastic process {Xt : t ≥ 0} in R is a Lévy process if it
has stationary and independent increments, is stochastically
continuous, and P(X0 = 0) = 1. By the Lévy-Khintchine rep-
resentation theorem, its marginal distribution is uniquely char-
acterized by the triplet (γ,σ ,ν) in the following characteristic
function,

E
[
eiyXt

]
= exp

[
t
(

iyγ− 1
2

σ2y2

+
∫
R0

(
eiyz−1− iyz1(0,1] (|z|)

)
ν(dz)

)]
, (1)

where γ ∈ R, σ > 0, and ν is a Lévy measure on R0, that
is, a σ -finite measure satisfying

∫
R0
(|z|2 ∧ 1)ν(dz) < +∞.

Let φ denote the characteristic exponent of the characteris-
tic function (1), that is, φ(y) := t−1 lnE[eiyXt ], with φ(−i) :=
t−1 lnE[eXt ] whenever the expectation is well defined. We
say that a stochastic process {Xt : t ≥ 0} in R is a piecewise
Lévy process if, on some predetermined disjoint time parti-
tions [t0, t1), [t1, t2), [t2, t3), · · · with t0 := 0, the stochastic
process {Xt −Xtk−1 : t ∈ [tk−1, tk)} is a Lévy process for each
k ∈ N. Finally, for convenience, we write νI , σI and φI , re-
spectively, for the Lévy measure, the diffusion coefficient and
the characteristic exponent of a piecewise Lévy process over
the time interval I.

Consider a mean-correcting asset price dynamics {St : t ≥ 0}
defined by

St := ertS0
eXt

E [eXt ]
, (2)

where {Xt : t ≥ 0} is a Lévy process satisfying E[eX1 ] < +∞.
The discounted dynamics {e−rtSt : t ≥ 0} is a martingale with
respect to the natural filtration generated by {Xt : t ≥ 0}, and

E
[
eiy lnSt

]
= eiy(rt+lnS0)

etφ(y)

eiytφ(−i)
.

This suggests the use of Lévy processes for which the charac-
teristic exponent φ is available in closed form.

Suppose we have obtained a sequence of implied Lévy mea-
sures {ν[0,tk]}k∈N and one of implied diffusion coefficients
{σ[0,tk]}k∈N. (This assumption is not against reality; financial
quants perform calibration of hedging instruments for every
maturity as a frequent routine to keep track of the volatility
smile, to check the robustness of model parameters, and to
interpolate the volatility smile.) In order for those implied pa-
rameters to be consistent, they must satisfy the constraints; for
each k ∈ N,

tkν[0,tk](B)≤ tk+1ν[0,tk+1](B), B ∈B(R0). (3)

When all those constraints are satisfied, the effective Lévy
measure ν(tk,tk+1] and the characteristic exponent φ(tk,tk+1] are
given respectively by

ν(tk,tk+1](B) =
tk+1ν[0,tk+1](B)− tkν[0,tk](B)

tk+1− tk
, B ∈B(R0),

φ(tk,tk+1](y) =
tk+1φ[0,tk+1](y)− tkφ[0,tk](y)

tk+1− tk
.

On the contrary, as soon as any single violation is found, for
example, tkν[0,tk](B)> tk+1ν[0,tk+1](B) or tkσ2

[0,tk]
> tk+1σ2

[0,tk+1]

for some k ∈N and B∈B(R0), then the calibration results for
[0, tk+1] and thereafter simply do not make any sense. Based
on our numerical experiments for various instruments and un-
derlying Lévy processes, it seems very difficult to complete
entire calibration procedure without such violations.

3 Sequential Calibration with Piecewise Lévy
Processes

To address the inconsistency issue, we employ a piecewise
Lévy process by suppressing the stationarity of increments of
the underlying homogeneous Lévy process in the base model
(2) and propose sequential calibration with such piecewise
Lévy processes. In what follows, we denote by {Xt : t ≥ 0}
a piecewise Lévy process and restrict ourselves to the pure-
jump settings, that is, the diffusion component is assumed to
be degenerate. The asset price dynamics (2) then reads

E
[
eiy lnSt

]
= eiy(rt+lnS0)

∏k
j=1 e

(t j∧t−t j−1)φ(t j−1 ,t j ]
(y)

∏k
j=1 e

iy(t j∧t−t j−1)φ(t j−1 ,t j ]
(−i)

,

for t ∈ (tk−1, tk]. The discounted price dynamics {e−rtSt :
t ≥ 0} is clearly a martingale with respect to the natural fil-
tration generated by the underlying piecewise Lévy process
{Xt : t ≥ 0}. (The risk-free rate is left independent of time
for simplicity, while it can easily be generalized.) Suppose
again we have a sequence of implied characteristic functions
for intervals [0, tk], k ∈ N. We then wish to find a sequence
{φ(tk,tk+1]}k∈N of characteristic exponents, in such a way that
a set of approximations

E
[
eiy lnStk+1

]
← E

[
eiy lnStk

]
eiyr(tk+1−tk) e(tk+1−tk)φ(tk ,tk+1 ]

(y)

eiy(tk+1−tk)φ(tk ,tk+1 ]
(−i)

,

are adequately accurate.

3.1 Calibration to Implied Probability Densities

First, we consider choosing φ(tk,tk+1] through minimization
of the following distance measure between two characteristic
functions [∫

R
|µ̂T (y)− µ̂P(y)|2 dy

] 1
2
, (4)



that is, the calibration of µ̂P to the given target µ̂T , where in
our case,[

µ̂T
µ̂P

]
=

 E[eiy lnStk+1 ]

E[eiy lnStk ]eiyr(tk+1−tk) e
(tk+1−tk)φ(tk ,tk+1 ]

(y)

e
iy(tk+1−tk)φ(tk ,tk+1 ]

(−i)

 ,

with given E[eiy lnStk+1 ] and E[eiy lnStk ]eiyr(tk+1−tk). (Hereafter,
“T” and “P” indicate “Target” and “Proposal”, respectively.) If
the consistency constraint (3) is satisfied for [0, tk] and [0, tk+1],
we may instead set[

µ̂T
µ̂P

]
=

 E[eiy lnStk+1 ]/E[eiy lnStk ]

eiyr(tk+1−tk) e
(tk+1−tk)φ(tk ,tk+1 ]

(y)

e
iy(tk+1−tk)φ(tk ,tk+1 ]

(−i)

 .

This would not make sense otherwise since then µ̂T would no
longer be a characteristic function of any infinitely divisible
distribution (might even not be a characteristic function of any
distribution).

The Parseval theorem adds a further meaning to the minimiza-
tion of the distance (4). That is, by letting fT and fP be prob-
ability density functions, respectively, corresponding to the
characteristic functions µ̂T and µ̂P, it holds that

1
2π

∫
R
|µ̂T (y)− µ̂P(y)|2 dy =

∫
R
| fT (x)− fP(x)|2 dx. (5)

This identity indicates that minimization of the distance (4) is
equivalent to minimization of the L2(R)-distance between two
probability density functions.

Note that only one integral computation (4) is required at each
step of the minimization for a target maturity, no matter how
many strike prices are under consideration. This helps reduce
computation load, compared to the ordinary calibration which
essentially requires computation of integrals as many times as
the number of strike prices.

The numerical error for (4) can be decomposed into two types.
One is the truncation error

∫
|y|>U |µ̂T (y)− µ̂P(y)|2dy, while

the other is the discretization error in evaluating the remaining
integral ∫

|y|≤U
|µ̂T (y)− µ̂P(y)|2 dy. (6)

Recall that our base model (2) is build on the assumption of
E[eXt ]<+∞ for each t. This implies that the (polynomial) mo-
ment property of Xt depends only on the negative side of Lévy
measure, that is, ν on (−∞,−1). Moreover, finite higher mo-
ments guarantee the differentiability of the characteristic func-
tion of the corresponding order. Hence, the integral (6) can be
evaluated with a suitable Simpson-type rule. Coupled with the
fact that the characteristic function is uniformly continuous
and its modulus is uniformly bounded by 1, it can be expected
that (6) can be evaluated without significant discretization er-
ror. The truncation error can also be kept negligibly small by
setting the truncation level U sufficiently large.

Let us summarize our calibration procedure;

(i) Find φ(t1,t2] through minimization of the distance (4)
with[

µ̂T
µ̂P

]
=

 E[eiy lnSt2 ]

E[eiy lnSt1 ]eiyr(t2−t1) e
(t2−t1)φ(t1 ,t2]

(y)

e
iy(t2−t1)φ(t1 ,t2]

(−i)

 .

(ii) With φ(t1,t2] obtained in (i), find φ(t2,t3] through mini-
mization of (4) with

µ̂T (y) = E
[
eiy lnSt3

]
,

and

µ̂P(y) = E
[
eiy lnSt1

]
eiyr(t3−t1)

× e(t2−t1)φ(t1 ,t2]
(y)

eiy(t2−t1)φ(t1 ,t2]
(−i)

e(t3−t2)φ(t2 ,t3]
(y)

eiy(t3−t2)φ(t2 ,t3]
(−i)

.

(iii) Continue the procedure forward for φ(t3,t4], φ(t4,t5], and
so on.

3.2 Calibration to Model Premiums of Implied Dis-
tribution

The next criterion is a variant of the previous one, that is, min-
imization of a modified distance measure between the char-
acteristic functions inspired by the Carr-Madan formula [7].
Consider the distance measure

H1(µ̂T , µ̂P)

:=

[∫ +∞

0

|µ̂T (y− (α +1)i)− µ̂P(y− (α +1)i)|2

(y2 +α2)(y2 +(α +1)2)
dy

] 1
2

, (7)

and the root mean squared error (rmse) H2 in premiums, de-
fined by

H2(µ̂T , µ̂P) :=

[
1
M

M

∑
m=1

[
CT (Km)−CP(Km)

]2
] 1

2

,

where {Km}m=1,...,M is a sequence of strike prices, and where
CT (K) and CP(K) are call premiums at strike K, respectively,
of the target characteristic function µ̂T and of the proposal µ̂P,
each of which models the marginal lnSt . The two quantities
H1 and H2 can be related as follows.

Proposition 3.1. It holds that for each pair (µ̂T , µ̂P),

H2(µ̂T , µ̂P)≤

[
M

∑
m=1

e−2rt−2α lnKm

Mπ2

] 1
2

H1(µ̂T , µ̂P).

Proof. By the well known result of Carr and Madan [7], we
have

C(K) =
e−rt−α lnK

π

∫ +∞

0
Re

[
e−iy lnK µ̂(y− (α +1)i)

α2 +α− y2 + i(2α +1)y

]
dy.

(8)



Hence, it holds that

CT (K)−CP(K) =
e−rt−α lnK

π
×∫ +∞

0
Re

[
e−iy lnK µ̂T (y− (α +1)i)− µ̂P(y− (α +1)i)

α2 +α− y2 + i(2α +1)y

]
dy.

Therefore, we have

H2(µ̂T , µ̂P)
2

≤

[
M

∑
m=1

e−2rt−2α lnKm

Mπ2

]

×
∫ +∞

0

∣∣∣∣e−iy lnKm
µ̂T (y− (α +1)i)− µ̂P(y− (α +1)i)

α2 +α− y2 + i(2α +1)y

∣∣∣∣2 dy

=

[
M

∑
m=1

e−2rt−2α lnKm

Mπ2

]

×
∫ +∞

0

|µ̂T (y− (α +1)i)− µ̂P(y− (α +1)i)|2

(y2 +α2)(y2 +(α +1)2)
dy,

where the last equality holds by the properties of complex
modulus; for (z,w) ∈ C2, |zw| = |z||w| and |z/w| = |z|/|w|
when |w| ̸= 0.

As in the method of Section 3.1, computation of integrals has
to be done only once at each step of minimization since the
integral (7) is independent of strike prices {Km}m∈N. Mini-
mizing H1 is not identical to minimizing H2, while numerical
illustrations later indicate the effectiveness of the inequality of
Proposition 3.1.

In order to investigate discretization error in computation of
the integral∫ U

0

|µ̂T (y− (α +1)i)− µ̂P(y− (α +1)i)|2

(y2 +α2)(y2 +(α +1)2)
dy, (9)

the differentiability of the integrand acts as a key. The de-
nominator is strictly positive and in C∞(R+;R+), while the
differentiability of the numerator depends on the polynomial
moments of underlying distribution. Similarly to the charac-
teristic function, the function µ̂(y−(α+1)i) is also uniformly
continuous and its modulus is bounded by |µ̂(−(α + 1)i)|.
Depending on the order of differentiability, the integral (9) can
be evaluated using a suitable Simpson-type rule. The trunca-
tion error here should be negligible as decay of the numerator
at infinity is accelerated by the denominator of fourth polyno-
mial order. Moreover, the integrand of (9) is defined only on
the half real line. These also helps reduce the required com-
putation time, compared to the computation for the L2(R)-
distance (4).

Remark 3.2. In general, the integrals (4) and (7) are multi-
modal with respect to model parameters. Hence, minimiza-
tion of those integrals with respect to model parameters are
ill-posed inverse problems. Calibration results may be very
unstable with respect to perturbation of implied characteristic

functions. Similarly to classical approaches to regularization
of ill-posed problems, we may regularize results by making
a suitable addition of a penalization term to (4) and (7). For
example, letting µ̂Tε , µ̂Pε and µ̂P be characteristic functions
respectively of an perturbed implied version, to be calibrated
to µ̂Tε , and the one obtained from the calibration to µ̂T , we
instead minimize[∫

R
|µ̂Tε (y)− µ̂Pε (y)|

2 dy
] 1

2
+β

[∫
R
|µ̂P(y)− µ̂Pε (y)|

2 dy
] 1

2

or
H1 (µ̂Tε , µ̂Pε )+βH1 (µ̂P, µ̂Pε ) ,

with an appropriate choice of the regularization parameter
β > 0 and with the initial guess of µ̂Pε being µ̂P. There is a
large literature on methods for addressing ill-posed calibration
issues, dating back to Avellaneda et al. [1].

3.3 Calibration to Market Quotes

Let us finally describe direct calibration to market quotes. Just
as in ordinary calibration, we try to find the best characteris-
tic function by minimizing the root mean square error (rmse)
between market premiums (market-pr) and model premiums
(model-pr)

(rmse) :=
[

1
#(pr) ∑

[
(market-pr)− (model-pr)

]2
] 1

2
.

We should work with closed-form characteristic functions to
apply the Carr-Madan equation (8). (See Lee [17] for its nu-
merical error analysis.) We proceed with calibration as fol-
lows.

(i) With the given implied characteristic function
E[eiy lnSt1 ], find φ(t1,t2] through calibration of

E
[
eiy lnSt1

]
eiyr(t2−t1) e(t2−t1)φ(t1 ,t2]

(y)

eiy(t2−t1)φ(t1 ,t2]
(−i)

to the market quotes for the maturity t2.
(ii) With the implied characteristic function E[eiy lnSt1 ] and

the implied characteristic exponent φ(t1,t2] obtained in
(i), find φ(t2,t3] through calibration of

E
[
eiy lnSt1

]
eiyr(t3−t1) e(t2−t1)φ(t1 ,t2]

(y)

eiy(t2−t1)φ(t1 ,t2]
(−i)

e(t3−t2)φ(t2 ,t3]
(y)

eiy(t3−t2)φ(t2 ,t3]
(−i)

to the market quotes for the maturity t3.
(iii) Continue the procedure forward for φ(t3,t4], φ(t4,t5], and

so on.

4 Numerical Illustration: Equity Volatilities

In this section, we present some numerical results for the
Nikkei 225 index options. To avoid overloading the paper
with results of somewhat repetitional nature, we only report



results on a single day of June 30, 2006. We consider the
premiums available at the strikes (60P, 80P, 90P, 95P, 100C,
105C, 110C, 120C, 150C), each of which indicates money-
ness in percentage points with ATM 100, for each maturity
(t1, t2, t3, t4, t5, t6, t7, t8)=(1, 3, 6, 12, 24, 36, 48, 60), given
in month. Here, P and C in the strikes respectively stand for
“Put” and “Call”. We use the put-call parity to compute the put
premiums. Both the interest rates and the dividend yields are
assumed to be deterministic. We do not use the quotes at the
strikes 60P and 150C for the two short maturities t1 and t2, for
the reason of unreliability of data due to extreme illiquidity.

We use an extension of the CGMY process of [5] for the piece-
wise Lévy process {Xt : t ≥ 0} in the asset price model (2). It is
a Lévy process without Gaussian component and whose Lévy
measure is given by

ν(dz) =

[
Cn

e−G|z|

|z|1+Yn
1(z < 0)+Cp

e−M|z|

|z|1+Yp
1(z > 0)

]
dz,

defined on R0, where Cn,Cp,G,M > 0 and Yn,Yp ∈ (−∞,2).
Its characteristic exponent is as simple as

φ(y) =CnΓ(−Yn)
(
(G+ iy)Yn −GYn

)
+CpΓ(−Yp)

(
(M− iy)Yp −MYp

)
,

provided that Yn ̸= 1 and Yp ̸= 1. The CGMY process can
serve as an appropriate underlying process, not only because it
proves capable of reproducing the implied volatility structure,
but also because the simulation methods [16] and the Greeks
formulas [15] are available. In order that our model be well de-
fined, the expectation E[eX1 ] is required to be finite. By Theo-
rem 25.17 of Sato [19], it is equivalent to

∫
|z|>1 ezν(dz)<+∞,

which yields M≥ 1 if Yp > 0 and M > 1 otherwise. We hence-
forth impose this condition with Yn ̸= 1 and Yp ̸= 1, throughout
the calibration procedure.

First of all, let us give in Table 1 the estimated parameters
through the preliminary calibration to the market quotes sepa-
rately for [0, tk], k = 1, . . . ,8. We use the Carr-Madan equation
(8) to compute the premiums, with the integrand evaluated at
214 points with equidistant spacing of 0.25, with the adjust-
ment constant α = 1, and with the Simpson rule. To apply
(8), the additional condition E[Sα+1

t ]<+∞ must be satisfied.
By Theorem 25.17 of Sato [19], this condition is equivalent to
M≥α+1 if Yp > 0 and M >α+1 otherwise. We perform the
Nelder-Mead direct search method to minimize the difference
between market premiums and model premiums in rmse. Re-
gardless of the successful results, the condition (3) is however
violated, for example, we can find that at z = 2,

t2Cp(2)
e−G(2)|z|

|z|Yp(2)+1 > t3Cp(3)
e−G(3)|z|

|z|Yp(3)+1 .

The calibration results thus indicates inconsistency as dynam-
ics. Let us remark here that the primal aim of the preliminary
calibration is to obtain a sequence of implied characteristic
functions with very high calibration accuracy. Hence, at this

stage, the underlying process does not have to be in a class of
Lévy processes, but could be even a certain stochastic volatil-
ity model, so long as a characteristic function is available.

Table 2 indicates how significant the mis-pricing would be if
one used the implied parameters fitted to the longest interval
[0, t8] to evaluate the option premiums for shorter maturities.
One can see that this homogeneous Lévy process model tends
to yield lower premiums around ATM, while higher far from
ATM.

Next, Table 3 presents results of calibration to the implied
characteristic function, or equivalently, to the implied prob-
ability density function by (5). The characteristic functions
are evaluated at 213 points with equidistant spacing of 0.25
and with the Simpson rule. Minimization of (4) is performed
again with the Nelder-Mead direct search method. The L2(R)-
distance of two probability density functions remains quite
small, and the rmse does not seem to accumulate as the matu-
rity gets longer.

Results of calibration to the model premiums of the implied
distribution are given in Table 4, with H1 indicating minimized
values of (7). In the Nelder-Mead minimization procedure,
the integrand of (7) is evaluated at 212 points with equidis-
tant spacing of 0.02 and with α = 1, and with Simpson rule.
Compared to the rmses in Table 3, they are here much smaller.
Moreover, the required computation time for the calibration
procedure (with the same initial guess of CGMY parameters)
is approximately 90% shorter. For clear illustration, we give
in Figure 1 model option premiums (“—”) with market quotes
(“◦”). The market premiums at the money and out of the
money (K ≥ 100) are of call options, while those in the money
(K < 100) are of put options. The discontinuity at K = 100 is
due to the dividend yield.

Finally, Table 5 presents results of calibration directly to mar-
ket quotes. We use the Carr-Madan equation (8) to trans-
form the closed-form characteristic function directly into op-
tion premiums, where the characteristic functions are evalu-
ated at 214 points with equidistant spacing of 0.25, with the
adjustment constant α = 1. We again impose the conditions
induced by E[Sα+1

t ] < +∞ in the Nelder-Mead direct search
method. As opposed to the accurate calibration, the compu-
tational overhead required here is much more than calibration
to the implied distributions, as the integration (8) has to be
repeated nine times (for nine strikes). Regardless of similar
calibration accuracy through three criteria, the estimated pa-
rameters are significantly different for different criteria.

5 Concluding Remarks

We have proposed sequential calibration on an asset price
model driven by piecewise Lévy processes. Our model set-
tings are kept reasonably simple with a view towards practi-
cal use in the sense that the existing Monte Carlo simulation
methods and the Greeks formulas for genuine Lévy processes
are directly applicable. Three calibration criteria are investi-



gated; calibration to implied probability densities, to implied
model premiums, and directly to market quotes. It is remark-
able, from a practical point of view, that calibration to im-
plied model premiums achieves an adequate degree of accu-
racy with significantly lighter computation load, relative to di-
rect calibration to market quotes.

We did not present in this paper an exhaustive study of
its range of applicability relative to different index options
or underlying Lévy processes, which is significantly large.
With successful calibration, the valuation of various structured
products, such as TARN, snowball, or even more compli-
cated ones, are certainly within reach through straightforward
Monte Carlo simulation. Finally, combined with various other
methods and models, such as a numerical inversion method
[11] and a multivariate model with linear correlation [12], our
methods may pave the way to evaluate and hedge even more
intricate exotics, consisting of a basket of underlying assets
over several discrete points in time, without employing intri-
cate stochastic volatility formulations.
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Table 1: Estimated parameters through calibration separately for [0, tk], k = 1, . . . ,8.

Cn Cp G M Yn Yp rmse
[0, t1] .01555 .009194 3.642 3.893 1.793 1.090 .0085
[0, t2] .01616 .019597 2.526 3.801 1.761 .5650 .0082
[0, t3] .01625 .011869 2.174 3.866 1.711 1.158 .0126
[0, t4] .02332 .007939 2.143 4.027 1.520 1.595 .0140
[0, t5] .04123 .015499 2.318 4.025 1.295 1.368 .0106
[0, t6] .07213 .025245 2.491 4.029 1.020 1.206 .0063
[0, t7] .11600 .035387 2.606 4.042 .7248 1.104 .0042
[0, t8] .16832 .049414 2.685 4.029 .4708 .9595 .0049

Table 2: Price gap (model premium)-(market quote) when the asset price dynamics is modeled with a homogeneous Lévy
process of the parameters for [0, t8].

60P 80P 90P 95P 100C 105C 110C 120C 150C rmse
[0, t1] n/a .1053 .0378 -.4012 -1.469 -.4896 -.0211 .0660 n/a .6066
[0, t2] n/a .1699 -.2539 -.9413 -1.734 -1.153 -.4581 .0563 n/a .8886
[0, t3] .1326 .2187 -.3053 -.8942 -1.449 -1.286 -.7612 -.0711 .0988 .7678
[0, t4] .2345 .2856 -.1747 -.5494 -.8598 -.9098 -.7168 -.2008 .1712 .5395
[0, t5] .3123 .3255 .0711 -.0900 -.2296 -.3090 -.3160 -.1722 .2040 .2440
[0, t6] .2895 .3191 .2110 .1419 .0791 .0296 .0015 -.0064 .1799 .1794
[0, t7] .1821 .2110 .1825 .1600 .1410 .1170 .1005 .0811 .1259 .1501
[0, t8] .0048 -.0087 -.0007 .0005 .0081 .0013 .0008 -.0064 .0015 .0049

Table 3: Estimated parameters through sequential calibration to implied probability densities.

Cn Cp G M Yn Yp L2-dist. rmse
[0, t1] .01554 .009194 3.642 3.893 1.793 1.090 0 .0085
(t1, t2] .01837 .01979 2.419 3.802 1.723 .5679 .0004 .0091
(t2, t3] .01874 .01135 1.994 3.937 1.602 1.343 .0001 .0131
(t3, t4] .06310 .00970 2.950 4.452 1.025 1.608 .0006 .0148
(t4, t5] .09185 .02842 2.858 4.160 .9331 1.092 .0006 .0110
(t5, t6] .3549 .06817 3.585 4.290 .1570 .7200 .0009 .0070
(t6, t7] .7611 .1172 3.768 4.443 -.5122 .5164 .0012 .0074
(t7, t8] 1.436 .1980 4.043 4.475 -1.044 .1663 .0015 .0070

Table 4: Estimated parameters through sequential calibration to model premiums of implied distribution.

Cn Cp G M Yn Yp H1 rmse
[0, t1] .01554 .009194 3.642 3.893 1.793 1.090 0 .0085
(t1, t2] .01880 .02358 2.430 3.744 1.719 .4642 6.40e-6 .0080
(t2, t3] .02288 .008743 2.298 4.302 1.530 1.537 2.39e-5 .0124
(t3, t4] .07601 .01096 3.101 5.205 .9133 1.613 4.17e-5 .0138
(t4, t5] .09787 .03634 2.915 4.532 .9029 1.024 1.88e-5 .0101
(t5, t6] .3424 .07654 3.511 4.540 .1521 .7087 2.57e-5 .0061
(t6, t7] .9179 .1088 3.936 4.516 -.6630 .6100 4.10e-5 .0044
(t7, t8] 1.974 .1942 4.328 4.568 -1.301 .2523 6.31e-5 .0051
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Figure 1: Market quotes (“◦”), and model option premiums (“—” through sequential calibration to model premiums of implied
distribution).

Table 5: Estimated parameters through sequential calibration to market quotes.

Cn Cp G M Yn Yp rmse
[0, t1] .01554 .009194 3.642 3.893 1.793 1.090 .0085
(t1, t2] .04146 .006598 3.920 4.199 1.511 1.658 .0063
(t2, t3] .1024 .01019 4.449 5.062 .9928 1.647 .0076
(t3, t4] .08356 .01773 3.415 5.295 .9674 1.443 .0101
(t4, t5] .1477 .03298 3.295 4.685 .6863 1.148 .0083
(t5, t6] .5569 .08893 4.064 4.680 -.07991 .6549 .0050
(t6, t7] 1.242 .1186 4.239 4.626 -.8392 .5802 .0033
(t7, t8] 2.108 .2010 4.386 4.612 -1.348 .2388 .0042


