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Abstract  

Genomics today encompasses a range of powerful technologies which find application at all 

levels of gene expression from transcription to mRNA translation. Collectively, these 

technologies have great potential for improving drug discovery, both target and molecule 

recognition, and development. In this article we review the current and potential future 

status of established and novel genomic methods within drug discovery.  

Introduction 

Genomics is a tool that has been available to the scientific community for over a decade and 

was developed from the success of DNA sequencing technology [1]. Introduction of the 

microarray was a direct response to the wealth of cDNA probes that were first made 

available from mRNA library sequencing that demanded a high throughput format for their 

use. Sub-sequentially as whole genome information became available these cDNA probes 

were replaced by oligos designed against parts of the whole genome [2]. Therefore, though 

the microarray in various formats has been the technology driver, it is in essence only a 

small platform to allow the simultaneous use of multiple probes. Prior to the introduction of 

mRNA libraries and genome sequencing, the number of probes available to the research 

community did not justify a high density format such as the microarray. A second driver for 

genomics was the parallel development of computing resources which gave the required 

power of analysis, storage and transfer of data that allowed genomic science to develop. 

The two technologies were partners in enabling us to reach this 21st century point where 

the development of large quantities of information about gene expression in a given system 

is now a routine event [3]. What is still not such a routine event however is the 

interpretation of genomic data. Despite the access to numerous bioinformatic tools 

interpretation is still a human activity assisted by computation. 

There are three major arms to the application of genomics in new drug research and 

deployment; 1) discovery, 2) development and 3) personalisation. The first involves using 

the profiles of altered gene expression to find new targets and/or molecules, the second the 

assessment and evolution of these molecules into drugs, and finally matching individual to 
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drug [4,5]. This is often called personalising medicine and the desired benefits are two-fold, 

first a reduction in toxicity, particularly of adverse events, and second making sure the drug 

is likely to be effective [6]. For example this means ensuring that the drug target is 

expressed in the individual disease state. This is particularly important in diseases that can 

have very individual characteristics such as cancer.  

From the birth of genomics there was a great deal of interest in its potential to resolve 

difficult problems in drug development, in particular forecast of potential toxicity and 

species extrapolation [7] [8]. The most optimistic predictions stated that toxicity assessment 

in drug development would become an activity undertaken using genomics and in vitro 

systems alone early on in the development process. The data obtained through pattern 

matching to a database would be so indicative of the potential and type of toxicity 

associated with a new molecule in man that other forms of toxicity assessment would be 

unnecessary.  Thus, those compounds showing an ‘adverse’ gene expression profile would 

be deemed unsuitable for further development, while those that were ‘clean’ would 

advance [9]. The reality has been a little different and we are now at a point where 

genomics technologies are not generally viewed as a replacement science, but rather as a 

powerful tool in the armoury to assist in overall compound evaluation [10]. In addition, 

genomics enables the discovery and development of new biomarkers that give better 

warning of the occurrence of (adverse) reactions. 

Genomics has to date focussed more on the analysis of mRNA levels (transcriptomics). 

However the application of genomics within biology and drug development can be extended 

beyond this level [11]. Transcriptomics measures mRNA levels, which can be altered either 

by increased transcription or decreased mRNA degradation rate. Microarrays do not 

differentiate between these two possibilities. However another important mechanism of 

the regulation of gene expression has recently been discerned and occurs at the level of 

mRNA translation. Interest in this area has been driven primarily from the discovery of 

microRNA (miRNA) species and their functions in cellular biochemistry [12]. These small RNA 

species, while transcribed from the genome in the same manner as protein coding genes are 

not themselves transcribed into protein. Instead they control the rate of translation of 

mRNAs [13]. Genomics can be applied to both miRNA expression and mRNA translational 

analysis allowing a more complete picture of gene expression and regulation to be 

incorporated into the processes of drug discovery and development. 

This review is divided into subsections based on the major potential impact areas of 

genomics in drug discovery and follows the regulation of gene expression from the genome 

to the ribosome. As the technical processes of microarray manufacture, labelling etc are 

now well established these methodologies are not covered here except in brief for the less 

familiar analysis of miRNA species and mRNA translation. Figure 1 and table 1 present 

summaries of all the methods discussed here.  

Application of genomic technologies in drug discovery and development. 
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Array comparative genome hybridisation (ArrayCGH) 

Array CGH is the process by which gene copy number variations (CNVs) in DNA are identified 

on a whole or partial genome basis [14] [15]. Hybridised to the array is genomic DNA 

isolated from either fresh tissue or frequently now from archived samples. The degree of 

resolution for genomic change is dependent on the length of the probes on the microarray. 

Short probes spaced close together give the greatest resolution while longer probes such as 

those from bacterial artificial chromosome (BACS) give greater coverage [16]. The technique 

has been extensively employed in the identification of genomic change associated with 

tumor formation and progression, for example in breast carcinomas [17] [18]. Furthermore, 

the method has been utilised to map the extent of human CNVs that may contribute to 

adverse drug reactions. 

What is the value of ArrayCGH in drug discovery? First is the applicability of the method to 

archived tissue. Many valuable human studies are stored as archived paraffin blocks and 

extracting usable mRNA from these blocks for an expression analysis is difficult. Even when 

mRNA extraction is possible it is never an absolute certainty that the composition of the 

complex mRNA has not been altered by selective degradation, which will give rise to 

variable and false positive results. DNA is however a stable molecule and relatively easily 

extracted from archived paraffin block samples [19]. This gives rise to the possibility of 

screening such samples for genomic changes that may indicate new drug targets. The 

expression of genes of interest from such an analysis can be verified later using fresh tissue 

using fewer samples than might otherwise have been required.  

A potential application of ArrayCGH in drug development is for the recognition of aneugens 

and clastogens. Both types of chemical can give rise to numerical changes in gene numbers 

on affected chromosome(s). One example of a chemical giving rise to a change in copy 

number is 4NQO, which increases the copy number of the SV40 gene in immortalised CO631 

cells [20]. While this study was not conducted using an array analysis it indicates the 

potential applicability of ArrayCGH in this aspect of drug development.  

Recent studies employing the ArrayCGH method have shown that about 12% of the human 

genome carries CNVs [21], which could lead to differences in gene expression and 

potentially phenotype. Several disease states (review [22]) and acquired phenotypes such as 

drug resistance in cancer [23] are linked to CNV. CNVs have also been found in inbred 

laboratory mice [24]. The effect of copy number and subsequent gene dosage in mediating 

adverse drug reactions has not been investigated to any great extent though one partial 

deletion in Cyp2b6 has been described [25]. These data suggest that CNV alterations in 

genes responsible for metabolism of drugs could be responsible for altering 

pharmacokinetics, efficacy and may be partially or wholly responsible for some adverse drug 

reactions. This remains a substantially underexplored area but appears of critical 

importance both for drug development and usage in terms of personalized medicine. 
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Epigenetics  

The importance of epigenetic change in controlling the expression of genes has recently 

moved to the forefront of genomic analysis with the development of high throughput 

sequencing methods directed to the recognition of epigenomic change, in particular 

alteration of DNA methylation patterns [26]. Application of these methods led to the first 

full chromosome methylation analysis of three human chromosomes and represented a 

milestone in the analysis of epigenetic change [27]. On an array based format the technique 

of methyl cytosine (MeDIP) immunopreciptation coupled with analysis using a promoter 

region microarray allows the identification of those regions of DNA that have undergone 

methylation change in response to a altered state or drug [28]. However if changes in 

specific genes are of interest then direct sequencing combined with bisulfite treatment is 

probably a better option [29]. Global patterns of DNA methylation change on genes will be 

reflected in their gene expression profiles where transcriptomics has a major role to play in 

assessing the magnitude and type of these effects. Methylation changes are associated with 

several disease states and are frequently altered during cancer progression [30] [31]. DNA 

methylases mediating DNA methylation therefore make promising drug targets and several 

small molecule inhibitors have been developed [32] [33]. 

Transcriptional genomics 

The most widely applied of the genomics methods in drug development has been the 

analysis of gene transcription (mRNA levels) [11]. Whether using a one or two color system 

the approach is the same. The probe is a fluorescently labelled complex mixture of cRNA or 

cDNA derived from mRNA that is hybridised to an array containing the targets. Hybridisation 

is detected and quantitated by measuring the degree of fluorescence associated with each 

target [34,35]. Analysis of the resulting data has typically taken one of three protocols. First 

global analysis for profiles indicative of an event using multivariate mathematical techniques 

such as clustering or principal component analysis, or other network or self learning type 

approaches. Second, for single differentially expressed genes whose altered expression in a 

disease state can act both as biomarker of the disease and as a prognostic or pathological 

indicator. The protein products of these genes may offer the prospect of a new ‘druggable’ 

target. Finally pathway analysis where genes are treated in groups according to their roles in 

established biochemical pathways. There is overlap from the first analysis to the second, as 

multivariate approaches can successfully identify single genes which are discriminatory and 

potentially ‘druggable’. This approach requires the application of rigorous statistical tests to 

avoid false positives[36]. All these methods have the potential to deliver new drug targets 

through the exploration of differences in gene expression, for example a normal cell and 

one that is transformed. This is the process of target identification.  If a target is validated 

then the process of lead generation and optimization can begin.  There is often debate 

amongst genomic practitioners about the right approach to data mining. The opinion of 

these authors is that there is no single ‘right’ method. There is only a scale of appropriate 
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methods, the order of which will depend on the question being asked and the amount and 

type of the data.  

One such example of target identification is OGN (osteoglycin). Using transcriptomic analysis 

OGN expression was recently shown to be correlated with left ventricular cardiac mass 

(LVM). Increased LVM leads to cardiac dysfunction. The close association of OGM expression 

with LVM identifies it as a potentially druggable target for LVM therapy. The association of 

OGN with LVM relied on an inherited trait in a model (the rat) which could be accurately 

measured and then developing an expression quantitative trait locus (eQTL) whose 

significance of association with the phenotype could be ascertained [37].  

The above example illustrates how identification of a potentially druggable target in a 

disease can be undertaken. However can transcriptomics also be used to actually identify 

molecules that may have potential as drugs? Traditional drug development against a target 

such as OGN takes the form of a cell line being developed with expression of high levels of 

the target of interest usually coupled to a reporter system or assay. Compound libraries are 

applied, and molecules with pharmacological activity identified by the read out from the 

reporter. This method however has a fundamental disadvantage in drug discovery; it is a 

single target screening approach. If it is subsequently decided that another target is of 

interest then screening has to take place again utilising the new target. A more rational 

approach would be a generic screen utilising a non-hypothesis driven approach with the 

potential of identifying different pharmacologies.   

In 2006 Lamb et al [38] described such a method where gene expression profiles could be 

used to link pharmacological profiles to recognise novel pharmacology. This is known as the 

connectivity map and has been reviewed by Micknich [39]. Screening takes place in cell lines 

that have not usually been engineered to overexpress any form of drug target. Gene 

expression profiles in response to the chemical are derived at multiple concentrations and 

then ordered by up and down regulated genes. These are then matched to a database and 

commonality is indicated by the number of matched genes (Figure 2). Lamb et al [38,40] 

showed the applicability of this method to a number of drug molecules. The method of 

analysis was reviewed and modified by Zhang and Gant [41] to provide more statistical rigor. 

Recently the database of compounds has been increased substantially by Lamb et al 

(http://www.broad.mit.edu/cmap/). The net result of these efforts is the provision of a 

resource that allows non-hypothesis driven drug discovery and therefore has the potential 

to recognise novel pharmacology, or off target pharmacology in existing molecules. Zhang 

and Gant [41] tested the method on the estrogen receptor modulators and HDAC inhibitors 

using the data originally collected by Lamb and new data collected from public sources as 

the query signature. The new data was successfully used to identify not only estrogen 

receptor agonists from source data but also antagonists by virtue of negatively correlated 

gene expression maps. This can be argued to be a greater achievement than that with the 

estrogen receptor active compounds since the alteration of gene expression by HDAC 

http://www.broad.mit.edu/cmap/
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inhibitors may potentially be more generic than that with estrogen receptor modulators, 

and therefore difficult to identify. This testing shows the potential of the connectivity 

mapping for drug discovery. 

Similar methods have the potential to recognise adverse toxicology in new chemical entities 

(NCE). For example, it is possible that genotoxins may produce a common gene expression 

signature that can be used to recognized this particular activity in a NCE. However, the 

problem of generic signatures associated with cellular toxicity may render this analysis not 

possible. Thus connectivity analysis may only work acceptably when operated within an 

environment of a compound/nuclear receptor interaction where a specific set of genes 

under the control of the transcription factor recognition site will be activated. These 

hypotheses remain to be explored, but initial data derived by Zhang (not published) shows 

that the method has applicability. There is also a question of whether the biological system 

will allow the correct matching. For example, a compound that requires metabolic activation 

for an effect may not map correctly when the gene expression profile is generated in a non-

metabolically competent cell line. This is likely to be a problem more relevant to the 

recognition of toxicology using this method than recognition of pharmacology where activity 

is more often a property of the parent molecule. The limits of the methods will only be 

discovered with extensive further testing.  

mRNA splicing 

Alternated RNA transcript splicing is a common feature of disease states and results in 

altered proteins [42]. Differential splicing can, with care, be detected using microarrays 

utilising the same methods as for transcriptomics (Figure 3). The difference is that the 

microarray will contain multiple probes for each genes directed against the exons known or 

hypothesised to be differentially spliced [43](Figure 3). There are two major applications of 

such technology in drug discovery and development. If a particular splice variant of a gene is 

associated with a specific or particular disease then there is the potential to develop a 

molecule to target the variant protein. Given that virtually every gene has the potential to 

be alternatively spliced into multiple forms this area of disease biology greatly expands the 

portfolio of potential drug targets. However a great deal of further analysis utilising the 

methods above needs to be carried out to find and characterise those alternatively spliced 

mRNAs suitable as targets. This approach could also be used to screen for molecules that 

modulate alternative splicing, a recent example of which is digoxin [44]. Furthermore 

polymorphic profiles in splice variants can give rise to differential pharmacokinetics which 

can cause adverse drug reactions. 

Antisense and RNAi 

Identification of a transcript closely associated with a disease represents the possibility of a 

druggable target, and connectivity analysis the possibility of identifying a small molecule 

that may display the requisite pharmacological activity for the target [45]. Another approach 
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to modulation of the target is through the use of a biological therapeutic agent. One such 

biological drug approach is the direct antisense targeting of an mRNA strand using an 

oligonuleotide with the goal of causing mRNA degradation through activation of RNAses. 

Another approach is to use RNAi technology (RNAi = siRNA). Instead of using a single strand 

antisense molecule, RNAi utilizes a short (typically 23bp) double stranded RNA molecule 

which is activated by Dicer and incorporated into the RISC complex [46]. Upon binding the 

mRNA is then targeted for degradation by RNAses. Despite the appeal of antisense RNAi 

therapeutic theory only one such molecule has made it to the clinic, Fomivirsen (5’-

GCGTTTGCTCTTCTTCTTGCG-3’) which is an antisense oligo used for the treatment of 

cytomegalovirus retinitis [47]. Many more however are in clinical trials [48].  

Transcriptomics has particular application in the development of direct mRNA targeting 

therapeutic molecules, not just for the target identification but also for the recognition of 

off-target, or downstream mRNA effects. Similarly if downstream effects occur, for example 

on transcription rates, then these will be also easily recognised using whole genome 

profiling. RNAi transcriptomic analysis will be particularly important for RNAi technology 

where the mechanism of action relies on amplification through the RISC complex. This 

mechanism can be saturated in vivo preventing the normal processing of miRNA (the 

physiological equivalent of RNAi) species with undesirable consequences [49]. Both 

transcriptomic profiling of mRNA species and miRNA (see below) have potential in drug 

development for recognising these undesirable off target RNAi effects. 

miRNA and mRNA translation analysis in drug development 

miRNA species are the physiological equivalent of RNAi though their mechanism of action is 

a little different. miRNAs do not require complete homology to the mRNA sequence, 

utilising instead a 7-8bp target sequence in the 3’UTR of the mRNA to which they bind 

through the miRNA-RISC complex [50]. This leads to suppression of mRNA translation by 

repression of initiation or elongation [51] [13] rather than causing the mRNA to be targeted 

for degradation.  

 These small RNA species are transcribed from the genome in the same manner as protein 

coding genes and are under the control of many of the same transcriptional regulatory 

mechanisms [52]. Once processed and transported to the cytoplasm (for a review of miRNA 

biochemistry see [12] [53]) they have the potential to alter the translation of mRNA species 

to which they have complementarity. Thus, these genes have network properties whereby a 

differential expression in a miRNA can affect the protein expression of many downstream 

genes. The effect of this translational suppression on specific protein levels has been 

elegantly shown in two recent proteomic studies [54] [55]. Many studies are now 

demonstrating the importance of miRNA expression in normal physiology and development 

and in the alteration of gene expression during xenobiotic exposure and disease progression 

[56]. Genomic methods similar to those used for transcriptomic analysis can be used to 

identify differentially expressed miRNA species in a cell or tissue. The only essential 
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differences in the technique are that the labelling is altered to a form of end labelling 

because the miRNA species are short and lack a poly A tail [57] [58], and probes on the 

microarray can be altered to increase the stability of the hybridisation kinetics, for example 

by including locked nucleic acids [59,60]. Standard genomics methods can therefore be used 

to recognise druggable miRNA species. Furthermore, these species can be utilised as targets 

relatively simply by using the same technology as that for antisense methods. Antisense 

species to miRNA species are called ‘Antagomirs’ [61]. Additionally the miRNA may itself be 

employed as a drug. For example, expression of several miRNA species are downregulated 

in inflammatory skin conditions such as Psoriasis [62]. This suggests that these miRNA 

species may be involved with the normal physiological suppression of genes involved in the 

inflammatory process, and that if replaced may act to reduce the inflammation in such 

conditions by suppressing translation of the inflammatory genes [63]. This type of approach 

has been used successfully in cardiac hypertrophy [64] and the whole miRNA field has huge 

potential for future drug development built on a miRNA genomic analysis foundation [65]. 

Translationalomics 

Using transcriptomics to verify any off-target effects of a miRNA therapy is not as simple as 

that for siRNA because most miRNA species suppress translation and so do not cause 

degradation of the mRNA. Therefore off-target mRNAs may not be detected by a microarray 

measure of mRNA levels. What is required in this instance is a measure of mRNA translation. 

This can be achieved by using sucrose density gradients to separate the mRNA species under 

active translation followed by analysis on microarrays [66]. Great care has to be taken with 

the experimental design and in particular data normalisation to prevent the mistaken 

identification of transcriptional rather than translational events [67]. With this caveat 

however it is possible to use such methods to identify both on, and off, target mRNA 

transcripts undergoing translational regulation in response to the use of miRNAs or 

antagomirs as drugs.  

It is also becoming clear, primarily driven by research into the physiological roles of miRNA, 

that translational control represents a fundamental process in normal development and can 

be disrupted in disease states. Using the above technique it has been shown that mir21 

plays a role in the progression of colorectal cancer to a metastatic phenotype [68]. 

Furthermore Gabriely et al demonstrated that mir21 targets matrix metalloproteinases and 

by doing so promotes glioma invasion [69]. Therefore as proposed by these authors mir21 

appears to be a very good target for antagomir drugs. There is highly likely to be a great deal 

more development in this field and novel genomic methods will have a significant role to 

play in both discovery and development. 

Proteins, cell and plasmid ‘omics. 

Finally, there is another whole world of arrays that are constructed with plasmids, proteins 

(antigens and antibodies), glycoproteins, cells and even chemicals. All of these have 
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application in drug discovery and development, but are outside the scope of genomics. 

Many of these applications have been reviewed by Angres [70] and the interested reader is 

referred to this article. 

Conclusion 

Genomic analysis applied at the levels of the genome, mRNA and miRNA transcription and 

mRNA translation has application in all areas of drug discovery and development. Firstly for 

the recognition of ‘druggable’ targets, secondly for the identification of pharmacological 

potential, thirdly for identification of off target effects, and finally for the recognition and 

elucidation of toxic mechanisms. It is hard to see how a feasible drug discovery and 

development program can proceed without application of genomics in one or more of these 

areas.  
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Method Technology 
Use in drug 
discovery 

Use in drug 
development 

References  

Methylation 
analysis 

Methylation 
immunoprecipitation and 
microarrays/bisulfite 
sequencing 

New targets – 
disease related 
gene methylation 
changes 

Off target effects of 
drugs in the 
epigenome 

 [26,28,29] 

ArrayCGH 
Microarray  analysis of 
genome duplications 

New targets - 
Disease related 
alteration of gene 
copy number 

Detection of 
genotoxins causing 
aneuploidy or 
clastogenesis 

 [11,14,16,18] 

Transcriptomics 
Microarray analysis with 
conserved exon sequence 
targets 

Discovery of new 
drug targets 

Early detection of 
toxicity or 
unexpected 
pharmacology 

 [71-73] 

Splice variation 
Microarray analysis of target 
sequences for splice variants 

Discovery of new 
drug targets 

Adverse splicing 
related to drug 
exposure 

 [74-76] 

miRNA analysis 
Microarray analysis for 
mature miRNAs 

Disease specific 
miRNAs can act 
as targets for 
biomolecule 
drugs 
'Antagomirs' 

Altered miRNA 
changes related to 
drug exposure 

 [60,61,67,77] 

mRNA 
translation 

Density gradient and 
microarray based analysis of 
mRNA translation 

Discovery of new 
targets; validation 
of mRNA 
translation 

Altered translation 
resulting from 
cellular stress 
reactions/toxicity 

[78-
80] [81,82] 

 

 
Table 1. Applications of genomic technologies in drug discovery and development.
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Figure legends 
 
Figure 1 – From genome to protein. Control stages in the regulation of gene expression 
where different genome technologies can be applied in either a drug discovery or 
development mode.  
 
Figure 2 – Connectivity analysis. Pictorial representation of the manner in which 
connectivity analysis can be performed for the discovery of novel activity in small molecules 
using gene transcription profiles.  
 
Figure 3 – Splice variants as drug targets. Differential gene splicing during disease states 
giving rise to altered proteins represents a major area for the discovery of new drug targets. 
Splice variation can be discovered using sequences directed against different exons of a 
protein coding gene and microarrays provide the ideal format for the use of these target.     
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