
1. INTRODUCTION

Fault detection and prognosis of equipment is an estab-
lished technique in many industries worldwide today. Much
of the equipment monitored, such as pumps, diesel engines,
compressors, and electric motors, belong to the class of rotat-
ing machines and produce signals that are quasi-stationary
time series. The reliability, availability, and maintainability of
these machines are critical to the overall performance and op-
eration of many companies for maintaining their competitive-
ness in a global marketplace. It is clearly important to receive
warnings of problems before failure and outage occurs. Ro-
tating machinery produces signals that are random processes.
Examples of these are displacement measurements from prox-
imity probes, vibrations from accelerometers, sound from
acoustic emission sensors, and pressure signals from calibra-
tion gauges. Signals captured from rotating machines can be
used as indicators of the equipment’s health for fault predic-
tion and prevention. One way of achieving this is to use time
domain analysis,1 where statistical parameters are computed
and compared with baseline figures, as a change in these pa-
rameters may indicate imminent malfunction. An alternative
approach is using frequency domain analysis,2 where the spec-
tra of the faulty signals are compared with a baseline spectrum
obtained from machinery run in normal no-fault conditions.3,4

Power Spectral Density (PSD) estimation is performed
predominantly using classical techniques based on the Fast
Fourier transform (FFT). The FFT is the favoured method for
spectral analysis as it is well established and there are
Commercial-Off-The-Shelf (COTS) products which aid the
implementation of tools for frequency estimation of signals
as part of larger condition monitoring programs for fault de-

tection in machines. An alternative class of frequency estima-
tion methods is parametric modelling. The parametric ap-
proach is based on modelling the signal under analysis as a
realisation of a particular stochastic process and estimating
the model parameters from its samples. These methods are
commonly used in seismic analysis, stock market forecasting,
and in biomedical engineering.5 The usage of parametric
spectral analysis for fault detection and condition monitoring
of rotating machinery has remained low, mainly because the
order of parametric models has to be determined beforehand
to obtain good frequency estimates.

In recent years, there have been some investigators who
have applied the technique of parametric modelling for con-
dition monitoring investigations. Mechefske has employed
parametric modelling for fault detection of bearing faults.6-8

Mechefske has noted that AR modelling is especially useful
in low speed machinery, as recording long periods of data in
slow speed machines is impractical and the AR method is
particularly adequate in such cases, as it can work with short
data records and achieve better resolution than the FFT
method. He has acknowledged that finding the model order is
the most critical step in parametric modelling and has to be
accurately determined for power spectral density approxima-
tions. Dron9-12 has studied the usage of an AR modelling for
vibration analysis of a forming press for a conditional main-
tenance program. He has noted that parametric methods are
particularly worthwhile in the early detection of faults, espe-
cially when two typical frequencies are close to each other.
Also, he has acknowledged that the model order selection is
one of the major problems encountered when implementing
parametric spectrum analysis methods.

In a recent work in 2001, Wenyi Wang has effectively ap-
plied the Minimum Phase AutoRegressive (MPAR) approach
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for detection and diagnosis of gearbox faults for a helicopter
application at the Aeronautical and Maritime Research Labo-
ratory (AMRL).13,14 In 2000, Fang Wen also applied autore-
gressive modelling techniques for fault detection using heli-
copter data.15 It was noted in both studies, that the model or-
der selection was a crucial part of the investigations.

Clearly the problem of finding the model order is the big-
gest obstacle for any investigator who wants to apply para-
metric techniques for frequency estimation. None of the above
mentioned researchers performed a detailed study comparing
various different techniques for estimating the ‘correct’ AR
model order. This is the main issue addressed in this paper. It
is shown how the concern for finding the model order for
signals captured from rotating machinery can be allayed to a
certain extent by using the simple rule of thumb we propose.
This is stated as  where  is the minimumpmin = fs / fmachine pmin
AR model order,  is the sampling rate of the data, andfs

 is the rotating speed of the machine.fmachine

1.1. Problem Formulation
The testing environment for this study is a five-stage

‘Roots and Claw’ dry vacuum pump, which is a type of rotat-
ing machinery. Initial interest began in the project when AR
modelling was used for spectral estimation of vibration sig-
nals acquired from the pump and a suitable model order had
to be determined. Methods of order selection criteria such as
the Akaike Information Criterion (AIC), Final Prediction Er-
ror (FPE), Minimum Description Length (MDL), Criterion
Autoregressive Transfer-function (CAT), and Finite Informa-
tion Criterion (FIC) were computed to find the true order.16

On fine-tuning the methods used in that study, new and inter-
esting results were obtained. From the plots of order selec-
tion criteria, a remarkable trend was seen. Functions of all
above-mentioned order selection criteria had a steep decrease
at a certain order. This minimum order, , is a function ofpmin
the sampling rate, , and the rotating speed of the machine,fs

. This behaviour was found to be repeatable at differ-fmachine
ent sampling rates and different rotating speeds. The explana-
tion is simply that the minimum model order corresponds to
the number of samples collected over a full turn of the ma-
chine, that is, . The argument is supported by our resultspmin
and suggests that  can be used as an initial optimal orderpmin
for parametric modelling. Most of the tests were carried us-
ing the vibration signals from an ADXL105 micromachined
accelerometer.16 The vibration signals from this transducer
are representative of a true AR process, as can be seen from
their autocorrelation and partial autocorrelation plots. Experi-
ments were repeated in the same test conditions using vibra-
tion signals obtained from the pump with a Brhel and KjFr
(B&K) piezoelectric accelerometer. The statistical properties
of these signals, mainly the autocorrelation plots, were differ-
ent from the ADXL105 vibration signals. Though the B&K
vibration signal had a higher signal to noise ratio (SNR) than
the ADXL105 vibration signal, the B&K signal was not
modelled as well by an AR process as it had an autocorrela-
tion function which slowly decayed with time. Results for
these B&K signals are referred to in detail later in the text.

The proposed method was also validated on ADXL105
vibration signals obtained from a bearing which had a single
point defect on the inner race. Knowing the geometric di-
mensions of the ceramic bearings of the dry vacuum pump,

the characteristic bearing defect frequencies were calculated
from standard formulae available from the reference.4 For in-
stance, the BSF (Ball Spin Frequency), BPFO (Ball Pass Fre-
quency of Outer Race), BPFI (Ball Pass Frequency of Inner
Race), and FTF (Fundamental Train Frequency, also known
as Cage Frequency) were estimated to be around 464, 363,
530 and 40 Hz respectively when the pump’s running speed
was set to 100 Hz (taking in account a slippage factor of
2-5%). Results for the inner race defect frequency are dis-
cussed in more detail at the end of the paper.

Using the simple rule proposed here, it is shown how the
order of AR modelling can be easily determined for rotating
machinery such as the dry vacuum pump. It is hoped that this
may lead to increased interest for usage of AR modelling for
spectral analysis of signals from rotating machinery for con-
dition monitoring schemes.

2. THE CASE FOR THE AR METHOD

There are a number of practical considerations to take
into account when choosing a spectral estimator. Some of
these include its performance in terms of resolution, variance,
and potential for real time application. Strictly speaking, the
traditional FFT-based methods make the assumption the
process is periodic and stationary. In practice, processes are
not periodic and exhibit non-stationarity. The performance of
FFT tools degrades when applied to non-stationary signals.
One way to deal with non-stationary behaviour is to use
Short Time Fourier Transform (STFT) or Wavelet analysis.17

These techniques are more applicable to transient signals. AR
models exhibit superior performance for nonstationary sig-
nals18 than classical non parametric methodologies; and, since
AR-based spectral analysis can produce better spectral esti-
mates for short segments of data it is better able to character-
ise the time-varying behaviour of frequency estimates.

The maximum frequency resolution using FFT-based
methods is of the form:

                                      (1)f = fs
N .

For the AR power spectral density (PSD) estimator, the
resolution of processes consisting of sinusoids in white
noise19 is given by

                       (2)f = 1.03fs

p[SNR(p + 1))]0.31 .

The frequency resolution of the FFT technique Eq. (1) is
inversely proportional to frame size. The frequency resolu-
tion of the AR based method Eq. (2) is a function of the
model order, p and also the signal to noise ratio (SNR).5 The
main limitation of the FFT method is that it does not work
well for short data records and has a limited frequency reso-
lution. Also, the AR technique can work with smaller sam-
pling rates  compared to the FFT methods. All that is re-( fs)
quired is slightly more than Nyquist rate to produce good fre-
quency estimates, while the FFT method may need six or
seven times the Nyquist rate to achieve the same performance.
Also, because AR PSD estimators do not assume periodicity,
they do not exhibit spectral leakage behaviour which are in-
herent in the FFT-based methods that cause the side lobe
phenomenon which can mask weaker signals.19
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The main advantages of the FFT PSD are that it is com-
putationally efficient. The processing requirement of the FFT
method is proportional to . The processing require-N log2N
ment of the AR method mainly depends on two factors: first,
the estimation method implemented, and second, it is propor-
tional to , the square of the model order. The Yule-Walkerp2

estimation method is computationally less expensive than the
covariance or Burg method. However, it should be noted that
even the Yule-Walker algorithm is slower than the FFT
method. Schlindwein20,21 has estimated that the AR technique
is slower than the FFT technique by a factor of 2.58 for the
same sample size ( ) and processor (TMS320C25) us-N = 256
ing the Yule-Walker method. The main advantage of the AR
approach comes from the fact that it can work with smaller
sample sizes for the same resolution compared to the FFT
method. Hence, the AR technique only requires a fraction of
the samples that are required by the FFT method for the same
resolution, and it may cost less in terms of computational cost
as fewer samples are used. This is an advantage especially
for real-time applications.

2.1. Autoregressive (AR) Model 
In an AR model22 the current value of the series, , isx(n)

expressed as a linear function of previous values plus an er-
ror term , as given by Eq. (3) belowe[n]

                    (3)x[n] = −
k = 1

p
ak x[n − k] + e[n] ,

where  is white noise with zero mean and variance ,e[n] 2

p is the order of the model, and  are the autoregressive co-ak
efficients. Once the  coefficients of the AR model areak
known, , the AR power spectrum is given by Eq. (4)PAR( f)
where T is the sample period.

                      (4)PAR(f) = 2 2T

1 +
k=1

p
ake−j2 f kT

2 .

3. AUTOCORRELATION FUNCTION (ACF)

The autocorrelation function (ACF) is a statistical meas-
ure of the dependence of the time series values at one time on
the values at another time. The ACF of a discrete time series
is simply the correlation of the process against a time-shifted
version of itself. For the time series , Boxx(n) = 1, 2,¢, N
and Jenkins23 defined the autocorrelation as Eq. (5)

     (5)Rxx(k) = 1
N n = 1

N − k
x(n) − x(n) x(n + k) − x(n + k) ,

where  is the mean of the time series. The normalisedx(n)
value of the autocorrelation is given by Eq. (6):

                       (6)ACF (k) = rk =
Rxx(k)
Rxx(0) .

This definition is known as the ‘biased’ estimator of the
ACF. If the term N is replaced by  in Eq. (6), we haveN− k
the ‘unbiased’ estimator. The biased estimator is generally

preferred as it tends to have a smaller mean square error and
decays faster to zero than the unbiased estimator.24

Box and Jenkins23 suggested that the examination of the
behaviour of the autocorrelation function (ACF) and the par-
tial autocorrelation function (PACF) of a time series can give
information on the identification of the right type of model
for its analysis and also aid in the selection of the right model
order. The plot of the ACF is an indication of the randomness
in the data. The periodicity of a signal can also be seen in its
ACF plot. If a signal contains a periodic component with pe-
riod P, a peak in the curve occurs at integral multiples of P.
The ACF for an  model has form of exponential decayAR(k)
or a damped sinusoid or a mixture of both.23

3.1. Partial Autocorrelation Function (PACF)
It has been shown by Broersen25 that the true order of the

AR signal depends not only on the characteristics of the AR
process but also on the method of parameter estimation used.
In this study we have chosen the Yule-Walker method with
the Levinson-Durbin recursion to find the AR coefficients.5

The Yule-Walker method produces a biased estimate of the
residual variance; however, it has been shown that the effect
of bias on order selection is negligible.26 The Yule-Walker
estimation method was chosen mainly for its processing
speed.

The Yule-Walker method is based upon a set of linear
equations which relate the parameters of an AR model with
the autocorrelation sequence. If the order of the AR model is
defined as p, the Yule-Walker equations allow computations
of the  model parameters (the p coefficients and the vari-p + 1
ance) from the  autocorrelation coefficients by solving ap + 1
set of  linear equations.5p + 1

Partial autocorrelation function (PACF) is the normalised
autocorrelation that remains at lag k after the effects of
shorter lags ( ) have been regressively removed1, 2,¢, k− 1
from the autocorrelation function at lag k.19 The partial corre-
lation coefficients can be seen as negated autoregressive co-
efficients . The PACF helps to determine the order of the−ak
AR process. If a time series is an  process, then theAR(k)
PACF plot for the signal converges to zero for orders greater
than k.

3.2. Confidence Interval
For a time series of N observations, Bartlett’s approxima-

tion sets the 95% confidence region at .23 These ap-!2 / N
proximate confidence bounds provide limits to help judge the
statistical significance of the AR parameters calculated. If a
parameter is outside the confidence interval limit, then it can
be concluded that the true order of the AR process has not
been reached yet. Once they are within the limits, the resi-
duals of the model are white and the true order has been
reached.

4. ORDER SELECTION CRITERIA

The model order needs to be estimated as part of AR
power spectral density estimation. The trade-off between
resolution and variance is determined by the order in AR
spectra. Usage of too low a model order results in highly
smoothed spectra, masking the peaks of frequencies of inter-
est. Conversely, usage of too high an order increases the

S. Thanagasundram, F. S. Schlindwein: AUTOREGRESSIVE ORDER SELECTION FOR ROTATING MACHINERY

International Journal of Acoustics and Vibration, Vol. 11, No. 3, 2006 3



resolution and introduces spurious detail into the spectra be-
cause of spectral splitting. Spectral line splitting is a phe-
nomenon observed as a result of two or more closely spaced
peaks occurring in the spectral estimate where only one peak
should have been present. This behaviour was first docu-
mented by Fougere.27 He noted that extra poles were gener-
ated by additional AR parameters due to the usage of a
higher order than required. This had given rise to the spuri-
ous peaks. Choosing a model with the smallest order that de-
scribes the true spectrum is an important principle in model
selection and is referred to as the principle of parsimony. Es-
timation of the right order p is vital as usage of the wrong or-
der for spectral estimation can produce incorrect frequency
estimates.

Two of the order selection criteria used in this study to
generate the prediction error plots are Akaike’s Final Predic-
tion Error (FPE)28 and Akaike Information Criterion (AIC)29.
The third is Rissanen’s Minimum Description Length (MDL)
estimator30 and the fourth is a method proposed by Parzen,
the Criterion AR Transfer (CAT) Function31. These tech-
niques for estimation of the AR order are termed ‘asymptotic
information criteria.’ The performance of a more recent
method of order selection criterion, Finite Information Crite-
rion (FIC)26 was also investigated. FIC has been claimed to
perform better than asymptotic criteria when the ratio p/N
is large. The FIC criterion is defined by Eq. (11) where

 is the finite sample variance coeffi-vi = (N− i) / N (N+ 2)
cient for the Yule-Walker method.

                  (7)AIC(k) = ln( (k)2) + (2k + 1) /N ;

                        (8)FPE(k) = N + k + 1
N − k − 1 (k)2;

              (9)MDL(k) = (k)2 1 +
p + 1

N ln(N) ;

            (10)CAT(k) = 1
N j=1

k N − j
N (j)2 − N − k

N (k)2 ;

                  (11)FIC(k) = ln( (k)2 ) + 2
i = 1

p
vi .

The difference between the mean square errors of the ac-
tual signal and estimated AR signal is termed the prediction
error. The variance of prediction error of the AR model is de-
fined as

        (12)(k)2 = 1
N − p n = p + 1

N
x(n) +

i=1

p
aix(n − i)

2
.

The optimal model order in each case is the order k that
minimises the criterion given by Eqs. (7)-(11).

All these criteria were designed to reduce the probability
of under-fit at the cost of over-fit.25 They have an built-in
penalty factor term in them which increases with increasing
model order. The prediction error decreases with increasing
model order. The order selection criteria achieves a minimal
criterion value at the optimal model order. The criteria can
only be used as guidelines for initial order selection. They are
known to work well with computer generated synthetic AR

signals but may not work well with actual data, depending on
how well such data can be modelled by an AR process.19

There has been a lot of work published in the medical
field regarding the usage of model order selection criteria for
AR-based spectral estimation. Schlindwein and Evans have
applied AIC, FPE, and CAT model order criteria for spectral
analysis of Doppler ultrasound signals20 and concluded that
overestimating the model order is better than underestimating
it. They also noted that that using shorter frames (fewer sam-
ples) is more likely to produce an underestimation of the
model order. Another researcher, Anita Boardman,32 has used
most of the order selection criteria, as used in this investiga-
tion, to determine the optimum order for heart rate variability
from the spread of orders in histogram plots. In a much more
recent work in 2003,33 electroenterograms recorded from the
abdominal surface of Beagle dogs were used as test data for
AR-based spectral estimation. In that study, many frames of
data were analysed and the optimum order was chosen as the
order which had the highest probability of having the mini-
mum criteria values using the order selection criteria stated
above.

The task of finding the optimum order is not trivial. The
main difficulty arising from using the order selection criteria
arises from the need to apply the criteria to a large number of
frames of data. The optimum order cannot be determined by
applying it to one frame of data alone because that frame of
data might not be representative of the overall properties of
the signal. Many frames of data of the signal have to be ana-
lysed before the optimum order can be determined accurately
and conclusively. Some investigators work it out as prob-
abilities, while others use more graphical methods, such as
histograms. The process becomes rigorous with the require-
ment of the processing of orders for many frames of the signal.

Secondly, it is unwise to find the optimal order by the ap-
plication of one order selection criterion alone. It has been re-
ported by some researchers that certain criteria like FPE tend
to overestimate the model order.10 In an earlier work by the
authors, it was noticed that criteria like the MDL have the
tendency to underestimate the model order.16 It is advised to
test the performance of a combination of criteria, and if all
them select the same minimum order then that order can be
concluded to be the optimum order. It can be seen that the
task of finding the optimum model order is tedious and diffi-
cult. The main motivation for this work is to overcome this
problem, especially for rotating machines; and thus, establish
a formulation for . The application of the  methodpmin pmin
can ease the estimation of the minimum optimum order re-
quired for rotating machinery.

5. HARDWARE AND DATA ACQUISITION

This section contains a description of the test equipment
and instrumentation used for obtaining the test signals used
for the experiment. A multistage IGX dry vacuum pump
based on the ‘Roots and Claws’ principle was used as the ro-
tating machine. The schematic of the pump, the sensors used
for capturing the data as well as set-up of the data acquisition
system, is shown in Fig. 1. The speed of the pump, ,fmachine
was varied at a fixed 0 mbar loading factor and vibration sig-
nals were collected with different sampling rates. The theo-
retical values for  were worked out for the various speedspmin
and sampling rates and are given in Table 1.
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Two different types of accelerometers were mounted radi-
ally on the pump near the high vacuum end to capture vibra-
tion signals. One is a surface micromachined accelerometer
ADXL105. The other is a piezoelectric Brhel and KjFr
(B&K) 4370V accelerometer. The signals from the ADXL105
accelerometer were filtered with a Low Pass (LP) filter cus-
tom built in our laboratory. The filter is an 8th order elliptic
low-pass with a cut-off frequency of 10 kHz and attenuation
of almost 70 dB in the stop band. The vibration signals from
the Brhel and KjFr 4370V were conditioned using a Brhel
and KjFr 2692 preamplifier that includes a 10 kHz LP filter.
The analogue to digital conversion of the signals was per-
formed with a 16-bit NI 6034E ADC card. The signals were
sampled at 2 kHz because we knew that the fault frequencies
lie in the range from 0-1 kHz for the pump speed set to 50-
110 kHz. Varying lengths of the signals were used as per our
requirements for determination of the minimum order. Most
of the analysis done in the study was carried out using the
ADXL105 vibration signals.

Table 1.  shows the theoretical  valuesNs = pmin = fs / fmachine pmin
which are the same as the number of sample points per revolution
calculated for various rotating speeds and sampling rates.

831/3500060
662/3400060
331/3200060

505000100
404000100
202000100

Ns
(Number of sample points

per revolution)
 (Hz)fs (Hz)fmachine

6. RESULTS AND DISCUSSION

6.1. ADXL Signal at Increasing Rotating Speed
Order selection criterion values were calculated using the

AIC, FPE, MDL, CAT, and FIC equations (Eqs. (7)-(11)) for
the vibration signals obtained from the pump using the
ADXL105 accelerometer. When data was acquired for the
analysis to generate the diagrams in Fig. 2, the speed of the
pump, , was kept at 100 Hz. The sampling rate, , wasfmachine fs
2,000 Hz for Figs. 2(a)-(c).  is 20 (refer to Table 1). Onlypmin
the frame size N was varied. Looking at Fig. 2(a), it can be
seen that the behaviour of all order selection algorithms was
very similar. Initially they showed a dramatic drop in their
criterion values. Then this decrease becomes more gradual.
The point where this occurs is the  order of 20. The crite-pmin
rion curves then flatten out and remain relatively constant un-
til order 40 ( ) is reached, where the curves for the 5th2pmin
order selection criteria show another sudden decrease. A
third slight decrease in the criterion values is again observed
at , at order 60. After order 60 there is no further ‘step’3pmin
decrease in prediction error.

From the above we can conclude that there is a relation-
ship between the prediction error (all the order selection cri-
teria are functions of the prediction error) and the number of
samples per revolution  (which is the same as ). It isNs pmin
expected of the prediction error of an AR model to decrease
monotonically with the order, but looking at Fig. 2(a), we can
clearly see that the decrease in prediction error has occurred
in step changes at multiples of . For Figs. 2(b) and (c),pmin
the criterion values do begin to increase. This effect is more
clearly seen in Fig. 2(c). This happened because the frame
length was decreased from 4 to 1 and 0.25 s, respectively.
The number of samples N used for the order selection estima-
tion has an effect on the behaviour of the criteria. If the ratio
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Figure 1. Schematic of the complete data acquisition system. The ADXL105 and Brhel and KjFr 4370V accelerometers were mounted radi-
ally on point marked X on the dry vacuum pump, near the high vacuum end. The microphone was attached in the vicinity on the high vac-
uum end.



 is large, then the penalty factor inbuilt in each of theseN / p
order selection criteria has a greater effect. This explains the
increase in the values observed in Fig. 2(c) where a small
frame size was used. So, clearly the order selection criteria
are dependent on the number of samples. Even then, if one
looks closely at Fig. 2(c), one can see small kinks occurring
at 20, 40, and 60, which are multiples of . If one werepmin
to choose an optimal order for AR modelling, looking at
Figs. 2(a)-(c), one can say that the order cannot be less than
20, which is . There might be an argument for choosingpmin
order 40 as there is a further slight decrease in the prediction
error. Choosing an order above 60 is not worth the additional
complexity as the small benefit of a better fit gained is not
worth the large increase in the computational power required.
Hence we can say that the ‘knee of the curve’ has occurred at
order 20, and one may choose either order 20 or order 40.

Figure 2. Behaviour of order selection criteria for analysis of
ADXL105 vibration signals. The speed of pump  was fixed atfmachine
100 Hz. Sampling rate remained constant at 2,000 Hz but the length
of frames was set at 4, 1 and 0.25 s, respectively, for figures (a) to
(c) in that order. For (d) and (e) the length of frame was 4 s, but
sampling rate was 4,000 Hz for (d) and 5,000 Hz for (e).

Figure 3. The speed of pump  was 60 Hz. Sampling rate fmachine fs
remained constant at 2,000 Hz, but the length of frames was set at 4,
1 and 0.25 s, respectively, for figures (a) to (c), in that order. For (d)
and (e) length of frame was kept constant at 4 s, but sampling rate
was 4,000 Hz for (d) and 5,000 Hz for (e).

When the sampling rate is increased to 4,000 and 5,000 Hz,
the value of is 40 and 50, respectively. In Figs. 2(d) and (e),
we can observe kinks occurring at multiples of 40 and 50,
supporting the hypothesis. The speed of the machine

 was decreased to 60 Hz and the same experimentalfmachine
procedure was repeated. The results are presented in Fig. 3.
The same kind of analysis as that discussed above can be
used to explain the results. However, there was one effect to
be noted. The size of the steps in the prediction error changed
with the speed of the machine. The drop in prediction error
was much less for 60 Hz than for 100 Hz. The knee of the
curve occurs at smaller multiples of the  value. Lookingpmin
at Fig. 3(a), we can say that the knee of the curve has oc-
curred at around 33 (the sampling rate was 2,000 Hz and
speed of machine was 60 Hz). If one had no knowledge of
the order selection criteria, we propose that the optimal order
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could be estimated from the  formula because the orderpmin
selection criteria also predict orders close to this value. It
should be noted that if a higher speed of machine were used,
then there would be some advantage in using twice or thrice

 because of the characteristic behaviour we have ob-pmin
served.

6.2. ACF and PACF Plots for ADXL Signal 
at Increasing Rotating Speed

Statisticians use ACF and PACF plots to predict the
model order of AR models. Figures 4(a) and (c) show the
ACF plots of the vibration signals from the ADXL105 when
the speed of the pump  was set to 100 and 60 Hz, re-fmachine
spectively. The corresponding PACF plots are shown in Figs.
4(b) and (d). The periodicity of the pump can be clearly seen
in the ACF plots. The repetitive peaks occur at 20 and 33.3,
accordingly. Looking at Figs. 4(a) and (c), it can be seen that
ACF has a periodic behaviour with the periods occurring at
multiples of . The envelope between the repetitive peakspmin
is a decreasing exponential. It is to be noted that as the speed
of the machine is increased, the process resembles more a
true AR process. This can be seen in the well-defined ACF
plot in Fig. 4(a). The order of the process is the point where
the PACF plot cuts off. We have used the 95% confidence
limit to judge the point where the function has died off. Re-
ferring to Fig. 4(b), we can see spikes occurring at 20, 40,
and 60. At orders (or lags) above 60, the PACF becomes like
white noise. The same behaviour is observed in Fig. 4(d).
Here the spikes occur at multiples of 33.3. The amplitudes of
the spikes decrease and there is a more marked decrease as
the speed of the machine increases. An optimal order for
Fig. 4(d) would be 33 and this is the  value for the vibra-pmin
tion signal at that sampling rate and machine speed (refer to

Table 1). This is in line with the behaviour we observed with
the order selection criteria plots.

6.3. ADXL Signal Spectrum 
 Effect of Increasing Frame Length−

This section explores the effect the frame length has on
frequency resolution of the AR frequency estimates. We used
the optimal model orders we had determined earlier using the
order selection criteria and PACF plots and check whether
they are the right orders required to model this ADXL vibra-
tion signal’s basic behaviour. For Figs. 5 and 6, the speed of
the pump, , was fixed at 100 Hz. The sampling rate, ,fmachine fs
was 2,000 Hz. The only difference between Figs. 5 and 6 is
that a frame length of 0.25 s was used for the former and 4 s
for the latter. As the order was increased from 20 to 60, the
resolution of the spectra improves. But as order is increased
from 60 to 80, there is not much improvement in terms of
resolution, but only a slight increase in the PSD variance. In
fact, Figs. 5(c) and (d) look very similar. Hence, order 60 is
sufficient for this machine speed and sampling rate. The
Welch method, an averaged modified FFT periodogram, was
used to obtain Figs. 5(e) and 6(e). A Hamming window and
50% overlap were used to obtain these frequency estimates.
The frame size used was  and 8,000 samples forN = 500
Figs. 5(e) and 6(e), respectively. The sizes of the sections
were 256 and 4,096 accordingly. There is a remarkable dif-
ference between the spectra in Figs. 5(e) and 6(e). The rea-
son for this is that a much larger frame size N was used in
Fig. 6(e) than in Fig. 5(e). Hence, the strong dependence of
the FFT-based methods on frame size is clearly observed. It
is well-known that FFT-based techniques require large frame
sizes to provide accurate frequency estimates. AR-based
techniques can work with smaller frame sizes, and hence, lead
to an improvement in the time resolution.
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Figure 4. Speed of pump  was set at values as those indicated in the figures. ADXL105 vibration signal acquired at a sampling rate fmachine fs
of 2,000 Hz. Length of frames was 2 s. Horizontal lines denote 95% confidence interval level. (a) 100 Hz (ACF), (b) 100 Hz (PACF),
(c) 60 Hz (ACF), and (d) 60 Hz (PACF).



Figure 5. Spectra of ADXL105 vibration signal. Speed of pump 
 was 100 Hz. Sampling rate  was 2,000 Hz. Frame lengthfmachine fs

was 0.25 s. Figures (a) to (d) show AR frequency estimates of order
20, 40, 60, and 80, respectively, (e) shows FFT frequency estimate
obtained using the Welch method.

6.4.  and  (B&K) Vibration Signals Br ..uel Kj r
at 100 and 60 Hz

Comparisons are also carried out with the Brhel and KjFr
vibration signals. This accelerometer has a frequency re-
sponse from 0 to 4,800 Hz and a smaller noise density speci-
fication of 0.02 mg/Hz (where g is the acceleration of gravity)
compared to the ADXL105 accelerometer. The SNR of the
vibration signal obtained using the Brhel and KjFr acceler-
ometer is higher than that of the ADXL vibration signal. It
was investigated whether the proposed technique would also
work with this signal. Results are shown in Figs. 7 and 8.
The same behaviour is observed. Our formulation for where
the optimal order would occur also works for this signal. But
the decrease in prediction error at multiples of   is lesspmin
marked, as the SNR of this signal is higher. Also, the Brhel

Figure 6. Spectra of ADXL105 vibration signal. Speed of pump 
 was 100 Hz. Sampling rate  was 2,000 Hz. Frame lengthfmachine fs

was 4 s. Figures (a) to (d) show AR frequency estimates of order 20,
40, 60, and 80, respectively, (e) shows FFT frequency estimate ob-
tained using the Welch method.

and KjFr vibration signals are not modelled as well by the
AR process because they have a slowly decaying ACF func-
tion (Fig. 7(b)). For 100 Hz, the optimal order is at 40

 as the speed of the machine was high, and at 60 Hz,(2pmin)
the optimal order is exactly at .pmin

6.5. ADXL Results from a Signal 
with an Inner Race Fault

The proposed method was validated with ADXL105 vi-
bration signal obtained from the pump fitted with a bearing
which had an inner race fault. Spectra were plotted for the
signal using both AR and FFT techniques (Fig. 9) for frame
sizes of  samples. In order to aid fault detection, theN = 400
ADXL105 vibration signal from the faulty bearing was de-
modulated prior to spectral estimation using High Frequency
Resonance technique (HFRT)34 to strengthen the weak impulse
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Figure 7. Vibration signal from Brhel and KjFr (B&K). Speed of
pump  was 100 Hz. Sampling rate  was 2,000 Hz. Framefmachine fs
length was 2 s. (a) Order selection criteria, (b) ACF plot, and
(c) PACF plot.

signals which are typical of bearing faults. The inner race de-
fect frequency (BPFI) of 530 Hz is clearly evident in both
FFT and AR spectra. For the AR spectra, a model order of 20
was used. This was equivalent to its  value and the sig-pmin
nal  was 100 Hz. The sampling rate  was 2,000 Hz.fmachine fs
The AR model order estimated by the  formula was suffi-pmin
cient to encapsulate the behaviour of the signal captured from
a bearing fault and it can be seen that this method also works
well on these faulty signals.

7. CONCLUSIONS

This paper presented a simple way of finding the opti-
mum order for an AR model for the analysis of data from ro-
tating machinery and justified the claim with experimental
testing in several situations. The suggested AR model order 

 is the number of sample points correspond-pmin = fs / fmachine
ing to one shaft revolution. This finding is not surprising as
the AR model can be seen equivalent to the standard multiple
linear regression model. A current sample of the signal is es-
timated as a linear summation of p previous samples, where p
is the model order. Hence, the number of samples used for
the regression must be equal to at least the number of samples

Figure 8. Vibration signal from Brhel and KjFr (B&K). Speed of
pump  was 60 Hz. Sampling rate  was 2,000 Hz. Framefmachine fs
length was 2 s. (a) Order selection criteria, (b) ACF plot, and
(c) PACF plot.

Figure 9. Spectra for ADXL105 vibration signal obtained from a
bearing with inner race fault. Speed of pump  was 100 Hz.fmachine
Sampling rate  was 2,000 Hz. A sample size of  samplesfs N = 400
was used. Spectra plotted using both AR and FFT techniques. The
BPFI (Ball Pass Frequency of Inner Race) is clearly evident in both
spectra. A model order of 20 was used for the AR spectra as sug-
gested by the  value.pmin

in one complete revolution of the signal for the prediction er-
ror to be low. This is the minimal model order.

Results show that the method is an excellent indicator of
what the initial order should be. From the results presented
the following concluding remarks can be made:
1. AR modelling can be used for spectral analysis in condi-

tion monitoring mainly because of its ability to work with
smaller frame sizes and yet achieve a resolution improve-
ment compared to FFT techniques.
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2. AR modelling can be effectively used for fault diagnosis
as the optimal order can be found easily with the formula 

 we have proposed here.pmin
3. This simple rule of thumb does not replace traditional or-

der selection criteria, but can be used as a ballpark mini-
mum figure for the optimal order.

4. It was noticed that as the speed of the machine increases,
it might be advantageous to use twice or thrice the pmin
order.

5. This formula also works with signals with different SNR.
6. In this work, the AR model was constructed for a test en-

vironment with a fixed loading factor. If there are changes
in the loading factor, it is anticipated that the performance
of the proposed technique still remains the same. The cal-
culation of  still applies as increasing the loading fac-pmin
tor of the pump only increases the level of the strength of
the vibration felt by the pump. The number of basic har-
monics of the fundamental shaft frequency in the AR
spectra remains the same, hence, the minimum order is
also expected to be the same.
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