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ABSTRACT 

A model for the flow around bluff bodies has been developed. It 
is applied to an investigation of parachute canopy aerodynamic 
characteristics. Since the model assumes an axisymmetric 
incompressible high Reynolds number flow, it is only applicable to 
the calculation of aerodynamic characteristics at zero angle of 
attack. 

The flow is assumed to separate from the canopy'at its surface 
discontinuity, i. e. the canopy hemline. The vorticity created in 
the boundary layer over the canopy upper surface is carried 
downstream, forming a free shear layer. 

in the flow field vorticity is confined to the this shear layer, 
outside it the flow is irrotational. Consequently, in this part of 
the fluid field a velocity potential can be defined. 

The wake flow created by bluff canopies is found to consist of a 
cluster of vortex rings which are shed periodically to the wake. 
Consequently, the axial aerodynamic force developed on the canopy 
will exhibit periodic behaviour. The resulting Strouhal number, 
has been determined to be about 0.13, based on the canopy 
projected area diameter. 

For all axisymmetric bluff canopies considered the calculated 
mean axial force coefficient, based on the canopy projected 
diameter, was found to be between 1.20 and 1.45. These values, 
together with the calculated pressure distribution and the wake 
flow periodicity, are in good agreement with known experiments. 
For parachute canopies performing an oscillatory axial motion the 
calculated results compare well with experimental data. However, 
it is shown that Morison's formula for this axial force is, 
generally, inadequate. 

Limited calculations of axial forces developed on the inflating 
parachute canopies agree with the sparse experimental data 
available. 

In the model the real flow field is simulated, basically, by a 
potential model. 

The canopy surface is replaced by a vortex ring panel lattice. 
Each panel contains a circular bound vortex ring which is located 
at one quarter panel length. For each panel the flow boundary 
conditions on the canopy surface are fulfilled along a control 
circle at three quarters of the panel length. 

A standing eddy which is generated by the high back-flow 
developed near the canopy hemline, on the canopy under surface is 
simulated by a standing vortex ring. 

The simulation of a two-dimensional discrete vortex separated 
wake is extended to the axisymmetric case by representing the 
separated wake with axisymmetric discrete vortex rings. The free 
shear layer emanating from the canopy hemline is represented by 
discrete free vortex rings which leave the canopy surface 
tangentially. At each time step in the calculation process a 
newly-created vortex ring is shed to the wake. 

In the vortex modelling of the separated wake a number of new 
elements have been introduced: 

-improvement of the near wake simulation by accounting for 
the standing eddy on the canopy under surface; 

. -a simple method of calculating the newly created vortex 
ring strength & location; 

-reduction of the free parameters from two, the time step and 
the number of panels representing the canopy surface to 
one, i. e. the number of panels. 
Further model validation & implementation have been suggested. 

Methods of model development for asymmetric canopy representation 
have been discussed. 
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1. INTRODUCTION 

Parachutes are the most common form of aerodynamic 

decelerators, but although they are widely used the 

techniques available for their aerodynamic design are very 

limited and are mainly experimentally based. 

The pressure distribution developed on the parachute 

canopy is affected by several factors, the most important 

among them being: 

-the unsteady wake flow behind the canopy; 

-the canopy basic shape, e. g. square, round, cross etc; 

-the canopy shape changes which result from the 

fluctuations in pressure distribution; 

-canopy porosity. 

Due to the complexity of the flow around bluff canopies, 

analytic determination of the aerodynamic loads presents a 

serious challenge to the designer and only in the last 1-2 

years have encouraging results, based on relatively recent 

techniques, been reported. 

The purpose of this research is to develop a method for 

simulating the flow around an axisymmetric bluff body. The 

method is applied to investigate the flow field and calculate 

the aerodynamic loads on bluff parachute canopies in both 

steady and unsteady flight. 

The basic assumptions are: 

-the canopy is axisymmetrical; 

-its angle of attack is zero; 
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-the flow is incompressible and its Reynolds number is 

high. 

The approach adopted is to simulate the unsteady, 

separated flow by using a potential flow model. 

In this model the canopy surface is replaced by a bound 

vortex sheet and the shear layer carrying fluid of high 

vorticity from the under, unwetted, surface part of the 

canopy leaves the canopy surface tangentially at the hemline. 

The free part of this shear layer, which envelops the wake is 

simulated by a free discrete vortex sheet. The standing eddy 

developed by the high back-flow in the vicinity of the 

separation line on the canopy under surface is modelled by a 

standing vortex ring. 

The fluid flow viscous effects are considered by letting 

the flow separate along the canopy hemline and by assuming 

small regions of concentrated vorticity in the cores of the 

ring vortices forming the free vortex sheet. Outside these 

small regions of concentrated vorticity the flow field is 

irrotational. 

The flow about two-dimensional bluff bodies has been 

throughly investigated, both theoretically and 

experimentally. Its simulation is based on Kirchhoff's free 

stream-line theory and on Prandtl's boundary layer concept. 

Von Barman's vortex street revealed the wake flow 

periodicity. The numerical investigation of the separated 

two-dimensional wake has been facilitated by Rosenhead's 

pioneering work. Among other contributions, these 

fundamental works will be reviewed later. However, unlike 



-3- 

two-dimensional bluff body flow, few investigations have been 

made into flow around bluff three-dimensional bodies. 

The three-dimensional flow complexity will here be 

considered in its simplest form i. e., axisymmetric flow. 

Thus, this research is considered to be a necessary first 

step in understanding flow phenomena which occur around 

three-dimensional bluff bodies, particularly when flow 

separation from those bodies is determined by salient edges. 

It provides a significant improvement of the existing 

aerodynamic design techniques for parachute canopies. 

The thesis consists of five parts: 

In part -I-, chapters 1-2, are presented some of the basic 

phenomena which occur in separated flow. 

In part -ii-, chapter 3, experiments on separated flow 

about three-dimensional bodies and methods for simulating 

the flow around such bodies are reviewed. 

In part -III-, chapters 4 and 5, the nature of the 

proposed model and the calculation method are outlined. 

In part -IV-, chapter 6, the results obtained from the 

numerical investigation and the model sensitivity are 

considered. 

In part -V-, chapters 7-9, the research is summarised and 

possible directions for the present model validation & 

development are suggested. 
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2. WAKE FLOW - PHYSICAL BACKGROUND 

To emphasise the main characteristics of the flow about a 

bluff obstacle, a disk moving through an unbounded fluid at a 

constant velocity with its surface normal to the velocity 

will be considered. 

At very low Reynolds numbers (Re «l) the flow is attached 

to the disk. 

At higher Reynolds numbers the fluid carrying vorticity 

from the upper surface side of the disk to the under surface 

gives rise to a vortex ring in an identical manner to the 

development of a vortex in two-dimensional flow described by 

Prandtl & Tietjens (1954 article 93). This vortex ring is 

continuously supplied with vorticity carried from the under 

surface part of the disk and it diffuses vorticity at the 

rear. 

A further increase in the Reynolds number causes 

variations in both the vortex ring's length and its 

thickness. 

Above a certain Reynolds number the equilibrium between 

the vorticity which is supplied to the vortex ring and that 

diffused from it can no longer be maintained and the result 

is, as Rosenhead (1931, a) noticed, "a sheath of vorticity 

which is unstable and breaks up. The way in which this sheath 

breaks up is arrived at by regarding the surface of 

discontinuity as a series of vortex rings packed closely 

together". 
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The present research is concerned with flow at these high 

Reynolds numbers when the flow is characterized by an 

unstable free shear layer spreading from the salient edges of 

the bluff body. At high Reynolds number flow this shear layer 

is thin and the viscous decay in it can be neglected. 

The free shear layer, which separates from the disk at its 

edge and which thereby creates a surface discontinuity, 

encloses a volume of fluid which moves at a much lower 

velocity than that of the free stream. It tends to close and 

reattach. During this process the layer becomes unstable and 

rolls up to form "packages of vortex rings" [Rosenhead 1931 

a]. 

These vortex ring packages are shed at more or less 

regular intervals downstream into the wake. The part of the 

wake which is bound by the unwetted body surface and by the 

region where the shear layer tends to close and where the 

"vortex rings packages" are shed is henceforth defined as the 

near wake. Figure 2.1 shows schematically the near wake flow 

field structure. 

Due to the strong movements of the fluid immediately 

downstream of the the near wake the flow there becomes 

turbulent. However, due to viscous dissipation, this flow may 

relaminarise [Batchelor 1967,5.13] further downstream. 

Since the near wake makes the main contribution to the 

pressure distribution the fundamental purpose of this 

research is to simulate the near wake fluid flow. 

As pointed out by Batchelor [1967,5.101, the free shear 

layer emanating from the separation line leaves the body 
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surface tangentially. The vorticity, shed from the boundary 

layer on the under surface of the disk, is convected by this 

shear layer at an average velocity of about one half of that 

at the outer part of the shear layer (figure 2.1). According 

to Kirchhoff's free streamline theory, reviewed in section 

3.2 and Page & Johansen's 1927 experiments, reviewed in 

section 5.6, the ratio between the velocity at the outer part 

of the free shear layer and that of the free stream will be 

in the range of 1.0-1.4. Therefore, the average convective 

velocity is anticipated to be about 0.6 of the free-stream 

velocity. Because of the velocity which is induced by the 

moving shed vortices the fluid velocity at any given point is 

time-dependent. Therefore, a separated flow is always 

unsteady, regardless of any variation in the free-stream 

velocity or in the body shape. 

Due to its very small radius of curvature, at the salient 

edge the velocity is much larger than the free-stream 

velocity. Immediately downstream a strong back-flow occurs 

and this results in a "standing eddy" [Batchelor, 1967,5.10) 

formed behind this edge. Physically, this eddy is "standing" 

only when its average centre velocity is compared with the 

free stream velocity. As will be shown in chapter 4 and in 

section 6.1.4, this standing eddy, which apparently has been 

neglected in the known flow simulation methods, makes a 

significant contribution to the aerodynamic load 

determination. 
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vo 

FIGURE 2.1: A SKETCH OF THE FLUID FIELD IN THE NEAR WAKE 
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3. THE FLOW AROUND BLUFF BODIES - LITERATURE REVIEW 

The inability of potential flow to predict the drag 

occurring in steady flow (D'Alembert's paradox) has 

challenged the fluid dynamicists since the middle of the 

previous century. 

Most of the research effort has been dedicated to 

two-dimensional flow and relatively few results, either 

experimental or theoretical, are applicable to 

three-dimensional flow. 

On this ground a legitimate question is why not apply 

research results for the flow about two-dimensional bluff 

bodies to three-dimensional flow or, at least, for 

axisymmetric flow ? 

The answer to this question lies in the significant 

differences in the behaviour of the fluid elements and 

consequently the vortex tubes in two main cases. For example, 

stretching of fluid elements can not occur in a 

two-dimensional flow. 

This can be understood from the vorticity transport 

equation for a constant viscosity fluid [Chia Shun Yih 1969, 

2.4): 

Dw 
-= 

Wvý 
+ vvw 3.1 2 

Dt 

In two-dimensional flow the first term on the right side 

of equation 3.1, which represents the fluid element 
deformation, is identically zero and therefore, at high 
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Reynolds numbers when the fluid viscosity can be neglected 

(this is mathematically exact when the Reynolds number equals 

infinity) equation 3.1 reduces to: 

Dw 
--03.2 
Dt 

Since, in inviscid, two-dimensional flow the vorticity of 

a fluid element remains constant and no stretching of vortex 

elements can occur. 

An additional significant characteristic of 

three-dimensional vortex filaments/tubes (Batchelor 1967,7.1 

and section 4.2 of this work) is the self-induced velocity. 

It was found that for a circular vortex ring the self-induced 

velocity direction is parallel and opposite to the 

free-stream velocity and its average magnitude is about 

0.25Vm (Batchelor 1967,7.2]. As a consequence of these two 

variations in fluid particle behaviour there are significant 

differences between two-dimensional and three-dimensional 

wake flows. 

At Reynolds numbers which are characteristic of 

engineering situations the wake flow pattern of a 

two-dimensional bluff body is dominated by the well known 

vortex street, while the flow pattern in three-dimensional 

flow at the same Reynolds number is rather different (figure 

3.1). It is therefore clear that great care must be 

exercised before results obtained in a two-dimensional flow 

are applied to the axisymmetric case. 

An important feature of separated flow caused by a surface 

discontinuity, such as the canopy hemline, is the weak 
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dependence of the wake flow on Reynolds number. 

The boundary layer separation region from a smooth wall is 

determined by interaction between the outer, potential flow 

and the viscous flow on the surface region. It is in this 

process that the flow Reynolds number makes an impact on the 

wake flow [Chang K., 1970,1.2.2]. 

When separation is forced by a salient edge such as the 

canopy hemline the high velocity gradient at this edge "would 

separate any boundary layer" [Lighthill M. in chapter 2 of 

"Laminar Boundary Layers" edited by Rosenhead L. in 19631. 

Thus for a disk the drag coefficient is independent of 

Reynolds number when the latter based on the disk diameter, 

is higher than about 100. By contrast the drag coefficient 

for a sphere manifests a strong dependence on Reynolds number 

[Streeter V. L., 1966]. A similar statement on the flow about 

bluff bodies was postulated by Ericsson G. (1980) when he 

reviewed experimental investigations of two-dimensional flows 

around bluff bodies. 

Thus, in conclusion, when separation is caused by a 

salient edge experimental data can be applied over a wide 

range of Reynolds numbers, i. e. Reynolds numbers between the 

order of one hundred and infinity. 
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3.1 EXPERIMENTAL INVESTIGATION OF THE 

AERODYNAMICS OF THREE-DIMENSIONAL BLUFF BODIES 

Eden (1911) presented the earliest flow visualization 

about three-dimensional obstacles. 

By using the very basic equipment available at his time he 

found that the wake flow behind a square plate immersed in 

both water and air was periodic. The vortex wake 

configuration which he obtained is sketched in figure 3.1. 

The Reynolds number based on the square side, was about 100. 

When flow visualization pictures are analysed, since it is 

very difficult to achieve a truly axisymmetric flow in 

experiments, it is therefore reasonable to assume that the 

flow is, to some extent, asymmetric. In such a flow, the 

fluid particles reach the separation line after following 

unequal paths which commenced at the stagnation point. It is 

therefore conceivable that the shed vortex rings do not 

possess a uniformly-distributed circumferential vorticity. 

Moreover, when the vortex ring is shed from an 

non-axisymmetrical shape, such as Eden's square plate, the 

lack of symmetry manifests itself in curvature of the vortex 

ring as well. It will be explained in section 4.2, that a 

vortex tube develops a self-induced velocity which is aligned 

with the local curved vortex tube binormal. Its magnitude is 

a function of the local vortex ring vorticity, curvature and 

viscous core dimension. For the extreme case of a vortex 

filament, i. e. a vortex tube of an infinitesimally small 

cross section, this self induced velocity tends to infinity 
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as the local radius tends to zero. On this ground, it is 

likely that in asymmetric flow the vortex ring exhibits a 

nonuniformly-distributed self-induced velocity and this will 

result in vortex ring deformation. For example, a small angle 

of attack of Eden's square plate would cause a difference 

between the vorticity developed along the part of the vortex 

ring shed from the upper square side and that part shed from 

the lower side. This would deform the vortex ring, making it 

develop a tail-like shaped part along its circumference. When 

the variations in self-induced velocity along the vortex ring 

circumference are large, such as near the corners of the 

intially square-shaped vortex ring in Eden's experiments, it 

might well be torn up into four separate vortex tubes. Due to 

collisions & viscous interaction [experimental works: Oshima 

Y. & Asaka S. 1977 and Fohl T. & Turner S. 1975; simulation: 

Leonard A. 1975] as figure 3.2 describes qualitatively, these 

tubes may later form a vortex ring with a circumferentially- 

distributed self-induced velocity which is more uniform. 

Since these differences in the self-induced velocity which 

is developed along the vortex ring are very large this 

process is very fast. It is likely to occur within a short 

distance downstream of the obstacle (e. g. wake part "A" in 

figure 3.1). 

Figure 3.3 shows the assumed wake flow pattern of Eden's 

experiments if the flow were axisymmetric. 

In 1931, Stanton. T. E. & Marshall. D found experimentally 

that the wake behind a disk immersed in water is 

characterized by periodic vortex shedding. The Reynolds 
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number was about 200 and the Strouhal number, based on disk 

diameter was about 0.12. The flow pattern which they reported 

was similar to that shown in figure 3.1. 

In 1967 Calvert J. R., measured the velocity spectra in the 

wakes formed behind disks immersed in air at various angles 

of attack. He found that the Strouhal number in the wake was 

about 0.14, based on the width perpendicular to the flow. 

The Reynolds number was about 40,000. 

As can be noticed, the large variation in the Reynolds 

number between the three cases quoted above does not affect 

the wake flow characteristics. This is in line with the 

conclusion stated at the end of the previous section. 

Achenbach E. (1972) and Taneda S. (1978) have presented data 

on the flow about a sphere. They also found periodical 

vortex shedding. Their experiments were performed at Reynolds 

numbers of between 400 and 1,000,000, based on sphere 

diameter. At the lower Reynolds numbers the flow pattern was 

similar to figure 3.1. As they did not observe flow 

separation occurring along a well-defined line, in their work 

the position of the separation line may have oscillated. For 

this reason their experiments do not appear to be directly 

applicable to the present investigation. 

A number of important experimental investigations have 

been made of the flow around parachute canopies. 

Both Pepper B. & Reed J. 1976 and Heinrich G. & Uotila J. 

1977, measured the pressure distribution about fabric 

canopies of different shapes, having various porosities. 

Nothing is mentioned about the periodicity of these pressure 
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or drag measurements. Their experiments were performed at 

Reynolds numbers of about 100,000 based on canopy projected 

diameter. The differential pressure coefficient, at a point 

on the canopy between the lower & upper surfaces was, on 

average, 1.4 decreasing to zero along the canopy hemline. 

In 1977, Lingard J. S. investigated the aerodynamics of the 

canopy inflation process. He presented data concerning the 

velocity distribution about canopies and the forces acting on 

them at different stages of the inflation process. 

In 1981, Doherr K. F. performed wind tunnel and water 

channel tests on hemispherical canopies. Although the flow 

visualization resulting from his water channel tests, for 

which the Reynolds number based on diameter was 2*103, 

clearly shows periodic vortex shedding of axisymmetric vortex 

rings, in his wind tunnel experiments which were conducted at 

Reynolds numbers of 105-106, the force fluctuations were 

stochastic. Doherr, making an analogy to the flow around a 

two-dimensional cylinder, related this distinction to the 

difference in the Reynolds numbers for the two tests. Since 

in both cases flow separation was caused by the surface 

discontinuity at the canopy hemline, the present author 

(following the arguments brought up at the beginning of this 

chapter), assumes that the Reynolds number difference could 

not be the main cause of this variation in the wake flow 

behaviour. 

The experiments performed by Cockrell D. J. et al at 

Leicester University in the United Kingdom were mainly 

orientated to the measurement of stability coefficients. 
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Important data concerning aerodynamic forces acting in both 

steady and unsteady motion have been reported in various 

papers such as Jorgensen D. & Cockrell D. (1981), Yavuz T. 

(1981), Jorgensen D. (1984) and Cockrell D. et al 1986. 

In 1984, Jorgensen D., found an oscillatory drag force 

acting on a hemispherical fabric canopy, at a Reynolds number 

of 6*105 based on canopy projected diameter. The 

corresponding Strouhal number, based on canopy projected 

diameter, was 0.61. 

During 1986-1987 Harwood. R and Cockrell D. performed 

experiments with different parachute models immersed under 

water in a ship tank. The models were moved in both constant 

and oscillatory motion, this allowing for both the velocity 

and acceleration dependent forces to be determined. These 

experiments will be discussed in section 6.2.4. 

In 1987 Shen C. investigated experimentally the flow field 

around bluff parachute canopies. She found that the wake 

behind a rigid hemisphere manifested periodic behaviour. The 

wake flow periodicity was measured using a hot-wire 

anemometer and the Strouhal number, based on the projected 

diameter, was found to be about 0.16. 

The conclusions arising from this review are: 

1. -the flow behind a parachute canopy could well be 

characterized by periodic vortex shedding; 

2. -only a strictly limited number of measurements of the 

flow about canopy-like bluff bodies have been made; 

3. -only a few measurements of drag variation with a constant 

relative flow velocity, have been reported for bluff bodies. 
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3.2 BLUFF BODY WAKE FLOW SIMULATION 

Although in the present research the wake flow of a 

three-dimensional bluff body is investigated, the basic 

principles will first be explained for the wake flow 

developed behind two-dimensional bodies. These principles are 

based on Kirchhoff's free streamline theory and Prandtl's 

boundary layer concept. 

According to Kirchhoff's theory, as a two-dimensional 

bluff body moves at constant velocity through an ideal, 

unbounded fluid, the fluid is divided into two regions: the 

wake and the region outside the wake (figure 3.4). 

v: ý 

FIGURE 3.4: KIRCHHOFF'S FREE STREAMLINE THEORY 

The boundary between these two regions is formed by the 

separating streamlines which, leaving the forward stagnation 

point, follow the surface of the body until they reach the 

separation points. At these points the streamlines leave the 

V vom 
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body and continue to the fluid boundary downstream. The 

pressure inside the wake is assumed to be constant and equal 

to the pressure at the fluid boundary. The velocity along a 

streamline changes from zero at the forward stagnation point, 

to V., at the separation point. Beyond this point, the 

velocity and subsequently the pressure remain constant along 

the streamline boundary. 

Using conformal mapping, Kirchhoff calculated the drag of 

a plate perpendicular to the stream. Since the resulting drag 

coefficient per unit length, based on plate width, CD=0.88, 

was about one half of the measured drag, several authors 

later improved his method by introducing in the model various 

experimental data such as cavity length (Riabouchinsky D. 

1919) and base pressure (Roshko A. 1954). 

An interesting method for predicting the mean pressure 

distribution over the wetted part of a two-dimensional bluff 

body was used by Parkinson & Jandali (1970). In this method 

the effect of the wake was simulated by two symmetrical 

sources. Their position was determined by creating 

stagnation condition at the known separation points on the 

complex plane while their strength was set to satisfy an 

experimentally determined base pressure. 

In 1975, Bearman P. & Fackrell J. extended Parkinson & 

jandali's method for axisymmetric bodies by using surface 
distributed singularities (discrete vortices). 

These methods present one extension of Kirchhoff's theory. 

With the aid of experimental data they predict the pressures 

on the wetted part of the body, the mean drag, the mean shape 
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of the wake and the mean velocity along the dividing 

streamlines. 

A second extension to Kirchhoff's theory uses Prandtl's 

boundary layer concept. The flow field is divided into two 

regions, an irrotational region, where a velocity potential 

can be defined and a region of high vorticity. The dividing 

streamlines are replaced by shear layers which smooth out the 

discontinuity between the outer potential flow and the wake. 

These shear layers present a discontinuity in both the normal 

and the tangential velocities which develop along its 

opposite surfaces. At high Reynolds number the discontinuity 

in the normal velocity caused by the fluid viscosity and 

representing the vorticity diffusion vanishes. Consequently, 

these shear layers, carrying vorticity from the boundary 

layer formed on the upstream part of the body, are 

represented by infinitesimally thin continuous layers of 

vortices constituing vortex sheets. These are unstable and 

small disturbances result in undulations of increasing 

amplitude in them, creating the so called "Helmholtz 

instability" (Batchelor G. K., 1967, chapter 7.1). 

The continuous vortex sheets can be approximated by 

discrete ones, facilitating the utilisation of this model in 

numerical simulations. The first analysis of discrete vortex 

sheet behaviour was presented by Rosenhead L. (1931, b). His 

principal conclusion was that the discrete vortex sheet is 

unstable to every periodic disturbance, the amplification 

factor being independent of disturbance frequency. 

Abernathy & Kronauker (1962), studying the interaction 
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between two discrete vortex sheets simulating the wake formed 

behind a two-dimensional body, found that the vortices 

"arranged" themselves in "clouds" of vortices having a 

spacing ratio (width/length): 

h/1=0.28*k 3.3 

k being an integer. This result was in accordance with von 

Karman's vortex street model. According to von Karman's 

analysis [Kochin N. E., Kibel I. A. & Roze N. V., 1964, chapter 

5.18 or Goldstein S., 1938, chapter 181, a stable 

configuration of two parallel rows of discrete vortices is 

achieved when (figure 3.5): 

h/1=0.28 3.4 

'r1 '1 

FIGURE 3.5: THE STABLE ARRANGEMENT OF VORTICES IN 

A VORTEX STREET 

Another important result of Abernathy & Kronauker's 

analysis is the prediction 'of the trapping of vortices of one 

sign in "clouds" of vortices of the opposite sign. This 

trapping diminishes the vorticity shed from the body by 

approximatively 40%. Their analysis agreed with Fage & 
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Johansen's (1927) experiments which investigated the wake 

flow behind a two-dimensional plate at different angles of 

attack and at high Reynolds numbers. 

Some of the basic theoretical work in this field was done 

by Gerrard J. H. (1967), Ham D. A. (1968), Clements R. (1972), 

Sarpkaya T. (1975) and by Kiya M. & Arie M. (1977). The 

discrete vortices simulating the wake were usually introduced 

in close vicinity to the separation points. The distance 

between the vortex shedding point and the separation point 

represents the distance required by the real flow for vortex 

formation. The main differences in their presentation were in 

the ways of calculating the strength of newly-created 

(nascent) vortex rings and the ways of determining the 

variation with time of the vortex shedding point location. 

To calculate the nascent vortex ring strength and the 

shedding point location these methods were used: 

-Prandtl's relation for the vortex shedding strength 

. 
discussed in section 4.6; 

-Kelvin's circulation theorem; 

-Kutta's condition in various forms at the flow separation 

point. 

These earlier methods used conformal transformation to 

simulate the relevant bluff body shapes. Katz J. (1981), by 

representation of the surface with discrete bound vortices, 

extended these methods to more general two-dimensional 

shapes. 

The above mentioned methods were able to simulate unsteady 

flows and under these conditions they succeeded in predicting 
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wake flow characteristics. The forces determined by these 

methods where higher by approximately 25% than the 

appropriate experimental values. It could well be that this 

was because the standing eddy (chapter 2) had been neglected. 

It will be shown in section 6.1.4 that when the standing eddy 

is accounted for the aerodynamic load at the separation point 

is close to zero and consequently the predicted drag forces 

would tend to the experimental values. 

Following the successful application of the discrete 

vortex to represent the standing eddy in two-dimensional wake 

simulation, this method was extended to three-dimensional 

wings (Atta E. H., Kandil O. A., Mook D. T. & Nayfeh 1977, 

Rehbach C. 1978, Katz J. 1979 etc. ). In these works, the 

separated wake was simulated by free vortex sheets and the 

wing surface was replaced by a vortex lattice, using the well 

known method first introduced by Falkner V. M. (1943). 

In 1976 Leonard A. used vortex rings to simulate the 

separated flow behind a sphere. These vortex rings were shed 

from a predetermined circle on the sphere. They were tracked 

downstream using a grid of 20-100 points, each one 

representing a segment of the vortex ring and having the 

vortex core size associated with it. Both the wake flow 

pattern and the forces which were determined exhibited a 

fluctuating behaviour. The mean drag force agreed with 

experimental values but no results for pressure distribution 

were presented. As mentioned by the author in a later comment 

[Sovran G., Morel T. & Mason W. T., 1978, page 307], the 

resulting Strouhal number based on sphere diameter of about 
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1.0 was about ten times higher than that measured in 

Achenbach (1972) experiments. 

In 1981 Bernardinis B., Graham J. M. and Parker K. H. 

analysed the flow around an oscillatory disk. They used a 

system of bound vortices to simulate the disk surface 

together with a free vortex sheet which was composed of 

vortex rings. The predicted flow pattern was in good 

agreement with that determined by flow visualization but no 

comparison between the calculated pressure distribution over 

the disk and experimental measurements was made. Their 

approach is similar to the one adopted in the present model, 

the principal differences being the modelling of both the 

nascent vortex ring and the near wake. These points will be 

discussed in chapter 4. 

Extensive reviews of separated flow simulation by vortex 

methods may be found in Clements R. R. & Maull D. J. (1975), 

Smith J. H. B. (1984) and in Maull D. J. (1986). 

Although the trend of the three-dimensional wake 

simulation by discrete vortex sheets is promising, the basic 

theoretical analysis has only been performed for 

two-dimensional vortex sheets. Extension to three-dimensional 

wakes has so far been based on more intuitive considerations. 
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3.3 THEORETICAL APPROACHES TO AERODYNAMIC LOAD CALCULATION 

ON PARACHUTE CANOPIES 

The state of the art in parachute aerodynamic design has 

recently been described by Cockrell D. J. (1987). The present 

section is restricted to considering theoretical methods of 

determining the aerodynamic loads developed on parachute 

canopies. 

The first attempt to calculate the pressure distribution 

and the added masses, i. e. "the effective mass of the fluid 

that surrounds the body and which (in unsteady motion) must 

be accelerated with it" (Newman N. J., chapter 2.11,1935], 

for canopy-like bodies was made by Ibrahim S. (1965). By 

assuming attached flow Ibrahim succeeded in developing closed 

expressions for the velocity potential of immersed spherical 

cups. Because of D'Alembert's paradox his method is not 

appropriate for steady drag calculation. The pressure 

distribution obtained is strongly affected by the high 

velocities occurring at the canopy hemline and by the 

symmetry in the location of the stagnation points about the 

canopy apex (figure 3.6). According to Pepper & Reed (1976) 

and Heinrich & Uotila (1977), this pressure distribution 

obtained is unrealistic. 

Klimas P. (1977 and 1979) extended Ibrahim's method. Since 

he also assumed attached flow, his model also has limited 

applications. By replacing the canopy with a bound vortex 

sheet, Klimas calculated the flow around axisymmetric 

canopies of a more general shape. The strength of the bound 
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vortex sheet was determined by assuming that the flow 

velocity through the canopy was in accordance with porosity 

requirements. By allowing different boundary conditions on 

the canopy, the pressure distribution was calculated for 

different porosities under accelerating flow and with canopy 

shape changes. 

In an early work, Roberts B. (1968) assumed an attached 

flow and used a two-dimensional, unsteady approach based on 

conformal mapping to calculate the aerodynamic loads on the 

canopy. This is the first published work in which the 

equations governing both the structural and aerodynamic loads 

on the parachute canopy were solved simultaneously. 

Muramoto K. K. and Garrard W. L. (1984) used source rings to 

model the aerodynamic load on the canopy in order to 

calculate the flow field about it. Their model also assumed 

attached flow so it too was limited in its applicability. 

Meyer J. & Purvis J. W. (1984), used a vortex lattice 

method for canopy modelling and the two-dimensional vorticity 

transport equation: 

D4 2 
-- vVw 3.5 
Dt 

to simulate its wake. Because in this work two-dimensional 

flow was assumed, their model could well produce some 

unrealistic results. 

According to Shirayama S. & Kuwahara K. (1986) the canopy 

could be represented by a vortex lattice built up by straight 

vortex segments which form closed vortex rings. The unsteady 

effects which occur in the wake' were simulated by the 
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movement of vortex sticks, formed by shed vortex ring 

segments. The vorticity of each vortex stick was calculated 

using the vorticity transport equation and each vortex stick 

was tracked as it was convected by the local velocity. Based 

on its projected diameter, the calculated axial force 

coefficient for an imporous disk obtained by this method was 

about 0.95, i. e. approximately 25% lower than shown in the 

experimental data collected by Hoerner (1965). Although in 

steady flow the calculated axial force exhibited unsteady 

behaviour, no periodic variations in it were found. As 

reported by the authors, their method demands high computing 

resources. 

The use of vortex methods to represent parachute canopies 

and an example of a typical calculation scheme has been 

presented by Strickland J. H. (1986). 

Mc Coy H. H. & Werme T. D. (1986) developed an axisymmetric 

vortex lattice method which was applicable to parachute 

canopies. In their model the canopy was replaced by ring 

panels containing two counter-rotating vortex rings of equal 

strength. The strength of the vortices shed in the wake was a 

function of the variation in the strength of the bound 

vortices near the hemline. As was pointed out by the authors, 

the pressure distribution calculated by their model gave 

unrealistic results near the canopy hemline. No 

time-dependent variations in the calculated axial force 

developed on a steadily moving canopy were reported. 

In neither of the papers by Strickland or by Mc Coy & 

Werme were the three-dimensional effects considered which are 
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discussed at the begining of this present chapter. 

The main conclusion arising from the works cited above is 

that although by using discrete vortex representation of the 

wake there are good prospects of predicting the aerodynamic 

loads developed on parachute canopies, no current model does 

so satisfactorily. It is in this context that the author's 

model has been developed. 

ACP 

0-[°I 

FIGURE 3.6: DIFFERENTIAL PRESSURE DISTRIBUTION ABOUT 

AN HEMISPHERICAL CUP, IN ATTACHED FLOW 

(based on Ibrahim, 1965, calculations) 

10 20 30 40 50 60 70 80 90 
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4. THE PROPOSED MODEL 

This chapter presents the model. It includes the 

interpretation of real flow around the canopy, the 

mathematical formulation of the problem and the model 

limitations. 

The proposed model assumes high Reynolds number, 

incompressible axisymmetric flow around an axisymmetric 

canopy. The flow is divided into two parts: a viscous flow 

regime and the outer potential region. 

Because of the assumption of high Reynolds number the 

shear layer resulting from the boundary layer separation from 

the canopy is thin [Batchelor 1967,5.11]. Thus, the 

vorticity is confined to a small and well defined region of 

the flow field, the thin shear layer which envelops the wake 

developed behind the canopy [Thwaites 1960, VII. 1]. 

The continuity equation for an incompressible fluid is: 

V-1 -04.1 
The assumption of irrotationality in the flow field 

outside the non-zero vorticity regions, i. e. outside the free 

shear layer, enables a velocity potential to be defined 

(e. g. Karamcheti K., 1966,9.8): 

I- vt 4.2 

These relationships lead to the Laplace equation: 
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V2 f= 0 4.3 

Figure 4.1 compares the real flow about an axisymmetric 

canopy to the modelled flow. In this figure the canopy 

surface has been replaced by a system of bound vortex rings. 

By imposing different boundary conditions, porosity and shape 

changes can be introduced. 

Generalising Rosenhead's (1931 b) method of 

two-dimensional continuous vortex sheet discretisation to the 

axisymmetric case, the free shear layer carrying vorticity 

from the boundary layer is approximated by a free layer of 

discrete vortex rings. This free layer, following the 

streamline pattern, separates from the surface and leaves it 

tangentially. In this proposed method when tracking the shed 

vortex rings, only the most energetic parts of the fluid 

field which make the principal contribution to the 

aerodynamic load generated on the canopy, are considered. 

Therefore, when considering the near wake only the shear 

layer which envelops it and the standing eddy are 

specifically simulated in the present model. 

For any immersed body the location of the separation line 

can be determined by considering the interaction between the 

external potential flow and the boundary layer. Because this 

is a complex calculation, an alternative way has been 

developed (e. g. Gerrard 1967, Leonard 1975] in which 

experimental data relating the different flow parameters to 

the position of the separation line is used. 

In the present application the flow separates from the 
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upper surface along a well-defined line, the canopy hemline. 

The model is therefore, self-contained and in order to 

determine the separation line there is no need to consider 

any kind of interaction between the viscous flow in the 

boundary layer generated at the body surface and the outer 

potential flow. 

On the lower surface of the canopy and downstream of the 

separation line the high back-flow region creates a standing 

eddy near the hemline. This is simulated by a standing vortex 

ring. 

The potential I consists of the canopy surface potential, 

the separated wake potential and the standing vortex ring 

potential. 

The boundary conditions of the flow are: 

(a)-the disturbance induced by the canopy decays far 

from the canopy and from the wake: 

lim 70 -0 
rf 40 

4.4 

(b)-the velocity through the canopy surface (i. e normal 

to it) at a general point "i" on the canopy is in 

accordance with the porosity requirements which will 

be developed in section 4.5 : 

Vpor. 
1 

ým'ni + Iind 

1. 
'ni + A'n1 4.5 

where Vind is the velocity induced 
i 

by the whole field; A is the vector from the canopy 

apex to the canopy point "i" and its time derivative 
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represents any canopy shape changes. 

In order to satisfy irrotationality of the fluid field 

Kelvin's circulation theorem, which implies that in an 

inviscid fluid the circulation around any closed material 

curve is invariant, must be obeyed. Thus : 

dr(t) 
=04.6 

dt 

For a three-dimensional flow the meaning of this theorem 

is that a vortex tube must be closed and that the circulation 

is zero around any closed fluid circuit which can be 

contracted without crossing the vortex tube [Karamcheti K. 

1966,18.5]. 

To satisfy spatial vorticity conservation [Karamcheti K., 

1966 18.4], at any instant of time the flow of vorticity 

through any cross-sectional surface of a vortex tube is 

constant. Thus, for any circuit around a cross section of the 

vortex tube a constant circulation is found. It is usually 

defined as the vortex tube/ring strength (r). 

Figure 4.2 shows a fluid circuit enveloping the canopy 

and a part of the wake. As can be noticed, this circuit can 

be contracted to zero without touching either the canopy or 

the shed vortex rings. Therefore, spatial vorticity 

conservation dictates that the circulation around this 

circuit is zero and the model obeys Kelvin's circulation 

theorem. 

In section 4.1 the velocity induced by a vortex ring will 

be developed. As the velocity induced by such a ring 
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(equations 4.13 and 4.15) tends to zero far from it, the 

model fulfils the boundary condition expressed by equation 

4.4. 

Consequently, the main equation which is to be solved is 

4.5, expressing the flow boundary conditions on the canopy 

surface. 
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4.1 THE VELOCITY INDUCED BY A VORTEX RING IN ARISYMMETRIC 

FLOW 

The velocity induced by a vortex ring can be calculated 

from Lamb's (1932, article 161) solution for the stream 

function. In this section, because computational advantages 

can be seen the velocity field induced by a vortex ring has 

been developed by following a different approach. 

y, v 

Z, W 

P 

x, u 

FIGURE 4.3: THE VORTEX RING INDUCED VELOCITY 

From the Biot-Savart law [e. g. Karamcheti, 1966,18.7], 

the velocity induced at P(x, y, 0) (figure 4.3) by an 

infinitesimally long vortex filament is : 
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rxds 
dl _--*4.7 

4n irI3 

After the vector operations are performed the components of 

the incremental velocities shown in figure 4.3 become: 

r (a - ycosa) 
u 

4n 
a 

((x-b)2 + y2 - 2yacosa + a2j1" 
da 

r (x-b) cosa 
dv- -a da 4.8 

4n ((x-b)2 + y2 - 2yacosa +a1' 

r (x-b)sinm 
dw- -a2 15 dot 

4n [(x-b)2 + y2 - 2yacosm +aJ' 

Thus, in the vortex ring induced velocity calculation, the 

following types of integrals are involved: 

2n da 

2 15 I1 
0 [(x-b)2 +y- 2yacosa +a]' 

2n 
Cosa da 

Its 1 
[(x-b) 2+ 

y2 - 2yacosa +a]'4.9 0 
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2n 
sine da 

13s f0 
[(x-b)2 + y2 - 2yacosa + a211.5 

To facilitate these integrations the denominators are 

written in a new form: 

[(x-b)2 + y2 - 2yacosa + a2]1'5- 

=f(x-b)2 + (y+a)211.5*I1 _ 
4ay n-a 

11.5 
(x-b) 2 

ay 

+(y+a) 2 

By using the following definitions: 

A [(x-b)2 + (y+a)2F1.5 

2 4ay 
k  

(x-b)2+(y+a)2 

4.10 

4.11 

the integrals from 4.9 become [Gradstein I. S. & Ryshik I. M. 

, 1963): 

4A 
11 2 E(k) 

1-k 

4A 
1(2-k2)E(k) - 2(1-k2)K(k)] 4.12 12 

k2(1-k2) 

13 -0 

where K(k) is a complete elliptic integral of the first kind 

and E(k) of the second kind (Gradstein I. S. & Ryshik I. M. 
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, 1963]. 

Finally, the velocities induced by the vortex ring at 

P(x, y, O) are: 

raA 
((ak2 - 2y + yk2)E(k) + 2y(1-k2)K(k)] uP 

nk2(1-k2) 

raA(x-b) 22 
VP 2 2[(2-k)E(k) - 2(1-k)K(k)] 4.13 

nk(1-k ) 

wP no 

The latter result reflecting the flow symmetry. 

By using power expansion for K(k) and E(k) [Gradstein I. S. 

& Ryshik I. M. , 19631 they become: 

K(k) - (1+ (ß)2k2 + (1 )k4 - .... ]   (1 + k2(ä + SKk2)] 

4.14 

E(k) - [1- (1 )2k2 - (2*Q)'Jk4 k2(ß + SEk2)] 

With these, the velocities induced at P(x, y, O) can be 

written: 

raA 
up- 2 {(y-a)E(k) - 2yK(k) + 2yn(0.5 + k2(SE+SK))) 

n(1-k ) 
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raA 
k2 [0.75 -S (1-k2) +S (2k2+1)] VP 

n(1-k2) EK 

4.15 

Equations 4.13 & 4.15 show some characteristics of the 

velocity field induced by a circular vortex ring : 

-for iC sb' vp -Q 

-for y=0 V= 

-for x, y tending to co both up and vp tend to 0. 

-when k2 tends to 1 both up and vp tend to 

infinity. The significance of this result will be 

clarified in the next section. 
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4.2 THE VORTEX RING SELF-INDUCED VELOCITY 

To show the cause of the self induced velocity developed 

by a vortex ring, a simplified analysis will be performed. It 

assumes an infinitesimal core (i. e. the vortex tube reduces 

to a vortex filament) and small arcs a (figure 4.3). This 

results in: 

cosa =1 -a2/2 and sine =a- a3/6 . 

Thus, equations 4.8 become: 

ra 1 
du --222 15 [(a-y) + cx2y/21 da 

4n [(x-b) + (y-a) + aya )' 

r1 
dv --222 15 (x-b)(1-a2/2) da 

4n [(x-b) + (y-a) + aya )' 

4.16 

To find the velocity field in the vicinity of the vortex 

filament, equation 4.16 will be integrated under the 

following conditions: 

y-a-c 

and 

x-b 

The same result may be found by taking x-b-c and y-a . 
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The velocity induced by the small curved vortex filament 

at P(b, a, O) is: 

arae2-2 ep=uP x- du ) x- [f d4 )x 
-a 4na 0 (e2 + E2)1.5 

4.17 

where x is the appropriate unit vector. 

Finally , for s«1: 

r1 cc 
UP =-(_+ In -)- ui, + uP 4.18 

4 na eE12 

This latter equation shows that the induced velocity has two 

components: 

- UP represents a line vortex velocity field tending to 
1 

infinity as 1/e; 

- UP is the self-induced velocity, tending logarithmically 
2 

to infinity as 1/e . 

The self-induced velocity is proportional to the 

curvature (1/a). Therefore, the self-induced velocity of a 

straight, two-dimensional vortex filament is zero. Similar 

results were found by Batchelor (1967,7.1), who followed a 

slightly different method. 

For the general case of a vortex ring with a finite core 
Saffman P. G (1970) developed a general relation between the 
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vortex core vorticity distribution and the self-induced 

velocity. His result for the self-induced velocity in the 

limiting case of small core vortex rings with uniformly 

distributed vorticity : 

r41 
Vsi ( In ---)4.19 4 na e4 

was identical with that obtained by Helmholtz's [Lamb 

H., 1932, article 1631 and this relation can be compared with 

equation 4.18 for an arc of the vortex ring. 

For the parachute model at high Reynolds number flow the 

shear layer is thin and consequently, the vortex cores are 

small. For such, a uniformly-distributed vorticity appears to 

be an appropriate assumption, thus, in the present model the 

self-induced velocity is calculated by equation 4.19. 
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4.3 VISCOUS CORE RADIUS EVALUATION 

The viscous core radius is evaluated by assuming 

two-dimensional flow. In view of the characteristic length, 

i. e. the ratio between the vortex core diameter and the 

vortex ring diameter, involved in this specific calculation 

this assumption is justified. 

For a real vortex in two-dimensional flow, Lamb (1932, 

article 334 a) found that : 

pe - 
r° 

{1- exp[-r2/(4vt)]} 4.20 
2nr 

where U8 is the tangential velocity around a two-dimensional 

vortex, r0 -the circulation around it at its creation, r -the 

distance from the separation line which in the present 

circumstances, is the canopy hemline and t -the time counted 

from the moment when the flow leaves the hemline. 

Figure 4.4 shows schematically the variation of Ue. Its 

maximum value is developed at a distance e from the vortex 

center. 

Since at r>e the potential model is appropriate, the 

distance from the core center to the place where dUe/dr=0, is 

considered the viscous core radius (Schaefer J. & Eskenazi S. 

, 1959). 

Then: 
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E2 = 5vt 4.21 

The circulation r* inside the viscous core at t-0 is: 

2n 
t-f Uerde = 0.72ro 4.22 

0 

this showing that only about 70% of the shed vorticity is 

recirculated in the vortex ring core. 

Defining ReD as the Reynolds number based on canopy 

projected area then: 

2 

E 
AD 

X0.5 ReD 4.23 

where t stands for the dimensionless time step at the 

shedding of the newly-created vortex ring and D for the 

projected area diameter. 

Thus : 

$/D -0( ReD )-0.5 4.24 

This result justifies the small cores assumption made in 

the previous section. 

From Kelvin's circulation theorem not only does the 

circulation around the vortex ring remain constant as the 

latter moves downstream but a further consequence 

[Karmancheti K. 1966,18.5] is that the fluid particles which 

form the vortex tube at a given instant remain part of it for 

all time. Therefore, the vortex ring volume is preserved and: 
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c2a ) t-t '( eta )t- t on 
4.25 

This relationship for the free vortex ring deformation is 

applied in the numerical model. 

Ue 

r u ea - 
2nr 

aU9 

r 

VORTEX CORE 

FIGURE 4.4: THE TANGENTIAL VELOCITY, Ue, DEVELOPED ABOUT A 

TWO-DIMENSIONAL VISCOUS VORTEX 
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4.4 CANOPY SURFACE SIMULATION 

To model the canopy surface it is first replaced by panels 

of equal chord lengths (figure 4.5). This method, introduced 

in 1943 by Falkner, is widely used for aerodynamic load 

calculations. To simulate the panel's lifting characteristics 

a vortex ring of constant circumferential strength is 

arbitrarily placed at one quarter of the panel length. The 

boundary condition on the canopy surface, equation 4.5, is 

satisfied along a circle defined as the control circle and 

located at three quarters of the panel length. 

The induced velocity at panel "i" has the following matrix 

form : 

Vind [Acan 1{Tcan} + (Awake. i{rwake} + Asvr *rsvr 
iiýi 

4.26 

where Acan represents the canopy bound vortex system 

matrix influence coefficients . Awake represents the wake 

matrix influence coefficients and Asvr the standing vortex 

ring influence coefficients (the "mn"-th influence 

coefficient is the velocity induced at panel "m" by a vortex 

ring of r-1 located at an identical axial position and of 

the same radius as the "n"-th vortex ring). 

When a rigid canopy is assumed, the Acan and Asvr terms 

are calculated only once, at the simulation commencement. But 

if the canopy were to change its shape with time, they would 
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have to be calculated at each time step. 

By substituing equation 4.26 into equation 4.5, for every 

panel, a linear system of equations is built up. 

It is shown later (sections 4.7 and 4.8) that at the 

instant "t" the location and strength of both the shed vortex 

rings and the standing vortex ring are known. The one 

remaining unknown is the strength of the bound vortex rings. 

These will be determined by solving the linear system of 

equations which results when the boundary conditions, 

equation 4.5, are applied to every panel. 
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vc 

HOUND VORTEX 

RING 

VC2.0 
CONTROL 

FIGURE 4.5: CANOPY SURFACE MODELLING 

J 

- U,. 



4.5 POROSITY INFLUENCE 

According to Payne P. (1978) and Cockrell D. (1987) the 

pressure difference across a porous canopy in incompressible 

flow can be represented by: 

aP - p1 - p2 = vp2 - K2Vpor 4.27 

where K1 and K2 are proportional constants and Vpor is the 

velocity through the canopy surface. 

V 
par 

P1 
P2 

V 
C0 

FIGURE 4.6: THE FLOW THROUGH A POROUS SCREEN 

By neglecting the viscous loss term, i. e. K2Vpor the 

pressure drop across a porous screen becomes: 

AP - 0.5K PV 
Or 

4.28 

where K is a dimensionless, two-dimensional resistance 

coefficient such as that defined by Taylor G. I. and Davies 

R. M. 1944. 

in the empirical theory for the flow through porous 
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parachute canopies which Roberts B. (1979) developed, he 

considered the flow through a ribbon parachute to be similar 

to that through a screen with sharp edge elements whereas the 

flow through a fabric parachute is better represented by that 

through a porous screen made by circular elements. With such 

assumptions and by using the resistance coefficient concept 

of equation 4.28 Roberts developed two simple relationships 

which correlated this coefficient with the canopy's geometric 

porosity, X, i. e. the ratio of open area to total surface 

area : 

- for a ribbon canopy : 

Ka (1/X2) -14.29 

- whereas for a fabric canopy : 

Ks (0.58/X2) -14.30 

In order to preserve the validity of representing the 

canopy surface by a continuous vortex sheet, only porosity 

values which result in a normal velocities smaller than about 

0.15 of the free stream velocity have been considered. Thus, 

equations 4.29 and 4.30 become approximately, respectively : 

K= (X)-2 

K=0.58*(X)-2 
4.31 

Then by substituing equations 4.31 in equation 4.28 

- for a ribbon canopy: 

Vpor - (ACp)0.5v X 4.32 

- for a fabric canopy: 

Vpor 1.3*(ACp)0.5VWX 4.33 
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4.6 THE SHEDDING FREQUENCY 

The shedding frequency can be calculated by using the 

equation ( Prandtl & Tietjens, 1957, article 93) : 

dr v-v 
-a4.34 
dt 2 

Vu and V1 being the velocities at the upper part and lower 

part of a shear layer respectively (figure 4.7). An important 

consequence of this equation is that the shedding frequency 

is not affected by the shear layer thickness. 

Fage A. & Johansen F. (1927) investigated the wake flow 

behind a two-dimensional plate. One of their results was an 

experimental validation of equation 4.34. They measured the 

vorticity shed from the plate near the separation point and 

that existing in the wake at about nine plate widths 

downstream. It was found that only about 0.6 of the shed 

vorticity was recirculated. Their measurements (table VII 

in their previously quoted paper), show that the velocity on 

the lower part of the shear layer was one order of magnitude 

less than that on the upper side. Since near the separation 

point the velocity on the upper part of the shear layer was 

about 1.45 times the free stream velocity, the shed vorticity 

was, approximatelly 1.1*v2cc. 

In view of Fage & Johansen's results most of the methods 

for separated wake simulation by discrete vortices use the 

following equation for shedding frequency calculation : 
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dr V2 - V2 

--ß4.35 
dt 2 

In this expression ß is an empirical circulation reduction 

factor which takes into account the difference between the 

vorticity shed from the body and that which is recirculated. 

The value assumed for in some discrete vortex wake 

models, e. g. by Katz. J 1981, is about 0.6. 

Vu 

7- FREE SHEAR LAYER 

V1 

------ ý_ / STANDING EDDY 

FIGURE 4.7: THE VORTEX SHEDDING FROM A SALIENT, 

TWO-DIMENSIONAL EDGE 

A serious drawback in using this relation is that it 

demands velocities close to the separation point. The large 

changes in these induced velocities near to the shedding 

point can cause considerable variations in the determined 

forces acting on the canopy. The variations are amplified by 

ambiguity arising from the discrete representation of the 

flow field, in defining the exact point at which this 

velocity is to be calculated. 

In order to simplify the calculation, in the present model 
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a different approach has been adopted. 

As a differential pressure, which results in an 

infinitesimally-small drag force, impulsively sets in motion 

a disk normal to its surface, a vortex ring of strength: 

1 Drag 
or -- At - 0.5 At Vto CD 4.36 

P Sdisk 

will be shed behind it (Durand F. W. division E chapter 3 

1963). 

Since in the limit, a continuous force may be regarded as 

a sum of infinitesimally small impulses, the expresion for 

dr/dt in equation 4.36 is used to evaluate the vortex 

shedding strength. 

There is a lack of experimental data on circulation 

reduction in axisymmetric flow so the model described in 

section 4.3 has been used. From equation 4.22 the circulation 

reduction factor is 0-0.72, thus the shed vortex ring 

strength is smaller by about 30% than that determined by 

equation 4.36. 

The shedding strength calculation scheme resulting from 

equation 4.36 implies an iterative procedure. This is because 

the drag force determination at instant t-t1 requires the 

value dr/dt at tl. At the beginning of the model development, 

in the iterative calculation scheme, the calculated drag 

force manifested very strong variations in both its amplitude 

and strength. A quite similar problem was faced by Sarpkaya 

(1975) when he calculated the shedding strength using the 

instantaneus velocity near the flow separation point. 
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To avoid this numerical problem, in the current model an 

experimentally-based method has been adopted. 

According to experimental data collected by Hoerner 1965, 

the drag coefficient (CD) referred to the projected area of 

canopy-similar configurations, called cup-shaped bodies by 

Hoerner, is in the range of 1.2-1.4. 

Subsequently, when an average CD is assumed, the effective 

shedding strength, i. e. the shedding strength of the 

vorticity which was found in the shed vortex ring core, is: 

dr 
-=0.47 Vm 4.37 
dt 

Using this relationship the sensitivity of calculated 

results to the assumed value of the CD value is shown in 

chapter 7 to be very small. 
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4.7 THE SEPARATED WAKE SIMULATION AND THE REQUIRED 

TIME STEP EVALUATION 

Physically, the free shear layer leaves the surface 

tangentially. An appropriate way to model this is to assume 

that the canopy surface commences with an additional 

fictional panel. This panel lies along the tangent to the 

canopy, near its hemline, and its length is equal to that of 

the other real panels. 

Therefore, the fictional panel bound vortex ring is, in 

fact, the newly-created vortex ring. Consequently, its 

strength is calculated together with the bound vortex system 

by solving the system of linear algebraic equations which 

result when equation 4.5 is expressed for each panel (section 

4.1). 

A method which has been widely used for the newly-created 

vortex strength calculation is by using equation 4.35 within 

a specific range of time steps whose magnitude is based on 

physical considerations. Hence, two free parameters have to 

be found empirically : the time step and the number of 

surface panels to be adopted (e. g. Katz. J 1981 and Levin D. & 

Katz J. 1980). 

In the present model, once the strength of the 

newly-created vortex ring has been calculated the time step 

can be set at each instant to accord with equation 4.37. 

Thus, the number of free parameters is reduced to one, i. e. 
the number of panels representing the canopy surface. It will 
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be shown in chapter 7 that the sensitivity of the resulting 

simulation to this free parameter is found to be small. 

The wake development is calculated by assuming that each 

free vortex ring is convected by the local velocity: 

Ax 
Ay 

1- 
Ott*1 t-At 

t 
4.38 

where Ax and Ay are the change in the "i-th vortex ring axial 

position and radius, respectively at instant "t", and t-0t 

represents the sum of the free stream velocity, induced 

velocity and self-induced velocity of the "i"-th shed 

vortex ring, at the previous time step. This integration 

method results in an error whose order of magnitude is 

(At) 2[ Henrici P., 1962]. 

In view of the smäll time step to which the present 

calculation method converges (chapter 5), this integration 

method should be satisfactory. However, the sensitivity of 

the solution to the integration method adopted will be 

discussed in chapter 7. 
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4.8 STANDING VORTEX STRENGTHS & LOCATION EVALUATION 

The standing vortex ring simulates the standing eddy 

which develops behind salient edges, that is the canopy 

hemline. Owing to the dimensions involved, the separation 

region can be treated as locally two-dimensional, thus a 

Kutta-type condition requiring zero load near the hemline 

can be applied. This physically-based assumption is 

sustained by the experimental results obtained by Henrich 

G. & Uotilla J. (1977) and by Pepper B. & Reed J. (1976) 

which show that the differential pressure close to the 

hemline descreases to zero. 

At the beginning of the model development, the standing 

vortex ring strength and its location were determined 

using an iterative procedure which ensured pressure 

continuity near the separation line, i. e. zero load at the 

hemline. Later however, the following approximate method, 

which results in considerable computational time saving, 

was used. 

The fluid which is disturbed by the motion of a canopy 

can be divided into two main components, that included in 

the volume which is defined by the canopy surface and the 

canopy hemline plane, and that which is outside this 

volume. The energy of this latter fluid is approximately 

that of a moving disk of radius R. Thus, its added mass is 

(Lamb, 1932, article 120): 
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mf 
8 Rap 4.39 

By assuming an equally-distributed impulse over the whole 

canopy surface : 

i ornR2=mfVCR) 4.40 

r being the circulation associated with the disk movement. 

Since the pressure difference across the disk decreases 

near its circumference this assumption is only approximate. 

However, due to the concavity of the canopy this pressure 

drop, which the disk represents, is limited to a small region 

(see experimental results of Pepper & Reed 1976 and Heinrich 

& Uotilla 1977). Therefore, for bluff canopies the 

approximation of an uniformly-distributed differential 

pressure distribution appears to be justified. 

With equations 4.39 and 4.40 the strength of the vortex 

which accompanies the movement of a canopy is: 

8R r3 
tt Vm 4.41 

Subsequently, the standing vortex ring strength is 

calculated by subtracting the newly-created vortex ring 

strength from that calculated by equation 4.41. 

The location of the standing vortex ring is shown 

schematically in figure 4.8. The distance YVT (figure 4.8), 
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which ensures zero load near the canopy hemline, has been 

found empirically by trial and error to be about 1.15*YI. Its 

variation range was 1.05-1.20 for all the configurations 

whose aerodynamic characteristics were investigated. However, 

in the computer programme, the nominal YVT recommended value 

of 1.15*YI could be varied in order to keep the load near the 

hemline close to zero. The way in which this value is to be 

set will be described in chapter 5. 

It is conceivable that this method will not give a zero 

load near the hemline. The maximum absolute value of the 

differential pressure across the nearest panel to the canopy 

hemline was found to be about 0.2. Since this approximate 

method of standing vortex ring strength & position evaluation 

will be shown in chapter 6 to give satisfactory results the 

iterative calculation procedure described earlier has been 

removed from the computer programme. 



-62- 

STANDING 
RING 

THE NEAREST PANEL VpO 

TO THE CANOPY HEMLINE 

FIGURE 4.8: STANDING VORTEX RING LOCATION 
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4.9 DIFFERENTIAL PRESSURE CALCULATION 

Physically, the wake developed behind the canopy is bounded 

by a continuous vortex sheet. Thus, the fluid field is divided 

into two distinct parts: the wake and the outer fluid flow. In 

the model the continuous vortex sheet which envelops the wake 

is approximated by a layer of discrete vortex rings. Following 

this approximation in the model the fluid field is continuous 

and therefore Bernoulli's theorem can be applied through the 

irrotational parts of the fluid field [Batchelor G. K., 1967, 

chapter 6.21. Therefore, in the present model, it is assumed 

that the total pressure is constant across the vortex sheet 

whereas in the real flow the static pressure is constant. 

Judging by the results shown in chapter 6 and particularly in 

section 6.1.4, this assumption leads to good results for the 

differential pressure distribution and consequently for the 

total forces acting on a parachute canopy in both steady and 

unsteady motion. 

From Bernoulli's theorem, the differential pressure across 

panel "i"-th, as shown in figure 4.9, is determined to be: 

AP PA - PB - 0.5p(VB-VÄ) + pät(*B-#A) 4.42 

As the canopy surface is replaced by a thin vortex sheet, 

the steady part in equation 4.42 gives: 

0.5o(V2 B-VÄ) a p(rcani /1)Vacos2a1 4.43 
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rcan being the bound vortex ring strength of the i-th 

i 
panel. 

This calculation neglects both the porosity effect and any 

velocity which is caused by canopy shape changes or inducing 

pressure fluctuations which occur during the inflation 

process. Since these neglected velocities are shown in 

sections 4.6 and 6.2.3 to be small in comparison with the 

other terms in equation 4.43, this is a satisfactory 

procedure. However, these velocities were not neglected in 

the boundary condition given by equation 4.5. 

The time-dependent part in equation 4.42 is calculated by 

observing the changes in the circulation around the circuit D 

(figure 4.9). The potential difference between points A and B 

(figure 4.9) is: 

rD - ýA - to 4.44 

where rD is the circulation around circuit D. Its time 

variation is: 

i 
IT ( fÄ 4 B) ' 3-t ( ircank )+ 

c-t 
rwake + HE rsvr 4.45 

This equation shows that the unsteady pressure 

distribution depends on the changes in the bound vorticity 

of the canopy, commencing with the hemline and proceeding up 

to the specific panel. It also depends on the wake 

circulation variation (this being the newly-created vortex 

ring) and on the variation in the standing vortex ring 

strength. 
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FIGURE 4.9: DIFFERENTIAL PRESSURE CALCULATION 
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4.10 THE MODEL LIMITATIONS 

The principal application of the present bluff body flow 

model is to predict the aerodynamic characteristics developed 

by bluff parachute canopies. 

Since a time-dependent canopy shape has been assumed, this 

remains to be considered. What the present model predicts is 

the instantaneous aerodynamic load, for a given momentary 

shape & velocity. In order to simulate properly complex 

phenomena such the inflation process and the canopy 

"breathing", a model which can predict the canopy shape as a 

function of all the applied loads is required. 

Since the present model obeys Kelvin's conservation 

theorem, no viscous decay or viscous interaction between 

vortex filaments has been accounted for and neglecting these 

effects could lead to some unrealistic results. 

Although some basic experimental data for these viscous 

effects are available (see Maxworthy T. 1972,1974 for the 

circulation decay of vortex rings and Leonard A. 1976 for, 

modelling the viscous interaction between vortex filaments], 

because of the overall experimental data shortage it is 

premature to introduce those features into the present model. 

Once these data are available, the viscous effects could be 

modelled by schemes such as those which Sarpkaya T. & Shoaff 

R (1979) have adopted. 

By using the present model to simulate the flow field 

developed about various shapes after long flight periods, it 
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was found that the effect of neglecting these viscous effects 

manifests itself when the dimensionless flight time, tvm/2R, 

is higher than about 20. 

In the current inviscid model, due to the rollup process 

vortex rings at a relatively large distance from the canopy 

may develop high velocities in the reverse direction to that 

of the free stream. These would cause them to interact with 

vortex rings which are situated close to the canopy surface. 

Both the steady axial force and the Strouhal number will be 

affected by this unrealistic interaction with the far wake. 

In order to diminish this effect, which in a real flow would 

be strongly damped by viscous mechanisms, the vortex rings 

situated at larger distances than four diameters behind the 

canopy were neglected. This recommended distance was chosen 

by examining the development in steady flow of the mean axial 

force coefficient (see definition in section 6.1.1). It is 

illustrated in figure 4.10. 

Beside the near wake simulation improvement, a significant 

by-product of neglecting this far wake is a considerable & 

welcome reduction in the required computation time. 

physically, the free shear layer which envelops the wake 

is continuous and there is no flow through it. When the wake 

is approximated by discrete vortices this condition can not 

be fulfilled, for example, in the present model it is kept 

only near the shedding line. Therefore, as pointed out by 

Clements & Maull (1975), the fine structure of the wake is 

not properly simulated. 

The approximation of the continuous, free vortex sheet 
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fails during the rollup calculation. The simulated wake flow 

pattern (e. g. figure 6.1 e& f) shows that during the process 

of vortex rings cluster creation the vortex sheet crosses 

through itself. This limitation of the flow simulation method 

based on the representation of the two-dimensional wake by 

discrete vortices is discussed by Clements & Maull (1975) and 

by Windall (1975). It could well be that the rollup of the 

free shear layer which occurs in the real flow involves 

viscous mechanisms as well and therefore it cannot be 

described by inviscid considerations only, as has been done 

in the present model. However, judging by the results 

presented in chapter 6 the main properties of the unsteady 

wake flow are well simulated and no attempt to solve this 

problem has been made in the present work. 
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5. THE CALCULATION METHOD & COMPUTER PROGRAMME DESCRIPTION 

The model principles were mathematically formulated and 

subsequently a computer programme based on those principles 

was developed. 

In figure 5.1 the basic flow chart for the calculation 

method is shown. 

,.. 
CANOPY DIVISION IN PANELS AND MATRIXES CONTAINING THE 

COTROL CIRCLES & BOUND VORTEX RINGS LOCATION BUILDING UP 

-STANDING VORTEX RING STRENGTH EVALUATION 

BOUNDARY CONDITION AT THE CONTROL CIRCLES CALCULATION 

BOUND VORTEX RINGS & NEWLY CREATED VORTEX RING STRENGTH 
DETERMINATION 

REQUIRED TIME STEP EVALUATION 

FREE VORTEX RINGS CONVECTION 

DIFFERENTIAL PRESSURE DISTRIBUTION CALCULATION 

STOPPING CRITERIA i\ 
ACHIEVED ? -ý- YES --i 'STOP 

NO 

NO CANOPY SHAPE 
CHANGED ? 

YES 

FIGURE 5.1: THE LOW-LEVEL FLOW CHART FOR THE CALCULATION PROCEDURE 
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Figure 5.2 shows the coordinate system used in the 

computer programme. 
Y 

Y1 

X 
X2 X1 

FIGURE 5.2: THE COORDINATE SYSTEM FOR FLOW SIMULATION 

The canopy shape is assumed to have an elliptical 

cross-section and therefore three parameters, which may be a 

function of time, are required to define the shape: X1, X2, Yl 

(see figure 5.2). Those parameters are required by the 

function generating the canopy shape. To allow for a discrete 

canopy shape or one with any other shape geometry only minor 

programming changes are required to the canopy shape 

generating function. 

The velocity may be steady or it may be a tabulated 

function of time. 

An additional way of specifying the velocity profile is 

through the free deceleration mode. When this option is used 

the mass of the parachute/payload system is also required. 
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The velocity is calculated by the computer program at each 

time step, by integrating the parachute/payload system 

acceleration developed by the instantaneous aerodynamic and 

gravitational forces. 

Whichever specification method is used for the velocity 

profile, the boundary conditions, i. e. the normal velocity at 

the control circles are set to fulfil both the kinematic and 

the canopy porosity requirements. 

The first element of the vortex system whose strength is 

calculated is the standing vortex ring. Following the method 

described in section 4.8, it is calculated by: 

rSVR 
8R 

V" - rNC 5.1 

where rSVR and rNC are, respectively, the standing vortex 

ring and the newly-created vortex ring strength. Because at 

the motion commencement there is no wake, at the first time 

step rNC is zero. Its subsequent evaluation is explained in 

the following. 

The normal velocity through the canopy surface is 

determined by the porosity requirements. Thus, it is 

calculated by the equations: 

- for a ribbon canopy (equation 4.32): 

Vpor 
i 

(ACp) 
i 

0.5VWX 

- for a fabric canopy (equation 4.33): 

Vpor 
i'1.3*(AC p)i0.5V0X 

At the motion commencement, i. e. at the first time step it is 

arbitrarly set to equal zero. The induced velocity at panel 
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"i" has the.. following matrix form (equation 4.26): 

wind (Acan 
i 

]{rcan} + [Awake]{twake) + Asvr *rsvr 
fii 

where Acan represents the canopy bound vortex system 

matrix influence coefficients , Awake represents the wake 

matrix influence coefficients and Asvr the standing vortex 

ring influence coefficients (the "mn"-th influence 

coefficient is the velocity induced at panel "m" by a vortex 

ring of r-1 located at an identical axial position and of 

the same radius as the "n"-th vortex ring). 

When a rigid canopy is assumed, the Acan and Asvr terms 

are calculated only once, at the simulation commencement. But 

if the canopy were to change its shape with time, they would 

have to be calculated at each time step. 

Finally, the boundary condition at the canopy surface, 

i. e. the velocity through the canopy surface (i. e normal to 

it) at a general control circle "i" is given by equation 4.5: 

AA" 

Vpor 
i= to"n i+ 

1indi"ni + "A n1 

where Vind is the velocity induced by the whole fidld; 
i 

is the vector from the canopy apex to the canopy control 

circle "i" and its time derivative represents any canopy shape 

changes. 

By substituing equation 4.26 into equation 4.5, for every 

panel, a linear system of equations whose only unknown is the 

bound vortex sheet strength, i. e. the matrix (rcan). is built 

up. The bound vortex sheet strength is determined at each time 
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step. Together with this bound vortex sheet strength the 

strength of the newly-created vortex ring is also calculated. 

According with the method described in section 4.7 the 

newly-created vortex ring, rNC, is considered to be the vortex 

ring bound to the fictional panel. In view of the relatively 

small dimensions (usually about 10*10) of the resulting 

matrix, which is related to the number of canopy panels the 

linear system of equations is solved by a Gaussian elimination 

non-iterative method. 

The required time step is determined by the method 

described in sections 4.6 & 4.7. Thus, it is calculated by: 

at-(0.47V! ) -1 r NC 
5.2 

At the motion commencement, when the rNC equals zero the 

non-dimensional time step is set arbitrarly to equal 0.1. 

For steady flows it usually converges after about five time 

steps to values between of=0.05 and AE-0.15. 

The wake development is calculated by convecting each of 

the vortex rings with the local velocity. The latter is found 

by summing up the contribution of the whole vortex system at 

the circumference of the specified vortex ring. Thus, the 

free vortex ring motion is calculated by equation 4.38: 

Ax 
t-At 

tAYJi Ott*1 

where Ax and Ay are the change in the "i-th vortex ring axial 

position and radius, respectively at instant "t", and It-At 

represents the sum of the free stream velocity, induced 
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velocity and self-induced velocity of the "i"-th shed 

vortex ring, at the previous time step. 

There are two mechanisms for vortex ring cancellation. In 

the first, the vortex rings which collide with the canopy 

during the roll up process are cancelled. 

The second mechanism is described in section 4.6. Its 

purpose is to minimise any unrealistic effects which may 

emerge from the method of treating viscosity effects. It is 

recommended that vortex rings which are at a greater 

distance downstream of the canopy hemline than four canopy 

projected diameters, be cancelled. 

From Bernoulli's theorem, the differential pressure 

across panel "i"-th, as shown in figure 4.9, is determined 

from equations 4.42,4.43 and 4.45 to be: 

OPi ' p((rcani/1)vmcos2ai + dt (iircank) + rNC/at + dt rsvr] 

5.3 

Finally, the total force generated on the canopy is 

calculated by integrating the differential pressure over the 

canopy surface. 

Figure 5.3 briefly describes the computer programme main 

procedures and their hierarchy. In the final version of the 

computer programme, which introduces calculation methods 

described in chapter 4 and whose results will be shown in the 

following chapter 6, there are no iterative calculations. 

However, if the standing vortex ring nominal location 

(section 4.8) does not result in a sufficiently small load 

near the canopy hemline, it has to be determined by trial & 
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error-for-every configuration. 

As shown in figure 4.8, only the standing vortex ring 

coordinate in the "Y" direction (YVT) is to be determined. 

The recommended procedure is to chose a value of about 

YVT_1.15*YI and run the computer programme interactively for 

10-20 time steps. If the differential pressure across the 

near hemline panel is not satisfactory (i. e. if it is not 

close enough to zero) the location of the standing vortex 

ring must be slightly changed (usually by up to 10%). By 

running the program for different configurations, it was 

found that 1.05*YI<YVT<1.20*YI. Within three trials it is 

anticipated that a sufficiently small differential. pressure 

across the near hemline panel will be achieved. 

The computation time depends mainly on the number of 

uncancelled free vortex rings, approximately as the square of 

this number. 

The recommended number of panels in which to divide the 

canopy is between 8 and 14. When the number of panels is too 

small, because of the discrete representation of the canopy 

the resulting configuration may differ significantly from the 

desired one. However, dividing the canopy into too many 

panels unjustifiably increases the computation time. The 

sensitivity of solutions to this free parameter is discussed 

in chapter 7. 

Using the recommended values, the characteristic 

computation time demanded by the computer programme on Ia 

VAX-8600 computer is about 450 seconds C. P. U. for about 20 

units of dimensionless time, i. e. the product of time counted 
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from motion commencement and the average free-stream 

velocity, divided by the canopy projected area diameter. 

The computer programme is menu driven and when run 

interactively, the programme prompts with questions and hints 

to help the inexperienced user. Its listing is given in the 

Appendix. 

PARACHUTE (main) 

- data input: 
- canopy geometry (it can be time-dependent) 
- free stream velocity (it can be a 
tabulated function of time or integrated at 
each time step according to the. 
instantaneous axial force and 
parachute/payload system mass) 
- fluid density 
- number of panels for canopy discretisation 
- stopping criteria 

- output options specifications 
CANOPY ( the main subroutine) : integrates the axial 

force resulting by activating the other 
procedures 

CIC (subroutine) : calculates the canopy influence 
coefficients 

UVR, VVR (functions) : calculate the axial and 
radial, respectively, velocity induced by a 
vortex ring of a unit strength 

El, E2 (functions) : calculate the first and the 
second, respectively, elliptic integrals 

SOLVE (subroutine) : solves the linear system of 
equations giving the bound vortex rings & newly 
created strength 

CP (subroutine) : calculates the differential 
pressure distribution 

WAKE (subroutine) : calculates the wake development 
by convecting the free vortex rings 

UVR, VVR 
E1, E2 

FIGURE 5.3: A HIERARCHICAL SCHEME OF THE MAIN COMPUTER 

PROGRAMME PROCEDURES. 
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6. NUMERICAL INVESTIGATION RESULTS 

This chapter presents the numerical investigation results 

for steady and unsteady flows about both rigid canopies and 

those whose shape is time-dependent. 

About one half of the presented results are for spherical 

canopies. Since they are unstable and have a relatively low 

drag coefficient referred to the constructed area this shape 

is obsolete for parachute canopies but it has some advantages 

for experimental purposes such as for the experimental 

investigation of the flow field. Results were obtained by 

using the computer programme "PARACHUTE" whose listing is 

given in the Appendix and which was briefly described in 

chapter 5. The canopy was divided in twelve panels and the 

shed vortex rings located at a distance larger than four 

canopy projected diameters downstream of the canopy were 

cancelled. 

For the sake of abbreviation, the canopy configuration 

whose aerodynamic properties will be analyzed is defined by 

stating the quantities Xl, X2 and Yl shown in figure 5.1. 

The axial force coefficient CA and the Strouhal number St 

are referred, respectively, to the canopy projected area and 

to the diameter of the canopy projected area. 

Unless otherwise specified, the flow Reynolds number in 

these results is about 1.5*105, based on the canopy projected 

diameter. 
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6.1 THE AERODYNAMIC PROPERTIES DEVELOPED BY A RIGID CANOPY IN 

ASYMPTOTICALLY STEADY MOTION 

In chapter 2 Rosenhead's (1931 a) interpretation of 

Stanton T. & Marshal D. 's (1931) experiments is quoted. In 

this quotation the observed wake flow periodicity is 

explained by the unstable shear layer, "sheath of vorticity", 

as Rosenhead termed it, spreading from the separation line. 

As it breaks down it creates packages of vortex rings which 

are subsequently shed to the wake. Anticipating the flow 

simulation results, it is seen that Rosenhead's 

interpretation of the wake flow periodicity is remarkably 

accurate . 

Figure 6.1 shows a sequence of the vortex shedding process 

occurring in the wake developed behind a hemispherical 

canopy. The shear layer carrying the vorticity created in the 

boundary layer is represented by the discrete axisymmetric 

layer of vortex rings which leaves the hemisphere hemline 

tangentially (point A in figure 6.1-a). As it does so it 

manifests both small scale disturbances ( point B in figure 

6.1-b) and a roll-up process (point C in figure 6.1. -b). In 

the vicinity of the roll-up initiation region the shear layer 

tends to close and the concentration of the vortex rings 

increases (figure 6.1-c). 
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TIME ITERVALS (continued on the next page) 
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For a while, the cluster of vortex rings maintains its 

distance to the hemisphere thus, its mean, induced velocity 

is balanced by the free-stream velocity. 

A further increase in the concentration of the vortex 

rings suddenly disturbs this equilibrium and a cluster of 

vortex rings is shed to the wake (figure 6.1-d). As this 

cluster moves downstream a new concentration of vortex rings 

is gradually created afresh(figure 6.1-e). 

Figures 6.2-6.5 shows the wake flow pattern developed 

behind differently-shaped canopies. 

This periodic behaviour exercised by the wake flow will 

affect the axial force developed on the canopy. Figure 6.6 

shows the wake flow and the resulting time dependent axial 

force developed on a hemispherical canopy. 

Close to the commencement of motion the flow is governed 

by impulsive movement of the canopy and an 

acceleration-dependent force develops. This kind of motion is 

discussed in section 6.2. In the current section the flow 

developed after the acceleration effect decay is 

considered i. e. the dimensionless time t »1. At t=13 and 

t=19.5 (figure 6.6), groups of concentrated vortex rings are 

shed. Consequently, the axial force varies abruptly. 

As shown by Sarpkaya T. (1975) the calculated axial force 

which is developed on a two-dimensional plate in normal flow 

manifests gradual periodic variations caused by the movement 

of the large cluster of vortices leaving the plate edges 

alternately and forming a vortex street. 
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in the axisymmetric case, due to the vortex shedding 

mechanism, the changes in the axial force are much more 

abrupt than they are in two-dimensional flow. 

Since there is a clear functional dependence of this axial 

force fluctuation on the wake flow, the Strouhal number of 

the velocity variations in the wake flow can also be found by 

counting the fluctuations in the axial aerodynamic force. 

Thus, there are two ways of determining Strouhal number 

experimentally, one by measuring the velocity in the wake, 

such as with a hot-wire anemometer, and the other by 

considering the fluctuations in the axial aerodynamic force. 

Since parachute canopies are flexible, the fluctuations 

developed in the aerodynamic load may affect the canopy 

shape. Hence, the applicability of wind tunnel results 

concerning the abrupt changes in the axial force which are 

developed on steadily-moving canopies to the design of 

full-scale parachute canopies depends on the availability of 

a model which predicts the changes in canopy shape resulting 

from variations in the aerodynamic load. It could well be 

that phenomena like canopy "breathing" (Hume R. & Stevens W., 

1971) and "collapse"(Spahr R. & Wolf D., 1981) are caused by 

this interaction between the fluctuating aerodynamic load and 

the canopy structural response. 
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SUCCESSIVE TIME INTERVALS BY THE CANOPY 

X1/Y1-1 , X2/Y1-1.2 



-85- 

x r[ ; ýý4i(MMi[MMMMM's1Mi4}ýiý(K, fº 

I 
X-X*lr(-,; <XX xxxxxxxxiFA-, AiXXI 1( 

a) 

7 

i 
1' 

`ýýý 
ý.. 

'1 ': i '. t 't M: MM?! '^(T1M; týt : t. 'f K: '(M 

b) 

C) 

FIGURE 6.5: THE WAKE FLOW PATTERN DEVELOPED AT 

SUCCESSIVE TIME INTERVALS BY THE CANOPY 

X1/Y1.0.7 , X2/Y1-0.8 



-86- 

A 

----- ---- ------------ 

8 

AXIAL FORCE 

COEFFICIENT 

CA 

t=Vt/2R 
16 18 20 22 24 

DIMENSIONLESS TIME 
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6.1.1 THE INFLUENCE OF CANOPY SHAPE ON THE 

TIME-DEPENDENT AXIAL FORCE 

As previously detailed, the wake periodicity determines 

the gross characteristic of the wake flow. 

Figure 6.7 shows the time-dependent axial force developed 

on two different canopy shapes. The fluctuations in the axial 

force do not behave precisely periodically thus, for a given 

shape, the Strouhal number can only be defined as an average 

quantity. 

The value of the axial force developed between two 

consecutive fluctuations, or spikes in figure 6.7, will be 

defined as the mean axial force, while the instantaneous 

Strouhal number will be defined as that Strouhal number which 

is based on the axial force fluctuation period. 

Figure 6.8 show the dependence of the mean axial force 

coefficient (CA)and the Strouhal number developed on 

spherical and elliptical canopies of various bluffnesses. 

Figure 6.9 shows that for highly-bluff canopies the fluid 

tendency is to reattach on the unwetted canopy side. When 

this fairing effect occurs the applicability of the present 

model is questionable. 
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FIGURE 6.7: TYPICAL AXIAL FORCE COEFFICIENT, CA, DEVELOPMENT 

(continued on the next page) 
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a) X2/Y1-1.65 Xl/Y1«l 

b) X2/Yl-l. 1 X1/Y1-0.7 

FIGURE 6.9: THE FLOW REATTACHMENT TREND FOR HIGHLY 

BLUFF CANOPIES 
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The range of variations of the instantaneous Strouhal number 

about the average values shown in figure 6.8 was about 

±0.015 for all 'the configurations considered. These results 

are in good agreement with the known experimental data. 

The mean axial force coefficient and the Strouhal number 

exhibit a similar dependence on the body bluffness (i. e. 

xi/x2). 

In view of the uncertainty range in the calculated 

Strouhal number (±0.015), it could well be that its variation 

with body bluffness is smaller than that shown in figure 6.8. 

Thus, the Strouhal number is almost constant for all the 

configurations, its value being about 0.13. 

Owing to the lack of experimental data concerning the 

three-dimensional separated flow, experimental investigations 

of two-dimensional separated flow are considerd in this 

context. 

Roshko (1954 a) found experimentally that for 

two-dimensional bodies, the Strouhal number is a function of 

their bluffness. The measured Strouhal numbers, related to 

the projected width of the bodies, were (at a Reynolds number 

of about 104): 

-for a plate normal to the flow (f I)0.135 

-for a 900 wedge (f <)0.18 

-for a circular cylinder (f 0)0.20 

In a subsequent experimental study, Modi V. & Slater J. 

(1977) found that the Strouhal number (at a Reynolds number 
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of 104), for a 900 degree structural angle section (f >) was 

0.135. 

Thus, the trend found by Roshko would appear to be valid 

only up to a certain bluffness magnitude; when this is 

exceeded the variations in the Strouhal number with the 

bluffness seem to have no practical significance. 

A similar trend, for three-dimensional axisymmetric flow, 

can be found in Calvert's (1967, b) experimental data. Figure 

6.10 shows the base pressure coefficient behind cones. These 

results also show that in axisymmetric separated flow when a 

certain degree of bluffness is exceeded, the base pressure 

and subsequently the wake flow appears to be only a weak 

function of the immersed body's shape. 

It could thus be that the predicted tendency for both the 

axial force coefficient and the Strouhal number developed on 

bluff canopies (figure 6.8) to vary little with canopy shape 

is appropriate and is supported by the few experimental data 

available. 
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6.1.2 THE MEAN AERODYNAMIC PROPERTIES OF THE NEAR WARE 

As has been shown, axial force unsteadiness manifests 

itself by fluctuations occurring at almost equal intervals, 

the duration of such a fluctuation being much smaller than 

the characteristic period between two consecutive 

fluctuations. Therefore, during most of the flight time the 

canopy experiences an almost steady aerodynamic load. 

On this ground, it is useful to investigate some average, 

aerodynamic properties such as the mean velocity distribution 

at different distances downstream of the canopy, together 

with the wake shape developed behind it. 

Figure 6.11 shows the flow developed about three canopies, 

whose shapes are sectors of spheres after about 25 

dimensionless time (t*V, /(2R)) units, counted from the motion 

commencement. The near wake width has been considered to be 

the average vortex ring layer diameter and the near wake 

length as the distance between the canopy hemline and the 

shedding region of the vortex rings cluster. Then, by visual 

inspection of figure 6.11, it is seen that as the ratio Xl/X2 

varies between 0.5 and 1.4, this ratio X1/X2 defining canopy 

bluffness, both the near wake width and its length are 

unaffected. 

Figure 6.12 shows the calculated mean resultant velocity 

distribution across the wake developed behind a flat canopy 

at several different distances downstream of the canopy 

hemline. The mean velocity distribution was found to be 
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essentially independent of the canopy shape. 

The velocity profiles show the existence of a region 

behind the canopy behaving, on the average, as a closed 

bubble with a stagnation point on the wake center line at 

2.1-2.5 diameters downstream of the separation line. 

The lack of dependance of the mean near wake structure 

with the canopy shape variation helps to explain the weak 

variation of the mean axial force coefficient and Strouhal 

number with the canopy bluffness which was described in the 

previous section 6.1.1. 
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6.1.3 POROSITY EFFECTS ON THE AXIAL FORCE 

In the present method of porosity representation the basic 

assumption is that porosity variation causes only 

second-order effects to the axial aerodynamic force. 

This assumption is supported by empirical relations such 

as that obtained by Heinrich & Uotilla (1977). In 

axisymmetric, high Reynolds number, incompressibe flows they 

measured the differential pressure distribution on 20 degree 

conical ribbon parachute canopies having various geometric 

porosities, X. By integrating the pressure distribution they 

found that: 

CA 0.467 + 0.132Lc - 1.71X2 6.1 

where Lc is the ratio between the chord length to the nominal 

diameter and CA is referred to the constructed area. 

In the present model the porosity is represented by 

permitting the existence along the control circle of a 

velocity component normal to the canopy surface. By making 

such a representation the porosity can vary over the canopy. 

The flow velocity through the canopy surface is calculated 

by using equation 4.32. 

Intuitively, it appears that the canopy can only be 

represented by a vortex sheet if the normal velocity 

component caused by porosity is small. It is suggested that 

the maximum average normal velocity should be about 0.10-0.15 

of the free stream velocity, i. e. XMAX a 15%. 
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Figure 6.13 shows the influence of porosity on the 

calculated, mean axial force coefficient and on the Strouhal 

number developed on both a hemispherical and an elliptical 

canopy. Since the elliptical canopy shape is similar to those 

used in the Henrich & Uotilla (1977) experiments, the axial 

force predicted by equation 6.1 is also presented in figure 

6.13. 

The calculated, mean axial force diminishes as the 

porosity increases. This trend agrees with both the 

experimentally-based equation 6.1 and data presented by 

Cockrell D. J. (1987). 

The Strouhal number varies nonlinearly with porosity. At 

first an increase in porosity causes a corresponding increase 

in Strouhal number then, following a further porosity 

increase the Strouhal number suddenly falls to zero, i. e. the 

flow ceases to be periodic (figure 6.14). Figure 6.15 shows 

the flow pattern when the wake flow periodicity has been 

suppressed by the porosity. 

Because there are insufficient experiments about porosity 

effects on the Strouhal number in axisymmetric flows, the 

model predictions can only be compared with results from 

two-dimensional experiments. Such experiments have been 

performed by Bearman P. (1967). He found a functional 

dependence of Strouhal number on porosity which is 

qualitatively similar to that shown in figure 6.14. 

In later experimental studies (Castro I., 1971, and Low H. 

& Newman B., 1986) the Strouhal number was found to increase 

monotonically with the porosity for X<15%. The flow 
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visualisation photographs presented by Low H. & Newman B. 

(1986) show a very smooth flow around porous canopies. This 

appears to be in contradiction to measurements which they 

made of the increase in the wake flow periodicity with 

increasing porosity. 

At this stage, there is therefore no clear experimental 

evidence to support the calculated trend presented in figure 

6.14. Moreover, it is conceivable that the real flow through 

porous canopies is strongly affected by both the local 

surface finish and the local Reynolds number. For this 

reason, the present porosity representation may be 

unsatisfactory. However, when considering the porosity 

influence on the axial force it may well be that the main 

flow field properties are well predicted by the model. 

In order to find how the local porosity affects the canopy 

aerodynamic properties two cases were simulated. The first 

case was of canopies with a skirt of 20% geometric porosity 

and the second case was of canopies having a region of 

similar porosity around the apex. The canopy shape parameters 

used in these simulations were: 

a)-an hemispherical canopy: X1/Y1-X2/Y1-1 

b)-an elliptical canopy : X1/Y1-X2/Y1-0.7 

The results show that by using the porous skirt the axial 

force development was very like that for a 

uniformly-distributed geometric porosity of about 2-5%. Thus, 

the mean axial force was slightly lowered and the wake flow 

periodicity suppressed. When the porous region was about the 

apex however, the mean drag was unaffected but the Strouhal 
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number was significantly increased e. g. for the 

hemispherical shape, the Strouhal number was 0.2, about 25% 

higher than the corresponding value for an imporous canopy. 

Using the present model it is possible to design a canopy 

possessing any desired pressure distribution. For example, 

figure 6.16 shows the geometric porosity distribution which 

results in an almost uniform pressure distribution over the 

entire canopy. 

The basic assumption for porosity simulation in the model 

is that the porosity magnitude is small, so that the canopy 

representantion by a vortex sheet remains valid. 

if an average geometric porosity significantly higher than 

about 15% is to be simulated a more accurate representation 

of canopy porosity must be adopted. In such cases it could 

well be that either Strickland's J. (1986) suggestion of 

simulating every imporous canopy segment by an independent 

vortex sheet or representation of the canopy surface by ring 

sources as suggested by Muramoto K. and Garrard W., (1984) 

were more suitable approaches. 
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6.1.4 THE MEAN PRESSURE DISTRIBUTION 

Since pressure distribution prediction is of importance in 

quantifying the structural loading, special attention has 

been dedicated to achievement of this goal. Figure 6.17 shows 

qualitatively the differential pressure distribution as 

calculated by three different approaches. 

Curve A in figure 6.17 is the pressure difference which is 

predicted if attached flow were assumed. Because of the 

symmetrical location of the stagnation points about the 

canopy apex the pressure difference at this point is zero and 

approaching the canopy skirt, near the hemline, it tends to 

infinity. However, since the flow which is developed around 

bluff parachute canopies is well separated, curve A is an 

unrealistic prediction. 

When separated flow is assumed but the zero load condition 

near the separation line at the canopy hem is not accounted 

for, the resulting differential pressure distribution is 

qualitatively described by curve B in figure 6.17. Due to the 

velocity induced by the shed vortex rings the differential 

pressure near the hemline is less than that shown in curve A 

but the pressure difference in that region still exhibits 

considerably larger values than those determined 

experimentally. Near the canopy apex the differential 

pressure coefficient is about 1.0. This is because of the 

very low fluid velocity on the unwetted upper canopy side 

near its apex and the flow approaching stagnation at the apex 
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on its wetted lower side. 

Curve C shows the pressure difference when both a 

separated flow is considered and the zero load condition has 

been imposed near the hemline. In the present model this 

zero load condition is achieved by simulating the standing 

eddy which develops downstream of the canopy hemline. 

By neglecting the short periods of fluctuations figure 

6.18 shows the mean pressure difference which is developed on 

several canopies having different shapes. 

Because of the method used for the determination of the 

standing vortex ring location described in chapter 5 the 

calculated differential pressure coefficient near the hemline 

is not exactly equal to zero but its typical value is 10.151. 

Very good agreement is obtained with various experimental 

values, as shown in figure 6.18. This agreement provides 

significant support for the present model. 
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6.1.5 THE FREE STREAM REYNOLDS NUMBER EFFECT 

In the present model a high free stream Reynolds number 

has been assumed. Under these conditions the shear layer 

emerging from the separation line is thin and the dissipation 

within it can be neglected. It can also be assumed that the 

vorticity is equally distributed across the vortex ring 

cores, thus simplifying the calculation of the self-induced 

velocity. 

When a two-dimensional separated wake is simulated by 

discrete vortex methods the Reynolds number only appears 

explicitly in the vortex core evaluation (e. g. Sarpkaya & 

Shoaff, 1979). The core size is used to define a cut-off 

distance for the induced velocity calculation thus avoiding 

the infinite velocity which would otherwise occur in the 

model as the distance to the vortex core center tended to 

zero. 

Since, in section 4.2 it has been shown that in 

three-dimensional flow the vortex core size affects the 

magnitude of the self-induced velocity (equation 4.19), in 

the present model the Reynolds number is explicitly accounted 

for both through the use of a cut-off distance which is set 

to equal the vortex core radius and through the self-induced 

velocity influence on the wake flow. 

As Batchelor (1967,7.2) pointed out , when the ratio 

between the vortex ring core radius and the vortex ring 

radius is greater than about 0.01 the fluid carried along by 
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the vortex ring extends to the axis of symmetry. Since the 

ratio of the vortex core radius to the vortex ring radius is 

of the order of magnitude of about Re-0.5 (equation 4.24), 

the lowest Reynolds number which can be simulated by the 

present model is about 5*104. This does not mean that Eden's 

(1911) or Stanton & Marshal's (1931) experiments at lower 

Reynolds number are irrelevant to this research but that for 

well separated flows at lower Reynolds numbers such as they 

considered a more exact model of vortex ring vorticity would 

be required. However, in view of the much higher Reynolds 

number characterizing the flight of full-scale parachutes, 

this low boundary does not seriously affect the applicability 

of the present model. 

Figure 6.19 shows calculated results for free stream 

Reynolds number effects on the axial force developed by a 

hemispherical canopy. Increasing Reynolds number from about 

105 one hundred times causes an axial force coefficient 

reduction of less than 5% but a more substantial reduction of 

about 30% in the Strouhal number. Thus, within the Reynolds 

number range of 105-107 neither the axial aerodynamic force 

or the wake flow are strongly dependent on the Reynolds 

number. 
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6.2 THE AERODYNAMIC PROPERTIES OF A RIGID CANOPY IN AN 

UNSTEADY STREAM 

It has been explained in section 6.1, that the flow about 

a parachute canopy is always unsteady, regardless of the free 

stream conditions. However, when free stream unsteadiness is 

superimposed on the inherently time dependent flow developed 

about the canopy the resulting flow becomes very complex and 

simpler experimental models for force determination have been 

developed. 

By assuming that the axial force can be represented by 

Morison's formula [Newman N., 1982,2.13]: 

A-0.5PSrefCAV. IV, I + kiiVmVol 6.2 

and measuring the axial force developed on immersed, 

unsteadily moving bodies, the constants CA and kll can be 

determined. Experimental methods and the various averaging 

techniques involved in the calculations have been described 

by Yavuz T. & Cockrell D. (1981), Cockrell D. et al (1986) 

and Cockrell D. J. (1987). 

Equation 6.2 assumes that the force developed by an 

accelerating body is a sum of an inertial component and a 

viscous component. Newman N. (1982,2.11) shows that equation 

6.2 is valid for impulsive motion, when the acceleration 

modulus S, defined by Iversen H. & Balent R., 1951, and by 

Cockrell D. 1987, as the acceleration and projected 
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diameter product divided by the free-stream velocity squared, 

is very high. 

The extension of Morison's formula towards lower 

acceleration moduli or high time-dependent motions such as 

oscillatory motion is questionable and as will be shown in 

the next sections will not generally lead to realistic 

results. 

This statement is supported by some experimental data. 

Iversen H. & Balent R. (1951) measured the resistance 

experienced by a disk driven through an undisturbed fluid by 

a constant force applied normal to its surface. Subsequently, 

by using Morison's formula, they calculated the instantaneous 

added mass coefficient, kll and found it to be a function of 

the acceleration modulus. 

At very low acceleration moduli the spread of the measured 

axial force coefficient was large. This can be explained in 

terms of the time-dependent axial force developed in steady 

flow which has been previously described. 

At higher acceleration moduli they showed that the 

envelopes of both the measured axial force coefficient and 

the added mass coefficient converge, the latter becoming 

close to the magnitude predicted by assuming ideal fluid flow 

(equation 4.39 developed by Lamb, 1932, article 120). 

Therefore, Morison's formula, which implies constant 

values for both the steady axial force coefficient and the 

added mass coefficient, would appear to be appropriate only 

at high acceleration moduli. 

In the following sections the model is used to analyse the 
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axial force development at different acceleration moduli and 

also in highly time-dependent states, such as oscillatory 

motion. 

The previous history of the flow is also important and its 

impact on the Morison's formula model will be discussed in 

the following sections. 
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6.2.1 ACCELERATED FLOW 

Figure 6.7 shows the calculated time-dependent axial force 

coefficient acting on a hemisphere which is subjected to a 

sudden axial motion. 

When a body is impulsively set in motion the acceleration 

modulus is very high and conditions are appropriate for the 

application of Morison's formula. Subsequently, the added 

mass contribution diminishes and the axial force coefficient 

gradually converges towards its time-dependent behaviour in 

steady flow, as described in figure 6.7. 

This result is qualitatively similar to Sarpkaya's 

experimental (1978) and calculated (1979) results for the 

axial force development on a circular two-dimensional 

cylinder which had been set in motion impulsively. 

Figure 6.21 shows the calculated axial force coefficient 

developed on a hemisphere which is moved at a constant 

acceleration modulus and in figure 6.22 the consequent wake 

flow pattern. 

At low acceleration moduli the wake pattern is essentially 

the same as that developed during steady flow whereas at 

moderate acceleration moduli the wake flow becomes less 

pronounced, tending to lose its periodicity. 

The wake is composed of the fluid particles which carry 

vorticity created on the wetted part of the canopy. The 

changes in this shed vorticity are caused by variations in 

the free-stream velocity, shape changes and the fluctuations 
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caused by the wake flow periodicity in the velocities induced 

at the shedding point. Thus, the previous history of the flow 

manifests itself in the vorticity of the wake fluid particles 

and consequently in the wake's strength & structure. 

The shed vorticity is convected at a velocity which is, on 

average, proportional to the free stream velocity (chapter 

2). Therefore, the amount of vorticity which can be found 

within a given length downstream of the canopy becomes 

smaller as the acceleration modulus increases. 

Thus, at high acceleration moduli the wake and 

consequently flow history have little effect on the 

aerodynamic load which is developed on the canopy. 

At high acceleration moduli the added mass coefficient 

tends to the constant ideal flow value calculated by assuming 

attached flow. Under such conditions, Morison's formula is 

applicable . 
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FIGURE 6.22: THE WAKE FLOW PATTERN GENERATED BY A 

HEMISPHERE MOVED AT CONSTANT ACCELERATION MODULI, 

S-2RV/V 
(continued ýon next page) 
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FIGURE 6.22: THE WAKE FLOW PATTERN GENERATED BY A 

HEMISPHERE MOVED AT CONSTANT ACCELERATION MODULI, 

6-2RV/V! (continuation) 
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6.2.2 DECELERATED FLOW 

From the explanation given in the previous section, the 

vorticity density (i. e. the amount of shed vorticity per unit 

length) shed into the wake behind a decelerating bluff body 

will be larger than the vorticity density in the wake 

developed behind a bluff body which moves at a constant 

velocity or is in accelerating motion. 

Figure 6.23 shows the wake flow developed behind a bluff 

canopy in decelerating flow. The shed vorticity is much more 

dense than that shown in steady flow in figure 6.1. 

The significant differences between the effect of 

accelerated and decelerated motion on the wake flow can be 

appreciated by considering the wake fluid to be composed of 

material particles which possess inertia. Then in 

decelerating motion the canopy will be exposed to a back-flow 

resulting from the inertia of the wake fluid particles. 

Because a high-vorticity density region is developed in 

the near wake behind a decelerating bluff body, the flow 

history has a significant role in the axial force 

determination. Figure 6.24 shows the wake flow pattern and 

the consequent axial force coefficient developed on a 

one-meter radius hemispherical canopy in two different 

free-stream velocity profiles, V1 and V2 in figures 6.24 a 

and 6.24 b, respectively. After one second from the 

commencement of motion, the velocity and the deceleration in 

these two cases are similar, thus the acceleration moduli are 
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the same. However, the axial force development is dissimilar 

because it is a function of the flow history as well as of 

the instantaneous velocity and acceleration. 

In a decelerating motion therefore, due to the strong 

dependence of the axial force on the flow history, Morison's 

formula does not provide a satisfactory relationship for the 

axial force. 
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FIGURE 6.23: THE WAKE FLOW PATTERN DEVELOPED BEHIND A 

DECELERATING HEMISPHERE 



-127- 

CA ,V 
(m/sec)/10 

3.00 

2.75 

2.50 

2.25 

2.00 

1.75 

1.50 

1.25 

1.00 

0.75 

0.50 

0.25 

0.00 ' 

0.25 0.50 0.75 1.00 1.25 I. SO 1.75 2.00 2.25 2.50 2.75 
TIME(secj 

a) THE VELOCITY PROFILE V1 

(i) AXIAL FORCE COEFFICIENT, CA, VARIATION 
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FLOW PATTERN DEVELOPED RESULTING FROM DIFFERENT 

FLOW HISTORIES IN A DECELERATED FLOW AT SIMILAR 

ACCELERATION MODULUS (continued on next page) 
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6.2.3 FREE DECELERATION 

Free deceleration (i. e. the movement of a decelerating 

system under both axial & gravitational forces) is a 

particular example of decelerating motion. Since this motion 

is basic to the application of parachutes some of its 

features will be analysed. 

Figure 6.25. a shows the axial force coefficient 

development for a freely-decelerating system released at an 

initial descent velocity of 30 m/sec. 

Close to descent commencement, the axial force coefficient 

fluctuations are of a higher frequency and amplitude than 

they are in a steady, free-stream flow, then gradually the 

fluctuations tend to those which are developed in steady 

motion. 

Soon after the commencement of motion the mean axial force 

coefficient is about 60% of its steady value. Even after 

about six seconds flight at a practically constant velocity 

the mean axial force. coefficient does not reach its steady 

value of 1.25 (figure 6.8 b). This is because the decelerated 

motion increases the vorticity density in the near 

wake, behind the canopy. 

Figures 6.25 b&6.25 c show the axial force coefficient 

developed on the same canopy, but with a different initial 

descent velocity and a different parachute/payload system 

mass. 
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By comparing the axial force coefficient development in 

figures 6.25 a, 6.25 b and 6.25 c, it can be seen that the 

axial force coefficient developed on a freely-decelerating 

parachute canopy depends on the flow history. When a rigid 

canopy is assumed, this flow history is a function of the 

systems's initial velocity and the parachute/payload system 

mass. 

Some evidence supporting the results of this simulation is 

provided in "PERFORMANCE OF AND DESIGN CRITERIA FOR 

DEPLOYABLE AERODYNAMIC DECELERATORS" (1963) and by Ewing E. G. 

(1972). The experimental axial force coefficient variation 

trend with the descent velocity is shown in figure 6.26. 

This trend can be explained partially by Reynolds number 

effects on the axial force developed on porous canopies 

(Cockrell D. J. 1987). But it could also be explained by 

consideration of the unsteady wake flow, as predicted by the 

present model. 

Since a parachute canopy is not rigid, as has been assumed 

in the present calculations, it will change its shape during 

flight as it is affected by the momentary pressure 

distribution. Thus, a more quantitative comparison of the 

results from the model with experimental data, such as those 

which is shown in figure 6.26, would not be realistic. 
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6.2.4 OSCILLATORY MOTION 

Yavuz T. & Cockrell D. (1981) introduced a method for the 

experimental determination of unsteady aerodynamic load 

acting on canopy models. The apparatus consisted of a 

carriage which was capable of towing a canopy model through a 

ship tank at a desired velocity. An oscillatory motion in 

different directions could be superimposed on the main axial 

movement determined by the towing device. 

Cockrell D. et al (1986) subsequently improved the 

apparatus and the data reduction technique. 

In 1986 & 1987 Harwood R. performed a series of 

experiments with several canopy models. Among these were 

experiments conducted on nominally-hemispherical canopies in 

axial oscillatory motion. 

Figure 6.27 compares the calculated axial force 

coefficient with two sets of experimental results which he 

obtained. Owing to the uncertainity in the actual canopy 

shape (fabric canopy models were used) the ratio between the 

instantanoeus axial force coefficient to its mean value 

rather than its absolute value was used in this comparison. 

The calculated results show good agreement with the 

experimental measurements. 

Figure 6.28 shows the added mass coefficient in this kind 

of axial oscillatory motion obtained by applying Morison's 

formula instantaneously. The added mass coefficient changes 

significantly over a period and is not a single-valued 
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function of the acceleration modulus. 

It is thus apparent that Morison's formula is not suitable 

for the representation of the axial force generated in 

motions which are highly flow history dependent, such as 

oscillatory motions. 
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6.3 THE PARACHUTE CANOPY INFLATION PROCESS 

Engineering interest in the parachute canopy inflation 

process lies in the high forces which are then generated on 

the parachute canopy and transferred to the payload. In 

simulating this process neither the velocity nor the canopy 

shape can be assumed to have steady values. 

The canopy shape variation is determined both by the 

interaction between the momentary aerodynamic & inertial load 

and the canopy structural response to these loads. Since 

canopy structural modelling is beyond the scope of the 

present research, in this simulation the canopy shape 

variation with time is assumed to be known. 

Mathematically, the changes in the canopy shape are 

accounted for by including the canopy surface velocity in the 

flow field boundary conditions (equation 4.5). 

By analysing the canopy inflation process photographs 

presented by Heinrich H. G & Noreen R. R (1970), it appears 

that the axisymmetric flow assumption might be appropriate 

only during the last 40% of the inflation time tf. However, 

the axial force reaches its maximum value within this period, 

so it is worth simulating this part of the canopy inflation 

process. 

Experimental data which they presented show that the 

average canopy surface velocity is about one order of 

magnitude less than the free stream velocity. Thus, in the 

differential pressure calculation (section 4.9), the square 



-143- 

of the canopy surface velocity can be neglected. 

Figure 6.29 shows the calculated axial force during an 

axisymmetric inflation of an hemispherical canopy. This shape 

has been assumed since sufficient data to describe the canopy 

shape during the inflation process are not available. 

The velocity and the projected canopy area radius variation 

with the time are based on the experimental correlation found 

by Heinrich & Noreen (1970). 

The steady shape is achieved at t/tf-1 

The axial force has a local maximal value at t/tf-0.6. its 

absolute maximal value is achieved when t/tf-1. 

Although a quantitative comparison with experimental 

results was not performed, qualitatively the trend in the 

simulated axial force development agrees with these 

experiments. 

This result shows the ability of the model to cope with 

the strong simultaneous gradients in both the canopy shape 

and the free-stream velocity. It would therefore be suitable 

to use in conjuction with an appropriate structural model in 

order to obtain a realistic canopy load prediction. 
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7. THE MODEL SENSITIVITY 

The model sensitivity was checked against free parameters, 

empirical data and the integration scheme for the convection 

of the shed vortex rings. 

To calculate the aerodynamic load on a given canopy 

configuration the model requires as input the canopy shape & 

velocity variation with time, the porosity distribution, the 

parachute/payload mass (if a free deceleration is simulated) 

and the desired number of panels (for the sake of abbrevation 

NP) for canopy discrete representation. Thus, for a given 

example the model requires only one free parameter, i. e. NP. 

The first step in checking the model sensitivity to NP was 

made by calculating the differential pressure distribution 

for spherical canopies when attached flow was assumed. 

Subsequently, the results were compared with Ibrahim's (1965) 

analytical calculations. 

Figure 7.1 shows such a comparison for NP-8. Discrepancies 

between the model and Ibrahim's (1965) results can be noticed 

near the skirts of the canopies. These discrepancies are due 

to the discrete representation of the canopy surface which 

cannot simulate the large changes in velocity near the canopy 

hemline. 

Both the calculated time step magnitude and the 

newly-created vortex ring strength depend on NP. Therefore, 

the next step was to find the sensitivity of the results with 
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separated flow simulations, to variations in NP. 

Figure 7.2 shows the calculated, mean axial force 

coefficient and the Strouhal number dependence on NP for a 

hemispherical canopy at a Reynolds number of 1.5*105, based 

on the projected area diameter. The results presented in 

figure 7.2 show changes of up to 5% in the mean axial force 

coefficient with NP from the result obtained when the 

recommended value for NP, i. e. NP-12, was used. The Strouhal 

number variations are in the same range as was found for the 

calculated Strouhal number in section 6.1.1. 

Since at every time step a new vortex ring is shed the 

number of the shed vortex rings is proportional to NP. Thus, 

the computation time grows as NP2 (chapter 5). 

Following the results shown in figure 7.2 and by 

considering the required computation time, the recommended 

range for NP is 10-14. 

For the shedding frequency evaluation (section 6.6) an 

experimental axial force coefficient (CA) is required. In 

equation 5.36 it was assumed that CA, based on the canopy 

projected area, was 1.3. This was an average value between 

the extreme experimental values presented by Hoerner (1965) 

for cup-shaped bodies (i. e 1.20<CA<1.45). 

When the extreme values for CA were used to evaluate the 

shedding frequency, using equation 5.36, the resulting mean 

axial force coefficient varied by only up to 5%. The 

calculated Strouhal number was found to vary within +0.02 

when CA" 1.45 and within 0.01 when CA=1.2 about the mean 

values shown in figure 6.8 that is, by approximately 10%. 
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According to equation 4.36 the magnitude of CA influences 

the shedding frequency (equation 4.36) in the same manner as 

does the circulation reduction factor (section 4.3 and 4.6). 

Therefore, a ±10% uncertainty in the circulation reduction 

factor affects the axial force development in the same way as 

the variation in the assumed CA value used in equation 4.36 

for shedding frequency evaluation. 

The wake development was calculated using equation 4.37. 

This equation represents an Eulerian integration scheme. To 

check the sensitivity of these results to the integration 

method, several simulations were performed by using the 

Adam's integration method, whose error is two orders of 

magnitude less than that of Euler's integration method 

(Henrici P. 1962), was used. Thus, the shed vortex rings were 

convected in accordance with : 

ri-ri-1+(ri-1+0.5*(ri-l-ri-2)]*bt 7.1 

where 
rk- is the vector determining the "k"-th vortex ring 

axial location and radius. 

Both the mean axial force and the Strouhal number were 

unaffected by changing the integration method. Owing to the 

higher computing resources demanded by Adam's method, Euler's 

integration scheme (equation 4.37) was maintained. 
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8. RECOMMENDATIONS FOR FURTHER WORK 

As has been already explained, three-dimensional separated 

flow has not been sufficiently investigated either 

experimentally or theoretically. Future research effort 

should therefore be directed in both these two directions. 

owing to the complexity of three-dimensional separated 

flow at this stage studies should be restricted to 

incompressible flow. 

In view of the theoretical results presented in this 

research it is recommended that the experimental validation 

of the present model should be completed prior to undertaking 

any further theoretical studies. 

8.1 RECOMMENDATIONS FOR FUTURE EXPERIMENTAL STUDIES 

Experimental work should cover both steady and unsteady 

flows. 

It is suggested that the steady flow experiments would 

investigate both the wake flow and the consequent aerodynamic 

load generated on the canopy. A simultaneous measurement of 

the wake flow periodicity and axial force development could 

explain a significant part of the complex phenomena 

associated with three-dimensional separated flows. 

The porosity influence on both the axial force development 

and the wake flow influences the design of parachute canopies 

and therefore, further investigations of the aerodynamic 
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properties possesed by three-dimensional porous canopies 

should be performed. It is recommended that experiments such 

as those performed by Heinrich & Uotilla (1977) are 

re-examined and that measurements are made of the wake flow 

properties. 

Additional efforts should be directed into unsteady flow 

experiments such as those conducted by Cockrell D. et. al. 

(1986) and Harwood R. (1986). 

The present research has shown that utilisation of 

Morison's formula for unsteady separated axisymmetric flows 

of moderate and small acceleration moduli is unsatisfactory, 

because the aerodynamic loads developed under these 

conditions fluctuate strongly. In order to simulate 

aerodynamic loads generated on full-scale parachute canopies 

in flight, the canopy models should be tested in velocity 

profiles which are similar to those which occur in the 

full-scale flight. If the canopy can be assumed to be rigid, 

the most significant parameters to model are the canopy 

shape and the dimensionless time which characterises the 

velocity variation with time. This similarity in the velocity 

profiles will account for the fluid flow history. However, it 

is important to note that although the acceleration modulus 

does not reflect the fluid flow history, it might be thought 

of as a first order approximation to it. 
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8.2 RECOIRMENDATIONS FOR FUTURE THEORETICAL STUDIES 

The recommendations for future theoretical studies lie in 

the limitations of the present model (section 5.10). 

Since the wake flow investigation provides a sufficient 

data base, the present model can be implemented using 

empirical methods to model effects such as the viscosity 

decay and the collision of the vortex rings. 

Subsequently, the principles presented in this research 

could be applied to asymmetrical flows. Flow asymmetry 

results from both non-zero angle of attack and asymmetric 

canopy shapes, e. g. cross shaped canopies. 

When flow asymmetry arises only from non-zero angles of 

attack, the canopy surface could be represented by bound 

vortex rings whose strengths varied around their 

circumference. Such methods have been used by both Weisinger 

(1957) and Bagley, Kirby and Marcer (1958) to calculate the 

aerodynamic load developed on annular aerofoils. 

If the flow about asymmetric canopy shapes is to be 

simulated, the canopy surface could be replaced by a lattice 

of generally shaped vortex panels such as have been used by 

Katz & Levin (1980) for a delta wing representation. 

In asymmetric flows the shed vortex rings develop 

non-uniform circumferentially-distributed self-induced 

velocities (chapter 3). Therefore, every vortex ring must be 

represented by a grid of several points [ Leonard 1975 ) and 

the location of each of these points must be tracked. It is 
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therefore evident that an asymmetrical model will demand much 

higher computing resources than are required for the present 

one. 

The current model and any future asymmetrical models would 

possess higher engineering applicability in parachute design 

if they were to be matched to appropriate structural models. 

The flight trajectory of parachute/payload systems could 

be simulated by building up a computer programme capable of 

calculating the instantaneous aerodynamic & structural loads 

and subsequently applying these, togeter with other external 

loads, in the equations of motion. Although at this present 

stage this kind of computer programme would be very complex 

and difficult to develop, its principles are well understood 

and with continuous effort it could be produced. 
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9. SUMMARY AND CONCLUSIONS 

A model for the axisymmetric flow around bluff bodies is 

presented. This model assumes an incompressible, high Reynolds 

number flow and its principles are applied to an investigation 

of the aerodynamic characteristics developed by bluff parachute 

canopies. 

A computer programme which applies these principles has been 

developed. Subsequently, a numerical investigation of the flow 

and of the consequent aerodynamic loads generated on an 

axisymmetric bluff parachute canopy has been performed. 

The wake flow created by bluff canopies is found to be 

characterized by a periodic cluster shedding of vortex rings. 

consequently, the calculated axial force coefficient developed 

on these canopies is also periodic. For steady flow its mean 

magnitude is in the range of 1.20-1.45 and its Strouhal number 

is about 0.13. These values are based on the canopy projected 

area and canopy projected diameter, respectively. 

A parametric investigation of the canopy shape influence on 

both the wake flow & the axial aerodynamic force is presented. 

It was found that variation of the canopy shape does not have a 

major influence on the wake flow. 

The calculated pressure distribution and wake flow 

periodicity are in good agreement with established experimental 

data. 

An unsteady flow investigation shows that since the axial 

aerodynamic force cannot be described as a function of the 

instantaneous velocity and the instantaneous acceleration 
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solely, the Morison's formula for its representation is 

generally unsatisfactory. It provides a better approximation as 

the acceleration modulus is increased, when the flow history 

effect becomes of less significance. The calculated results for 

oscillatory axial motion bear a close resemblance to the sparse 

relevant experimental results which are available. 

The simulated axial force development trend which ocurs 

during the inflation process, agrees with limited experimental 

results. However, because these provide insufficient 

experimental data concerning the simultaneous shape & velocity 

variation, no quantitative comparisons with experiments can be 

made. 

The present model is basically a potential flow simulation. 

It includes the effects of fluid viscosity by allowing the 

fluid to separate from the canopy surface near its 

discontinuity, i. e. the canopy hemline. Owing to the assumed 

high Reynolds flow, the shear layer emanating from the hemline 

is thin. Thus, the vorticity is confined to the thin shear 

layer and outside it the fluid is irrotational. Consequently, 

in the irrotational part of the fluid field a velocity 

potential can be defined. 

The canopy surface is replaced by first order ring panels 

each one containing a bound vortex ring along a circle located 

at one quarter of the panel length. The flow boundary condition 

on the canopy surface is determined by the normal velocity 

requirements at each panel, along a control circle located at 

three quarters of the panel length. Free-stream velocity 

variation, porosity effects and canopy shape changes are 
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accounted for by specifying the normal velocity along the 

control circle. 

By generalizing Rosenhead's discretization of a 

two-dimensional vortex sheet, the free shear layer emanating 

from the canopy hemline is represented by discrete vortex rings 

which leave the canopy surface tangentially, at its hemline. 

The free vortex rings are convected by the local velocity. 

Because of the high Reynolds number flow viscosity 

dissipation has been neglected. 

The standing eddy developed near the separation line, on the 

canopy unwetted side, is simulated by a standing vortex ring. 

In this model, several elements have been introduced which 

have not been considered previously in the published 

discrete-vortex separated wake simulation methods: 

-improvement of the near wake simulation by accounting for 

the standing eddy at the flow separation region; 

-inclusion of a simple method for calculating the 

newly-created vortex ring strength & location; 

-reduction of the free parameters from two, which are the 

time step and the number of panels for the canopy 

representation, to one, the number of panels. 

Further studies in model validation & development have 

been proposed. Owing to an insufficient data base for 

three-dimensional, separated flows, further experimental 

studies are certainly desirable and these have been 

specified. 
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* 
* 

* PARACHUTE-MAIN PROGRAMME 
* s=sa=ss=: s=as: s==as: ===-s====-s 
* 

* 
* 
* 

PROGRAM PARACHUTE 

*" PARACHUTE SIMULATES THE FLOW FIELD AND CALCULATES THE 
+º CONSEQUENT PRESSURE DISTRIBUTION & AXIAL FORCE DEVELOPED 
* AROUND A PARACHUTE CANOPY. THE MAIN ASSUMPTIONS ARE: 
*- AXISYMMETRIC FLOW 
*- HIGH REYNOLDS NUMBER INCOMPRESSIBLE FLOW 

THE MODEL IS BASICALLY, A POTENTIAL ONE. 
* THE CANOPY SURFACE IS REPLACED BY A BOUND VORTEX RING LATTICE. 
+r THE SEPARATED WAKE IS SIMULATED BY A FREE VORTEX RING LAYER. 
* THE STANDING EDDY DEVELOPED ON THE CANOPY UNWETTED SIDE, NEAR 
* ITS HEMLINE IS ACCOUNTED FOR BY A STANDING VORTEX RING. 

* THE COMPUTER PROGRAMME CAN BE RUN INTERACTIVELLY. WHEN 
* THIS MODE IS USED THE PROGRAM WILL PROMT WITH QUESTIONS 
* AND HINTS WHICH WILL HELP THE UNEXPERIENCED USER. 
* 
*----------------------------------------------------------------- 

PARAMETER (NPN1=21, NVR1=500, PI1-3.141592654, NMAX1=500) 
DIMENSION C(NPN1, NPN1), CTEMP(NPN1, NPN1), DCP(NPN1), DCPST(NPN1) 

1, GMW(NVR1), CANCELL(NVR1), EP(NVR1), U(NPN1) 
2, C25(NPN1,2), C75(NPN1,2), WKNEW(NVR1,2), WKOLD(NVR1,2) 
3, GMB(NPN1), PANPOR(NPN1), XPN(NPN1), GMBOLD(NPN1), IYG(NVR1) 
4, TIME(NVR1), CA(NVR1), YG(NVR1), IY(NVR1), IX(NVR1) 
5, TVEL(NMAX1), VEL(NMAX1), PX(NVR1), PY(NVR1), DCPOLD(NPN1) 
6, TSHAPE(NMAX1), XMT(NMAX1), YMT(NMAX1), XIT(NMAX1), AXIAL F(NVR1) 
7, ADD(NVR1), TDEC(NVR1), VDEC(NVR1), C25OLD(NPN1) 

CHARACTER REPLY*3, REPLY1*3, LINE(70), LIN(70), LN(70), TITLE*20 
DATA YMST, XMST, XIST, USTEADY, IPOR, NW, IPR1, IPR2, CASTD, NPAN, 

1IPLOT, IPL1, NPL, NDCUT, IDEC, FYSVR, FQ, 
21SHAPE T, IPRSHAPE, IWAKE, IAXIAL F, TMAX, CASTD, KSHAPE, RO/ 
31., l., T., -15., 0,25,999,999, 
41.42,12,0,25,1,4,0,1.12,1,0,0,0,0,1000,1.4,0,1.25/ 

NAMELIST/LIST/ TITLE, YMST, XMST, XIST, USTEADY, NW, TMAX, 
1FYSVR, CASTD, RO, 
21POR, IDEC, ISHAPE_T, IPRSHAPE, IWAKE, IPR1, IPR2, IPLOT, IPL1, NPL 

NPN=NPN1 
NVR-NVR1 
PI-P11 
NMAX-NMAX1 

* -------------------------- 
*** THE "DIALOG" WITH THE USER 
* -------------------------- 
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* 
PRINT 60 
READ(5, '(A)') REPLY1 
IF(REPLY1(1: 1). EQ. 'N' OR. REPLY1(1: 1). EQ. 'n') THEN 

PRINT 70 

170 READ*, XMST, YMST, XIST 
CALL SHAPE(XMST, YMST, AL, XIST) 
PRINT 160 
READ(5, '(A)') REPLY 
IF(REPLY(1: 1). EQ. 'Y' OR. REPLY(1: 1). EQ. 'y') 
THEN 

PRINT 180 
GO TO 170 

END IF 
210 PRINT 90 

READ(5, '(A)') REPLY 
PRINT 80 
PRINT 90 
READ(5, '(A)') REPLY 
PRINT 185 
PRINT 90 
READ(5, '(A)') REPLY 
PRINT 190 
PRINT 90 
READ(5, '(A)') REPLY 
PRINT 110 
PRINT 90 
READ(5, '(A)') REPLY 
PRINT 111 
PRINT 90 
READ(5, '(A)') REPLY 
PRINT 200 
READ(5, '(A)') REPLY 
IF(REPLY(1: 1). EQ. 'Y' OR. REPLY(1: 1). EQ. 'y') 
GO TO 210 

END IF 
XMST-1. 
YMST=1. 
RIST-1. 
PRINT 10 
PRINT 90 
READ(5, '(A)') REPLY 
WRITE(6, LIST) 
IF(REPLY1(1: 1). EQ. 'Y' OR. REPLY1(1: 1). EQ. 'y') 

1GO TO 222 
PRINT 100 
READ(5, '(A)') REPLY 
CALL SHAPE(XMST, YMST, AL, XIST) 

222 PRINT 20 
READ(5, '(A)') REPLY 
IF(REPLY(1: 1). EQ. 'y' OR. REPLY(1: 1). EQ. 'Y') THEN 

IF(REPLY1(1: 1). EQ. 'Y' OR. REPLY1(1: 1). EQ. 'y') 
1GO TO 333 

* ---------------- 
*** READING THE DATA 
* ---------------- 
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PRINT 30 
333 READ(5, LIST) 

PRINT 40 
PRINT 90 
READ(5, '(A)') REPLY 
WRITE(6, LIST) 
PRINT 100 
READ(5, '(A)') REPLY 
CALL SHAPE(XMST, YMST, AL, XIST) 
PRINT 90 
READ(5, '(A)') REPLY 

ELSE 
PRINT 50 

END IF 

, t, t* READING THE VELOCITY/TIME TABLE 

IF(USTEADY. GT. 998. )THEN 
PRINT*, ' THE NUMBER OF PAIRS IN THE VELOCITY/TIME 

1 TABLE IS: ' 
READ*, NVEL 
PRINT*, NVEL 
PRINT 140 
IAXIAL F-1 
DO 66 Y-1, NVEL 

66 READ*, TVEL(I), VEL(I) 
PRINT*, ' THE VELOCITY PROFILE IS: ' 
PRINT*, ' TIME(SEC) VELOCITY[M/SEC)' 
DO 77 I-1, NVEL 

77 PRINT*, TVEL(I), VEL( I) 
PRINT 90 
READ(5, '(A)') REPLY 

END IF 

*** READING THE CANOPY SHAPE/TIME TABLE 

IF(ISHAPE T. EQ. 1)THEN 
PRINT*, ' THE NUMBER OF SHAPE PARAMETERS IN THE 

1 SHAPE/TIME TABLE IS: ' 
READ*, NTSHAPE 
PRINT*, NTSHAPE 
PRINT 240 
DO 85 I-1, NTSHAPE 

85 READ*, TSHAPE(I), YMT(I), XMT(I), XIT(I) 
PRINT*, ' THE SHAPE/TIME IS: ' 
PRINT*, ' TIME(SEC) YMT[M) XMT[M] 
DO 87 I-1, NTSHAPE 

87 PRINT*, TSHAPE(I), YMT(I), XMT(I), XIT(I) 
PRINT 90 
READ(5, '(A)') REPLY 

END IF 

XIT[M]' 

** READING THE PARACHUTE/PAYLOAD MASS FOR THE FREE DECELERATION 
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*** MODE 
* 

IF(IDEC. EQ. 1)THEN 
PRINT*, ' FREE DECELERATION' 
PRINT*, ' PLEASE ENTER THE MASS OF THE DECELERATION 

1 SYSTEM. ' 
READ*, AMASS 
PRINT*, ' THE MASS OF THE DECELERATION SYSTEM IS' 

] AMASS, ' KG. ' , 

PRINT 90 
READ(5, '(A)') REPLY 
UNO-USTEADY 
IAXIAL F-1 

_ END IF 

IF(IPOR. EQ. O)GO TO 65 
* 
* 
*** READING THE GEOMETRIC POROSITY 
* 
* 

DO 75 I-1, NPAN 
PRINT*, 'PLEASE ENTER THE GEOMETRIC POROSITY OF THE', I, 

1'-TH PANEL' 
READ(5, *)PANPOR(I) 

75 WRITE(6,175)I, PANPOR(I) 

65 CONTINUE 
* 
* 

* ------------- 
* OPENING FILES 
* ------------- 

* THE FILES CONTEIN RESULTS WHICH CAN BE SUBSEQUENTLY 
* USED FOR PLOTTINGS/PRINTOUTS OR STORED IN AN ARCHIVE: 
* -FLOW. DAT (CHANNEL 1) : CONTAINS THE CANOPY & SHED 
* VORTEX RING COORDINATES AT 
* A GIVEN INSTANT. 
* -CA. DAT (CHANNEL 2): CONTAINTS THE AXIAL FORCE 
* COEFFICIENT AND THE TIME. 
* -VEL. DAT (CHANNEL 3): CONTAINS THE VELOCITY IN 
* THE WAKE AS A FUNCTION OF 
* Y AT SIX DIFFERENT AXIAL 
* STATIONS DOWNSTREAM THE CANOPY. 
* THE DISTANCE BETWEEN TWO 
* CONSECUTIVE STATIONS IS ONE 
* CANOPY PROJECTED AREA RADIUS. 
* -K11. DAT (CHANNEL 4): CONTAINS THE ADDED MASS 
* COEFFICIENT AND THE TIME. 
* -AXIAL_F. DAT (CHANNEL 9): CONTAINS THE AXIAL FORCE 
* AND THE TIME. 
* -VELDEC. DAT (CHANNEL 10): CONTAINS THE CALCULATED 
* DESCENT VELOCITY WHEN THE 
* FREE DECELERATION MODE IS 
* USED. 
* 
* AT THE END OF THE RESULTS THE INPUT DATA IS WROTE. 
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* 

IF(IPLOT. EQ. 1)THEN 
OPEN(UNIT-1, FILE-'FLOW', STATUS-'NEW') 
OPEN(UNIT-2, FILE-'CA', STATUS-'NEW') 
IF(IAXIAL F. EQ. 1) THEN 

OPEN(UNIT-9, FILE-'AXIAL F', STATUS-'NEW') 
OPEN(UNIT-4, FILE-'K11', STATUS-'NEW') 
N-1 
WRITE(4,125)N 

END IF 
IF(IDEC. EQ. 1) THEN 

OPEN(UNIT-10, FILE-'VELDEC', STATUS-'NEW') 
N-1 
WRITE(10,125)N 

END IF 
IF(IWAKE. EQ. 1)THEN 

OPEN(UNIT-3, FILE-'VEL', STATUS. 'NEW') 
NV-6 
WRITE(3,125)NV 

END IF 
N1=NPAN+1 
WRITE(1,113)N1 
NGR-1 
WRITE(2,125)NGR 

END IF 
* 

AL=0. 
DO 12 I-1, NVR 

12 CANCELL(I)=1. 
IF(ISHAPE T. EQ. 1)THEN 

XI-TB(U. 00001, TSHAPE, XIT, NTSHAPE, NMAX1) 
XM=TB(0.00001, TSHAPE, XMT, NTSHAPE, NMAX1) 
YM=TB(0.00001, TSHAPE, YMT, NTSHAPE, NMAX1) 

ELSE 
XI-XIST 
XM-XMST 
YM-YMST 

END IF 
SCALEX=10. /YM 
SCALEY=1.75*SCALEX 
YREF=YMST 
YXI=Y(XIST, XIST, XMST, YMST, 0) 
IF(XIST. LT. XMST)YREF-YXI 
SREF-PI*YREF*YREF 
VOLCAN=VOL(XIST, PI, XMST, YMST, 0) 
SCAN-SURF(XIST, PI, XMST, YMST, 0) 
WRITE(6,122)YREF, SREF, VOLCAN, SCAN 
PRINT 130 
PRINT 90 
READ(5, '(A)') REPLY 
U1-UN(O, UNO, O, SREF, O, USTEADY, 

1TVEL, VEL, NVEL, NMAX, IDEC, AMASS, NDT) 
DT=0.1*YM/ABS(U1) 
T-DT 
XCUT=2. *YMST*NDCUT*ABS(U1)/U1 
UNO=USTEADY 

* 
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* ------------- 
* THE MAIN LOOP 
* ------------- 

DO 112 NDT-1, NW 

UINF-UN(T, UNO, DT, SREF, CAO, USTEADY, 
1TVEL, VEL, NVEL, NMAX, IDEC, AMASS, NDT) 

IF(ABS(UINF). LT. 0.000001)THEN 
IF(UINF. LT. O)THEN 

UINF-UINF-0.000001 
ELSE 

UINF-UINF+0.000001 
END IF 

END IF 
IF(ISHAPE T. EQ. 1)THEN 

XI-TB(T, TSHAPE, XIT, NTSHAPE, NMAX) 
XM-TB(T, TSHAPE, XMT, NTSHAPE, NMAX) 
YM-TB(T, TSHAPE, YMT, NTSHAPE, NMAX) 
PRINT*, 'YM-', YM, 'XM-', XM, 'XI-', XI 
IF(IPRSHAPE. EQ. 1)CALL SHAPE(XM, YM, AL, XI) 

END IF 
IF(NDT. EQ. 1)GO TO 44 

*** THE TIME STEP 

DT-ABS(GMW(NDT-1)/GMWNDT) 

44 CALL CANOPY(UINF, NPAN, BETA, GMW, CANCELL, EP, NDT, WKOLD, XSHD, 
1YSHD, XI, U, WKNEW, NW, DT, GMB, YREF, XPN, DA, T, IPOR, 
2PANPOR, AXIAL F, CAO, UNO, CASTD, IPR1, IPR2, ARC, XM, YM, AL, 
3VOLCAN, ACC, PI, GMWNDT, GMSVR, XSVR, YSVR, NPN, NVR, IYG, 
4DCP, DCPST, DEL, C25, C75, C, CTEMP, TIME, CA, YG, GMBOLD, IPLOT, 
51PL1, NPL, XCUT, ICORE, FYSVR, ISHAPE_T, DCPOLD, VELDEF, IWAKE, 
6IAXIAL F, TMAX, ADD, KSHAPE, RO, IDEC CC25OLD) 

IF(T. GT. TMAX)GO TO 103 
T=T+DT 

*** CHECKING THE VORTEX RING RADIUS TO ITS CORE RADIUS RATIO 

33 

*** 

DO 33 J-1, NDT 
E=EP(J)/2. /YM 
IF(E. GT. 0.005)THEN 

PRINT*, 'THE SIZE OF THE 
PRINT*, 'PLEASE INCREASE 
STOP 

END IF 
CONTINUE 

VORTEX CORE IS TOO BIG', E, J 
THE REYNOLDS NUMBER' 

THE CONDITIONAL WRITING OF THE UNCANCELLLED SHED 
VORTEX RING COORDINATES ON "FLOW. DAT" 
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115 

117 

* 
* 

*** 
* 
* 
116 

101 
521 

112 
* 
* 
*** 

* 

IF(IPLOT. EQ. 1)THEN 
NPL1-(NDT-IPL1)/NPL 
NPL2-NPL*NPL1 

IF((NDT. GE. IPL1. AND. NPL2. EQ. (NDT-IPL1)) 
NPLOT-0 
DO 115 IJ-1, NDT 
IF(CANCELL(IJ). GT. O. )THEN 

NPLOT-NPLOT+1 
PX(NPLOT)-WKOLD(IJ, 1) 
PY(NPLOT)-WKOLD(IJ, 2) 

END IF 
CONTINUE 
WRITE(1,113)NPLOT 
DO 117 IP-1, NPLOT 
WRITE(1,114)PX(IP), PY(IP) 

END IF 
END IF 

. OR. T. GT. TMAX)THEN 

DISPLAYING OR PRINTING ON THE LINE PRINTER THE WAKE FLOW 
PATTERN AND THE PRESSURE DISTRIBUTION 

IF(NDT. LT. IPR1. OR. NDT. GT. IPR2)GO TO 112 
WRITE(6,999) 
WRITE(6,2)XSVR, YSVR, GMSVR 
DO 101 J-1, NDT 
E-EP(J)/2/YM 
WRITE (6,301) J, WKOLD(J, 1), WKOLD(J, 2), GMW(J), CANCELL(J), E 
WRITE (6,201) DT, T, UINF, ACC 
WRITE(6,401) 
WRITE(6,221) SCALEX, SCALEY 
CALL PLOT(WKOLD, NDT, SCALEX, SCALEY, XI, XM, YM, AL, 

1NVR, IX, IY, XCUT, GMW, CANCELL) 
CONTINUE 

CLOSING THE OUTPUT FILES 

103 IF(IPLOT. EQ. 1)THEN 
WRITE(1, LIST) 
WRITE(2, LIST) 
IF(IWAKE. EQ. 1)WRITE(3, LIST) 
IF(IAXIAL F. EQ. 1)THEN 

WRITET4, LIST) 
WRITE(9, LIST) 

END IF 
IF(IDEC. EQ. 1)WRITE(10, LIST) 
IF(IPOR. EQ. 1)THEN 

DO 176 I-1, NPAN 
WRITE(2,178)I, PANPOR(I) 
IF(IWAKE. EQ. 1)WRITE(3,178)I, PANPOR(I) 
IF(IAXIAL F. EQ. 1)THEN 

WRITE(T, 178)I, PANPOR(I) 
WRITE(9,178)I, PANPOR(I) 

END IF 
IF(IDEC. EQ. 1)WRITE(10,178)I, PANPOR(I) 

176 WRITE(1,178)I, PANPOR(I) 
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177 

10 

20 

30 

40 

50 

END IF 
IF(IDEC. EQ. 1)THEN 

WRITE(10,114)AMASS 
WRITE(1,114)AMASS 
WRITE(2,114)AMASS 
IF(IWAKE. EQ. 1)WRITE(3,114)AMASS 
IF(IAXIAL_F. EQ. 1)WRITE(4,114)AMASS 

END IF 
IF(IAXIAL F. EQ. 1)THEN 

WRITET2, *)NVEL 
IF(IWAKE. EQ. 1)WRITE(3, *)NVEL 
WRITE(4, *)NVEL 
WRITE(9, *)NVEL 
WRITE(1, *)NVEL 
DO 177 I-1, NVEL 
WRITE(2,114)TVEL(I), VEL(I) 
IF(IWAKE. EQ. 1)WRITE(3,114)TVEL(I), VEL(I) 
WRITE(4,114)TVEL(I), VEL(I) 
WRITE(9,114)TVEL(I), VEL(I) 
WRITE(1,114)TVEL(I), VEL(I) 

END IF 
CLOSE(UNIT=1) 
CLOSE(UNIT=2) 
CLOSE(UNIT=3) 
CLOSE(UNIT-4) 
CLOSE(UNIT-9) 
CLOSE(UNIT=10) 

END IF 

FORMAT(////2X, 
1'THE DEFAULT VALUES USED BY THE PROGRAM ARE: '///) 

FORMAT(2X, 
11'DO YOU WISH TO CHANGE ANY OF THESE VALUES? (Y/N)') 

FORMAT(//2X, 
1'IN ORDER TO CHANGE THE VALUE OF ANY OF'/2X, 
2'THE CONSTANTS PLEASE TYPE THE FOLLOWING: '/2X, 
3' $$LIST'/2X, 
4' $NAME-VALUE'/2X, 
5, : '/2X, 
6' : '/2X, 
7' $NAME-VALUE'/2X, 
8' $$'/2X, 
9'WHERE NAME IS THE NAME OF THE CONSTANT, '/2X, 
1'AND VALUE IS THE NEW VALUE TO BE ASSIGNED. '/2X, 
2' NOTE THAT THE VALUES OF ONE OR'/2X, 
3'MORE CONSTANTS CAN BE CHANGED. THE REST'/2X, 
4'--- OF THE VALUES REMAINE UNALTERED. ----- 

FORMAT(//2X, 
1'THE VALUES OF THE CONSTANTS HAVE CHANGED'/2X, 
2'--------- THE NEW VALUES ARE ----------- 

FORMAT(2X, 
1'THE VALUES OF CONSTANTS ON $$LIST REMAIN UNALTERED. ') 

60 FORMAT(//2X 
1'DO YOU KNOW 

70 FORMAT( 
1' THE PROGRAM 

HOW TO RUN THE PROGRAM ? (Y/N)'////) 

CALCULATES THE AERODYNAMIC LOADS DEVELOPED 
ON AN? /, 
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2' AXISYMMETRIC CANOPY IN AXISYMMETRIC, INCOMPRESSIBLE, '/, 
3' HIGH REYNOLDS NUMBER FLOW. THE DIMENSIONS ARE IN S. I. 

SYSTEM. '/, 
4' THE DATA IS INTRODUCED BY USING THE "NAMELIST" 

FUNCTION. '/, 
5' IN THE FOLLOWING THE INPUT PARAMETERS ARE EXPLAINED: '/, 
6' -"TITLE"-A STRING OF UP TO 20 CHARACTERS. '/, 
7' -THE CANOPY IS APPROXIMATED BY AN ELLIPTIC SHELL. '/, 
8º IN THE NAMELIST THE STEADY VALUE OF THOSE 

PARAMETERS'/, 
9º ARE INTRODUCED: '/, 
11 -"XMST" IS THE RADIUS PARALLEL WITH X AXIS. '/, 
21 THE FLOW IS PARALLEL WITH X AXIS. THE '/, 
31 THE CANOPY APPEX IS THE ORIGIN. '/, 
41 -"YMST" IS THE RADIUS PERPENDICULAR TO THE 

FLOW. '/, 
5' -"XIST" IS THE X COORDINATE OF THE CANOPY'/, 
61 HEMLINE (THE SKIRT). '/, 
71 FOR EXAMPLE : XM-0.5, YM-0.5, XI-0.5 DESCRIBE A '/, 
81 HEMISPHERICAL CANOPY WITH RADIUS 0.5 METERS. '/, 
9º AS AN ADDITIONAL EXAMPLE, PLEASE --ENTER-- 

VALUES'/, 
1º FOR XM, YM, XI( E. G. 1., 0.5,0.8). THE PICTURE ON'/, 
21 THE SCREEN WILL SHOW THE CANOPY ( THE ARROW 

THE '/, 
31 FLOW DIRECTION). ') 

80 FORMAT(//2X' THE REMAINING PARAMETERS ARE: '/, 
jr -"USTEADY": THE VELOCITY (FOR A BLUFF PARACHUTE 

CANOPY'/, 
2' IT IS USUALLY, NEGATIVE). '/, 
2' THE DIMENSIONS METERS/SECOND. WHEN A '/, 
31 TIME-DEPENDENT VELOCITY PROFILE IS TO BE'/, 
41 SIMULATED USTEADY-999 ( YOU WILL BE'/, 
5' ASKED TO ENTER THE VELOCITY PROFILE. )'/, 
6' WHEN FREE DECELERATION IS SIMULATED, º/, 
7º "USTEADY" IS THE INITIAL VELOCITY'/, 
8º OF THE PARACHUTE/PAYLOAD SYMSTEM. '/, 
gº -"NW": THE MAXIMUM NUMBER OF SHED VORTEX RINGS. '/, 
1º (STOPPING CRITERIA). FOR THE AVERAGE 

AERODYNAMIC'/, 
21 LOAD NW '" 40 ; FOR TIME-DEPENDENT 

CHARACTERISTICS' /, 
3' NW - 250. '/, 
41 -"TMAX": THE MAXIMUM TIME (ADDITIONAL STOPPING 

CRITERIA. ' ) 
90 F ORMAT(' PLEASE PRESS RETURN TO CONTINUE. ') 
100 F ORMAT(' PLEASE PRESS RETURN AND THE CANOPY SHAPE 

1 WILL BE DISPLAYED. ') 
110 F ORMAT( 

1' -"IPR1", "IPR2": THE FIRST AND THE LAST TIME STEP WHEN 
THE '/, 

21 FLOW PATTERN IS TO BE PRINTED OR 
DISPLAYED' /, 

31 ON THE TERMINAL SCREEN. IN ADDITION 
TO THAT' /, 

41 ALSO A DETAILED OUTPUT INCLUDING 
PRESSURE' /, 

51 DISTRIBUTION AND SHED VORTEX RINGS "/, 
6' COORDINATES ARE DISPLAYED OR PRINTED. '/, 
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7' -"IPLOT": IF IPLOT-1 THE OUTPUT IS DIRECTED TO OUTPUT 
FILES. '/, 

at THE RESULTS CAN BE SUBSEQUENTLY USED FOR P'/, 
9' PLOTTINGS/PRINTOUTS OR STORED IN AN ARCHIVE: '/, 
1' -FLOW. DAT (CHANNEL 1): CONTAINS THE CANOPY & SHED'/, 
2' VORTEX RING COORDINATES AT'/, 
3' A GIVEN INSTANT'/, 
4' -CA. DAT (CHANNEL 2): CONTAINTS THE AXIAL FORCE'/, 
5' COEFFICIENT AND THE TIME'/, 
6' -VEL. DAT (CHANNEL 3): CONTAINS THE VELOCITY IN 

THE WAKE A '/, 
7' A FUNTION OF Y AT SIX DIFFERENT A'/ 
at AXIAL STATIONS DOWNSTREAM THE 

CANOPY. '/, 
9' THE DISTANCE BETWEEN TWO 

CONSECUTIVE'/ 
1' STATIONS IS ONE CANOPY PROJECTED'/, 
2' AREA RADIUS. ') 

111 FORMAT( 
1' -K11. DAT (CHANNEL 4): CONTAINS THE ADDED MASS 

COEFFICIENT'/ 
2' AND THE TIME. '/, 
3' -AXIAL F. DAT (CHANNEL 9): CONTAINS THE AXIAL FORCE AND'/, 
41 _ THE TIME. '/, 
5' -VELDEC. DAT (CHANNEL 10): CONTAINS THE CALCULATED 

DESCENT'/ 
6' VELOCITY WHEN THE FREE '/, 
7' DECELERATION MODE IS USED. '/, 
S' '/1 

9' AT THE END OF THE RESULTS THE INPUT DATA IS WROTE. '/, 
11 1/1 

2' -"IPL1" : AS "IPR1" WHEN IPLOT-1'/, 
3' -"NPL" : PLOTTING FREQUENCY (E. G. WHEN NPL-5 EVERY 5 TIME'/, 
4' STEPS AFTER THE IPL1-TH TIME STEP, THE FLOW PATERN'/ 
5' WILL BE WROTE ON "FLOW. DAT". ') 

175 FO RMAT(' THE GEOMETRIC POROSITY OF THE', I3, '-TH PANEL IS ', F6.4 
185 FO RMAT(//, 

1' -"FYSVR": DIMENSIONLESS PARAMETER DETERMINING THE'/, 
2' STANDING VORTEX RING LOCATION. IT IS TO BE'/, 
3' SET TO ENSSURE MINIMUM LOAD ACROSS THE NEAR'/, 
4' HEMLINE PANEL. 1.25> FSVR>1.01'/, 
5' -"CASTD": THE STEADY AXIAL FORCE COEFFICIENT USED FOR'/, 
6' ADDED MASS COEFFICIENT CALCULATION. '/, 
7' -"RO": FLUID DENSITY. ') 

190 FORMAT(//, 
1' -"IPOR": FOR IPOR-1 THE FLOW AROUND A POROUS CANOPY IS'/, 
2' SIMULATED. YOU WILL BE ASKED TO ENTER THE '/, 
3' GEOMETRIC POROSITY OF EACH PANEL. '/, 
4' -"IDEC": FOR IDEC-1, THE DECELERATION OF A PARACHUTE-'/, 
51 -PAYLOAD SYMSTEM IS SIMULATED. YOU WILL BE'/, 
61 ASKED TO ENTER THE DECELERATION SYSTEM MASS. '/, 
71 -"ISHAPE_T": FOR ISHAPE T-1 THE FLOW AROUND A 

_ TIME-DEPENDENT'/, 
8' CANOPY SHAPE IS SIMULATED. YOU WILL BE 

ASKED TO'/, 
9, ENTER THE TABLE CONTAINING THE 

TIME AND THE'/, 
1, PARAMETERS DETERMINING THE CANOPY SHAPE'/, 
2' -"IPRSHAPE": FOR IPRSHAPEs1 THE CANOPY SHAPE IS 
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DISPLAYED'/, 
3' AT EVERY TIME STEP. THIS PARAMETER 

IS RELEVANT'/, 
4' ONLY WHEN ISHAPE T=l. ') 

130 FORMAT(/' IN THE FOLLOWING OUTPUT: '/, 
1' -N - TIME STEP NUMBER'/, 
2' -T - TIME [SECOND]'/, 
3' -U - VELOCITY [METER/SECOND]'/, 
4' -CA = AXIAL FORCE COEFFICIENT'/, 
5' -AM - ADDED MASS COEFFICIENT'/, 
5# -A - AXIAL FORCE [NEWTONS]'/, 
5' -P1, P8, P12- THE DIFFERENTIAL PRESSURE'/, 
6' COEFFICIENT AT PANELS 1,8,12'//) 

140 FORMAT(/' PLEASE ENTER THE PAIRS (TIME, VELOCITY). '/, 
1' FOR EXAMPLE IF AT TIME-5SEC THE VELOCITY IS -2 M/SEC'/, 
2' THEN ENTER 5, -2 AND PRESS RETURN. REPEAT THIS FOR EACH'/, 
3' ONE OF THE PAIRS IN THE TABLE. '//) 

160 FORMAT(/' DO YOU WANT AN ADDITIONAL TRY ? (Y/N)'/) 
180 FORMAT(/' PLEASE ENTER XM, YM, XI . '/) 
200 FORMAT(/' DO YOU WANT TO READ THIS SECTION AGAIN ? (Y/N)'/) 
240 FORMAT(/' PLEASE ENTER THE SHAPE PARAMETERS : '/, 

1' TIME, YM, XM, XI. '/, 
2' FOR EXAMPLE IF AT TIME=5SEC THE SHAPE IS DETERMINED BY: '/, 
3' YM=1, XM=1.5, XI=1.2, '/, 
4' THEN ENTER 5,1,1.5,1.2 AND PRESS RETURN. REPEAT THIS 

FOR EACH'/, 
5' ONE OF THE PAIRS IN THE TABLE. '//) 

999 FORMAT(51(1H*)) 
221 FORMAT(24(1H ), 'SCALEX-', F8.2, ' SCALEY-', F8.2) 
421 FORMAT(' NDT-', 15) 
2 FORMAT(' XSVR-', F10.5, ' YSVR-', F10.5, ' GMSVR-', F10.5) 
201 FORMAT (' DT-', F8.5, ' T-', F12.4, 

1' UINF-', F7.2, ' ACC-', F7.4) 

401 FORMAT (23(1H ), 54(1H-)) 
301 FORMAT (' J-1, I5, ' XVR-', F10.4, ' YVR-', F10.4, ' GMW-', 

1F6.3, ' CANCELL-', F3.0, ' EP-', F9.6) 
113 FORMAT(I10) 
114 FORMAT(2F20.5) 
122 FORMAT(//2X'THE FOLLOWING QUANTITIES ARE EXPRESSED IN 

METERS'//, 
1' YREF (reference length -projected area radius)-', F6.3, /, 
2' SREF (projected area)-', F7.3, /, 
3' VOLCAN (enclosed volume)-', F7.3, /, 
4' SCAN (constructed area)-', F7.3) 

125 FORMAT(I20) 
178 FORMAT(110, F10.5) 

STOP 
END 

* 
* 
* 

* 

---------------------------- 
CANOPY-THE MAIN SUBPROGRAMME 
----------------------------- 
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+t "C AN0P Y" CALCULATES THE AXIAL FORCE DEVELOPED ON THE 
* PARACHUTE CANOPY AT THE INSTANT "T". IT IS DONE BY CALLING 
* ON SUBROUTINES WHICH DETERMINE THE BOUNDARY CONDITIONS 
* ON THE CANOPY SURFACE, SOLVES THE LINEAR SYSTEM OF EQUATION 
* WHICH GIVES THE BOUND VORTEX RING STRENGTH AND FINALLY 
* INTEGRATES THE DIFFERENTIAL PRESSURE DISTRIBUTION. 

SUBROUTINE CANOPY(UINF, NPN, BETA, GMW, CANCELL, EP, NDT, WKOLD, XSHD, 
lYSHD, XI, U, WKNEW, NW, DT, GMB, YREF, XPN, DA, T, IPOR, 
2PANPOR, AXIAL F, CAO, UNO, CASTD, IPR1, IPR2, ARC, XM, YM, AL, 
3VOLCAN, ACC, PI, GMWNDT, GMSVR, XSVR, YSVR, NPN, NVR, IYG, 
4DCP, DCPST, DEL, C25, C75, C, CTEMP, TIME, CA, YG, GMBOLD, IPLOT, 
51PL1, NPL, XCUT, ICORE, FYSVR, ISHAPE T, DCPOLD, VELDEF, IWAKE, 
61AXIAL_F, TMAX, ADD, KSHAPE, R0, IDEC, C25OLD) 

* 
DIMENSION GMW(NVR), CANCELL(NVR), EP(NVR), WKOLD(NVR, 2), DCP(NPN) 

1, WKNEW(NVR, 2), GMB(NPN), XPN(NPN), C25(NPN, 2), DCPST(NPN), 
2C75(NPN, 2), C(NPN, NPN), PANPOR(NPN), CTEMP(NPN, NPN), U(NPN) 
3, TIME(NVR), IYG(NVR), CA(NVR), YG(NVR), GMBOLD(NPN) 
4, DCPOLD(NPN), AXIAL_F(NVR), ADD(NVR), C25OLD(NPN) 

UNI-UNO 
UNO-UINF 
IF(NDT. EQ. 1. OR. ISHAPE_T. EQ. 1) THEN 

*** CANOPY DIVISION IN PANELS OF EQUAL LENGTH 

CALL PANEL(XI, XM, YM, AL, NPAN, XPN, DA, ARC, PI, NPN) 
AL-ALFA(NPN, XPN, NPAN, XI, XM, YM, AL) 

*** CANOPY INFLUENCE COEFFICIENTS DETERMINATION 

CALL CIC(XI, NPAN, C, XPN, DA, C25, C75, XM, YM, AL, PI, NPN 
1 , IPLOT, IPL1, NPL, XCUT, NDT, ISHAPE T, T, TMAX 
2 KSHAPE) 

END IF 

*** THE BOUNDARY CONDITION (THE NORMAL VELOCITY) ON 
*** THE CANOPY SURFACE. VECTOR "U" CONTAINS THE NORMAL VELOCITY. 

CALL BC(XI, U, GMW, CANCELL, EP, NDT, WKOLD, UINF, WKNEW, NW, XSHD, 
1YSHD, DT, NPAN, GMB, DCP, YREF, XPN, DA, T, 
2CA1, C25, C75, IPOR, PANPOR, 
3XM, YM, AL, GMSVR, XSVR, YSVR, GMWNDT, PI, NPN, NVR, XCUT, 
4FYSVR, DCPOLD, VELDEF, IWAKE, IPLOT, TMAX, C25OLD, ISHAPE T) 

NG-NPN+1 - 
DO 666 I-1, NG 
DO 666 J-1, NG 

666 CTEMP(I, J)-C(I, J) 
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* 
*** SOLVES THE LINEAR SYSTEM OF EQUATION GIVING THE BOUND VORTEX 
** * RING STRENGTH. ON RETURN VECTOR "U" CONTAINS THE BOUND VORTEX 
*** RING STRENGTH. 
* 
* 

CALL SOLVE(NG, CTEMP, U, NPN) 
DO 800 I-1, NG 
GMB(I)-U(I) 

800 CONTINUE 
* 
* 
*** THE NEWLY-CREATED VORTEX RING STENGTH 
* 

GMW(NDT)-GMB(NPAN+1) 
* 

TIME(NDT)-T 
* 
* 
*** THE DIFFERENTIAL PRESSURE DISTRIBUTION 
* 
* 

CALL CP(NPAN, GMB, DCP, DCPST, XI, UINF, GMW, CANCELL, EP, 
1NDT, DT, XPN, DA, T, IPOR, PANPOR, GMSVR, XSVR, YSVR, XM, YM, 
2AL, NPN, NVR, GMBOLD, XCUT) 

* 
IF(NDT. LT. IPR1. OR. NDT. GT. IPR2)GO TO 4 
WRITE(6,900) 
AR=0 
DO 555 I-1, NG 
X-XPN(I) 
AR=AR+DA 
ARD-AR/ARC 

555 WRITE (6,222) I, X, Y(X, XI, XM, YM, AL), AR, ARD, GMB(I), DCP(I), 
1DCPST(I) 

CALL GRAPH(DCP, NPAN, TIME, 0,1, NVR, IYG) 
4 CONTINUE 

* 
*** AXIAL FORCE COEFFICIENT CALCULATION. 
* 
* 

CA(NDT)-0 
DO 930 I-1, NPN 
X=XPN(I)-0.5*DA*COS(ALFA(NPN, XPN, I, XI, XM, YM, AL)) 
CA(NDT)=CA(NDT)+DCP(I)*DA*SIN(ALFA(NPN, XPN, I, XI, XM, YM, AL))*2* 

*Y(X, XI, XM, YM, AL)/YREF/YREF 
930 

CCONTINUE AO-CA(NDT) 

* 
*** AXIAL FORCE CALCULATION. 
* 
* 

AXIAL_F(NDT)=0.5*RO*UINF*UINF*YREF*YREF*PI*CA(NDT) 
* 
* 
*** ADDED MASS COEFFICIENT CALCULATION. 
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ACC-(UINF-UNI)/DT*ABS(UINF)/UINF 
ADD(NDT)-O 
IF(NDT. GT. 5. AND. ABS(ACC). GE. 0.0000001)ADD(NDT)=0.5*(UINF**2)* 

1PI*YREF*YREF/VOLCAN/ACC*(CA(NDT)+CASTD*UINF/ABS(UINF))-1. 

*" 
*** AVOIDING PRINT-OUT FORMAT MISMATCH. 

213 

333 

931 

900 

AXIAL FPR-AXIAL F(NDT) 
IF(AXIAL F(NDT). GT. 9999.9)AXIAL FPR-9999.9 
IF(AXIAL F(NDT). LT. -999.9)AXIAL FPR--999.9 
ADDPR-ADD(NDT) 
IF(ADD(NDT). GT. 999.9)ADDPR-999.9 
IF(ADD(NDT). LT. -99.9)ADDPR--99.9 
CAPR-CA(NDT) 
IF(CA(NDT). GT. 999.9)CAPR-999.9 
IF(CA(NDT). LT. -99.9)CAPR--99.9 
D1-DCP(1) 
IF(D1. GT. 9.9)D1-9.9 
IF(D1. LT. -9.9)D1=-9.9 
DN-DCP(NPAN) 
IF(DN. GT. 9.9)DN-9.9 
IF(DN. LT. -9.9)DN--9.9 
NCP-NPAN*2/3 
DM-DCP(NCP) 
IF(DM. GT. 9.9)DM=9.9 
IF(DM. LT. -9.9)DM--9.9 
WRITE(6,931)NDT, TIME(NDT), UINF, CAPR, AXIAL_FPR 

2, ADDPR, D1, NCP, DM, NPAN, DN 
IF(IPLOT. EQ. 1. AND. IDEC. EQ. 1)WRITE(10,777)TIME(NDT), UINF 
CONTINUE 

DIRECTING RESULTS TO THE LINE PRINTER & OUTPUT FILES 

IF(NDT. EQ. NW. OR. T. GE. TMAX)THEN 
IF(IPR1. LE. NW)CALL GRAPH(CA, NDT, TIME, 0,2, NVR, IYG) 
IF(IPLOT. EQ. 1)THEN 

IF(IAXIAL F. EQ. 1)THEN 
WRITE (4,444)NDT 
WRITE (9,444)NDT 

END IF 
WRITE (2,444)NDT 
DO 333 ICA-1, NDT 

IF(IAXIAL F. EQ. 1)THEN 
WRITET4,777)TIME(ICA), ADD(ICA) 
WRITE(9,777)TIME(ICA), AXIAL F(ICA) 

END IF - 
WRITE(2,777)TIME(ICA), CA(ICA) 

END IF 
END IF 
FORMAT(' N-', I3, ' T-1, F6.3, ' U-', F6.1, ' CA-', F8.4, 

1F6.1, ' AM-', F5.1, ' P1-', F4.1, ' P', I1, '-', F5.1, ' P' 
2'-', F5.1) 

FORMAT ('IXyL L* GMB 

" A-r 

, 12, 

DCP 
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1 DPSTDY') 

222 FORMAT (13, F6.2,3F5.2, F10.3,2F14.3) 
444 FORMAT (120) 
777 FORMAT (2F20.5) 

RETURN 
END 

* CP 

* SOUBROUTINE "CP" CALCULATES THE DIFFERENTIAL PRESSURE 
* DISTRIBUTION. IT IS DONE BY SUMMING UP THE STEADY-BOUND 
* VORTEX SHEET AND THE INSTANTANEOUS VARIATIONS IN THE FLOW 
* FIELD CIRCULATION CONTRIBUTIONS. 

SUBROUTINE CP(NPAN, GMB, DCP, DCPST, XI, UINF, GMW, CANCELL, EP, NDT, 
1DT, XPN, DA, T, IPOR, PANPOR, GMSVR, XSVR, YSVR, XM, YM, AL, NPN, NVR, 
2GMBOLD, XCUT) 

DIMENSION GMBOLD(NPN), GMW(NVR), CANCELL(NVR), EP(NVR), XPN(NPN) 
1, GMB(NPN), PANPOR(NPN), DCP(NPN), DCPST(NPN) 

* 
* 
*** THE WAKE CIRCULATION VARIATION 
*** (THE NEWLY CREATED VORTEX RING STRENGTH) 
* 
* 

IF(CANCELL(NDT). LT. O. )THEN 
GWT-0 

ELSE 
GWT-GMW(NDT) 

END IF 

DO 109 I-1, NPAN 
IF(NDT. EQ. 1)GWT=0. 
XX-0 
IF(I. GT. 1)XX-XPN(I-1) 

* 
* 
*** THE DIFFERENTIAL PRESSURE DUE THE INSTANTANEOUS 
*** BOUND VORTEX SHEET STRENGTH. 
* 
* 

DCPST(I)--1. *GMB(I)*2/DA/UINF* 
1((COS(ALFA(NPN, XPN, I, XI, XM, YM, AL))**2)) 

* 
* 
*** BOUND VORTEX SHEET STRENGTH VARIATION 
* 
* 

SGDGDT-0 
IF(NDT. EQ. 1) GO TO 115 
DO 116 J-1, I 
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11 6 SGDGDT=SGDGDT+GMB(J)-GMBOLD(J) 
* 

** * STANDING VORTEX RING STRENGTH VARIATIAN 

115 DIF-GMSVR-GMTOLD 
SGDGDT-SGDGDT+DIF 

*** SUMMING UP THE VARIOUS DIFFERENTIAL PRESSURE 
*** COEFFICIENT CONTRIBUTIONS. 

DCP(I)-DCPST(I)+(GWT+SGDGDT)*2. /(UINF**2)/DT 
109 CONTINUE 

DO 111 I-1, NPAN 
111 GMBOLD(I)-'GMB(I) 

GMTOLD-GMSVR 
RETURN 
END 

* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

* 
* 

dc 

SUBROUTINE "CIC" CALCULATES THE 
COEFFICIENTS MATRIX. A BOUND VORTEX 
IS LOCATED AT 0.25 PANEL LENGTH AND 
ARE FULFILLED AT 0.75 PANEL LENGTH. 
VORTEX RING IS ACCOUNTED FOR BY AN 4 
PANEL TANGENT TO THE CANOPY SURFACE 

CANOPY INFLUENCE 
RING OF UNIT STRENGTH 
THE BOUNDARY CONDITIONS 
THE NEWLY-CREATED 

ADDITIONAL FICTITIOUS 
AT ITS HEMLINE. 

SUBROUTINE CIC(XI, NPAN, C, XPN, DA, C25, C75, XM, YM, AL, PI, NPN, IPLOT, 
lIPL1, NPL, XCUT, NDT, ISHAPE T, T, TMAX, KSHAPE) 

DIMENSION C(NPN, NPN), C25TNPN, 2), C75(NPN, 2), XPN(NPN) 

CANOPY BOUND VORTEX SHEET & CONTROL CIRCLES COORDINATES 

DO 5 I-1, NPN 
DC-DA*COS(ALFA(NPN, XPN, I, XI, XM, YM, AL)) 
C25(I, 1)-XPN(I)-0.25*DC 
C75(I, 1)-XPN(I)-0.75*DC 
C25(I, 2)-Y(C25(I, 1), XI, XM, YM, AL) 
C75(I, 2)-Y(C75(I, 1), XI, XM, YM, AL) 
IF(IPLOT. EQ. 1. AND. KSHAPE. EQ. O)THEN 

IF(I. EQ. 1)WRITE(1,111)0.00001,0.00001 
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WRITE(1,111)C25(I, 1), C25(I, 2) 

END IF 
5 CONTINUE 

KSHAPE-1 

* 
** * THE NEWLY CREATED FICTITIOUS PANEL 
* 

C25(NPAN+1,1)-XPN(NPAN)+0.75*DC 
C75(NPAN+1,1)-XPN(NPAN)+0.25*DC 
C25(NPAN+1,2)-Y(C25(NPAN+1,1), XI, XM, YM, AL) 
C75(NPAN+1,2)-Y(C75(NPAN+1,1), XI, XM, YM, AL) 

* 

*** CANOPY IFLUENCE COEFFICIENTS MATRIX 

DO 20 NY-1, NPAN+1 
DO 20 NX-1, NPAN+1 
NNX-NX 
IF(NX. GT. NPAN)NNX-NPAN 
C(NY, NX)-UVR(PI, C75(NY, 1), C75(NY, 2), C25(NX, 1), C25(NX, 2))* 

1SIN(ALFA(NPN, XPN, NNX, XI, XM, YM, AL))- 
2WR(PI, C75(NY, 1), C75(NY, 2), C25(NX, 1), C25(NX, 2)) 
3*COS(ALFA(NPN, XPN, NNX, XI, XM, YM, AL)) 

20 CONTINUE 
111 FORMAT(2F20.5) 

RETURN 
END 

* 
* 
* 
* BC 

* SUBROUTINE "BC" DETERMINES THE BOUNDARY CONDITION 
* ON THE CANOPY SURFACE. IT IS DONE BY SUMMING UP THE WHOLE 
* VORTEX SYSTEM INDUCED-VELOCITY & THE FREE STREAM VELOCITY 
,t NORMAL TO THE CANOPY SURFACE, ALONG THE CONTROL CIRCLES. 

SUBROUTINE BC(XI, U, GMW, CANCELL, EP, NDT, WKOLD, UINF, WKNEW, NW, XSHD, 
1YSHD, DT, NPAN, GMB, DCP, YREF, XPN, DA, T, 
2CA1, C25, C75, IPOR, PANPOR, 
3XM, YM, AL, GMSVR, XSVR, YSVR, GMWNDT, PI, NPN, NVR, XCUT, 
4FYSVR, DCPOLD, VELDEF, IWAKE, IPLOT, TMAX, C25OLD, ISHAPET) 

DIMENSION GMB(NPN), C25(NPN, 2), C75(NPN, 2), DCP(NPN) - 
1, GMW(NVR), CANCELL(NVR), EP(NVR), WKOLD(NVR, 2), WKNEW(NVR, 2) 
2, U(NPN), PANPOR(NPN), XPN(NPN), DCPOLD(NPN) 
3, C25OLD(NPN) 
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CALL WAKE(WKOLD, WKNEW, GMW, CANCELL, EP, NW, XSHD, YSHD, UINF, DT, 
1NDT, NPAN, U, XI, GMB, YREF, XPN, DA, T, CA1, C25, C75, 
2PI, XM, YM, AL, GMWND'T, GMSVR, XSVR, YSVR, NPN, NVR, XCUT, 
3FYSVR, VELDEF, IWAKE, IPLOT, TMAX) 

DO 25 I-1, NPN+1 

** * CANOPY SURFACE CONTRIBUTION 
* 
* 

IF(I. GT. NPN. OR. NDT. EQ. 1)GO TO 95 
IF(ISHAPE T. EQ. 1)THEN 

VSURF=(C250LD(I)-C25(I, 2))/DT 
ELSE 

VSURF-0 
END IF 

* 

*** WAKE CONTRIBUTION 
* 
* 
95 UIND-0 

VIND-0 
IF(NDT. EQ. 1)GO TO 60 
DO 13 J-1, NDT-1 
IF(CANCELL(J). LT. O. )GO TO 13 
DISCOR-SQRT((WKOLD(J, 1)-C75(J, 1))**2+(WKOLD(J, 2)-C75(J, 2))**2) 

** CUTOFF DISTANCE 

IF(DISCOR. LE. (EP(J)))GO TO 13 
UIND-UIND+UVR(PI, C75(I, 1), C75(I, 2), WKOLD(J, 1), WKOLD(J, 2))*GMW(J 
VIND-VIND+VVR(PI, C75(I, 1), C75(I, 2), WKOLD(J, 1), WKOLD(J, 2))*GMW(J 

13 CONTINUE 
* 
* 
*** POROSITY REQUIREMENTS 

60 IF(NDT. EQ. 1. OR. DCP(I). LT. O. 
10R. I. GT. NPN. OR. IPOR. EQ. O)THEN 

FCT-0. 
ELSE 

FCT-SQRT(DCP(I))*PANPOR(I) 
IF(FCT. GT. 0.15)THEN 

WRITE(6,100)I 
END IF 

END IF 
VNPOR=-l. *UINF*FCT 

* 
* 
*** STANDING VORTEX RING CONTRIBUTION 
* 
* 

IF(NDT. EQ. 1)GO TO 55 
UINDsUIND+UVR(PI, C75(I, 1), C75(I, 2), XSVR, YSVR)*GMSVR 
VIND-VIND+VVR(PI, C75(I, 1), C75(I, 2), XSVR, YSVR)*GMSVR 
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55 11-I 

IF(I. GT. NPN) THEN 
II-NPN 
VNPOR-O 

END IF 
25 U(I)=VIND*COS(ALFA(NPN, XPN, II, XI, XM, YM, AL))- 

1(UIND+UINF)*SIN(ALFA(NPN, XPN, II, XI, XM, YM, AL))-VNPOR-VSURF 

75 

90 

100 

* 

* 
* 
* 
* 
* 
* 
* 

* 

60 

80 

DO 75 I-1, NPN 
DCPOLD(I)-DCP(I) 
IF(ISHAPE T. EQ. 1)THEN 

DO 90 J=1, NPN 
C250LD(J)-C25(J, 2) 

END IF 
FORMAT('THE NORMAL VELOCITY AT 
RETURN 
END 

SOLVE 

PANEL', I3, ' IS TOO HIGH. ') 

SUBROUTINE "S0LVE" SOLVES A LINEAR SYSTEM OF 
EQUATIONS BY USING GAUSS ELIMINATION METHOD. 

SUBROUTINE SOLVE(N, B2, BI, NPN) 
DIMENSION B2(NPN, NPN), B1(NPN) 
DO 60 K-1, N 
A1-B2(K, K) 
DO 60 I-1, N 
IF(I. EQ. K) GO TO 60 
A2-B2(I, K) 
IF(A2. EQ. 0) GO TO 60 
B1(I)-B1(I)/A2-B1(K)/A1 
DO 60 J-1, N 
B2(I, J)-B2(I, J)/A2-B2(K, J)/A1 
CONTINUE 
DO 80 I-1, N 
B1(I)-B1(I)/B2(I, I) 
RETURN 
END 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

1 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Y 

FUNCTION "Y" GENERATES THE CANOPY SHAPE BY ASSUMING 
AN ELLIPTICAL SHAPE. IT MAY BE CHANGED TO ANY OTHER 
DESIRED CANOPY REPRESENTATION. 

FUNCTION Y(X, XI, XM, YM, AL) 
Y-0.5*YM 
IF(X. GE. (2. *XM))RETURN 
IF(X. GT. XI) GO TO 1 
Y-YM/XM*SQRT(X*(2*XM-X)) 
RETURN 
Y-YM/XM*SQRT(XI*(2*XM-XI))+(X-XI)*SIN(AL) 
RETURN 
END 

ALFA 

FUNCTION "ALFA" CALCULATES THE LOCAL CANOPY INCLINATION. 

FUNCTION ALFA(NPN, XPN, N, XI, XM, YM, AL) 
DIMENSION XPN(NPN) 
Xl-0 
IF(N. GT. 1)X1-XPN(N-1) 
DYDX-(Y(XPN(N), XI, XM, YM, AL)-Y(Xl, XI, XM, YM, AL))/(XPN(N)-X1) 
ALFA-ATAN(DYDX) 
RETURN 
END 

* 
* 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

PANEL 

SUBROUTINE "PANEL" DETERMINES THE FORWARD PANELS 
AXIAL COORDINATE BY DIVIDING THE CANOPY IN EQUAL LENGTH 
PANELS. 

SUBROUTINE PANEL(XI, XM, YM, AL, NPAN, XPN, DA, ARC, PI, NPN) 
DIMENSION XPN(NPN) 
ARC-0 
DO 1 1-1,100 
XXI-0.01*XI*(I-1) 
XX2-0.01*XI*I 
ARC-ARC+SQRT((Y(XXI, XI, XM, YM, AL)-Y(XX2, XI, XM, YM, AL))**2+ 

1(0.01*XI)**2) 
DA-ARC/NPAN 
XPN(1)-0 
DX-XI/NPAN/500. 
XS-0 
DO 4 I-1, NPAN 
DD-0 
DO 3 J-1,10000 
XS-XS+DX 
DD-DD+SQRT((Y(XS, XI, XM, YM, AL)-Y((XS-DX), XI, XM, YM, AL))**2+DX**2) 
IF(DD. GE. DA. OR. XS. GE. XI)GO TO 5 
XPN(I)-XS 
IF(XPN(I). GT. XI)XPN(I)-XI 
CONTINUE 
RETURN 
END 

1 

3 
5 

4 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 

VOL 

FUNCTION "V0L" CALCULATES THE CANOPY INCLUDED VOLUME 

FUNCTION VOL(XI, PI, XM, YM, AL) 
VOL-O 
DO 1 1-1,20 
VOL_VOL+(Y((I*XI/20), XI, XM, YM, AL)**2)*XI/20 
VOL=PI*VOL 
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* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

2 

* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 

RETURN 
END 

SURF 

FUNCTION "SURF" 
SURFACE. 

CALCULATES THE CANOPY CONSTRUCTED 

FUNCTION SURF(XI, PI, XM, YM, AL) 
X-XM/I 
SURF-0 
DO 2 1-1,20 
XII-XI 
SURF=SURF+XI/20*Y(I*XI/20, XI, XM, YM, AL)*SQRT(1+((XM-I*XI/20)/ 

1XM*YM/XM*YM/Y(I*XI/20, XI, XM, YM, AL))**2) 
SURF=SURF*2*PI 
RETURN 
END 

WAKE 

SUBROUTINE "WAKE" SIMULATES THE WAKE FLOW. IT CALCULATES 
THE SHED VORTEX RING LOCATION AT EVERY TIME STEP. 

SUBROUTINE WAKE(WKOLD, WKNEW, GMW, CANCELL, EP, NW, XSHD, YSHD, UINF, DT 
1NDT, NPAN, U, XI, GMB, YREF, XPN, DA, T, CA1, C25, C75, 
2PI, XM, YM, AL, GMWNDT, GMSVR, XSVR, YSVR, NPN, NVR, XCUT, 
3FYSVR, VELDEF, IWARE, IPLOT, TMAX) 

DIMENSION GMB(NPN), C25(NPN, 2), C75(NPN, 2), XPN(NPN) 



-A-24- 
1, CANCELL(NVR), GMW(NVR), EP(NVR), U(NPN), WKOLD(NVR, 2), WKNEW(NVR, 2) 

* ** THE SHEDDING POINT 

XSHD-C25(NPAN+1,1) 
YSHD-C25(NPAN+1,2) 

*** INITIAL VORTEX RING CORE DIAMETER 
* 

EP(NDT)=0.02*SQRT(DT) 
* 

*** THE SHEDDING FREQUENCY 

GMWNDT-0.5*UINF*UINF 
* 
* 
*** STANDING VORTEX RING STRENGTH AND POSITION 
* 

IF(NDT. EQ. 1)THEN 
XSVR-0 
YSVR-0 
GMSVR-0 
GO TO 58 

END IF 
XSVR-XPN(NPAN)-0.5*DA*COS(ALFA(NPN, XPN, NPAN, XI, XM, YM, AL)) 
GMSVR--0.84*Y(XI, XI, XM, YM, AL)*UINF-GMW(NDT-1) 
IF((ABS(UINF)/UINF). LT. O)THEN 

FY-FYSVR 
ELSE 

FY-2. -FYSVR 
END IF 
YSVR-Y(XSVR, XI, XM, YM, AL)*FY 

*** WARE DEVELOPMENT 

DO 14 M. 1, NDT-1 
XVR-WKOLD(M, 1) 
YVR-WKOLD(M, 2) 
UIND-0 
VIND-0 
IF(CANCELL(M). LT. O. ) THEN 

WKNEW(M, 1)-WKOLD(M, 1) 
WKNEW(M, 2)=WKOLD(M, 2) 

GO TO 14 
END IF 

*** THE VELOCITY UNDUCED BY THE WAKE AT A CERTAIN VORTEX RING 
*** CIRCOMFERENCE ( XVR & YVR). 
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DO 13 N=1, NDT-1 
B-WKOLD(N, 1) 
IF(CANCELL(N). LT. O. ) GO TO 13 
AB-WKOLD(N, 2) 
IF(N. EQ. M) GO TO 12 
DISCOR=SQRT((XVR-B)**2+(YVR-AB)**2) 

** CUTOFF DISTANCE 

* 
IF(DISCOR. LE. (EP(N)+EP(M)))GO TO 13 
VIND-VIND+VVR(PI, XVR, YVR, B, AB)*GMW(N) 
UIND=UIND+UVR(PI, XVR, YVR, B, AB)*GMW(N) 
GO TO 13 

*** VORTEX RING SELF INDUCED VELOCITY 
* 
* 
12 IF(EP(N). LT. 0.0000001)GO TO 13 

UIND=UIND+GMW(N)*(ALOG(16. *(ABS(AB))/EP(N))-0.25)/ 
1(4. *PI*(ABS(AB))) 

13 CONTINUE 
* 

*** THE VELOCITY INDUCED BY THE CANOPY AT XVR & YVR. 

DO 79 IB-1, NPAN 
DISCOR=SQRT((XVR-C25(IB, 1))**2+(YVR-C25(IB, 2))**2) 

* 
* 
*** CUTOFF DISTANCE 
* 
* 

IF(DISCOR. LE. (EP(M)))GO TO 79 
UIND=UIND+UVR(PI, XVR, YVR, C25(IB, 1), C25(IB, 2))*GMB(IB) 
VIND=VIND+VVR(PI, XVR, YVR, C25(IB, 1), C25(IB, 2))*GMB(IB) 

79 CONTINUE 
IF(NDT. LT. 3)GO TO 998 

* 

*** THE VELOCITY INDUCED AT XVR & YVR BY THE STANDING VORTEX 
*** RING. 
* 

DISCOR=SQRT((XVR-XSVR)**2+(YVR-YSVR)**2) 
* 

*** CUTOFF DISTANCE 
* 
* 

IF(DISCOR. LE. (EP(M)))GO TO 998 

* 
*** THE RESULTING INDUCED VELOCITY AT XVR & YVR 
* 
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UIND=UIND+UVR(PI, XVR, YVR, XSVR, YSVR)*GMSVR 
VIND-VIND+VVR(PI, XVR, YVR, XSVR, YSVR)*GMSVR 

** * SHED VORTEX RINGS CONVECTION 

998 WKNEW(M, 2)=DT*VIND+WKOLD(M, 2) 
WKNEW(M, 1)=DT*(UINF+UIND)+WKOLD(M, 1) 

14 CONTINUE 
58 CONTINUE 

*** CONDITIONAL VELOCITY DISTRIBUTION IN THE WAKE 

IF((NDT. EQ. NW. OR. T. GT. TMAX). AND. IPLOT. EQ. I. AND. IWAKE. EQ. 1)THEN 
NJ-6 
DO 100 I-1, NJ 
XWAKE=-I*YSHD 
NY=11 
WRITE(3,104)NY 
DO 110 JJ-1, NY 
VX-0 
VY=0 
E=YSHD*((JJ-1)*0.15+0.01) 
DO 101 II-1, NPAN 
VY=VVR(PI, XWAKE, E, C25(II, 1), C25(II, 2))*GMB(II)+VY 

101 VX=UVR(PI, XWAKE, E, C25(II, 1), C25(II, 2))*GMB(II)+VX 
DO 102 II-1, NDT-1 
IF(CANCELL(II). LT. O. )GO TO 102 
VY-VVR(PI, XWAKE, E, WKOLD(II, 1), WKOLD(II, 2))*GMW(II)+VY 
VX-UVR(PI, XWAKE, E, WKOLD(II, 1), WKOLD(II, 2))*GMW(II)+VX 

102 CONTINUE 
VY=VVR(PI, XWAKE, E, XSVR, YSVR)*GMSVR+VY 
VX-UVR(PI, XWAKE, E, XSVR, YSVR)*GMSVR+VX+UINF 
DY-E/YSHD 
VELDEF-(SQRT(VX*VX+VY*VY))/ABS(UINF) 

110 WRITE(3,105)VELDEF, DY 
100 CONTINUE 

END IF 

*** THE NEWLY CREATED VORTEX RING LOCATION 

103 WKNEW(NDT, 1)-XSHD 
WKNEW(NDT, 2)-YSHD 

X1-0.8*XI 
X2--0.1*YSHD 
Yl-YM 
DO 17 J-1, NDT 
IF(CANCELL(J). LT. O. OR. NDT. EQ. 1)GO TO 993 

* 

*** FREE VORTEX RINGS CANCELLATION DUE THEIR DISTANCE 
*** TO THE CANOPY EXCEEDING 
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* 
* 

IF(UINF. LT. O)THEN 
IF(WKNEW(J, 1). LT. XCUT)THEN 

CANCELL(J)--1. 
GO TO 993 

END IF 
ELSE 

IF(WKNEW(J, 1). GT. XCUT)THEN 
CANCELL(J)--1. 
GO TO 993 

END IF 
END IF 
IF(J. EQ. NDT)GO TO 993 

*** FREE VORTEX RINGS CANCELLATION DUE COLLISION WITH 
*** THE CANOPY SURFACE 

IF(WKNEW(J, 1). LT. XI. AND. WKNEW(J, 1). GT. X2. AND. 
1WKNEW(J, 2). LT. Y1)GO TO 889 

GO TO 999 
889 WRITE(6,2)J 

CANCELL(J)--1. 
GO TO 993 

999 EP(J)-EP(J)*SQRT(ABS(WKOLD(J, 2)/WKNEW(J, 2))) 
993 WKOLD(J, 1)-WKNEW(J, 1) 

WKOLD(J, 2)-WKNEW(J, 2) 
17 CONTINUE 
2 FORMAT(' !! THE', 15, '-TH V. R. WAS CANCELLED DUE ITS DISTANCE 

1 FROM THE CANOPY') 
RETURN 

104 FORMAT (I 10 ) 
105 FORMAT(2F20.5) 

END 

* 
* 
* 
* UVR 

* FUNCTION "UVR" CALCULATES THE AXIAL VELOCITY 
* INDUCED BY A VORTEX RING OF UNIT STRENGTH AT A GIVEN 
* LOCATION 

FUNCTION UVR(PI, X, YX, B, AB) 
AE_4. *AB*YX/((X-B)**2+(YX+AB)**2) 
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* 

* ** TO AVOID THE NEED OF DOUBLE PRECISION 
* 
* 

Al=ABS(1. -AE) 
IF(A1. LT. 0.000001)AE-0.999999 

* 
AR-SQRT(ABS(AE)) 
AW=1. /((X-B)**2+(YX+AB)**2)**1.5 
UVR_AB*AW/(PI*AE*(1-AE))*((AB*AE-2*YX+YX*AE)* 

1E2(AR)+2*YX*(1-AE)*E1(AR)) 
RETURN 
END 

* 
* 
* 
* VVR 

* 
* 
* FUNCTION "UVR" CALCULATES THE AXIAL VELOCITY 
* INDUCED BY A VORTEX RING OF UNIT STRENGTH AT A GIVEN 
* LOCATION 
* 
* 
* 

FUNCTION VVR(PI, X, YX, B, AB) 
AE=4. *AB*YX/((X-B)**2+(YX+AB)**2) 

* 
* 
*** TO AVOID THE NEED OF DOUBLE PRECISION 
* 
* 

A1-ABS(1. -AE) 
IF(A1. LT. 0.000001)AE-0.999999 

* 
AR-SQRT(ABS(AE)) 
AW-1. /((X-B)**2+(YX+AB)**2)**1.5 
VVR=AB*AW*(X-B)/(PI*AE*(1-AE))*((2-AE)*E2(AR) 

1-2*(1-AE)*E1(AR)) 
RETURN 
END 
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UN 

FUNCTION "UN" DETERMINES THE INSTANTANEOUS VELOCITY 

FUNCTION UN( T, UNO, DT, SREF, CAO, USTEADY, 
1TVEL, VEL, NVEL, NMAX, IDEC, AMASS, NDT) 

DIMENSION TVEL(NMAX), VEL(NMAX) 
IF(USTEADY. LT. 998. )THEN 

FREE DECELERATION 

IF(IDEC. EQ. 1)THEN 
UN-UNO-DT*(9.8-0.5*1.25*(UNO**2)*SREF*CAO/AMASS) 
RETURN 

END IF 
UN-USTEADY 
RETURN 

END IF 

TABULATED VELOCITY/TIME FUNCTION 

UN-TB(T, TVEL, VEL, NVEL, NMAX) 
RETURN 
END 

E1 

FUNCTION "E1" CALCULATES THE FIRST KIND 
ELLIPTIC INTEGRAL 

FUNCTION E1(A1) 
ARGUM-Al 

ARGUMI-DSQRT(1. OD+00-DBLE(ARGUM)**2) 
ARGUM-(1.0E+00-ARGUMI)/(1. OE+OO+ARGUMI) 
SERIES-O. OE+00 
COUNT-1. OE+00 
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TERM-1.0E+00 
TEST-1. OE+30 
DO WHILE(TEST. GT. l. E-8) 

SERIES-SERIES+TERM 
COE-ARGUM*COUNT/(COUNT+I. OE+00) 
TERM-TERM*COE*COE 
COUNT-COUNT+2. OE+00 

IF(ABS(ARGUM**2-1. ). LT. 0.0000001)GO TO 1 
TEST=TERM/((1. OE+00-ARGUM**2)*SERIES) 

END DO 
SERIES-6. OE+00*ASIN(0.5E+00)*SERIES/(1. OE+00+ARGUMI) 

El-SERIES 
RETURN 
END 

* 
* 
* 
* E2 

* 
* 
* FUNCTION "E2" CALCULATES THE SECOND KIND 
* ELLIPTIC INTEGRAL 
* 
* 
* 

FUNCTION E2(A2) 
ARGUM=A2 

ARGUMI-DSQRT(1. OD+00-DBLE(ARGUM)**2) 
ARGUM-(1.0E+00-ARGUM1)/(1. OE+00+ARGUMI) 
SERIES-1.0E+00 
COUNT-1.0E+00 
TERM-ARGUM*ARGUM/4. OE+00 
TEST-1.0E+30 
DO WHILE(TEST. GT. 1. E-8) 

SERIES-SERIES+TERM 
COE-ARGUM*COUNT/(COUNT+3. OE+00) 
TERM-TERM*COE*COE 
COUNT-COUNT+2. OE+00 
IF(ABS(ARGUM**2-1. ). LT. 0.0000001)GO TO 1 
TEST-TERM/((1. OE+00-ARGUM**2)*SERIES) 

END DO 
1 SERIES-1.5E+00*ASIN(0.5E+00)*(1. OE+00+ARGUMI)*SERIES 

E2-SERIES 
RETURN 
END 
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TB 

FUNCTION "TB" PERFORMS LINEAR INTERPOLATION 

FUNCTION TB(X1, XX, YY, M, NMAX) 
DIMENSION XX(NMAX), YY(NMAX) 
IF((X1-XX(1)). LT. O)GO TO 2 
DO 1 I-1, M 
IF(XX(I). GE. X1)THEN 

IF(I. EQ. 1)THEN 
TB-YY(1) 
RETURN 

END IF 
A-(YY(I)-YY(I-1))/(XX(I)-XX(I-1)) 
B-Xl-XX(I-1) 
TB-B*A+YY(I-1) 
RETURN 

END IF 
CONTINUE 
PRINT*, ' ARGUMENT TB->', Xl, ', IS OUT OF RANGE. ' 
STOP 
END 

PLOT 

SUBROUTINE "PL0T" PRODUCES A ROUGH DRAW OF THE 
WAKE FLOW PATTERN ON THE LINE PRINTER OR ON THE TERMINAL 
SCREEN. 

SUBROUTINE PLOT(WKOLD, NDT, SCALEX, SCALEY, XI, XM, YM, AL, 
1NVR, IX, IY, XCUT, GMW, CANCELL) 

CHARACTER LINE(70) 
DIMENSION IX(NVR), IY(NVR), WKOLD(NVR, 2), GMW(NVR), CANCELL(NVR) 
IXM-0 
MAXIXs1 
ICC-(3*XI-XI)*SCALEX 
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IF((3*XI-XI). LE. O. )IXM=1 
ICY-Y(XI, XI, XM, YM, AL)*SCALEY 
IC=3*XI*SCALEX 
DO 17 I-1, NDT 
IF(CANCELL(I). LT. O. )GO TO 17 
WKOLDI=3*XI-WKOLD(I, 1) 
IX(I)=ABS(SCALEX*WKOLDI) 
IY(I)=SCALEY*WKOLD(I, 2) 
IF( IX( I). GT. MAXIX)MAXIX-IX(I) 
IF(IY(I). GT. 34)IY(I)=34 

17 CONTINUE 
M5-MAXIX+5 
DO 12 K-1, M5 
DO 30 1-1,70 

30 LINE(I)-' ' 
DO 21 J=1,70 
IF(K. EQ. 1)LINE(J)='-' 

21 IYC=Y(XI, XI, XM, YM, AL)*SCALEY 
ISC=SCALEX*(3*XI-XI) 
IF(K. EQ. ISC)LINE(35+IYC)-'#' 
IF(K. EQ. ISC)LINE(35-IYC)='#' 
IF(K. GT. MAXIX)GO TO 12 
IJ=0 
DO 19 J-1, NDT 
LINE(35)='I' 
IF( IC. EQ. K)LINE(35)='#' 
IF(ICC. EQ. K. AND. IXM. NE. 1)LINE(35+ICY)-'#' 
IF(ICC. EQ. K. AND. IXM. NE. 1)LINE(35-ICY)='#' 
IF(IX(J). NE. K)GO TO 19 
IJ=J 
LINE(35+IY(J))='*' 
LINE(35-IY(J))='*' 
DO 50 NPL-36-IY(J), 34 

50 LINE (NPL)='. ' 
DO 60 NPL=36,34+IY(J) 

60 LINE(NPL)='. ' 
19 CONTINUE 
12 WRITE (6,20)LINE, IJ 
20 FORMAT (1X, 70A1,15) 

RETURN 
END 

* 
* 
* 
* GRAPH 

* SUBROUTINE "GRAPH" PRODUCES A ROUGH GRAPH OF THE 
AXIAL FORCE AND DIFFERENTIAL PRESSURE COFFICIENTS 

* ON THE LINE PRINTER OR ON THE TERMINAL SCREEN. 
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SUBROUTINE GRAPH(YG, N, TIME, KG, IGR, NVR, IYG) 
DIMENSION TIME(NVR), YG(NVR), IYG(NVR) 
CHARACTER LIN(70) 
IF(KG. NE. 1)GO TO 100 
DO 30 I-1, N 

30 IYG(I)=64*(YG(I)-1)+5 
DO 20 J-1,70 

20 LIN(J)-'-' 
LIN(S)-'0' 
LIN(36)='l' 
LIN(38)='S' 
LIN(37)-l. ' 
LIN(67)='2' 
GO TO 200 

100 DO 31 I-1, N 
31 IYG(I)=10*YG(I)+5 

DO 21 J-1,70 
21 LIN(J)-'-' 

LIN(15)-'l' 
LIN(25)='2' 
LIN(35)='3' 
LIN(45)='4' 
LIN(55)-'S' 
LIN(65)='6' 

200 CONTINUE 
LIN(69)='C' 
LIN(70)-'D' 
IF( IGR. EQ. 1)LIN(70)='P' 

500 WRITE(6,80)LIN 
DO 90 I-1, N 
DO 60 IJ-1,70 

60 LIN(IJ)-' ' 
DO 40 J-1,70 
LIN(5)='I' 
NT-I/5 
N1=NT*5 
IF(N1. EQ. I)LIN(5)='-' 
IF(IYG(I). GT. 70)GO TO 71 
IF(IYG(I). LT. 5)GO TO 70 
LIN(IYG(I))='. ' 
GO TO 40 

70 LIN(3)-'! ' 
GO TO 40 

71 LIN(69)='! ' 
40 CONTINUE 

IF(IGR. EQ. 2)GO TO 99 
WRITE(6,80)LIN 
GO TO 90 

99 TT-TIME(I) 
WRITE(6,88)LIN, TT 

90 CONTINUE 
DO 300 1-1,5 
DO 101 11-1,70 

101 LIN(II)=' ' 
300 WRITE(6,80)LIN 
80 FORMAT(1X, 70A1) 
88 FORMAT(1X, 70A1, F8.3, 'S') 

RETURN 
END 
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SHAPE 

SUBROUTINE "SHAPE" PRODUCES A ROUGH DRAW OF THE 
CANOPY SHAPE ON THE LINE PRINTER OR ON THE TERMINAL 
SCREEN. 

SUBROUTINE SHAPE(XM, YM, AL, XI) 
CHARACTER LN(69) 
DO 1 1-1,69 
LN(I)-' ' 
DO 2 1-1,7 
IF(I. LT. 5)LN(35)=': ' 
IF(I. EQ. 6)LN(35)-'V' 
IF(I. EQ. 5)LN(35)='_' 
WRITE(6,10)LN 
DO 5 1-1,69 
LN(I)=' ' 
DO 3 1-1,69 
YII-Y(XI, XI, XM, YM, AL) 
LN(I)='-' 
LN(35)='I' 
IL=30*Y(XI, XI, XM, YM, AL)/YM 
LN(IL+35)='. ' 
LN(35-IL)-'. ' 
WRITE(6,20)LN 
IXI=18*XI/YM 
DO 4 J-1, IXI 
DO 6 Ii=1,69 
LN(IJ)-' 
XX=XI-XI/IXI*J 
XX-ABS(XX) 
DO 7 1-1,69 
LN(35)='I' 
YII-Y(XX, XI, XM, YM, AL) 
IS-30*YII/YM 
LN(35+IS)-l. 1 
LN(35-IS)-'. 1 
WRITE(6,22)LN, XX, YII 
FORMAT(69A1) 
FORMAT(69A1, ' X Y') 
FORMAT(69A1,2F6.3) 
RETURN 
END 


