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Abstract

The lattice Boltzmann method (LBM) have emerged as an alternative computa-
tional approach to the conventional computational fluid dynamics (CFD). Despite
being computationally efficient and popular numerical method for simulation of
complex fluid flow, the LBM exhibits severe instabilities in near-grid scale hy-
drodynamics where sharp gradients are present. Further, since the LBM often
uses uniform cartesian lattices in space, the curved boundaries are usually ap-
proximated by a series of stairs that also causes computational inaccuracy in the
method. An interpolation-based treatment is introduced for the curved bound-
aries by Mei et al. One of the recipe to stabilize the LBM is the introduction of
Ehrenfests’ step. The objective of this work is to investigate the efficiency of the
LBM with Ehrenfests’ steps for the flows around curved bluff bodies. For this
purpose, we have combined the curved boundary treatment of Mei et al. and the
LBM with Ehrenfests’ steps and developed an efficient numerical scheme. To test
the validity of our numerical scheme we have simulated the two-dimensional flow
around a circular cylinder and an airfoil for a wide range of low to high Reynolds
numbers (Re < 30,000). We will show that the LBM with Ehrenfests’ steps can
quantitatively capture the Strouhal-Reynolds number relationship and the drag co-
efficient without any need for explicit sub-grid scale modeling. Comparisons with
the experimental and numerical results show that this model is a good candidate
for the turbulence modeling of fluids around bluff bodies.
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lift force

number of lattice sites for Ehrenfests’ steps

body force acting on each particle
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linear transformation from microscopic to macroscopic description
macroscopic moments vector

the occupational number of a particle along ¢th lattice direction
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fluid pressure
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non-dimensional pressure

collision integral describing interaction between the particles
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macroscopic temperature
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non-dimensional fluid velocity

wall velocity

macroscopic velocity at fluid nodes
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upstream flow velocity
inlet fluid velocity in a channel flow around bluff bodies
microscopic fluid velocity
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lattice space step size and lattice time step respectively

tolerance value for entropy deviation

spacial differential operator

non-dimensional spacial differential operator

kinematic viscosity of fluid

fluid density

the collision operator representing rate of change of particle collisions
fraction of the intersected link of physical boundary in the fluid region

the local averaged collision operator representing rate of change of

distribution functions

w

relaxation frequency towards local equilibrium
relaxation time towards local equilibrium
Knudson number

coarse-graining time

polynomial of v

weighting factor for the curved boundary link
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Chapter 1

Introduction

1.1 Motivations

Flow around bluff bodies occurs in numerous fields of science and engineering. Exam-
ples of these are flows past vehicles, cables, towers, bridge-deck sections etc. These
flows have been studied both experimentally and numerically for the last several
decades. With the advent of computer technology, computational fluid dynamics
(CFD) has emerged as an advantageous numerical approach over the experimental
approach which is more expensive in many situations. In one variant of CFD known
as macro-fluid dynamics, various numerical algorithms are developed to solve the
Navier-Stokes equations. The molecular dynamics (MD) is another variant of CFD
in which the individual motion of fluid molecules are simulated on a computer. Then
once their inter-molecular interactions have been summed and averaged, the system
behaves as a fluid.

During last two decades the lattice Boltzmann method (LBM) [83, 92] has emerged

as an alternative and efficient numerical algorithm for the modeling and simulation



of fluid dynamics problems. Unlike the traditional CED tools (finite difference, finite
volume, finite elements and spectral methods) which are based on the discretization of
continuous partial differential equations (Navier-Stokes equations for fluid dynamics),
the LBM is based on evolution equations for the mesoscopic Boltzmann densities. The
basic philosophy of the LBM is the construction of such simplified kinetic models
which incorporate the essential physical properties of the microscopic processes so
that macroscopic quantities can be calculated from the averaged mesoscopic densities.
Among the different variants of the LBM in use, are the multiple relaxation lattice
Boltzmann method, the finite volume lattice Boltzmann method, the interpolation-
supplemented lattice Boltzmann method, the entropic lattice Boltzmann method |6,
47, 49, 50, 85] and the recently introduced lattice Boltzmann method with Ehrenfests’
step [17, 18, 19, 20].

The main advantages of the LBM are:

e Because of its explicit nature of governing equations, this model is optimally
suited for vectorization and parallelization which results into short and fast

numerical codes;

e Particle interpretation of this method allows very simple boundary conditions

for complex flow geometries;

e Linearity of the streaming operator and locality of the non-linear collision op-
erations help making the access of contiguous memory much faster. It means
that memory can be deallocated after each time step and it is available for the

next iteration.



1.2 Background to Present Study

Despite successful LBM simulations of various fluid flows of engineering interests,
it has been observed that the LBM exhibits both linear and non-linear numerical
instabilities in low viscosity regimes, for example in case of high Reynolds number
flows. Linear stability analysis might be sufficient where hydrodynamic gradients are
weak but non-linear stability analysis is needed in the near-grid scale hydrodynamics
where large gradients are present. The reasons for these instabilities are lack of
positivity and deviations of the probability distribution functions from the quasi-
equilibrium states.

Sterling and Chen [81] were amongst the first who investigated the stability prob-
lem in the LBM. In their work, the lattice Bhatnagar-Gross-Krook (LBGK) colli-
sion operator was linearized for the fluctuating quantities of the particle distribution
functions with respect to the equilibrium distribution functions and then the most
unstable directions and wave numbers, and their relationship with the mean flow
field, relaxation time and mass distribution parameters were identified through the
Von Neumann stability analysis. Worthing et. al [93] extended this analysis to non-
uniform flows and found some stability boundaries particularly in case of a shear
background flow.

D’Humieres [26] proposed the multiple-relaxation-time (MRT) LBE method which
has also shown improvement in the stability of LBM [55, 64]. The MRT model
attempts to relax different particle distribution functions to the equilibrium state
with different relaxation times.

The standard LBM faces severe non-linear instabilities in the near-grid scale dy-
namics which arise mostly due to the violation of the second law of thermodynamics.

The stability of the LBM has been improved in entropic lattice Boltzmann method



(ELBM) [2, 3, 4, 5, 13, 48] through compliance with the H-theorem [84] which ensures
the positive entropy production of the distribution function. Although the ELBM is
more stable than the LBGK method and allows high Reynolds number flow simula-
tion [2], yet it suffers from spurious oscillations in regions with strong hydrodynamic
gradients, such as in the vicinity of shocks [13]. However, a great reduction of the spu-
rious oscillations in the ELBM has been achieved by constructing complete Galilean
invariance models [21].

Lie et. al [56] proposed a FIX-UP method which has shown improvement on the
stability by enforcing non-negativity of the particle distribution function. A good
stability analysis on the comparison of the FIX-UP and the ELBM methods has been
carried out by Tosi et. al [86]. The FIX-UP method has computational cost half the
computational cost of the ELBM in one single time step. But the ELBM is more
stable than the FIX-UP method for high Reynolds number flows.

Brownlee et. al [17] introduced an alternative and versatile approach, the LBM
with Ehrenfests’ steps. The deviation of the populations from the quasi-equilibrium
states has been controlled by first fixing a tolerance value for the difference in mi-
croscopic and macroscopic entropy and when this tolerance value is exceeded the
populations are returned to their quasi-equilibrium states. Following this idea some
non-equilibrium entropy limiters [19] were constructed for the LBM which help erase
spurious oscillations in the sharp gradient regions and stabilize the LBM simulation.

The LBM often uses uniform regular cartesian lattices in space, so curved bound-
aries are often approximated by a series of stairs that leads to reduction in compu-
tational accuracy. On the curved body geometries, the interpolation-based schemes

play an important role to improve the numerical stability of the LBM [28, 51, 66, 96].



Mei et al. [66, 68] made an improvement in the Fillipova Hénnel boundary treat-
ment [28] and proposed a second-order accurate boundary condition treatment for

the lattice Boltzmann equation.

1.3 Aims and objectives

Both models the ELBM and the LBM with Ehrenfests’ steps have efficiently simulated
turbulent flow past a square cylinder for high Reynolds numbers [6, 19]. In the present
study, we have constructed a numerical scheme for the stable simulation of flows past
curved bluff bodies by taking the curved boundary treatment of Mei et al. [66] and
applying the Ehrenfests’ steps after collision in the LBM proposed by Brownlee [17].

The main goal of this work is to investigate the laminar and turbulent unsteady
flow fields around the bluff bodies of curved cross-sections for various Reynolds num-

bers. To achieve the aims of this research, the following three objectives are set:

e [nvestigation of the two-dimensional vortex shedding phenomenon in a circular
cylinder wake for Reynolds numbers up to Re = 20, 000. Global flow parameters
such as Strouhal numbers, drag and lift coefficients are computed for the ver-
ification and validation. Numerical results presented here, are compared with
other experimental and numerical results [39, 40, 71, 72, 75, 77, 78, 79, 91, 97].
For the validation of turbulent simulation of the flow around a circular cylinder,
the Reynolds number selected is Re = 3,900 due to the availability of numerical

and experimental data at this number.

e Simulation of the flow around elliptical cylinders of different aspect ratios for
different Reynolds numbers. This work aims to investigate the changes of the

shedding frequency, drag and lift coefficients with the increase of aspect ratio.



e Simulation of the flow around a NASA 0015 airfoil for high Reynolds number.
The study includes the simulation of vortex shedding phenomenon, and drag

and lift coefficients of the flow.

1.4 Thesis Structure

This chapter discusses the aims, the objectives and the methodology of the research
work. The main content of the thesis are introduced in the following chapters.

Chapter Two contains an introduction to the lattice Boltzmann model. First a
historical background of the method is given which starts from its ancestor, named
the lattice gas cellular automata (LGCA). Then by introducing the lattice Bhatnagar-
Gross-krook (BGK) approximation to the collision integral in the lattice Boltzmann
equation, the lattice Bhatnagar-Gross-Krook (LBGK) scheme is obtained. Our focus
would be on the two-dimensional BGK lattice Boltzmann model and on the numerical
instabilities faced by it. At the end of Chapter Two, different boundary conditions
for the lattice Boltzmann method are discussed. Specifically, the curved boundary
treatment proposed by O. Filippova and D. Hénel [28] and improved by R. Mei, L.S.
Luo and W. Shyy [66] is presented.

Chapter Three discusses the idea of Ehrenfests’ coarse-graining introduced by A.
Gorban [34] and then explains how the second order Navier -Stokes equations are
recovered from the Boltzmann equation in the Ehrenfests’ chain. In this chapter we
give the construction of the Ehrenfests’ entropy limiter proposed by R. Brownlee, A.
N. Gorban and J. Levesley [17, 18, 19, 20]. Thus a numerical scheme is evolved which
stabilizes the LBGK model.

In Chapter Four the flow around a circular cylinder is selected as a first validation



example for the numerical scheme described in chapter three. This flow simulation is
stabilized for high Reynolds numbers and flow characteristics like Strouhal number,
drag and lift coefficients are compared with the previous experimental and numerical
data. The chapter then focuses on the detailed comparisons of the velocity profiles
and Reynolds stress components at various locations in the wake region of the flow
with experimental data at a Reynolds number of Re = 3900.

In Chapter Five we discuss the verification and validation of our turbulence models
for the flow around elliptic cylinders of different aspect ratios at various Reynolds
number. Similar to the flow around a circular cylinder, current validation involves
direct comparison of the Strouhal number, drag and lift coefficients of the flow with
experimental findings. As a third example we perform the simulation of the flow
around the NASA0015 airfoil. These simulations focusses on the changes of the drag
and lift coefficients for different Reynolds number.

Chapter Six draws conclusions on the work done on the research. This focuses
on the objectives of the work and how they are achieved throughout the thesis. The
second part of the chapter seven provides suggestions and recommendations on further
work for the simulation of the flow around bluff bodies. The references in the chapters
are then listed following chapter seven. In the thesis, the figures are shown at the
end of each chapter.

The following paper has been published during the work:

e T.S. Khan and J. Levesley, Stabilizing lattice Boltzmann simulation of fluid flow
past a circular cylinder with Ehrenfests limiter, Approximation Algorithms for

Complex Systems 3(2), 2011, 227 — 239.



Chapter 2

Lattice Boltzmann Method

This chapter introduces the background theories of the lattice Boltzmann method
(LBM) and it’s evolution to become an alternative and promising numerical scheme
for the simulation of fluid flows.

There are at least two approaches to derive the lattice Boltzmann equation (LBE),
either historically from the lattice gas cellular automata (LGCA) [32] which is based
on the discrete particle kinetics using a discrete lattice and discrete time or directly
from a special discretized form of the Boltzmann kinettic equation [42]. In this

chapter, we present an overview of the different stages of development of the LBM.

2.1 Basic theoretical concepts

In this section, definitions of some basic theoretical concepts are recalled.



2.1.1 The Navier-Stokes Equations

The Navier-Stokes equations for an incompressible fluid flow [1, 29] in the absence of
external forces can be written as:
Momentum:

ou

E—l—(u-V)u: ~VP + vV, (2.1.1)

Continuity:

V-u=0, (2.1.2)

where V is the nabla operator, u is the fluid velocity, P = p/p the kinematic pressure,
p the pressure, p the constant density and v the kinematic viscosity of the fluid.
These are the nonlinear partial differential equations and except for a few cases
their analytical solutions are very hard to find. Numerical methods are required to
simulate the time evolution of the flows. The most important nonlinear advection
term (u-V)u is responsible for many physical processes like von Karman vortex

streets or turbulence.

2.1.2 The importance of Reynolds number

Flows with small velocities are smooth and are called laminar. At very high velocities
they become turbulent. From the following discussion we shall find that the transition
from laminar to turbulence does not depend only on the velocity.

Consider the fluid past an obstacle(such as a sphere, a cylinder or a plate) with
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upstream speed U. If L is the linear size (for example the diameter in case of a cylinder
or a sphere) of the obstacle then the three parameters, U, L and v having dimen-
sions [length time™ ], [length] and [length? time™!] respectively, form a dimensionless

number, namely, the Reynolds number

Re = ==, (2.1.3)

v
Introducing the following non-dimensional quantities:

u* =u/U, x* =x/L, V* = LV*, V** = L2.V*? t*=t.U/L, P* = P/U?,

the above Navier-Stokes equations in non-dimensional form become:

Momentum:

du” * * ® * 1
8t*+(u VHu* =-V*P +Re

V*iu*, (2.1.4)

Continuity:

V*out = 0. (2.1.5)

The non-dimensional Navier-Stokes equations (2.1.4) and (2.1.5) do not contain
any scale and there is only one dimensionless quantity, namely, the Reynolds number.
Thus for a given type of flow (say,the flow past a circular cylinder) the scaled velocity
of a stationary flow will depend only on the scaled spatial coordinate and the Reynolds
number. The value of the Reynolds number provides an estimate of the relative
importance of the non-viscous and viscous forces. Thus flows can be characterized by

the relative magnitudes of advection and viscous forces:

|(u-V)u| U?/L UL
R~ = — = Re. 2.1.
| v V2u | vU/L? v he (2.1.6)

It has been observed that flows with small Reynolds numbers (Re < 1) are lam-

inar, Von Karman streets are seen at intermediate values (Re ~ 100) and turbulent



11

flows occur at very high Reynolds numbers (Re > 100).

2.1.3 Law of dynamic similarity as a link between real flows

and LGCA /LBM models

We can write

u = % = fu (%,Re) , (2.1.7)
and

P = % — fp (%,Re) : (2.1.8)
where the functions f,, and fp depend on the geometry of the flow. Thus all flows of
the same type but with different values of U, L and v are described by the one and
the same nondimensional solution (u*, P*) if their Reynolds numbers are equal. All
such flows are said to be dynamically similar.

The law of dynamic similarity provides the link between the real world flows where
the length is measured in meters and the simulations of these flows with LGCA and
LBM models over a lattice with unit grid length and unit lattice speed. In these
models the viscosity is a dimensionless quantity because it is expressed in units of
grid length and lattice speed. These dimensionless flows are similar to real flows on

the lattice when their Reynolds numbers are equal.

2.1.4 The Boltzmann equation

The Boltzmann equation is an integro-differential equation for the single particle dis-
tribution function f = f(x,v,t). The function f(x,v,t) is defined as the probability

of finding a particle moving with velocity v at the site x and at the time ¢, focussing
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on two main processes, streaming and collision. This equation is defined as:

of K
-V, =V f = f), 2.1.9
o TV VS — V= QU ) (2.1.9)
where
e K is the body force acting on each particle ;

o V, = (%7 3%/7 %)7

.sz(a 2] 8);

Ovg ? 3_Uy’ ovy

Q(f, f) is the collision integral describing the interactions between the particles.

2.2 Historical developement of the LBM

Historically, the LBM was first based on the LGCA, where the fluid was modeled as
an ensemble of many particles interacting locally at the nodes of a regular lattice by
collisions, and obeying the hydrodynamic conservation laws. The first such discrete
velocity model introduced by Hardy, de Pazzis and Pomeau [36] was the HPP model
(named after their initials), where space and time were discretized on a square lat-
tice. The HPP does not possess sufficient symmetry in order to ensure isotropy of
a certain tensor of fourth rank formed from the lattice velocities and therefore the
mean values do not obey the Navier-Stokes equations. After ten years of the HPP
model, Frisch, Hasslacher and Pomeau [32] proposed the FHP model (again named
after their initials) for two dimensional hydrodynamics, where the hexagonal sym-
metry of the lattice was found sufficient to recover the Navier-Stokes equations. For
three dimensional hydrodynamics, d’Humiéeres, Lallemand and Frisch [25] introduced

the face-centered hyper-cube (FCHC) as a lattice with sufficient symmetry.
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The LGCA were found to be insufficient for the fluid simulation of the Navier-
Stokes equations. In fact, these models are plagued by several diseases [83, 92], for
example, one of the major disadvantage is the statistical noise in the computed hy-
drodynamic simulations. To overcome this problem, McNamara and Zanetti [65]
introduced the LBM by replacing the boolean operations with the continuous density
distributions over the FHP and FCHC lattices. Another fault with the LGCA was
the exponential complexity of the collision operator which leads to a huge amount of
computational cost. By making the assumption that the particle distribution is close
to the local equilibrium state, Higuera and Jiménez [44, 46] introduced the linearized
collision operators. A further important development in the LBM was the approxima-
tion of the collision operator with the Bhatnagar-Gross-Krook [11] relaxation term.
This single-time-relaxation (SRT) model known as lattice Bhatnagar-Gross-Krook
(LBGK) model was proposed independently by Koelman [53], Qian [76] and others.
These LBGK models have cured almost all the diseases faced by the earlier LGCA
models and have become simple and efficient tools for hydrodynamic simulation prob-

lems.

2.3 Three ways to the Lattice Boltzmann Method

There are three different approaches [83] adopted by the researchers from the dis-
ciplines of Mathematics, Physics and Engineering respectively, for the lattice Boltz-

mann simulation of hydrodynamics.
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2.3.1 Mathematics Approach

Mathematicians are always interested in solving partial differential equations by a nu-
merical method. Usually, a partial differential equation is discretized and its solution
is obtained on by a numerical scheme, such as finite difference, finite volume , finite
element methods. Therefore, the approach adopted by the mathematicians would be

in the following sequence
Boltzmann — LBE — Nawvier-Stokes

2.3.2 Physics Approach

Physicist are concerned about certain physical properties of the problem, so they have

adopted the following approach to the LBM
Newton — Lattice-Gas —LBE — Navier-Stokes

2.3.3 Engineering Approach

Engineers like to use the Navier-Stokes solver for fluid simulation. They see the lat-

tice Boltzmann equation as a Navier-Stokes solver. Their approach would be

Navier-Stokes — LBE

2.4 The lattice Boltzmann equations

The lattice Boltzmann equation (LBE) can be obtained either from the models of the

lattice gas cellular automata (LGCA) or it can be directly derived from the continuous
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Boltzmann equation. In this section we present an overview of these two approaches.

2.4.1 LBE as an extension of the LGCA

The evolution equation of the LGCA are described by the following kinetic equations:
ni(x +e;,t+1) =n;(x,t) + Aj(n(x,t)), (2.4.1)

where n;(x, t) is the occupational number of a particle entering site x at time ¢ with
a velocity e; along ¢ lattice direction, 4A; is the collision operator. The occupational
number n; is a boolean variable and can assume only two values 1 or 0 according to
the presence or absence respectively, of a particle at site x at time ¢.

In order to get rid of the statistical noise in the LGCA, McNamara and Zanetti
[65] replaced the boolean occupation numbers, n; in equations (2.9) with the single

particle velocity distribution function:

fi = (n2), (2.4.2)

where (.) denotes an ensemble average. The individual particle motion and the par-
ticles correlations were neglected in the kinetic equations. In this way the statistical
noise was eliminated in the LGCA. The discrete kinetic equations for the particle

velocity distribution function become:
fi(X + eiét, t+ 5t) = fz (X, t) + Ql(f(X, t)), (243)

where Q;(f(x,t) is the local averaged collision operator representing the rate of change

of the distribution functions f; resulting from the collision, defined as

Qi(f(x,1) = (Ai(n(x,1))). (2.4.4)
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The macroscopic variables can be obtained from the averaged particle velocity distri-

bution functions. The macroscopic density is defined as:

p:§:ﬁ. (2.4.5)

The macroscopic momentum density is defined as:

pu=>_fe. (2.4.6)

Further, the collision operators §2; must satisfy the following conservation equa-

tions:

> =0, (2.4.7)

and
> Qe =0. (2.4.8)

To make the LBM practically viable for the three dimensional hydrodynamic

simulations, Higuera and Jiménez [45] proposed the quasi linear collision operator:

Q(f) = Ay (fi = £;7), (2.4.9)

where A;; is the collision matrix, which determines the scattering rate between direc-
tions ¢ and 7 and it depends only on the angles between the directions ¢ and j. It is a
cyclic, symmetric and negative-definite matrix. The symmetry of the scattering ma-
trix implies that it satisfies the following mass and momentum conservation collisions

constraints [10]:
D A =0, D e =0. (2.4.10)

The negative-definiteness property of the scattering matrix ensures the fulfilment of

the second principle of thermodynamics through compliance with H-theorem. From
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the properties mentioned above, the scattering matrix can be reconstructed once the
eigenvalues and corresponding eigenvectors are known.

The discrete scattering version of the collision operator, defined in Equation
(2.4.9), has minimized the complexity of the LBE collision process. The eigenvalues
of the scattering matrix A;; are associated with the slow non-conserved quantities like
the momentum flux tensor [83]. The viscosity of the fluid is associated and controlled
by a unique eigenvalue of the scattering matrix. The remaining eigenvalues are then
set such that the interference of the non-hydrodynamic modes with the dynamics of
macroscopic variables can be minimized. This observation [53, 76] leads to the idea
of the simplification of the scattering matrix as a diagonal scattering matrix with the
unique eigenvalue w, on the diagonal, which controls the viscosity. The scattering

matrix is replaced by the following diagonal form:
Aij — —W(Si]’, (2411)

where the eigenvalue w > 0, is the relaxation frequency towards the local equilibrium.
The inverse of w is the relaxation time 7 = 1/w.

It means a multi-relaxation scheme has been changed to a single-time relaxation
scheme. This new scheme is known as the lattice Bhatnagar-Gross-Krook (LBGK)
model because of its direct link with the famous BGK method [11]. The BGK ap-

proximation of the collision operator becomes:

Q(f) = —w(fi — £). (2.4.12)

The introduction of the above BGK approximation in equation (2.11) leads to the

following complete LBGK equation:

Fi(x + et t+6t) = fi(x, 1) — w(f; — F). (2.4.13)

)
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2.4.2 From the Boltzmann equation to the LBE

In the absence of the body force, the Boltzmann equation (2.1.9) defined in Section
2.1 becomes:
of

E_FV.Vf:Q(f), (2.4.14)

where on the right hand side, Q is the local collision integral describing the interactions
of the populations f.

Equation (2.23) is a kinetic transport equation describing the microdynamics of
the model. The macroscopic variables, the fluid density, momentum density and

energy density are the following moments of the distribution function f:

p(x,t) = /f(x,v,t)dv, (2.4.15)
pu(x,t) = /vf(x,v,t)dv, (2.4.16)

and
E(x,t) = %pDT + %pu2 = %/VZf(X,V,t)dV, (2.4.17)

where D is the dimension of the space and T is the macroscopic temperature.
The Bhatnagar-Gross-Krook [11] or single-time-relaxation approximation of the

collision operator () is:
Q(f) = —%(f — fln), (2.4.18)

where 7 is the relaxation time after which the populations f relax towards the equi-
librium values f(°0. It has been shown through Chapman-Enskog expansion [84] that
the resulting macrodynamics are the Navier-Stokes equations to second-order in 7.

The f(¢9 is the Maxwell-Boltzmann equilibrium distribution function:
f(eiI) — P

(eq) _ (v —u)?

i WGXP(—W), (2419)
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where R is the ideal gas constant (Boltzmann constant).

With this BGK approximation the Boltzmann equation becomes:

Sterling and Chen [81] derived the LBE as a special discretization of the Boltz-

mann equation by making the following assumptions:

e The particle populations f can only move with a finite number of discrete

velocities e;. The corresponding populations are denoted by f; .

e A collision operator with a single relaxation time, 7, is used to redistribute
populations f; towards equilibrium values fi(e‘I). This is also referred to as
a BGK collision operator where 7 is inversely proportional to density. For

constant density flows 7 is a constant.

e The equilibrium velocity distribution function is written as a truncated power

series in the macroscopic flow velocity.

The discrete velocity Boltzmann equation then becomes:

afi
ot

te - Vfi= —%(fi — fleny, (2.4.21)

Equation (2.4.21) can be written in non-dimensional form by using the charac-
teristic flow length scale L, the reference speed U, the reference density n, and two
reference time scales, ¢, to represent the time between particle collisions and L/U to
represent a characteristic flow time. The reference speed may be selected to be the
magnitude of the minimum nonzero discrete velocity. If only one speed is used, then
the velocity set for the non-dimensional equations is simply a set of unit vectors. The

resulting non-dimensional equation is
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- 1o
+8 V= ——(fi— ), (2.4.22)

€T

ot
where the caret symbol is used to denote non-dimensional quantities &; = e;/U,
V=1LV, i= tU/L, T = 7/t. and fi = fi/nr. The parameter € = tc% and may be
interpreted as either the ratio of collision time to flow time or as the ratio of mean

free path to the characteristic flow length (i.e., Knudsen number). A discretization

of Equation (2.4.22) in two dimensional space and time results in the equation:

fi&, T+ 6t) — fi(%,1) . fi(& 4 02,1+ 61) — fi(), 1+ 0i)

S Cir ~
ot 0T
fi(X+ 69,1+ 6t) — f;(%, 1+ 6t) (2.4.23)
Ciy ~
0y
1,2 rle
— __A(fl - 7,( q))7
€T
where e, = (ejs,€;,) and 6t = 6t.U/L. A particular discretization of the non-

dimensional discrete Boltzmann equation (2.4.23) would be made by choosing the
lattice Boltzmann method which is an exact Lagrangian solution for the convective
derivatives. For a given convection velocity, this type of scheme is typically obtained
by using an Euler time step in conjunction with an upwind spatial discretization and
then setting the grid spacing divided by the time step equal to the lattice velocity

i.e., 0% /61 = e;:

fi(&, T+ 61) — fi(%,1) N fi(R + ;0,1 + 0t) — fi(%, 1 + 61)

) ot ot (2.4.24)
_fEredhicd) —f&D 1 e

o6t C Te
Multiplication of the above Equation (2.4.24) by &%, results in
ot

Fi(& + edt, i+ 0f) — fi(%, ) = — L (f; — fL)
TE
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Substituting back the values: 6 = 6¢.U/L and e = t.%, we have

fi(k + e;6t,t + o) — fi(x,1) = — ot (f; — fle0

Tte

The next characteristic of the lattice Boltzmann method is the selection of the
time step to equal the reference collision time (0t = t.). The result is the cancelation
of the Knudsen number in the denominator of the collision term. Dropping all the

carets leads to the following BGK lattice Boltzmann equation (LBE):
1 e
filx + eidt, £+ 0) = fi(x, 1) = ——(filx,1) - F9(x,1)). (2.4.25)

Sterling and Chen [81] interpreted this equation in these words:

“ This equation has a particularly simple physical interpretation in which the col-
lision term is evaluated locally and there is only one streaming step or shift operation
per lattice velocity. This stream-and-collide particle interpretation is a result of the
fully Lagrangian character of the equation for which the lattice spacing is the dis-
tance travelled by the particles during a time step. Higher order discretizations of the
discrete Boltzmann equation typically require several shift operations for the evalua-
tion of each derivative and a particle interpretation is less obvious. In fact, the entire
derivation of the LB method was originally based on the idea of generalizing LG mod-
els by the LG Boltzmann equation and relaxing the exclusion principle that particle
populations be either zero or one for each velocity [65]. It did not originally occur to
the authors that the LB method could be considered a particular discretization for

the discrete Boltzmann equation [65].”
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2.4.3 Hydrodynamic moments of the LBE

In order to numerically solve the discrete LBE (2.4.25) with respect to x and ¢, the
equilibrium distribution function fz-(e‘” in the right hand side of the equation must
be evaluated. This can be done once the macroscopic variables p, pu and E are
evaluated first. For the numerical evaluation of these hydrodynamic moments defined
in Equations (2.24 — 2.26), the velocity space v must be discretized in an appropriate
manner such that the mass, momentum and energy conservation laws are satisfied.
Once the velocity space v is discretized, integration in the momentum space with
weight function, f(°9 can be approximated by the following quadrature up to certain

degree of accuracy [38]

/ £ FED(x, v, t)dv = 3 it (e) £0 (x, 1, 1),

where £(v) is a polynomial of v, w; is the weight function of the quadrature and e;
is the discrete velocity set.
This requires the following conservation constraints on the local equilibrium dis-

tribution:

p=2_ F"=3 "1 (2.4.26)
pu=> Ve =" fe, (2.4.27)
E=Y fY%=Y" fel (2.4.28)

2.5 Two-dimensional BGK Lattice Boltzmann Model

In the present work, we shall consider the two-dimensional lattice BGK model. The

lattice Boltzmann equation in two-dimension has the following three main ingredients:
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e the kinetic equation: BGK lattice Boltzmann equation (2.34) with discretized
time and with the velocity space v drastically reduced to only a few discrete
points by assuming that at each site the particles can move along a finite number

of directions, described by discrete speeds e;.

e an appropriate equilibrium distribution functions fi(eq): the Boltzmann-Maxwellian

distribution function defined in equation (2.28).

e the lattice: D2Q9 lattice, a two-dimensional nine-velocity lattice which exhibits

rotational symmetry to ensure the conservation constraints, as shown in Figure

(2.1).

The discrete velocities for D2Q9 lattice are defined as:

(0,0), i =0,
e =\ (ccos|[(i — 1) /2],esin[(i — 1)7/2]), i=1,2,3,4,
(vV2ccos[(i — 5)r/2 + 7 /4], 2¢sin[(i — 5)7/2 +7/4]), i=75,6,7,8.

(2.5.1)

where ¢ = 0x/dt, dx and Jt are lattice constant and the time step size, respectively.
In order to recover the macroscopic fluid dynamic equations (the Navier-Stokes
equations) from the LBE (2.34), the local equilibrium distribution function must be
carefully chosen. The explicit expression of the local equilibrium distribution function

[5] has the following form:

eij/c
(eq) & 2 2uj + T 3u§
£ =wip[[(2 = /1 + 3u2) ” , (2.5.2)
7j=1

]_—Uj

where j is the index of the spatial directions, so e; ; represents the jth component of

e;, and w; are the weighting factors defined below. The second order expansion gives
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the following polynomial quasi-equilibria [42]:

. 3 9 5 3
9= wp 1+g(ei-u)+@(ei-u) —@(u-u) : (2.5.3)
where the weights w; are given by:
5, i=0
wp=19 3 i=1,23/4 (2.5.4)
&=, ©=05,6,7,8.

The pressure can be calculated through the ideal gas equation of state:

P=¢c p, (2.5.5)

where ¢, is the lattice sound speed, which depends on the discrete velocity set. It’s
value for D2Q9 model is ¢, = ¢/+/3.

The kinematic viscosity is related to the relaxation time 7 by:

v=cr— 5). (2.5.6)

For the viscosity to be positive, we must have 7 > %

The two computational steps for the LBM are:

Collision : Filx,t) = filx,4) — %[ ft) — At (257)

Streaming : filx + edt, t + 6t) = fi(x,1), (2.5.8)

where f; and f, denote the pre-collision and post-collision distribution functions,

respectively.
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2.6 Lattice Boltzmann Methods versus Conven-

tional CFD

As an alternative numerical method, the LBM differs from the conventional Navier-
Stokes solvers in a number of different aspects. The main differences are shown in

the following comparisons:

e In the conventional CFD methods, the fluid equations constructed are the
second-order partial differential equations PDEs (Navier-Stokes equations). These
PDEs are discretized by finite differences, finite volumes, finite elements or spec-
tral methods. The resulting algebraic equations or system of ordinary differ-
ential equations are then solved on a given mesh by applying PDE boundary
conditions through standard numerical methods. Although this top-down’ ap-
proach [84] seems to be straightforward, it is not without difficulties. As math-
ematicians are worried about the truncation error which occurs due to the trun-
cation of Taylor series when going from differential equation to finite difference
equations whereas the physicists are concerned whether the certain quantities
are conserve in the discretized form of equations. Numerical instabilities are

another type of problem of this type of numerical methods.

In the lattice based methods (LGCA and LBM), discrete formulation of kinetic
theory results in the form of Lattice Boltzmann equations (LBEs) which by
construction conserved the desired quantities (mass and momentum) for the
Navier-Stokes equations. Since are already in discrete form therefore no further
approximations are required. These equations are then solved on lattices and

kinetic boundary conditions are applied. The derivation of the corresponding



26

macroscopic equations requires, however, lengthy calculations (multi-scale anal-
ysis). A major problem with this 'bottom-up’ approach [84] is to detect and
avoid spurious invariants which is by the way, also a problem for the models

derived by the top-down’ approach.

The Navier-Stokes Equation (2.1.1) contains a non-linear convective term u -
Vu whereas in the LBE method, the convection operator defined in Equation

(2.4.21) is linear.

In traditional CF'D methods, the Poisson equation derived from the incompress-
ible Navier-Stokes equations, is solved explicitly to obtain the pressure making
it costly in terms of time, while in the LBE approach the pressure is obtained

through the equation of state (2.5.5). But LBE only has O(1) speed of sound.

Time-dependent flows simulation is costly for the CFD, while it is easy and
straightforward for the LBM. But direct access to steady-state not possible
with LBE method.

For the conventional CFD, complex physics (like multi-phase flows) requires

complex physical models, while for the LBM these flows involve simple models.

Because of their non-linearity and non-locality, the Navier-Stokes equations
can not be parallelized easily, whereas because of it’s explicit nature, the LBE

(2.4.21) is natural to be parallelized.

Boundary conditions involving complicated geometries require careful treat-
ments in both NS and LBE solvers. In NS solvers, normal and shear stress

components require appropriate handling of geometric estimates of normal and
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tangent, as well as one-sided extrapolation. In LBE solvers, the boundary condi-
tion issue arises because the continuum framework, such as the no-slip condition

at the wall, does not have a counterpart.

e The spatial discretization in the LBE method is dictated by the discretization
of the particle velocity space. This coupling between discretized velocity space
and configuration space leads to regular square grids. This is a limitation of
the LBE method, especially for aerodynamic applications where both the far
field boundary condition and the near wall boundary layer need to be carefully

implemented.

2.7 Boundary Conditions

For any real fluid simulation problem, the boundary conditions play an important
role in the solution so they must be defined. The two types of boundaries which are
mostly encountered are open and solid wall boundaries.

The open boundaries occur in many physical problems. These include lines or
planes of symmetry, periodic cross-sections, fluid inlets and outlets. The solid wall
boundaries include walls of a channel flow and obstacles of different shapes submerged
in a fluid. These can be regular as well as irregular as shown in Figures (2.2) and

(2.3). Here some main boundary conditions are briefly discussed for the LBM.

2.7.1 Periodic boundary conditions

Periodic boundary conditions [83] are the simplest boundary conditions applied to
such physical processes where the surface effects play an insignificant role. For the

practical implementation, for example a two-dimensional physical domain (a channel
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flow), a buffer zone of two extra layers of sites w(west) and e(east) is created as

shown in Figure (2.4). Then populations on a D2Q9 lattice are replicated as:
fiss(w) = fiss(e), (2.7.1)
fa6,7(€) = f367(w). (2.7.2)

2.7.2 No-slip boundary conditions

No-slip boundary conditions, also known as the bounce — back boundary conditions
[33, 38, 98], are applied in the fluid-solid interactions where the particles are assumed
to have zero velocity at the solid wall. For the practical implementation of the bounce-
back boundary conditions, the solid surface is aligned with the grid, for example in
case of a two-dimensional channel flow the north and south walls are aligned with
the grid. There are two types of bounce back boundary conditions on — grid and
mad — grid bounce — back boundary conditions.

In on-grid boundary conditions, the solid boundary is placed exactly on the grid
line and the populations sitting on a boundary node are simply reversed in the op-
posite directions as shown in Figure (2.5). For example in case of a two-dimensional
channel flow, the populations on the north and south walls can respectively be ob-
tained as follows:

fa78(north) = fo56(north), (2.7.3)
fos6(south) = fazgs(south). (2.7.4)
In terms of the boundary matrix, the boundary conditions on the north wall is:

f4(I,y) 100 f2(1',y)
fS(xay) 0 01 fﬁ(xay)
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A similar matrix can be obtained for the south wall.

In mid-grid boundary conditions where the wall lies midway between two lattice
sites, the population with velocity e;.u, assume the velocity —e;.u after the collision at
each boundary site as shown in Figure (2.6). The explicit scheme for these boundary

conditions is the following 3 x 3 matrix [83]:

fa(z,y) 1 00 folz,y — 1)
frlxy) | =10 10 fslx—1,y—1) |, (2.7.6)
fs(z,y) 0 0 1 felz+ 1,y —1)

where (x,y) is the generic site on the north wall. Similar boundary treatment can be
done for the south wall.

It may be noted that mid-grid bounce-back boundary condition is O(1.5) accu-
rate and on-grid bounce-back boundary condition id O(1) accurate. Also location of
(v) = 0 depends on 7. It means there is no general theory of bounce-back boundary

conditions.

2.7.3 Free-slip boundary conditions

The free slip boundary condition [83] can be employed to the case of smooth bound-
aries where the normal component of the population velocity u,, and normal derivative
of its tangential component du;/0n both vanish. The on-site specular reflection of
the population on the north wall in a two-dimensional rectangular channel is shown
in Figure (2.7). These boundary conditions on the north wall can be expressed in

terms of the following boundary matrix:
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falz,y) 00 1| fslz,y)
folwy) | =10 1 0| | folzy) |- (2.7.7)
fs(z,y) 1 00 fo(z,y)

The boundary conditions on the south wall can be obtained by similar arguments.
For the mid-site specular reflection of the populations on the north wall, as shown

in Figure (2.8), the boundary matrix is:

fa(z,y) 001 folx =1,y —1)
fowy) | =10 1 0| fole+1,y—1) |- (2.7.8)
fg(x,y) 100 fg(x,y—l)

Again through symmetrical arguments, the boundary matrix can be formed for the

south wall.

2.7.4 Inlet/Outlet boundary conditions

At the inlet, velocity is specified in the macroscopic description of flow and at the
outlet, either a given pressure value or no-flux condition normal to the wall, d,u is
employed.

At the inlet, the particle distribution functions f; are replaced with the quasi-
equilibrium values fi(eq) that correspond to the free-stream velocity and density. As
the simulation result is not very sensitive to the exact condition specified at the inlet
boundary, this lower order approximation is sufficient there. For the D2Q9 model,

the velocity distribution function on all the inlet nodes reads in form of the following
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boundary matrix:

fl (xz’na y) 100 fl(eQ)(p(xm + 17 y)7 Uzn)
f5 (xin’ y) - 0 10 f’fgeq) (p(l‘ln + ]-7 y)a Uzn) ’ (279)
f8 (xina y) 001 f&geQ) (P(l"m + 17 y)7 Uzn)

where (x;,,y) is the site for the inlet boundary.

The outlet boundary condition is more sensitive to the physical domain. This
sensitivity has been known in [83]. A simple recipe suggested is to replace the popu-
lations at the outlet pointing towards the flow domain by the equilibrium values that
correspond to the velocity and density of the penultimate row of the lattice. The

boundary matrix becomes:

fs(Zout, y) 10 0| | /5o t(ow — 1,9))
fG(xoutay) = 010 féeq)(pﬂau(xout - 1ay)) ) (2710)
f?(xoutay) 001 f7(eq)(p(]7u(xout - 1ay))

where (2o, y) is the lattice site for the outlet boundary and the equilibrium matrix on
right hand side is computed by considering the velocity and density of the penultimate

row of the lattice.

2.7.5 Curved boundary treatment

The boundary conditions described above have been used for simple geometrical do-
mains where the boundaries are aligned with the lattice nodes as shown in Figure
(2.2). But in case of complex boundaries, where the domains are not regular as shown
in Figure (2.3), the boundary conditions must be more delicate. For example in case
of curved geometries ( such as an obstacle), the approximation of the obstacle with a

staircased boundary may reduce the computational accuracy.
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Unlike other Navier-Stokes solvers where the non-slip boundary conditions for
the velocity u on a solid wall is usually specified in the macroscopic description of
fluid flows, the LBM faces difficulties where the non-slip boundary conditions for the
particle distribution functions f;’s are not known at the mesoscopic level. Usually,
the most frequent boundary conditions used for the solid wall is the bounce — back
scheme defined in section (2.7.2). In the bounce-back scheme, the particle distribution
function f; streaming from a fluid node ry towards a boundary node r, along the
direction e; is reversed back to the node ry along the direction e_; as f_i as shown in
the figure. Because the wall position r,, was forced to be located at r;, this scheme
is known as bounce-back on the node (BBN). Since a finite slip velocity exists at the
stationary wall [38, 61], this results in the degradation of the computational accuracy.
Another bounce-back scheme, where the solid wall was placed in the middle between
lattice nodes, is known as the bounce-back on the link (BBL). The BBL scheme
provided second-order accurate results for the straight walls [38]. However for curved
walls, the BBL scheme requires an approximation of the curved solid boundary by
a series of stair steps. This results in the deterioration of the geometrical integrity
which is very important for high Reynolds number flows where the vorticity and stress
distributions are very sensitive to the geometry resolution. For the curved boundary,
the interpolation based scheme of Fillipova and Héinnel (FH) model [28] with first-
order and second-order improvements made by Renwei Mei [66, 67, 68] is described
here.

In Figure 2.9, a curved wall separates the solid region from the fluid region. The
lattice nodes on the fluid and solid sides are denoted by r; and r respectively. The

filled small circles on the boundary r,, denote the intersections of the wall with
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different lattice links. The fraction of the intersected link in the fluid region is,

A — |rf _ I'w|
rp — 1yl ,

where  0< A <L 1. (2.7.11)

The horizontal and vertical distance between r; and r, is Adz on the square
lattice. After the collision step, fi(r;,t) on the fluid side is known and f_;(r,,t) on
the solid side is to be determined. To find the unknown value f ;(r,,t) = f i(r; =
rs +e_;0t,t + 0t), based on information in the surrounding fluid nodes like fi(rf, t),

fi(rss,t) ete., FH [28] constructed the following linear interpolation:

Fatot) = (1= ) fier,t) +xfr(rot) — 2wipc—32(e_i ), (2.7.12)

where u,, = u(r,, t) is the velocity at wall, x is the weighting factor, and f;(rs, ) is

a fictitious equilibrium distribution function defined as:

Eg@rUﬁZ—iiﬁw-w), (2.7.13)

% 3
fi (rs’t):wip(rfat) 1+§(ei'usf)+20 92¢2

where u; = u(ry, ¢) and uyy is the fictitious velocity which is to be chosen. For FH

model, the relevant equations for x and u,; are:

1 2N —1
A< - u,; = uy, X=—,
2 r—1 (2.7.14)
A>1- u —i(A—l)u +iu _kA-Y -
=5 sI= A f A s X = - .

To improve the numerical stability, Renwei Mei et al. [66] suggested the following

first-order modified equations for x and uy:

1 2N — 1
A<y  ug=uyy, X = :
2 T2 (2.7.15)
Aol __1(A ) 1 eAa-1) .
=9 Usr = A Uy Auwa X = - )
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and the second-order improvements in the curved boundary give the following modi-

fied equations for x and ugy:

1 oA — 1
A<y Usy = Uy, X="—,
2 T2 (2.7.16)
AL 1(2A 3)us + ; 2a-1) :
—: Uy = — —3)uy+—u,, Y=-—-—.
=9 ARV YN e Y

In current simulations, Eqs. (2.7.15) and Eqgs. (2.7.16) are used to obtain the
values x and u,; and these values are then substituted into Eq. (2.7.13) to find

f7(r,,t) and finally the unknown values f_;(r,t) are found from Eq. (2.7.12).
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Figure 2.1: Two-dimensional D2Q9 lattice
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Figure 2.2: Layout for the staircased regular boundaries on the lattice. The straight
lines represents the boundary wall, the empty circles denote the fluid nodes and the
solid circles denote the wall nodes, respectively.

O O O O
O O O
O O O

O O O O O O

Figure 2.3: Layout for the irregular boundaries on the lattice. The thick curve repre-
sents the boundary wall, the empty circles denote the fluid nodes and the solid circles
denote the wall nodes, respectively.
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Figure 2.4: Layout for the periodic boundary conditions for a rectangular channel.
The shaded solid circles are in the buffer zone and the empty circles are in the internal
sites of the channel, respectively.

wall

Figure 2.5: Layout for the on-grid bounce-back boundary conditions. The thick
arrows represent in-states, the dashed arrows represent the out-states, the empty
circles denote the fluid nodes and solid circles denote the wall nodes, respectively.

X
O O
Figure 2.6: Layout for the mid-grid bounce-back boundary conditions. The thick

arrows represent in-states, the dashed arrows represent the out-states, the empty
circles denote the fluid nodes and solid circles denote the wall nodes, respectively.
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Figure 2.7: Layout for the on-site free-slip boundary conditions. The thick arrows
represent in-states, the dashed arrows represent the out-states, the empty circles
denote the fluid nodes and solid circles denote the wall nodes, respectively.

wall

o O O O O O

Figure 2.8: Layout for the mid-site free-slip boundary conditions. The thick arrows
represent in-states, the dashed arrows represent the out-states, the empty circles
denote the fluid nodes and solid circles denote the wall nodes, respectively.
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Figure 2.9: Layout for the curved boundary on the lattice. The thick curve represents
the boundary wall, the empty circles denote the fluid nodes, solid circles denote the
wall nodes and the shaded solid circles denote the solid nodes, respectively.



Chapter 3

Stabilizing the LBM using the

Ehrenfests’ limiter

The LBM has been successful in simulating various flows of engineering interest for
the last few years. However, it is found that it exhibits numerical instabilities in some
cases where large gradients are present, such as in the vicinity of shocks and the low
viscosity regimes for the boundary layer regions of flows around bluff bodies. These
instabilities are mostly due to the negativity of the distribution functions and large
deviations of the distribution functions from their equilibrium values. To overcome
this problem, Brownlee et. al [17, 18, 19, 20] proposed a versatile approach, the LBM
with Ehrenfests’ steps. In this approach, the deviations of the population distribu-
tion functions f from their equilibrium values f(¢? are controlled by monitoring the
microscopic entropy S(f) and the macroscopic entropy S(f?) in the simulation. A
threshold value is set for the difference of the two entropies and the populations are
returned to their equilibrium states by performing a single Ehrenfests’ step, if this

threshold value is exceeded.

40
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In this chapter, we describe the main idea behind the above mentioned approach,
the Ehrenfests’ coarse-graining. We show that the Ehrenfests’ chain provides an
approximation of the Euler equation to the first order and the Navier-Stokes to the
second order. Further, we will see that the Ehrenfests’ stabilization, described above,

can be applied for both entropic and non-entropic quasiequilibria.

3.1 The Ehenfests’ coarse-graining

To describe the idea of Ehrenfests’ coarse-graining [27], we recall the Boltzmann
kinetic transport Equation (2.4.14):
of

with a strictly concave entropy functional S(f).

In the Ehrenfests’ method [27], the phase space was divided into cells and then
after providing the mechanical motion from Equation (3.1.1) with periodical averaging
in cells, the piecewise constant, or coarse-grained densities were produced. This
operation gives rise to an entropy increase. A generalization of this coarse-graining
[34] was introduced for the LBM where averaging in cells is replaced by some other

partial equilibration procedure.
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3.1.1 The quasiequilibrium manifod

Let m be a linear operator which transforms the microscopic variables f to the vector

of the macroscopic variables M = m(f):

U
Pl (3.1.2)

pu2

2F

where p, pu; and E are the moments of the distribution function f defined by Equa-
tions (2.4.15), (2.4.16) and (2.4.17).

An infinite number of distribution functions can provide any particular macro-
scopic configuration M. For any fixed macroscopic description, M, there will be a

unique solution, f(¢? of the following optimization problem
S(f) — maz, m(f) =M, (3.1.3)

where S(f) is an entropy functional.

The state f(¢9 is called the quasiequilibrium as it is not a proper thermodynamic
equilibrium. The manifold of the quasiequilibria, parameterized by the macroscopic
moments M, as shown in the Figure (3.1), is called the quasiequilibrium (QE) man-
ifold.

For the Boltzmann entropy,

S = —//flogfdvdx, (3.1.4)

the associated quasiequilibrium is the Maxwellian distribution,

2

flen) — 27f;_P exp (_%(V _ u)2> , (3.1.5)
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3.1.2 The Ehrenfests’ chain

Let ©, : f(x,t) — f(x,t+ ¢) be the phase flow transformation of the conservative
dynamics for the kinetic eqution (3.1.1). If the collision integral is omitted then the

free-flight conservative dynamics: O, : f(x,v,t) — f(x — eV, v,t) means:
f(x,v,t+¢e) = f(x—ev,v,t). (3.1.6)

Equation (3.1.6) represents the exact evolution of the population function f at a point
and can be interpreted physically as the motion of particles moving freely under their
own momentum without any interaction between themselves.

Let € be a fixed coarse-graining time, M = m(f) be a given macroscopic descrip-
tion and suppose we have an initial quasiequilibrium distribution f,. The Ehrenfests’
chain, as shown in the Figure (3.2), is the following chain of quasiequilibrium distri-

butions fy, f1,... :

_ plen) -
fi=foouyy T =12 (3.1.7)

To obtain the next point of the chain, f;, we take f; i, move it by the time shift ©.,
evaluate the corresponding macroscopic variables M; = m(©.(f;-1)), and find the
quasiequilibrium distribution flsz_l) = f;.

We can see that entropy increases in the Ehrenfests’ chain. If the distribution
function ©.(f;) is not a quasi-equilibrium distribution, then S(0.(f;)) < S(fr(:(‘%a(fj)))
because of quasi-equilibrium definition (3.1.3) and strict concavity of the entropy
S(f). It means that if the motion between f; and ©.(f;) does not belong to the
quasi-equilibrium manifold, then S(f;11) > S(f;), so entropy in the Ehrenfests’ chain

increases. This entropy growth in the chain consists of two parts: the entropy gain

from the mechanical motion (from f; to ©.(f;)) and the gain from the equilibration
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Advection

M

Figure 3.1: Showing the alternating operations of free-flight and collision chain in
time near the quasi-equilibrium manifold and the linear map m from the microscopic
populations to the macroscopic moments M.

(from ©.(f;) to fj+1). For conservative dynamics, there is zero entropy gain from
the first part which implies that entropy gain follows from the second equilibration

process. As a result, otherwise conservative systems become dissipative.

3.1.3 Derivation of Navier-Stokes equations

In this section we show that the macroscopic Navier-Stokes equations can be derived
in the Ehrenfests’ chain after a period of free-flight dynamics. The derivation process
done in [19] is presented with some detail here.

The two-dimensional Navier-Stokes continuity and momentum equations (2.1.1)
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and (2.1.2) and the energy equation can be written as:

op B
a +V. (pll) = 0,
2
0 oP
&(Pul) = - Z Tk(puluk) - 8—331

0
0 8u1 8uz 0 8uz 8u1
+Iu |:81'1P <8x1 B 8$2> + al‘gp <85L'1 + 8$2>:| ’

(3.1.8)

0u2 8u1 0 8u1 8u2
+Iu |:81'2P (8@ B 81'1) + al‘lp <85L'2 + 8$1>:| ’

OF .9 .9 OP
o T gy EE P 5 (r55)

=1

where the pressure P is given in terms of energy E as
1
P=F- 3 pu’,

where the Boltzmann constant has been set equal to 1.
We are looking to determine the macroscopic dynamics which is approximated by

the Ehrenfests’ chain. Let us seek for the macroscopic equation of the form:

oM
o =), (3.1.9)

with the phase flow ®; : M(t) = ®;M(0). The transformation ®; with ¢ = ¢ should
coincide with the transformation M +—— m(O,( ](\f}q))) up to second order in . The

matching condition is

m(0.(f")) = ®.(M), (3.1.10)

for every M and given . This condition is the expression for the macroscopic field
V(M) in Equation (3.1.9). The solution of this equation is a function of e: ¥ =

U(M,e). For a sufficiently smooth microscopic field, like free-flight dynamics, and
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entropy S(f), it is easy to find the Taylor series expansion of W(M,e) in powers of €.

Expanding this for small € in a series:
U(M,e) = TO(M) + TN (M) + o(e?).

Let us find the first two terms ¥ (M) and W()(M) in the expansion.

In phase space the free-flight dynamics of the system is represented by

of B
= V=0, (3.1.11)

with exact solution given by
O.(fo(x,v)) = fo(x — vt,v). (3.1.12)

Since f, is on the quasi-equilibrium manifold, it will be replaced with f(¢? hereafter.
The Taylor series expansion in time for the dynamics of the distribution f up to

second order is

0.(£1°0) = 0y (f) + = 7t

52 82@t

9 2
=0 20 s (3.1.13)

= fled) _ oy . vl 4 %v V(v - VD),

This implies, to second order,

2

m(O:(f?)) = m(Oo(f V) — em(v - V) + %m(v V(v Ve, (3.1.14)

A similar second-order expansion of M gives

M(z) = M(0) + = %—]\j L % a;j\f . s
= M(0) + e(TOM) + 0O (M) + %%.
Since M (0) = m(0,(f?)), after equating Equations (3.1.14) and (3.1.15) we have
2 e2 0w (M)

—em(v - VfD) 4 8Em(v V(v -V D) =e(TOM) 4+ 0D (M) + R

(3.1.16)



Comparing the first-order terms, we get
TO(M) = —m(v - VD).

Comparing second-order terms, we get

1900 (M) 1

VOO + 5= =5V Vv V),

which upon rearrangement becomes

v (M) = 1 <m(v V(v Vfen)) -

2 ot

Thus, to second-order, the macroscopic equations are

() = =m(y - V1) + 5 (oml - Vv 7)) -

ot ot

8@%M».

Wy (M)
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(3.1.17)

(3.1.18)

). (3.1.19)

Now we calculate the moments of the distribution £ which would help in de-

termining the macroscopic dynamics. Firstly, from definition (2.4.15), we have

/f(eq)dv = p,

/vif(eq)dv = pu;, 1=1,2,

/V2f(eq)dv = 2F = 2P + pu’.

Next we have

[ = s = upfeay = [y - ui [ oy
—%/@ﬂ@m+m%/ﬂ@m

= /vivjf(e‘”dv — Ui pU; — UjPU; F+ PUU;

= /vivjf(eq)dv — puiuj,

(3.1.20)



which implies

/Uz-vjf(eQ)dV = / (0 = u) (0 = u)) fPdv + pugu;.

Further, using the identity

/Ozﬁe(azJ“ﬁQ)dadB =0,

it follows by a change of variables that, for i # 7,

/ (v; — u;) (v; — uj) fDdv = 0.
From the identity, we can see that

/a26(a2+ﬁ2)dad/8 _ //826(a2+ﬁ2)dad/8,

from which follows that

[ = w3 [ (v - wppes

1
=3 / (v +u® — 2uu; — 2U2U2)f(eq)dv

1
= 5(2P + pu® + pu® — 2put — 2pu3)
=P

Hence, from Equation (3.1.21), we have

/’Uz'Ujf(eQ)dV = 52',]'P + puiU;j,

where the Kronecker delta, ¢; ; is defined as

48

(3.1.21)

(3.1.22)

(3.1.23)
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Through similar calculations, we have
/’Uz"ljjka(eQ)dV = (5i,juk + 6i,kuj + 5j,kuz-)P + PUU;U- (3124)

Now we consider the first term m(v - V£©9) in the right hand side of Equation

(3.1.19). Using Equation (3.1.20), the first component is

my (v - VD) :/V-Vf(eq)dv

B 3f eq) ofed

—/ a 1 +'U2 aan dv
O [, flea dv+_/v oD gy (3.1.25)
a.ﬁUl

0 0
= a—xl(Pul) + a—m(lmz)

=V - (pu).

Using Equation (3.1.22), the second and third components are

me (v - Vf(eq)) = /Ulv . Vf(eq)dv

_9 2 r(eq) i/ (eq)
= /Ulf dv + o v fVdv (3.1.26)
0 0

(P + pu?) + a_xz(f’“m)’

:a—xl

ms(v- VD) = /UQV VD dy

5 5 (3.1.27)
= 8—171([)”1“2) o 2(P+PU2)
Finally using Equation (3.1.24), we have
my(v- VD) = /VQU Ve dy
aa /v v1 fCDdy + ai/v%f(eq)dv
. 2 (3.1.28)

0 0
= 8—1'1(41“]3 + pu1u2) + 8—1.2(4U2P + ,OU211§)

—9 (a‘; (u1(E + P)) + 8%2 (ua(E + P)))
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Hence, from Equations (3.1.25) to (3.1.28), the first-order approximation of the
macroscopic dynamics is Equation (3.1.8) with g = 0, which are the Euler equa-
tions. From these equations, we can write the components of W°(M) in terms of the

macroscopic variables M; as defined by Equation (3.1.2)

(M) = —mi(v- Vf0)
0 0

= —8—561/)“1 - a—xQPW (3.1.29)
0 0
=M, — —M,.
81:1 ! 8352 2

U (M) = —my (v - V £0)

0 0
=~ P+ o) = 5—(pure)

ox 09

10 0 ([ puipus
= ———(2P +2pu}) — —

28171( +2p1) 0y ( p )

1 0 0 0 M M-
__-_ Y 2E _ 2y Y 2y Y 14VL2

26371( pe ) 8£U1 (pUI) 33:2 ( MU
_ 1o 2E_p2u%+p2u§ 0 (pupw ) 0 (MM,

2 0z, p 0z, p Oxy \ My
B _li oF M12+M22 _ 0 My M, _ 0 M M,
N 28£U1 MU 8£U1 M() 8£U2 MU

2

J_L0 (  MELIBY S 0 MM

281’1 M() i1 ze M()

(3.1.30)
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1 MU
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Ean

0 (MM,
33:1 MU

0
-_ 2 P —
- 81'2 (P + pu?) 81'1 (pU1U2)

10 0 ([ puipus
= ——— (2P +2pul) — —

281‘2( + 2puz) 0, ( p )

1 0 0 0
=———(2F — pu®) — —(pud) — —
:_li 2E_p2u%+p2u§ 0

2 019 p 0T P
:_li 2E_M12+M22 B 0 ([ MM,y

2 8x2 M() 8x2 M()

10 M2+ M2 .0
= (M- 2 i
20x < 3 Mg > ;6331 Mg

0
3x1

My M;

M, My
Moy

(3.1.31)

0 0
=2 <a—xl (u1(E+ P)) + oms (ua(E + P))>
B ) 1, 0 1,
=2 (g0, (m (B e e gm) ) g (v (B E - go)))

0 (pu prui + p*uj 0 prui + p*uj
=2(— (B (g2 T2 — p) O B

<5$1 < p ( 2p T, 2p
_ o (0 (MM MM} + M) 0 (MM  My(M} + M3)
0y M, 2M? 0z My 2M¢ .

Next we seek for the second-order correction

% (m(v V(v - VD))

ot

_GL(M)>

(3.1.32)
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The first component for the first term is

mo(v - V(v - VD)) = V(v VfeD)dy

2
z:: ox; 8:6] /Ulvjf

—

Il
\%&Mw B

52 (3.1.33)

= P+ puf) +2

ox? (P pui) + 01,01 (puruz)
82
a 9.2 (P+pu2)
The first component, for the second term can be written as
8\11(()0)(]\4) o : 8\11(()0) aMz o ’ 8\115)0) (0) (3 1 34)
ot N par oM, ot ) par oM; '’ o
where the operators 36‘1’—]\(4) are defined as
0wy’ _ 0wy _ vy 9 ouy) 9
8M0 N 8M3 - 8M1 N 81‘1, 8M2 N 81'2,
so that Equation (3.1.34) becomes
ow” (M) o (0 0
=— P 2) 4 —
ot oy \ g, (7 Pu) + 5 (o)

0 0 0
_ P — 3.1.35
o (o (P ) + i) (3.1.35)

0? 0* 0*
= o (P + pu) +28 o (puyug) + o (P + pu3) .

Hence from Equations (3.1.33) and (3.1.35), we see that the first component of
the second-order correction is zero, which is true as this is the equation of mass
conservation.

Next, we look at the second term in the second-order correction and will keep
our focus on the pressure terms only. To determine the correction terms for the

Navier-Stokes equations, we require the following terms
0

oul”

oM;’

i=0,1,2,3.



From Equation (3.1.30), we have

\IJ(O)— 10 (M M12—|—M22> 0 MM,
1 T 59, N

201 M, Ox; My
Thus
oul” 19 (M4 M 8 (MM,
oM, 201 M} Ox; \ M;
1o, 0
N 28x1u 6xiu1 v
ov” 109 LM 0 (2 9 (M
8M1 N 281‘1 M() 8x1 M() 81'2 M()
__ 92, _9,
03:1u1 0x2 2
ov” 19 ( M\ 9 (2Mp) O %>
aMg 281‘1 M() 8x1 M() 81'2 M()
9. _9,
8.7)1 2 8.7)2 b
0w _ 19
3M3 281’1
Hence,

oM, 0xq ox 0xy ox;
ou” o ) ) ) )

= Yy, — — _~p_ D),
8M2 \IJQ <8£U1 2 8-7/'2 UI> ( axQ axz (pUQu )>

(0) 1
8\111 \IJ(O) _ _li <_2iui <2P—|— _pu2>> .
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(3.1.36)
(3.1.37)
(3.1.38)

(3.1.39)
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The second component of the first term for the second-order correction can be

found by using Equation (3.1.24)

my(v - V(v VfeD)) = /vlv V(v VfeD)dy

2 2 52 o
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2 82

(3.1.40)

Now if we subtract the pressure terms from Equations (3.1.36) to (3.1.39) from

the pressure terms in Equation (3.1.40) and denote this difference by A, we have
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Further simplifications of the derivative of terms of the form pu;u; show that they
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all cancel and thus we have
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which is the second of the Navier-Stokes equations (3.1.8) with coefficient of viscosity

(3.1.41)

p = £/2. Similar computations can provide the other momentum and energy equa-
tions. Recently, Packwood et. al [74] has derived these equations from the discrete

Boltzmann equation.

3.2 Numerical instabilities in the LBM

The LBM, like other high-order numerical schemes, exhibits numerical instabilities
in the low viscosity regimes. These instabilities readily manifest themselves as lo-
cal blow-ups and spurious oscillations. Below we describe some of the main issues

concerning the stability of the LBM.

3.2.1 Negativity of distribution functions

If the probability distribution f is far from the quasiequilibrium, then the positivity
of the distribution functions may be violated. Since f represents the whole state
which includes the states of all lattice sites. Violation of positivity at one site makes
the whole state nonphysical. Of course, violation of positivity of populations (a
microscopic condition), does not affect the macroscopic condition immediately. This
means, the microscopic positivity is a sufficient but not necessary condition for the

macroscopic positivity. This sufficient condition is helpful for the control and for the
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construction of limiters that guarantee macroscopic positivity and improve stability

(17, 86].

3.2.2 Deviations from quasi-equilibrium manifold

The second issue is the nonlinearity. Since the quasiequilibrium distribution, fg;q),
depends nonlinearly on M which may cause the distribution f to be far from the
quasiequilibrium. Whereas we require the distribution function close to the quasiequi-
librium for accuracy. So again deviations from the quasiequilibrium can cause insta-

bilities.

3.2.3 Directional instability

The directional instability is due to the deviation of the vector f — f(¢? from the tan-
gent to the trajectory of the quasiequilibrium manifold. This instability may change
the structure of the dissipative terms and conceivably create nonreliable computa-

tional results even without blowups.

3.3 Stabilization through Ehrenfests’ steps

The Ehrenfests’ chain which corresponds to the free-flight and equilibration scheme

described above, can be written in terms of the following governing equation

filx+wvig,t+¢) = fi(eq) (x,1)

1 1. .
= §fi(xa t) + §fim”(xa t)a

where the mirror point, f™r = 2f9(x,t) — fi(x,t) is the reflection of f in the

quasiequilibrium manifold. After free-flight dynamics, we move along a vector in the
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direction of this mirror point with the BGK collision @ = —(f — f{¢9)/7, we move
some part of the way along this direction. Therefore, we can write the above scheme

in some general form as

filx+vie,t +¢) = (1= B)fi(x, t) + BFM"(x,1), (3.3.1)

where = () may be chosen to satisfy a physically relevant condition. A choice
of B = 1/2 gives the Ehrenfests’ step with viscosity proportional to the time step
At =e.

3.3.1 Entropic Involution

As we can see that the dissipative term introduced by the Ehrenfests’ chain depends
linearly on ¢, there exists a symmetry between forward and backward motion in time
starting from any quasiequilibrium initial condition [47, 48]. This principle helps to
construct chains with zero macroscopic entropy production. One such development is
the entropic LBM (ELBM) [47, 49, 50] in which instead of a linear mirror reflection
f + f™" an entropic involution f f is used. This chain corresponds to the

following governing equation

filx+vie,t+¢)= (1= B)f;(x,t) + Bf;(x,1), (3.3.2)

where f = (1 — a)f + af*?. The number oo = a(f) is so chosen that the constant
entropy estimate condition, S(f) = S(f) is satisfied. This provides a positivity con-
straint on the populations. For the approximation a = 2, we have the corresponding
LBM which is the LBGK (3.3.1).

The entropic involution though ensures the existence of positive solutions but
affects dissipation because the free-flight dynamics sometimes takes us too far from

the quasiequilibrium manifold.
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3.3.2 Ehrenfests’ steps

As we have described above most of the instabilities in the LBM are caused due to
the large deviations of the populations from the quasiequilibrium manifold. In that
case, a single Ehrenfests’ step is applied and the populations are returned to the
quasiequilibrium manifold. This technique is capable of stabilizing the method. In
order to keep the method accuracy up to order €2, the Ehrenfests’ steps are applied
at a bounded number of sites.

Let S(f) be the entropy defined for each population vector f = (f;). Assuming
that the global entropy is a sum of local entropies for all sites, the local nonequilibrium

entropy is
AS(f) = S(f?) = S(f), (3.3.3)

where £(¢9 is the corresponding local quasiequilibrium at the same point. The Ehren-
fests’ regularization is intended to keep all states uniformly close to the quasiequi-
librium manifold. We monitor the nonequilibrium entropy AS at every lattice site
throughout the simulation. A pre-specified threshold value ¢ is set for this entropy
deviation and an alarm is triggered if it is exceeded. The alarm simply signals that at
the link from the Ehrenfests’ chain, an Ehrefests’ step is used in place of the regular
link of the primary chain at that point. The links of the chain which are very far from
the quasiequilibrium states are simply returned to their quasiequilibrium. The result
is a chain with additional dissipation. In order to keep the accuracy of the LBGK it is
pertinent to perform the Ehrenfests’ steps at a bounded number of sites. So we select
k sites with highest AS > §. The a posteriori estimates of the added dissipation
could easily be performed by analysis of the entropy production in Ehrenfests’ steps.
As we will show in our results, even a small number of such steps drastically improve

stability.
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Now the governing LBGK equations with Ehrenfests’ step can be written as

_ . .(C'I) A
filx+vie,t +¢) = (1= 20)x.8) + 2677001, A< (3.3.4)
f'(eq) (x,t) otherwise.

)

In order to keep the accuracy order ”on average”, the number of sites with Ehren-
fests’ step should be O(N¢,/L), where N is the total number of sites, d, is the step
of the space discretization and L is the macroscopic characteristic length. This rough
estimate of accuracy on average might be destroyed by the concentration of the Ehren-
fests’ steps in the most nonequilibrium areas, such as in the boundary layer regions.
For that case we should replace the total number of sites /N in the estimate with the

number of sites in that specified region.

3.3.3 Entropy control of non-entropic quasi-equilibria

The discrete quasiequilibria (9 can be defined in a number of ways. One of the ap-
proaches used to derive the polynomial quasiequilibria [83] is by the postulating of the
moment condition: the moments m( f) and their fluxes should coincide for the discrete
quasiequilibrium and for the corresponding continuous one. Another way to define
the discrete quasiequilibria is based on the entropy condition: the discrete system
must have its own thermodynamics and H-theorem and the discrete quasiequilibrium
should be the conditional maximum of the discrete entropy. There is not much differ-
ence in both types of quasiequilibria. But sometimes there appears a difference such
as in case of polynomial equilibrium, the higher moments are considered explicitly
and in case of the entropic equilibrium lower order moments are taken into account.

We would like to apply Ehrenfests’ stabilization for both entropic as well as nonen-

tropic quasiequilibria. Here we show how the entropic stabilizer can be used for
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nonentropic quasiequilibria. If the approximate discrete quasiequilibrium f(¢% is non-
entropic, we can use ASk(f) = —Sk(f) instead of AS(f), where Sk is the Kullback

entropy given by
Sk(f) =— Zf In (ﬁ) . (3.3.5)

Let the perfect discrete entropy have the standard form for an ideal mixture [48]:

S(f)=- Z filn (5) , (3.3.6)

where w; are the lattice weights defined in Equation (2.5.4). If we define f(*? as the

conditional entropy maximum for given M; = >, mj; fi, then

In f{*) = Z Mk
J

where p;(M) are the Lagrange multipliers. For this entropy and conditional maxi-

mum, it is found [19]

AS = S(fD) - S(f) = Z filn (f{;)) , (3.3.7)

i
if f and f(¢9 have same moments, that is, m(f) = m(f(?).

The estimate of nonequilibrium entropy can be performed for both entropic and
nonentropic quasiequilibria. Any quasiequilibrium is the conditional maximum of the
Kullback entropy. The main difference between the Kullback entropy (3.3.7) and the

perfect entropy (3.3.6) is dependence of the denominators fi(eq) on M = M(f).

3.4 Algorithm for our numerical scheme

Here we write a Pseudo code for the fluid simulation around a bluff body in a channel

using LBM with Ehrenfests’ step.
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1. Set all the parameters.
2. Initialize the population distribution functions.
3. Time loop of fluid simulation.
e Compute inlet and outlet boundary node distribution functions using Equa-

tions (2.7.9) and (2.7.10).

e Compute inner node distribution functions by performing the LBGK col-

lision operation (2.5.7).

e Compute north and south channel walls nodes distribution functions by

performing free slip boundary conditions (2.7.7) and (2.7.8).

e Compute the bluff body nodes distribution functions by using the improved

curved boundary conditions described in the Section (2.7.5).

e Calculate the entropy S and the nonequilibrium entropy AS as described

in the Section (3.3).
e Apply the Ehrenfests’ steps using Equation (3.3.4).

e Compute population distributions for all nodes by performing the stream-

ing operation (2.5.8).

e Check and save simulation record, data and plot routines.



Chapter 4

Flow Around a Circular Cylinder

The laminar and turbulent unsteady viscous flow around the circular cylinder have
been a fundamental fluid mechanics problem due to its wide variety of applications
in engineering such as in submarines, bridge piers, towers, pipelines and off shore
structures etc. Numerous experimental and numerical investigations [58, 71, 72, 75,
77, 78, 79, 91] have been carried out to understand the complex dynamics of the
cylinder wake flow over the last century. This flow is very sensitive to the changes of
Reynolds number, a dimensionless parameter representing the ratio of inertia force to
viscous force in a flow. Early studies of the flow around a circular cylinder have been
done at low Reynolds number. Researchers such as Bloor (1964), Roshko (1954) and
Tritton (1959) [12, 77, 88] focused on the flow in the near wake region of the cylinder.
With the advent of computer technology in mid 80s, computational fluid dynamics
(CFD) started to influence the study of the flow around a circular cylinder. The
rapid development of the CFD followed by a wide range of investigations. Results
obtained from the CFD simulations [16, 31] between Reynolds numbers of 100 to 300

were found well satisfactory .
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Work in this chapter aims to test and validate the efficiency of our model, described
in Chapters 2 and 3, for the flow around a circular cylinder. The two-dimensional
simulation of the flow around a static cylinder for a wide range of low to moderate
Reynolds numbers (250 < Re < 20,000), is carried out. The basic flow parameters
are simulated and the vortex shedding phenomenon is captured in the wake region
of the flow. A detailed comparative study of the flow around a circular cylinder
with experimental results at Reynolds number of 3,900 is conducted. We will show
that the LBM with Ehrenfests’ steps can quantitatively capture the vortex shedding
frequency as a function of Reynolds number and can provide other flow characteristics
like drag and lift coefficients which are well in agreement with experimental results.

Starting with the basic overview of the flow around a circular cylinder, the flow
characteristics such as the Strouhal number, vortex shedding, drag and lift coefficients
are introduced. Then the work carried out by other researchers for the simulation of
different turbulence models and its findings are brought into discussion. Following
this, results from the current simulation are compared with the experimental works

and conclusions on validating the turbulence model are drawn.

4.1 Basic overview of the flow around a circular
cylinder

Flow around a circular cylinder tends to follow the shape of the body provided that
the velocity of the flow is very slow, this is known as laminar flow. Flow at the inner
part of the boundary layers travels more slowly than the flow near to the free stream.
As the speed of the flow increases, separation of flow occurs at some point along the

body due to the occurrence of the adverse pressure gradient region. Flow separation
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tends to roll up the flow into swirling eddies, resulting in alternate shedding of vortices

in the wake region of the body known as the von Karman vortex street.

4.1.1 Reynolds Number

The governing dimensionless parameter for the idealized disturbance-free flow around

a nominally two-dimensional cylinder is the Reynolds number defined by
Re =UxD/v, (4.1.1)

where U, is the free-stream velocity, D the cylinder diameter and v the kinematic
viscosity as defined in Equation (2.5.6). It has been observed both experimentally and
numerically that as the Reynolds number increases, flow begins to separate behind
the cylinder causing vortex shedding which leads to a periodic flow known as a Von
Karman vortex street.

Roshko in his experimental study [77], has shown that significant patterns of flow
occurs as the Reynolds number changes and identified the following regimes for the

flow around a circular cylinder:

e Stable (laminar) range, 40 < Re < 150.
e Transition (from laminar to turbulent) range, 150 < Re < 300.
e Irregular (turbulent) range, 300 < Re < 10,000+

Similar regimes have been confirmed by other experimental and numerical inves-
tigations. Zdravkovich [97] has compiled almost all the experimental and numerical
simulation data on the flow past circular cylinders and classified this phenomenon

into different regimes based on the Reynolds numbers.



65

4.1.2 Strouhal number

The vortex-shedding frequency is characterized by a dimensionless number, known as

the Strouhal number, which defined by

_ D
=1

where D is the diameter of the cylinder, Uy, is the free-stream inlet velocity and f;

St

(4.1.2)

is the vortex shedding frequency. The Strouhal number undergoes a sharp transition

around a Re ~ 49 and tends to remain almost constant for 250 < Re < 20, 000.

4.1.3 Drag and lift coefficients

Roshko [77] showed a relation between the Strouhal number and the drag coefficient
of the flow around a circular cylinder. For Reynolds number 100 < Re < 10,000,
an increase in the Strouhal number is usually followed by a decrease in the drag

coefficient. The drag coefficient for a two-dimensional flow is defined as

_9F,
- pUZD’

Cp (4.1.3)

where F), is the sum of pressure and viscous forces on the surface of the cylinder
acting along the flow direction.

The lift coefficient is defined as

2F,

CpL=—7=

(4.1.4)

where F} is the force on the surface of the cylinder acting perpendicular to the along-
wind direction of the flow.
We have computed the forces F, and F), using the momentum exchange method.

In the momentum exchange method these forces are given by [68]

=Y [ Fa(Xp,t) = fal(xp + a8 | o, (4.1.5)

allzy a0
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and

Fy = Z Z [fa(xbat) - fa(Xb + eaAt)| ey, (4.1.6)

allxy a0

where e, , denote the x-component of the velocity vector e, and e,, denote the
y-component of the velocity vector e,.
For the analysis of the flows around the bluff bodies, any turbulence model should

simulate all the above-mentioned flow parameters correctly.

4.2 Flow around a circular cylinder using LBM
with Ehrenfests’ steps

In this section flow around a circular cylinder is simulated using the LBM with Ehren-
fests’ steps. The computational details for the simulation are briefly discussed first.
Then a detailed comparison of the current simulations with other numerical and ex-

perimental studies is presented.

4.2.1 Computational domain

The computational setup for the flow is as follows: The circular cylinder of diameter D
is immersed in a rectangular channel with its axis perpendicular to the flow direction.
The length and width of the channel are respectively, 30D and 25D. The cylinder is
placed on the center line in the y-direction resulting in a blockage ratio of 4%. The
computational domain consists of an upstream of 10.5D and a downstream of 19.5D
to the center of the cylinder. The computational grid with these dimensions is shown

in Fig. (4.1).
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Figure 4.1: Computational setup for flow past a circular cylinder.

4.2.2 Boundary conditions

For all simulations, the inlet velocity is (Us, Vo) = (0.05,0) (in lattice units) and the
characteristic length, that is the diameter of the cylinder, is D = 20. The vortex shed-
ding frequency f; is obtained from the discrete Fourier transform of the x-component
of the instantaneous velocity at a monitoring point which is located at coordinates
(4D, —2D) with center of the cylinder being assumed at the origin. The simulations
are recorded over t,,,, = 1250D /Uy, time steps. The parameter (k,d) which controls
the Ehrenfests’ steps tolerances, are fixed at (16,10?).

The free slip boundary conditions described in Section (2.7.3), are imposed on the
north and south channel walls. At the inlet, the populations are replaced with the
quasi-equilibrium values that correspond to the free-stream velocity and density (see
Section (2.7.4)). As the simulation result is not very sensitive to the exact condition

specified at the inlet boundary, this lower order approximation is sufficient there.
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The simulation is sensitive to the outlet boundary condition. The sensitivity for this
problem has been known in [83]. We follow the prescription suggested in[6, 19]: at
the outlet, the populations pointing towards the flow domain are replaced by the
equilibrium values that correspond to the velocity and density of the penultimate row
of the lattice (see Section (2.7.4)).

On the cylinder wall, the interpolation-based scheme of Fillipova and Hannel
model [28] with first-order and second-order improvements made by Renwei Mei [66],

are applied (see Section (2.7.5)).

4.2.3 Meshing

A uniform rectangular mesh of 601 x 501 nodes, is applied for this simulation as shown
in Figure (4.2). The lattice nodes coincide with the cartesian coordinates of the mesh.
The horizontal and vertical distances between the nodes of the lattice are both set
equal to one, i.e. dx = Jy =1 (in lattice units). There is no grid refinement applied
near the cylinder walls, as we expect the interpolation-based boundary conditions and
the Ehrenfests’ step would capture the changes of the velocity gradients and keep the

simulation stable.

4.2.4 Computational cost

Computer power plays an important role in the accuracy of any numerical simulation.
Present LBM simulations have been carried out on the high performance computing
environment provided by the University of Leicester, named, ALICE. Each simulation
is carried out on a 2.67GHz Intel Xeon X5550 CPU. For the current simulation, the
computing time for a mesh of 0.3 million lattice nodes and 0.5 million iterations (time

steps) requires 30 to 40 hours.
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Figure 4.2: A rectangular mesh around a circular cylinder.

4.3 Results and discussion

4.3.1 Strouhal-Reynolds number relationship

The critical Reynolds number at which the vortex shedding behind circular cylinder
started, is found to be around 49 [97]. Below this Reynolds number, the wake is
in steady state and two symmetric vortices are formed behind the cylinder. As the
Reynolds number increases beyond this critical value, the symmetry in the wake is
broken and alternating eddies are formed and convected. This results in the alternate
separation of vortices which are convected and diffused away from the cylinder and
known as the Von Karman vortex streets. Norberg [72] has observed this critical
number for the onset of vortex shedding as 47.4. In our simulations, we have found

the onset of vortex shedding at Re = 49. In our simulations we have found the onset
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of vortex shedding at Re = 49.

The Strouhal number for the unsteady laminar flow at Re = 100 is found to be
0.166 which is well in agreement with the experimental value (0.164 —0.165) reported
by Tritton [88]. The stream function and vorticity snapshots for the unsteady laminar
flow at Reynolds numbers Re = 50, 100, 150, are shown in Figures (4.5) to (4.10).

In his experimental work, Roshko [77] has reported the beginning of laminar to
turbulent transition at Reynolds numbers 200 — 300. Beyond this Reynolds number,
the wake of the cylinder is fully turbulent.

For the stable regime, Roshko [77] found the Strouhal-Reynolds number relation-
ship by the best-fit line

4.5
St=0.212 — —, 50 < Re < 150.
Re

and for the irregular regime he found
2.7

St =0.212 — o 300 < Re < 2000.
e

Norberg [71] found following best-fit lines for the same two regimes

4.
St:0.211——6, 50 < Re < 150,
Re
3.4
St =0.215 — o 300 < Re < 2000.
e

We have found good agreement for the stable regime with the experimental results
of Roshko and Norberg as shown in Figure (4.3). But for the irregular range, the
Strouhal number is found slightly overpredicted due to the three dimensional nature
of the fluid motion in this range.

Henderson [43] has found , for his 2D computation a very good fit to the Strouhal-

Reynolds number data up to Re = 1,000 given by

St = 0.2417 — 0.8328 Re B e1p(—0.001895Re),
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which shows that an asymptote of 0.2417 is reached at large Reynolds numbers. As
can be seen from Figure (4.3), present simulations are perfectly matched with the
Henderson’s curve up to Re = 1,000. Rajani [78] simulated two dimensional laminar
flow using RANS3D finite volume algorithm for 50 < Re < 5,000. The Strouhal-
Reynolds number data for the current simulation is closer to the experimental data
as compared to that of Rajani as shown in Figure (4.3). An asymptote of 0.24 for
Strouhal value is found for large Reynolds numbers.

Note that, we have simulated the flow around circular cylinder for Reynolds num-
ber up to Re = 140,000. The simulation is stable for about 500 vortex cycles up to
Re = 20,000. It is stable for about 200 vortex cycles up to Re = 30,000 and beyond
this Reynolds number the stable number of vortex cycles decreases with increasing
Reynolds number. At Re = 140,000, only 10 vortex cycles are stable. For higher
Reynolds number, the errors from the outer boundary corrupt the simulation. We

have presented the flow parameters only for the stable cycles.

4.3.2 Prediction of drag and lift coefficients

The drag drag force is a result of the convective motion of the cylinder through the
fluid. The mean drag coefficient computed in the current simulation is very close
to the experimental curve [80] as shown in Figure (4.4). A comparison with the
numerical results of Rajani [78] shows that current predicted values of mean drag

coefficient are much better.
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Figure 4.4: Comparison of the drag coefficient with experimental and numerical data.



Figure 4.5: A snapshot of vorticity field at Re = 50 and 500th time step.

Figure 4.6: A snapshot of stream function at Re = 50 and 500th time step.
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Figure 4.7: A snapshot of vorticity field at Re = 100 and 500th time step.

Figure 4.8: A snapshot of stream function at Re = 100 and 500¢h time step.
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Figure 4.9: A snapshot of vorticity field at Re = 150 and 400th time step.

Figure 4.10: A snapshot of stream function at Re = 150 and 400¢h time step.
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Figure 4.11: A snapshot of vorticity field at Re = 300 and 400th time step.

Figure 4.12: A snapshot of stream function at Re = 300 and 400th time step.
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Figure 4.13: A snapshot of vorticity field at Re = 1000 and 400th time step.

Figure 4.14: A snapshot of stream function at Re = 1000 and 400th time step.
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Figure 4.15: A snapshot of vorticity field at Re = 3900 and 400th time step.

Figure 4.16: A snapshot of stream function at Re = 3900 and 400th time step.
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Figure 4.17: A snapshot of vorticity field at Re = 10000 and 400th time step.

Figure 4.18: A snapshot of stream function at Re = 10000 and 400th time step.
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4.4 Flow around a circular cylinder at Re = 3,900

Due to availability of experimental and numerical measurements of the mean flow
fields in the wake of a circular cylinder at Re = 3,900, we have chosen this Reynolds
number for the validation of our numerical model to capture turbulent phenomena
behind cylinder wake.

Lourenco and Shih [60] performed experimental studies on the cylinder flow at
Re = 3,900 using the Particle Image Velocimetry (PIV). In their studies, the velocity
profiles were measured in the very near wake region (x/D < 3), i.e. within three
diameter downstream in the wake region of the flow. Ong and Wallace [73] performed
experimental studies for the same case using hot-wire probes. They measured the
velocity profiles and the Reynolds stress distributions in the near wake region (3 <
Re < 10). Both the experiments provide valuable data for the near-wake statistics.

First numerical study of the near wake region of the cylinder was conducted by
Beaudan and Moin [8]. They performed the Large Eddy Simulations (LES) of flow
past a circular cylinder at Re = 3,900. They solved the compressible Navier-Stokes
equation on an O-grid with fifth order accurate and seventh order accurate upwind-
biased schemes. Based on their calculations they concluded that the high order
upwind scheme was highly dissipative in the wake and hence ill-suited for LES. Mittal
and Moin [69] performed LES of the same case by solving the incompressible Navier
Stokes equations on a C-grid using the central difference scheme of second order.
They employed a Fourier-spectral method in the spanwise direction in conjunction
with the periodic boundary conditions. Their results for the mean flow field did not
differ much from the one of Beaudan and Moin, their power spectra in the near wake
were in better agreement with the experiments.Kravchenko and Moin [54] found even

better agreement for the spectra. They solved the incompressible equations with a
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high order method based on B-splines on an O-grid with zonal refinement. Their
simulations agreed well with the experimental data of Lourenco and Shih and Ong
and Wallace [60, 73]. Also they emphasized on the influence of numerical resolution
and the spanwise domain size of the three dimensional simulations. They found that
inadequate grid resolution can cause early transition in the shear layers separating
from the cylinder which leads to inaccurate predictions of the near-wake flow statistics.

Breuer [14] studied the numerical and modeling aspects of LES of the flow past a
circular cylinder at Re = 3,900. He investigated five different discretization schemes
and with dynamic and Smogorinsky subgrid-scale models. This work confirmed the
earlier findings that central difference schemes are better suited than the higher or-
der upwind schemes. In addition, he concluded that the dynamic model combined
with central difference schemes yields the best results, which agree well with the
experimental measurements. In each of the above case, the spanwise extent of the
computational domain was 7 D.

Ma et al. [63] performed both DNS and LES calculations with a spectral finite
element method, solving the incompressible equations in a box shaped domain. He
showed the two converged states of the flow field in the very near wake exist, that
are related to the shear layer transition and depend on the spanwise extent of the
computational domain. Another DNS was carried out by Tremblay et al. [87] at
Reynolds number of 3,900. They also performed their simulations in a box shaped
domain with spanwise extent of wD. They solved the incompressible equations with
finite volume method and central difference on a cartesian grid. They also obtained
a larger recirculation length than in the experiment of Lourenco and Shih [60], but
nearly 20 percent shorter than that of Ma et al. [63] for the corresponding size.

Hansen and Forsythe [35] performed DES simulations, using Cobalt, an unstructured
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finite volume code to solve the problem of flow past a circular cylinder at Re = 3, 900.
They mainly studied the effects of grid resolution on the solution and the effects of
using unstructured grids for turbulence resolving calculations. With sufficient grid
resolution, grid independence was achieved in some of the variables examined and
the global statistics of drag, recirculation zone length, and Strouhal number were
well within the range of experimental uncertainty.

In present work, a comparison of the mean flowfield and the turbulence quantities
in the wake region (1.06 < x/D < 10) with the experimental [60, 73] and numerical
simulations [14, 87] have been carried out. Regarding our two dimensional simula-
tions, we find excellent agreement with the experimental and numerical results in the

wake region (3 < z/D < 10).

4.4.1 Mean flow statistics

The temporal mean of the streamwise and vertical velocity components are defined
by
u=(U), v=(V), (4.4.1)

where U and V are the instantaneous velocity components and (.) denote the time
average of them. The streamwise and vertical velocities are normalized by the free-
stream inlet velocity U.

Figure (4.19) shows the mean centerline velocity of the flow compared with the
experimental results [60, 73], LES [14] and the DNS [87]. Our data matches well with
the experimental data of Ong and Wallace and numerical data of Tremblay in the
region further downstream. In the recovery region (2 < x/D < 4), the discrepancies
between experimental data and numerical data could be due to large scale phenomena

in the spanwise direction. Vortex dislocations arise naturally in 3D wake at high
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Reynolds numbers.

In Figures (4.20), (4.21) and (4.22), the vertical profiles of the streamwise velocity
components at locations ranging from z/D = 1.06 TO z/D = 10 are plotted. There
are deviations at the locations 1.54 < z/D < 3. But at the remaining locations there
is good agreement with the experimental and numerical data. This might be again
due to the three dimensional effects.

Figures (4.23), (4.24) and (4.25) show the vertical profiles of the mean vertical
velocity at the downstream locations. Our simulations agree well with the numerical

data of Tremblay [87] except at few locations.

4.4.2 Turbulent flow statistics

The components of the Reynolds stress tensor are given by
— (UU) - UNU), i =12, (4.4.2)

where subscripts 1 and 2 denote the x- and y-components respectively, i.e., uj = u*
and ui = v*. All the Reynolds stresses are normalized by the square of the inlet
velocity.

Figures (4.26), (4.27) and (4.28) show the vertical profiles of the streamwise
Reynolds stresses (u*u*/UZ) at the downstream locations ranging from z/D = 1.06
to z/D = 10. Overall good agreement is found with both experimental and numerical
data. A very good agreement with the experimental data of Ong and Wallace [73] is
observed at location z/D = 3.

Figures (4.29), (4.30) and (4.31) present the vertical profiles of the vertical Reynolds
stresses (v*v*/UZ) at the locations described above. Again a good agreement is found

with the experimental and numerical data. Surprisingly, our simulation is in very
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good agreement with the experimental data of Lourenco and Shih [60] and Ong and
Wallace [73] at locations 1.54 < z/D < 4.

Figures (4.32), (4.33) and (4.34) show the vertical profiles of the Reynolds shear
stresses (u*v*/U2) at the same locations as described above. Again, we find good

agreement.
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Figure 4.19: Mean streamwise velocity along the centerline of the cylinder. Present
LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue dashed line);
Exp. Lourenco and Shih [60] (pink diamonds); Exp. Ong and Wallace [73] (blue
triangles); Num. Breuer [14] (red dots) and Num. Flouos Smagorinsky model (red
+).
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Figure 4.20: Vertical profiles of the mean streamwise velocity at x/D=1.06, 1.54 and
2.02. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue
dashed line) and Exp. Lourenco and Shih [60] (red squares).
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Figure 4.21: Vertical profiles of the mean streamwise velocity at x/D=3, 4 and 5.
Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue
dashed line); Exp. Ong and Wallace [73] (red crosses) and Exp. Lourenco and Shih
[60] (red squares).
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Figure 4.22: Vertical profiles of the mean streamwise velocity at x/D=6, 7 and 10.
Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue
dashed line); Exp. Ong and Wallace [73] (red crosses).
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Figure 4.23: Vertical profiles of the mean vertical velocity at x/D=1.06, 1.54 and
2.02. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87]
(blue dashed line); and Exp. Lourenco and Shih [60] (red squares).
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Figure 4.24: Vertical profiles of the mean vertical velocity at x/D=3, 4 and 5. Present
LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue dashed line);
Exp. Ong and Wallace [73] (red crosses) and Exp. Lourenco and Shih [60] (red
squares).
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Figure 4.25: Vertical profiles of the mean vertical velocity at x/D=6, 7 and 10. Present
LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue dashed line);

Exp. Ong and Wallace [73] (red crosses).
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Figure 4.26: Vertical profiles of the variance of the streamwise velocity at x/D=1.06,

1.54 and 2.02. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay

[87] (blue dashed line); Exp. Lourenco and Shih [60] (red squares).
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Figure 4.27: Vertical profiles of the variance of the streamwise velocity at x/D=3,
4 and 5. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87]
(blue dashed line); Exp. Ong and Wallace [73] (red crosses) and Lourenco and Shih
[60] (red squares).
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Figure 4.28: Vertical profiles of the variance of the streamwise velocity at x/D=6, 7
and 10. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87]
(blue dashed line); Exp. Ong and Wallace [73] (red crosses).
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Figure 4.29: Vertical profiles of the variance of the vertical velocity at x/D=1.06, 1.54
and 2.02. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87]
(blue dashed line); Exp. Ong and Wallace [73] (red crosses) and Lourenco and Shih
[60] (red squares).



=3)

=Aa)

vEVE/UINZ(</D

=5)

vEVH/UINZ (< /D

vEVE/UIiNZ(</D

97

Figure 4.30: Vertical profiles of the variance of the vertical velocity at x/D=3, 4 and
5. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue
dashed line); Exp. Ong and Wallace [73] (red crosses) and Lourenco and Shih [60]

(red squares).
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Figure 4.31: Vertical profiles of the variance of the vertical velocity x/D=6, 7 and
10. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue
dashed line); Exp. Ong and Wallace [73] (red crosses).
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Figure 4.32: Vertical profiles of the Reynolds shear stress at x/D=1.06, 1.54 and
2.02. Present LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87]
(blue dashed line); and Exp. Lourenco and Shih [60] (red squares).
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Figure 4.33: Vertical profiles of the Reynolds shear stress at x/D=3, 4 and 5. Present
LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue dashed line);
Exp. Ong and Wallace [73] (red crosses) and Exp. Lourenco and Shih [60] (red

squares).
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Figure 4.34: Vertical profiles of the Reynolds shear stress at x/D=6, 7 and 10. Present
LBM with Ehrenfests’ steps (green solid line); DNS Tremblay [87] (blue dashed line);
Exp. Ong and Wallace [73] (red crosses).



Chapter 5

Flow Around Elliptic Cylinder and
Airfoil

In this chapter we present two more examples for the validity of our model. Flows
around elliptical cylinders and a NASA0015 airfoil are simulated for the Reynolds

numbers ranging from 500 to 2000.

5.1 Flow around elliptical cylinder

Flow around elliptical cylinders is another prototype flow over a range of bluff bodies
since the geometry of this flow allows one to study the effect of both thickness ratio
and angle of attack on the flow field. The study of this flow can provide valuable
insight into the phenomenon of unsteady flow separation and the structure of bluff
body wakes.

The simulation around elliptical cylinders of aspect ratios AR = 1/2 and AR = 2
has been performed using the LBM with Ehrenfests for Reynolds numbers of 525
and 1,000. The Reynolds number is defined by Re = Uy, D/v where Uy, is the inlet
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velocity and D is the vertical length of the cylinder. That is for the cylinder of aspect
ratio 1/2, D is the minor axis and for the cylinder of aspect ratio 2, D is the length
of major axis. Computational set up for the flow around elliptical cylinder is same as
for the flow around circular cylinder. The stream functions and vorticity contours of
these simulations are shown in Figures (5.1) to (5.8).

The results are compared with direct numerical simulation (DNS) data of Mittal
and Balachandar [70] and Ingber [41]. Mittal and Balachandar used direct numeri-
cal simulation (DNS) and found that for the Reynolds number Re = 1,000, the two
dimensional (DNS) predict the Strouhal number St = 0.20. The current simulation
predicted the Strouhal number St = 0.1952 for Reynolds number Re = 1,000. For
Re = 525, two dimensional simulations of Mittal [70] predicted the Strouhal number
at St = 0.21 and for three dimensional simulations it is St = 0.24. Our two dimen-
sional predicted value of Strouhal number is exactly same as that of three dimensional
simulations of Mittal, that is, 0.24.

For Re = 525, the drag coefficient predicted by Mittal [70] is C'p, = 0.78. We have
found it as 0.79 for the same Reynolds number. For Re = 1,000 two dimensional

simulations of Mittal reported this value as Cp = 0.61. Our value is Cp = 0.4678.

5.2 Flow around NASAQ0015 foil

Third example for the validation of our model,we have selected flow around a symmet-
ric NASA0015 airfoil at zero degree angle of attack. For this flow, the computational
domain of size 601 x 78 lattice nodes is selected. The chord length of airfoil is set at
length of 20 lattice nodes. The other computational details are same as those for the

flow around circular cylinder.
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The simulations are performed for a series of Reynolds number Re = 500, 1000, 1500,
2000. The vorticity contours and stream function snapshots for Re = 2000 are shown
in Figures (5.9) and (5.10). Simulations are carried out for 500 iterations. Results are
compared with PowerFlow simulations for the LBM of Lockard [59] and multi-block
LBM scheme of Yu [94, 95]. Both simulations are for the flow around NASA0012
airfoil. So the drag coefficient of their simulations is slightly less than our simulation
of NASA0015 airfoil.

For Re = 500, Yu [94] found drag coefficient C', = 0.1762, while Lockard [59]
reported it as C'p = 0.17618 using C'F'L3D solver and found Cp = 0.171721 using
PowerFlow simulation. We have found drag coefficient as C'p = 0.1809 for Reynolds
number Re = 500. For Reynolds number Re = 2000, the value of drag coefficient is
Cp = 0.2552.

Considering a small and underresolved computational domain, the present simu-
lation results are in good agreement with other numerical schemes like commercial

software PowerFlow.
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Figure 5.1: A snapshot of vorticity field in elliptic cylinder wake at Re = 525 and
AR=1/2 and 400th time step.
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Figure 5.2: A snapshot of stream function in elliptic cylinder wake at Re = 525 and
AR=1/2 and 400th time step.
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Figure 5.3: A snapshot of vorticity field in elliptic cylinder wake at Re = 1000 and
AR=1/2 and 400th time step.

Figure 5.4: A snapshot of stream function in elliptic cylinder wake at Re = 1000 and
AR=1/2 and 400th time step.
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Figure 5.5: A snapshot of vorticity field in elliptic cylinder wake at Re = 525 and
AR=2 and 400th time step.

Figure 5.6: A snapshot of stream function in elliptic cylinder wake at Re = 525 and
AR=2 and 400th time step.
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Figure 5.7: A snapshot of vorticity field in elliptic cylinder wake at Re = 1000 and
AR=2 and 400th time step.

Figure 5.8: A snapshot of stream function in elliptic cylinder wake at Re = 1000 and
AR=2 and 400th time step.
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Figure 5.9: A snapshot of vorticity field in NASA0015 airfoil wake at Re = 2000 and
400th time step.
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Figure 5.10: A snapshot of stream function in NASA0015 airfoil wake at Re = 2000
and 400th time step.



Chapter 6

Conclusion and Future Work

The work carried out in this thesis has proved the LBM with Ehrenfets’ steps as a
reliable turbulence model for the two dimensional simulation of flow around curved
bluff bodies. The author has learned proper modelling skills for the simulation of
flow around curved bluff bodies. A good practice on working with different boundary
conditions in two dimensions has provided a confidence for future simulations in three
dimension. In this chapter some findings and achievements on the study of the flow
around curved bluff bodies, with some suggestions and recommendations on the future

work upon the completion of the thesis are presented.

6.1 Conclusion

The aims and objectives set for the present work are achieved in this thesis. All sim-

ulations carried out using the LBM with Ehrenfests’ steps has provided the necessary

skills and knowledge for the investigation of flows around curved bluff bodies.
Despite the fact that an underresolved simulation i.e., the number of grid points

used are of O(10°) and without any explicit sub-grid scale model, we have shown
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that the LBM with Ehrenfests’ steps can stabilize the fluid simulation past a circular
cylinder for very high Reynolds number up to Re = 20,000. This method can quan-
titatively capture the Strouhal-Reynolds number relationship for this high Reynolds
number. At Re = 20,000, the value of kinematic viscosity attained is v =5 x 1075.
Above this Reynolds number, the errors from the boundary corrupted the simulation.
Ehrenfests’ steps introduce additional dissipation locally, on the base of pointwise
analysis of nonequilibrium entropy. Due to this pointwise nature, this scheme does
not introduce any nonisotropic effects. In order to preserve the second-order accu-
racy of the LBM, it is recommended that Ehrefests’ steps should be performed on a
small number of lattice sites with highest AS > §. This number should be around
O(Nh/L), where L is the characteristic length of the flow (like diameter in case of
flow around circular cylinder), N is the total number of sites in the domain and h is
the lattice step size. If there are only k sites with AS > ¢ are needed then this require
a computational cost of O(kN). We have observed in our numerical experiments that
even a small share of these steps have improved the stability.

The results for the simulation of the flow around a circular cylinder using the
LBM with Ehrenfests’ regularization has been found satisfactory. This model pre-
dicted the vortex shedding phenomenon around a circular cylinder successfully. The
Strouhal-Reynolds number relationship (see Section(4.3.1)) captured by our model
has been found very close to the experimental results. Although the estimate of
Strouhal number is slightly overestimated, yet it provides an asymptotic value of
Strouhal number for large Reynolds numbers. In Section (4.3.2), we have computed
the drag coefficient for low to high Reynolds numbers and the results compared with
the experimental curve for the drag coefficient [80] show very good agreement. This

is remarkable achievement considering that our two dimensional model is predicting
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three dimensional turbulent flow parameters in good agreement.

To further investigate the turbulent phenomena in cylinder wakes, a comparative
study with the experimental work at Reynolds number of 3,900 shows good agree-
ment. The vertical profiles of the streamwise and spanwise velocity components in
the wake regions of the flow have been well predicted for the flow around a circular
cylinder. The results for the turbulent flow statistics such as Reynolds normal and
shear stresses are found close to the experimental findings of Lourenco and Shih [60]
and Ong and Wallace [73] and three dimensional numerical findings of Tremblay [87].
Again considering two dimensional modelling, this is remarkable.

In Chapter 5, the validation of the model for the turbulent flows around airfoils
and elliptic cylinders is observed. For elliptic cylinders of different aspect ratios,
the prediction flow parameters such as Strouhal number and drag and lift coefficient
found in good agreement with other numerical results. For NASAQ015 airfoil, the
drag and lift coefficients for Reynolds number of 5,00 are found well in agreement in

comparison with the numerical findings using PowerFlow [59].

6.2 Future work

In this section some recommendations for further research On the work performed in
this thesis are described.

Although the LBM with Ehrenfets’ steps have provided good results for the
stable simulations of flows around bluff bodies, yet further detailed study using
three-dimensional models are needed to check the accuracy of the method for Re ~
O(10000). As we know that, the flow around circular cylinder is two-dimensional only

when Re < 200. Beyond this Reynolds number, but less than Re = 3 x 10° the wake
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of the cylinder becomes fully turbulent.

This thesis covers the two-dimensional simulation of flows around bluff bodies
for Reynolds numbers up to 20,000. Three dimensional effects start occurring after
Re > 200. To capture real physical phenomena and go beyond Reynolds number of

20,000, three-dimensional efficiency of the modell is required.
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